xref: /openbmc/qemu/migration/ram.c (revision 06152b89db64bc5ccec1e54576706ba891654df9)
1 /*
2  * QEMU System Emulator
3  *
4  * Copyright (c) 2003-2008 Fabrice Bellard
5  * Copyright (c) 2011-2015 Red Hat Inc
6  *
7  * Authors:
8  *  Juan Quintela <quintela@redhat.com>
9  *
10  * Permission is hereby granted, free of charge, to any person obtaining a copy
11  * of this software and associated documentation files (the "Software"), to deal
12  * in the Software without restriction, including without limitation the rights
13  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14  * copies of the Software, and to permit persons to whom the Software is
15  * furnished to do so, subject to the following conditions:
16  *
17  * The above copyright notice and this permission notice shall be included in
18  * all copies or substantial portions of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26  * THE SOFTWARE.
27  */
28 
29 #include "qemu/osdep.h"
30 #include "qemu/cutils.h"
31 #include "qemu/bitops.h"
32 #include "qemu/bitmap.h"
33 #include "qemu/madvise.h"
34 #include "qemu/main-loop.h"
35 #include "xbzrle.h"
36 #include "ram-compress.h"
37 #include "ram.h"
38 #include "migration.h"
39 #include "migration-stats.h"
40 #include "migration/register.h"
41 #include "migration/misc.h"
42 #include "qemu-file.h"
43 #include "postcopy-ram.h"
44 #include "page_cache.h"
45 #include "qemu/error-report.h"
46 #include "qapi/error.h"
47 #include "qapi/qapi-types-migration.h"
48 #include "qapi/qapi-events-migration.h"
49 #include "qapi/qapi-commands-migration.h"
50 #include "qapi/qmp/qerror.h"
51 #include "trace.h"
52 #include "exec/ram_addr.h"
53 #include "exec/target_page.h"
54 #include "qemu/rcu_queue.h"
55 #include "migration/colo.h"
56 #include "block.h"
57 #include "sysemu/cpu-throttle.h"
58 #include "savevm.h"
59 #include "qemu/iov.h"
60 #include "multifd.h"
61 #include "sysemu/runstate.h"
62 #include "rdma.h"
63 #include "options.h"
64 #include "sysemu/dirtylimit.h"
65 #include "sysemu/kvm.h"
66 
67 #include "hw/boards.h" /* for machine_dump_guest_core() */
68 
69 #if defined(__linux__)
70 #include "qemu/userfaultfd.h"
71 #endif /* defined(__linux__) */
72 
73 /***********************************************************/
74 /* ram save/restore */
75 
76 /*
77  * RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
78  * worked for pages that were filled with the same char.  We switched
79  * it to only search for the zero value.  And to avoid confusion with
80  * RAM_SAVE_FLAG_COMPRESS_PAGE just rename it.
81  */
82 /*
83  * RAM_SAVE_FLAG_FULL was obsoleted in 2009, it can be reused now
84  */
85 #define RAM_SAVE_FLAG_FULL     0x01
86 #define RAM_SAVE_FLAG_ZERO     0x02
87 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
88 #define RAM_SAVE_FLAG_PAGE     0x08
89 #define RAM_SAVE_FLAG_EOS      0x10
90 #define RAM_SAVE_FLAG_CONTINUE 0x20
91 #define RAM_SAVE_FLAG_XBZRLE   0x40
92 /* 0x80 is reserved in rdma.h for RAM_SAVE_FLAG_HOOK */
93 #define RAM_SAVE_FLAG_COMPRESS_PAGE    0x100
94 #define RAM_SAVE_FLAG_MULTIFD_FLUSH    0x200
95 /* We can't use any flag that is bigger than 0x200 */
96 
97 XBZRLECacheStats xbzrle_counters;
98 
99 /* used by the search for pages to send */
100 struct PageSearchStatus {
101     /* The migration channel used for a specific host page */
102     QEMUFile    *pss_channel;
103     /* Last block from where we have sent data */
104     RAMBlock *last_sent_block;
105     /* Current block being searched */
106     RAMBlock    *block;
107     /* Current page to search from */
108     unsigned long page;
109     /* Set once we wrap around */
110     bool         complete_round;
111     /* Whether we're sending a host page */
112     bool          host_page_sending;
113     /* The start/end of current host page.  Invalid if host_page_sending==false */
114     unsigned long host_page_start;
115     unsigned long host_page_end;
116 };
117 typedef struct PageSearchStatus PageSearchStatus;
118 
119 /* struct contains XBZRLE cache and a static page
120    used by the compression */
121 static struct {
122     /* buffer used for XBZRLE encoding */
123     uint8_t *encoded_buf;
124     /* buffer for storing page content */
125     uint8_t *current_buf;
126     /* Cache for XBZRLE, Protected by lock. */
127     PageCache *cache;
128     QemuMutex lock;
129     /* it will store a page full of zeros */
130     uint8_t *zero_target_page;
131     /* buffer used for XBZRLE decoding */
132     uint8_t *decoded_buf;
133 } XBZRLE;
134 
135 static void XBZRLE_cache_lock(void)
136 {
137     if (migrate_xbzrle()) {
138         qemu_mutex_lock(&XBZRLE.lock);
139     }
140 }
141 
142 static void XBZRLE_cache_unlock(void)
143 {
144     if (migrate_xbzrle()) {
145         qemu_mutex_unlock(&XBZRLE.lock);
146     }
147 }
148 
149 /**
150  * xbzrle_cache_resize: resize the xbzrle cache
151  *
152  * This function is called from migrate_params_apply in main
153  * thread, possibly while a migration is in progress.  A running
154  * migration may be using the cache and might finish during this call,
155  * hence changes to the cache are protected by XBZRLE.lock().
156  *
157  * Returns 0 for success or -1 for error
158  *
159  * @new_size: new cache size
160  * @errp: set *errp if the check failed, with reason
161  */
162 int xbzrle_cache_resize(uint64_t new_size, Error **errp)
163 {
164     PageCache *new_cache;
165     int64_t ret = 0;
166 
167     /* Check for truncation */
168     if (new_size != (size_t)new_size) {
169         error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
170                    "exceeding address space");
171         return -1;
172     }
173 
174     if (new_size == migrate_xbzrle_cache_size()) {
175         /* nothing to do */
176         return 0;
177     }
178 
179     XBZRLE_cache_lock();
180 
181     if (XBZRLE.cache != NULL) {
182         new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
183         if (!new_cache) {
184             ret = -1;
185             goto out;
186         }
187 
188         cache_fini(XBZRLE.cache);
189         XBZRLE.cache = new_cache;
190     }
191 out:
192     XBZRLE_cache_unlock();
193     return ret;
194 }
195 
196 static bool postcopy_preempt_active(void)
197 {
198     return migrate_postcopy_preempt() && migration_in_postcopy();
199 }
200 
201 bool migrate_ram_is_ignored(RAMBlock *block)
202 {
203     return !qemu_ram_is_migratable(block) ||
204            (migrate_ignore_shared() && qemu_ram_is_shared(block)
205                                     && qemu_ram_is_named_file(block));
206 }
207 
208 #undef RAMBLOCK_FOREACH
209 
210 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
211 {
212     RAMBlock *block;
213     int ret = 0;
214 
215     RCU_READ_LOCK_GUARD();
216 
217     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
218         ret = func(block, opaque);
219         if (ret) {
220             break;
221         }
222     }
223     return ret;
224 }
225 
226 static void ramblock_recv_map_init(void)
227 {
228     RAMBlock *rb;
229 
230     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
231         assert(!rb->receivedmap);
232         rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
233     }
234 }
235 
236 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
237 {
238     return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
239                     rb->receivedmap);
240 }
241 
242 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
243 {
244     return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
245 }
246 
247 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
248 {
249     set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
250 }
251 
252 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
253                                     size_t nr)
254 {
255     bitmap_set_atomic(rb->receivedmap,
256                       ramblock_recv_bitmap_offset(host_addr, rb),
257                       nr);
258 }
259 
260 #define  RAMBLOCK_RECV_BITMAP_ENDING  (0x0123456789abcdefULL)
261 
262 /*
263  * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
264  *
265  * Returns >0 if success with sent bytes, or <0 if error.
266  */
267 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
268                                   const char *block_name)
269 {
270     RAMBlock *block = qemu_ram_block_by_name(block_name);
271     unsigned long *le_bitmap, nbits;
272     uint64_t size;
273 
274     if (!block) {
275         error_report("%s: invalid block name: %s", __func__, block_name);
276         return -1;
277     }
278 
279     nbits = block->postcopy_length >> TARGET_PAGE_BITS;
280 
281     /*
282      * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
283      * machines we may need 4 more bytes for padding (see below
284      * comment). So extend it a bit before hand.
285      */
286     le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
287 
288     /*
289      * Always use little endian when sending the bitmap. This is
290      * required that when source and destination VMs are not using the
291      * same endianness. (Note: big endian won't work.)
292      */
293     bitmap_to_le(le_bitmap, block->receivedmap, nbits);
294 
295     /* Size of the bitmap, in bytes */
296     size = DIV_ROUND_UP(nbits, 8);
297 
298     /*
299      * size is always aligned to 8 bytes for 64bit machines, but it
300      * may not be true for 32bit machines. We need this padding to
301      * make sure the migration can survive even between 32bit and
302      * 64bit machines.
303      */
304     size = ROUND_UP(size, 8);
305 
306     qemu_put_be64(file, size);
307     qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
308     g_free(le_bitmap);
309     /*
310      * Mark as an end, in case the middle part is screwed up due to
311      * some "mysterious" reason.
312      */
313     qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
314     int ret = qemu_fflush(file);
315     if (ret) {
316         return ret;
317     }
318 
319     return size + sizeof(size);
320 }
321 
322 /*
323  * An outstanding page request, on the source, having been received
324  * and queued
325  */
326 struct RAMSrcPageRequest {
327     RAMBlock *rb;
328     hwaddr    offset;
329     hwaddr    len;
330 
331     QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
332 };
333 
334 /* State of RAM for migration */
335 struct RAMState {
336     /*
337      * PageSearchStatus structures for the channels when send pages.
338      * Protected by the bitmap_mutex.
339      */
340     PageSearchStatus pss[RAM_CHANNEL_MAX];
341     /* UFFD file descriptor, used in 'write-tracking' migration */
342     int uffdio_fd;
343     /* total ram size in bytes */
344     uint64_t ram_bytes_total;
345     /* Last block that we have visited searching for dirty pages */
346     RAMBlock *last_seen_block;
347     /* Last dirty target page we have sent */
348     ram_addr_t last_page;
349     /* last ram version we have seen */
350     uint32_t last_version;
351     /* How many times we have dirty too many pages */
352     int dirty_rate_high_cnt;
353     /* these variables are used for bitmap sync */
354     /* last time we did a full bitmap_sync */
355     int64_t time_last_bitmap_sync;
356     /* bytes transferred at start_time */
357     uint64_t bytes_xfer_prev;
358     /* number of dirty pages since start_time */
359     uint64_t num_dirty_pages_period;
360     /* xbzrle misses since the beginning of the period */
361     uint64_t xbzrle_cache_miss_prev;
362     /* Amount of xbzrle pages since the beginning of the period */
363     uint64_t xbzrle_pages_prev;
364     /* Amount of xbzrle encoded bytes since the beginning of the period */
365     uint64_t xbzrle_bytes_prev;
366     /* Are we really using XBZRLE (e.g., after the first round). */
367     bool xbzrle_started;
368     /* Are we on the last stage of migration */
369     bool last_stage;
370 
371     /* total handled target pages at the beginning of period */
372     uint64_t target_page_count_prev;
373     /* total handled target pages since start */
374     uint64_t target_page_count;
375     /* number of dirty bits in the bitmap */
376     uint64_t migration_dirty_pages;
377     /*
378      * Protects:
379      * - dirty/clear bitmap
380      * - migration_dirty_pages
381      * - pss structures
382      */
383     QemuMutex bitmap_mutex;
384     /* The RAMBlock used in the last src_page_requests */
385     RAMBlock *last_req_rb;
386     /* Queue of outstanding page requests from the destination */
387     QemuMutex src_page_req_mutex;
388     QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
389 
390     /*
391      * This is only used when postcopy is in recovery phase, to communicate
392      * between the migration thread and the return path thread on dirty
393      * bitmap synchronizations.  This field is unused in other stages of
394      * RAM migration.
395      */
396     unsigned int postcopy_bmap_sync_requested;
397 };
398 typedef struct RAMState RAMState;
399 
400 static RAMState *ram_state;
401 
402 static NotifierWithReturnList precopy_notifier_list;
403 
404 /* Whether postcopy has queued requests? */
405 static bool postcopy_has_request(RAMState *rs)
406 {
407     return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests);
408 }
409 
410 void precopy_infrastructure_init(void)
411 {
412     notifier_with_return_list_init(&precopy_notifier_list);
413 }
414 
415 void precopy_add_notifier(NotifierWithReturn *n)
416 {
417     notifier_with_return_list_add(&precopy_notifier_list, n);
418 }
419 
420 void precopy_remove_notifier(NotifierWithReturn *n)
421 {
422     notifier_with_return_remove(n);
423 }
424 
425 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
426 {
427     PrecopyNotifyData pnd;
428     pnd.reason = reason;
429     pnd.errp = errp;
430 
431     return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
432 }
433 
434 uint64_t ram_bytes_remaining(void)
435 {
436     return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
437                        0;
438 }
439 
440 void ram_transferred_add(uint64_t bytes)
441 {
442     if (runstate_is_running()) {
443         stat64_add(&mig_stats.precopy_bytes, bytes);
444     } else if (migration_in_postcopy()) {
445         stat64_add(&mig_stats.postcopy_bytes, bytes);
446     } else {
447         stat64_add(&mig_stats.downtime_bytes, bytes);
448     }
449 }
450 
451 struct MigrationOps {
452     int (*ram_save_target_page)(RAMState *rs, PageSearchStatus *pss);
453 };
454 typedef struct MigrationOps MigrationOps;
455 
456 MigrationOps *migration_ops;
457 
458 static int ram_save_host_page_urgent(PageSearchStatus *pss);
459 
460 /* NOTE: page is the PFN not real ram_addr_t. */
461 static void pss_init(PageSearchStatus *pss, RAMBlock *rb, ram_addr_t page)
462 {
463     pss->block = rb;
464     pss->page = page;
465     pss->complete_round = false;
466 }
467 
468 /*
469  * Check whether two PSSs are actively sending the same page.  Return true
470  * if it is, false otherwise.
471  */
472 static bool pss_overlap(PageSearchStatus *pss1, PageSearchStatus *pss2)
473 {
474     return pss1->host_page_sending && pss2->host_page_sending &&
475         (pss1->host_page_start == pss2->host_page_start);
476 }
477 
478 /**
479  * save_page_header: write page header to wire
480  *
481  * If this is the 1st block, it also writes the block identification
482  *
483  * Returns the number of bytes written
484  *
485  * @pss: current PSS channel status
486  * @block: block that contains the page we want to send
487  * @offset: offset inside the block for the page
488  *          in the lower bits, it contains flags
489  */
490 static size_t save_page_header(PageSearchStatus *pss, QEMUFile *f,
491                                RAMBlock *block, ram_addr_t offset)
492 {
493     size_t size, len;
494     bool same_block = (block == pss->last_sent_block);
495 
496     if (same_block) {
497         offset |= RAM_SAVE_FLAG_CONTINUE;
498     }
499     qemu_put_be64(f, offset);
500     size = 8;
501 
502     if (!same_block) {
503         len = strlen(block->idstr);
504         qemu_put_byte(f, len);
505         qemu_put_buffer(f, (uint8_t *)block->idstr, len);
506         size += 1 + len;
507         pss->last_sent_block = block;
508     }
509     return size;
510 }
511 
512 /**
513  * mig_throttle_guest_down: throttle down the guest
514  *
515  * Reduce amount of guest cpu execution to hopefully slow down memory
516  * writes. If guest dirty memory rate is reduced below the rate at
517  * which we can transfer pages to the destination then we should be
518  * able to complete migration. Some workloads dirty memory way too
519  * fast and will not effectively converge, even with auto-converge.
520  */
521 static void mig_throttle_guest_down(uint64_t bytes_dirty_period,
522                                     uint64_t bytes_dirty_threshold)
523 {
524     uint64_t pct_initial = migrate_cpu_throttle_initial();
525     uint64_t pct_increment = migrate_cpu_throttle_increment();
526     bool pct_tailslow = migrate_cpu_throttle_tailslow();
527     int pct_max = migrate_max_cpu_throttle();
528 
529     uint64_t throttle_now = cpu_throttle_get_percentage();
530     uint64_t cpu_now, cpu_ideal, throttle_inc;
531 
532     /* We have not started throttling yet. Let's start it. */
533     if (!cpu_throttle_active()) {
534         cpu_throttle_set(pct_initial);
535     } else {
536         /* Throttling already on, just increase the rate */
537         if (!pct_tailslow) {
538             throttle_inc = pct_increment;
539         } else {
540             /* Compute the ideal CPU percentage used by Guest, which may
541              * make the dirty rate match the dirty rate threshold. */
542             cpu_now = 100 - throttle_now;
543             cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 /
544                         bytes_dirty_period);
545             throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment);
546         }
547         cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max));
548     }
549 }
550 
551 void mig_throttle_counter_reset(void)
552 {
553     RAMState *rs = ram_state;
554 
555     rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
556     rs->num_dirty_pages_period = 0;
557     rs->bytes_xfer_prev = migration_transferred_bytes();
558 }
559 
560 /**
561  * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
562  *
563  * @current_addr: address for the zero page
564  *
565  * Update the xbzrle cache to reflect a page that's been sent as all 0.
566  * The important thing is that a stale (not-yet-0'd) page be replaced
567  * by the new data.
568  * As a bonus, if the page wasn't in the cache it gets added so that
569  * when a small write is made into the 0'd page it gets XBZRLE sent.
570  */
571 static void xbzrle_cache_zero_page(ram_addr_t current_addr)
572 {
573     /* We don't care if this fails to allocate a new cache page
574      * as long as it updated an old one */
575     cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
576                  stat64_get(&mig_stats.dirty_sync_count));
577 }
578 
579 #define ENCODING_FLAG_XBZRLE 0x1
580 
581 /**
582  * save_xbzrle_page: compress and send current page
583  *
584  * Returns: 1 means that we wrote the page
585  *          0 means that page is identical to the one already sent
586  *          -1 means that xbzrle would be longer than normal
587  *
588  * @rs: current RAM state
589  * @pss: current PSS channel
590  * @current_data: pointer to the address of the page contents
591  * @current_addr: addr of the page
592  * @block: block that contains the page we want to send
593  * @offset: offset inside the block for the page
594  */
595 static int save_xbzrle_page(RAMState *rs, PageSearchStatus *pss,
596                             uint8_t **current_data, ram_addr_t current_addr,
597                             RAMBlock *block, ram_addr_t offset)
598 {
599     int encoded_len = 0, bytes_xbzrle;
600     uint8_t *prev_cached_page;
601     QEMUFile *file = pss->pss_channel;
602     uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
603 
604     if (!cache_is_cached(XBZRLE.cache, current_addr, generation)) {
605         xbzrle_counters.cache_miss++;
606         if (!rs->last_stage) {
607             if (cache_insert(XBZRLE.cache, current_addr, *current_data,
608                              generation) == -1) {
609                 return -1;
610             } else {
611                 /* update *current_data when the page has been
612                    inserted into cache */
613                 *current_data = get_cached_data(XBZRLE.cache, current_addr);
614             }
615         }
616         return -1;
617     }
618 
619     /*
620      * Reaching here means the page has hit the xbzrle cache, no matter what
621      * encoding result it is (normal encoding, overflow or skipping the page),
622      * count the page as encoded. This is used to calculate the encoding rate.
623      *
624      * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB,
625      * 2nd page turns out to be skipped (i.e. no new bytes written to the
626      * page), the overall encoding rate will be 8KB / 2KB = 4, which has the
627      * skipped page included. In this way, the encoding rate can tell if the
628      * guest page is good for xbzrle encoding.
629      */
630     xbzrle_counters.pages++;
631     prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
632 
633     /* save current buffer into memory */
634     memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
635 
636     /* XBZRLE encoding (if there is no overflow) */
637     encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
638                                        TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
639                                        TARGET_PAGE_SIZE);
640 
641     /*
642      * Update the cache contents, so that it corresponds to the data
643      * sent, in all cases except where we skip the page.
644      */
645     if (!rs->last_stage && encoded_len != 0) {
646         memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
647         /*
648          * In the case where we couldn't compress, ensure that the caller
649          * sends the data from the cache, since the guest might have
650          * changed the RAM since we copied it.
651          */
652         *current_data = prev_cached_page;
653     }
654 
655     if (encoded_len == 0) {
656         trace_save_xbzrle_page_skipping();
657         return 0;
658     } else if (encoded_len == -1) {
659         trace_save_xbzrle_page_overflow();
660         xbzrle_counters.overflow++;
661         xbzrle_counters.bytes += TARGET_PAGE_SIZE;
662         return -1;
663     }
664 
665     /* Send XBZRLE based compressed page */
666     bytes_xbzrle = save_page_header(pss, pss->pss_channel, block,
667                                     offset | RAM_SAVE_FLAG_XBZRLE);
668     qemu_put_byte(file, ENCODING_FLAG_XBZRLE);
669     qemu_put_be16(file, encoded_len);
670     qemu_put_buffer(file, XBZRLE.encoded_buf, encoded_len);
671     bytes_xbzrle += encoded_len + 1 + 2;
672     /*
673      * Like compressed_size (please see update_compress_thread_counts),
674      * the xbzrle encoded bytes don't count the 8 byte header with
675      * RAM_SAVE_FLAG_CONTINUE.
676      */
677     xbzrle_counters.bytes += bytes_xbzrle - 8;
678     ram_transferred_add(bytes_xbzrle);
679 
680     return 1;
681 }
682 
683 /**
684  * pss_find_next_dirty: find the next dirty page of current ramblock
685  *
686  * This function updates pss->page to point to the next dirty page index
687  * within the ramblock to migrate, or the end of ramblock when nothing
688  * found.  Note that when pss->host_page_sending==true it means we're
689  * during sending a host page, so we won't look for dirty page that is
690  * outside the host page boundary.
691  *
692  * @pss: the current page search status
693  */
694 static void pss_find_next_dirty(PageSearchStatus *pss)
695 {
696     RAMBlock *rb = pss->block;
697     unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
698     unsigned long *bitmap = rb->bmap;
699 
700     if (migrate_ram_is_ignored(rb)) {
701         /* Points directly to the end, so we know no dirty page */
702         pss->page = size;
703         return;
704     }
705 
706     /*
707      * If during sending a host page, only look for dirty pages within the
708      * current host page being send.
709      */
710     if (pss->host_page_sending) {
711         assert(pss->host_page_end);
712         size = MIN(size, pss->host_page_end);
713     }
714 
715     pss->page = find_next_bit(bitmap, size, pss->page);
716 }
717 
718 static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb,
719                                                        unsigned long page)
720 {
721     uint8_t shift;
722     hwaddr size, start;
723 
724     if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) {
725         return;
726     }
727 
728     shift = rb->clear_bmap_shift;
729     /*
730      * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
731      * can make things easier sometimes since then start address
732      * of the small chunk will always be 64 pages aligned so the
733      * bitmap will always be aligned to unsigned long. We should
734      * even be able to remove this restriction but I'm simply
735      * keeping it.
736      */
737     assert(shift >= 6);
738 
739     size = 1ULL << (TARGET_PAGE_BITS + shift);
740     start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size);
741     trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
742     memory_region_clear_dirty_bitmap(rb->mr, start, size);
743 }
744 
745 static void
746 migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb,
747                                                  unsigned long start,
748                                                  unsigned long npages)
749 {
750     unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift;
751     unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages);
752     unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages);
753 
754     /*
755      * Clear pages from start to start + npages - 1, so the end boundary is
756      * exclusive.
757      */
758     for (i = chunk_start; i < chunk_end; i += chunk_pages) {
759         migration_clear_memory_region_dirty_bitmap(rb, i);
760     }
761 }
762 
763 /*
764  * colo_bitmap_find_diry:find contiguous dirty pages from start
765  *
766  * Returns the page offset within memory region of the start of the contiguout
767  * dirty page
768  *
769  * @rs: current RAM state
770  * @rb: RAMBlock where to search for dirty pages
771  * @start: page where we start the search
772  * @num: the number of contiguous dirty pages
773  */
774 static inline
775 unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
776                                      unsigned long start, unsigned long *num)
777 {
778     unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
779     unsigned long *bitmap = rb->bmap;
780     unsigned long first, next;
781 
782     *num = 0;
783 
784     if (migrate_ram_is_ignored(rb)) {
785         return size;
786     }
787 
788     first = find_next_bit(bitmap, size, start);
789     if (first >= size) {
790         return first;
791     }
792     next = find_next_zero_bit(bitmap, size, first + 1);
793     assert(next >= first);
794     *num = next - first;
795     return first;
796 }
797 
798 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
799                                                 RAMBlock *rb,
800                                                 unsigned long page)
801 {
802     bool ret;
803 
804     /*
805      * Clear dirty bitmap if needed.  This _must_ be called before we
806      * send any of the page in the chunk because we need to make sure
807      * we can capture further page content changes when we sync dirty
808      * log the next time.  So as long as we are going to send any of
809      * the page in the chunk we clear the remote dirty bitmap for all.
810      * Clearing it earlier won't be a problem, but too late will.
811      */
812     migration_clear_memory_region_dirty_bitmap(rb, page);
813 
814     ret = test_and_clear_bit(page, rb->bmap);
815     if (ret) {
816         rs->migration_dirty_pages--;
817     }
818 
819     return ret;
820 }
821 
822 static void dirty_bitmap_clear_section(MemoryRegionSection *section,
823                                        void *opaque)
824 {
825     const hwaddr offset = section->offset_within_region;
826     const hwaddr size = int128_get64(section->size);
827     const unsigned long start = offset >> TARGET_PAGE_BITS;
828     const unsigned long npages = size >> TARGET_PAGE_BITS;
829     RAMBlock *rb = section->mr->ram_block;
830     uint64_t *cleared_bits = opaque;
831 
832     /*
833      * We don't grab ram_state->bitmap_mutex because we expect to run
834      * only when starting migration or during postcopy recovery where
835      * we don't have concurrent access.
836      */
837     if (!migration_in_postcopy() && !migrate_background_snapshot()) {
838         migration_clear_memory_region_dirty_bitmap_range(rb, start, npages);
839     }
840     *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages);
841     bitmap_clear(rb->bmap, start, npages);
842 }
843 
844 /*
845  * Exclude all dirty pages from migration that fall into a discarded range as
846  * managed by a RamDiscardManager responsible for the mapped memory region of
847  * the RAMBlock. Clear the corresponding bits in the dirty bitmaps.
848  *
849  * Discarded pages ("logically unplugged") have undefined content and must
850  * not get migrated, because even reading these pages for migration might
851  * result in undesired behavior.
852  *
853  * Returns the number of cleared bits in the RAMBlock dirty bitmap.
854  *
855  * Note: The result is only stable while migrating (precopy/postcopy).
856  */
857 static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb)
858 {
859     uint64_t cleared_bits = 0;
860 
861     if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) {
862         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
863         MemoryRegionSection section = {
864             .mr = rb->mr,
865             .offset_within_region = 0,
866             .size = int128_make64(qemu_ram_get_used_length(rb)),
867         };
868 
869         ram_discard_manager_replay_discarded(rdm, &section,
870                                              dirty_bitmap_clear_section,
871                                              &cleared_bits);
872     }
873     return cleared_bits;
874 }
875 
876 /*
877  * Check if a host-page aligned page falls into a discarded range as managed by
878  * a RamDiscardManager responsible for the mapped memory region of the RAMBlock.
879  *
880  * Note: The result is only stable while migrating (precopy/postcopy).
881  */
882 bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start)
883 {
884     if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
885         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
886         MemoryRegionSection section = {
887             .mr = rb->mr,
888             .offset_within_region = start,
889             .size = int128_make64(qemu_ram_pagesize(rb)),
890         };
891 
892         return !ram_discard_manager_is_populated(rdm, &section);
893     }
894     return false;
895 }
896 
897 /* Called with RCU critical section */
898 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
899 {
900     uint64_t new_dirty_pages =
901         cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length);
902 
903     rs->migration_dirty_pages += new_dirty_pages;
904     rs->num_dirty_pages_period += new_dirty_pages;
905 }
906 
907 /**
908  * ram_pagesize_summary: calculate all the pagesizes of a VM
909  *
910  * Returns a summary bitmap of the page sizes of all RAMBlocks
911  *
912  * For VMs with just normal pages this is equivalent to the host page
913  * size. If it's got some huge pages then it's the OR of all the
914  * different page sizes.
915  */
916 uint64_t ram_pagesize_summary(void)
917 {
918     RAMBlock *block;
919     uint64_t summary = 0;
920 
921     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
922         summary |= block->page_size;
923     }
924 
925     return summary;
926 }
927 
928 uint64_t ram_get_total_transferred_pages(void)
929 {
930     return stat64_get(&mig_stats.normal_pages) +
931         stat64_get(&mig_stats.zero_pages) +
932         compress_ram_pages() + xbzrle_counters.pages;
933 }
934 
935 static void migration_update_rates(RAMState *rs, int64_t end_time)
936 {
937     uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
938 
939     /* calculate period counters */
940     stat64_set(&mig_stats.dirty_pages_rate,
941                rs->num_dirty_pages_period * 1000 /
942                (end_time - rs->time_last_bitmap_sync));
943 
944     if (!page_count) {
945         return;
946     }
947 
948     if (migrate_xbzrle()) {
949         double encoded_size, unencoded_size;
950 
951         xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
952             rs->xbzrle_cache_miss_prev) / page_count;
953         rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
954         unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) *
955                          TARGET_PAGE_SIZE;
956         encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev;
957         if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) {
958             xbzrle_counters.encoding_rate = 0;
959         } else {
960             xbzrle_counters.encoding_rate = unencoded_size / encoded_size;
961         }
962         rs->xbzrle_pages_prev = xbzrle_counters.pages;
963         rs->xbzrle_bytes_prev = xbzrle_counters.bytes;
964     }
965     compress_update_rates(page_count);
966 }
967 
968 /*
969  * Enable dirty-limit to throttle down the guest
970  */
971 static void migration_dirty_limit_guest(void)
972 {
973     /*
974      * dirty page rate quota for all vCPUs fetched from
975      * migration parameter 'vcpu_dirty_limit'
976      */
977     static int64_t quota_dirtyrate;
978     MigrationState *s = migrate_get_current();
979 
980     /*
981      * If dirty limit already enabled and migration parameter
982      * vcpu-dirty-limit untouched.
983      */
984     if (dirtylimit_in_service() &&
985         quota_dirtyrate == s->parameters.vcpu_dirty_limit) {
986         return;
987     }
988 
989     quota_dirtyrate = s->parameters.vcpu_dirty_limit;
990 
991     /*
992      * Set all vCPU a quota dirtyrate, note that the second
993      * parameter will be ignored if setting all vCPU for the vm
994      */
995     qmp_set_vcpu_dirty_limit(false, -1, quota_dirtyrate, NULL);
996     trace_migration_dirty_limit_guest(quota_dirtyrate);
997 }
998 
999 static void migration_trigger_throttle(RAMState *rs)
1000 {
1001     uint64_t threshold = migrate_throttle_trigger_threshold();
1002     uint64_t bytes_xfer_period =
1003         migration_transferred_bytes() - rs->bytes_xfer_prev;
1004     uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE;
1005     uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100;
1006 
1007     /* During block migration the auto-converge logic incorrectly detects
1008      * that ram migration makes no progress. Avoid this by disabling the
1009      * throttling logic during the bulk phase of block migration. */
1010     if (blk_mig_bulk_active()) {
1011         return;
1012     }
1013 
1014     /*
1015      * The following detection logic can be refined later. For now:
1016      * Check to see if the ratio between dirtied bytes and the approx.
1017      * amount of bytes that just got transferred since the last time
1018      * we were in this routine reaches the threshold. If that happens
1019      * twice, start or increase throttling.
1020      */
1021     if ((bytes_dirty_period > bytes_dirty_threshold) &&
1022         (++rs->dirty_rate_high_cnt >= 2)) {
1023         rs->dirty_rate_high_cnt = 0;
1024         if (migrate_auto_converge()) {
1025             trace_migration_throttle();
1026             mig_throttle_guest_down(bytes_dirty_period,
1027                                     bytes_dirty_threshold);
1028         } else if (migrate_dirty_limit()) {
1029             migration_dirty_limit_guest();
1030         }
1031     }
1032 }
1033 
1034 static void migration_bitmap_sync(RAMState *rs, bool last_stage)
1035 {
1036     RAMBlock *block;
1037     int64_t end_time;
1038 
1039     stat64_add(&mig_stats.dirty_sync_count, 1);
1040 
1041     if (!rs->time_last_bitmap_sync) {
1042         rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1043     }
1044 
1045     trace_migration_bitmap_sync_start();
1046     memory_global_dirty_log_sync(last_stage);
1047 
1048     qemu_mutex_lock(&rs->bitmap_mutex);
1049     WITH_RCU_READ_LOCK_GUARD() {
1050         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1051             ramblock_sync_dirty_bitmap(rs, block);
1052         }
1053         stat64_set(&mig_stats.dirty_bytes_last_sync, ram_bytes_remaining());
1054     }
1055     qemu_mutex_unlock(&rs->bitmap_mutex);
1056 
1057     memory_global_after_dirty_log_sync();
1058     trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1059 
1060     end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1061 
1062     /* more than 1 second = 1000 millisecons */
1063     if (end_time > rs->time_last_bitmap_sync + 1000) {
1064         migration_trigger_throttle(rs);
1065 
1066         migration_update_rates(rs, end_time);
1067 
1068         rs->target_page_count_prev = rs->target_page_count;
1069 
1070         /* reset period counters */
1071         rs->time_last_bitmap_sync = end_time;
1072         rs->num_dirty_pages_period = 0;
1073         rs->bytes_xfer_prev = migration_transferred_bytes();
1074     }
1075     if (migrate_events()) {
1076         uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
1077         qapi_event_send_migration_pass(generation);
1078     }
1079 }
1080 
1081 static void migration_bitmap_sync_precopy(RAMState *rs, bool last_stage)
1082 {
1083     Error *local_err = NULL;
1084 
1085     /*
1086      * The current notifier usage is just an optimization to migration, so we
1087      * don't stop the normal migration process in the error case.
1088      */
1089     if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1090         error_report_err(local_err);
1091         local_err = NULL;
1092     }
1093 
1094     migration_bitmap_sync(rs, last_stage);
1095 
1096     if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1097         error_report_err(local_err);
1098     }
1099 }
1100 
1101 void ram_release_page(const char *rbname, uint64_t offset)
1102 {
1103     if (!migrate_release_ram() || !migration_in_postcopy()) {
1104         return;
1105     }
1106 
1107     ram_discard_range(rbname, offset, TARGET_PAGE_SIZE);
1108 }
1109 
1110 /**
1111  * save_zero_page: send the zero page to the stream
1112  *
1113  * Returns the number of pages written.
1114  *
1115  * @rs: current RAM state
1116  * @pss: current PSS channel
1117  * @offset: offset inside the block for the page
1118  */
1119 static int save_zero_page(RAMState *rs, PageSearchStatus *pss,
1120                           ram_addr_t offset)
1121 {
1122     uint8_t *p = pss->block->host + offset;
1123     QEMUFile *file = pss->pss_channel;
1124     int len = 0;
1125 
1126     if (!buffer_is_zero(p, TARGET_PAGE_SIZE)) {
1127         return 0;
1128     }
1129 
1130     len += save_page_header(pss, file, pss->block, offset | RAM_SAVE_FLAG_ZERO);
1131     qemu_put_byte(file, 0);
1132     len += 1;
1133     ram_release_page(pss->block->idstr, offset);
1134 
1135     stat64_add(&mig_stats.zero_pages, 1);
1136     ram_transferred_add(len);
1137 
1138     /*
1139      * Must let xbzrle know, otherwise a previous (now 0'd) cached
1140      * page would be stale.
1141      */
1142     if (rs->xbzrle_started) {
1143         XBZRLE_cache_lock();
1144         xbzrle_cache_zero_page(pss->block->offset + offset);
1145         XBZRLE_cache_unlock();
1146     }
1147 
1148     return len;
1149 }
1150 
1151 /*
1152  * @pages: the number of pages written by the control path,
1153  *        < 0 - error
1154  *        > 0 - number of pages written
1155  *
1156  * Return true if the pages has been saved, otherwise false is returned.
1157  */
1158 static bool control_save_page(PageSearchStatus *pss,
1159                               ram_addr_t offset, int *pages)
1160 {
1161     int ret;
1162 
1163     ret = rdma_control_save_page(pss->pss_channel, pss->block->offset, offset,
1164                                  TARGET_PAGE_SIZE);
1165     if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1166         return false;
1167     }
1168 
1169     if (ret == RAM_SAVE_CONTROL_DELAYED) {
1170         *pages = 1;
1171         return true;
1172     }
1173     *pages = ret;
1174     return true;
1175 }
1176 
1177 /*
1178  * directly send the page to the stream
1179  *
1180  * Returns the number of pages written.
1181  *
1182  * @pss: current PSS channel
1183  * @block: block that contains the page we want to send
1184  * @offset: offset inside the block for the page
1185  * @buf: the page to be sent
1186  * @async: send to page asyncly
1187  */
1188 static int save_normal_page(PageSearchStatus *pss, RAMBlock *block,
1189                             ram_addr_t offset, uint8_t *buf, bool async)
1190 {
1191     QEMUFile *file = pss->pss_channel;
1192 
1193     ram_transferred_add(save_page_header(pss, pss->pss_channel, block,
1194                                          offset | RAM_SAVE_FLAG_PAGE));
1195     if (async) {
1196         qemu_put_buffer_async(file, buf, TARGET_PAGE_SIZE,
1197                               migrate_release_ram() &&
1198                               migration_in_postcopy());
1199     } else {
1200         qemu_put_buffer(file, buf, TARGET_PAGE_SIZE);
1201     }
1202     ram_transferred_add(TARGET_PAGE_SIZE);
1203     stat64_add(&mig_stats.normal_pages, 1);
1204     return 1;
1205 }
1206 
1207 /**
1208  * ram_save_page: send the given page to the stream
1209  *
1210  * Returns the number of pages written.
1211  *          < 0 - error
1212  *          >=0 - Number of pages written - this might legally be 0
1213  *                if xbzrle noticed the page was the same.
1214  *
1215  * @rs: current RAM state
1216  * @block: block that contains the page we want to send
1217  * @offset: offset inside the block for the page
1218  */
1219 static int ram_save_page(RAMState *rs, PageSearchStatus *pss)
1220 {
1221     int pages = -1;
1222     uint8_t *p;
1223     bool send_async = true;
1224     RAMBlock *block = pss->block;
1225     ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
1226     ram_addr_t current_addr = block->offset + offset;
1227 
1228     p = block->host + offset;
1229     trace_ram_save_page(block->idstr, (uint64_t)offset, p);
1230 
1231     XBZRLE_cache_lock();
1232     if (rs->xbzrle_started && !migration_in_postcopy()) {
1233         pages = save_xbzrle_page(rs, pss, &p, current_addr,
1234                                  block, offset);
1235         if (!rs->last_stage) {
1236             /* Can't send this cached data async, since the cache page
1237              * might get updated before it gets to the wire
1238              */
1239             send_async = false;
1240         }
1241     }
1242 
1243     /* XBZRLE overflow or normal page */
1244     if (pages == -1) {
1245         pages = save_normal_page(pss, block, offset, p, send_async);
1246     }
1247 
1248     XBZRLE_cache_unlock();
1249 
1250     return pages;
1251 }
1252 
1253 static int ram_save_multifd_page(RAMBlock *block, ram_addr_t offset)
1254 {
1255     if (multifd_queue_page(block, offset) < 0) {
1256         return -1;
1257     }
1258     stat64_add(&mig_stats.normal_pages, 1);
1259 
1260     return 1;
1261 }
1262 
1263 int compress_send_queued_data(CompressParam *param)
1264 {
1265     PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_PRECOPY];
1266     MigrationState *ms = migrate_get_current();
1267     QEMUFile *file = ms->to_dst_file;
1268     int len = 0;
1269 
1270     RAMBlock *block = param->block;
1271     ram_addr_t offset = param->offset;
1272 
1273     if (param->result == RES_NONE) {
1274         return 0;
1275     }
1276 
1277     assert(block == pss->last_sent_block);
1278 
1279     if (param->result == RES_ZEROPAGE) {
1280         assert(qemu_file_buffer_empty(param->file));
1281         len += save_page_header(pss, file, block, offset | RAM_SAVE_FLAG_ZERO);
1282         qemu_put_byte(file, 0);
1283         len += 1;
1284         ram_release_page(block->idstr, offset);
1285     } else if (param->result == RES_COMPRESS) {
1286         assert(!qemu_file_buffer_empty(param->file));
1287         len += save_page_header(pss, file, block,
1288                                 offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
1289         len += qemu_put_qemu_file(file, param->file);
1290     } else {
1291         abort();
1292     }
1293 
1294     update_compress_thread_counts(param, len);
1295 
1296     return len;
1297 }
1298 
1299 #define PAGE_ALL_CLEAN 0
1300 #define PAGE_TRY_AGAIN 1
1301 #define PAGE_DIRTY_FOUND 2
1302 /**
1303  * find_dirty_block: find the next dirty page and update any state
1304  * associated with the search process.
1305  *
1306  * Returns:
1307  *         <0: An error happened
1308  *         PAGE_ALL_CLEAN: no dirty page found, give up
1309  *         PAGE_TRY_AGAIN: no dirty page found, retry for next block
1310  *         PAGE_DIRTY_FOUND: dirty page found
1311  *
1312  * @rs: current RAM state
1313  * @pss: data about the state of the current dirty page scan
1314  * @again: set to false if the search has scanned the whole of RAM
1315  */
1316 static int find_dirty_block(RAMState *rs, PageSearchStatus *pss)
1317 {
1318     /* Update pss->page for the next dirty bit in ramblock */
1319     pss_find_next_dirty(pss);
1320 
1321     if (pss->complete_round && pss->block == rs->last_seen_block &&
1322         pss->page >= rs->last_page) {
1323         /*
1324          * We've been once around the RAM and haven't found anything.
1325          * Give up.
1326          */
1327         return PAGE_ALL_CLEAN;
1328     }
1329     if (!offset_in_ramblock(pss->block,
1330                             ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) {
1331         /* Didn't find anything in this RAM Block */
1332         pss->page = 0;
1333         pss->block = QLIST_NEXT_RCU(pss->block, next);
1334         if (!pss->block) {
1335             if (migrate_multifd() &&
1336                 !migrate_multifd_flush_after_each_section()) {
1337                 QEMUFile *f = rs->pss[RAM_CHANNEL_PRECOPY].pss_channel;
1338                 int ret = multifd_send_sync_main();
1339                 if (ret < 0) {
1340                     return ret;
1341                 }
1342                 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
1343                 qemu_fflush(f);
1344             }
1345             /*
1346              * If memory migration starts over, we will meet a dirtied page
1347              * which may still exists in compression threads's ring, so we
1348              * should flush the compressed data to make sure the new page
1349              * is not overwritten by the old one in the destination.
1350              *
1351              * Also If xbzrle is on, stop using the data compression at this
1352              * point. In theory, xbzrle can do better than compression.
1353              */
1354             compress_flush_data();
1355 
1356             /* Hit the end of the list */
1357             pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1358             /* Flag that we've looped */
1359             pss->complete_round = true;
1360             /* After the first round, enable XBZRLE. */
1361             if (migrate_xbzrle()) {
1362                 rs->xbzrle_started = true;
1363             }
1364         }
1365         /* Didn't find anything this time, but try again on the new block */
1366         return PAGE_TRY_AGAIN;
1367     } else {
1368         /* We've found something */
1369         return PAGE_DIRTY_FOUND;
1370     }
1371 }
1372 
1373 /**
1374  * unqueue_page: gets a page of the queue
1375  *
1376  * Helper for 'get_queued_page' - gets a page off the queue
1377  *
1378  * Returns the block of the page (or NULL if none available)
1379  *
1380  * @rs: current RAM state
1381  * @offset: used to return the offset within the RAMBlock
1382  */
1383 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
1384 {
1385     struct RAMSrcPageRequest *entry;
1386     RAMBlock *block = NULL;
1387 
1388     if (!postcopy_has_request(rs)) {
1389         return NULL;
1390     }
1391 
1392     QEMU_LOCK_GUARD(&rs->src_page_req_mutex);
1393 
1394     /*
1395      * This should _never_ change even after we take the lock, because no one
1396      * should be taking anything off the request list other than us.
1397      */
1398     assert(postcopy_has_request(rs));
1399 
1400     entry = QSIMPLEQ_FIRST(&rs->src_page_requests);
1401     block = entry->rb;
1402     *offset = entry->offset;
1403 
1404     if (entry->len > TARGET_PAGE_SIZE) {
1405         entry->len -= TARGET_PAGE_SIZE;
1406         entry->offset += TARGET_PAGE_SIZE;
1407     } else {
1408         memory_region_unref(block->mr);
1409         QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1410         g_free(entry);
1411         migration_consume_urgent_request();
1412     }
1413 
1414     return block;
1415 }
1416 
1417 #if defined(__linux__)
1418 /**
1419  * poll_fault_page: try to get next UFFD write fault page and, if pending fault
1420  *   is found, return RAM block pointer and page offset
1421  *
1422  * Returns pointer to the RAMBlock containing faulting page,
1423  *   NULL if no write faults are pending
1424  *
1425  * @rs: current RAM state
1426  * @offset: page offset from the beginning of the block
1427  */
1428 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1429 {
1430     struct uffd_msg uffd_msg;
1431     void *page_address;
1432     RAMBlock *block;
1433     int res;
1434 
1435     if (!migrate_background_snapshot()) {
1436         return NULL;
1437     }
1438 
1439     res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1);
1440     if (res <= 0) {
1441         return NULL;
1442     }
1443 
1444     page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address;
1445     block = qemu_ram_block_from_host(page_address, false, offset);
1446     assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0);
1447     return block;
1448 }
1449 
1450 /**
1451  * ram_save_release_protection: release UFFD write protection after
1452  *   a range of pages has been saved
1453  *
1454  * @rs: current RAM state
1455  * @pss: page-search-status structure
1456  * @start_page: index of the first page in the range relative to pss->block
1457  *
1458  * Returns 0 on success, negative value in case of an error
1459 */
1460 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1461         unsigned long start_page)
1462 {
1463     int res = 0;
1464 
1465     /* Check if page is from UFFD-managed region. */
1466     if (pss->block->flags & RAM_UF_WRITEPROTECT) {
1467         void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS);
1468         uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS;
1469 
1470         /* Flush async buffers before un-protect. */
1471         qemu_fflush(pss->pss_channel);
1472         /* Un-protect memory range. */
1473         res = uffd_change_protection(rs->uffdio_fd, page_address, run_length,
1474                 false, false);
1475     }
1476 
1477     return res;
1478 }
1479 
1480 /* ram_write_tracking_available: check if kernel supports required UFFD features
1481  *
1482  * Returns true if supports, false otherwise
1483  */
1484 bool ram_write_tracking_available(void)
1485 {
1486     uint64_t uffd_features;
1487     int res;
1488 
1489     res = uffd_query_features(&uffd_features);
1490     return (res == 0 &&
1491             (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0);
1492 }
1493 
1494 /* ram_write_tracking_compatible: check if guest configuration is
1495  *   compatible with 'write-tracking'
1496  *
1497  * Returns true if compatible, false otherwise
1498  */
1499 bool ram_write_tracking_compatible(void)
1500 {
1501     const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT);
1502     int uffd_fd;
1503     RAMBlock *block;
1504     bool ret = false;
1505 
1506     /* Open UFFD file descriptor */
1507     uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false);
1508     if (uffd_fd < 0) {
1509         return false;
1510     }
1511 
1512     RCU_READ_LOCK_GUARD();
1513 
1514     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1515         uint64_t uffd_ioctls;
1516 
1517         /* Nothing to do with read-only and MMIO-writable regions */
1518         if (block->mr->readonly || block->mr->rom_device) {
1519             continue;
1520         }
1521         /* Try to register block memory via UFFD-IO to track writes */
1522         if (uffd_register_memory(uffd_fd, block->host, block->max_length,
1523                 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) {
1524             goto out;
1525         }
1526         if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) {
1527             goto out;
1528         }
1529     }
1530     ret = true;
1531 
1532 out:
1533     uffd_close_fd(uffd_fd);
1534     return ret;
1535 }
1536 
1537 static inline void populate_read_range(RAMBlock *block, ram_addr_t offset,
1538                                        ram_addr_t size)
1539 {
1540     const ram_addr_t end = offset + size;
1541 
1542     /*
1543      * We read one byte of each page; this will preallocate page tables if
1544      * required and populate the shared zeropage on MAP_PRIVATE anonymous memory
1545      * where no page was populated yet. This might require adaption when
1546      * supporting other mappings, like shmem.
1547      */
1548     for (; offset < end; offset += block->page_size) {
1549         char tmp = *((char *)block->host + offset);
1550 
1551         /* Don't optimize the read out */
1552         asm volatile("" : "+r" (tmp));
1553     }
1554 }
1555 
1556 static inline int populate_read_section(MemoryRegionSection *section,
1557                                         void *opaque)
1558 {
1559     const hwaddr size = int128_get64(section->size);
1560     hwaddr offset = section->offset_within_region;
1561     RAMBlock *block = section->mr->ram_block;
1562 
1563     populate_read_range(block, offset, size);
1564     return 0;
1565 }
1566 
1567 /*
1568  * ram_block_populate_read: preallocate page tables and populate pages in the
1569  *   RAM block by reading a byte of each page.
1570  *
1571  * Since it's solely used for userfault_fd WP feature, here we just
1572  *   hardcode page size to qemu_real_host_page_size.
1573  *
1574  * @block: RAM block to populate
1575  */
1576 static void ram_block_populate_read(RAMBlock *rb)
1577 {
1578     /*
1579      * Skip populating all pages that fall into a discarded range as managed by
1580      * a RamDiscardManager responsible for the mapped memory region of the
1581      * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock
1582      * must not get populated automatically. We don't have to track
1583      * modifications via userfaultfd WP reliably, because these pages will
1584      * not be part of the migration stream either way -- see
1585      * ramblock_dirty_bitmap_exclude_discarded_pages().
1586      *
1587      * Note: The result is only stable while migrating (precopy/postcopy).
1588      */
1589     if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1590         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1591         MemoryRegionSection section = {
1592             .mr = rb->mr,
1593             .offset_within_region = 0,
1594             .size = rb->mr->size,
1595         };
1596 
1597         ram_discard_manager_replay_populated(rdm, &section,
1598                                              populate_read_section, NULL);
1599     } else {
1600         populate_read_range(rb, 0, rb->used_length);
1601     }
1602 }
1603 
1604 /*
1605  * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking
1606  */
1607 void ram_write_tracking_prepare(void)
1608 {
1609     RAMBlock *block;
1610 
1611     RCU_READ_LOCK_GUARD();
1612 
1613     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1614         /* Nothing to do with read-only and MMIO-writable regions */
1615         if (block->mr->readonly || block->mr->rom_device) {
1616             continue;
1617         }
1618 
1619         /*
1620          * Populate pages of the RAM block before enabling userfault_fd
1621          * write protection.
1622          *
1623          * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with
1624          * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip
1625          * pages with pte_none() entries in page table.
1626          */
1627         ram_block_populate_read(block);
1628     }
1629 }
1630 
1631 static inline int uffd_protect_section(MemoryRegionSection *section,
1632                                        void *opaque)
1633 {
1634     const hwaddr size = int128_get64(section->size);
1635     const hwaddr offset = section->offset_within_region;
1636     RAMBlock *rb = section->mr->ram_block;
1637     int uffd_fd = (uintptr_t)opaque;
1638 
1639     return uffd_change_protection(uffd_fd, rb->host + offset, size, true,
1640                                   false);
1641 }
1642 
1643 static int ram_block_uffd_protect(RAMBlock *rb, int uffd_fd)
1644 {
1645     assert(rb->flags & RAM_UF_WRITEPROTECT);
1646 
1647     /* See ram_block_populate_read() */
1648     if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1649         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1650         MemoryRegionSection section = {
1651             .mr = rb->mr,
1652             .offset_within_region = 0,
1653             .size = rb->mr->size,
1654         };
1655 
1656         return ram_discard_manager_replay_populated(rdm, &section,
1657                                                     uffd_protect_section,
1658                                                     (void *)(uintptr_t)uffd_fd);
1659     }
1660     return uffd_change_protection(uffd_fd, rb->host,
1661                                   rb->used_length, true, false);
1662 }
1663 
1664 /*
1665  * ram_write_tracking_start: start UFFD-WP memory tracking
1666  *
1667  * Returns 0 for success or negative value in case of error
1668  */
1669 int ram_write_tracking_start(void)
1670 {
1671     int uffd_fd;
1672     RAMState *rs = ram_state;
1673     RAMBlock *block;
1674 
1675     /* Open UFFD file descriptor */
1676     uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true);
1677     if (uffd_fd < 0) {
1678         return uffd_fd;
1679     }
1680     rs->uffdio_fd = uffd_fd;
1681 
1682     RCU_READ_LOCK_GUARD();
1683 
1684     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1685         /* Nothing to do with read-only and MMIO-writable regions */
1686         if (block->mr->readonly || block->mr->rom_device) {
1687             continue;
1688         }
1689 
1690         /* Register block memory with UFFD to track writes */
1691         if (uffd_register_memory(rs->uffdio_fd, block->host,
1692                 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) {
1693             goto fail;
1694         }
1695         block->flags |= RAM_UF_WRITEPROTECT;
1696         memory_region_ref(block->mr);
1697 
1698         /* Apply UFFD write protection to the block memory range */
1699         if (ram_block_uffd_protect(block, uffd_fd)) {
1700             goto fail;
1701         }
1702 
1703         trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size,
1704                 block->host, block->max_length);
1705     }
1706 
1707     return 0;
1708 
1709 fail:
1710     error_report("ram_write_tracking_start() failed: restoring initial memory state");
1711 
1712     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1713         if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1714             continue;
1715         }
1716         uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1717         /* Cleanup flags and remove reference */
1718         block->flags &= ~RAM_UF_WRITEPROTECT;
1719         memory_region_unref(block->mr);
1720     }
1721 
1722     uffd_close_fd(uffd_fd);
1723     rs->uffdio_fd = -1;
1724     return -1;
1725 }
1726 
1727 /**
1728  * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection
1729  */
1730 void ram_write_tracking_stop(void)
1731 {
1732     RAMState *rs = ram_state;
1733     RAMBlock *block;
1734 
1735     RCU_READ_LOCK_GUARD();
1736 
1737     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1738         if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1739             continue;
1740         }
1741         uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1742 
1743         trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size,
1744                 block->host, block->max_length);
1745 
1746         /* Cleanup flags and remove reference */
1747         block->flags &= ~RAM_UF_WRITEPROTECT;
1748         memory_region_unref(block->mr);
1749     }
1750 
1751     /* Finally close UFFD file descriptor */
1752     uffd_close_fd(rs->uffdio_fd);
1753     rs->uffdio_fd = -1;
1754 }
1755 
1756 #else
1757 /* No target OS support, stubs just fail or ignore */
1758 
1759 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1760 {
1761     (void) rs;
1762     (void) offset;
1763 
1764     return NULL;
1765 }
1766 
1767 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1768         unsigned long start_page)
1769 {
1770     (void) rs;
1771     (void) pss;
1772     (void) start_page;
1773 
1774     return 0;
1775 }
1776 
1777 bool ram_write_tracking_available(void)
1778 {
1779     return false;
1780 }
1781 
1782 bool ram_write_tracking_compatible(void)
1783 {
1784     assert(0);
1785     return false;
1786 }
1787 
1788 int ram_write_tracking_start(void)
1789 {
1790     assert(0);
1791     return -1;
1792 }
1793 
1794 void ram_write_tracking_stop(void)
1795 {
1796     assert(0);
1797 }
1798 #endif /* defined(__linux__) */
1799 
1800 /**
1801  * get_queued_page: unqueue a page from the postcopy requests
1802  *
1803  * Skips pages that are already sent (!dirty)
1804  *
1805  * Returns true if a queued page is found
1806  *
1807  * @rs: current RAM state
1808  * @pss: data about the state of the current dirty page scan
1809  */
1810 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
1811 {
1812     RAMBlock  *block;
1813     ram_addr_t offset;
1814     bool dirty;
1815 
1816     do {
1817         block = unqueue_page(rs, &offset);
1818         /*
1819          * We're sending this page, and since it's postcopy nothing else
1820          * will dirty it, and we must make sure it doesn't get sent again
1821          * even if this queue request was received after the background
1822          * search already sent it.
1823          */
1824         if (block) {
1825             unsigned long page;
1826 
1827             page = offset >> TARGET_PAGE_BITS;
1828             dirty = test_bit(page, block->bmap);
1829             if (!dirty) {
1830                 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
1831                                                 page);
1832             } else {
1833                 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
1834             }
1835         }
1836 
1837     } while (block && !dirty);
1838 
1839     if (!block) {
1840         /*
1841          * Poll write faults too if background snapshot is enabled; that's
1842          * when we have vcpus got blocked by the write protected pages.
1843          */
1844         block = poll_fault_page(rs, &offset);
1845     }
1846 
1847     if (block) {
1848         /*
1849          * We want the background search to continue from the queued page
1850          * since the guest is likely to want other pages near to the page
1851          * it just requested.
1852          */
1853         pss->block = block;
1854         pss->page = offset >> TARGET_PAGE_BITS;
1855 
1856         /*
1857          * This unqueued page would break the "one round" check, even is
1858          * really rare.
1859          */
1860         pss->complete_round = false;
1861     }
1862 
1863     return !!block;
1864 }
1865 
1866 /**
1867  * migration_page_queue_free: drop any remaining pages in the ram
1868  * request queue
1869  *
1870  * It should be empty at the end anyway, but in error cases there may
1871  * be some left.  in case that there is any page left, we drop it.
1872  *
1873  */
1874 static void migration_page_queue_free(RAMState *rs)
1875 {
1876     struct RAMSrcPageRequest *mspr, *next_mspr;
1877     /* This queue generally should be empty - but in the case of a failed
1878      * migration might have some droppings in.
1879      */
1880     RCU_READ_LOCK_GUARD();
1881     QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
1882         memory_region_unref(mspr->rb->mr);
1883         QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1884         g_free(mspr);
1885     }
1886 }
1887 
1888 /**
1889  * ram_save_queue_pages: queue the page for transmission
1890  *
1891  * A request from postcopy destination for example.
1892  *
1893  * Returns zero on success or negative on error
1894  *
1895  * @rbname: Name of the RAMBLock of the request. NULL means the
1896  *          same that last one.
1897  * @start: starting address from the start of the RAMBlock
1898  * @len: length (in bytes) to send
1899  */
1900 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len,
1901                          Error **errp)
1902 {
1903     RAMBlock *ramblock;
1904     RAMState *rs = ram_state;
1905 
1906     stat64_add(&mig_stats.postcopy_requests, 1);
1907     RCU_READ_LOCK_GUARD();
1908 
1909     if (!rbname) {
1910         /* Reuse last RAMBlock */
1911         ramblock = rs->last_req_rb;
1912 
1913         if (!ramblock) {
1914             /*
1915              * Shouldn't happen, we can't reuse the last RAMBlock if
1916              * it's the 1st request.
1917              */
1918             error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no previous block");
1919             return -1;
1920         }
1921     } else {
1922         ramblock = qemu_ram_block_by_name(rbname);
1923 
1924         if (!ramblock) {
1925             /* We shouldn't be asked for a non-existent RAMBlock */
1926             error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no block '%s'", rbname);
1927             return -1;
1928         }
1929         rs->last_req_rb = ramblock;
1930     }
1931     trace_ram_save_queue_pages(ramblock->idstr, start, len);
1932     if (!offset_in_ramblock(ramblock, start + len - 1)) {
1933         error_setg(errp, "MIG_RP_MSG_REQ_PAGES request overrun, "
1934                    "start=" RAM_ADDR_FMT " len="
1935                    RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
1936                    start, len, ramblock->used_length);
1937         return -1;
1938     }
1939 
1940     /*
1941      * When with postcopy preempt, we send back the page directly in the
1942      * rp-return thread.
1943      */
1944     if (postcopy_preempt_active()) {
1945         ram_addr_t page_start = start >> TARGET_PAGE_BITS;
1946         size_t page_size = qemu_ram_pagesize(ramblock);
1947         PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_POSTCOPY];
1948         int ret = 0;
1949 
1950         qemu_mutex_lock(&rs->bitmap_mutex);
1951 
1952         pss_init(pss, ramblock, page_start);
1953         /*
1954          * Always use the preempt channel, and make sure it's there.  It's
1955          * safe to access without lock, because when rp-thread is running
1956          * we should be the only one who operates on the qemufile
1957          */
1958         pss->pss_channel = migrate_get_current()->postcopy_qemufile_src;
1959         assert(pss->pss_channel);
1960 
1961         /*
1962          * It must be either one or multiple of host page size.  Just
1963          * assert; if something wrong we're mostly split brain anyway.
1964          */
1965         assert(len % page_size == 0);
1966         while (len) {
1967             if (ram_save_host_page_urgent(pss)) {
1968                 error_setg(errp, "ram_save_host_page_urgent() failed: "
1969                            "ramblock=%s, start_addr=0x"RAM_ADDR_FMT,
1970                            ramblock->idstr, start);
1971                 ret = -1;
1972                 break;
1973             }
1974             /*
1975              * NOTE: after ram_save_host_page_urgent() succeeded, pss->page
1976              * will automatically be moved and point to the next host page
1977              * we're going to send, so no need to update here.
1978              *
1979              * Normally QEMU never sends >1 host page in requests, so
1980              * logically we don't even need that as the loop should only
1981              * run once, but just to be consistent.
1982              */
1983             len -= page_size;
1984         };
1985         qemu_mutex_unlock(&rs->bitmap_mutex);
1986 
1987         return ret;
1988     }
1989 
1990     struct RAMSrcPageRequest *new_entry =
1991         g_new0(struct RAMSrcPageRequest, 1);
1992     new_entry->rb = ramblock;
1993     new_entry->offset = start;
1994     new_entry->len = len;
1995 
1996     memory_region_ref(ramblock->mr);
1997     qemu_mutex_lock(&rs->src_page_req_mutex);
1998     QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
1999     migration_make_urgent_request();
2000     qemu_mutex_unlock(&rs->src_page_req_mutex);
2001 
2002     return 0;
2003 }
2004 
2005 /*
2006  * try to compress the page before posting it out, return true if the page
2007  * has been properly handled by compression, otherwise needs other
2008  * paths to handle it
2009  */
2010 static bool save_compress_page(RAMState *rs, PageSearchStatus *pss,
2011                                ram_addr_t offset)
2012 {
2013     if (!migrate_compress()) {
2014         return false;
2015     }
2016 
2017     /*
2018      * When starting the process of a new block, the first page of
2019      * the block should be sent out before other pages in the same
2020      * block, and all the pages in last block should have been sent
2021      * out, keeping this order is important, because the 'cont' flag
2022      * is used to avoid resending the block name.
2023      *
2024      * We post the fist page as normal page as compression will take
2025      * much CPU resource.
2026      */
2027     if (pss->block != pss->last_sent_block) {
2028         compress_flush_data();
2029         return false;
2030     }
2031 
2032     return compress_page_with_multi_thread(pss->block, offset,
2033                                            compress_send_queued_data);
2034 }
2035 
2036 /**
2037  * ram_save_target_page_legacy: save one target page
2038  *
2039  * Returns the number of pages written
2040  *
2041  * @rs: current RAM state
2042  * @pss: data about the page we want to send
2043  */
2044 static int ram_save_target_page_legacy(RAMState *rs, PageSearchStatus *pss)
2045 {
2046     RAMBlock *block = pss->block;
2047     ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2048     int res;
2049 
2050     if (control_save_page(pss, offset, &res)) {
2051         return res;
2052     }
2053 
2054     if (save_compress_page(rs, pss, offset)) {
2055         return 1;
2056     }
2057 
2058     if (save_zero_page(rs, pss, offset)) {
2059         return 1;
2060     }
2061 
2062     /*
2063      * Do not use multifd in postcopy as one whole host page should be
2064      * placed.  Meanwhile postcopy requires atomic update of pages, so even
2065      * if host page size == guest page size the dest guest during run may
2066      * still see partially copied pages which is data corruption.
2067      */
2068     if (migrate_multifd() && !migration_in_postcopy()) {
2069         return ram_save_multifd_page(block, offset);
2070     }
2071 
2072     return ram_save_page(rs, pss);
2073 }
2074 
2075 /* Should be called before sending a host page */
2076 static void pss_host_page_prepare(PageSearchStatus *pss)
2077 {
2078     /* How many guest pages are there in one host page? */
2079     size_t guest_pfns = qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2080 
2081     pss->host_page_sending = true;
2082     if (guest_pfns <= 1) {
2083         /*
2084          * This covers both when guest psize == host psize, or when guest
2085          * has larger psize than the host (guest_pfns==0).
2086          *
2087          * For the latter, we always send one whole guest page per
2088          * iteration of the host page (example: an Alpha VM on x86 host
2089          * will have guest psize 8K while host psize 4K).
2090          */
2091         pss->host_page_start = pss->page;
2092         pss->host_page_end = pss->page + 1;
2093     } else {
2094         /*
2095          * The host page spans over multiple guest pages, we send them
2096          * within the same host page iteration.
2097          */
2098         pss->host_page_start = ROUND_DOWN(pss->page, guest_pfns);
2099         pss->host_page_end = ROUND_UP(pss->page + 1, guest_pfns);
2100     }
2101 }
2102 
2103 /*
2104  * Whether the page pointed by PSS is within the host page being sent.
2105  * Must be called after a previous pss_host_page_prepare().
2106  */
2107 static bool pss_within_range(PageSearchStatus *pss)
2108 {
2109     ram_addr_t ram_addr;
2110 
2111     assert(pss->host_page_sending);
2112 
2113     /* Over host-page boundary? */
2114     if (pss->page >= pss->host_page_end) {
2115         return false;
2116     }
2117 
2118     ram_addr = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2119 
2120     return offset_in_ramblock(pss->block, ram_addr);
2121 }
2122 
2123 static void pss_host_page_finish(PageSearchStatus *pss)
2124 {
2125     pss->host_page_sending = false;
2126     /* This is not needed, but just to reset it */
2127     pss->host_page_start = pss->host_page_end = 0;
2128 }
2129 
2130 /*
2131  * Send an urgent host page specified by `pss'.  Need to be called with
2132  * bitmap_mutex held.
2133  *
2134  * Returns 0 if save host page succeeded, false otherwise.
2135  */
2136 static int ram_save_host_page_urgent(PageSearchStatus *pss)
2137 {
2138     bool page_dirty, sent = false;
2139     RAMState *rs = ram_state;
2140     int ret = 0;
2141 
2142     trace_postcopy_preempt_send_host_page(pss->block->idstr, pss->page);
2143     pss_host_page_prepare(pss);
2144 
2145     /*
2146      * If precopy is sending the same page, let it be done in precopy, or
2147      * we could send the same page in two channels and none of them will
2148      * receive the whole page.
2149      */
2150     if (pss_overlap(pss, &ram_state->pss[RAM_CHANNEL_PRECOPY])) {
2151         trace_postcopy_preempt_hit(pss->block->idstr,
2152                                    pss->page << TARGET_PAGE_BITS);
2153         return 0;
2154     }
2155 
2156     do {
2157         page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2158 
2159         if (page_dirty) {
2160             /* Be strict to return code; it must be 1, or what else? */
2161             if (migration_ops->ram_save_target_page(rs, pss) != 1) {
2162                 error_report_once("%s: ram_save_target_page failed", __func__);
2163                 ret = -1;
2164                 goto out;
2165             }
2166             sent = true;
2167         }
2168         pss_find_next_dirty(pss);
2169     } while (pss_within_range(pss));
2170 out:
2171     pss_host_page_finish(pss);
2172     /* For urgent requests, flush immediately if sent */
2173     if (sent) {
2174         qemu_fflush(pss->pss_channel);
2175     }
2176     return ret;
2177 }
2178 
2179 /**
2180  * ram_save_host_page: save a whole host page
2181  *
2182  * Starting at *offset send pages up to the end of the current host
2183  * page. It's valid for the initial offset to point into the middle of
2184  * a host page in which case the remainder of the hostpage is sent.
2185  * Only dirty target pages are sent. Note that the host page size may
2186  * be a huge page for this block.
2187  *
2188  * The saving stops at the boundary of the used_length of the block
2189  * if the RAMBlock isn't a multiple of the host page size.
2190  *
2191  * The caller must be with ram_state.bitmap_mutex held to call this
2192  * function.  Note that this function can temporarily release the lock, but
2193  * when the function is returned it'll make sure the lock is still held.
2194  *
2195  * Returns the number of pages written or negative on error
2196  *
2197  * @rs: current RAM state
2198  * @pss: data about the page we want to send
2199  */
2200 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss)
2201 {
2202     bool page_dirty, preempt_active = postcopy_preempt_active();
2203     int tmppages, pages = 0;
2204     size_t pagesize_bits =
2205         qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2206     unsigned long start_page = pss->page;
2207     int res;
2208 
2209     if (migrate_ram_is_ignored(pss->block)) {
2210         error_report("block %s should not be migrated !", pss->block->idstr);
2211         return 0;
2212     }
2213 
2214     /* Update host page boundary information */
2215     pss_host_page_prepare(pss);
2216 
2217     do {
2218         page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2219 
2220         /* Check the pages is dirty and if it is send it */
2221         if (page_dirty) {
2222             /*
2223              * Properly yield the lock only in postcopy preempt mode
2224              * because both migration thread and rp-return thread can
2225              * operate on the bitmaps.
2226              */
2227             if (preempt_active) {
2228                 qemu_mutex_unlock(&rs->bitmap_mutex);
2229             }
2230             tmppages = migration_ops->ram_save_target_page(rs, pss);
2231             if (tmppages >= 0) {
2232                 pages += tmppages;
2233                 /*
2234                  * Allow rate limiting to happen in the middle of huge pages if
2235                  * something is sent in the current iteration.
2236                  */
2237                 if (pagesize_bits > 1 && tmppages > 0) {
2238                     migration_rate_limit();
2239                 }
2240             }
2241             if (preempt_active) {
2242                 qemu_mutex_lock(&rs->bitmap_mutex);
2243             }
2244         } else {
2245             tmppages = 0;
2246         }
2247 
2248         if (tmppages < 0) {
2249             pss_host_page_finish(pss);
2250             return tmppages;
2251         }
2252 
2253         pss_find_next_dirty(pss);
2254     } while (pss_within_range(pss));
2255 
2256     pss_host_page_finish(pss);
2257 
2258     res = ram_save_release_protection(rs, pss, start_page);
2259     return (res < 0 ? res : pages);
2260 }
2261 
2262 /**
2263  * ram_find_and_save_block: finds a dirty page and sends it to f
2264  *
2265  * Called within an RCU critical section.
2266  *
2267  * Returns the number of pages written where zero means no dirty pages,
2268  * or negative on error
2269  *
2270  * @rs: current RAM state
2271  *
2272  * On systems where host-page-size > target-page-size it will send all the
2273  * pages in a host page that are dirty.
2274  */
2275 static int ram_find_and_save_block(RAMState *rs)
2276 {
2277     PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY];
2278     int pages = 0;
2279 
2280     /* No dirty page as there is zero RAM */
2281     if (!rs->ram_bytes_total) {
2282         return pages;
2283     }
2284 
2285     /*
2286      * Always keep last_seen_block/last_page valid during this procedure,
2287      * because find_dirty_block() relies on these values (e.g., we compare
2288      * last_seen_block with pss.block to see whether we searched all the
2289      * ramblocks) to detect the completion of migration.  Having NULL value
2290      * of last_seen_block can conditionally cause below loop to run forever.
2291      */
2292     if (!rs->last_seen_block) {
2293         rs->last_seen_block = QLIST_FIRST_RCU(&ram_list.blocks);
2294         rs->last_page = 0;
2295     }
2296 
2297     pss_init(pss, rs->last_seen_block, rs->last_page);
2298 
2299     while (true){
2300         if (!get_queued_page(rs, pss)) {
2301             /* priority queue empty, so just search for something dirty */
2302             int res = find_dirty_block(rs, pss);
2303             if (res != PAGE_DIRTY_FOUND) {
2304                 if (res == PAGE_ALL_CLEAN) {
2305                     break;
2306                 } else if (res == PAGE_TRY_AGAIN) {
2307                     continue;
2308                 } else if (res < 0) {
2309                     pages = res;
2310                     break;
2311                 }
2312             }
2313         }
2314         pages = ram_save_host_page(rs, pss);
2315         if (pages) {
2316             break;
2317         }
2318     }
2319 
2320     rs->last_seen_block = pss->block;
2321     rs->last_page = pss->page;
2322 
2323     return pages;
2324 }
2325 
2326 static uint64_t ram_bytes_total_with_ignored(void)
2327 {
2328     RAMBlock *block;
2329     uint64_t total = 0;
2330 
2331     RCU_READ_LOCK_GUARD();
2332 
2333     RAMBLOCK_FOREACH_MIGRATABLE(block) {
2334         total += block->used_length;
2335     }
2336     return total;
2337 }
2338 
2339 uint64_t ram_bytes_total(void)
2340 {
2341     RAMBlock *block;
2342     uint64_t total = 0;
2343 
2344     RCU_READ_LOCK_GUARD();
2345 
2346     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2347         total += block->used_length;
2348     }
2349     return total;
2350 }
2351 
2352 static void xbzrle_load_setup(void)
2353 {
2354     XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2355 }
2356 
2357 static void xbzrle_load_cleanup(void)
2358 {
2359     g_free(XBZRLE.decoded_buf);
2360     XBZRLE.decoded_buf = NULL;
2361 }
2362 
2363 static void ram_state_cleanup(RAMState **rsp)
2364 {
2365     if (*rsp) {
2366         migration_page_queue_free(*rsp);
2367         qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2368         qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2369         g_free(*rsp);
2370         *rsp = NULL;
2371     }
2372 }
2373 
2374 static void xbzrle_cleanup(void)
2375 {
2376     XBZRLE_cache_lock();
2377     if (XBZRLE.cache) {
2378         cache_fini(XBZRLE.cache);
2379         g_free(XBZRLE.encoded_buf);
2380         g_free(XBZRLE.current_buf);
2381         g_free(XBZRLE.zero_target_page);
2382         XBZRLE.cache = NULL;
2383         XBZRLE.encoded_buf = NULL;
2384         XBZRLE.current_buf = NULL;
2385         XBZRLE.zero_target_page = NULL;
2386     }
2387     XBZRLE_cache_unlock();
2388 }
2389 
2390 static void ram_save_cleanup(void *opaque)
2391 {
2392     RAMState **rsp = opaque;
2393     RAMBlock *block;
2394 
2395     /* We don't use dirty log with background snapshots */
2396     if (!migrate_background_snapshot()) {
2397         /* caller have hold BQL or is in a bh, so there is
2398          * no writing race against the migration bitmap
2399          */
2400         if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) {
2401             /*
2402              * do not stop dirty log without starting it, since
2403              * memory_global_dirty_log_stop will assert that
2404              * memory_global_dirty_log_start/stop used in pairs
2405              */
2406             memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
2407         }
2408     }
2409 
2410     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2411         g_free(block->clear_bmap);
2412         block->clear_bmap = NULL;
2413         g_free(block->bmap);
2414         block->bmap = NULL;
2415     }
2416 
2417     xbzrle_cleanup();
2418     compress_threads_save_cleanup();
2419     ram_state_cleanup(rsp);
2420     g_free(migration_ops);
2421     migration_ops = NULL;
2422 }
2423 
2424 static void ram_state_reset(RAMState *rs)
2425 {
2426     int i;
2427 
2428     for (i = 0; i < RAM_CHANNEL_MAX; i++) {
2429         rs->pss[i].last_sent_block = NULL;
2430     }
2431 
2432     rs->last_seen_block = NULL;
2433     rs->last_page = 0;
2434     rs->last_version = ram_list.version;
2435     rs->xbzrle_started = false;
2436 }
2437 
2438 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2439 
2440 /* **** functions for postcopy ***** */
2441 
2442 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2443 {
2444     struct RAMBlock *block;
2445 
2446     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2447         unsigned long *bitmap = block->bmap;
2448         unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2449         unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2450 
2451         while (run_start < range) {
2452             unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2453             ram_discard_range(block->idstr,
2454                               ((ram_addr_t)run_start) << TARGET_PAGE_BITS,
2455                               ((ram_addr_t)(run_end - run_start))
2456                                 << TARGET_PAGE_BITS);
2457             run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2458         }
2459     }
2460 }
2461 
2462 /**
2463  * postcopy_send_discard_bm_ram: discard a RAMBlock
2464  *
2465  * Callback from postcopy_each_ram_send_discard for each RAMBlock
2466  *
2467  * @ms: current migration state
2468  * @block: RAMBlock to discard
2469  */
2470 static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
2471 {
2472     unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2473     unsigned long current;
2474     unsigned long *bitmap = block->bmap;
2475 
2476     for (current = 0; current < end; ) {
2477         unsigned long one = find_next_bit(bitmap, end, current);
2478         unsigned long zero, discard_length;
2479 
2480         if (one >= end) {
2481             break;
2482         }
2483 
2484         zero = find_next_zero_bit(bitmap, end, one + 1);
2485 
2486         if (zero >= end) {
2487             discard_length = end - one;
2488         } else {
2489             discard_length = zero - one;
2490         }
2491         postcopy_discard_send_range(ms, one, discard_length);
2492         current = one + discard_length;
2493     }
2494 }
2495 
2496 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block);
2497 
2498 /**
2499  * postcopy_each_ram_send_discard: discard all RAMBlocks
2500  *
2501  * Utility for the outgoing postcopy code.
2502  *   Calls postcopy_send_discard_bm_ram for each RAMBlock
2503  *   passing it bitmap indexes and name.
2504  * (qemu_ram_foreach_block ends up passing unscaled lengths
2505  *  which would mean postcopy code would have to deal with target page)
2506  *
2507  * @ms: current migration state
2508  */
2509 static void postcopy_each_ram_send_discard(MigrationState *ms)
2510 {
2511     struct RAMBlock *block;
2512 
2513     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2514         postcopy_discard_send_init(ms, block->idstr);
2515 
2516         /*
2517          * Deal with TPS != HPS and huge pages.  It discard any partially sent
2518          * host-page size chunks, mark any partially dirty host-page size
2519          * chunks as all dirty.  In this case the host-page is the host-page
2520          * for the particular RAMBlock, i.e. it might be a huge page.
2521          */
2522         postcopy_chunk_hostpages_pass(ms, block);
2523 
2524         /*
2525          * Postcopy sends chunks of bitmap over the wire, but it
2526          * just needs indexes at this point, avoids it having
2527          * target page specific code.
2528          */
2529         postcopy_send_discard_bm_ram(ms, block);
2530         postcopy_discard_send_finish(ms);
2531     }
2532 }
2533 
2534 /**
2535  * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
2536  *
2537  * Helper for postcopy_chunk_hostpages; it's called twice to
2538  * canonicalize the two bitmaps, that are similar, but one is
2539  * inverted.
2540  *
2541  * Postcopy requires that all target pages in a hostpage are dirty or
2542  * clean, not a mix.  This function canonicalizes the bitmaps.
2543  *
2544  * @ms: current migration state
2545  * @block: block that contains the page we want to canonicalize
2546  */
2547 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block)
2548 {
2549     RAMState *rs = ram_state;
2550     unsigned long *bitmap = block->bmap;
2551     unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2552     unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2553     unsigned long run_start;
2554 
2555     if (block->page_size == TARGET_PAGE_SIZE) {
2556         /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2557         return;
2558     }
2559 
2560     /* Find a dirty page */
2561     run_start = find_next_bit(bitmap, pages, 0);
2562 
2563     while (run_start < pages) {
2564 
2565         /*
2566          * If the start of this run of pages is in the middle of a host
2567          * page, then we need to fixup this host page.
2568          */
2569         if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
2570             /* Find the end of this run */
2571             run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
2572             /*
2573              * If the end isn't at the start of a host page, then the
2574              * run doesn't finish at the end of a host page
2575              * and we need to discard.
2576              */
2577         }
2578 
2579         if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
2580             unsigned long page;
2581             unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
2582                                                              host_ratio);
2583             run_start = QEMU_ALIGN_UP(run_start, host_ratio);
2584 
2585             /* Clean up the bitmap */
2586             for (page = fixup_start_addr;
2587                  page < fixup_start_addr + host_ratio; page++) {
2588                 /*
2589                  * Remark them as dirty, updating the count for any pages
2590                  * that weren't previously dirty.
2591                  */
2592                 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
2593             }
2594         }
2595 
2596         /* Find the next dirty page for the next iteration */
2597         run_start = find_next_bit(bitmap, pages, run_start);
2598     }
2599 }
2600 
2601 /**
2602  * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2603  *
2604  * Transmit the set of pages to be discarded after precopy to the target
2605  * these are pages that:
2606  *     a) Have been previously transmitted but are now dirty again
2607  *     b) Pages that have never been transmitted, this ensures that
2608  *        any pages on the destination that have been mapped by background
2609  *        tasks get discarded (transparent huge pages is the specific concern)
2610  * Hopefully this is pretty sparse
2611  *
2612  * @ms: current migration state
2613  */
2614 void ram_postcopy_send_discard_bitmap(MigrationState *ms)
2615 {
2616     RAMState *rs = ram_state;
2617 
2618     RCU_READ_LOCK_GUARD();
2619 
2620     /* This should be our last sync, the src is now paused */
2621     migration_bitmap_sync(rs, false);
2622 
2623     /* Easiest way to make sure we don't resume in the middle of a host-page */
2624     rs->pss[RAM_CHANNEL_PRECOPY].last_sent_block = NULL;
2625     rs->last_seen_block = NULL;
2626     rs->last_page = 0;
2627 
2628     postcopy_each_ram_send_discard(ms);
2629 
2630     trace_ram_postcopy_send_discard_bitmap();
2631 }
2632 
2633 /**
2634  * ram_discard_range: discard dirtied pages at the beginning of postcopy
2635  *
2636  * Returns zero on success
2637  *
2638  * @rbname: name of the RAMBlock of the request. NULL means the
2639  *          same that last one.
2640  * @start: RAMBlock starting page
2641  * @length: RAMBlock size
2642  */
2643 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
2644 {
2645     trace_ram_discard_range(rbname, start, length);
2646 
2647     RCU_READ_LOCK_GUARD();
2648     RAMBlock *rb = qemu_ram_block_by_name(rbname);
2649 
2650     if (!rb) {
2651         error_report("ram_discard_range: Failed to find block '%s'", rbname);
2652         return -1;
2653     }
2654 
2655     /*
2656      * On source VM, we don't need to update the received bitmap since
2657      * we don't even have one.
2658      */
2659     if (rb->receivedmap) {
2660         bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
2661                      length >> qemu_target_page_bits());
2662     }
2663 
2664     return ram_block_discard_range(rb, start, length);
2665 }
2666 
2667 /*
2668  * For every allocation, we will try not to crash the VM if the
2669  * allocation failed.
2670  */
2671 static int xbzrle_init(void)
2672 {
2673     Error *local_err = NULL;
2674 
2675     if (!migrate_xbzrle()) {
2676         return 0;
2677     }
2678 
2679     XBZRLE_cache_lock();
2680 
2681     XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
2682     if (!XBZRLE.zero_target_page) {
2683         error_report("%s: Error allocating zero page", __func__);
2684         goto err_out;
2685     }
2686 
2687     XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
2688                               TARGET_PAGE_SIZE, &local_err);
2689     if (!XBZRLE.cache) {
2690         error_report_err(local_err);
2691         goto free_zero_page;
2692     }
2693 
2694     XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
2695     if (!XBZRLE.encoded_buf) {
2696         error_report("%s: Error allocating encoded_buf", __func__);
2697         goto free_cache;
2698     }
2699 
2700     XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
2701     if (!XBZRLE.current_buf) {
2702         error_report("%s: Error allocating current_buf", __func__);
2703         goto free_encoded_buf;
2704     }
2705 
2706     /* We are all good */
2707     XBZRLE_cache_unlock();
2708     return 0;
2709 
2710 free_encoded_buf:
2711     g_free(XBZRLE.encoded_buf);
2712     XBZRLE.encoded_buf = NULL;
2713 free_cache:
2714     cache_fini(XBZRLE.cache);
2715     XBZRLE.cache = NULL;
2716 free_zero_page:
2717     g_free(XBZRLE.zero_target_page);
2718     XBZRLE.zero_target_page = NULL;
2719 err_out:
2720     XBZRLE_cache_unlock();
2721     return -ENOMEM;
2722 }
2723 
2724 static int ram_state_init(RAMState **rsp)
2725 {
2726     *rsp = g_try_new0(RAMState, 1);
2727 
2728     if (!*rsp) {
2729         error_report("%s: Init ramstate fail", __func__);
2730         return -1;
2731     }
2732 
2733     qemu_mutex_init(&(*rsp)->bitmap_mutex);
2734     qemu_mutex_init(&(*rsp)->src_page_req_mutex);
2735     QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
2736     (*rsp)->ram_bytes_total = ram_bytes_total();
2737 
2738     /*
2739      * Count the total number of pages used by ram blocks not including any
2740      * gaps due to alignment or unplugs.
2741      * This must match with the initial values of dirty bitmap.
2742      */
2743     (*rsp)->migration_dirty_pages = (*rsp)->ram_bytes_total >> TARGET_PAGE_BITS;
2744     ram_state_reset(*rsp);
2745 
2746     return 0;
2747 }
2748 
2749 static void ram_list_init_bitmaps(void)
2750 {
2751     MigrationState *ms = migrate_get_current();
2752     RAMBlock *block;
2753     unsigned long pages;
2754     uint8_t shift;
2755 
2756     /* Skip setting bitmap if there is no RAM */
2757     if (ram_bytes_total()) {
2758         shift = ms->clear_bitmap_shift;
2759         if (shift > CLEAR_BITMAP_SHIFT_MAX) {
2760             error_report("clear_bitmap_shift (%u) too big, using "
2761                          "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
2762             shift = CLEAR_BITMAP_SHIFT_MAX;
2763         } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
2764             error_report("clear_bitmap_shift (%u) too small, using "
2765                          "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
2766             shift = CLEAR_BITMAP_SHIFT_MIN;
2767         }
2768 
2769         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2770             pages = block->max_length >> TARGET_PAGE_BITS;
2771             /*
2772              * The initial dirty bitmap for migration must be set with all
2773              * ones to make sure we'll migrate every guest RAM page to
2774              * destination.
2775              * Here we set RAMBlock.bmap all to 1 because when rebegin a
2776              * new migration after a failed migration, ram_list.
2777              * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
2778              * guest memory.
2779              */
2780             block->bmap = bitmap_new(pages);
2781             bitmap_set(block->bmap, 0, pages);
2782             block->clear_bmap_shift = shift;
2783             block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
2784         }
2785     }
2786 }
2787 
2788 static void migration_bitmap_clear_discarded_pages(RAMState *rs)
2789 {
2790     unsigned long pages;
2791     RAMBlock *rb;
2792 
2793     RCU_READ_LOCK_GUARD();
2794 
2795     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
2796             pages = ramblock_dirty_bitmap_clear_discarded_pages(rb);
2797             rs->migration_dirty_pages -= pages;
2798     }
2799 }
2800 
2801 static void ram_init_bitmaps(RAMState *rs)
2802 {
2803     qemu_mutex_lock_ramlist();
2804 
2805     WITH_RCU_READ_LOCK_GUARD() {
2806         ram_list_init_bitmaps();
2807         /* We don't use dirty log with background snapshots */
2808         if (!migrate_background_snapshot()) {
2809             memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
2810             migration_bitmap_sync_precopy(rs, false);
2811         }
2812     }
2813     qemu_mutex_unlock_ramlist();
2814 
2815     /*
2816      * After an eventual first bitmap sync, fixup the initial bitmap
2817      * containing all 1s to exclude any discarded pages from migration.
2818      */
2819     migration_bitmap_clear_discarded_pages(rs);
2820 }
2821 
2822 static int ram_init_all(RAMState **rsp)
2823 {
2824     if (ram_state_init(rsp)) {
2825         return -1;
2826     }
2827 
2828     if (xbzrle_init()) {
2829         ram_state_cleanup(rsp);
2830         return -1;
2831     }
2832 
2833     ram_init_bitmaps(*rsp);
2834 
2835     return 0;
2836 }
2837 
2838 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
2839 {
2840     RAMBlock *block;
2841     uint64_t pages = 0;
2842 
2843     /*
2844      * Postcopy is not using xbzrle/compression, so no need for that.
2845      * Also, since source are already halted, we don't need to care
2846      * about dirty page logging as well.
2847      */
2848 
2849     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2850         pages += bitmap_count_one(block->bmap,
2851                                   block->used_length >> TARGET_PAGE_BITS);
2852     }
2853 
2854     /* This may not be aligned with current bitmaps. Recalculate. */
2855     rs->migration_dirty_pages = pages;
2856 
2857     ram_state_reset(rs);
2858 
2859     /* Update RAMState cache of output QEMUFile */
2860     rs->pss[RAM_CHANNEL_PRECOPY].pss_channel = out;
2861 
2862     trace_ram_state_resume_prepare(pages);
2863 }
2864 
2865 /*
2866  * This function clears bits of the free pages reported by the caller from the
2867  * migration dirty bitmap. @addr is the host address corresponding to the
2868  * start of the continuous guest free pages, and @len is the total bytes of
2869  * those pages.
2870  */
2871 void qemu_guest_free_page_hint(void *addr, size_t len)
2872 {
2873     RAMBlock *block;
2874     ram_addr_t offset;
2875     size_t used_len, start, npages;
2876     MigrationState *s = migrate_get_current();
2877 
2878     /* This function is currently expected to be used during live migration */
2879     if (!migration_is_setup_or_active(s->state)) {
2880         return;
2881     }
2882 
2883     for (; len > 0; len -= used_len, addr += used_len) {
2884         block = qemu_ram_block_from_host(addr, false, &offset);
2885         if (unlikely(!block || offset >= block->used_length)) {
2886             /*
2887              * The implementation might not support RAMBlock resize during
2888              * live migration, but it could happen in theory with future
2889              * updates. So we add a check here to capture that case.
2890              */
2891             error_report_once("%s unexpected error", __func__);
2892             return;
2893         }
2894 
2895         if (len <= block->used_length - offset) {
2896             used_len = len;
2897         } else {
2898             used_len = block->used_length - offset;
2899         }
2900 
2901         start = offset >> TARGET_PAGE_BITS;
2902         npages = used_len >> TARGET_PAGE_BITS;
2903 
2904         qemu_mutex_lock(&ram_state->bitmap_mutex);
2905         /*
2906          * The skipped free pages are equavalent to be sent from clear_bmap's
2907          * perspective, so clear the bits from the memory region bitmap which
2908          * are initially set. Otherwise those skipped pages will be sent in
2909          * the next round after syncing from the memory region bitmap.
2910          */
2911         migration_clear_memory_region_dirty_bitmap_range(block, start, npages);
2912         ram_state->migration_dirty_pages -=
2913                       bitmap_count_one_with_offset(block->bmap, start, npages);
2914         bitmap_clear(block->bmap, start, npages);
2915         qemu_mutex_unlock(&ram_state->bitmap_mutex);
2916     }
2917 }
2918 
2919 /*
2920  * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
2921  * long-running RCU critical section.  When rcu-reclaims in the code
2922  * start to become numerous it will be necessary to reduce the
2923  * granularity of these critical sections.
2924  */
2925 
2926 /**
2927  * ram_save_setup: Setup RAM for migration
2928  *
2929  * Returns zero to indicate success and negative for error
2930  *
2931  * @f: QEMUFile where to send the data
2932  * @opaque: RAMState pointer
2933  */
2934 static int ram_save_setup(QEMUFile *f, void *opaque)
2935 {
2936     RAMState **rsp = opaque;
2937     RAMBlock *block;
2938     int ret;
2939 
2940     if (compress_threads_save_setup()) {
2941         return -1;
2942     }
2943 
2944     /* migration has already setup the bitmap, reuse it. */
2945     if (!migration_in_colo_state()) {
2946         if (ram_init_all(rsp) != 0) {
2947             compress_threads_save_cleanup();
2948             return -1;
2949         }
2950     }
2951     (*rsp)->pss[RAM_CHANNEL_PRECOPY].pss_channel = f;
2952 
2953     WITH_RCU_READ_LOCK_GUARD() {
2954         qemu_put_be64(f, ram_bytes_total_with_ignored()
2955                          | RAM_SAVE_FLAG_MEM_SIZE);
2956 
2957         RAMBLOCK_FOREACH_MIGRATABLE(block) {
2958             qemu_put_byte(f, strlen(block->idstr));
2959             qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
2960             qemu_put_be64(f, block->used_length);
2961             if (migrate_postcopy_ram() && block->page_size !=
2962                                           qemu_host_page_size) {
2963                 qemu_put_be64(f, block->page_size);
2964             }
2965             if (migrate_ignore_shared()) {
2966                 qemu_put_be64(f, block->mr->addr);
2967             }
2968         }
2969     }
2970 
2971     ret = rdma_registration_start(f, RAM_CONTROL_SETUP);
2972     if (ret < 0) {
2973         qemu_file_set_error(f, ret);
2974         return ret;
2975     }
2976 
2977     ret = rdma_registration_stop(f, RAM_CONTROL_SETUP);
2978     if (ret < 0) {
2979         qemu_file_set_error(f, ret);
2980         return ret;
2981     }
2982 
2983     migration_ops = g_malloc0(sizeof(MigrationOps));
2984     migration_ops->ram_save_target_page = ram_save_target_page_legacy;
2985 
2986     bql_unlock();
2987     ret = multifd_send_sync_main();
2988     bql_lock();
2989     if (ret < 0) {
2990         return ret;
2991     }
2992 
2993     if (migrate_multifd() && !migrate_multifd_flush_after_each_section()) {
2994         qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
2995     }
2996 
2997     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2998     return qemu_fflush(f);
2999 }
3000 
3001 /**
3002  * ram_save_iterate: iterative stage for migration
3003  *
3004  * Returns zero to indicate success and negative for error
3005  *
3006  * @f: QEMUFile where to send the data
3007  * @opaque: RAMState pointer
3008  */
3009 static int ram_save_iterate(QEMUFile *f, void *opaque)
3010 {
3011     RAMState **temp = opaque;
3012     RAMState *rs = *temp;
3013     int ret = 0;
3014     int i;
3015     int64_t t0;
3016     int done = 0;
3017 
3018     if (blk_mig_bulk_active()) {
3019         /* Avoid transferring ram during bulk phase of block migration as
3020          * the bulk phase will usually take a long time and transferring
3021          * ram updates during that time is pointless. */
3022         goto out;
3023     }
3024 
3025     /*
3026      * We'll take this lock a little bit long, but it's okay for two reasons.
3027      * Firstly, the only possible other thread to take it is who calls
3028      * qemu_guest_free_page_hint(), which should be rare; secondly, see
3029      * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which
3030      * guarantees that we'll at least released it in a regular basis.
3031      */
3032     WITH_QEMU_LOCK_GUARD(&rs->bitmap_mutex) {
3033         WITH_RCU_READ_LOCK_GUARD() {
3034             if (ram_list.version != rs->last_version) {
3035                 ram_state_reset(rs);
3036             }
3037 
3038             /* Read version before ram_list.blocks */
3039             smp_rmb();
3040 
3041             ret = rdma_registration_start(f, RAM_CONTROL_ROUND);
3042             if (ret < 0) {
3043                 qemu_file_set_error(f, ret);
3044                 goto out;
3045             }
3046 
3047             t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3048             i = 0;
3049             while ((ret = migration_rate_exceeded(f)) == 0 ||
3050                    postcopy_has_request(rs)) {
3051                 int pages;
3052 
3053                 if (qemu_file_get_error(f)) {
3054                     break;
3055                 }
3056 
3057                 pages = ram_find_and_save_block(rs);
3058                 /* no more pages to sent */
3059                 if (pages == 0) {
3060                     done = 1;
3061                     break;
3062                 }
3063 
3064                 if (pages < 0) {
3065                     qemu_file_set_error(f, pages);
3066                     break;
3067                 }
3068 
3069                 rs->target_page_count += pages;
3070 
3071                 /*
3072                  * During postcopy, it is necessary to make sure one whole host
3073                  * page is sent in one chunk.
3074                  */
3075                 if (migrate_postcopy_ram()) {
3076                     compress_flush_data();
3077                 }
3078 
3079                 /*
3080                  * we want to check in the 1st loop, just in case it was the 1st
3081                  * time and we had to sync the dirty bitmap.
3082                  * qemu_clock_get_ns() is a bit expensive, so we only check each
3083                  * some iterations
3084                  */
3085                 if ((i & 63) == 0) {
3086                     uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) /
3087                         1000000;
3088                     if (t1 > MAX_WAIT) {
3089                         trace_ram_save_iterate_big_wait(t1, i);
3090                         break;
3091                     }
3092                 }
3093                 i++;
3094             }
3095         }
3096     }
3097 
3098     /*
3099      * Must occur before EOS (or any QEMUFile operation)
3100      * because of RDMA protocol.
3101      */
3102     ret = rdma_registration_stop(f, RAM_CONTROL_ROUND);
3103     if (ret < 0) {
3104         qemu_file_set_error(f, ret);
3105     }
3106 
3107 out:
3108     if (ret >= 0
3109         && migration_is_setup_or_active(migrate_get_current()->state)) {
3110         if (migrate_multifd() && migrate_multifd_flush_after_each_section()) {
3111             ret = multifd_send_sync_main();
3112             if (ret < 0) {
3113                 return ret;
3114             }
3115         }
3116 
3117         qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3118         ram_transferred_add(8);
3119         ret = qemu_fflush(f);
3120     }
3121     if (ret < 0) {
3122         return ret;
3123     }
3124 
3125     return done;
3126 }
3127 
3128 /**
3129  * ram_save_complete: function called to send the remaining amount of ram
3130  *
3131  * Returns zero to indicate success or negative on error
3132  *
3133  * Called with the BQL
3134  *
3135  * @f: QEMUFile where to send the data
3136  * @opaque: RAMState pointer
3137  */
3138 static int ram_save_complete(QEMUFile *f, void *opaque)
3139 {
3140     RAMState **temp = opaque;
3141     RAMState *rs = *temp;
3142     int ret = 0;
3143 
3144     rs->last_stage = !migration_in_colo_state();
3145 
3146     WITH_RCU_READ_LOCK_GUARD() {
3147         if (!migration_in_postcopy()) {
3148             migration_bitmap_sync_precopy(rs, true);
3149         }
3150 
3151         ret = rdma_registration_start(f, RAM_CONTROL_FINISH);
3152         if (ret < 0) {
3153             qemu_file_set_error(f, ret);
3154             return ret;
3155         }
3156 
3157         /* try transferring iterative blocks of memory */
3158 
3159         /* flush all remaining blocks regardless of rate limiting */
3160         qemu_mutex_lock(&rs->bitmap_mutex);
3161         while (true) {
3162             int pages;
3163 
3164             pages = ram_find_and_save_block(rs);
3165             /* no more blocks to sent */
3166             if (pages == 0) {
3167                 break;
3168             }
3169             if (pages < 0) {
3170                 qemu_mutex_unlock(&rs->bitmap_mutex);
3171                 return pages;
3172             }
3173         }
3174         qemu_mutex_unlock(&rs->bitmap_mutex);
3175 
3176         compress_flush_data();
3177 
3178         ret = rdma_registration_stop(f, RAM_CONTROL_FINISH);
3179         if (ret < 0) {
3180             qemu_file_set_error(f, ret);
3181             return ret;
3182         }
3183     }
3184 
3185     ret = multifd_send_sync_main();
3186     if (ret < 0) {
3187         return ret;
3188     }
3189 
3190     if (migrate_multifd() && !migrate_multifd_flush_after_each_section()) {
3191         qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
3192     }
3193     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3194     return qemu_fflush(f);
3195 }
3196 
3197 static void ram_state_pending_estimate(void *opaque, uint64_t *must_precopy,
3198                                        uint64_t *can_postcopy)
3199 {
3200     RAMState **temp = opaque;
3201     RAMState *rs = *temp;
3202 
3203     uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3204 
3205     if (migrate_postcopy_ram()) {
3206         /* We can do postcopy, and all the data is postcopiable */
3207         *can_postcopy += remaining_size;
3208     } else {
3209         *must_precopy += remaining_size;
3210     }
3211 }
3212 
3213 static void ram_state_pending_exact(void *opaque, uint64_t *must_precopy,
3214                                     uint64_t *can_postcopy)
3215 {
3216     RAMState **temp = opaque;
3217     RAMState *rs = *temp;
3218     uint64_t remaining_size;
3219 
3220     if (!migration_in_postcopy()) {
3221         bql_lock();
3222         WITH_RCU_READ_LOCK_GUARD() {
3223             migration_bitmap_sync_precopy(rs, false);
3224         }
3225         bql_unlock();
3226     }
3227 
3228     remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3229 
3230     if (migrate_postcopy_ram()) {
3231         /* We can do postcopy, and all the data is postcopiable */
3232         *can_postcopy += remaining_size;
3233     } else {
3234         *must_precopy += remaining_size;
3235     }
3236 }
3237 
3238 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3239 {
3240     unsigned int xh_len;
3241     int xh_flags;
3242     uint8_t *loaded_data;
3243 
3244     /* extract RLE header */
3245     xh_flags = qemu_get_byte(f);
3246     xh_len = qemu_get_be16(f);
3247 
3248     if (xh_flags != ENCODING_FLAG_XBZRLE) {
3249         error_report("Failed to load XBZRLE page - wrong compression!");
3250         return -1;
3251     }
3252 
3253     if (xh_len > TARGET_PAGE_SIZE) {
3254         error_report("Failed to load XBZRLE page - len overflow!");
3255         return -1;
3256     }
3257     loaded_data = XBZRLE.decoded_buf;
3258     /* load data and decode */
3259     /* it can change loaded_data to point to an internal buffer */
3260     qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3261 
3262     /* decode RLE */
3263     if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3264                              TARGET_PAGE_SIZE) == -1) {
3265         error_report("Failed to load XBZRLE page - decode error!");
3266         return -1;
3267     }
3268 
3269     return 0;
3270 }
3271 
3272 /**
3273  * ram_block_from_stream: read a RAMBlock id from the migration stream
3274  *
3275  * Must be called from within a rcu critical section.
3276  *
3277  * Returns a pointer from within the RCU-protected ram_list.
3278  *
3279  * @mis: the migration incoming state pointer
3280  * @f: QEMUFile where to read the data from
3281  * @flags: Page flags (mostly to see if it's a continuation of previous block)
3282  * @channel: the channel we're using
3283  */
3284 static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis,
3285                                               QEMUFile *f, int flags,
3286                                               int channel)
3287 {
3288     RAMBlock *block = mis->last_recv_block[channel];
3289     char id[256];
3290     uint8_t len;
3291 
3292     if (flags & RAM_SAVE_FLAG_CONTINUE) {
3293         if (!block) {
3294             error_report("Ack, bad migration stream!");
3295             return NULL;
3296         }
3297         return block;
3298     }
3299 
3300     len = qemu_get_byte(f);
3301     qemu_get_buffer(f, (uint8_t *)id, len);
3302     id[len] = 0;
3303 
3304     block = qemu_ram_block_by_name(id);
3305     if (!block) {
3306         error_report("Can't find block %s", id);
3307         return NULL;
3308     }
3309 
3310     if (migrate_ram_is_ignored(block)) {
3311         error_report("block %s should not be migrated !", id);
3312         return NULL;
3313     }
3314 
3315     mis->last_recv_block[channel] = block;
3316 
3317     return block;
3318 }
3319 
3320 static inline void *host_from_ram_block_offset(RAMBlock *block,
3321                                                ram_addr_t offset)
3322 {
3323     if (!offset_in_ramblock(block, offset)) {
3324         return NULL;
3325     }
3326 
3327     return block->host + offset;
3328 }
3329 
3330 static void *host_page_from_ram_block_offset(RAMBlock *block,
3331                                              ram_addr_t offset)
3332 {
3333     /* Note: Explicitly no check against offset_in_ramblock(). */
3334     return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset),
3335                                    block->page_size);
3336 }
3337 
3338 static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block,
3339                                                          ram_addr_t offset)
3340 {
3341     return ((uintptr_t)block->host + offset) & (block->page_size - 1);
3342 }
3343 
3344 void colo_record_bitmap(RAMBlock *block, ram_addr_t *normal, uint32_t pages)
3345 {
3346     qemu_mutex_lock(&ram_state->bitmap_mutex);
3347     for (int i = 0; i < pages; i++) {
3348         ram_addr_t offset = normal[i];
3349         ram_state->migration_dirty_pages += !test_and_set_bit(
3350                                                 offset >> TARGET_PAGE_BITS,
3351                                                 block->bmap);
3352     }
3353     qemu_mutex_unlock(&ram_state->bitmap_mutex);
3354 }
3355 
3356 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3357                              ram_addr_t offset, bool record_bitmap)
3358 {
3359     if (!offset_in_ramblock(block, offset)) {
3360         return NULL;
3361     }
3362     if (!block->colo_cache) {
3363         error_report("%s: colo_cache is NULL in block :%s",
3364                      __func__, block->idstr);
3365         return NULL;
3366     }
3367 
3368     /*
3369     * During colo checkpoint, we need bitmap of these migrated pages.
3370     * It help us to decide which pages in ram cache should be flushed
3371     * into VM's RAM later.
3372     */
3373     if (record_bitmap) {
3374         colo_record_bitmap(block, &offset, 1);
3375     }
3376     return block->colo_cache + offset;
3377 }
3378 
3379 /**
3380  * ram_handle_zero: handle the zero page case
3381  *
3382  * If a page (or a whole RDMA chunk) has been
3383  * determined to be zero, then zap it.
3384  *
3385  * @host: host address for the zero page
3386  * @ch: what the page is filled from.  We only support zero
3387  * @size: size of the zero page
3388  */
3389 void ram_handle_zero(void *host, uint64_t size)
3390 {
3391     if (!buffer_is_zero(host, size)) {
3392         memset(host, 0, size);
3393     }
3394 }
3395 
3396 static void colo_init_ram_state(void)
3397 {
3398     ram_state_init(&ram_state);
3399 }
3400 
3401 /*
3402  * colo cache: this is for secondary VM, we cache the whole
3403  * memory of the secondary VM, it is need to hold the global lock
3404  * to call this helper.
3405  */
3406 int colo_init_ram_cache(void)
3407 {
3408     RAMBlock *block;
3409 
3410     WITH_RCU_READ_LOCK_GUARD() {
3411         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3412             block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3413                                                     NULL, false, false);
3414             if (!block->colo_cache) {
3415                 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3416                              "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3417                              block->used_length);
3418                 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3419                     if (block->colo_cache) {
3420                         qemu_anon_ram_free(block->colo_cache, block->used_length);
3421                         block->colo_cache = NULL;
3422                     }
3423                 }
3424                 return -errno;
3425             }
3426             if (!machine_dump_guest_core(current_machine)) {
3427                 qemu_madvise(block->colo_cache, block->used_length,
3428                              QEMU_MADV_DONTDUMP);
3429             }
3430         }
3431     }
3432 
3433     /*
3434     * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3435     * with to decide which page in cache should be flushed into SVM's RAM. Here
3436     * we use the same name 'ram_bitmap' as for migration.
3437     */
3438     if (ram_bytes_total()) {
3439         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3440             unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3441             block->bmap = bitmap_new(pages);
3442         }
3443     }
3444 
3445     colo_init_ram_state();
3446     return 0;
3447 }
3448 
3449 /* TODO: duplicated with ram_init_bitmaps */
3450 void colo_incoming_start_dirty_log(void)
3451 {
3452     RAMBlock *block = NULL;
3453     /* For memory_global_dirty_log_start below. */
3454     bql_lock();
3455     qemu_mutex_lock_ramlist();
3456 
3457     memory_global_dirty_log_sync(false);
3458     WITH_RCU_READ_LOCK_GUARD() {
3459         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3460             ramblock_sync_dirty_bitmap(ram_state, block);
3461             /* Discard this dirty bitmap record */
3462             bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS);
3463         }
3464         memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
3465     }
3466     ram_state->migration_dirty_pages = 0;
3467     qemu_mutex_unlock_ramlist();
3468     bql_unlock();
3469 }
3470 
3471 /* It is need to hold the global lock to call this helper */
3472 void colo_release_ram_cache(void)
3473 {
3474     RAMBlock *block;
3475 
3476     memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
3477     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3478         g_free(block->bmap);
3479         block->bmap = NULL;
3480     }
3481 
3482     WITH_RCU_READ_LOCK_GUARD() {
3483         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3484             if (block->colo_cache) {
3485                 qemu_anon_ram_free(block->colo_cache, block->used_length);
3486                 block->colo_cache = NULL;
3487             }
3488         }
3489     }
3490     ram_state_cleanup(&ram_state);
3491 }
3492 
3493 /**
3494  * ram_load_setup: Setup RAM for migration incoming side
3495  *
3496  * Returns zero to indicate success and negative for error
3497  *
3498  * @f: QEMUFile where to receive the data
3499  * @opaque: RAMState pointer
3500  */
3501 static int ram_load_setup(QEMUFile *f, void *opaque)
3502 {
3503     xbzrle_load_setup();
3504     ramblock_recv_map_init();
3505 
3506     return 0;
3507 }
3508 
3509 static int ram_load_cleanup(void *opaque)
3510 {
3511     RAMBlock *rb;
3512 
3513     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3514         qemu_ram_block_writeback(rb);
3515     }
3516 
3517     xbzrle_load_cleanup();
3518 
3519     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3520         g_free(rb->receivedmap);
3521         rb->receivedmap = NULL;
3522     }
3523 
3524     return 0;
3525 }
3526 
3527 /**
3528  * ram_postcopy_incoming_init: allocate postcopy data structures
3529  *
3530  * Returns 0 for success and negative if there was one error
3531  *
3532  * @mis: current migration incoming state
3533  *
3534  * Allocate data structures etc needed by incoming migration with
3535  * postcopy-ram. postcopy-ram's similarly names
3536  * postcopy_ram_incoming_init does the work.
3537  */
3538 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
3539 {
3540     return postcopy_ram_incoming_init(mis);
3541 }
3542 
3543 /**
3544  * ram_load_postcopy: load a page in postcopy case
3545  *
3546  * Returns 0 for success or -errno in case of error
3547  *
3548  * Called in postcopy mode by ram_load().
3549  * rcu_read_lock is taken prior to this being called.
3550  *
3551  * @f: QEMUFile where to send the data
3552  * @channel: the channel to use for loading
3553  */
3554 int ram_load_postcopy(QEMUFile *f, int channel)
3555 {
3556     int flags = 0, ret = 0;
3557     bool place_needed = false;
3558     bool matches_target_page_size = false;
3559     MigrationIncomingState *mis = migration_incoming_get_current();
3560     PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[channel];
3561 
3562     while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3563         ram_addr_t addr;
3564         void *page_buffer = NULL;
3565         void *place_source = NULL;
3566         RAMBlock *block = NULL;
3567         uint8_t ch;
3568         int len;
3569 
3570         addr = qemu_get_be64(f);
3571 
3572         /*
3573          * If qemu file error, we should stop here, and then "addr"
3574          * may be invalid
3575          */
3576         ret = qemu_file_get_error(f);
3577         if (ret) {
3578             break;
3579         }
3580 
3581         flags = addr & ~TARGET_PAGE_MASK;
3582         addr &= TARGET_PAGE_MASK;
3583 
3584         trace_ram_load_postcopy_loop(channel, (uint64_t)addr, flags);
3585         if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3586                      RAM_SAVE_FLAG_COMPRESS_PAGE)) {
3587             block = ram_block_from_stream(mis, f, flags, channel);
3588             if (!block) {
3589                 ret = -EINVAL;
3590                 break;
3591             }
3592 
3593             /*
3594              * Relying on used_length is racy and can result in false positives.
3595              * We might place pages beyond used_length in case RAM was shrunk
3596              * while in postcopy, which is fine - trying to place via
3597              * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault.
3598              */
3599             if (!block->host || addr >= block->postcopy_length) {
3600                 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3601                 ret = -EINVAL;
3602                 break;
3603             }
3604             tmp_page->target_pages++;
3605             matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
3606             /*
3607              * Postcopy requires that we place whole host pages atomically;
3608              * these may be huge pages for RAMBlocks that are backed by
3609              * hugetlbfs.
3610              * To make it atomic, the data is read into a temporary page
3611              * that's moved into place later.
3612              * The migration protocol uses,  possibly smaller, target-pages
3613              * however the source ensures it always sends all the components
3614              * of a host page in one chunk.
3615              */
3616             page_buffer = tmp_page->tmp_huge_page +
3617                           host_page_offset_from_ram_block_offset(block, addr);
3618             /* If all TP are zero then we can optimise the place */
3619             if (tmp_page->target_pages == 1) {
3620                 tmp_page->host_addr =
3621                     host_page_from_ram_block_offset(block, addr);
3622             } else if (tmp_page->host_addr !=
3623                        host_page_from_ram_block_offset(block, addr)) {
3624                 /* not the 1st TP within the HP */
3625                 error_report("Non-same host page detected on channel %d: "
3626                              "Target host page %p, received host page %p "
3627                              "(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)",
3628                              channel, tmp_page->host_addr,
3629                              host_page_from_ram_block_offset(block, addr),
3630                              block->idstr, addr, tmp_page->target_pages);
3631                 ret = -EINVAL;
3632                 break;
3633             }
3634 
3635             /*
3636              * If it's the last part of a host page then we place the host
3637              * page
3638              */
3639             if (tmp_page->target_pages ==
3640                 (block->page_size / TARGET_PAGE_SIZE)) {
3641                 place_needed = true;
3642             }
3643             place_source = tmp_page->tmp_huge_page;
3644         }
3645 
3646         switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3647         case RAM_SAVE_FLAG_ZERO:
3648             ch = qemu_get_byte(f);
3649             if (ch != 0) {
3650                 error_report("Found a zero page with value %d", ch);
3651                 ret = -EINVAL;
3652                 break;
3653             }
3654             /*
3655              * Can skip to set page_buffer when
3656              * this is a zero page and (block->page_size == TARGET_PAGE_SIZE).
3657              */
3658             if (!matches_target_page_size) {
3659                 memset(page_buffer, ch, TARGET_PAGE_SIZE);
3660             }
3661             break;
3662 
3663         case RAM_SAVE_FLAG_PAGE:
3664             tmp_page->all_zero = false;
3665             if (!matches_target_page_size) {
3666                 /* For huge pages, we always use temporary buffer */
3667                 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
3668             } else {
3669                 /*
3670                  * For small pages that matches target page size, we
3671                  * avoid the qemu_file copy.  Instead we directly use
3672                  * the buffer of QEMUFile to place the page.  Note: we
3673                  * cannot do any QEMUFile operation before using that
3674                  * buffer to make sure the buffer is valid when
3675                  * placing the page.
3676                  */
3677                 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
3678                                          TARGET_PAGE_SIZE);
3679             }
3680             break;
3681         case RAM_SAVE_FLAG_COMPRESS_PAGE:
3682             tmp_page->all_zero = false;
3683             len = qemu_get_be32(f);
3684             if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
3685                 error_report("Invalid compressed data length: %d", len);
3686                 ret = -EINVAL;
3687                 break;
3688             }
3689             decompress_data_with_multi_threads(f, page_buffer, len);
3690             break;
3691         case RAM_SAVE_FLAG_MULTIFD_FLUSH:
3692             multifd_recv_sync_main();
3693             break;
3694         case RAM_SAVE_FLAG_EOS:
3695             /* normal exit */
3696             if (migrate_multifd() &&
3697                 migrate_multifd_flush_after_each_section()) {
3698                 multifd_recv_sync_main();
3699             }
3700             break;
3701         default:
3702             error_report("Unknown combination of migration flags: 0x%x"
3703                          " (postcopy mode)", flags);
3704             ret = -EINVAL;
3705             break;
3706         }
3707 
3708         /* Got the whole host page, wait for decompress before placing. */
3709         if (place_needed) {
3710             ret |= wait_for_decompress_done();
3711         }
3712 
3713         /* Detect for any possible file errors */
3714         if (!ret && qemu_file_get_error(f)) {
3715             ret = qemu_file_get_error(f);
3716         }
3717 
3718         if (!ret && place_needed) {
3719             if (tmp_page->all_zero) {
3720                 ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block);
3721             } else {
3722                 ret = postcopy_place_page(mis, tmp_page->host_addr,
3723                                           place_source, block);
3724             }
3725             place_needed = false;
3726             postcopy_temp_page_reset(tmp_page);
3727         }
3728     }
3729 
3730     return ret;
3731 }
3732 
3733 static bool postcopy_is_running(void)
3734 {
3735     PostcopyState ps = postcopy_state_get();
3736     return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
3737 }
3738 
3739 /*
3740  * Flush content of RAM cache into SVM's memory.
3741  * Only flush the pages that be dirtied by PVM or SVM or both.
3742  */
3743 void colo_flush_ram_cache(void)
3744 {
3745     RAMBlock *block = NULL;
3746     void *dst_host;
3747     void *src_host;
3748     unsigned long offset = 0;
3749 
3750     memory_global_dirty_log_sync(false);
3751     qemu_mutex_lock(&ram_state->bitmap_mutex);
3752     WITH_RCU_READ_LOCK_GUARD() {
3753         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3754             ramblock_sync_dirty_bitmap(ram_state, block);
3755         }
3756     }
3757 
3758     trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
3759     WITH_RCU_READ_LOCK_GUARD() {
3760         block = QLIST_FIRST_RCU(&ram_list.blocks);
3761 
3762         while (block) {
3763             unsigned long num = 0;
3764 
3765             offset = colo_bitmap_find_dirty(ram_state, block, offset, &num);
3766             if (!offset_in_ramblock(block,
3767                                     ((ram_addr_t)offset) << TARGET_PAGE_BITS)) {
3768                 offset = 0;
3769                 num = 0;
3770                 block = QLIST_NEXT_RCU(block, next);
3771             } else {
3772                 unsigned long i = 0;
3773 
3774                 for (i = 0; i < num; i++) {
3775                     migration_bitmap_clear_dirty(ram_state, block, offset + i);
3776                 }
3777                 dst_host = block->host
3778                          + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3779                 src_host = block->colo_cache
3780                          + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3781                 memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num);
3782                 offset += num;
3783             }
3784         }
3785     }
3786     qemu_mutex_unlock(&ram_state->bitmap_mutex);
3787     trace_colo_flush_ram_cache_end();
3788 }
3789 
3790 static int parse_ramblock(QEMUFile *f, RAMBlock *block, ram_addr_t length)
3791 {
3792     int ret = 0;
3793     /* ADVISE is earlier, it shows the source has the postcopy capability on */
3794     bool postcopy_advised = migration_incoming_postcopy_advised();
3795 
3796     assert(block);
3797 
3798     if (!qemu_ram_is_migratable(block)) {
3799         error_report("block %s should not be migrated !", block->idstr);
3800         return -EINVAL;
3801     }
3802 
3803     if (length != block->used_length) {
3804         Error *local_err = NULL;
3805 
3806         ret = qemu_ram_resize(block, length, &local_err);
3807         if (local_err) {
3808             error_report_err(local_err);
3809             return ret;
3810         }
3811     }
3812     /* For postcopy we need to check hugepage sizes match */
3813     if (postcopy_advised && migrate_postcopy_ram() &&
3814         block->page_size != qemu_host_page_size) {
3815         uint64_t remote_page_size = qemu_get_be64(f);
3816         if (remote_page_size != block->page_size) {
3817             error_report("Mismatched RAM page size %s "
3818                          "(local) %zd != %" PRId64, block->idstr,
3819                          block->page_size, remote_page_size);
3820             return -EINVAL;
3821         }
3822     }
3823     if (migrate_ignore_shared()) {
3824         hwaddr addr = qemu_get_be64(f);
3825         if (migrate_ram_is_ignored(block) &&
3826             block->mr->addr != addr) {
3827             error_report("Mismatched GPAs for block %s "
3828                          "%" PRId64 "!= %" PRId64, block->idstr,
3829                          (uint64_t)addr, (uint64_t)block->mr->addr);
3830             return -EINVAL;
3831         }
3832     }
3833     ret = rdma_block_notification_handle(f, block->idstr);
3834     if (ret < 0) {
3835         qemu_file_set_error(f, ret);
3836     }
3837 
3838     return ret;
3839 }
3840 
3841 static int parse_ramblocks(QEMUFile *f, ram_addr_t total_ram_bytes)
3842 {
3843     int ret = 0;
3844 
3845     /* Synchronize RAM block list */
3846     while (!ret && total_ram_bytes) {
3847         RAMBlock *block;
3848         char id[256];
3849         ram_addr_t length;
3850         int len = qemu_get_byte(f);
3851 
3852         qemu_get_buffer(f, (uint8_t *)id, len);
3853         id[len] = 0;
3854         length = qemu_get_be64(f);
3855 
3856         block = qemu_ram_block_by_name(id);
3857         if (block) {
3858             ret = parse_ramblock(f, block, length);
3859         } else {
3860             error_report("Unknown ramblock \"%s\", cannot accept "
3861                          "migration", id);
3862             ret = -EINVAL;
3863         }
3864         total_ram_bytes -= length;
3865     }
3866 
3867     return ret;
3868 }
3869 
3870 /**
3871  * ram_load_precopy: load pages in precopy case
3872  *
3873  * Returns 0 for success or -errno in case of error
3874  *
3875  * Called in precopy mode by ram_load().
3876  * rcu_read_lock is taken prior to this being called.
3877  *
3878  * @f: QEMUFile where to send the data
3879  */
3880 static int ram_load_precopy(QEMUFile *f)
3881 {
3882     MigrationIncomingState *mis = migration_incoming_get_current();
3883     int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0;
3884 
3885     if (!migrate_compress()) {
3886         invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
3887     }
3888 
3889     while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3890         ram_addr_t addr;
3891         void *host = NULL, *host_bak = NULL;
3892         uint8_t ch;
3893 
3894         /*
3895          * Yield periodically to let main loop run, but an iteration of
3896          * the main loop is expensive, so do it each some iterations
3897          */
3898         if ((i & 32767) == 0 && qemu_in_coroutine()) {
3899             aio_co_schedule(qemu_get_current_aio_context(),
3900                             qemu_coroutine_self());
3901             qemu_coroutine_yield();
3902         }
3903         i++;
3904 
3905         addr = qemu_get_be64(f);
3906         flags = addr & ~TARGET_PAGE_MASK;
3907         addr &= TARGET_PAGE_MASK;
3908 
3909         if (flags & invalid_flags) {
3910             if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
3911                 error_report("Received an unexpected compressed page");
3912             }
3913 
3914             ret = -EINVAL;
3915             break;
3916         }
3917 
3918         if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3919                      RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
3920             RAMBlock *block = ram_block_from_stream(mis, f, flags,
3921                                                     RAM_CHANNEL_PRECOPY);
3922 
3923             host = host_from_ram_block_offset(block, addr);
3924             /*
3925              * After going into COLO stage, we should not load the page
3926              * into SVM's memory directly, we put them into colo_cache firstly.
3927              * NOTE: We need to keep a copy of SVM's ram in colo_cache.
3928              * Previously, we copied all these memory in preparing stage of COLO
3929              * while we need to stop VM, which is a time-consuming process.
3930              * Here we optimize it by a trick, back-up every page while in
3931              * migration process while COLO is enabled, though it affects the
3932              * speed of the migration, but it obviously reduce the downtime of
3933              * back-up all SVM'S memory in COLO preparing stage.
3934              */
3935             if (migration_incoming_colo_enabled()) {
3936                 if (migration_incoming_in_colo_state()) {
3937                     /* In COLO stage, put all pages into cache temporarily */
3938                     host = colo_cache_from_block_offset(block, addr, true);
3939                 } else {
3940                    /*
3941                     * In migration stage but before COLO stage,
3942                     * Put all pages into both cache and SVM's memory.
3943                     */
3944                     host_bak = colo_cache_from_block_offset(block, addr, false);
3945                 }
3946             }
3947             if (!host) {
3948                 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3949                 ret = -EINVAL;
3950                 break;
3951             }
3952             if (!migration_incoming_in_colo_state()) {
3953                 ramblock_recv_bitmap_set(block, host);
3954             }
3955 
3956             trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
3957         }
3958 
3959         switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3960         case RAM_SAVE_FLAG_MEM_SIZE:
3961             ret = parse_ramblocks(f, addr);
3962             break;
3963 
3964         case RAM_SAVE_FLAG_ZERO:
3965             ch = qemu_get_byte(f);
3966             if (ch != 0) {
3967                 error_report("Found a zero page with value %d", ch);
3968                 ret = -EINVAL;
3969                 break;
3970             }
3971             ram_handle_zero(host, TARGET_PAGE_SIZE);
3972             break;
3973 
3974         case RAM_SAVE_FLAG_PAGE:
3975             qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
3976             break;
3977 
3978         case RAM_SAVE_FLAG_COMPRESS_PAGE:
3979             len = qemu_get_be32(f);
3980             if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
3981                 error_report("Invalid compressed data length: %d", len);
3982                 ret = -EINVAL;
3983                 break;
3984             }
3985             decompress_data_with_multi_threads(f, host, len);
3986             break;
3987 
3988         case RAM_SAVE_FLAG_XBZRLE:
3989             if (load_xbzrle(f, addr, host) < 0) {
3990                 error_report("Failed to decompress XBZRLE page at "
3991                              RAM_ADDR_FMT, addr);
3992                 ret = -EINVAL;
3993                 break;
3994             }
3995             break;
3996         case RAM_SAVE_FLAG_MULTIFD_FLUSH:
3997             multifd_recv_sync_main();
3998             break;
3999         case RAM_SAVE_FLAG_EOS:
4000             /* normal exit */
4001             if (migrate_multifd() &&
4002                 migrate_multifd_flush_after_each_section()) {
4003                 multifd_recv_sync_main();
4004             }
4005             break;
4006         case RAM_SAVE_FLAG_HOOK:
4007             ret = rdma_registration_handle(f);
4008             if (ret < 0) {
4009                 qemu_file_set_error(f, ret);
4010             }
4011             break;
4012         default:
4013             error_report("Unknown combination of migration flags: 0x%x", flags);
4014             ret = -EINVAL;
4015         }
4016         if (!ret) {
4017             ret = qemu_file_get_error(f);
4018         }
4019         if (!ret && host_bak) {
4020             memcpy(host_bak, host, TARGET_PAGE_SIZE);
4021         }
4022     }
4023 
4024     ret |= wait_for_decompress_done();
4025     return ret;
4026 }
4027 
4028 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4029 {
4030     int ret = 0;
4031     static uint64_t seq_iter;
4032     /*
4033      * If system is running in postcopy mode, page inserts to host memory must
4034      * be atomic
4035      */
4036     bool postcopy_running = postcopy_is_running();
4037 
4038     seq_iter++;
4039 
4040     if (version_id != 4) {
4041         return -EINVAL;
4042     }
4043 
4044     /*
4045      * This RCU critical section can be very long running.
4046      * When RCU reclaims in the code start to become numerous,
4047      * it will be necessary to reduce the granularity of this
4048      * critical section.
4049      */
4050     WITH_RCU_READ_LOCK_GUARD() {
4051         if (postcopy_running) {
4052             /*
4053              * Note!  Here RAM_CHANNEL_PRECOPY is the precopy channel of
4054              * postcopy migration, we have another RAM_CHANNEL_POSTCOPY to
4055              * service fast page faults.
4056              */
4057             ret = ram_load_postcopy(f, RAM_CHANNEL_PRECOPY);
4058         } else {
4059             ret = ram_load_precopy(f);
4060         }
4061     }
4062     trace_ram_load_complete(ret, seq_iter);
4063 
4064     return ret;
4065 }
4066 
4067 static bool ram_has_postcopy(void *opaque)
4068 {
4069     RAMBlock *rb;
4070     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4071         if (ramblock_is_pmem(rb)) {
4072             info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4073                          "is not supported now!", rb->idstr, rb->host);
4074             return false;
4075         }
4076     }
4077 
4078     return migrate_postcopy_ram();
4079 }
4080 
4081 /* Sync all the dirty bitmap with destination VM.  */
4082 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4083 {
4084     RAMBlock *block;
4085     QEMUFile *file = s->to_dst_file;
4086 
4087     trace_ram_dirty_bitmap_sync_start();
4088 
4089     qatomic_set(&rs->postcopy_bmap_sync_requested, 0);
4090     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4091         qemu_savevm_send_recv_bitmap(file, block->idstr);
4092         trace_ram_dirty_bitmap_request(block->idstr);
4093         qatomic_inc(&rs->postcopy_bmap_sync_requested);
4094     }
4095 
4096     trace_ram_dirty_bitmap_sync_wait();
4097 
4098     /* Wait until all the ramblocks' dirty bitmap synced */
4099     while (qatomic_read(&rs->postcopy_bmap_sync_requested)) {
4100         if (migration_rp_wait(s)) {
4101             return -1;
4102         }
4103     }
4104 
4105     trace_ram_dirty_bitmap_sync_complete();
4106 
4107     return 0;
4108 }
4109 
4110 /*
4111  * Read the received bitmap, revert it as the initial dirty bitmap.
4112  * This is only used when the postcopy migration is paused but wants
4113  * to resume from a middle point.
4114  *
4115  * Returns true if succeeded, false for errors.
4116  */
4117 bool ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block, Error **errp)
4118 {
4119     /* from_dst_file is always valid because we're within rp_thread */
4120     QEMUFile *file = s->rp_state.from_dst_file;
4121     g_autofree unsigned long *le_bitmap = NULL;
4122     unsigned long nbits = block->used_length >> TARGET_PAGE_BITS;
4123     uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4124     uint64_t size, end_mark;
4125     RAMState *rs = ram_state;
4126 
4127     trace_ram_dirty_bitmap_reload_begin(block->idstr);
4128 
4129     if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4130         error_setg(errp, "Reload bitmap in incorrect state %s",
4131                    MigrationStatus_str(s->state));
4132         return false;
4133     }
4134 
4135     /*
4136      * Note: see comments in ramblock_recv_bitmap_send() on why we
4137      * need the endianness conversion, and the paddings.
4138      */
4139     local_size = ROUND_UP(local_size, 8);
4140 
4141     /* Add paddings */
4142     le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4143 
4144     size = qemu_get_be64(file);
4145 
4146     /* The size of the bitmap should match with our ramblock */
4147     if (size != local_size) {
4148         error_setg(errp, "ramblock '%s' bitmap size mismatch (0x%"PRIx64
4149                    " != 0x%"PRIx64")", block->idstr, size, local_size);
4150         return false;
4151     }
4152 
4153     size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4154     end_mark = qemu_get_be64(file);
4155 
4156     if (qemu_file_get_error(file) || size != local_size) {
4157         error_setg(errp, "read bitmap failed for ramblock '%s': "
4158                    "(size 0x%"PRIx64", got: 0x%"PRIx64")",
4159                    block->idstr, local_size, size);
4160         return false;
4161     }
4162 
4163     if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4164         error_setg(errp, "ramblock '%s' end mark incorrect: 0x%"PRIx64,
4165                    block->idstr, end_mark);
4166         return false;
4167     }
4168 
4169     /*
4170      * Endianness conversion. We are during postcopy (though paused).
4171      * The dirty bitmap won't change. We can directly modify it.
4172      */
4173     bitmap_from_le(block->bmap, le_bitmap, nbits);
4174 
4175     /*
4176      * What we received is "received bitmap". Revert it as the initial
4177      * dirty bitmap for this ramblock.
4178      */
4179     bitmap_complement(block->bmap, block->bmap, nbits);
4180 
4181     /* Clear dirty bits of discarded ranges that we don't want to migrate. */
4182     ramblock_dirty_bitmap_clear_discarded_pages(block);
4183 
4184     /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */
4185     trace_ram_dirty_bitmap_reload_complete(block->idstr);
4186 
4187     qatomic_dec(&rs->postcopy_bmap_sync_requested);
4188 
4189     /*
4190      * We succeeded to sync bitmap for current ramblock. Always kick the
4191      * migration thread to check whether all requested bitmaps are
4192      * reloaded.  NOTE: it's racy to only kick when requested==0, because
4193      * we don't know whether the migration thread may still be increasing
4194      * it.
4195      */
4196     migration_rp_kick(s);
4197 
4198     return true;
4199 }
4200 
4201 static int ram_resume_prepare(MigrationState *s, void *opaque)
4202 {
4203     RAMState *rs = *(RAMState **)opaque;
4204     int ret;
4205 
4206     ret = ram_dirty_bitmap_sync_all(s, rs);
4207     if (ret) {
4208         return ret;
4209     }
4210 
4211     ram_state_resume_prepare(rs, s->to_dst_file);
4212 
4213     return 0;
4214 }
4215 
4216 void postcopy_preempt_shutdown_file(MigrationState *s)
4217 {
4218     qemu_put_be64(s->postcopy_qemufile_src, RAM_SAVE_FLAG_EOS);
4219     qemu_fflush(s->postcopy_qemufile_src);
4220 }
4221 
4222 static SaveVMHandlers savevm_ram_handlers = {
4223     .save_setup = ram_save_setup,
4224     .save_live_iterate = ram_save_iterate,
4225     .save_live_complete_postcopy = ram_save_complete,
4226     .save_live_complete_precopy = ram_save_complete,
4227     .has_postcopy = ram_has_postcopy,
4228     .state_pending_exact = ram_state_pending_exact,
4229     .state_pending_estimate = ram_state_pending_estimate,
4230     .load_state = ram_load,
4231     .save_cleanup = ram_save_cleanup,
4232     .load_setup = ram_load_setup,
4233     .load_cleanup = ram_load_cleanup,
4234     .resume_prepare = ram_resume_prepare,
4235 };
4236 
4237 static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host,
4238                                       size_t old_size, size_t new_size)
4239 {
4240     PostcopyState ps = postcopy_state_get();
4241     ram_addr_t offset;
4242     RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset);
4243     Error *err = NULL;
4244 
4245     if (!rb) {
4246         error_report("RAM block not found");
4247         return;
4248     }
4249 
4250     if (migrate_ram_is_ignored(rb)) {
4251         return;
4252     }
4253 
4254     if (!migration_is_idle()) {
4255         /*
4256          * Precopy code on the source cannot deal with the size of RAM blocks
4257          * changing at random points in time - especially after sending the
4258          * RAM block sizes in the migration stream, they must no longer change.
4259          * Abort and indicate a proper reason.
4260          */
4261         error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr);
4262         migration_cancel(err);
4263         error_free(err);
4264     }
4265 
4266     switch (ps) {
4267     case POSTCOPY_INCOMING_ADVISE:
4268         /*
4269          * Update what ram_postcopy_incoming_init()->init_range() does at the
4270          * time postcopy was advised. Syncing RAM blocks with the source will
4271          * result in RAM resizes.
4272          */
4273         if (old_size < new_size) {
4274             if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) {
4275                 error_report("RAM block '%s' discard of resized RAM failed",
4276                              rb->idstr);
4277             }
4278         }
4279         rb->postcopy_length = new_size;
4280         break;
4281     case POSTCOPY_INCOMING_NONE:
4282     case POSTCOPY_INCOMING_RUNNING:
4283     case POSTCOPY_INCOMING_END:
4284         /*
4285          * Once our guest is running, postcopy does no longer care about
4286          * resizes. When growing, the new memory was not available on the
4287          * source, no handler needed.
4288          */
4289         break;
4290     default:
4291         error_report("RAM block '%s' resized during postcopy state: %d",
4292                      rb->idstr, ps);
4293         exit(-1);
4294     }
4295 }
4296 
4297 static RAMBlockNotifier ram_mig_ram_notifier = {
4298     .ram_block_resized = ram_mig_ram_block_resized,
4299 };
4300 
4301 void ram_mig_init(void)
4302 {
4303     qemu_mutex_init(&XBZRLE.lock);
4304     register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);
4305     ram_block_notifier_add(&ram_mig_ram_notifier);
4306 }
4307