xref: /openbmc/qemu/migration/postcopy-ram.c (revision 22d2e5351a18aff5a9c7e3984b50ecce61ff8975)
1 /*
2  * Postcopy migration for RAM
3  *
4  * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Dave Gilbert  <dgilbert@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  */
13 
14 /*
15  * Postcopy is a migration technique where the execution flips from the
16  * source to the destination before all the data has been copied.
17  */
18 
19 #include "qemu/osdep.h"
20 #include "qemu/madvise.h"
21 #include "exec/target_page.h"
22 #include "migration.h"
23 #include "qemu-file.h"
24 #include "savevm.h"
25 #include "postcopy-ram.h"
26 #include "ram.h"
27 #include "qapi/error.h"
28 #include "qemu/notify.h"
29 #include "qemu/rcu.h"
30 #include "sysemu/sysemu.h"
31 #include "qemu/error-report.h"
32 #include "trace.h"
33 #include "hw/boards.h"
34 #include "exec/ramblock.h"
35 #include "socket.h"
36 #include "yank_functions.h"
37 #include "tls.h"
38 #include "qemu/userfaultfd.h"
39 #include "qemu/mmap-alloc.h"
40 #include "options.h"
41 
42 /* Arbitrary limit on size of each discard command,
43  * keeps them around ~200 bytes
44  */
45 #define MAX_DISCARDS_PER_COMMAND 12
46 
47 struct PostcopyDiscardState {
48     const char *ramblock_name;
49     uint16_t cur_entry;
50     /*
51      * Start and length of a discard range (bytes)
52      */
53     uint64_t start_list[MAX_DISCARDS_PER_COMMAND];
54     uint64_t length_list[MAX_DISCARDS_PER_COMMAND];
55     unsigned int nsentwords;
56     unsigned int nsentcmds;
57 };
58 
59 static NotifierWithReturnList postcopy_notifier_list;
60 
61 void postcopy_infrastructure_init(void)
62 {
63     notifier_with_return_list_init(&postcopy_notifier_list);
64 }
65 
66 void postcopy_add_notifier(NotifierWithReturn *nn)
67 {
68     notifier_with_return_list_add(&postcopy_notifier_list, nn);
69 }
70 
71 void postcopy_remove_notifier(NotifierWithReturn *n)
72 {
73     notifier_with_return_remove(n);
74 }
75 
76 int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp)
77 {
78     struct PostcopyNotifyData pnd;
79     pnd.reason = reason;
80     pnd.errp = errp;
81 
82     return notifier_with_return_list_notify(&postcopy_notifier_list,
83                                             &pnd);
84 }
85 
86 /*
87  * NOTE: this routine is not thread safe, we can't call it concurrently. But it
88  * should be good enough for migration's purposes.
89  */
90 void postcopy_thread_create(MigrationIncomingState *mis,
91                             QemuThread *thread, const char *name,
92                             void *(*fn)(void *), int joinable)
93 {
94     qemu_sem_init(&mis->thread_sync_sem, 0);
95     qemu_thread_create(thread, name, fn, mis, joinable);
96     qemu_sem_wait(&mis->thread_sync_sem);
97     qemu_sem_destroy(&mis->thread_sync_sem);
98 }
99 
100 /* Postcopy needs to detect accesses to pages that haven't yet been copied
101  * across, and efficiently map new pages in, the techniques for doing this
102  * are target OS specific.
103  */
104 #if defined(__linux__)
105 
106 #include <poll.h>
107 #include <sys/ioctl.h>
108 #include <sys/syscall.h>
109 #include <asm/types.h> /* for __u64 */
110 #endif
111 
112 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
113 #include <sys/eventfd.h>
114 #include <linux/userfaultfd.h>
115 
116 typedef struct PostcopyBlocktimeContext {
117     /* time when page fault initiated per vCPU */
118     uint32_t *page_fault_vcpu_time;
119     /* page address per vCPU */
120     uintptr_t *vcpu_addr;
121     uint32_t total_blocktime;
122     /* blocktime per vCPU */
123     uint32_t *vcpu_blocktime;
124     /* point in time when last page fault was initiated */
125     uint32_t last_begin;
126     /* number of vCPU are suspended */
127     int smp_cpus_down;
128     uint64_t start_time;
129 
130     /*
131      * Handler for exit event, necessary for
132      * releasing whole blocktime_ctx
133      */
134     Notifier exit_notifier;
135 } PostcopyBlocktimeContext;
136 
137 static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx)
138 {
139     g_free(ctx->page_fault_vcpu_time);
140     g_free(ctx->vcpu_addr);
141     g_free(ctx->vcpu_blocktime);
142     g_free(ctx);
143 }
144 
145 static void migration_exit_cb(Notifier *n, void *data)
146 {
147     PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext,
148                                                  exit_notifier);
149     destroy_blocktime_context(ctx);
150 }
151 
152 static struct PostcopyBlocktimeContext *blocktime_context_new(void)
153 {
154     MachineState *ms = MACHINE(qdev_get_machine());
155     unsigned int smp_cpus = ms->smp.cpus;
156     PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1);
157     ctx->page_fault_vcpu_time = g_new0(uint32_t, smp_cpus);
158     ctx->vcpu_addr = g_new0(uintptr_t, smp_cpus);
159     ctx->vcpu_blocktime = g_new0(uint32_t, smp_cpus);
160 
161     ctx->exit_notifier.notify = migration_exit_cb;
162     ctx->start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
163     qemu_add_exit_notifier(&ctx->exit_notifier);
164     return ctx;
165 }
166 
167 static uint32List *get_vcpu_blocktime_list(PostcopyBlocktimeContext *ctx)
168 {
169     MachineState *ms = MACHINE(qdev_get_machine());
170     uint32List *list = NULL;
171     int i;
172 
173     for (i = ms->smp.cpus - 1; i >= 0; i--) {
174         QAPI_LIST_PREPEND(list, ctx->vcpu_blocktime[i]);
175     }
176 
177     return list;
178 }
179 
180 /*
181  * This function just populates MigrationInfo from postcopy's
182  * blocktime context. It will not populate MigrationInfo,
183  * unless postcopy-blocktime capability was set.
184  *
185  * @info: pointer to MigrationInfo to populate
186  */
187 void fill_destination_postcopy_migration_info(MigrationInfo *info)
188 {
189     MigrationIncomingState *mis = migration_incoming_get_current();
190     PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
191 
192     if (!bc) {
193         return;
194     }
195 
196     info->has_postcopy_blocktime = true;
197     info->postcopy_blocktime = bc->total_blocktime;
198     info->has_postcopy_vcpu_blocktime = true;
199     info->postcopy_vcpu_blocktime = get_vcpu_blocktime_list(bc);
200 }
201 
202 static uint32_t get_postcopy_total_blocktime(void)
203 {
204     MigrationIncomingState *mis = migration_incoming_get_current();
205     PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
206 
207     if (!bc) {
208         return 0;
209     }
210 
211     return bc->total_blocktime;
212 }
213 
214 /**
215  * receive_ufd_features: check userfault fd features, to request only supported
216  * features in the future.
217  *
218  * Returns: true on success
219  *
220  * __NR_userfaultfd - should be checked before
221  *  @features: out parameter will contain uffdio_api.features provided by kernel
222  *              in case of success
223  */
224 static bool receive_ufd_features(uint64_t *features)
225 {
226     struct uffdio_api api_struct = {0};
227     int ufd;
228     bool ret = true;
229 
230     ufd = uffd_open(O_CLOEXEC);
231     if (ufd == -1) {
232         error_report("%s: uffd_open() failed: %s", __func__, strerror(errno));
233         return false;
234     }
235 
236     /* ask features */
237     api_struct.api = UFFD_API;
238     api_struct.features = 0;
239     if (ioctl(ufd, UFFDIO_API, &api_struct)) {
240         error_report("%s: UFFDIO_API failed: %s", __func__,
241                      strerror(errno));
242         ret = false;
243         goto release_ufd;
244     }
245 
246     *features = api_struct.features;
247 
248 release_ufd:
249     close(ufd);
250     return ret;
251 }
252 
253 /**
254  * request_ufd_features: this function should be called only once on a newly
255  * opened ufd, subsequent calls will lead to error.
256  *
257  * Returns: true on success
258  *
259  * @ufd: fd obtained from userfaultfd syscall
260  * @features: bit mask see UFFD_API_FEATURES
261  */
262 static bool request_ufd_features(int ufd, uint64_t features)
263 {
264     struct uffdio_api api_struct = {0};
265     uint64_t ioctl_mask;
266 
267     api_struct.api = UFFD_API;
268     api_struct.features = features;
269     if (ioctl(ufd, UFFDIO_API, &api_struct)) {
270         error_report("%s failed: UFFDIO_API failed: %s", __func__,
271                      strerror(errno));
272         return false;
273     }
274 
275     ioctl_mask = (__u64)1 << _UFFDIO_REGISTER |
276                  (__u64)1 << _UFFDIO_UNREGISTER;
277     if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) {
278         error_report("Missing userfault features: %" PRIx64,
279                      (uint64_t)(~api_struct.ioctls & ioctl_mask));
280         return false;
281     }
282 
283     return true;
284 }
285 
286 static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis,
287                                 Error **errp)
288 {
289     uint64_t asked_features = 0;
290     static uint64_t supported_features;
291 
292     ERRP_GUARD();
293     /*
294      * it's not possible to
295      * request UFFD_API twice per one fd
296      * userfault fd features is persistent
297      */
298     if (!supported_features) {
299         if (!receive_ufd_features(&supported_features)) {
300             error_setg(errp, "Userfault feature detection failed");
301             return false;
302         }
303     }
304 
305 #ifdef UFFD_FEATURE_THREAD_ID
306     if (UFFD_FEATURE_THREAD_ID & supported_features) {
307         asked_features |= UFFD_FEATURE_THREAD_ID;
308         if (migrate_postcopy_blocktime()) {
309             if (!mis->blocktime_ctx) {
310                 mis->blocktime_ctx = blocktime_context_new();
311             }
312         }
313     }
314 #endif
315 
316     /*
317      * request features, even if asked_features is 0, due to
318      * kernel expects UFFD_API before UFFDIO_REGISTER, per
319      * userfault file descriptor
320      */
321     if (!request_ufd_features(ufd, asked_features)) {
322         error_setg(errp, "Failed features %" PRIu64, asked_features);
323         return false;
324     }
325 
326     if (qemu_real_host_page_size() != ram_pagesize_summary()) {
327         bool have_hp = false;
328         /* We've got a huge page */
329 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS
330         have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS;
331 #endif
332         if (!have_hp) {
333             error_setg(errp,
334                        "Userfault on this host does not support huge pages");
335             return false;
336         }
337     }
338     return true;
339 }
340 
341 /* Callback from postcopy_ram_supported_by_host block iterator.
342  */
343 static int test_ramblock_postcopiable(RAMBlock *rb, Error **errp)
344 {
345     const char *block_name = qemu_ram_get_idstr(rb);
346     ram_addr_t length = qemu_ram_get_used_length(rb);
347     size_t pagesize = qemu_ram_pagesize(rb);
348     QemuFsType fs;
349 
350     if (length % pagesize) {
351         error_setg(errp,
352                    "Postcopy requires RAM blocks to be a page size multiple,"
353                    " block %s is 0x" RAM_ADDR_FMT " bytes with a "
354                    "page size of 0x%zx", block_name, length, pagesize);
355         return 1;
356     }
357 
358     if (rb->fd >= 0) {
359         fs = qemu_fd_getfs(rb->fd);
360         if (fs != QEMU_FS_TYPE_TMPFS && fs != QEMU_FS_TYPE_HUGETLBFS) {
361             error_setg(errp,
362                        "Host backend files need to be TMPFS or HUGETLBFS only");
363             return 1;
364         }
365     }
366 
367     return 0;
368 }
369 
370 /*
371  * Note: This has the side effect of munlock'ing all of RAM, that's
372  * normally fine since if the postcopy succeeds it gets turned back on at the
373  * end.
374  */
375 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis, Error **errp)
376 {
377     long pagesize = qemu_real_host_page_size();
378     int ufd = -1;
379     bool ret = false; /* Error unless we change it */
380     void *testarea = NULL;
381     struct uffdio_register reg_struct;
382     struct uffdio_range range_struct;
383     uint64_t feature_mask;
384     RAMBlock *block;
385 
386     ERRP_GUARD();
387     if (qemu_target_page_size() > pagesize) {
388         error_setg(errp, "Target page size bigger than host page size");
389         goto out;
390     }
391 
392     ufd = uffd_open(O_CLOEXEC);
393     if (ufd == -1) {
394         error_setg(errp, "Userfaultfd not available: %s", strerror(errno));
395         goto out;
396     }
397 
398     /* Give devices a chance to object */
399     if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, errp)) {
400         goto out;
401     }
402 
403     /* Version and features check */
404     if (!ufd_check_and_apply(ufd, mis, errp)) {
405         goto out;
406     }
407 
408     /*
409      * We don't support postcopy with some type of ramblocks.
410      *
411      * NOTE: we explicitly ignored migrate_ram_is_ignored() instead we checked
412      * all possible ramblocks.  This is because this function can be called
413      * when creating the migration object, during the phase RAM_MIGRATABLE
414      * is not even properly set for all the ramblocks.
415      *
416      * A side effect of this is we'll also check against RAM_SHARED
417      * ramblocks even if migrate_ignore_shared() is set (in which case
418      * we'll never migrate RAM_SHARED at all), but normally this shouldn't
419      * affect in reality, or we can revisit.
420      */
421     RAMBLOCK_FOREACH(block) {
422         if (test_ramblock_postcopiable(block, errp)) {
423             goto out;
424         }
425     }
426 
427     /*
428      * userfault and mlock don't go together; we'll put it back later if
429      * it was enabled.
430      */
431     if (munlockall()) {
432         error_setg(errp, "munlockall() failed: %s", strerror(errno));
433         goto out;
434     }
435 
436     /*
437      *  We need to check that the ops we need are supported on anon memory
438      *  To do that we need to register a chunk and see the flags that
439      *  are returned.
440      */
441     testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE |
442                                     MAP_ANONYMOUS, -1, 0);
443     if (testarea == MAP_FAILED) {
444         error_setg(errp, "Failed to map test area: %s", strerror(errno));
445         goto out;
446     }
447     g_assert(QEMU_PTR_IS_ALIGNED(testarea, pagesize));
448 
449     reg_struct.range.start = (uintptr_t)testarea;
450     reg_struct.range.len = pagesize;
451     reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
452 
453     if (ioctl(ufd, UFFDIO_REGISTER, &reg_struct)) {
454         error_setg(errp, "UFFDIO_REGISTER failed: %s", strerror(errno));
455         goto out;
456     }
457 
458     range_struct.start = (uintptr_t)testarea;
459     range_struct.len = pagesize;
460     if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) {
461         error_setg(errp, "UFFDIO_UNREGISTER failed: %s", strerror(errno));
462         goto out;
463     }
464 
465     feature_mask = (__u64)1 << _UFFDIO_WAKE |
466                    (__u64)1 << _UFFDIO_COPY |
467                    (__u64)1 << _UFFDIO_ZEROPAGE;
468     if ((reg_struct.ioctls & feature_mask) != feature_mask) {
469         error_setg(errp, "Missing userfault map features: %" PRIx64,
470                    (uint64_t)(~reg_struct.ioctls & feature_mask));
471         goto out;
472     }
473 
474     /* Success! */
475     ret = true;
476 out:
477     if (testarea) {
478         munmap(testarea, pagesize);
479     }
480     if (ufd != -1) {
481         close(ufd);
482     }
483     return ret;
484 }
485 
486 /*
487  * Setup an area of RAM so that it *can* be used for postcopy later; this
488  * must be done right at the start prior to pre-copy.
489  * opaque should be the MIS.
490  */
491 static int init_range(RAMBlock *rb, void *opaque)
492 {
493     const char *block_name = qemu_ram_get_idstr(rb);
494     void *host_addr = qemu_ram_get_host_addr(rb);
495     ram_addr_t offset = qemu_ram_get_offset(rb);
496     ram_addr_t length = qemu_ram_get_used_length(rb);
497     trace_postcopy_init_range(block_name, host_addr, offset, length);
498 
499     /*
500      * Save the used_length before running the guest. In case we have to
501      * resize RAM blocks when syncing RAM block sizes from the source during
502      * precopy, we'll update it manually via the ram block notifier.
503      */
504     rb->postcopy_length = length;
505 
506     /*
507      * We need the whole of RAM to be truly empty for postcopy, so things
508      * like ROMs and any data tables built during init must be zero'd
509      * - we're going to get the copy from the source anyway.
510      * (Precopy will just overwrite this data, so doesn't need the discard)
511      */
512     if (ram_discard_range(block_name, 0, length)) {
513         return -1;
514     }
515 
516     return 0;
517 }
518 
519 /*
520  * At the end of migration, undo the effects of init_range
521  * opaque should be the MIS.
522  */
523 static int cleanup_range(RAMBlock *rb, void *opaque)
524 {
525     const char *block_name = qemu_ram_get_idstr(rb);
526     void *host_addr = qemu_ram_get_host_addr(rb);
527     ram_addr_t offset = qemu_ram_get_offset(rb);
528     ram_addr_t length = rb->postcopy_length;
529     MigrationIncomingState *mis = opaque;
530     struct uffdio_range range_struct;
531     trace_postcopy_cleanup_range(block_name, host_addr, offset, length);
532 
533     /*
534      * We turned off hugepage for the precopy stage with postcopy enabled
535      * we can turn it back on now.
536      */
537     qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE);
538 
539     /*
540      * We can also turn off userfault now since we should have all the
541      * pages.   It can be useful to leave it on to debug postcopy
542      * if you're not sure it's always getting every page.
543      */
544     range_struct.start = (uintptr_t)host_addr;
545     range_struct.len = length;
546 
547     if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) {
548         error_report("%s: userfault unregister %s", __func__, strerror(errno));
549 
550         return -1;
551     }
552 
553     return 0;
554 }
555 
556 /*
557  * Initialise postcopy-ram, setting the RAM to a state where we can go into
558  * postcopy later; must be called prior to any precopy.
559  * called from arch_init's similarly named ram_postcopy_incoming_init
560  */
561 int postcopy_ram_incoming_init(MigrationIncomingState *mis)
562 {
563     if (foreach_not_ignored_block(init_range, NULL)) {
564         return -1;
565     }
566 
567     return 0;
568 }
569 
570 static void postcopy_temp_pages_cleanup(MigrationIncomingState *mis)
571 {
572     int i;
573 
574     if (mis->postcopy_tmp_pages) {
575         for (i = 0; i < mis->postcopy_channels; i++) {
576             if (mis->postcopy_tmp_pages[i].tmp_huge_page) {
577                 munmap(mis->postcopy_tmp_pages[i].tmp_huge_page,
578                        mis->largest_page_size);
579                 mis->postcopy_tmp_pages[i].tmp_huge_page = NULL;
580             }
581         }
582         g_free(mis->postcopy_tmp_pages);
583         mis->postcopy_tmp_pages = NULL;
584     }
585 
586     if (mis->postcopy_tmp_zero_page) {
587         munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size);
588         mis->postcopy_tmp_zero_page = NULL;
589     }
590 }
591 
592 /*
593  * At the end of a migration where postcopy_ram_incoming_init was called.
594  */
595 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
596 {
597     trace_postcopy_ram_incoming_cleanup_entry();
598 
599     if (mis->preempt_thread_status == PREEMPT_THREAD_CREATED) {
600         /* Notify the fast load thread to quit */
601         mis->preempt_thread_status = PREEMPT_THREAD_QUIT;
602         if (mis->postcopy_qemufile_dst) {
603             qemu_file_shutdown(mis->postcopy_qemufile_dst);
604         }
605         qemu_thread_join(&mis->postcopy_prio_thread);
606         mis->preempt_thread_status = PREEMPT_THREAD_NONE;
607     }
608 
609     if (mis->have_fault_thread) {
610         Error *local_err = NULL;
611 
612         /* Let the fault thread quit */
613         qatomic_set(&mis->fault_thread_quit, 1);
614         postcopy_fault_thread_notify(mis);
615         trace_postcopy_ram_incoming_cleanup_join();
616         qemu_thread_join(&mis->fault_thread);
617 
618         if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) {
619             error_report_err(local_err);
620             return -1;
621         }
622 
623         if (foreach_not_ignored_block(cleanup_range, mis)) {
624             return -1;
625         }
626 
627         trace_postcopy_ram_incoming_cleanup_closeuf();
628         close(mis->userfault_fd);
629         close(mis->userfault_event_fd);
630         mis->have_fault_thread = false;
631     }
632 
633     if (enable_mlock) {
634         if (os_mlock() < 0) {
635             error_report("mlock: %s", strerror(errno));
636             /*
637              * It doesn't feel right to fail at this point, we have a valid
638              * VM state.
639              */
640         }
641     }
642 
643     postcopy_temp_pages_cleanup(mis);
644 
645     trace_postcopy_ram_incoming_cleanup_blocktime(
646             get_postcopy_total_blocktime());
647 
648     trace_postcopy_ram_incoming_cleanup_exit();
649     return 0;
650 }
651 
652 /*
653  * Disable huge pages on an area
654  */
655 static int nhp_range(RAMBlock *rb, void *opaque)
656 {
657     const char *block_name = qemu_ram_get_idstr(rb);
658     void *host_addr = qemu_ram_get_host_addr(rb);
659     ram_addr_t offset = qemu_ram_get_offset(rb);
660     ram_addr_t length = rb->postcopy_length;
661     trace_postcopy_nhp_range(block_name, host_addr, offset, length);
662 
663     /*
664      * Before we do discards we need to ensure those discards really
665      * do delete areas of the page, even if THP thinks a hugepage would
666      * be a good idea, so force hugepages off.
667      */
668     qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE);
669 
670     return 0;
671 }
672 
673 /*
674  * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
675  * however leaving it until after precopy means that most of the precopy
676  * data is still THPd
677  */
678 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
679 {
680     if (foreach_not_ignored_block(nhp_range, mis)) {
681         return -1;
682     }
683 
684     postcopy_state_set(POSTCOPY_INCOMING_DISCARD);
685 
686     return 0;
687 }
688 
689 /*
690  * Mark the given area of RAM as requiring notification to unwritten areas
691  * Used as a  callback on foreach_not_ignored_block.
692  *   host_addr: Base of area to mark
693  *   offset: Offset in the whole ram arena
694  *   length: Length of the section
695  *   opaque: MigrationIncomingState pointer
696  * Returns 0 on success
697  */
698 static int ram_block_enable_notify(RAMBlock *rb, void *opaque)
699 {
700     MigrationIncomingState *mis = opaque;
701     struct uffdio_register reg_struct;
702 
703     reg_struct.range.start = (uintptr_t)qemu_ram_get_host_addr(rb);
704     reg_struct.range.len = rb->postcopy_length;
705     reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
706 
707     /* Now tell our userfault_fd that it's responsible for this area */
708     if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, &reg_struct)) {
709         error_report("%s userfault register: %s", __func__, strerror(errno));
710         return -1;
711     }
712     if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) {
713         error_report("%s userfault: Region doesn't support COPY", __func__);
714         return -1;
715     }
716     if (reg_struct.ioctls & ((__u64)1 << _UFFDIO_ZEROPAGE)) {
717         qemu_ram_set_uf_zeroable(rb);
718     }
719 
720     return 0;
721 }
722 
723 int postcopy_wake_shared(struct PostCopyFD *pcfd,
724                          uint64_t client_addr,
725                          RAMBlock *rb)
726 {
727     size_t pagesize = qemu_ram_pagesize(rb);
728     struct uffdio_range range;
729     int ret;
730     trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb));
731     range.start = ROUND_DOWN(client_addr, pagesize);
732     range.len = pagesize;
733     ret = ioctl(pcfd->fd, UFFDIO_WAKE, &range);
734     if (ret) {
735         error_report("%s: Failed to wake: %zx in %s (%s)",
736                      __func__, (size_t)client_addr, qemu_ram_get_idstr(rb),
737                      strerror(errno));
738     }
739     return ret;
740 }
741 
742 static int postcopy_request_page(MigrationIncomingState *mis, RAMBlock *rb,
743                                  ram_addr_t start, uint64_t haddr)
744 {
745     void *aligned = (void *)(uintptr_t)ROUND_DOWN(haddr, qemu_ram_pagesize(rb));
746 
747     /*
748      * Discarded pages (via RamDiscardManager) are never migrated. On unlikely
749      * access, place a zeropage, which will also set the relevant bits in the
750      * recv_bitmap accordingly, so we won't try placing a zeropage twice.
751      *
752      * Checking a single bit is sufficient to handle pagesize > TPS as either
753      * all relevant bits are set or not.
754      */
755     assert(QEMU_IS_ALIGNED(start, qemu_ram_pagesize(rb)));
756     if (ramblock_page_is_discarded(rb, start)) {
757         bool received = ramblock_recv_bitmap_test_byte_offset(rb, start);
758 
759         return received ? 0 : postcopy_place_page_zero(mis, aligned, rb);
760     }
761 
762     return migrate_send_rp_req_pages(mis, rb, start, haddr);
763 }
764 
765 /*
766  * Callback from shared fault handlers to ask for a page,
767  * the page must be specified by a RAMBlock and an offset in that rb
768  * Note: Only for use by shared fault handlers (in fault thread)
769  */
770 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
771                                  uint64_t client_addr, uint64_t rb_offset)
772 {
773     uint64_t aligned_rbo = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb));
774     MigrationIncomingState *mis = migration_incoming_get_current();
775 
776     trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb),
777                                        rb_offset);
778     if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) {
779         trace_postcopy_request_shared_page_present(pcfd->idstr,
780                                         qemu_ram_get_idstr(rb), rb_offset);
781         return postcopy_wake_shared(pcfd, client_addr, rb);
782     }
783     postcopy_request_page(mis, rb, aligned_rbo, client_addr);
784     return 0;
785 }
786 
787 static int get_mem_fault_cpu_index(uint32_t pid)
788 {
789     CPUState *cpu_iter;
790 
791     CPU_FOREACH(cpu_iter) {
792         if (cpu_iter->thread_id == pid) {
793             trace_get_mem_fault_cpu_index(cpu_iter->cpu_index, pid);
794             return cpu_iter->cpu_index;
795         }
796     }
797     trace_get_mem_fault_cpu_index(-1, pid);
798     return -1;
799 }
800 
801 static uint32_t get_low_time_offset(PostcopyBlocktimeContext *dc)
802 {
803     int64_t start_time_offset = qemu_clock_get_ms(QEMU_CLOCK_REALTIME) -
804                                     dc->start_time;
805     return start_time_offset < 1 ? 1 : start_time_offset & UINT32_MAX;
806 }
807 
808 /*
809  * This function is being called when pagefault occurs. It
810  * tracks down vCPU blocking time.
811  *
812  * @addr: faulted host virtual address
813  * @ptid: faulted process thread id
814  * @rb: ramblock appropriate to addr
815  */
816 static void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid,
817                                           RAMBlock *rb)
818 {
819     int cpu, already_received;
820     MigrationIncomingState *mis = migration_incoming_get_current();
821     PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
822     uint32_t low_time_offset;
823 
824     if (!dc || ptid == 0) {
825         return;
826     }
827     cpu = get_mem_fault_cpu_index(ptid);
828     if (cpu < 0) {
829         return;
830     }
831 
832     low_time_offset = get_low_time_offset(dc);
833     if (dc->vcpu_addr[cpu] == 0) {
834         qatomic_inc(&dc->smp_cpus_down);
835     }
836 
837     qatomic_xchg(&dc->last_begin, low_time_offset);
838     qatomic_xchg(&dc->page_fault_vcpu_time[cpu], low_time_offset);
839     qatomic_xchg(&dc->vcpu_addr[cpu], addr);
840 
841     /*
842      * check it here, not at the beginning of the function,
843      * due to, check could occur early than bitmap_set in
844      * qemu_ufd_copy_ioctl
845      */
846     already_received = ramblock_recv_bitmap_test(rb, (void *)addr);
847     if (already_received) {
848         qatomic_xchg(&dc->vcpu_addr[cpu], 0);
849         qatomic_xchg(&dc->page_fault_vcpu_time[cpu], 0);
850         qatomic_dec(&dc->smp_cpus_down);
851     }
852     trace_mark_postcopy_blocktime_begin(addr, dc, dc->page_fault_vcpu_time[cpu],
853                                         cpu, already_received);
854 }
855 
856 /*
857  *  This function just provide calculated blocktime per cpu and trace it.
858  *  Total blocktime is calculated in mark_postcopy_blocktime_end.
859  *
860  *
861  * Assume we have 3 CPU
862  *
863  *      S1        E1           S1               E1
864  * -----***********------------xxx***************------------------------> CPU1
865  *
866  *             S2                E2
867  * ------------****************xxx---------------------------------------> CPU2
868  *
869  *                         S3            E3
870  * ------------------------****xxx********-------------------------------> CPU3
871  *
872  * We have sequence S1,S2,E1,S3,S1,E2,E3,E1
873  * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3
874  * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 -
875  *            it's a part of total blocktime.
876  * S1 - here is last_begin
877  * Legend of the picture is following:
878  *              * - means blocktime per vCPU
879  *              x - means overlapped blocktime (total blocktime)
880  *
881  * @addr: host virtual address
882  */
883 static void mark_postcopy_blocktime_end(uintptr_t addr)
884 {
885     MigrationIncomingState *mis = migration_incoming_get_current();
886     PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
887     MachineState *ms = MACHINE(qdev_get_machine());
888     unsigned int smp_cpus = ms->smp.cpus;
889     int i, affected_cpu = 0;
890     bool vcpu_total_blocktime = false;
891     uint32_t read_vcpu_time, low_time_offset;
892 
893     if (!dc) {
894         return;
895     }
896 
897     low_time_offset = get_low_time_offset(dc);
898     /* lookup cpu, to clear it,
899      * that algorithm looks straightforward, but it's not
900      * optimal, more optimal algorithm is keeping tree or hash
901      * where key is address value is a list of  */
902     for (i = 0; i < smp_cpus; i++) {
903         uint32_t vcpu_blocktime = 0;
904 
905         read_vcpu_time = qatomic_fetch_add(&dc->page_fault_vcpu_time[i], 0);
906         if (qatomic_fetch_add(&dc->vcpu_addr[i], 0) != addr ||
907             read_vcpu_time == 0) {
908             continue;
909         }
910         qatomic_xchg(&dc->vcpu_addr[i], 0);
911         vcpu_blocktime = low_time_offset - read_vcpu_time;
912         affected_cpu += 1;
913         /* we need to know is that mark_postcopy_end was due to
914          * faulted page, another possible case it's prefetched
915          * page and in that case we shouldn't be here */
916         if (!vcpu_total_blocktime &&
917             qatomic_fetch_add(&dc->smp_cpus_down, 0) == smp_cpus) {
918             vcpu_total_blocktime = true;
919         }
920         /* continue cycle, due to one page could affect several vCPUs */
921         dc->vcpu_blocktime[i] += vcpu_blocktime;
922     }
923 
924     qatomic_sub(&dc->smp_cpus_down, affected_cpu);
925     if (vcpu_total_blocktime) {
926         dc->total_blocktime += low_time_offset - qatomic_fetch_add(
927                 &dc->last_begin, 0);
928     }
929     trace_mark_postcopy_blocktime_end(addr, dc, dc->total_blocktime,
930                                       affected_cpu);
931 }
932 
933 static void postcopy_pause_fault_thread(MigrationIncomingState *mis)
934 {
935     trace_postcopy_pause_fault_thread();
936     qemu_sem_wait(&mis->postcopy_pause_sem_fault);
937     trace_postcopy_pause_fault_thread_continued();
938 }
939 
940 /*
941  * Handle faults detected by the USERFAULT markings
942  */
943 static void *postcopy_ram_fault_thread(void *opaque)
944 {
945     MigrationIncomingState *mis = opaque;
946     struct uffd_msg msg;
947     int ret;
948     size_t index;
949     RAMBlock *rb = NULL;
950 
951     trace_postcopy_ram_fault_thread_entry();
952     rcu_register_thread();
953     mis->last_rb = NULL; /* last RAMBlock we sent part of */
954     qemu_sem_post(&mis->thread_sync_sem);
955 
956     struct pollfd *pfd;
957     size_t pfd_len = 2 + mis->postcopy_remote_fds->len;
958 
959     pfd = g_new0(struct pollfd, pfd_len);
960 
961     pfd[0].fd = mis->userfault_fd;
962     pfd[0].events = POLLIN;
963     pfd[1].fd = mis->userfault_event_fd;
964     pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */
965     trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd);
966     for (index = 0; index < mis->postcopy_remote_fds->len; index++) {
967         struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds,
968                                                  struct PostCopyFD, index);
969         pfd[2 + index].fd = pcfd->fd;
970         pfd[2 + index].events = POLLIN;
971         trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr,
972                                                   pcfd->fd);
973     }
974 
975     while (true) {
976         ram_addr_t rb_offset;
977         int poll_result;
978 
979         /*
980          * We're mainly waiting for the kernel to give us a faulting HVA,
981          * however we can be told to quit via userfault_quit_fd which is
982          * an eventfd
983          */
984 
985         poll_result = poll(pfd, pfd_len, -1 /* Wait forever */);
986         if (poll_result == -1) {
987             error_report("%s: userfault poll: %s", __func__, strerror(errno));
988             break;
989         }
990 
991         if (!mis->to_src_file) {
992             /*
993              * Possibly someone tells us that the return path is
994              * broken already using the event. We should hold until
995              * the channel is rebuilt.
996              */
997             postcopy_pause_fault_thread(mis);
998         }
999 
1000         if (pfd[1].revents) {
1001             uint64_t tmp64 = 0;
1002 
1003             /* Consume the signal */
1004             if (read(mis->userfault_event_fd, &tmp64, 8) != 8) {
1005                 /* Nothing obviously nicer than posting this error. */
1006                 error_report("%s: read() failed", __func__);
1007             }
1008 
1009             if (qatomic_read(&mis->fault_thread_quit)) {
1010                 trace_postcopy_ram_fault_thread_quit();
1011                 break;
1012             }
1013         }
1014 
1015         if (pfd[0].revents) {
1016             poll_result--;
1017             ret = read(mis->userfault_fd, &msg, sizeof(msg));
1018             if (ret != sizeof(msg)) {
1019                 if (errno == EAGAIN) {
1020                     /*
1021                      * if a wake up happens on the other thread just after
1022                      * the poll, there is nothing to read.
1023                      */
1024                     continue;
1025                 }
1026                 if (ret < 0) {
1027                     error_report("%s: Failed to read full userfault "
1028                                  "message: %s",
1029                                  __func__, strerror(errno));
1030                     break;
1031                 } else {
1032                     error_report("%s: Read %d bytes from userfaultfd "
1033                                  "expected %zd",
1034                                  __func__, ret, sizeof(msg));
1035                     break; /* Lost alignment, don't know what we'd read next */
1036                 }
1037             }
1038             if (msg.event != UFFD_EVENT_PAGEFAULT) {
1039                 error_report("%s: Read unexpected event %ud from userfaultfd",
1040                              __func__, msg.event);
1041                 continue; /* It's not a page fault, shouldn't happen */
1042             }
1043 
1044             rb = qemu_ram_block_from_host(
1045                      (void *)(uintptr_t)msg.arg.pagefault.address,
1046                      true, &rb_offset);
1047             if (!rb) {
1048                 error_report("postcopy_ram_fault_thread: Fault outside guest: %"
1049                              PRIx64, (uint64_t)msg.arg.pagefault.address);
1050                 break;
1051             }
1052 
1053             rb_offset = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb));
1054             trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address,
1055                                                 qemu_ram_get_idstr(rb),
1056                                                 rb_offset,
1057                                                 msg.arg.pagefault.feat.ptid);
1058             mark_postcopy_blocktime_begin(
1059                     (uintptr_t)(msg.arg.pagefault.address),
1060                                 msg.arg.pagefault.feat.ptid, rb);
1061 
1062 retry:
1063             /*
1064              * Send the request to the source - we want to request one
1065              * of our host page sizes (which is >= TPS)
1066              */
1067             ret = postcopy_request_page(mis, rb, rb_offset,
1068                                         msg.arg.pagefault.address);
1069             if (ret) {
1070                 /* May be network failure, try to wait for recovery */
1071                 postcopy_pause_fault_thread(mis);
1072                 goto retry;
1073             }
1074         }
1075 
1076         /* Now handle any requests from external processes on shared memory */
1077         /* TODO: May need to handle devices deregistering during postcopy */
1078         for (index = 2; index < pfd_len && poll_result; index++) {
1079             if (pfd[index].revents) {
1080                 struct PostCopyFD *pcfd =
1081                     &g_array_index(mis->postcopy_remote_fds,
1082                                    struct PostCopyFD, index - 2);
1083 
1084                 poll_result--;
1085                 if (pfd[index].revents & POLLERR) {
1086                     error_report("%s: POLLERR on poll %zd fd=%d",
1087                                  __func__, index, pcfd->fd);
1088                     pfd[index].events = 0;
1089                     continue;
1090                 }
1091 
1092                 ret = read(pcfd->fd, &msg, sizeof(msg));
1093                 if (ret != sizeof(msg)) {
1094                     if (errno == EAGAIN) {
1095                         /*
1096                          * if a wake up happens on the other thread just after
1097                          * the poll, there is nothing to read.
1098                          */
1099                         continue;
1100                     }
1101                     if (ret < 0) {
1102                         error_report("%s: Failed to read full userfault "
1103                                      "message: %s (shared) revents=%d",
1104                                      __func__, strerror(errno),
1105                                      pfd[index].revents);
1106                         /*TODO: Could just disable this sharer */
1107                         break;
1108                     } else {
1109                         error_report("%s: Read %d bytes from userfaultfd "
1110                                      "expected %zd (shared)",
1111                                      __func__, ret, sizeof(msg));
1112                         /*TODO: Could just disable this sharer */
1113                         break; /*Lost alignment,don't know what we'd read next*/
1114                     }
1115                 }
1116                 if (msg.event != UFFD_EVENT_PAGEFAULT) {
1117                     error_report("%s: Read unexpected event %ud "
1118                                  "from userfaultfd (shared)",
1119                                  __func__, msg.event);
1120                     continue; /* It's not a page fault, shouldn't happen */
1121                 }
1122                 /* Call the device handler registered with us */
1123                 ret = pcfd->handler(pcfd, &msg);
1124                 if (ret) {
1125                     error_report("%s: Failed to resolve shared fault on %zd/%s",
1126                                  __func__, index, pcfd->idstr);
1127                     /* TODO: Fail? Disable this sharer? */
1128                 }
1129             }
1130         }
1131     }
1132     rcu_unregister_thread();
1133     trace_postcopy_ram_fault_thread_exit();
1134     g_free(pfd);
1135     return NULL;
1136 }
1137 
1138 static int postcopy_temp_pages_setup(MigrationIncomingState *mis)
1139 {
1140     PostcopyTmpPage *tmp_page;
1141     int err, i, channels;
1142     void *temp_page;
1143 
1144     if (migrate_postcopy_preempt()) {
1145         /* If preemption enabled, need extra channel for urgent requests */
1146         mis->postcopy_channels = RAM_CHANNEL_MAX;
1147     } else {
1148         /* Both precopy/postcopy on the same channel */
1149         mis->postcopy_channels = 1;
1150     }
1151 
1152     channels = mis->postcopy_channels;
1153     mis->postcopy_tmp_pages = g_malloc0_n(sizeof(PostcopyTmpPage), channels);
1154 
1155     for (i = 0; i < channels; i++) {
1156         tmp_page = &mis->postcopy_tmp_pages[i];
1157         temp_page = mmap(NULL, mis->largest_page_size, PROT_READ | PROT_WRITE,
1158                          MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1159         if (temp_page == MAP_FAILED) {
1160             err = errno;
1161             error_report("%s: Failed to map postcopy_tmp_pages[%d]: %s",
1162                          __func__, i, strerror(err));
1163             /* Clean up will be done later */
1164             return -err;
1165         }
1166         tmp_page->tmp_huge_page = temp_page;
1167         /* Initialize default states for each tmp page */
1168         postcopy_temp_page_reset(tmp_page);
1169     }
1170 
1171     /*
1172      * Map large zero page when kernel can't use UFFDIO_ZEROPAGE for hugepages
1173      */
1174     mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size,
1175                                        PROT_READ | PROT_WRITE,
1176                                        MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1177     if (mis->postcopy_tmp_zero_page == MAP_FAILED) {
1178         err = errno;
1179         mis->postcopy_tmp_zero_page = NULL;
1180         error_report("%s: Failed to map large zero page %s",
1181                      __func__, strerror(err));
1182         return -err;
1183     }
1184 
1185     memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size);
1186 
1187     return 0;
1188 }
1189 
1190 int postcopy_ram_incoming_setup(MigrationIncomingState *mis)
1191 {
1192     Error *local_err = NULL;
1193 
1194     /* Open the fd for the kernel to give us userfaults */
1195     mis->userfault_fd = uffd_open(O_CLOEXEC | O_NONBLOCK);
1196     if (mis->userfault_fd == -1) {
1197         error_report("%s: Failed to open userfault fd: %s", __func__,
1198                      strerror(errno));
1199         return -1;
1200     }
1201 
1202     /*
1203      * Although the host check already tested the API, we need to
1204      * do the check again as an ABI handshake on the new fd.
1205      */
1206     if (!ufd_check_and_apply(mis->userfault_fd, mis, &local_err)) {
1207         error_report_err(local_err);
1208         return -1;
1209     }
1210 
1211     /* Now an eventfd we use to tell the fault-thread to quit */
1212     mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC);
1213     if (mis->userfault_event_fd == -1) {
1214         error_report("%s: Opening userfault_event_fd: %s", __func__,
1215                      strerror(errno));
1216         close(mis->userfault_fd);
1217         return -1;
1218     }
1219 
1220     postcopy_thread_create(mis, &mis->fault_thread, "fault-default",
1221                            postcopy_ram_fault_thread, QEMU_THREAD_JOINABLE);
1222     mis->have_fault_thread = true;
1223 
1224     /* Mark so that we get notified of accesses to unwritten areas */
1225     if (foreach_not_ignored_block(ram_block_enable_notify, mis)) {
1226         error_report("ram_block_enable_notify failed");
1227         return -1;
1228     }
1229 
1230     if (postcopy_temp_pages_setup(mis)) {
1231         /* Error dumped in the sub-function */
1232         return -1;
1233     }
1234 
1235     if (migrate_postcopy_preempt()) {
1236         /*
1237          * This thread needs to be created after the temp pages because
1238          * it'll fetch RAM_CHANNEL_POSTCOPY PostcopyTmpPage immediately.
1239          */
1240         postcopy_thread_create(mis, &mis->postcopy_prio_thread, "fault-fast",
1241                                postcopy_preempt_thread, QEMU_THREAD_JOINABLE);
1242         mis->preempt_thread_status = PREEMPT_THREAD_CREATED;
1243     }
1244 
1245     trace_postcopy_ram_enable_notify();
1246 
1247     return 0;
1248 }
1249 
1250 static int qemu_ufd_copy_ioctl(MigrationIncomingState *mis, void *host_addr,
1251                                void *from_addr, uint64_t pagesize, RAMBlock *rb)
1252 {
1253     int userfault_fd = mis->userfault_fd;
1254     int ret;
1255 
1256     if (from_addr) {
1257         struct uffdio_copy copy_struct;
1258         copy_struct.dst = (uint64_t)(uintptr_t)host_addr;
1259         copy_struct.src = (uint64_t)(uintptr_t)from_addr;
1260         copy_struct.len = pagesize;
1261         copy_struct.mode = 0;
1262         ret = ioctl(userfault_fd, UFFDIO_COPY, &copy_struct);
1263     } else {
1264         struct uffdio_zeropage zero_struct;
1265         zero_struct.range.start = (uint64_t)(uintptr_t)host_addr;
1266         zero_struct.range.len = pagesize;
1267         zero_struct.mode = 0;
1268         ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct);
1269     }
1270     if (!ret) {
1271         qemu_mutex_lock(&mis->page_request_mutex);
1272         ramblock_recv_bitmap_set_range(rb, host_addr,
1273                                        pagesize / qemu_target_page_size());
1274         /*
1275          * If this page resolves a page fault for a previous recorded faulted
1276          * address, take a special note to maintain the requested page list.
1277          */
1278         if (g_tree_lookup(mis->page_requested, host_addr)) {
1279             g_tree_remove(mis->page_requested, host_addr);
1280             mis->page_requested_count--;
1281             trace_postcopy_page_req_del(host_addr, mis->page_requested_count);
1282         }
1283         qemu_mutex_unlock(&mis->page_request_mutex);
1284         mark_postcopy_blocktime_end((uintptr_t)host_addr);
1285     }
1286     return ret;
1287 }
1288 
1289 int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset)
1290 {
1291     int i;
1292     MigrationIncomingState *mis = migration_incoming_get_current();
1293     GArray *pcrfds = mis->postcopy_remote_fds;
1294 
1295     for (i = 0; i < pcrfds->len; i++) {
1296         struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1297         int ret = cur->waker(cur, rb, offset);
1298         if (ret) {
1299             return ret;
1300         }
1301     }
1302     return 0;
1303 }
1304 
1305 /*
1306  * Place a host page (from) at (host) atomically
1307  * returns 0 on success
1308  */
1309 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1310                         RAMBlock *rb)
1311 {
1312     size_t pagesize = qemu_ram_pagesize(rb);
1313 
1314     /* copy also acks to the kernel waking the stalled thread up
1315      * TODO: We can inhibit that ack and only do it if it was requested
1316      * which would be slightly cheaper, but we'd have to be careful
1317      * of the order of updating our page state.
1318      */
1319     if (qemu_ufd_copy_ioctl(mis, host, from, pagesize, rb)) {
1320         int e = errno;
1321         error_report("%s: %s copy host: %p from: %p (size: %zd)",
1322                      __func__, strerror(e), host, from, pagesize);
1323 
1324         return -e;
1325     }
1326 
1327     trace_postcopy_place_page(host);
1328     return postcopy_notify_shared_wake(rb,
1329                                        qemu_ram_block_host_offset(rb, host));
1330 }
1331 
1332 /*
1333  * Place a zero page at (host) atomically
1334  * returns 0 on success
1335  */
1336 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1337                              RAMBlock *rb)
1338 {
1339     size_t pagesize = qemu_ram_pagesize(rb);
1340     trace_postcopy_place_page_zero(host);
1341 
1342     /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE
1343      * but it's not available for everything (e.g. hugetlbpages)
1344      */
1345     if (qemu_ram_is_uf_zeroable(rb)) {
1346         if (qemu_ufd_copy_ioctl(mis, host, NULL, pagesize, rb)) {
1347             int e = errno;
1348             error_report("%s: %s zero host: %p",
1349                          __func__, strerror(e), host);
1350 
1351             return -e;
1352         }
1353         return postcopy_notify_shared_wake(rb,
1354                                            qemu_ram_block_host_offset(rb,
1355                                                                       host));
1356     } else {
1357         return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page, rb);
1358     }
1359 }
1360 
1361 #else
1362 /* No target OS support, stubs just fail */
1363 void fill_destination_postcopy_migration_info(MigrationInfo *info)
1364 {
1365 }
1366 
1367 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis, Error **errp)
1368 {
1369     error_report("%s: No OS support", __func__);
1370     return false;
1371 }
1372 
1373 int postcopy_ram_incoming_init(MigrationIncomingState *mis)
1374 {
1375     error_report("postcopy_ram_incoming_init: No OS support");
1376     return -1;
1377 }
1378 
1379 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
1380 {
1381     assert(0);
1382     return -1;
1383 }
1384 
1385 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
1386 {
1387     assert(0);
1388     return -1;
1389 }
1390 
1391 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
1392                                  uint64_t client_addr, uint64_t rb_offset)
1393 {
1394     assert(0);
1395     return -1;
1396 }
1397 
1398 int postcopy_ram_incoming_setup(MigrationIncomingState *mis)
1399 {
1400     assert(0);
1401     return -1;
1402 }
1403 
1404 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1405                         RAMBlock *rb)
1406 {
1407     assert(0);
1408     return -1;
1409 }
1410 
1411 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1412                         RAMBlock *rb)
1413 {
1414     assert(0);
1415     return -1;
1416 }
1417 
1418 int postcopy_wake_shared(struct PostCopyFD *pcfd,
1419                          uint64_t client_addr,
1420                          RAMBlock *rb)
1421 {
1422     assert(0);
1423     return -1;
1424 }
1425 #endif
1426 
1427 /* ------------------------------------------------------------------------- */
1428 void postcopy_temp_page_reset(PostcopyTmpPage *tmp_page)
1429 {
1430     tmp_page->target_pages = 0;
1431     tmp_page->host_addr = NULL;
1432     /*
1433      * This is set to true when reset, and cleared as long as we received any
1434      * of the non-zero small page within this huge page.
1435      */
1436     tmp_page->all_zero = true;
1437 }
1438 
1439 void postcopy_fault_thread_notify(MigrationIncomingState *mis)
1440 {
1441     uint64_t tmp64 = 1;
1442 
1443     /*
1444      * Wakeup the fault_thread.  It's an eventfd that should currently
1445      * be at 0, we're going to increment it to 1
1446      */
1447     if (write(mis->userfault_event_fd, &tmp64, 8) != 8) {
1448         /* Not much we can do here, but may as well report it */
1449         error_report("%s: incrementing failed: %s", __func__,
1450                      strerror(errno));
1451     }
1452 }
1453 
1454 /**
1455  * postcopy_discard_send_init: Called at the start of each RAMBlock before
1456  *   asking to discard individual ranges.
1457  *
1458  * @ms: The current migration state.
1459  * @offset: the bitmap offset of the named RAMBlock in the migration bitmap.
1460  * @name: RAMBlock that discards will operate on.
1461  */
1462 static PostcopyDiscardState pds = {0};
1463 void postcopy_discard_send_init(MigrationState *ms, const char *name)
1464 {
1465     pds.ramblock_name = name;
1466     pds.cur_entry = 0;
1467     pds.nsentwords = 0;
1468     pds.nsentcmds = 0;
1469 }
1470 
1471 /**
1472  * postcopy_discard_send_range: Called by the bitmap code for each chunk to
1473  *   discard. May send a discard message, may just leave it queued to
1474  *   be sent later.
1475  *
1476  * @ms: Current migration state.
1477  * @start,@length: a range of pages in the migration bitmap in the
1478  *   RAM block passed to postcopy_discard_send_init() (length=1 is one page)
1479  */
1480 void postcopy_discard_send_range(MigrationState *ms, unsigned long start,
1481                                  unsigned long length)
1482 {
1483     size_t tp_size = qemu_target_page_size();
1484     /* Convert to byte offsets within the RAM block */
1485     pds.start_list[pds.cur_entry] = start  * tp_size;
1486     pds.length_list[pds.cur_entry] = length * tp_size;
1487     trace_postcopy_discard_send_range(pds.ramblock_name, start, length);
1488     pds.cur_entry++;
1489     pds.nsentwords++;
1490 
1491     if (pds.cur_entry == MAX_DISCARDS_PER_COMMAND) {
1492         /* Full set, ship it! */
1493         qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1494                                               pds.ramblock_name,
1495                                               pds.cur_entry,
1496                                               pds.start_list,
1497                                               pds.length_list);
1498         pds.nsentcmds++;
1499         pds.cur_entry = 0;
1500     }
1501 }
1502 
1503 /**
1504  * postcopy_discard_send_finish: Called at the end of each RAMBlock by the
1505  * bitmap code. Sends any outstanding discard messages, frees the PDS
1506  *
1507  * @ms: Current migration state.
1508  */
1509 void postcopy_discard_send_finish(MigrationState *ms)
1510 {
1511     /* Anything unsent? */
1512     if (pds.cur_entry) {
1513         qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1514                                               pds.ramblock_name,
1515                                               pds.cur_entry,
1516                                               pds.start_list,
1517                                               pds.length_list);
1518         pds.nsentcmds++;
1519     }
1520 
1521     trace_postcopy_discard_send_finish(pds.ramblock_name, pds.nsentwords,
1522                                        pds.nsentcmds);
1523 }
1524 
1525 /*
1526  * Current state of incoming postcopy; note this is not part of
1527  * MigrationIncomingState since it's state is used during cleanup
1528  * at the end as MIS is being freed.
1529  */
1530 static PostcopyState incoming_postcopy_state;
1531 
1532 PostcopyState  postcopy_state_get(void)
1533 {
1534     return qatomic_load_acquire(&incoming_postcopy_state);
1535 }
1536 
1537 /* Set the state and return the old state */
1538 PostcopyState postcopy_state_set(PostcopyState new_state)
1539 {
1540     return qatomic_xchg(&incoming_postcopy_state, new_state);
1541 }
1542 
1543 /* Register a handler for external shared memory postcopy
1544  * called on the destination.
1545  */
1546 void postcopy_register_shared_ufd(struct PostCopyFD *pcfd)
1547 {
1548     MigrationIncomingState *mis = migration_incoming_get_current();
1549 
1550     mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds,
1551                                                   *pcfd);
1552 }
1553 
1554 /* Unregister a handler for external shared memory postcopy
1555  */
1556 void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd)
1557 {
1558     guint i;
1559     MigrationIncomingState *mis = migration_incoming_get_current();
1560     GArray *pcrfds = mis->postcopy_remote_fds;
1561 
1562     if (!pcrfds) {
1563         /* migration has already finished and freed the array */
1564         return;
1565     }
1566     for (i = 0; i < pcrfds->len; i++) {
1567         struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1568         if (cur->fd == pcfd->fd) {
1569             mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i);
1570             return;
1571         }
1572     }
1573 }
1574 
1575 void postcopy_preempt_new_channel(MigrationIncomingState *mis, QEMUFile *file)
1576 {
1577     /*
1578      * The new loading channel has its own threads, so it needs to be
1579      * blocked too.  It's by default true, just be explicit.
1580      */
1581     qemu_file_set_blocking(file, true);
1582     mis->postcopy_qemufile_dst = file;
1583     qemu_sem_post(&mis->postcopy_qemufile_dst_done);
1584     trace_postcopy_preempt_new_channel();
1585 }
1586 
1587 /*
1588  * Setup the postcopy preempt channel with the IOC.  If ERROR is specified,
1589  * setup the error instead.  This helper will free the ERROR if specified.
1590  */
1591 static void
1592 postcopy_preempt_send_channel_done(MigrationState *s,
1593                                    QIOChannel *ioc, Error *local_err)
1594 {
1595     if (local_err) {
1596         migrate_set_error(s, local_err);
1597         error_free(local_err);
1598     } else {
1599         migration_ioc_register_yank(ioc);
1600         s->postcopy_qemufile_src = qemu_file_new_output(ioc);
1601         trace_postcopy_preempt_new_channel();
1602     }
1603 
1604     /*
1605      * Kick the waiter in all cases.  The waiter should check upon
1606      * postcopy_qemufile_src to know whether it failed or not.
1607      */
1608     qemu_sem_post(&s->postcopy_qemufile_src_sem);
1609 }
1610 
1611 static void
1612 postcopy_preempt_tls_handshake(QIOTask *task, gpointer opaque)
1613 {
1614     g_autoptr(QIOChannel) ioc = QIO_CHANNEL(qio_task_get_source(task));
1615     MigrationState *s = opaque;
1616     Error *local_err = NULL;
1617 
1618     qio_task_propagate_error(task, &local_err);
1619     postcopy_preempt_send_channel_done(s, ioc, local_err);
1620 }
1621 
1622 static void
1623 postcopy_preempt_send_channel_new(QIOTask *task, gpointer opaque)
1624 {
1625     g_autoptr(QIOChannel) ioc = QIO_CHANNEL(qio_task_get_source(task));
1626     MigrationState *s = opaque;
1627     QIOChannelTLS *tioc;
1628     Error *local_err = NULL;
1629 
1630     if (qio_task_propagate_error(task, &local_err)) {
1631         goto out;
1632     }
1633 
1634     if (migrate_channel_requires_tls_upgrade(ioc)) {
1635         tioc = migration_tls_client_create(ioc, s->hostname, &local_err);
1636         if (!tioc) {
1637             goto out;
1638         }
1639         trace_postcopy_preempt_tls_handshake();
1640         qio_channel_set_name(QIO_CHANNEL(tioc), "migration-tls-preempt");
1641         qio_channel_tls_handshake(tioc, postcopy_preempt_tls_handshake,
1642                                   s, NULL, NULL);
1643         /* Setup the channel until TLS handshake finished */
1644         return;
1645     }
1646 
1647 out:
1648     /* This handles both good and error cases */
1649     postcopy_preempt_send_channel_done(s, ioc, local_err);
1650 }
1651 
1652 /*
1653  * This function will kick off an async task to establish the preempt
1654  * channel, and wait until the connection setup completed.  Returns 0 if
1655  * channel established, -1 for error.
1656  */
1657 int postcopy_preempt_establish_channel(MigrationState *s)
1658 {
1659     /* If preempt not enabled, no need to wait */
1660     if (!migrate_postcopy_preempt()) {
1661         return 0;
1662     }
1663 
1664     /*
1665      * Kick off async task to establish preempt channel.  Only do so with
1666      * 8.0+ machines, because 7.1/7.2 require the channel to be created in
1667      * setup phase of migration (even if racy in an unreliable network).
1668      */
1669     if (!s->preempt_pre_7_2) {
1670         postcopy_preempt_setup(s);
1671     }
1672 
1673     /*
1674      * We need the postcopy preempt channel to be established before
1675      * starting doing anything.
1676      */
1677     qemu_sem_wait(&s->postcopy_qemufile_src_sem);
1678 
1679     return s->postcopy_qemufile_src ? 0 : -1;
1680 }
1681 
1682 void postcopy_preempt_setup(MigrationState *s)
1683 {
1684     /* Kick an async task to connect */
1685     socket_send_channel_create(postcopy_preempt_send_channel_new, s);
1686 }
1687 
1688 static void postcopy_pause_ram_fast_load(MigrationIncomingState *mis)
1689 {
1690     trace_postcopy_pause_fast_load();
1691     qemu_mutex_unlock(&mis->postcopy_prio_thread_mutex);
1692     qemu_sem_wait(&mis->postcopy_pause_sem_fast_load);
1693     qemu_mutex_lock(&mis->postcopy_prio_thread_mutex);
1694     trace_postcopy_pause_fast_load_continued();
1695 }
1696 
1697 static bool preempt_thread_should_run(MigrationIncomingState *mis)
1698 {
1699     return mis->preempt_thread_status != PREEMPT_THREAD_QUIT;
1700 }
1701 
1702 void *postcopy_preempt_thread(void *opaque)
1703 {
1704     MigrationIncomingState *mis = opaque;
1705     int ret;
1706 
1707     trace_postcopy_preempt_thread_entry();
1708 
1709     rcu_register_thread();
1710 
1711     qemu_sem_post(&mis->thread_sync_sem);
1712 
1713     /*
1714      * The preempt channel is established in asynchronous way.  Wait
1715      * for its completion.
1716      */
1717     qemu_sem_wait(&mis->postcopy_qemufile_dst_done);
1718 
1719     /* Sending RAM_SAVE_FLAG_EOS to terminate this thread */
1720     qemu_mutex_lock(&mis->postcopy_prio_thread_mutex);
1721     while (preempt_thread_should_run(mis)) {
1722         ret = ram_load_postcopy(mis->postcopy_qemufile_dst,
1723                                 RAM_CHANNEL_POSTCOPY);
1724         /* If error happened, go into recovery routine */
1725         if (ret && preempt_thread_should_run(mis)) {
1726             postcopy_pause_ram_fast_load(mis);
1727         } else {
1728             /* We're done */
1729             break;
1730         }
1731     }
1732     qemu_mutex_unlock(&mis->postcopy_prio_thread_mutex);
1733 
1734     rcu_unregister_thread();
1735 
1736     trace_postcopy_preempt_thread_exit();
1737 
1738     return NULL;
1739 }
1740