xref: /openbmc/qemu/migration/postcopy-ram.c (revision 812b31d3f91507160c367440c17715b62d5e0869)
1 /*
2  * Postcopy migration for RAM
3  *
4  * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Dave Gilbert  <dgilbert@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  */
13 
14 /*
15  * Postcopy is a migration technique where the execution flips from the
16  * source to the destination before all the data has been copied.
17  */
18 
19 #include "qemu/osdep.h"
20 #include "qemu/rcu.h"
21 #include "exec/target_page.h"
22 #include "migration.h"
23 #include "qemu-file.h"
24 #include "savevm.h"
25 #include "postcopy-ram.h"
26 #include "ram.h"
27 #include "qapi/error.h"
28 #include "qemu/notify.h"
29 #include "qemu/rcu.h"
30 #include "sysemu/sysemu.h"
31 #include "qemu/error-report.h"
32 #include "trace.h"
33 #include "hw/boards.h"
34 #include "exec/ramblock.h"
35 
36 /* Arbitrary limit on size of each discard command,
37  * keeps them around ~200 bytes
38  */
39 #define MAX_DISCARDS_PER_COMMAND 12
40 
41 struct PostcopyDiscardState {
42     const char *ramblock_name;
43     uint16_t cur_entry;
44     /*
45      * Start and length of a discard range (bytes)
46      */
47     uint64_t start_list[MAX_DISCARDS_PER_COMMAND];
48     uint64_t length_list[MAX_DISCARDS_PER_COMMAND];
49     unsigned int nsentwords;
50     unsigned int nsentcmds;
51 };
52 
53 static NotifierWithReturnList postcopy_notifier_list;
54 
55 void postcopy_infrastructure_init(void)
56 {
57     notifier_with_return_list_init(&postcopy_notifier_list);
58 }
59 
60 void postcopy_add_notifier(NotifierWithReturn *nn)
61 {
62     notifier_with_return_list_add(&postcopy_notifier_list, nn);
63 }
64 
65 void postcopy_remove_notifier(NotifierWithReturn *n)
66 {
67     notifier_with_return_remove(n);
68 }
69 
70 int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp)
71 {
72     struct PostcopyNotifyData pnd;
73     pnd.reason = reason;
74     pnd.errp = errp;
75 
76     return notifier_with_return_list_notify(&postcopy_notifier_list,
77                                             &pnd);
78 }
79 
80 /* Postcopy needs to detect accesses to pages that haven't yet been copied
81  * across, and efficiently map new pages in, the techniques for doing this
82  * are target OS specific.
83  */
84 #if defined(__linux__)
85 
86 #include <poll.h>
87 #include <sys/ioctl.h>
88 #include <sys/syscall.h>
89 #include <asm/types.h> /* for __u64 */
90 #endif
91 
92 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
93 #include <sys/eventfd.h>
94 #include <linux/userfaultfd.h>
95 
96 typedef struct PostcopyBlocktimeContext {
97     /* time when page fault initiated per vCPU */
98     uint32_t *page_fault_vcpu_time;
99     /* page address per vCPU */
100     uintptr_t *vcpu_addr;
101     uint32_t total_blocktime;
102     /* blocktime per vCPU */
103     uint32_t *vcpu_blocktime;
104     /* point in time when last page fault was initiated */
105     uint32_t last_begin;
106     /* number of vCPU are suspended */
107     int smp_cpus_down;
108     uint64_t start_time;
109 
110     /*
111      * Handler for exit event, necessary for
112      * releasing whole blocktime_ctx
113      */
114     Notifier exit_notifier;
115 } PostcopyBlocktimeContext;
116 
117 static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx)
118 {
119     g_free(ctx->page_fault_vcpu_time);
120     g_free(ctx->vcpu_addr);
121     g_free(ctx->vcpu_blocktime);
122     g_free(ctx);
123 }
124 
125 static void migration_exit_cb(Notifier *n, void *data)
126 {
127     PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext,
128                                                  exit_notifier);
129     destroy_blocktime_context(ctx);
130 }
131 
132 static struct PostcopyBlocktimeContext *blocktime_context_new(void)
133 {
134     MachineState *ms = MACHINE(qdev_get_machine());
135     unsigned int smp_cpus = ms->smp.cpus;
136     PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1);
137     ctx->page_fault_vcpu_time = g_new0(uint32_t, smp_cpus);
138     ctx->vcpu_addr = g_new0(uintptr_t, smp_cpus);
139     ctx->vcpu_blocktime = g_new0(uint32_t, smp_cpus);
140 
141     ctx->exit_notifier.notify = migration_exit_cb;
142     ctx->start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
143     qemu_add_exit_notifier(&ctx->exit_notifier);
144     return ctx;
145 }
146 
147 static uint32List *get_vcpu_blocktime_list(PostcopyBlocktimeContext *ctx)
148 {
149     MachineState *ms = MACHINE(qdev_get_machine());
150     uint32List *list = NULL;
151     int i;
152 
153     for (i = ms->smp.cpus - 1; i >= 0; i--) {
154         QAPI_LIST_PREPEND(list, ctx->vcpu_blocktime[i]);
155     }
156 
157     return list;
158 }
159 
160 /*
161  * This function just populates MigrationInfo from postcopy's
162  * blocktime context. It will not populate MigrationInfo,
163  * unless postcopy-blocktime capability was set.
164  *
165  * @info: pointer to MigrationInfo to populate
166  */
167 void fill_destination_postcopy_migration_info(MigrationInfo *info)
168 {
169     MigrationIncomingState *mis = migration_incoming_get_current();
170     PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
171 
172     if (!bc) {
173         return;
174     }
175 
176     info->has_postcopy_blocktime = true;
177     info->postcopy_blocktime = bc->total_blocktime;
178     info->has_postcopy_vcpu_blocktime = true;
179     info->postcopy_vcpu_blocktime = get_vcpu_blocktime_list(bc);
180 }
181 
182 static uint32_t get_postcopy_total_blocktime(void)
183 {
184     MigrationIncomingState *mis = migration_incoming_get_current();
185     PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
186 
187     if (!bc) {
188         return 0;
189     }
190 
191     return bc->total_blocktime;
192 }
193 
194 /**
195  * receive_ufd_features: check userfault fd features, to request only supported
196  * features in the future.
197  *
198  * Returns: true on success
199  *
200  * __NR_userfaultfd - should be checked before
201  *  @features: out parameter will contain uffdio_api.features provided by kernel
202  *              in case of success
203  */
204 static bool receive_ufd_features(uint64_t *features)
205 {
206     struct uffdio_api api_struct = {0};
207     int ufd;
208     bool ret = true;
209 
210     /* if we are here __NR_userfaultfd should exists */
211     ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
212     if (ufd == -1) {
213         error_report("%s: syscall __NR_userfaultfd failed: %s", __func__,
214                      strerror(errno));
215         return false;
216     }
217 
218     /* ask features */
219     api_struct.api = UFFD_API;
220     api_struct.features = 0;
221     if (ioctl(ufd, UFFDIO_API, &api_struct)) {
222         error_report("%s: UFFDIO_API failed: %s", __func__,
223                      strerror(errno));
224         ret = false;
225         goto release_ufd;
226     }
227 
228     *features = api_struct.features;
229 
230 release_ufd:
231     close(ufd);
232     return ret;
233 }
234 
235 /**
236  * request_ufd_features: this function should be called only once on a newly
237  * opened ufd, subsequent calls will lead to error.
238  *
239  * Returns: true on success
240  *
241  * @ufd: fd obtained from userfaultfd syscall
242  * @features: bit mask see UFFD_API_FEATURES
243  */
244 static bool request_ufd_features(int ufd, uint64_t features)
245 {
246     struct uffdio_api api_struct = {0};
247     uint64_t ioctl_mask;
248 
249     api_struct.api = UFFD_API;
250     api_struct.features = features;
251     if (ioctl(ufd, UFFDIO_API, &api_struct)) {
252         error_report("%s failed: UFFDIO_API failed: %s", __func__,
253                      strerror(errno));
254         return false;
255     }
256 
257     ioctl_mask = (__u64)1 << _UFFDIO_REGISTER |
258                  (__u64)1 << _UFFDIO_UNREGISTER;
259     if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) {
260         error_report("Missing userfault features: %" PRIx64,
261                      (uint64_t)(~api_struct.ioctls & ioctl_mask));
262         return false;
263     }
264 
265     return true;
266 }
267 
268 static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis)
269 {
270     uint64_t asked_features = 0;
271     static uint64_t supported_features;
272 
273     /*
274      * it's not possible to
275      * request UFFD_API twice per one fd
276      * userfault fd features is persistent
277      */
278     if (!supported_features) {
279         if (!receive_ufd_features(&supported_features)) {
280             error_report("%s failed", __func__);
281             return false;
282         }
283     }
284 
285 #ifdef UFFD_FEATURE_THREAD_ID
286     if (migrate_postcopy_blocktime() && mis &&
287         UFFD_FEATURE_THREAD_ID & supported_features) {
288         /* kernel supports that feature */
289         /* don't create blocktime_context if it exists */
290         if (!mis->blocktime_ctx) {
291             mis->blocktime_ctx = blocktime_context_new();
292         }
293 
294         asked_features |= UFFD_FEATURE_THREAD_ID;
295     }
296 #endif
297 
298     /*
299      * request features, even if asked_features is 0, due to
300      * kernel expects UFFD_API before UFFDIO_REGISTER, per
301      * userfault file descriptor
302      */
303     if (!request_ufd_features(ufd, asked_features)) {
304         error_report("%s failed: features %" PRIu64, __func__,
305                      asked_features);
306         return false;
307     }
308 
309     if (qemu_real_host_page_size != ram_pagesize_summary()) {
310         bool have_hp = false;
311         /* We've got a huge page */
312 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS
313         have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS;
314 #endif
315         if (!have_hp) {
316             error_report("Userfault on this host does not support huge pages");
317             return false;
318         }
319     }
320     return true;
321 }
322 
323 /* Callback from postcopy_ram_supported_by_host block iterator.
324  */
325 static int test_ramblock_postcopiable(RAMBlock *rb, void *opaque)
326 {
327     const char *block_name = qemu_ram_get_idstr(rb);
328     ram_addr_t length = qemu_ram_get_used_length(rb);
329     size_t pagesize = qemu_ram_pagesize(rb);
330 
331     if (length % pagesize) {
332         error_report("Postcopy requires RAM blocks to be a page size multiple,"
333                      " block %s is 0x" RAM_ADDR_FMT " bytes with a "
334                      "page size of 0x%zx", block_name, length, pagesize);
335         return 1;
336     }
337     return 0;
338 }
339 
340 /*
341  * Note: This has the side effect of munlock'ing all of RAM, that's
342  * normally fine since if the postcopy succeeds it gets turned back on at the
343  * end.
344  */
345 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
346 {
347     long pagesize = qemu_real_host_page_size;
348     int ufd = -1;
349     bool ret = false; /* Error unless we change it */
350     void *testarea = NULL;
351     struct uffdio_register reg_struct;
352     struct uffdio_range range_struct;
353     uint64_t feature_mask;
354     Error *local_err = NULL;
355 
356     if (qemu_target_page_size() > pagesize) {
357         error_report("Target page size bigger than host page size");
358         goto out;
359     }
360 
361     ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
362     if (ufd == -1) {
363         error_report("%s: userfaultfd not available: %s", __func__,
364                      strerror(errno));
365         goto out;
366     }
367 
368     /* Give devices a chance to object */
369     if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, &local_err)) {
370         error_report_err(local_err);
371         goto out;
372     }
373 
374     /* Version and features check */
375     if (!ufd_check_and_apply(ufd, mis)) {
376         goto out;
377     }
378 
379     /* We don't support postcopy with shared RAM yet */
380     if (foreach_not_ignored_block(test_ramblock_postcopiable, NULL)) {
381         goto out;
382     }
383 
384     /*
385      * userfault and mlock don't go together; we'll put it back later if
386      * it was enabled.
387      */
388     if (munlockall()) {
389         error_report("%s: munlockall: %s", __func__,  strerror(errno));
390         goto out;
391     }
392 
393     /*
394      *  We need to check that the ops we need are supported on anon memory
395      *  To do that we need to register a chunk and see the flags that
396      *  are returned.
397      */
398     testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE |
399                                     MAP_ANONYMOUS, -1, 0);
400     if (testarea == MAP_FAILED) {
401         error_report("%s: Failed to map test area: %s", __func__,
402                      strerror(errno));
403         goto out;
404     }
405     g_assert(((size_t)testarea & (pagesize - 1)) == 0);
406 
407     reg_struct.range.start = (uintptr_t)testarea;
408     reg_struct.range.len = pagesize;
409     reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
410 
411     if (ioctl(ufd, UFFDIO_REGISTER, &reg_struct)) {
412         error_report("%s userfault register: %s", __func__, strerror(errno));
413         goto out;
414     }
415 
416     range_struct.start = (uintptr_t)testarea;
417     range_struct.len = pagesize;
418     if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) {
419         error_report("%s userfault unregister: %s", __func__, strerror(errno));
420         goto out;
421     }
422 
423     feature_mask = (__u64)1 << _UFFDIO_WAKE |
424                    (__u64)1 << _UFFDIO_COPY |
425                    (__u64)1 << _UFFDIO_ZEROPAGE;
426     if ((reg_struct.ioctls & feature_mask) != feature_mask) {
427         error_report("Missing userfault map features: %" PRIx64,
428                      (uint64_t)(~reg_struct.ioctls & feature_mask));
429         goto out;
430     }
431 
432     /* Success! */
433     ret = true;
434 out:
435     if (testarea) {
436         munmap(testarea, pagesize);
437     }
438     if (ufd != -1) {
439         close(ufd);
440     }
441     return ret;
442 }
443 
444 /*
445  * Setup an area of RAM so that it *can* be used for postcopy later; this
446  * must be done right at the start prior to pre-copy.
447  * opaque should be the MIS.
448  */
449 static int init_range(RAMBlock *rb, void *opaque)
450 {
451     const char *block_name = qemu_ram_get_idstr(rb);
452     void *host_addr = qemu_ram_get_host_addr(rb);
453     ram_addr_t offset = qemu_ram_get_offset(rb);
454     ram_addr_t length = qemu_ram_get_used_length(rb);
455     trace_postcopy_init_range(block_name, host_addr, offset, length);
456 
457     /*
458      * Save the used_length before running the guest. In case we have to
459      * resize RAM blocks when syncing RAM block sizes from the source during
460      * precopy, we'll update it manually via the ram block notifier.
461      */
462     rb->postcopy_length = length;
463 
464     /*
465      * We need the whole of RAM to be truly empty for postcopy, so things
466      * like ROMs and any data tables built during init must be zero'd
467      * - we're going to get the copy from the source anyway.
468      * (Precopy will just overwrite this data, so doesn't need the discard)
469      */
470     if (ram_discard_range(block_name, 0, length)) {
471         return -1;
472     }
473 
474     return 0;
475 }
476 
477 /*
478  * At the end of migration, undo the effects of init_range
479  * opaque should be the MIS.
480  */
481 static int cleanup_range(RAMBlock *rb, void *opaque)
482 {
483     const char *block_name = qemu_ram_get_idstr(rb);
484     void *host_addr = qemu_ram_get_host_addr(rb);
485     ram_addr_t offset = qemu_ram_get_offset(rb);
486     ram_addr_t length = rb->postcopy_length;
487     MigrationIncomingState *mis = opaque;
488     struct uffdio_range range_struct;
489     trace_postcopy_cleanup_range(block_name, host_addr, offset, length);
490 
491     /*
492      * We turned off hugepage for the precopy stage with postcopy enabled
493      * we can turn it back on now.
494      */
495     qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE);
496 
497     /*
498      * We can also turn off userfault now since we should have all the
499      * pages.   It can be useful to leave it on to debug postcopy
500      * if you're not sure it's always getting every page.
501      */
502     range_struct.start = (uintptr_t)host_addr;
503     range_struct.len = length;
504 
505     if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) {
506         error_report("%s: userfault unregister %s", __func__, strerror(errno));
507 
508         return -1;
509     }
510 
511     return 0;
512 }
513 
514 /*
515  * Initialise postcopy-ram, setting the RAM to a state where we can go into
516  * postcopy later; must be called prior to any precopy.
517  * called from arch_init's similarly named ram_postcopy_incoming_init
518  */
519 int postcopy_ram_incoming_init(MigrationIncomingState *mis)
520 {
521     if (foreach_not_ignored_block(init_range, NULL)) {
522         return -1;
523     }
524 
525     return 0;
526 }
527 
528 /*
529  * At the end of a migration where postcopy_ram_incoming_init was called.
530  */
531 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
532 {
533     trace_postcopy_ram_incoming_cleanup_entry();
534 
535     if (mis->have_fault_thread) {
536         Error *local_err = NULL;
537 
538         /* Let the fault thread quit */
539         qatomic_set(&mis->fault_thread_quit, 1);
540         postcopy_fault_thread_notify(mis);
541         trace_postcopy_ram_incoming_cleanup_join();
542         qemu_thread_join(&mis->fault_thread);
543 
544         if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) {
545             error_report_err(local_err);
546             return -1;
547         }
548 
549         if (foreach_not_ignored_block(cleanup_range, mis)) {
550             return -1;
551         }
552 
553         trace_postcopy_ram_incoming_cleanup_closeuf();
554         close(mis->userfault_fd);
555         close(mis->userfault_event_fd);
556         mis->have_fault_thread = false;
557     }
558 
559     if (enable_mlock) {
560         if (os_mlock() < 0) {
561             error_report("mlock: %s", strerror(errno));
562             /*
563              * It doesn't feel right to fail at this point, we have a valid
564              * VM state.
565              */
566         }
567     }
568 
569     if (mis->postcopy_tmp_page) {
570         munmap(mis->postcopy_tmp_page, mis->largest_page_size);
571         mis->postcopy_tmp_page = NULL;
572     }
573     if (mis->postcopy_tmp_zero_page) {
574         munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size);
575         mis->postcopy_tmp_zero_page = NULL;
576     }
577     trace_postcopy_ram_incoming_cleanup_blocktime(
578             get_postcopy_total_blocktime());
579 
580     trace_postcopy_ram_incoming_cleanup_exit();
581     return 0;
582 }
583 
584 /*
585  * Disable huge pages on an area
586  */
587 static int nhp_range(RAMBlock *rb, void *opaque)
588 {
589     const char *block_name = qemu_ram_get_idstr(rb);
590     void *host_addr = qemu_ram_get_host_addr(rb);
591     ram_addr_t offset = qemu_ram_get_offset(rb);
592     ram_addr_t length = rb->postcopy_length;
593     trace_postcopy_nhp_range(block_name, host_addr, offset, length);
594 
595     /*
596      * Before we do discards we need to ensure those discards really
597      * do delete areas of the page, even if THP thinks a hugepage would
598      * be a good idea, so force hugepages off.
599      */
600     qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE);
601 
602     return 0;
603 }
604 
605 /*
606  * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
607  * however leaving it until after precopy means that most of the precopy
608  * data is still THPd
609  */
610 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
611 {
612     if (foreach_not_ignored_block(nhp_range, mis)) {
613         return -1;
614     }
615 
616     postcopy_state_set(POSTCOPY_INCOMING_DISCARD);
617 
618     return 0;
619 }
620 
621 /*
622  * Mark the given area of RAM as requiring notification to unwritten areas
623  * Used as a  callback on foreach_not_ignored_block.
624  *   host_addr: Base of area to mark
625  *   offset: Offset in the whole ram arena
626  *   length: Length of the section
627  *   opaque: MigrationIncomingState pointer
628  * Returns 0 on success
629  */
630 static int ram_block_enable_notify(RAMBlock *rb, void *opaque)
631 {
632     MigrationIncomingState *mis = opaque;
633     struct uffdio_register reg_struct;
634 
635     reg_struct.range.start = (uintptr_t)qemu_ram_get_host_addr(rb);
636     reg_struct.range.len = rb->postcopy_length;
637     reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
638 
639     /* Now tell our userfault_fd that it's responsible for this area */
640     if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, &reg_struct)) {
641         error_report("%s userfault register: %s", __func__, strerror(errno));
642         return -1;
643     }
644     if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) {
645         error_report("%s userfault: Region doesn't support COPY", __func__);
646         return -1;
647     }
648     if (reg_struct.ioctls & ((__u64)1 << _UFFDIO_ZEROPAGE)) {
649         qemu_ram_set_uf_zeroable(rb);
650     }
651 
652     return 0;
653 }
654 
655 int postcopy_wake_shared(struct PostCopyFD *pcfd,
656                          uint64_t client_addr,
657                          RAMBlock *rb)
658 {
659     size_t pagesize = qemu_ram_pagesize(rb);
660     struct uffdio_range range;
661     int ret;
662     trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb));
663     range.start = client_addr & ~(pagesize - 1);
664     range.len = pagesize;
665     ret = ioctl(pcfd->fd, UFFDIO_WAKE, &range);
666     if (ret) {
667         error_report("%s: Failed to wake: %zx in %s (%s)",
668                      __func__, (size_t)client_addr, qemu_ram_get_idstr(rb),
669                      strerror(errno));
670     }
671     return ret;
672 }
673 
674 /*
675  * Callback from shared fault handlers to ask for a page,
676  * the page must be specified by a RAMBlock and an offset in that rb
677  * Note: Only for use by shared fault handlers (in fault thread)
678  */
679 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
680                                  uint64_t client_addr, uint64_t rb_offset)
681 {
682     size_t pagesize = qemu_ram_pagesize(rb);
683     uint64_t aligned_rbo = rb_offset & ~(pagesize - 1);
684     MigrationIncomingState *mis = migration_incoming_get_current();
685 
686     trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb),
687                                        rb_offset);
688     if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) {
689         trace_postcopy_request_shared_page_present(pcfd->idstr,
690                                         qemu_ram_get_idstr(rb), rb_offset);
691         return postcopy_wake_shared(pcfd, client_addr, rb);
692     }
693     migrate_send_rp_req_pages(mis, rb, aligned_rbo, client_addr);
694     return 0;
695 }
696 
697 static int get_mem_fault_cpu_index(uint32_t pid)
698 {
699     CPUState *cpu_iter;
700 
701     CPU_FOREACH(cpu_iter) {
702         if (cpu_iter->thread_id == pid) {
703             trace_get_mem_fault_cpu_index(cpu_iter->cpu_index, pid);
704             return cpu_iter->cpu_index;
705         }
706     }
707     trace_get_mem_fault_cpu_index(-1, pid);
708     return -1;
709 }
710 
711 static uint32_t get_low_time_offset(PostcopyBlocktimeContext *dc)
712 {
713     int64_t start_time_offset = qemu_clock_get_ms(QEMU_CLOCK_REALTIME) -
714                                     dc->start_time;
715     return start_time_offset < 1 ? 1 : start_time_offset & UINT32_MAX;
716 }
717 
718 /*
719  * This function is being called when pagefault occurs. It
720  * tracks down vCPU blocking time.
721  *
722  * @addr: faulted host virtual address
723  * @ptid: faulted process thread id
724  * @rb: ramblock appropriate to addr
725  */
726 static void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid,
727                                           RAMBlock *rb)
728 {
729     int cpu, already_received;
730     MigrationIncomingState *mis = migration_incoming_get_current();
731     PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
732     uint32_t low_time_offset;
733 
734     if (!dc || ptid == 0) {
735         return;
736     }
737     cpu = get_mem_fault_cpu_index(ptid);
738     if (cpu < 0) {
739         return;
740     }
741 
742     low_time_offset = get_low_time_offset(dc);
743     if (dc->vcpu_addr[cpu] == 0) {
744         qatomic_inc(&dc->smp_cpus_down);
745     }
746 
747     qatomic_xchg(&dc->last_begin, low_time_offset);
748     qatomic_xchg(&dc->page_fault_vcpu_time[cpu], low_time_offset);
749     qatomic_xchg(&dc->vcpu_addr[cpu], addr);
750 
751     /*
752      * check it here, not at the beginning of the function,
753      * due to, check could occur early than bitmap_set in
754      * qemu_ufd_copy_ioctl
755      */
756     already_received = ramblock_recv_bitmap_test(rb, (void *)addr);
757     if (already_received) {
758         qatomic_xchg(&dc->vcpu_addr[cpu], 0);
759         qatomic_xchg(&dc->page_fault_vcpu_time[cpu], 0);
760         qatomic_dec(&dc->smp_cpus_down);
761     }
762     trace_mark_postcopy_blocktime_begin(addr, dc, dc->page_fault_vcpu_time[cpu],
763                                         cpu, already_received);
764 }
765 
766 /*
767  *  This function just provide calculated blocktime per cpu and trace it.
768  *  Total blocktime is calculated in mark_postcopy_blocktime_end.
769  *
770  *
771  * Assume we have 3 CPU
772  *
773  *      S1        E1           S1               E1
774  * -----***********------------xxx***************------------------------> CPU1
775  *
776  *             S2                E2
777  * ------------****************xxx---------------------------------------> CPU2
778  *
779  *                         S3            E3
780  * ------------------------****xxx********-------------------------------> CPU3
781  *
782  * We have sequence S1,S2,E1,S3,S1,E2,E3,E1
783  * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3
784  * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 -
785  *            it's a part of total blocktime.
786  * S1 - here is last_begin
787  * Legend of the picture is following:
788  *              * - means blocktime per vCPU
789  *              x - means overlapped blocktime (total blocktime)
790  *
791  * @addr: host virtual address
792  */
793 static void mark_postcopy_blocktime_end(uintptr_t addr)
794 {
795     MigrationIncomingState *mis = migration_incoming_get_current();
796     PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
797     MachineState *ms = MACHINE(qdev_get_machine());
798     unsigned int smp_cpus = ms->smp.cpus;
799     int i, affected_cpu = 0;
800     bool vcpu_total_blocktime = false;
801     uint32_t read_vcpu_time, low_time_offset;
802 
803     if (!dc) {
804         return;
805     }
806 
807     low_time_offset = get_low_time_offset(dc);
808     /* lookup cpu, to clear it,
809      * that algorithm looks straightforward, but it's not
810      * optimal, more optimal algorithm is keeping tree or hash
811      * where key is address value is a list of  */
812     for (i = 0; i < smp_cpus; i++) {
813         uint32_t vcpu_blocktime = 0;
814 
815         read_vcpu_time = qatomic_fetch_add(&dc->page_fault_vcpu_time[i], 0);
816         if (qatomic_fetch_add(&dc->vcpu_addr[i], 0) != addr ||
817             read_vcpu_time == 0) {
818             continue;
819         }
820         qatomic_xchg(&dc->vcpu_addr[i], 0);
821         vcpu_blocktime = low_time_offset - read_vcpu_time;
822         affected_cpu += 1;
823         /* we need to know is that mark_postcopy_end was due to
824          * faulted page, another possible case it's prefetched
825          * page and in that case we shouldn't be here */
826         if (!vcpu_total_blocktime &&
827             qatomic_fetch_add(&dc->smp_cpus_down, 0) == smp_cpus) {
828             vcpu_total_blocktime = true;
829         }
830         /* continue cycle, due to one page could affect several vCPUs */
831         dc->vcpu_blocktime[i] += vcpu_blocktime;
832     }
833 
834     qatomic_sub(&dc->smp_cpus_down, affected_cpu);
835     if (vcpu_total_blocktime) {
836         dc->total_blocktime += low_time_offset - qatomic_fetch_add(
837                 &dc->last_begin, 0);
838     }
839     trace_mark_postcopy_blocktime_end(addr, dc, dc->total_blocktime,
840                                       affected_cpu);
841 }
842 
843 static bool postcopy_pause_fault_thread(MigrationIncomingState *mis)
844 {
845     trace_postcopy_pause_fault_thread();
846 
847     qemu_sem_wait(&mis->postcopy_pause_sem_fault);
848 
849     trace_postcopy_pause_fault_thread_continued();
850 
851     return true;
852 }
853 
854 /*
855  * Handle faults detected by the USERFAULT markings
856  */
857 static void *postcopy_ram_fault_thread(void *opaque)
858 {
859     MigrationIncomingState *mis = opaque;
860     struct uffd_msg msg;
861     int ret;
862     size_t index;
863     RAMBlock *rb = NULL;
864 
865     trace_postcopy_ram_fault_thread_entry();
866     rcu_register_thread();
867     mis->last_rb = NULL; /* last RAMBlock we sent part of */
868     qemu_sem_post(&mis->fault_thread_sem);
869 
870     struct pollfd *pfd;
871     size_t pfd_len = 2 + mis->postcopy_remote_fds->len;
872 
873     pfd = g_new0(struct pollfd, pfd_len);
874 
875     pfd[0].fd = mis->userfault_fd;
876     pfd[0].events = POLLIN;
877     pfd[1].fd = mis->userfault_event_fd;
878     pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */
879     trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd);
880     for (index = 0; index < mis->postcopy_remote_fds->len; index++) {
881         struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds,
882                                                  struct PostCopyFD, index);
883         pfd[2 + index].fd = pcfd->fd;
884         pfd[2 + index].events = POLLIN;
885         trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr,
886                                                   pcfd->fd);
887     }
888 
889     while (true) {
890         ram_addr_t rb_offset;
891         int poll_result;
892 
893         /*
894          * We're mainly waiting for the kernel to give us a faulting HVA,
895          * however we can be told to quit via userfault_quit_fd which is
896          * an eventfd
897          */
898 
899         poll_result = poll(pfd, pfd_len, -1 /* Wait forever */);
900         if (poll_result == -1) {
901             error_report("%s: userfault poll: %s", __func__, strerror(errno));
902             break;
903         }
904 
905         if (!mis->to_src_file) {
906             /*
907              * Possibly someone tells us that the return path is
908              * broken already using the event. We should hold until
909              * the channel is rebuilt.
910              */
911             if (postcopy_pause_fault_thread(mis)) {
912                 /* Continue to read the userfaultfd */
913             } else {
914                 error_report("%s: paused but don't allow to continue",
915                              __func__);
916                 break;
917             }
918         }
919 
920         if (pfd[1].revents) {
921             uint64_t tmp64 = 0;
922 
923             /* Consume the signal */
924             if (read(mis->userfault_event_fd, &tmp64, 8) != 8) {
925                 /* Nothing obviously nicer than posting this error. */
926                 error_report("%s: read() failed", __func__);
927             }
928 
929             if (qatomic_read(&mis->fault_thread_quit)) {
930                 trace_postcopy_ram_fault_thread_quit();
931                 break;
932             }
933         }
934 
935         if (pfd[0].revents) {
936             poll_result--;
937             ret = read(mis->userfault_fd, &msg, sizeof(msg));
938             if (ret != sizeof(msg)) {
939                 if (errno == EAGAIN) {
940                     /*
941                      * if a wake up happens on the other thread just after
942                      * the poll, there is nothing to read.
943                      */
944                     continue;
945                 }
946                 if (ret < 0) {
947                     error_report("%s: Failed to read full userfault "
948                                  "message: %s",
949                                  __func__, strerror(errno));
950                     break;
951                 } else {
952                     error_report("%s: Read %d bytes from userfaultfd "
953                                  "expected %zd",
954                                  __func__, ret, sizeof(msg));
955                     break; /* Lost alignment, don't know what we'd read next */
956                 }
957             }
958             if (msg.event != UFFD_EVENT_PAGEFAULT) {
959                 error_report("%s: Read unexpected event %ud from userfaultfd",
960                              __func__, msg.event);
961                 continue; /* It's not a page fault, shouldn't happen */
962             }
963 
964             rb = qemu_ram_block_from_host(
965                      (void *)(uintptr_t)msg.arg.pagefault.address,
966                      true, &rb_offset);
967             if (!rb) {
968                 error_report("postcopy_ram_fault_thread: Fault outside guest: %"
969                              PRIx64, (uint64_t)msg.arg.pagefault.address);
970                 break;
971             }
972 
973             rb_offset &= ~(qemu_ram_pagesize(rb) - 1);
974             trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address,
975                                                 qemu_ram_get_idstr(rb),
976                                                 rb_offset,
977                                                 msg.arg.pagefault.feat.ptid);
978             mark_postcopy_blocktime_begin(
979                     (uintptr_t)(msg.arg.pagefault.address),
980                                 msg.arg.pagefault.feat.ptid, rb);
981 
982 retry:
983             /*
984              * Send the request to the source - we want to request one
985              * of our host page sizes (which is >= TPS)
986              */
987             ret = migrate_send_rp_req_pages(mis, rb, rb_offset,
988                                             msg.arg.pagefault.address);
989             if (ret) {
990                 /* May be network failure, try to wait for recovery */
991                 if (ret == -EIO && postcopy_pause_fault_thread(mis)) {
992                     /* We got reconnected somehow, try to continue */
993                     goto retry;
994                 } else {
995                     /* This is a unavoidable fault */
996                     error_report("%s: migrate_send_rp_req_pages() get %d",
997                                  __func__, ret);
998                     break;
999                 }
1000             }
1001         }
1002 
1003         /* Now handle any requests from external processes on shared memory */
1004         /* TODO: May need to handle devices deregistering during postcopy */
1005         for (index = 2; index < pfd_len && poll_result; index++) {
1006             if (pfd[index].revents) {
1007                 struct PostCopyFD *pcfd =
1008                     &g_array_index(mis->postcopy_remote_fds,
1009                                    struct PostCopyFD, index - 2);
1010 
1011                 poll_result--;
1012                 if (pfd[index].revents & POLLERR) {
1013                     error_report("%s: POLLERR on poll %zd fd=%d",
1014                                  __func__, index, pcfd->fd);
1015                     pfd[index].events = 0;
1016                     continue;
1017                 }
1018 
1019                 ret = read(pcfd->fd, &msg, sizeof(msg));
1020                 if (ret != sizeof(msg)) {
1021                     if (errno == EAGAIN) {
1022                         /*
1023                          * if a wake up happens on the other thread just after
1024                          * the poll, there is nothing to read.
1025                          */
1026                         continue;
1027                     }
1028                     if (ret < 0) {
1029                         error_report("%s: Failed to read full userfault "
1030                                      "message: %s (shared) revents=%d",
1031                                      __func__, strerror(errno),
1032                                      pfd[index].revents);
1033                         /*TODO: Could just disable this sharer */
1034                         break;
1035                     } else {
1036                         error_report("%s: Read %d bytes from userfaultfd "
1037                                      "expected %zd (shared)",
1038                                      __func__, ret, sizeof(msg));
1039                         /*TODO: Could just disable this sharer */
1040                         break; /*Lost alignment,don't know what we'd read next*/
1041                     }
1042                 }
1043                 if (msg.event != UFFD_EVENT_PAGEFAULT) {
1044                     error_report("%s: Read unexpected event %ud "
1045                                  "from userfaultfd (shared)",
1046                                  __func__, msg.event);
1047                     continue; /* It's not a page fault, shouldn't happen */
1048                 }
1049                 /* Call the device handler registered with us */
1050                 ret = pcfd->handler(pcfd, &msg);
1051                 if (ret) {
1052                     error_report("%s: Failed to resolve shared fault on %zd/%s",
1053                                  __func__, index, pcfd->idstr);
1054                     /* TODO: Fail? Disable this sharer? */
1055                 }
1056             }
1057         }
1058     }
1059     rcu_unregister_thread();
1060     trace_postcopy_ram_fault_thread_exit();
1061     g_free(pfd);
1062     return NULL;
1063 }
1064 
1065 int postcopy_ram_incoming_setup(MigrationIncomingState *mis)
1066 {
1067     /* Open the fd for the kernel to give us userfaults */
1068     mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK);
1069     if (mis->userfault_fd == -1) {
1070         error_report("%s: Failed to open userfault fd: %s", __func__,
1071                      strerror(errno));
1072         return -1;
1073     }
1074 
1075     /*
1076      * Although the host check already tested the API, we need to
1077      * do the check again as an ABI handshake on the new fd.
1078      */
1079     if (!ufd_check_and_apply(mis->userfault_fd, mis)) {
1080         return -1;
1081     }
1082 
1083     /* Now an eventfd we use to tell the fault-thread to quit */
1084     mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC);
1085     if (mis->userfault_event_fd == -1) {
1086         error_report("%s: Opening userfault_event_fd: %s", __func__,
1087                      strerror(errno));
1088         close(mis->userfault_fd);
1089         return -1;
1090     }
1091 
1092     qemu_sem_init(&mis->fault_thread_sem, 0);
1093     qemu_thread_create(&mis->fault_thread, "postcopy/fault",
1094                        postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE);
1095     qemu_sem_wait(&mis->fault_thread_sem);
1096     qemu_sem_destroy(&mis->fault_thread_sem);
1097     mis->have_fault_thread = true;
1098 
1099     /* Mark so that we get notified of accesses to unwritten areas */
1100     if (foreach_not_ignored_block(ram_block_enable_notify, mis)) {
1101         error_report("ram_block_enable_notify failed");
1102         return -1;
1103     }
1104 
1105     mis->postcopy_tmp_page = mmap(NULL, mis->largest_page_size,
1106                                   PROT_READ | PROT_WRITE, MAP_PRIVATE |
1107                                   MAP_ANONYMOUS, -1, 0);
1108     if (mis->postcopy_tmp_page == MAP_FAILED) {
1109         mis->postcopy_tmp_page = NULL;
1110         error_report("%s: Failed to map postcopy_tmp_page %s",
1111                      __func__, strerror(errno));
1112         return -1;
1113     }
1114 
1115     /*
1116      * Map large zero page when kernel can't use UFFDIO_ZEROPAGE for hugepages
1117      */
1118     mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size,
1119                                        PROT_READ | PROT_WRITE,
1120                                        MAP_PRIVATE | MAP_ANONYMOUS,
1121                                        -1, 0);
1122     if (mis->postcopy_tmp_zero_page == MAP_FAILED) {
1123         int e = errno;
1124         mis->postcopy_tmp_zero_page = NULL;
1125         error_report("%s: Failed to map large zero page %s",
1126                      __func__, strerror(e));
1127         return -e;
1128     }
1129     memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size);
1130 
1131     trace_postcopy_ram_enable_notify();
1132 
1133     return 0;
1134 }
1135 
1136 static int qemu_ufd_copy_ioctl(MigrationIncomingState *mis, void *host_addr,
1137                                void *from_addr, uint64_t pagesize, RAMBlock *rb)
1138 {
1139     int userfault_fd = mis->userfault_fd;
1140     int ret;
1141 
1142     if (from_addr) {
1143         struct uffdio_copy copy_struct;
1144         copy_struct.dst = (uint64_t)(uintptr_t)host_addr;
1145         copy_struct.src = (uint64_t)(uintptr_t)from_addr;
1146         copy_struct.len = pagesize;
1147         copy_struct.mode = 0;
1148         ret = ioctl(userfault_fd, UFFDIO_COPY, &copy_struct);
1149     } else {
1150         struct uffdio_zeropage zero_struct;
1151         zero_struct.range.start = (uint64_t)(uintptr_t)host_addr;
1152         zero_struct.range.len = pagesize;
1153         zero_struct.mode = 0;
1154         ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct);
1155     }
1156     if (!ret) {
1157         qemu_mutex_lock(&mis->page_request_mutex);
1158         ramblock_recv_bitmap_set_range(rb, host_addr,
1159                                        pagesize / qemu_target_page_size());
1160         /*
1161          * If this page resolves a page fault for a previous recorded faulted
1162          * address, take a special note to maintain the requested page list.
1163          */
1164         if (g_tree_lookup(mis->page_requested, host_addr)) {
1165             g_tree_remove(mis->page_requested, host_addr);
1166             mis->page_requested_count--;
1167             trace_postcopy_page_req_del(host_addr, mis->page_requested_count);
1168         }
1169         qemu_mutex_unlock(&mis->page_request_mutex);
1170         mark_postcopy_blocktime_end((uintptr_t)host_addr);
1171     }
1172     return ret;
1173 }
1174 
1175 int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset)
1176 {
1177     int i;
1178     MigrationIncomingState *mis = migration_incoming_get_current();
1179     GArray *pcrfds = mis->postcopy_remote_fds;
1180 
1181     for (i = 0; i < pcrfds->len; i++) {
1182         struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1183         int ret = cur->waker(cur, rb, offset);
1184         if (ret) {
1185             return ret;
1186         }
1187     }
1188     return 0;
1189 }
1190 
1191 /*
1192  * Place a host page (from) at (host) atomically
1193  * returns 0 on success
1194  */
1195 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1196                         RAMBlock *rb)
1197 {
1198     size_t pagesize = qemu_ram_pagesize(rb);
1199 
1200     /* copy also acks to the kernel waking the stalled thread up
1201      * TODO: We can inhibit that ack and only do it if it was requested
1202      * which would be slightly cheaper, but we'd have to be careful
1203      * of the order of updating our page state.
1204      */
1205     if (qemu_ufd_copy_ioctl(mis, host, from, pagesize, rb)) {
1206         int e = errno;
1207         error_report("%s: %s copy host: %p from: %p (size: %zd)",
1208                      __func__, strerror(e), host, from, pagesize);
1209 
1210         return -e;
1211     }
1212 
1213     trace_postcopy_place_page(host);
1214     return postcopy_notify_shared_wake(rb,
1215                                        qemu_ram_block_host_offset(rb, host));
1216 }
1217 
1218 /*
1219  * Place a zero page at (host) atomically
1220  * returns 0 on success
1221  */
1222 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1223                              RAMBlock *rb)
1224 {
1225     size_t pagesize = qemu_ram_pagesize(rb);
1226     trace_postcopy_place_page_zero(host);
1227 
1228     /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE
1229      * but it's not available for everything (e.g. hugetlbpages)
1230      */
1231     if (qemu_ram_is_uf_zeroable(rb)) {
1232         if (qemu_ufd_copy_ioctl(mis, host, NULL, pagesize, rb)) {
1233             int e = errno;
1234             error_report("%s: %s zero host: %p",
1235                          __func__, strerror(e), host);
1236 
1237             return -e;
1238         }
1239         return postcopy_notify_shared_wake(rb,
1240                                            qemu_ram_block_host_offset(rb,
1241                                                                       host));
1242     } else {
1243         return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page, rb);
1244     }
1245 }
1246 
1247 #else
1248 /* No target OS support, stubs just fail */
1249 void fill_destination_postcopy_migration_info(MigrationInfo *info)
1250 {
1251 }
1252 
1253 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
1254 {
1255     error_report("%s: No OS support", __func__);
1256     return false;
1257 }
1258 
1259 int postcopy_ram_incoming_init(MigrationIncomingState *mis)
1260 {
1261     error_report("postcopy_ram_incoming_init: No OS support");
1262     return -1;
1263 }
1264 
1265 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
1266 {
1267     assert(0);
1268     return -1;
1269 }
1270 
1271 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
1272 {
1273     assert(0);
1274     return -1;
1275 }
1276 
1277 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
1278                                  uint64_t client_addr, uint64_t rb_offset)
1279 {
1280     assert(0);
1281     return -1;
1282 }
1283 
1284 int postcopy_ram_incoming_setup(MigrationIncomingState *mis)
1285 {
1286     assert(0);
1287     return -1;
1288 }
1289 
1290 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1291                         RAMBlock *rb)
1292 {
1293     assert(0);
1294     return -1;
1295 }
1296 
1297 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1298                         RAMBlock *rb)
1299 {
1300     assert(0);
1301     return -1;
1302 }
1303 
1304 int postcopy_wake_shared(struct PostCopyFD *pcfd,
1305                          uint64_t client_addr,
1306                          RAMBlock *rb)
1307 {
1308     assert(0);
1309     return -1;
1310 }
1311 #endif
1312 
1313 /* ------------------------------------------------------------------------- */
1314 
1315 void postcopy_fault_thread_notify(MigrationIncomingState *mis)
1316 {
1317     uint64_t tmp64 = 1;
1318 
1319     /*
1320      * Wakeup the fault_thread.  It's an eventfd that should currently
1321      * be at 0, we're going to increment it to 1
1322      */
1323     if (write(mis->userfault_event_fd, &tmp64, 8) != 8) {
1324         /* Not much we can do here, but may as well report it */
1325         error_report("%s: incrementing failed: %s", __func__,
1326                      strerror(errno));
1327     }
1328 }
1329 
1330 /**
1331  * postcopy_discard_send_init: Called at the start of each RAMBlock before
1332  *   asking to discard individual ranges.
1333  *
1334  * @ms: The current migration state.
1335  * @offset: the bitmap offset of the named RAMBlock in the migration bitmap.
1336  * @name: RAMBlock that discards will operate on.
1337  */
1338 static PostcopyDiscardState pds = {0};
1339 void postcopy_discard_send_init(MigrationState *ms, const char *name)
1340 {
1341     pds.ramblock_name = name;
1342     pds.cur_entry = 0;
1343     pds.nsentwords = 0;
1344     pds.nsentcmds = 0;
1345 }
1346 
1347 /**
1348  * postcopy_discard_send_range: Called by the bitmap code for each chunk to
1349  *   discard. May send a discard message, may just leave it queued to
1350  *   be sent later.
1351  *
1352  * @ms: Current migration state.
1353  * @start,@length: a range of pages in the migration bitmap in the
1354  *   RAM block passed to postcopy_discard_send_init() (length=1 is one page)
1355  */
1356 void postcopy_discard_send_range(MigrationState *ms, unsigned long start,
1357                                  unsigned long length)
1358 {
1359     size_t tp_size = qemu_target_page_size();
1360     /* Convert to byte offsets within the RAM block */
1361     pds.start_list[pds.cur_entry] = start  * tp_size;
1362     pds.length_list[pds.cur_entry] = length * tp_size;
1363     trace_postcopy_discard_send_range(pds.ramblock_name, start, length);
1364     pds.cur_entry++;
1365     pds.nsentwords++;
1366 
1367     if (pds.cur_entry == MAX_DISCARDS_PER_COMMAND) {
1368         /* Full set, ship it! */
1369         qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1370                                               pds.ramblock_name,
1371                                               pds.cur_entry,
1372                                               pds.start_list,
1373                                               pds.length_list);
1374         pds.nsentcmds++;
1375         pds.cur_entry = 0;
1376     }
1377 }
1378 
1379 /**
1380  * postcopy_discard_send_finish: Called at the end of each RAMBlock by the
1381  * bitmap code. Sends any outstanding discard messages, frees the PDS
1382  *
1383  * @ms: Current migration state.
1384  */
1385 void postcopy_discard_send_finish(MigrationState *ms)
1386 {
1387     /* Anything unsent? */
1388     if (pds.cur_entry) {
1389         qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1390                                               pds.ramblock_name,
1391                                               pds.cur_entry,
1392                                               pds.start_list,
1393                                               pds.length_list);
1394         pds.nsentcmds++;
1395     }
1396 
1397     trace_postcopy_discard_send_finish(pds.ramblock_name, pds.nsentwords,
1398                                        pds.nsentcmds);
1399 }
1400 
1401 /*
1402  * Current state of incoming postcopy; note this is not part of
1403  * MigrationIncomingState since it's state is used during cleanup
1404  * at the end as MIS is being freed.
1405  */
1406 static PostcopyState incoming_postcopy_state;
1407 
1408 PostcopyState  postcopy_state_get(void)
1409 {
1410     return qatomic_mb_read(&incoming_postcopy_state);
1411 }
1412 
1413 /* Set the state and return the old state */
1414 PostcopyState postcopy_state_set(PostcopyState new_state)
1415 {
1416     return qatomic_xchg(&incoming_postcopy_state, new_state);
1417 }
1418 
1419 /* Register a handler for external shared memory postcopy
1420  * called on the destination.
1421  */
1422 void postcopy_register_shared_ufd(struct PostCopyFD *pcfd)
1423 {
1424     MigrationIncomingState *mis = migration_incoming_get_current();
1425 
1426     mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds,
1427                                                   *pcfd);
1428 }
1429 
1430 /* Unregister a handler for external shared memory postcopy
1431  */
1432 void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd)
1433 {
1434     guint i;
1435     MigrationIncomingState *mis = migration_incoming_get_current();
1436     GArray *pcrfds = mis->postcopy_remote_fds;
1437 
1438     for (i = 0; i < pcrfds->len; i++) {
1439         struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1440         if (cur->fd == pcfd->fd) {
1441             mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i);
1442             return;
1443         }
1444     }
1445 }
1446