xref: /openbmc/qemu/linux-user/syscall.c (revision fe721c1948ef459caab106190276717bec252c88)
1 /*
2  *  Linux syscalls
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #define _ATFILE_SOURCE
20 #include "qemu/osdep.h"
21 #include "qemu/cutils.h"
22 #include "qemu/path.h"
23 #include "qemu/memfd.h"
24 #include "qemu/queue.h"
25 #include "qemu/plugin.h"
26 #include "tcg/startup.h"
27 #include "target_mman.h"
28 #include "exec/page-protection.h"
29 #include <elf.h>
30 #include <endian.h>
31 #include <grp.h>
32 #include <sys/ipc.h>
33 #include <sys/msg.h>
34 #include <sys/wait.h>
35 #include <sys/mount.h>
36 #include <sys/file.h>
37 #include <sys/fsuid.h>
38 #include <sys/personality.h>
39 #include <sys/prctl.h>
40 #include <sys/resource.h>
41 #include <sys/swap.h>
42 #include <linux/capability.h>
43 #include <sched.h>
44 #include <sys/timex.h>
45 #include <sys/socket.h>
46 #include <linux/sockios.h>
47 #include <sys/un.h>
48 #include <sys/uio.h>
49 #include <poll.h>
50 #include <sys/times.h>
51 #include <sys/shm.h>
52 #include <sys/sem.h>
53 #include <sys/statfs.h>
54 #include <utime.h>
55 #include <sys/sysinfo.h>
56 #include <sys/signalfd.h>
57 //#include <sys/user.h>
58 #include <netinet/in.h>
59 #include <netinet/ip.h>
60 #include <netinet/tcp.h>
61 #include <netinet/udp.h>
62 #include <linux/wireless.h>
63 #include <linux/icmp.h>
64 #include <linux/icmpv6.h>
65 #include <linux/if_tun.h>
66 #include <linux/in6.h>
67 #include <linux/errqueue.h>
68 #include <linux/random.h>
69 #ifdef CONFIG_TIMERFD
70 #include <sys/timerfd.h>
71 #endif
72 #ifdef CONFIG_EVENTFD
73 #include <sys/eventfd.h>
74 #endif
75 #ifdef CONFIG_EPOLL
76 #include <sys/epoll.h>
77 #endif
78 #ifdef CONFIG_ATTR
79 #include "qemu/xattr.h"
80 #endif
81 #ifdef CONFIG_SENDFILE
82 #include <sys/sendfile.h>
83 #endif
84 #ifdef HAVE_SYS_KCOV_H
85 #include <sys/kcov.h>
86 #endif
87 
88 #define termios host_termios
89 #define winsize host_winsize
90 #define termio host_termio
91 #define sgttyb host_sgttyb /* same as target */
92 #define tchars host_tchars /* same as target */
93 #define ltchars host_ltchars /* same as target */
94 
95 #include <linux/termios.h>
96 #include <linux/unistd.h>
97 #include <linux/cdrom.h>
98 #include <linux/hdreg.h>
99 #include <linux/soundcard.h>
100 #include <linux/kd.h>
101 #include <linux/mtio.h>
102 #include <linux/fs.h>
103 #include <linux/fd.h>
104 #if defined(CONFIG_FIEMAP)
105 #include <linux/fiemap.h>
106 #endif
107 #include <linux/fb.h>
108 #if defined(CONFIG_USBFS)
109 #include <linux/usbdevice_fs.h>
110 #include <linux/usb/ch9.h>
111 #endif
112 #include <linux/vt.h>
113 #include <linux/dm-ioctl.h>
114 #include <linux/reboot.h>
115 #include <linux/route.h>
116 #include <linux/filter.h>
117 #include <linux/blkpg.h>
118 #include <netpacket/packet.h>
119 #include <linux/netlink.h>
120 #include <linux/if_alg.h>
121 #include <linux/rtc.h>
122 #include <sound/asound.h>
123 #ifdef HAVE_BTRFS_H
124 #include <linux/btrfs.h>
125 #endif
126 #ifdef HAVE_DRM_H
127 #include <libdrm/drm.h>
128 #include <libdrm/i915_drm.h>
129 #endif
130 #include "linux_loop.h"
131 #include "uname.h"
132 
133 #include "qemu.h"
134 #include "user-internals.h"
135 #include "strace.h"
136 #include "signal-common.h"
137 #include "loader.h"
138 #include "user-mmap.h"
139 #include "user/safe-syscall.h"
140 #include "qemu/guest-random.h"
141 #include "qemu/selfmap.h"
142 #include "user/syscall-trace.h"
143 #include "special-errno.h"
144 #include "qapi/error.h"
145 #include "fd-trans.h"
146 #include "cpu_loop-common.h"
147 
148 #ifndef CLONE_IO
149 #define CLONE_IO                0x80000000      /* Clone io context */
150 #endif
151 
152 /* We can't directly call the host clone syscall, because this will
153  * badly confuse libc (breaking mutexes, for example). So we must
154  * divide clone flags into:
155  *  * flag combinations that look like pthread_create()
156  *  * flag combinations that look like fork()
157  *  * flags we can implement within QEMU itself
158  *  * flags we can't support and will return an error for
159  */
160 /* For thread creation, all these flags must be present; for
161  * fork, none must be present.
162  */
163 #define CLONE_THREAD_FLAGS                              \
164     (CLONE_VM | CLONE_FS | CLONE_FILES |                \
165      CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM)
166 
167 /* These flags are ignored:
168  * CLONE_DETACHED is now ignored by the kernel;
169  * CLONE_IO is just an optimisation hint to the I/O scheduler
170  */
171 #define CLONE_IGNORED_FLAGS                     \
172     (CLONE_DETACHED | CLONE_IO)
173 
174 #ifndef CLONE_PIDFD
175 # define CLONE_PIDFD 0x00001000
176 #endif
177 
178 /* Flags for fork which we can implement within QEMU itself */
179 #define CLONE_OPTIONAL_FORK_FLAGS               \
180     (CLONE_SETTLS | CLONE_PARENT_SETTID | CLONE_PIDFD | \
181      CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID)
182 
183 /* Flags for thread creation which we can implement within QEMU itself */
184 #define CLONE_OPTIONAL_THREAD_FLAGS                             \
185     (CLONE_SETTLS | CLONE_PARENT_SETTID |                       \
186      CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT)
187 
188 #define CLONE_INVALID_FORK_FLAGS                                        \
189     (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS))
190 
191 #define CLONE_INVALID_THREAD_FLAGS                                      \
192     (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS |     \
193        CLONE_IGNORED_FLAGS))
194 
195 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits
196  * have almost all been allocated. We cannot support any of
197  * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC,
198  * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED.
199  * The checks against the invalid thread masks above will catch these.
200  * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.)
201  */
202 
203 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted
204  * once. This exercises the codepaths for restart.
205  */
206 //#define DEBUG_ERESTARTSYS
207 
208 //#include <linux/msdos_fs.h>
209 #define VFAT_IOCTL_READDIR_BOTH \
210     _IOC(_IOC_READ, 'r', 1, (sizeof(struct linux_dirent) + 256) * 2)
211 #define VFAT_IOCTL_READDIR_SHORT \
212     _IOC(_IOC_READ, 'r', 2, (sizeof(struct linux_dirent) + 256) * 2)
213 
214 #undef _syscall0
215 #undef _syscall1
216 #undef _syscall2
217 #undef _syscall3
218 #undef _syscall4
219 #undef _syscall5
220 #undef _syscall6
221 
222 #define _syscall0(type,name)		\
223 static type name (void)			\
224 {					\
225 	return syscall(__NR_##name);	\
226 }
227 
228 #define _syscall1(type,name,type1,arg1)		\
229 static type name (type1 arg1)			\
230 {						\
231 	return syscall(__NR_##name, arg1);	\
232 }
233 
234 #define _syscall2(type,name,type1,arg1,type2,arg2)	\
235 static type name (type1 arg1,type2 arg2)		\
236 {							\
237 	return syscall(__NR_##name, arg1, arg2);	\
238 }
239 
240 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3)	\
241 static type name (type1 arg1,type2 arg2,type3 arg3)		\
242 {								\
243 	return syscall(__NR_##name, arg1, arg2, arg3);		\
244 }
245 
246 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4)	\
247 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4)			\
248 {										\
249 	return syscall(__NR_##name, arg1, arg2, arg3, arg4);			\
250 }
251 
252 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,	\
253 		  type5,arg5)							\
254 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5)	\
255 {										\
256 	return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5);		\
257 }
258 
259 
260 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,	\
261 		  type5,arg5,type6,arg6)					\
262 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5,	\
263                   type6 arg6)							\
264 {										\
265 	return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6);	\
266 }
267 
268 
269 #define __NR_sys_uname __NR_uname
270 #define __NR_sys_getcwd1 __NR_getcwd
271 #define __NR_sys_getdents __NR_getdents
272 #define __NR_sys_getdents64 __NR_getdents64
273 #define __NR_sys_getpriority __NR_getpriority
274 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
275 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo
276 #define __NR_sys_syslog __NR_syslog
277 #if defined(__NR_futex)
278 # define __NR_sys_futex __NR_futex
279 #endif
280 #if defined(__NR_futex_time64)
281 # define __NR_sys_futex_time64 __NR_futex_time64
282 #endif
283 #define __NR_sys_statx __NR_statx
284 
285 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__)
286 #define __NR__llseek __NR_lseek
287 #endif
288 
289 /* Newer kernel ports have llseek() instead of _llseek() */
290 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek)
291 #define TARGET_NR__llseek TARGET_NR_llseek
292 #endif
293 
294 /* some platforms need to mask more bits than just TARGET_O_NONBLOCK */
295 #ifndef TARGET_O_NONBLOCK_MASK
296 #define TARGET_O_NONBLOCK_MASK TARGET_O_NONBLOCK
297 #endif
298 
299 #define __NR_sys_gettid __NR_gettid
300 _syscall0(int, sys_gettid)
301 
302 /* For the 64-bit guest on 32-bit host case we must emulate
303  * getdents using getdents64, because otherwise the host
304  * might hand us back more dirent records than we can fit
305  * into the guest buffer after structure format conversion.
306  * Otherwise we emulate getdents with getdents if the host has it.
307  */
308 #if defined(__NR_getdents) && HOST_LONG_BITS >= TARGET_ABI_BITS
309 #define EMULATE_GETDENTS_WITH_GETDENTS
310 #endif
311 
312 #if defined(TARGET_NR_getdents) && defined(EMULATE_GETDENTS_WITH_GETDENTS)
313 _syscall3(int, sys_getdents, unsigned int, fd, struct linux_dirent *, dirp, unsigned int, count);
314 #endif
315 #if (defined(TARGET_NR_getdents) && \
316       !defined(EMULATE_GETDENTS_WITH_GETDENTS)) || \
317     (defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
318 _syscall3(int, sys_getdents64, unsigned int, fd, struct linux_dirent64 *, dirp, unsigned int, count);
319 #endif
320 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
321 _syscall5(int, _llseek,  unsigned int,  fd, unsigned long, hi, unsigned long, lo,
322           loff_t *, res, unsigned int, wh);
323 #endif
324 _syscall3(int, sys_rt_sigqueueinfo, pid_t, pid, int, sig, siginfo_t *, uinfo)
325 _syscall4(int, sys_rt_tgsigqueueinfo, pid_t, pid, pid_t, tid, int, sig,
326           siginfo_t *, uinfo)
327 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len)
328 #ifdef __NR_exit_group
329 _syscall1(int,exit_group,int,error_code)
330 #endif
331 #if defined(__NR_close_range) && defined(TARGET_NR_close_range)
332 #define __NR_sys_close_range __NR_close_range
333 _syscall3(int,sys_close_range,int,first,int,last,int,flags)
334 #ifndef CLOSE_RANGE_CLOEXEC
335 #define CLOSE_RANGE_CLOEXEC     (1U << 2)
336 #endif
337 #endif
338 #if defined(__NR_futex)
339 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val,
340           const struct timespec *,timeout,int *,uaddr2,int,val3)
341 #endif
342 #if defined(__NR_futex_time64)
343 _syscall6(int,sys_futex_time64,int *,uaddr,int,op,int,val,
344           const struct timespec *,timeout,int *,uaddr2,int,val3)
345 #endif
346 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
347 _syscall2(int, pidfd_open, pid_t, pid, unsigned int, flags);
348 #endif
349 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal)
350 _syscall4(int, pidfd_send_signal, int, pidfd, int, sig, siginfo_t *, info,
351                              unsigned int, flags);
352 #endif
353 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd)
354 _syscall3(int, pidfd_getfd, int, pidfd, int, targetfd, unsigned int, flags);
355 #endif
356 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
357 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len,
358           unsigned long *, user_mask_ptr);
359 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
360 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len,
361           unsigned long *, user_mask_ptr);
362 /* sched_attr is not defined in glibc */
363 struct sched_attr {
364     uint32_t size;
365     uint32_t sched_policy;
366     uint64_t sched_flags;
367     int32_t sched_nice;
368     uint32_t sched_priority;
369     uint64_t sched_runtime;
370     uint64_t sched_deadline;
371     uint64_t sched_period;
372     uint32_t sched_util_min;
373     uint32_t sched_util_max;
374 };
375 #define __NR_sys_sched_getattr __NR_sched_getattr
376 _syscall4(int, sys_sched_getattr, pid_t, pid, struct sched_attr *, attr,
377           unsigned int, size, unsigned int, flags);
378 #define __NR_sys_sched_setattr __NR_sched_setattr
379 _syscall3(int, sys_sched_setattr, pid_t, pid, struct sched_attr *, attr,
380           unsigned int, flags);
381 #define __NR_sys_sched_getscheduler __NR_sched_getscheduler
382 _syscall1(int, sys_sched_getscheduler, pid_t, pid);
383 #define __NR_sys_sched_setscheduler __NR_sched_setscheduler
384 _syscall3(int, sys_sched_setscheduler, pid_t, pid, int, policy,
385           const struct sched_param *, param);
386 #define __NR_sys_sched_getparam __NR_sched_getparam
387 _syscall2(int, sys_sched_getparam, pid_t, pid,
388           struct sched_param *, param);
389 #define __NR_sys_sched_setparam __NR_sched_setparam
390 _syscall2(int, sys_sched_setparam, pid_t, pid,
391           const struct sched_param *, param);
392 #define __NR_sys_getcpu __NR_getcpu
393 _syscall3(int, sys_getcpu, unsigned *, cpu, unsigned *, node, void *, tcache);
394 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd,
395           void *, arg);
396 _syscall2(int, capget, struct __user_cap_header_struct *, header,
397           struct __user_cap_data_struct *, data);
398 _syscall2(int, capset, struct __user_cap_header_struct *, header,
399           struct __user_cap_data_struct *, data);
400 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
401 _syscall2(int, ioprio_get, int, which, int, who)
402 #endif
403 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
404 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio)
405 #endif
406 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
407 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags)
408 #endif
409 
410 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
411 _syscall5(int, kcmp, pid_t, pid1, pid_t, pid2, int, type,
412           unsigned long, idx1, unsigned long, idx2)
413 #endif
414 
415 /*
416  * It is assumed that struct statx is architecture independent.
417  */
418 #if defined(TARGET_NR_statx) && defined(__NR_statx)
419 _syscall5(int, sys_statx, int, dirfd, const char *, pathname, int, flags,
420           unsigned int, mask, struct target_statx *, statxbuf)
421 #endif
422 #if defined(TARGET_NR_membarrier) && defined(__NR_membarrier)
423 _syscall2(int, membarrier, int, cmd, int, flags)
424 #endif
425 
426 static const bitmask_transtbl fcntl_flags_tbl[] = {
427   { TARGET_O_ACCMODE,   TARGET_O_WRONLY,    O_ACCMODE,   O_WRONLY,    },
428   { TARGET_O_ACCMODE,   TARGET_O_RDWR,      O_ACCMODE,   O_RDWR,      },
429   { TARGET_O_CREAT,     TARGET_O_CREAT,     O_CREAT,     O_CREAT,     },
430   { TARGET_O_EXCL,      TARGET_O_EXCL,      O_EXCL,      O_EXCL,      },
431   { TARGET_O_NOCTTY,    TARGET_O_NOCTTY,    O_NOCTTY,    O_NOCTTY,    },
432   { TARGET_O_TRUNC,     TARGET_O_TRUNC,     O_TRUNC,     O_TRUNC,     },
433   { TARGET_O_APPEND,    TARGET_O_APPEND,    O_APPEND,    O_APPEND,    },
434   { TARGET_O_NONBLOCK,  TARGET_O_NONBLOCK,  O_NONBLOCK,  O_NONBLOCK,  },
435   { TARGET_O_SYNC,      TARGET_O_DSYNC,     O_SYNC,      O_DSYNC,     },
436   { TARGET_O_SYNC,      TARGET_O_SYNC,      O_SYNC,      O_SYNC,      },
437   { TARGET_FASYNC,      TARGET_FASYNC,      FASYNC,      FASYNC,      },
438   { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, },
439   { TARGET_O_NOFOLLOW,  TARGET_O_NOFOLLOW,  O_NOFOLLOW,  O_NOFOLLOW,  },
440 #if defined(O_DIRECT)
441   { TARGET_O_DIRECT,    TARGET_O_DIRECT,    O_DIRECT,    O_DIRECT,    },
442 #endif
443 #if defined(O_NOATIME)
444   { TARGET_O_NOATIME,   TARGET_O_NOATIME,   O_NOATIME,   O_NOATIME    },
445 #endif
446 #if defined(O_CLOEXEC)
447   { TARGET_O_CLOEXEC,   TARGET_O_CLOEXEC,   O_CLOEXEC,   O_CLOEXEC    },
448 #endif
449 #if defined(O_PATH)
450   { TARGET_O_PATH,      TARGET_O_PATH,      O_PATH,      O_PATH       },
451 #endif
452 #if defined(O_TMPFILE)
453   { TARGET_O_TMPFILE,   TARGET_O_TMPFILE,   O_TMPFILE,   O_TMPFILE    },
454 #endif
455   /* Don't terminate the list prematurely on 64-bit host+guest.  */
456 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
457   { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, },
458 #endif
459 };
460 
461 _syscall2(int, sys_getcwd1, char *, buf, size_t, size)
462 
463 #if defined(TARGET_NR_utimensat) || defined(TARGET_NR_utimensat_time64)
464 #if defined(__NR_utimensat)
465 #define __NR_sys_utimensat __NR_utimensat
466 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname,
467           const struct timespec *,tsp,int,flags)
468 #else
469 static int sys_utimensat(int dirfd, const char *pathname,
470                          const struct timespec times[2], int flags)
471 {
472     errno = ENOSYS;
473     return -1;
474 }
475 #endif
476 #endif /* TARGET_NR_utimensat */
477 
478 #ifdef TARGET_NR_renameat2
479 #if defined(__NR_renameat2)
480 #define __NR_sys_renameat2 __NR_renameat2
481 _syscall5(int, sys_renameat2, int, oldfd, const char *, old, int, newfd,
482           const char *, new, unsigned int, flags)
483 #else
484 static int sys_renameat2(int oldfd, const char *old,
485                          int newfd, const char *new, int flags)
486 {
487     if (flags == 0) {
488         return renameat(oldfd, old, newfd, new);
489     }
490     errno = ENOSYS;
491     return -1;
492 }
493 #endif
494 #endif /* TARGET_NR_renameat2 */
495 
496 #ifdef CONFIG_INOTIFY
497 #include <sys/inotify.h>
498 #else
499 /* Userspace can usually survive runtime without inotify */
500 #undef TARGET_NR_inotify_init
501 #undef TARGET_NR_inotify_init1
502 #undef TARGET_NR_inotify_add_watch
503 #undef TARGET_NR_inotify_rm_watch
504 #endif /* CONFIG_INOTIFY  */
505 
506 #if defined(TARGET_NR_prlimit64)
507 #ifndef __NR_prlimit64
508 # define __NR_prlimit64 -1
509 #endif
510 #define __NR_sys_prlimit64 __NR_prlimit64
511 /* The glibc rlimit structure may not be that used by the underlying syscall */
512 struct host_rlimit64 {
513     uint64_t rlim_cur;
514     uint64_t rlim_max;
515 };
516 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource,
517           const struct host_rlimit64 *, new_limit,
518           struct host_rlimit64 *, old_limit)
519 #endif
520 
521 
522 #if defined(TARGET_NR_timer_create)
523 /* Maximum of 32 active POSIX timers allowed at any one time. */
524 #define GUEST_TIMER_MAX 32
525 static timer_t g_posix_timers[GUEST_TIMER_MAX];
526 static int g_posix_timer_allocated[GUEST_TIMER_MAX];
527 
528 static inline int next_free_host_timer(void)
529 {
530     int k;
531     for (k = 0; k < ARRAY_SIZE(g_posix_timer_allocated); k++) {
532         if (qatomic_xchg(g_posix_timer_allocated + k, 1) == 0) {
533             return k;
534         }
535     }
536     return -1;
537 }
538 
539 static inline void free_host_timer_slot(int id)
540 {
541     qatomic_store_release(g_posix_timer_allocated + id, 0);
542 }
543 #endif
544 
545 static inline int host_to_target_errno(int host_errno)
546 {
547     switch (host_errno) {
548 #define E(X)  case X: return TARGET_##X;
549 #include "errnos.c.inc"
550 #undef E
551     default:
552         return host_errno;
553     }
554 }
555 
556 static inline int target_to_host_errno(int target_errno)
557 {
558     switch (target_errno) {
559 #define E(X)  case TARGET_##X: return X;
560 #include "errnos.c.inc"
561 #undef E
562     default:
563         return target_errno;
564     }
565 }
566 
567 abi_long get_errno(abi_long ret)
568 {
569     if (ret == -1)
570         return -host_to_target_errno(errno);
571     else
572         return ret;
573 }
574 
575 const char *target_strerror(int err)
576 {
577     if (err == QEMU_ERESTARTSYS) {
578         return "To be restarted";
579     }
580     if (err == QEMU_ESIGRETURN) {
581         return "Successful exit from sigreturn";
582     }
583 
584     return strerror(target_to_host_errno(err));
585 }
586 
587 static int check_zeroed_user(abi_long addr, size_t ksize, size_t usize)
588 {
589     int i;
590     uint8_t b;
591     if (usize <= ksize) {
592         return 1;
593     }
594     for (i = ksize; i < usize; i++) {
595         if (get_user_u8(b, addr + i)) {
596             return -TARGET_EFAULT;
597         }
598         if (b != 0) {
599             return 0;
600         }
601     }
602     return 1;
603 }
604 
605 #define safe_syscall0(type, name) \
606 static type safe_##name(void) \
607 { \
608     return safe_syscall(__NR_##name); \
609 }
610 
611 #define safe_syscall1(type, name, type1, arg1) \
612 static type safe_##name(type1 arg1) \
613 { \
614     return safe_syscall(__NR_##name, arg1); \
615 }
616 
617 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \
618 static type safe_##name(type1 arg1, type2 arg2) \
619 { \
620     return safe_syscall(__NR_##name, arg1, arg2); \
621 }
622 
623 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \
624 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \
625 { \
626     return safe_syscall(__NR_##name, arg1, arg2, arg3); \
627 }
628 
629 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \
630     type4, arg4) \
631 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \
632 { \
633     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \
634 }
635 
636 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \
637     type4, arg4, type5, arg5) \
638 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
639     type5 arg5) \
640 { \
641     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
642 }
643 
644 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \
645     type4, arg4, type5, arg5, type6, arg6) \
646 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
647     type5 arg5, type6 arg6) \
648 { \
649     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
650 }
651 
652 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count)
653 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count)
654 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \
655               int, flags, mode_t, mode)
656 #if defined(TARGET_NR_wait4) || defined(TARGET_NR_waitpid)
657 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \
658               struct rusage *, rusage)
659 #endif
660 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \
661               int, options, struct rusage *, rusage)
662 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp)
663 safe_syscall5(int, execveat, int, dirfd, const char *, filename,
664               char **, argv, char **, envp, int, flags)
665 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
666     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
667 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \
668               fd_set *, exceptfds, struct timespec *, timeout, void *, sig)
669 #endif
670 #if defined(TARGET_NR_ppoll) || defined(TARGET_NR_ppoll_time64)
671 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds,
672               struct timespec *, tsp, const sigset_t *, sigmask,
673               size_t, sigsetsize)
674 #endif
675 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events,
676               int, maxevents, int, timeout, const sigset_t *, sigmask,
677               size_t, sigsetsize)
678 #if defined(__NR_futex)
679 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \
680               const struct timespec *,timeout,int *,uaddr2,int,val3)
681 #endif
682 #if defined(__NR_futex_time64)
683 safe_syscall6(int,futex_time64,int *,uaddr,int,op,int,val, \
684               const struct timespec *,timeout,int *,uaddr2,int,val3)
685 #endif
686 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize)
687 safe_syscall2(int, kill, pid_t, pid, int, sig)
688 safe_syscall2(int, tkill, int, tid, int, sig)
689 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig)
690 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt)
691 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt)
692 safe_syscall5(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt,
693               unsigned long, pos_l, unsigned long, pos_h)
694 safe_syscall5(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt,
695               unsigned long, pos_l, unsigned long, pos_h)
696 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr,
697               socklen_t, addrlen)
698 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len,
699               int, flags, const struct sockaddr *, addr, socklen_t, addrlen)
700 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len,
701               int, flags, struct sockaddr *, addr, socklen_t *, addrlen)
702 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags)
703 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags)
704 safe_syscall2(int, flock, int, fd, int, operation)
705 #if defined(TARGET_NR_rt_sigtimedwait) || defined(TARGET_NR_rt_sigtimedwait_time64)
706 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo,
707               const struct timespec *, uts, size_t, sigsetsize)
708 #endif
709 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len,
710               int, flags)
711 #if defined(TARGET_NR_nanosleep)
712 safe_syscall2(int, nanosleep, const struct timespec *, req,
713               struct timespec *, rem)
714 #endif
715 #if defined(TARGET_NR_clock_nanosleep) || \
716     defined(TARGET_NR_clock_nanosleep_time64)
717 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags,
718               const struct timespec *, req, struct timespec *, rem)
719 #endif
720 #ifdef __NR_ipc
721 #ifdef __s390x__
722 safe_syscall5(int, ipc, int, call, long, first, long, second, long, third,
723               void *, ptr)
724 #else
725 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third,
726               void *, ptr, long, fifth)
727 #endif
728 #endif
729 #ifdef __NR_msgsnd
730 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz,
731               int, flags)
732 #endif
733 #ifdef __NR_msgrcv
734 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz,
735               long, msgtype, int, flags)
736 #endif
737 #ifdef __NR_semtimedop
738 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops,
739               unsigned, nsops, const struct timespec *, timeout)
740 #endif
741 #if defined(TARGET_NR_mq_timedsend) || \
742     defined(TARGET_NR_mq_timedsend_time64)
743 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr,
744               size_t, len, unsigned, prio, const struct timespec *, timeout)
745 #endif
746 #if defined(TARGET_NR_mq_timedreceive) || \
747     defined(TARGET_NR_mq_timedreceive_time64)
748 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr,
749               size_t, len, unsigned *, prio, const struct timespec *, timeout)
750 #endif
751 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
752 safe_syscall6(ssize_t, copy_file_range, int, infd, loff_t *, pinoff,
753               int, outfd, loff_t *, poutoff, size_t, length,
754               unsigned int, flags)
755 #endif
756 
757 /* We do ioctl like this rather than via safe_syscall3 to preserve the
758  * "third argument might be integer or pointer or not present" behaviour of
759  * the libc function.
760  */
761 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__)
762 /* Similarly for fcntl. Note that callers must always:
763  *  pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK
764  *  use the flock64 struct rather than unsuffixed flock
765  * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts.
766  */
767 #ifdef __NR_fcntl64
768 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__)
769 #else
770 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__)
771 #endif
772 
773 static inline int host_to_target_sock_type(int host_type)
774 {
775     int target_type;
776 
777     switch (host_type & 0xf /* SOCK_TYPE_MASK */) {
778     case SOCK_DGRAM:
779         target_type = TARGET_SOCK_DGRAM;
780         break;
781     case SOCK_STREAM:
782         target_type = TARGET_SOCK_STREAM;
783         break;
784     default:
785         target_type = host_type & 0xf /* SOCK_TYPE_MASK */;
786         break;
787     }
788 
789 #if defined(SOCK_CLOEXEC)
790     if (host_type & SOCK_CLOEXEC) {
791         target_type |= TARGET_SOCK_CLOEXEC;
792     }
793 #endif
794 
795 #if defined(SOCK_NONBLOCK)
796     if (host_type & SOCK_NONBLOCK) {
797         target_type |= TARGET_SOCK_NONBLOCK;
798     }
799 #endif
800 
801     return target_type;
802 }
803 
804 static abi_ulong target_brk, initial_target_brk;
805 
806 void target_set_brk(abi_ulong new_brk)
807 {
808     target_brk = TARGET_PAGE_ALIGN(new_brk);
809     initial_target_brk = target_brk;
810 }
811 
812 /* do_brk() must return target values and target errnos. */
813 abi_long do_brk(abi_ulong brk_val)
814 {
815     abi_long mapped_addr;
816     abi_ulong new_brk;
817     abi_ulong old_brk;
818 
819     /* brk pointers are always untagged */
820 
821     /* do not allow to shrink below initial brk value */
822     if (brk_val < initial_target_brk) {
823         return target_brk;
824     }
825 
826     new_brk = TARGET_PAGE_ALIGN(brk_val);
827     old_brk = TARGET_PAGE_ALIGN(target_brk);
828 
829     /* new and old target_brk might be on the same page */
830     if (new_brk == old_brk) {
831         target_brk = brk_val;
832         return target_brk;
833     }
834 
835     /* Release heap if necessary */
836     if (new_brk < old_brk) {
837         target_munmap(new_brk, old_brk - new_brk);
838 
839         target_brk = brk_val;
840         return target_brk;
841     }
842 
843     mapped_addr = target_mmap(old_brk, new_brk - old_brk,
844                               PROT_READ | PROT_WRITE,
845                               MAP_FIXED_NOREPLACE | MAP_ANON | MAP_PRIVATE,
846                               -1, 0);
847 
848     if (mapped_addr == old_brk) {
849         target_brk = brk_val;
850         return target_brk;
851     }
852 
853 #if defined(TARGET_ALPHA)
854     /* We (partially) emulate OSF/1 on Alpha, which requires we
855        return a proper errno, not an unchanged brk value.  */
856     return -TARGET_ENOMEM;
857 #endif
858     /* For everything else, return the previous break. */
859     return target_brk;
860 }
861 
862 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
863     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
864 static inline abi_long copy_from_user_fdset(fd_set *fds,
865                                             abi_ulong target_fds_addr,
866                                             int n)
867 {
868     int i, nw, j, k;
869     abi_ulong b, *target_fds;
870 
871     nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
872     if (!(target_fds = lock_user(VERIFY_READ,
873                                  target_fds_addr,
874                                  sizeof(abi_ulong) * nw,
875                                  1)))
876         return -TARGET_EFAULT;
877 
878     FD_ZERO(fds);
879     k = 0;
880     for (i = 0; i < nw; i++) {
881         /* grab the abi_ulong */
882         __get_user(b, &target_fds[i]);
883         for (j = 0; j < TARGET_ABI_BITS; j++) {
884             /* check the bit inside the abi_ulong */
885             if ((b >> j) & 1)
886                 FD_SET(k, fds);
887             k++;
888         }
889     }
890 
891     unlock_user(target_fds, target_fds_addr, 0);
892 
893     return 0;
894 }
895 
896 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr,
897                                                  abi_ulong target_fds_addr,
898                                                  int n)
899 {
900     if (target_fds_addr) {
901         if (copy_from_user_fdset(fds, target_fds_addr, n))
902             return -TARGET_EFAULT;
903         *fds_ptr = fds;
904     } else {
905         *fds_ptr = NULL;
906     }
907     return 0;
908 }
909 
910 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr,
911                                           const fd_set *fds,
912                                           int n)
913 {
914     int i, nw, j, k;
915     abi_long v;
916     abi_ulong *target_fds;
917 
918     nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
919     if (!(target_fds = lock_user(VERIFY_WRITE,
920                                  target_fds_addr,
921                                  sizeof(abi_ulong) * nw,
922                                  0)))
923         return -TARGET_EFAULT;
924 
925     k = 0;
926     for (i = 0; i < nw; i++) {
927         v = 0;
928         for (j = 0; j < TARGET_ABI_BITS; j++) {
929             v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j);
930             k++;
931         }
932         __put_user(v, &target_fds[i]);
933     }
934 
935     unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw);
936 
937     return 0;
938 }
939 #endif
940 
941 #if defined(__alpha__)
942 #define HOST_HZ 1024
943 #else
944 #define HOST_HZ 100
945 #endif
946 
947 static inline abi_long host_to_target_clock_t(long ticks)
948 {
949 #if HOST_HZ == TARGET_HZ
950     return ticks;
951 #else
952     return ((int64_t)ticks * TARGET_HZ) / HOST_HZ;
953 #endif
954 }
955 
956 static inline abi_long host_to_target_rusage(abi_ulong target_addr,
957                                              const struct rusage *rusage)
958 {
959     struct target_rusage *target_rusage;
960 
961     if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0))
962         return -TARGET_EFAULT;
963     target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec);
964     target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec);
965     target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec);
966     target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec);
967     target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss);
968     target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss);
969     target_rusage->ru_idrss = tswapal(rusage->ru_idrss);
970     target_rusage->ru_isrss = tswapal(rusage->ru_isrss);
971     target_rusage->ru_minflt = tswapal(rusage->ru_minflt);
972     target_rusage->ru_majflt = tswapal(rusage->ru_majflt);
973     target_rusage->ru_nswap = tswapal(rusage->ru_nswap);
974     target_rusage->ru_inblock = tswapal(rusage->ru_inblock);
975     target_rusage->ru_oublock = tswapal(rusage->ru_oublock);
976     target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd);
977     target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv);
978     target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals);
979     target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw);
980     target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw);
981     unlock_user_struct(target_rusage, target_addr, 1);
982 
983     return 0;
984 }
985 
986 #ifdef TARGET_NR_setrlimit
987 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim)
988 {
989     abi_ulong target_rlim_swap;
990     rlim_t result;
991 
992     target_rlim_swap = tswapal(target_rlim);
993     if (target_rlim_swap == TARGET_RLIM_INFINITY)
994         return RLIM_INFINITY;
995 
996     result = target_rlim_swap;
997     if (target_rlim_swap != (rlim_t)result)
998         return RLIM_INFINITY;
999 
1000     return result;
1001 }
1002 #endif
1003 
1004 #if defined(TARGET_NR_getrlimit) || defined(TARGET_NR_ugetrlimit)
1005 static inline abi_ulong host_to_target_rlim(rlim_t rlim)
1006 {
1007     abi_ulong target_rlim_swap;
1008     abi_ulong result;
1009 
1010     if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim)
1011         target_rlim_swap = TARGET_RLIM_INFINITY;
1012     else
1013         target_rlim_swap = rlim;
1014     result = tswapal(target_rlim_swap);
1015 
1016     return result;
1017 }
1018 #endif
1019 
1020 static inline int target_to_host_resource(int code)
1021 {
1022     switch (code) {
1023     case TARGET_RLIMIT_AS:
1024         return RLIMIT_AS;
1025     case TARGET_RLIMIT_CORE:
1026         return RLIMIT_CORE;
1027     case TARGET_RLIMIT_CPU:
1028         return RLIMIT_CPU;
1029     case TARGET_RLIMIT_DATA:
1030         return RLIMIT_DATA;
1031     case TARGET_RLIMIT_FSIZE:
1032         return RLIMIT_FSIZE;
1033     case TARGET_RLIMIT_LOCKS:
1034         return RLIMIT_LOCKS;
1035     case TARGET_RLIMIT_MEMLOCK:
1036         return RLIMIT_MEMLOCK;
1037     case TARGET_RLIMIT_MSGQUEUE:
1038         return RLIMIT_MSGQUEUE;
1039     case TARGET_RLIMIT_NICE:
1040         return RLIMIT_NICE;
1041     case TARGET_RLIMIT_NOFILE:
1042         return RLIMIT_NOFILE;
1043     case TARGET_RLIMIT_NPROC:
1044         return RLIMIT_NPROC;
1045     case TARGET_RLIMIT_RSS:
1046         return RLIMIT_RSS;
1047     case TARGET_RLIMIT_RTPRIO:
1048         return RLIMIT_RTPRIO;
1049 #ifdef RLIMIT_RTTIME
1050     case TARGET_RLIMIT_RTTIME:
1051         return RLIMIT_RTTIME;
1052 #endif
1053     case TARGET_RLIMIT_SIGPENDING:
1054         return RLIMIT_SIGPENDING;
1055     case TARGET_RLIMIT_STACK:
1056         return RLIMIT_STACK;
1057     default:
1058         return code;
1059     }
1060 }
1061 
1062 static inline abi_long copy_from_user_timeval(struct timeval *tv,
1063                                               abi_ulong target_tv_addr)
1064 {
1065     struct target_timeval *target_tv;
1066 
1067     if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1068         return -TARGET_EFAULT;
1069     }
1070 
1071     __get_user(tv->tv_sec, &target_tv->tv_sec);
1072     __get_user(tv->tv_usec, &target_tv->tv_usec);
1073 
1074     unlock_user_struct(target_tv, target_tv_addr, 0);
1075 
1076     return 0;
1077 }
1078 
1079 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr,
1080                                             const struct timeval *tv)
1081 {
1082     struct target_timeval *target_tv;
1083 
1084     if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1085         return -TARGET_EFAULT;
1086     }
1087 
1088     __put_user(tv->tv_sec, &target_tv->tv_sec);
1089     __put_user(tv->tv_usec, &target_tv->tv_usec);
1090 
1091     unlock_user_struct(target_tv, target_tv_addr, 1);
1092 
1093     return 0;
1094 }
1095 
1096 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
1097 static inline abi_long copy_from_user_timeval64(struct timeval *tv,
1098                                                 abi_ulong target_tv_addr)
1099 {
1100     struct target__kernel_sock_timeval *target_tv;
1101 
1102     if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1103         return -TARGET_EFAULT;
1104     }
1105 
1106     __get_user(tv->tv_sec, &target_tv->tv_sec);
1107     __get_user(tv->tv_usec, &target_tv->tv_usec);
1108 
1109     unlock_user_struct(target_tv, target_tv_addr, 0);
1110 
1111     return 0;
1112 }
1113 #endif
1114 
1115 static inline abi_long copy_to_user_timeval64(abi_ulong target_tv_addr,
1116                                               const struct timeval *tv)
1117 {
1118     struct target__kernel_sock_timeval *target_tv;
1119 
1120     if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1121         return -TARGET_EFAULT;
1122     }
1123 
1124     __put_user(tv->tv_sec, &target_tv->tv_sec);
1125     __put_user(tv->tv_usec, &target_tv->tv_usec);
1126 
1127     unlock_user_struct(target_tv, target_tv_addr, 1);
1128 
1129     return 0;
1130 }
1131 
1132 #if defined(TARGET_NR_futex) || \
1133     defined(TARGET_NR_rt_sigtimedwait) || \
1134     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6) || \
1135     defined(TARGET_NR_nanosleep) || defined(TARGET_NR_clock_settime) || \
1136     defined(TARGET_NR_utimensat) || defined(TARGET_NR_mq_timedsend) || \
1137     defined(TARGET_NR_mq_timedreceive) || defined(TARGET_NR_ipc) || \
1138     defined(TARGET_NR_semop) || defined(TARGET_NR_semtimedop) || \
1139     defined(TARGET_NR_timer_settime) || \
1140     (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
1141 static inline abi_long target_to_host_timespec(struct timespec *host_ts,
1142                                                abi_ulong target_addr)
1143 {
1144     struct target_timespec *target_ts;
1145 
1146     if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1147         return -TARGET_EFAULT;
1148     }
1149     __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1150     __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1151     unlock_user_struct(target_ts, target_addr, 0);
1152     return 0;
1153 }
1154 #endif
1155 
1156 #if defined(TARGET_NR_clock_settime64) || defined(TARGET_NR_futex_time64) || \
1157     defined(TARGET_NR_timer_settime64) || \
1158     defined(TARGET_NR_mq_timedsend_time64) || \
1159     defined(TARGET_NR_mq_timedreceive_time64) || \
1160     (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)) || \
1161     defined(TARGET_NR_clock_nanosleep_time64) || \
1162     defined(TARGET_NR_rt_sigtimedwait_time64) || \
1163     defined(TARGET_NR_utimensat) || \
1164     defined(TARGET_NR_utimensat_time64) || \
1165     defined(TARGET_NR_semtimedop_time64) || \
1166     defined(TARGET_NR_pselect6_time64) || defined(TARGET_NR_ppoll_time64)
1167 static inline abi_long target_to_host_timespec64(struct timespec *host_ts,
1168                                                  abi_ulong target_addr)
1169 {
1170     struct target__kernel_timespec *target_ts;
1171 
1172     if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1173         return -TARGET_EFAULT;
1174     }
1175     __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1176     __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1177     /* in 32bit mode, this drops the padding */
1178     host_ts->tv_nsec = (long)(abi_long)host_ts->tv_nsec;
1179     unlock_user_struct(target_ts, target_addr, 0);
1180     return 0;
1181 }
1182 #endif
1183 
1184 static inline abi_long host_to_target_timespec(abi_ulong target_addr,
1185                                                struct timespec *host_ts)
1186 {
1187     struct target_timespec *target_ts;
1188 
1189     if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1190         return -TARGET_EFAULT;
1191     }
1192     __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1193     __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1194     unlock_user_struct(target_ts, target_addr, 1);
1195     return 0;
1196 }
1197 
1198 static inline abi_long host_to_target_timespec64(abi_ulong target_addr,
1199                                                  struct timespec *host_ts)
1200 {
1201     struct target__kernel_timespec *target_ts;
1202 
1203     if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1204         return -TARGET_EFAULT;
1205     }
1206     __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1207     __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1208     unlock_user_struct(target_ts, target_addr, 1);
1209     return 0;
1210 }
1211 
1212 #if defined(TARGET_NR_gettimeofday)
1213 static inline abi_long copy_to_user_timezone(abi_ulong target_tz_addr,
1214                                              struct timezone *tz)
1215 {
1216     struct target_timezone *target_tz;
1217 
1218     if (!lock_user_struct(VERIFY_WRITE, target_tz, target_tz_addr, 1)) {
1219         return -TARGET_EFAULT;
1220     }
1221 
1222     __put_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1223     __put_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1224 
1225     unlock_user_struct(target_tz, target_tz_addr, 1);
1226 
1227     return 0;
1228 }
1229 #endif
1230 
1231 #if defined(TARGET_NR_settimeofday)
1232 static inline abi_long copy_from_user_timezone(struct timezone *tz,
1233                                                abi_ulong target_tz_addr)
1234 {
1235     struct target_timezone *target_tz;
1236 
1237     if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) {
1238         return -TARGET_EFAULT;
1239     }
1240 
1241     __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1242     __get_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1243 
1244     unlock_user_struct(target_tz, target_tz_addr, 0);
1245 
1246     return 0;
1247 }
1248 #endif
1249 
1250 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
1251 #include <mqueue.h>
1252 
1253 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr,
1254                                               abi_ulong target_mq_attr_addr)
1255 {
1256     struct target_mq_attr *target_mq_attr;
1257 
1258     if (!lock_user_struct(VERIFY_READ, target_mq_attr,
1259                           target_mq_attr_addr, 1))
1260         return -TARGET_EFAULT;
1261 
1262     __get_user(attr->mq_flags, &target_mq_attr->mq_flags);
1263     __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1264     __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1265     __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1266 
1267     unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0);
1268 
1269     return 0;
1270 }
1271 
1272 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr,
1273                                             const struct mq_attr *attr)
1274 {
1275     struct target_mq_attr *target_mq_attr;
1276 
1277     if (!lock_user_struct(VERIFY_WRITE, target_mq_attr,
1278                           target_mq_attr_addr, 0))
1279         return -TARGET_EFAULT;
1280 
1281     __put_user(attr->mq_flags, &target_mq_attr->mq_flags);
1282     __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1283     __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1284     __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1285 
1286     unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1);
1287 
1288     return 0;
1289 }
1290 #endif
1291 
1292 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
1293 /* do_select() must return target values and target errnos. */
1294 static abi_long do_select(int n,
1295                           abi_ulong rfd_addr, abi_ulong wfd_addr,
1296                           abi_ulong efd_addr, abi_ulong target_tv_addr)
1297 {
1298     fd_set rfds, wfds, efds;
1299     fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1300     struct timeval tv;
1301     struct timespec ts, *ts_ptr;
1302     abi_long ret;
1303 
1304     ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1305     if (ret) {
1306         return ret;
1307     }
1308     ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1309     if (ret) {
1310         return ret;
1311     }
1312     ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1313     if (ret) {
1314         return ret;
1315     }
1316 
1317     if (target_tv_addr) {
1318         if (copy_from_user_timeval(&tv, target_tv_addr))
1319             return -TARGET_EFAULT;
1320         ts.tv_sec = tv.tv_sec;
1321         ts.tv_nsec = tv.tv_usec * 1000;
1322         ts_ptr = &ts;
1323     } else {
1324         ts_ptr = NULL;
1325     }
1326 
1327     ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1328                                   ts_ptr, NULL));
1329 
1330     if (!is_error(ret)) {
1331         if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
1332             return -TARGET_EFAULT;
1333         if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
1334             return -TARGET_EFAULT;
1335         if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
1336             return -TARGET_EFAULT;
1337 
1338         if (target_tv_addr) {
1339             tv.tv_sec = ts.tv_sec;
1340             tv.tv_usec = ts.tv_nsec / 1000;
1341             if (copy_to_user_timeval(target_tv_addr, &tv)) {
1342                 return -TARGET_EFAULT;
1343             }
1344         }
1345     }
1346 
1347     return ret;
1348 }
1349 
1350 #if defined(TARGET_WANT_OLD_SYS_SELECT)
1351 static abi_long do_old_select(abi_ulong arg1)
1352 {
1353     struct target_sel_arg_struct *sel;
1354     abi_ulong inp, outp, exp, tvp;
1355     long nsel;
1356 
1357     if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) {
1358         return -TARGET_EFAULT;
1359     }
1360 
1361     nsel = tswapal(sel->n);
1362     inp = tswapal(sel->inp);
1363     outp = tswapal(sel->outp);
1364     exp = tswapal(sel->exp);
1365     tvp = tswapal(sel->tvp);
1366 
1367     unlock_user_struct(sel, arg1, 0);
1368 
1369     return do_select(nsel, inp, outp, exp, tvp);
1370 }
1371 #endif
1372 #endif
1373 
1374 #if defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
1375 static abi_long do_pselect6(abi_long arg1, abi_long arg2, abi_long arg3,
1376                             abi_long arg4, abi_long arg5, abi_long arg6,
1377                             bool time64)
1378 {
1379     abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr;
1380     fd_set rfds, wfds, efds;
1381     fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1382     struct timespec ts, *ts_ptr;
1383     abi_long ret;
1384 
1385     /*
1386      * The 6th arg is actually two args smashed together,
1387      * so we cannot use the C library.
1388      */
1389     struct {
1390         sigset_t *set;
1391         size_t size;
1392     } sig, *sig_ptr;
1393 
1394     abi_ulong arg_sigset, arg_sigsize, *arg7;
1395 
1396     n = arg1;
1397     rfd_addr = arg2;
1398     wfd_addr = arg3;
1399     efd_addr = arg4;
1400     ts_addr = arg5;
1401 
1402     ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1403     if (ret) {
1404         return ret;
1405     }
1406     ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1407     if (ret) {
1408         return ret;
1409     }
1410     ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1411     if (ret) {
1412         return ret;
1413     }
1414 
1415     /*
1416      * This takes a timespec, and not a timeval, so we cannot
1417      * use the do_select() helper ...
1418      */
1419     if (ts_addr) {
1420         if (time64) {
1421             if (target_to_host_timespec64(&ts, ts_addr)) {
1422                 return -TARGET_EFAULT;
1423             }
1424         } else {
1425             if (target_to_host_timespec(&ts, ts_addr)) {
1426                 return -TARGET_EFAULT;
1427             }
1428         }
1429             ts_ptr = &ts;
1430     } else {
1431         ts_ptr = NULL;
1432     }
1433 
1434     /* Extract the two packed args for the sigset */
1435     sig_ptr = NULL;
1436     if (arg6) {
1437         arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1);
1438         if (!arg7) {
1439             return -TARGET_EFAULT;
1440         }
1441         arg_sigset = tswapal(arg7[0]);
1442         arg_sigsize = tswapal(arg7[1]);
1443         unlock_user(arg7, arg6, 0);
1444 
1445         if (arg_sigset) {
1446             ret = process_sigsuspend_mask(&sig.set, arg_sigset, arg_sigsize);
1447             if (ret != 0) {
1448                 return ret;
1449             }
1450             sig_ptr = &sig;
1451             sig.size = SIGSET_T_SIZE;
1452         }
1453     }
1454 
1455     ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1456                                   ts_ptr, sig_ptr));
1457 
1458     if (sig_ptr) {
1459         finish_sigsuspend_mask(ret);
1460     }
1461 
1462     if (!is_error(ret)) {
1463         if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) {
1464             return -TARGET_EFAULT;
1465         }
1466         if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) {
1467             return -TARGET_EFAULT;
1468         }
1469         if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) {
1470             return -TARGET_EFAULT;
1471         }
1472         if (time64) {
1473             if (ts_addr && host_to_target_timespec64(ts_addr, &ts)) {
1474                 return -TARGET_EFAULT;
1475             }
1476         } else {
1477             if (ts_addr && host_to_target_timespec(ts_addr, &ts)) {
1478                 return -TARGET_EFAULT;
1479             }
1480         }
1481     }
1482     return ret;
1483 }
1484 #endif
1485 
1486 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll) || \
1487     defined(TARGET_NR_ppoll_time64)
1488 static abi_long do_ppoll(abi_long arg1, abi_long arg2, abi_long arg3,
1489                          abi_long arg4, abi_long arg5, bool ppoll, bool time64)
1490 {
1491     struct target_pollfd *target_pfd;
1492     unsigned int nfds = arg2;
1493     struct pollfd *pfd;
1494     unsigned int i;
1495     abi_long ret;
1496 
1497     pfd = NULL;
1498     target_pfd = NULL;
1499     if (nfds) {
1500         if (nfds > (INT_MAX / sizeof(struct target_pollfd))) {
1501             return -TARGET_EINVAL;
1502         }
1503         target_pfd = lock_user(VERIFY_WRITE, arg1,
1504                                sizeof(struct target_pollfd) * nfds, 1);
1505         if (!target_pfd) {
1506             return -TARGET_EFAULT;
1507         }
1508 
1509         pfd = alloca(sizeof(struct pollfd) * nfds);
1510         for (i = 0; i < nfds; i++) {
1511             pfd[i].fd = tswap32(target_pfd[i].fd);
1512             pfd[i].events = tswap16(target_pfd[i].events);
1513         }
1514     }
1515     if (ppoll) {
1516         struct timespec _timeout_ts, *timeout_ts = &_timeout_ts;
1517         sigset_t *set = NULL;
1518 
1519         if (arg3) {
1520             if (time64) {
1521                 if (target_to_host_timespec64(timeout_ts, arg3)) {
1522                     unlock_user(target_pfd, arg1, 0);
1523                     return -TARGET_EFAULT;
1524                 }
1525             } else {
1526                 if (target_to_host_timespec(timeout_ts, arg3)) {
1527                     unlock_user(target_pfd, arg1, 0);
1528                     return -TARGET_EFAULT;
1529                 }
1530             }
1531         } else {
1532             timeout_ts = NULL;
1533         }
1534 
1535         if (arg4) {
1536             ret = process_sigsuspend_mask(&set, arg4, arg5);
1537             if (ret != 0) {
1538                 unlock_user(target_pfd, arg1, 0);
1539                 return ret;
1540             }
1541         }
1542 
1543         ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts,
1544                                    set, SIGSET_T_SIZE));
1545 
1546         if (set) {
1547             finish_sigsuspend_mask(ret);
1548         }
1549         if (!is_error(ret) && arg3) {
1550             if (time64) {
1551                 if (host_to_target_timespec64(arg3, timeout_ts)) {
1552                     return -TARGET_EFAULT;
1553                 }
1554             } else {
1555                 if (host_to_target_timespec(arg3, timeout_ts)) {
1556                     return -TARGET_EFAULT;
1557                 }
1558             }
1559         }
1560     } else {
1561           struct timespec ts, *pts;
1562 
1563           if (arg3 >= 0) {
1564               /* Convert ms to secs, ns */
1565               ts.tv_sec = arg3 / 1000;
1566               ts.tv_nsec = (arg3 % 1000) * 1000000LL;
1567               pts = &ts;
1568           } else {
1569               /* -ve poll() timeout means "infinite" */
1570               pts = NULL;
1571           }
1572           ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0));
1573     }
1574 
1575     if (!is_error(ret)) {
1576         for (i = 0; i < nfds; i++) {
1577             target_pfd[i].revents = tswap16(pfd[i].revents);
1578         }
1579     }
1580     unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds);
1581     return ret;
1582 }
1583 #endif
1584 
1585 static abi_long do_pipe(CPUArchState *cpu_env, abi_ulong pipedes,
1586                         int flags, int is_pipe2)
1587 {
1588     int host_pipe[2];
1589     abi_long ret;
1590     ret = pipe2(host_pipe, flags);
1591 
1592     if (is_error(ret))
1593         return get_errno(ret);
1594 
1595     /* Several targets have special calling conventions for the original
1596        pipe syscall, but didn't replicate this into the pipe2 syscall.  */
1597     if (!is_pipe2) {
1598 #if defined(TARGET_ALPHA)
1599         cpu_env->ir[IR_A4] = host_pipe[1];
1600         return host_pipe[0];
1601 #elif defined(TARGET_MIPS)
1602         cpu_env->active_tc.gpr[3] = host_pipe[1];
1603         return host_pipe[0];
1604 #elif defined(TARGET_SH4)
1605         cpu_env->gregs[1] = host_pipe[1];
1606         return host_pipe[0];
1607 #elif defined(TARGET_SPARC)
1608         cpu_env->regwptr[1] = host_pipe[1];
1609         return host_pipe[0];
1610 #endif
1611     }
1612 
1613     if (put_user_s32(host_pipe[0], pipedes)
1614         || put_user_s32(host_pipe[1], pipedes + sizeof(abi_int)))
1615         return -TARGET_EFAULT;
1616     return get_errno(ret);
1617 }
1618 
1619 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr,
1620                                                abi_ulong target_addr,
1621                                                socklen_t len)
1622 {
1623     const socklen_t unix_maxlen = sizeof (struct sockaddr_un);
1624     sa_family_t sa_family;
1625     struct target_sockaddr *target_saddr;
1626 
1627     if (fd_trans_target_to_host_addr(fd)) {
1628         return fd_trans_target_to_host_addr(fd)(addr, target_addr, len);
1629     }
1630 
1631     target_saddr = lock_user(VERIFY_READ, target_addr, len, 1);
1632     if (!target_saddr)
1633         return -TARGET_EFAULT;
1634 
1635     sa_family = tswap16(target_saddr->sa_family);
1636 
1637     /* Oops. The caller might send a incomplete sun_path; sun_path
1638      * must be terminated by \0 (see the manual page), but
1639      * unfortunately it is quite common to specify sockaddr_un
1640      * length as "strlen(x->sun_path)" while it should be
1641      * "strlen(...) + 1". We'll fix that here if needed.
1642      * Linux kernel has a similar feature.
1643      */
1644 
1645     if (sa_family == AF_UNIX) {
1646         if (len < unix_maxlen && len > 0) {
1647             char *cp = (char*)target_saddr;
1648 
1649             if ( cp[len-1] && !cp[len] )
1650                 len++;
1651         }
1652         if (len > unix_maxlen)
1653             len = unix_maxlen;
1654     }
1655 
1656     memcpy(addr, target_saddr, len);
1657     addr->sa_family = sa_family;
1658     if (sa_family == AF_NETLINK) {
1659         struct sockaddr_nl *nladdr;
1660 
1661         nladdr = (struct sockaddr_nl *)addr;
1662         nladdr->nl_pid = tswap32(nladdr->nl_pid);
1663         nladdr->nl_groups = tswap32(nladdr->nl_groups);
1664     } else if (sa_family == AF_PACKET) {
1665 	struct target_sockaddr_ll *lladdr;
1666 
1667 	lladdr = (struct target_sockaddr_ll *)addr;
1668 	lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex);
1669 	lladdr->sll_hatype = tswap16(lladdr->sll_hatype);
1670     } else if (sa_family == AF_INET6) {
1671         struct sockaddr_in6 *in6addr;
1672 
1673         in6addr = (struct sockaddr_in6 *)addr;
1674         in6addr->sin6_scope_id = tswap32(in6addr->sin6_scope_id);
1675     }
1676     unlock_user(target_saddr, target_addr, 0);
1677 
1678     return 0;
1679 }
1680 
1681 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr,
1682                                                struct sockaddr *addr,
1683                                                socklen_t len)
1684 {
1685     struct target_sockaddr *target_saddr;
1686 
1687     if (len == 0) {
1688         return 0;
1689     }
1690     assert(addr);
1691 
1692     target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0);
1693     if (!target_saddr)
1694         return -TARGET_EFAULT;
1695     memcpy(target_saddr, addr, len);
1696     if (len >= offsetof(struct target_sockaddr, sa_family) +
1697         sizeof(target_saddr->sa_family)) {
1698         target_saddr->sa_family = tswap16(addr->sa_family);
1699     }
1700     if (addr->sa_family == AF_NETLINK &&
1701         len >= sizeof(struct target_sockaddr_nl)) {
1702         struct target_sockaddr_nl *target_nl =
1703                (struct target_sockaddr_nl *)target_saddr;
1704         target_nl->nl_pid = tswap32(target_nl->nl_pid);
1705         target_nl->nl_groups = tswap32(target_nl->nl_groups);
1706     } else if (addr->sa_family == AF_PACKET) {
1707         struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr;
1708         target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex);
1709         target_ll->sll_hatype = tswap16(target_ll->sll_hatype);
1710     } else if (addr->sa_family == AF_INET6 &&
1711                len >= sizeof(struct target_sockaddr_in6)) {
1712         struct target_sockaddr_in6 *target_in6 =
1713                (struct target_sockaddr_in6 *)target_saddr;
1714         target_in6->sin6_scope_id = tswap16(target_in6->sin6_scope_id);
1715     }
1716     unlock_user(target_saddr, target_addr, len);
1717 
1718     return 0;
1719 }
1720 
1721 static inline abi_long target_to_host_cmsg(struct msghdr *msgh,
1722                                            struct target_msghdr *target_msgh)
1723 {
1724     struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1725     abi_long msg_controllen;
1726     abi_ulong target_cmsg_addr;
1727     struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1728     socklen_t space = 0;
1729 
1730     msg_controllen = tswapal(target_msgh->msg_controllen);
1731     if (msg_controllen < sizeof (struct target_cmsghdr))
1732         goto the_end;
1733     target_cmsg_addr = tswapal(target_msgh->msg_control);
1734     target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1);
1735     target_cmsg_start = target_cmsg;
1736     if (!target_cmsg)
1737         return -TARGET_EFAULT;
1738 
1739     while (cmsg && target_cmsg) {
1740         void *data = CMSG_DATA(cmsg);
1741         void *target_data = TARGET_CMSG_DATA(target_cmsg);
1742 
1743         int len = tswapal(target_cmsg->cmsg_len)
1744             - sizeof(struct target_cmsghdr);
1745 
1746         space += CMSG_SPACE(len);
1747         if (space > msgh->msg_controllen) {
1748             space -= CMSG_SPACE(len);
1749             /* This is a QEMU bug, since we allocated the payload
1750              * area ourselves (unlike overflow in host-to-target
1751              * conversion, which is just the guest giving us a buffer
1752              * that's too small). It can't happen for the payload types
1753              * we currently support; if it becomes an issue in future
1754              * we would need to improve our allocation strategy to
1755              * something more intelligent than "twice the size of the
1756              * target buffer we're reading from".
1757              */
1758             qemu_log_mask(LOG_UNIMP,
1759                           ("Unsupported ancillary data %d/%d: "
1760                            "unhandled msg size\n"),
1761                           tswap32(target_cmsg->cmsg_level),
1762                           tswap32(target_cmsg->cmsg_type));
1763             break;
1764         }
1765 
1766         if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) {
1767             cmsg->cmsg_level = SOL_SOCKET;
1768         } else {
1769             cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level);
1770         }
1771         cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type);
1772         cmsg->cmsg_len = CMSG_LEN(len);
1773 
1774         if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
1775             int *fd = (int *)data;
1776             int *target_fd = (int *)target_data;
1777             int i, numfds = len / sizeof(int);
1778 
1779             for (i = 0; i < numfds; i++) {
1780                 __get_user(fd[i], target_fd + i);
1781             }
1782         } else if (cmsg->cmsg_level == SOL_SOCKET
1783                &&  cmsg->cmsg_type == SCM_CREDENTIALS) {
1784             struct ucred *cred = (struct ucred *)data;
1785             struct target_ucred *target_cred =
1786                 (struct target_ucred *)target_data;
1787 
1788             __get_user(cred->pid, &target_cred->pid);
1789             __get_user(cred->uid, &target_cred->uid);
1790             __get_user(cred->gid, &target_cred->gid);
1791         } else if (cmsg->cmsg_level == SOL_ALG) {
1792             uint32_t *dst = (uint32_t *)data;
1793 
1794             memcpy(dst, target_data, len);
1795             /* fix endianness of first 32-bit word */
1796             if (len >= sizeof(uint32_t)) {
1797                 *dst = tswap32(*dst);
1798             }
1799         } else {
1800             qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
1801                           cmsg->cmsg_level, cmsg->cmsg_type);
1802             memcpy(data, target_data, len);
1803         }
1804 
1805         cmsg = CMSG_NXTHDR(msgh, cmsg);
1806         target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
1807                                          target_cmsg_start);
1808     }
1809     unlock_user(target_cmsg, target_cmsg_addr, 0);
1810  the_end:
1811     msgh->msg_controllen = space;
1812     return 0;
1813 }
1814 
1815 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh,
1816                                            struct msghdr *msgh)
1817 {
1818     struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1819     abi_long msg_controllen;
1820     abi_ulong target_cmsg_addr;
1821     struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1822     socklen_t space = 0;
1823 
1824     msg_controllen = tswapal(target_msgh->msg_controllen);
1825     if (msg_controllen < sizeof (struct target_cmsghdr))
1826         goto the_end;
1827     target_cmsg_addr = tswapal(target_msgh->msg_control);
1828     target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0);
1829     target_cmsg_start = target_cmsg;
1830     if (!target_cmsg)
1831         return -TARGET_EFAULT;
1832 
1833     while (cmsg && target_cmsg) {
1834         void *data = CMSG_DATA(cmsg);
1835         void *target_data = TARGET_CMSG_DATA(target_cmsg);
1836 
1837         int len = cmsg->cmsg_len - sizeof(struct cmsghdr);
1838         int tgt_len, tgt_space;
1839 
1840         /* We never copy a half-header but may copy half-data;
1841          * this is Linux's behaviour in put_cmsg(). Note that
1842          * truncation here is a guest problem (which we report
1843          * to the guest via the CTRUNC bit), unlike truncation
1844          * in target_to_host_cmsg, which is a QEMU bug.
1845          */
1846         if (msg_controllen < sizeof(struct target_cmsghdr)) {
1847             target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1848             break;
1849         }
1850 
1851         if (cmsg->cmsg_level == SOL_SOCKET) {
1852             target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET);
1853         } else {
1854             target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level);
1855         }
1856         target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type);
1857 
1858         /* Payload types which need a different size of payload on
1859          * the target must adjust tgt_len here.
1860          */
1861         tgt_len = len;
1862         switch (cmsg->cmsg_level) {
1863         case SOL_SOCKET:
1864             switch (cmsg->cmsg_type) {
1865             case SO_TIMESTAMP:
1866                 tgt_len = sizeof(struct target_timeval);
1867                 break;
1868             default:
1869                 break;
1870             }
1871             break;
1872         default:
1873             break;
1874         }
1875 
1876         if (msg_controllen < TARGET_CMSG_LEN(tgt_len)) {
1877             target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1878             tgt_len = msg_controllen - sizeof(struct target_cmsghdr);
1879         }
1880 
1881         /* We must now copy-and-convert len bytes of payload
1882          * into tgt_len bytes of destination space. Bear in mind
1883          * that in both source and destination we may be dealing
1884          * with a truncated value!
1885          */
1886         switch (cmsg->cmsg_level) {
1887         case SOL_SOCKET:
1888             switch (cmsg->cmsg_type) {
1889             case SCM_RIGHTS:
1890             {
1891                 int *fd = (int *)data;
1892                 int *target_fd = (int *)target_data;
1893                 int i, numfds = tgt_len / sizeof(int);
1894 
1895                 for (i = 0; i < numfds; i++) {
1896                     __put_user(fd[i], target_fd + i);
1897                 }
1898                 break;
1899             }
1900             case SO_TIMESTAMP:
1901             {
1902                 struct timeval *tv = (struct timeval *)data;
1903                 struct target_timeval *target_tv =
1904                     (struct target_timeval *)target_data;
1905 
1906                 if (len != sizeof(struct timeval) ||
1907                     tgt_len != sizeof(struct target_timeval)) {
1908                     goto unimplemented;
1909                 }
1910 
1911                 /* copy struct timeval to target */
1912                 __put_user(tv->tv_sec, &target_tv->tv_sec);
1913                 __put_user(tv->tv_usec, &target_tv->tv_usec);
1914                 break;
1915             }
1916             case SCM_CREDENTIALS:
1917             {
1918                 struct ucred *cred = (struct ucred *)data;
1919                 struct target_ucred *target_cred =
1920                     (struct target_ucred *)target_data;
1921 
1922                 __put_user(cred->pid, &target_cred->pid);
1923                 __put_user(cred->uid, &target_cred->uid);
1924                 __put_user(cred->gid, &target_cred->gid);
1925                 break;
1926             }
1927             default:
1928                 goto unimplemented;
1929             }
1930             break;
1931 
1932         case SOL_IP:
1933             switch (cmsg->cmsg_type) {
1934             case IP_TTL:
1935             {
1936                 uint32_t *v = (uint32_t *)data;
1937                 uint32_t *t_int = (uint32_t *)target_data;
1938 
1939                 if (len != sizeof(uint32_t) ||
1940                     tgt_len != sizeof(uint32_t)) {
1941                     goto unimplemented;
1942                 }
1943                 __put_user(*v, t_int);
1944                 break;
1945             }
1946             case IP_RECVERR:
1947             {
1948                 struct errhdr_t {
1949                    struct sock_extended_err ee;
1950                    struct sockaddr_in offender;
1951                 };
1952                 struct errhdr_t *errh = (struct errhdr_t *)data;
1953                 struct errhdr_t *target_errh =
1954                     (struct errhdr_t *)target_data;
1955 
1956                 if (len != sizeof(struct errhdr_t) ||
1957                     tgt_len != sizeof(struct errhdr_t)) {
1958                     goto unimplemented;
1959                 }
1960                 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
1961                 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
1962                 __put_user(errh->ee.ee_type,  &target_errh->ee.ee_type);
1963                 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
1964                 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
1965                 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
1966                 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
1967                 host_to_target_sockaddr((unsigned long) &target_errh->offender,
1968                     (void *) &errh->offender, sizeof(errh->offender));
1969                 break;
1970             }
1971             default:
1972                 goto unimplemented;
1973             }
1974             break;
1975 
1976         case SOL_IPV6:
1977             switch (cmsg->cmsg_type) {
1978             case IPV6_HOPLIMIT:
1979             {
1980                 uint32_t *v = (uint32_t *)data;
1981                 uint32_t *t_int = (uint32_t *)target_data;
1982 
1983                 if (len != sizeof(uint32_t) ||
1984                     tgt_len != sizeof(uint32_t)) {
1985                     goto unimplemented;
1986                 }
1987                 __put_user(*v, t_int);
1988                 break;
1989             }
1990             case IPV6_RECVERR:
1991             {
1992                 struct errhdr6_t {
1993                    struct sock_extended_err ee;
1994                    struct sockaddr_in6 offender;
1995                 };
1996                 struct errhdr6_t *errh = (struct errhdr6_t *)data;
1997                 struct errhdr6_t *target_errh =
1998                     (struct errhdr6_t *)target_data;
1999 
2000                 if (len != sizeof(struct errhdr6_t) ||
2001                     tgt_len != sizeof(struct errhdr6_t)) {
2002                     goto unimplemented;
2003                 }
2004                 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
2005                 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
2006                 __put_user(errh->ee.ee_type,  &target_errh->ee.ee_type);
2007                 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
2008                 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
2009                 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
2010                 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
2011                 host_to_target_sockaddr((unsigned long) &target_errh->offender,
2012                     (void *) &errh->offender, sizeof(errh->offender));
2013                 break;
2014             }
2015             default:
2016                 goto unimplemented;
2017             }
2018             break;
2019 
2020         default:
2021         unimplemented:
2022             qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
2023                           cmsg->cmsg_level, cmsg->cmsg_type);
2024             memcpy(target_data, data, MIN(len, tgt_len));
2025             if (tgt_len > len) {
2026                 memset(target_data + len, 0, tgt_len - len);
2027             }
2028         }
2029 
2030         target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(tgt_len));
2031         tgt_space = TARGET_CMSG_SPACE(tgt_len);
2032         if (msg_controllen < tgt_space) {
2033             tgt_space = msg_controllen;
2034         }
2035         msg_controllen -= tgt_space;
2036         space += tgt_space;
2037         cmsg = CMSG_NXTHDR(msgh, cmsg);
2038         target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
2039                                          target_cmsg_start);
2040     }
2041     unlock_user(target_cmsg, target_cmsg_addr, space);
2042  the_end:
2043     target_msgh->msg_controllen = tswapal(space);
2044     return 0;
2045 }
2046 
2047 /* do_setsockopt() Must return target values and target errnos. */
2048 static abi_long do_setsockopt(int sockfd, int level, int optname,
2049                               abi_ulong optval_addr, socklen_t optlen)
2050 {
2051     abi_long ret;
2052     int val;
2053 
2054     switch(level) {
2055     case SOL_TCP:
2056     case SOL_UDP:
2057         /* TCP and UDP options all take an 'int' value.  */
2058         if (optlen < sizeof(uint32_t))
2059             return -TARGET_EINVAL;
2060 
2061         if (get_user_u32(val, optval_addr))
2062             return -TARGET_EFAULT;
2063         ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2064         break;
2065     case SOL_IP:
2066         switch(optname) {
2067         case IP_TOS:
2068         case IP_TTL:
2069         case IP_HDRINCL:
2070         case IP_ROUTER_ALERT:
2071         case IP_RECVOPTS:
2072         case IP_RETOPTS:
2073         case IP_PKTINFO:
2074         case IP_MTU_DISCOVER:
2075         case IP_RECVERR:
2076         case IP_RECVTTL:
2077         case IP_RECVTOS:
2078 #ifdef IP_FREEBIND
2079         case IP_FREEBIND:
2080 #endif
2081         case IP_MULTICAST_TTL:
2082         case IP_MULTICAST_LOOP:
2083             val = 0;
2084             if (optlen >= sizeof(uint32_t)) {
2085                 if (get_user_u32(val, optval_addr))
2086                     return -TARGET_EFAULT;
2087             } else if (optlen >= 1) {
2088                 if (get_user_u8(val, optval_addr))
2089                     return -TARGET_EFAULT;
2090             }
2091             ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2092             break;
2093         case IP_ADD_MEMBERSHIP:
2094         case IP_DROP_MEMBERSHIP:
2095         {
2096             struct ip_mreqn ip_mreq;
2097             struct target_ip_mreqn *target_smreqn;
2098 
2099             QEMU_BUILD_BUG_ON(sizeof(struct ip_mreq) !=
2100                               sizeof(struct target_ip_mreq));
2101 
2102             if (optlen < sizeof (struct target_ip_mreq) ||
2103                 optlen > sizeof (struct target_ip_mreqn)) {
2104                 return -TARGET_EINVAL;
2105             }
2106 
2107             target_smreqn = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2108             if (!target_smreqn) {
2109                 return -TARGET_EFAULT;
2110             }
2111             ip_mreq.imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr;
2112             ip_mreq.imr_address.s_addr = target_smreqn->imr_address.s_addr;
2113             if (optlen == sizeof(struct target_ip_mreqn)) {
2114                 ip_mreq.imr_ifindex = tswapal(target_smreqn->imr_ifindex);
2115                 optlen = sizeof(struct ip_mreqn);
2116             }
2117             unlock_user(target_smreqn, optval_addr, 0);
2118 
2119             ret = get_errno(setsockopt(sockfd, level, optname, &ip_mreq, optlen));
2120             break;
2121         }
2122         case IP_BLOCK_SOURCE:
2123         case IP_UNBLOCK_SOURCE:
2124         case IP_ADD_SOURCE_MEMBERSHIP:
2125         case IP_DROP_SOURCE_MEMBERSHIP:
2126         {
2127             struct ip_mreq_source *ip_mreq_source;
2128 
2129             if (optlen != sizeof (struct target_ip_mreq_source))
2130                 return -TARGET_EINVAL;
2131 
2132             ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2133             if (!ip_mreq_source) {
2134                 return -TARGET_EFAULT;
2135             }
2136             ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen));
2137             unlock_user (ip_mreq_source, optval_addr, 0);
2138             break;
2139         }
2140         default:
2141             goto unimplemented;
2142         }
2143         break;
2144     case SOL_IPV6:
2145         switch (optname) {
2146         case IPV6_MTU_DISCOVER:
2147         case IPV6_MTU:
2148         case IPV6_V6ONLY:
2149         case IPV6_RECVPKTINFO:
2150         case IPV6_UNICAST_HOPS:
2151         case IPV6_MULTICAST_HOPS:
2152         case IPV6_MULTICAST_LOOP:
2153         case IPV6_RECVERR:
2154         case IPV6_RECVHOPLIMIT:
2155         case IPV6_2292HOPLIMIT:
2156         case IPV6_CHECKSUM:
2157         case IPV6_ADDRFORM:
2158         case IPV6_2292PKTINFO:
2159         case IPV6_RECVTCLASS:
2160         case IPV6_RECVRTHDR:
2161         case IPV6_2292RTHDR:
2162         case IPV6_RECVHOPOPTS:
2163         case IPV6_2292HOPOPTS:
2164         case IPV6_RECVDSTOPTS:
2165         case IPV6_2292DSTOPTS:
2166         case IPV6_TCLASS:
2167         case IPV6_ADDR_PREFERENCES:
2168 #ifdef IPV6_RECVPATHMTU
2169         case IPV6_RECVPATHMTU:
2170 #endif
2171 #ifdef IPV6_TRANSPARENT
2172         case IPV6_TRANSPARENT:
2173 #endif
2174 #ifdef IPV6_FREEBIND
2175         case IPV6_FREEBIND:
2176 #endif
2177 #ifdef IPV6_RECVORIGDSTADDR
2178         case IPV6_RECVORIGDSTADDR:
2179 #endif
2180             val = 0;
2181             if (optlen < sizeof(uint32_t)) {
2182                 return -TARGET_EINVAL;
2183             }
2184             if (get_user_u32(val, optval_addr)) {
2185                 return -TARGET_EFAULT;
2186             }
2187             ret = get_errno(setsockopt(sockfd, level, optname,
2188                                        &val, sizeof(val)));
2189             break;
2190         case IPV6_PKTINFO:
2191         {
2192             struct in6_pktinfo pki;
2193 
2194             if (optlen < sizeof(pki)) {
2195                 return -TARGET_EINVAL;
2196             }
2197 
2198             if (copy_from_user(&pki, optval_addr, sizeof(pki))) {
2199                 return -TARGET_EFAULT;
2200             }
2201 
2202             pki.ipi6_ifindex = tswap32(pki.ipi6_ifindex);
2203 
2204             ret = get_errno(setsockopt(sockfd, level, optname,
2205                                        &pki, sizeof(pki)));
2206             break;
2207         }
2208         case IPV6_ADD_MEMBERSHIP:
2209         case IPV6_DROP_MEMBERSHIP:
2210         {
2211             struct ipv6_mreq ipv6mreq;
2212 
2213             if (optlen < sizeof(ipv6mreq)) {
2214                 return -TARGET_EINVAL;
2215             }
2216 
2217             if (copy_from_user(&ipv6mreq, optval_addr, sizeof(ipv6mreq))) {
2218                 return -TARGET_EFAULT;
2219             }
2220 
2221             ipv6mreq.ipv6mr_interface = tswap32(ipv6mreq.ipv6mr_interface);
2222 
2223             ret = get_errno(setsockopt(sockfd, level, optname,
2224                                        &ipv6mreq, sizeof(ipv6mreq)));
2225             break;
2226         }
2227         default:
2228             goto unimplemented;
2229         }
2230         break;
2231     case SOL_ICMPV6:
2232         switch (optname) {
2233         case ICMPV6_FILTER:
2234         {
2235             struct icmp6_filter icmp6f;
2236 
2237             if (optlen > sizeof(icmp6f)) {
2238                 optlen = sizeof(icmp6f);
2239             }
2240 
2241             if (copy_from_user(&icmp6f, optval_addr, optlen)) {
2242                 return -TARGET_EFAULT;
2243             }
2244 
2245             for (val = 0; val < 8; val++) {
2246                 icmp6f.data[val] = tswap32(icmp6f.data[val]);
2247             }
2248 
2249             ret = get_errno(setsockopt(sockfd, level, optname,
2250                                        &icmp6f, optlen));
2251             break;
2252         }
2253         default:
2254             goto unimplemented;
2255         }
2256         break;
2257     case SOL_RAW:
2258         switch (optname) {
2259         case ICMP_FILTER:
2260         case IPV6_CHECKSUM:
2261             /* those take an u32 value */
2262             if (optlen < sizeof(uint32_t)) {
2263                 return -TARGET_EINVAL;
2264             }
2265 
2266             if (get_user_u32(val, optval_addr)) {
2267                 return -TARGET_EFAULT;
2268             }
2269             ret = get_errno(setsockopt(sockfd, level, optname,
2270                                        &val, sizeof(val)));
2271             break;
2272 
2273         default:
2274             goto unimplemented;
2275         }
2276         break;
2277 #if defined(SOL_ALG) && defined(ALG_SET_KEY) && defined(ALG_SET_AEAD_AUTHSIZE)
2278     case SOL_ALG:
2279         switch (optname) {
2280         case ALG_SET_KEY:
2281         {
2282             char *alg_key = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2283             if (!alg_key) {
2284                 return -TARGET_EFAULT;
2285             }
2286             ret = get_errno(setsockopt(sockfd, level, optname,
2287                                        alg_key, optlen));
2288             unlock_user(alg_key, optval_addr, optlen);
2289             break;
2290         }
2291         case ALG_SET_AEAD_AUTHSIZE:
2292         {
2293             ret = get_errno(setsockopt(sockfd, level, optname,
2294                                        NULL, optlen));
2295             break;
2296         }
2297         default:
2298             goto unimplemented;
2299         }
2300         break;
2301 #endif
2302     case TARGET_SOL_SOCKET:
2303         switch (optname) {
2304         case TARGET_SO_RCVTIMEO:
2305         case TARGET_SO_SNDTIMEO:
2306         {
2307                 struct timeval tv;
2308 
2309                 if (optlen != sizeof(struct target_timeval)) {
2310                     return -TARGET_EINVAL;
2311                 }
2312 
2313                 if (copy_from_user_timeval(&tv, optval_addr)) {
2314                     return -TARGET_EFAULT;
2315                 }
2316 
2317                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET,
2318                                 optname == TARGET_SO_RCVTIMEO ?
2319                                     SO_RCVTIMEO : SO_SNDTIMEO,
2320                                 &tv, sizeof(tv)));
2321                 return ret;
2322         }
2323         case TARGET_SO_ATTACH_FILTER:
2324         {
2325                 struct target_sock_fprog *tfprog;
2326                 struct target_sock_filter *tfilter;
2327                 struct sock_fprog fprog;
2328                 struct sock_filter *filter;
2329                 int i;
2330 
2331                 if (optlen != sizeof(*tfprog)) {
2332                     return -TARGET_EINVAL;
2333                 }
2334                 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) {
2335                     return -TARGET_EFAULT;
2336                 }
2337                 if (!lock_user_struct(VERIFY_READ, tfilter,
2338                                       tswapal(tfprog->filter), 0)) {
2339                     unlock_user_struct(tfprog, optval_addr, 1);
2340                     return -TARGET_EFAULT;
2341                 }
2342 
2343                 fprog.len = tswap16(tfprog->len);
2344                 filter = g_try_new(struct sock_filter, fprog.len);
2345                 if (filter == NULL) {
2346                     unlock_user_struct(tfilter, tfprog->filter, 1);
2347                     unlock_user_struct(tfprog, optval_addr, 1);
2348                     return -TARGET_ENOMEM;
2349                 }
2350                 for (i = 0; i < fprog.len; i++) {
2351                     filter[i].code = tswap16(tfilter[i].code);
2352                     filter[i].jt = tfilter[i].jt;
2353                     filter[i].jf = tfilter[i].jf;
2354                     filter[i].k = tswap32(tfilter[i].k);
2355                 }
2356                 fprog.filter = filter;
2357 
2358                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET,
2359                                 SO_ATTACH_FILTER, &fprog, sizeof(fprog)));
2360                 g_free(filter);
2361 
2362                 unlock_user_struct(tfilter, tfprog->filter, 1);
2363                 unlock_user_struct(tfprog, optval_addr, 1);
2364                 return ret;
2365         }
2366 	case TARGET_SO_BINDTODEVICE:
2367 	{
2368 		char *dev_ifname, *addr_ifname;
2369 
2370 		if (optlen > IFNAMSIZ - 1) {
2371 		    optlen = IFNAMSIZ - 1;
2372 		}
2373 		dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2374 		if (!dev_ifname) {
2375 		    return -TARGET_EFAULT;
2376 		}
2377 		optname = SO_BINDTODEVICE;
2378 		addr_ifname = alloca(IFNAMSIZ);
2379 		memcpy(addr_ifname, dev_ifname, optlen);
2380 		addr_ifname[optlen] = 0;
2381 		ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2382                                            addr_ifname, optlen));
2383 		unlock_user (dev_ifname, optval_addr, 0);
2384 		return ret;
2385 	}
2386         case TARGET_SO_LINGER:
2387         {
2388                 struct linger lg;
2389                 struct target_linger *tlg;
2390 
2391                 if (optlen != sizeof(struct target_linger)) {
2392                     return -TARGET_EINVAL;
2393                 }
2394                 if (!lock_user_struct(VERIFY_READ, tlg, optval_addr, 1)) {
2395                     return -TARGET_EFAULT;
2396                 }
2397                 __get_user(lg.l_onoff, &tlg->l_onoff);
2398                 __get_user(lg.l_linger, &tlg->l_linger);
2399                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, SO_LINGER,
2400                                 &lg, sizeof(lg)));
2401                 unlock_user_struct(tlg, optval_addr, 0);
2402                 return ret;
2403         }
2404             /* Options with 'int' argument.  */
2405         case TARGET_SO_DEBUG:
2406 		optname = SO_DEBUG;
2407 		break;
2408         case TARGET_SO_REUSEADDR:
2409 		optname = SO_REUSEADDR;
2410 		break;
2411 #ifdef SO_REUSEPORT
2412         case TARGET_SO_REUSEPORT:
2413                 optname = SO_REUSEPORT;
2414                 break;
2415 #endif
2416         case TARGET_SO_TYPE:
2417 		optname = SO_TYPE;
2418 		break;
2419         case TARGET_SO_ERROR:
2420 		optname = SO_ERROR;
2421 		break;
2422         case TARGET_SO_DONTROUTE:
2423 		optname = SO_DONTROUTE;
2424 		break;
2425         case TARGET_SO_BROADCAST:
2426 		optname = SO_BROADCAST;
2427 		break;
2428         case TARGET_SO_SNDBUF:
2429 		optname = SO_SNDBUF;
2430 		break;
2431         case TARGET_SO_SNDBUFFORCE:
2432                 optname = SO_SNDBUFFORCE;
2433                 break;
2434         case TARGET_SO_RCVBUF:
2435 		optname = SO_RCVBUF;
2436 		break;
2437         case TARGET_SO_RCVBUFFORCE:
2438                 optname = SO_RCVBUFFORCE;
2439                 break;
2440         case TARGET_SO_KEEPALIVE:
2441 		optname = SO_KEEPALIVE;
2442 		break;
2443         case TARGET_SO_OOBINLINE:
2444 		optname = SO_OOBINLINE;
2445 		break;
2446         case TARGET_SO_NO_CHECK:
2447 		optname = SO_NO_CHECK;
2448 		break;
2449         case TARGET_SO_PRIORITY:
2450 		optname = SO_PRIORITY;
2451 		break;
2452 #ifdef SO_BSDCOMPAT
2453         case TARGET_SO_BSDCOMPAT:
2454 		optname = SO_BSDCOMPAT;
2455 		break;
2456 #endif
2457         case TARGET_SO_PASSCRED:
2458 		optname = SO_PASSCRED;
2459 		break;
2460         case TARGET_SO_PASSSEC:
2461                 optname = SO_PASSSEC;
2462                 break;
2463         case TARGET_SO_TIMESTAMP:
2464 		optname = SO_TIMESTAMP;
2465 		break;
2466         case TARGET_SO_RCVLOWAT:
2467 		optname = SO_RCVLOWAT;
2468 		break;
2469         default:
2470             goto unimplemented;
2471         }
2472 	if (optlen < sizeof(uint32_t))
2473             return -TARGET_EINVAL;
2474 
2475 	if (get_user_u32(val, optval_addr))
2476             return -TARGET_EFAULT;
2477 	ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val)));
2478         break;
2479 #ifdef SOL_NETLINK
2480     case SOL_NETLINK:
2481         switch (optname) {
2482         case NETLINK_PKTINFO:
2483         case NETLINK_ADD_MEMBERSHIP:
2484         case NETLINK_DROP_MEMBERSHIP:
2485         case NETLINK_BROADCAST_ERROR:
2486         case NETLINK_NO_ENOBUFS:
2487 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2488         case NETLINK_LISTEN_ALL_NSID:
2489         case NETLINK_CAP_ACK:
2490 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2491 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2492         case NETLINK_EXT_ACK:
2493 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2494 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2495         case NETLINK_GET_STRICT_CHK:
2496 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2497             break;
2498         default:
2499             goto unimplemented;
2500         }
2501         val = 0;
2502         if (optlen < sizeof(uint32_t)) {
2503             return -TARGET_EINVAL;
2504         }
2505         if (get_user_u32(val, optval_addr)) {
2506             return -TARGET_EFAULT;
2507         }
2508         ret = get_errno(setsockopt(sockfd, SOL_NETLINK, optname, &val,
2509                                    sizeof(val)));
2510         break;
2511 #endif /* SOL_NETLINK */
2512     default:
2513     unimplemented:
2514         qemu_log_mask(LOG_UNIMP, "Unsupported setsockopt level=%d optname=%d\n",
2515                       level, optname);
2516         ret = -TARGET_ENOPROTOOPT;
2517     }
2518     return ret;
2519 }
2520 
2521 /* do_getsockopt() Must return target values and target errnos. */
2522 static abi_long do_getsockopt(int sockfd, int level, int optname,
2523                               abi_ulong optval_addr, abi_ulong optlen)
2524 {
2525     abi_long ret;
2526     int len, val;
2527     socklen_t lv;
2528 
2529     switch(level) {
2530     case TARGET_SOL_SOCKET:
2531         level = SOL_SOCKET;
2532         switch (optname) {
2533         /* These don't just return a single integer */
2534         case TARGET_SO_PEERNAME:
2535             goto unimplemented;
2536         case TARGET_SO_RCVTIMEO: {
2537             struct timeval tv;
2538             socklen_t tvlen;
2539 
2540             optname = SO_RCVTIMEO;
2541 
2542 get_timeout:
2543             if (get_user_u32(len, optlen)) {
2544                 return -TARGET_EFAULT;
2545             }
2546             if (len < 0) {
2547                 return -TARGET_EINVAL;
2548             }
2549 
2550             tvlen = sizeof(tv);
2551             ret = get_errno(getsockopt(sockfd, level, optname,
2552                                        &tv, &tvlen));
2553             if (ret < 0) {
2554                 return ret;
2555             }
2556             if (len > sizeof(struct target_timeval)) {
2557                 len = sizeof(struct target_timeval);
2558             }
2559             if (copy_to_user_timeval(optval_addr, &tv)) {
2560                 return -TARGET_EFAULT;
2561             }
2562             if (put_user_u32(len, optlen)) {
2563                 return -TARGET_EFAULT;
2564             }
2565             break;
2566         }
2567         case TARGET_SO_SNDTIMEO:
2568             optname = SO_SNDTIMEO;
2569             goto get_timeout;
2570         case TARGET_SO_PEERCRED: {
2571             struct ucred cr;
2572             socklen_t crlen;
2573             struct target_ucred *tcr;
2574 
2575             if (get_user_u32(len, optlen)) {
2576                 return -TARGET_EFAULT;
2577             }
2578             if (len < 0) {
2579                 return -TARGET_EINVAL;
2580             }
2581 
2582             crlen = sizeof(cr);
2583             ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED,
2584                                        &cr, &crlen));
2585             if (ret < 0) {
2586                 return ret;
2587             }
2588             if (len > crlen) {
2589                 len = crlen;
2590             }
2591             if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) {
2592                 return -TARGET_EFAULT;
2593             }
2594             __put_user(cr.pid, &tcr->pid);
2595             __put_user(cr.uid, &tcr->uid);
2596             __put_user(cr.gid, &tcr->gid);
2597             unlock_user_struct(tcr, optval_addr, 1);
2598             if (put_user_u32(len, optlen)) {
2599                 return -TARGET_EFAULT;
2600             }
2601             break;
2602         }
2603         case TARGET_SO_PEERSEC: {
2604             char *name;
2605 
2606             if (get_user_u32(len, optlen)) {
2607                 return -TARGET_EFAULT;
2608             }
2609             if (len < 0) {
2610                 return -TARGET_EINVAL;
2611             }
2612             name = lock_user(VERIFY_WRITE, optval_addr, len, 0);
2613             if (!name) {
2614                 return -TARGET_EFAULT;
2615             }
2616             lv = len;
2617             ret = get_errno(getsockopt(sockfd, level, SO_PEERSEC,
2618                                        name, &lv));
2619             if (put_user_u32(lv, optlen)) {
2620                 ret = -TARGET_EFAULT;
2621             }
2622             unlock_user(name, optval_addr, lv);
2623             break;
2624         }
2625         case TARGET_SO_LINGER:
2626         {
2627             struct linger lg;
2628             socklen_t lglen;
2629             struct target_linger *tlg;
2630 
2631             if (get_user_u32(len, optlen)) {
2632                 return -TARGET_EFAULT;
2633             }
2634             if (len < 0) {
2635                 return -TARGET_EINVAL;
2636             }
2637 
2638             lglen = sizeof(lg);
2639             ret = get_errno(getsockopt(sockfd, level, SO_LINGER,
2640                                        &lg, &lglen));
2641             if (ret < 0) {
2642                 return ret;
2643             }
2644             if (len > lglen) {
2645                 len = lglen;
2646             }
2647             if (!lock_user_struct(VERIFY_WRITE, tlg, optval_addr, 0)) {
2648                 return -TARGET_EFAULT;
2649             }
2650             __put_user(lg.l_onoff, &tlg->l_onoff);
2651             __put_user(lg.l_linger, &tlg->l_linger);
2652             unlock_user_struct(tlg, optval_addr, 1);
2653             if (put_user_u32(len, optlen)) {
2654                 return -TARGET_EFAULT;
2655             }
2656             break;
2657         }
2658         /* Options with 'int' argument.  */
2659         case TARGET_SO_DEBUG:
2660             optname = SO_DEBUG;
2661             goto int_case;
2662         case TARGET_SO_REUSEADDR:
2663             optname = SO_REUSEADDR;
2664             goto int_case;
2665 #ifdef SO_REUSEPORT
2666         case TARGET_SO_REUSEPORT:
2667             optname = SO_REUSEPORT;
2668             goto int_case;
2669 #endif
2670         case TARGET_SO_TYPE:
2671             optname = SO_TYPE;
2672             goto int_case;
2673         case TARGET_SO_ERROR:
2674             optname = SO_ERROR;
2675             goto int_case;
2676         case TARGET_SO_DONTROUTE:
2677             optname = SO_DONTROUTE;
2678             goto int_case;
2679         case TARGET_SO_BROADCAST:
2680             optname = SO_BROADCAST;
2681             goto int_case;
2682         case TARGET_SO_SNDBUF:
2683             optname = SO_SNDBUF;
2684             goto int_case;
2685         case TARGET_SO_RCVBUF:
2686             optname = SO_RCVBUF;
2687             goto int_case;
2688         case TARGET_SO_KEEPALIVE:
2689             optname = SO_KEEPALIVE;
2690             goto int_case;
2691         case TARGET_SO_OOBINLINE:
2692             optname = SO_OOBINLINE;
2693             goto int_case;
2694         case TARGET_SO_NO_CHECK:
2695             optname = SO_NO_CHECK;
2696             goto int_case;
2697         case TARGET_SO_PRIORITY:
2698             optname = SO_PRIORITY;
2699             goto int_case;
2700 #ifdef SO_BSDCOMPAT
2701         case TARGET_SO_BSDCOMPAT:
2702             optname = SO_BSDCOMPAT;
2703             goto int_case;
2704 #endif
2705         case TARGET_SO_PASSCRED:
2706             optname = SO_PASSCRED;
2707             goto int_case;
2708         case TARGET_SO_TIMESTAMP:
2709             optname = SO_TIMESTAMP;
2710             goto int_case;
2711         case TARGET_SO_RCVLOWAT:
2712             optname = SO_RCVLOWAT;
2713             goto int_case;
2714         case TARGET_SO_ACCEPTCONN:
2715             optname = SO_ACCEPTCONN;
2716             goto int_case;
2717         case TARGET_SO_PROTOCOL:
2718             optname = SO_PROTOCOL;
2719             goto int_case;
2720         case TARGET_SO_DOMAIN:
2721             optname = SO_DOMAIN;
2722             goto int_case;
2723         default:
2724             goto int_case;
2725         }
2726         break;
2727     case SOL_TCP:
2728     case SOL_UDP:
2729         /* TCP and UDP options all take an 'int' value.  */
2730     int_case:
2731         if (get_user_u32(len, optlen))
2732             return -TARGET_EFAULT;
2733         if (len < 0)
2734             return -TARGET_EINVAL;
2735         lv = sizeof(lv);
2736         ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2737         if (ret < 0)
2738             return ret;
2739         switch (optname) {
2740         case SO_TYPE:
2741             val = host_to_target_sock_type(val);
2742             break;
2743         case SO_ERROR:
2744             val = host_to_target_errno(val);
2745             break;
2746         }
2747         if (len > lv)
2748             len = lv;
2749         if (len == 4) {
2750             if (put_user_u32(val, optval_addr))
2751                 return -TARGET_EFAULT;
2752         } else {
2753             if (put_user_u8(val, optval_addr))
2754                 return -TARGET_EFAULT;
2755         }
2756         if (put_user_u32(len, optlen))
2757             return -TARGET_EFAULT;
2758         break;
2759     case SOL_IP:
2760         switch(optname) {
2761         case IP_TOS:
2762         case IP_TTL:
2763         case IP_HDRINCL:
2764         case IP_ROUTER_ALERT:
2765         case IP_RECVOPTS:
2766         case IP_RETOPTS:
2767         case IP_PKTINFO:
2768         case IP_MTU_DISCOVER:
2769         case IP_RECVERR:
2770         case IP_RECVTOS:
2771 #ifdef IP_FREEBIND
2772         case IP_FREEBIND:
2773 #endif
2774         case IP_MULTICAST_TTL:
2775         case IP_MULTICAST_LOOP:
2776             if (get_user_u32(len, optlen))
2777                 return -TARGET_EFAULT;
2778             if (len < 0)
2779                 return -TARGET_EINVAL;
2780             lv = sizeof(lv);
2781             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2782             if (ret < 0)
2783                 return ret;
2784             if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2785                 len = 1;
2786                 if (put_user_u32(len, optlen)
2787                     || put_user_u8(val, optval_addr))
2788                     return -TARGET_EFAULT;
2789             } else {
2790                 if (len > sizeof(int))
2791                     len = sizeof(int);
2792                 if (put_user_u32(len, optlen)
2793                     || put_user_u32(val, optval_addr))
2794                     return -TARGET_EFAULT;
2795             }
2796             break;
2797         default:
2798             ret = -TARGET_ENOPROTOOPT;
2799             break;
2800         }
2801         break;
2802     case SOL_IPV6:
2803         switch (optname) {
2804         case IPV6_MTU_DISCOVER:
2805         case IPV6_MTU:
2806         case IPV6_V6ONLY:
2807         case IPV6_RECVPKTINFO:
2808         case IPV6_UNICAST_HOPS:
2809         case IPV6_MULTICAST_HOPS:
2810         case IPV6_MULTICAST_LOOP:
2811         case IPV6_RECVERR:
2812         case IPV6_RECVHOPLIMIT:
2813         case IPV6_2292HOPLIMIT:
2814         case IPV6_CHECKSUM:
2815         case IPV6_ADDRFORM:
2816         case IPV6_2292PKTINFO:
2817         case IPV6_RECVTCLASS:
2818         case IPV6_RECVRTHDR:
2819         case IPV6_2292RTHDR:
2820         case IPV6_RECVHOPOPTS:
2821         case IPV6_2292HOPOPTS:
2822         case IPV6_RECVDSTOPTS:
2823         case IPV6_2292DSTOPTS:
2824         case IPV6_TCLASS:
2825         case IPV6_ADDR_PREFERENCES:
2826 #ifdef IPV6_RECVPATHMTU
2827         case IPV6_RECVPATHMTU:
2828 #endif
2829 #ifdef IPV6_TRANSPARENT
2830         case IPV6_TRANSPARENT:
2831 #endif
2832 #ifdef IPV6_FREEBIND
2833         case IPV6_FREEBIND:
2834 #endif
2835 #ifdef IPV6_RECVORIGDSTADDR
2836         case IPV6_RECVORIGDSTADDR:
2837 #endif
2838             if (get_user_u32(len, optlen))
2839                 return -TARGET_EFAULT;
2840             if (len < 0)
2841                 return -TARGET_EINVAL;
2842             lv = sizeof(lv);
2843             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2844             if (ret < 0)
2845                 return ret;
2846             if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2847                 len = 1;
2848                 if (put_user_u32(len, optlen)
2849                     || put_user_u8(val, optval_addr))
2850                     return -TARGET_EFAULT;
2851             } else {
2852                 if (len > sizeof(int))
2853                     len = sizeof(int);
2854                 if (put_user_u32(len, optlen)
2855                     || put_user_u32(val, optval_addr))
2856                     return -TARGET_EFAULT;
2857             }
2858             break;
2859         default:
2860             ret = -TARGET_ENOPROTOOPT;
2861             break;
2862         }
2863         break;
2864 #ifdef SOL_NETLINK
2865     case SOL_NETLINK:
2866         switch (optname) {
2867         case NETLINK_PKTINFO:
2868         case NETLINK_BROADCAST_ERROR:
2869         case NETLINK_NO_ENOBUFS:
2870 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2871         case NETLINK_LISTEN_ALL_NSID:
2872         case NETLINK_CAP_ACK:
2873 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2874 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2875         case NETLINK_EXT_ACK:
2876 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2877 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2878         case NETLINK_GET_STRICT_CHK:
2879 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2880             if (get_user_u32(len, optlen)) {
2881                 return -TARGET_EFAULT;
2882             }
2883             if (len != sizeof(val)) {
2884                 return -TARGET_EINVAL;
2885             }
2886             lv = len;
2887             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2888             if (ret < 0) {
2889                 return ret;
2890             }
2891             if (put_user_u32(lv, optlen)
2892                 || put_user_u32(val, optval_addr)) {
2893                 return -TARGET_EFAULT;
2894             }
2895             break;
2896 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2897         case NETLINK_LIST_MEMBERSHIPS:
2898         {
2899             uint32_t *results;
2900             int i;
2901             if (get_user_u32(len, optlen)) {
2902                 return -TARGET_EFAULT;
2903             }
2904             if (len < 0) {
2905                 return -TARGET_EINVAL;
2906             }
2907             results = lock_user(VERIFY_WRITE, optval_addr, len, 1);
2908             if (!results && len > 0) {
2909                 return -TARGET_EFAULT;
2910             }
2911             lv = len;
2912             ret = get_errno(getsockopt(sockfd, level, optname, results, &lv));
2913             if (ret < 0) {
2914                 unlock_user(results, optval_addr, 0);
2915                 return ret;
2916             }
2917             /* swap host endianness to target endianness. */
2918             for (i = 0; i < (len / sizeof(uint32_t)); i++) {
2919                 results[i] = tswap32(results[i]);
2920             }
2921             if (put_user_u32(lv, optlen)) {
2922                 return -TARGET_EFAULT;
2923             }
2924             unlock_user(results, optval_addr, 0);
2925             break;
2926         }
2927 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2928         default:
2929             goto unimplemented;
2930         }
2931         break;
2932 #endif /* SOL_NETLINK */
2933     default:
2934     unimplemented:
2935         qemu_log_mask(LOG_UNIMP,
2936                       "getsockopt level=%d optname=%d not yet supported\n",
2937                       level, optname);
2938         ret = -TARGET_EOPNOTSUPP;
2939         break;
2940     }
2941     return ret;
2942 }
2943 
2944 /* Convert target low/high pair representing file offset into the host
2945  * low/high pair. This function doesn't handle offsets bigger than 64 bits
2946  * as the kernel doesn't handle them either.
2947  */
2948 static void target_to_host_low_high(abi_ulong tlow,
2949                                     abi_ulong thigh,
2950                                     unsigned long *hlow,
2951                                     unsigned long *hhigh)
2952 {
2953     uint64_t off = tlow |
2954         ((unsigned long long)thigh << TARGET_LONG_BITS / 2) <<
2955         TARGET_LONG_BITS / 2;
2956 
2957     *hlow = off;
2958     *hhigh = (off >> HOST_LONG_BITS / 2) >> HOST_LONG_BITS / 2;
2959 }
2960 
2961 static struct iovec *lock_iovec(int type, abi_ulong target_addr,
2962                                 abi_ulong count, int copy)
2963 {
2964     struct target_iovec *target_vec;
2965     struct iovec *vec;
2966     abi_ulong total_len, max_len;
2967     int i;
2968     int err = 0;
2969     bool bad_address = false;
2970 
2971     if (count == 0) {
2972         errno = 0;
2973         return NULL;
2974     }
2975     if (count > IOV_MAX) {
2976         errno = EINVAL;
2977         return NULL;
2978     }
2979 
2980     vec = g_try_new0(struct iovec, count);
2981     if (vec == NULL) {
2982         errno = ENOMEM;
2983         return NULL;
2984     }
2985 
2986     target_vec = lock_user(VERIFY_READ, target_addr,
2987                            count * sizeof(struct target_iovec), 1);
2988     if (target_vec == NULL) {
2989         err = EFAULT;
2990         goto fail2;
2991     }
2992 
2993     /* ??? If host page size > target page size, this will result in a
2994        value larger than what we can actually support.  */
2995     max_len = 0x7fffffff & TARGET_PAGE_MASK;
2996     total_len = 0;
2997 
2998     for (i = 0; i < count; i++) {
2999         abi_ulong base = tswapal(target_vec[i].iov_base);
3000         abi_long len = tswapal(target_vec[i].iov_len);
3001 
3002         if (len < 0) {
3003             err = EINVAL;
3004             goto fail;
3005         } else if (len == 0) {
3006             /* Zero length pointer is ignored.  */
3007             vec[i].iov_base = 0;
3008         } else {
3009             vec[i].iov_base = lock_user(type, base, len, copy);
3010             /* If the first buffer pointer is bad, this is a fault.  But
3011              * subsequent bad buffers will result in a partial write; this
3012              * is realized by filling the vector with null pointers and
3013              * zero lengths. */
3014             if (!vec[i].iov_base) {
3015                 if (i == 0) {
3016                     err = EFAULT;
3017                     goto fail;
3018                 } else {
3019                     bad_address = true;
3020                 }
3021             }
3022             if (bad_address) {
3023                 len = 0;
3024             }
3025             if (len > max_len - total_len) {
3026                 len = max_len - total_len;
3027             }
3028         }
3029         vec[i].iov_len = len;
3030         total_len += len;
3031     }
3032 
3033     unlock_user(target_vec, target_addr, 0);
3034     return vec;
3035 
3036  fail:
3037     while (--i >= 0) {
3038         if (tswapal(target_vec[i].iov_len) > 0) {
3039             unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0);
3040         }
3041     }
3042     unlock_user(target_vec, target_addr, 0);
3043  fail2:
3044     g_free(vec);
3045     errno = err;
3046     return NULL;
3047 }
3048 
3049 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr,
3050                          abi_ulong count, int copy)
3051 {
3052     struct target_iovec *target_vec;
3053     int i;
3054 
3055     target_vec = lock_user(VERIFY_READ, target_addr,
3056                            count * sizeof(struct target_iovec), 1);
3057     if (target_vec) {
3058         for (i = 0; i < count; i++) {
3059             abi_ulong base = tswapal(target_vec[i].iov_base);
3060             abi_long len = tswapal(target_vec[i].iov_len);
3061             if (len < 0) {
3062                 break;
3063             }
3064             unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0);
3065         }
3066         unlock_user(target_vec, target_addr, 0);
3067     }
3068 
3069     g_free(vec);
3070 }
3071 
3072 static inline int target_to_host_sock_type(int *type)
3073 {
3074     int host_type = 0;
3075     int target_type = *type;
3076 
3077     switch (target_type & TARGET_SOCK_TYPE_MASK) {
3078     case TARGET_SOCK_DGRAM:
3079         host_type = SOCK_DGRAM;
3080         break;
3081     case TARGET_SOCK_STREAM:
3082         host_type = SOCK_STREAM;
3083         break;
3084     default:
3085         host_type = target_type & TARGET_SOCK_TYPE_MASK;
3086         break;
3087     }
3088     if (target_type & TARGET_SOCK_CLOEXEC) {
3089 #if defined(SOCK_CLOEXEC)
3090         host_type |= SOCK_CLOEXEC;
3091 #else
3092         return -TARGET_EINVAL;
3093 #endif
3094     }
3095     if (target_type & TARGET_SOCK_NONBLOCK) {
3096 #if defined(SOCK_NONBLOCK)
3097         host_type |= SOCK_NONBLOCK;
3098 #elif !defined(O_NONBLOCK)
3099         return -TARGET_EINVAL;
3100 #endif
3101     }
3102     *type = host_type;
3103     return 0;
3104 }
3105 
3106 /* Try to emulate socket type flags after socket creation.  */
3107 static int sock_flags_fixup(int fd, int target_type)
3108 {
3109 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK)
3110     if (target_type & TARGET_SOCK_NONBLOCK) {
3111         int flags = fcntl(fd, F_GETFL);
3112         if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) {
3113             close(fd);
3114             return -TARGET_EINVAL;
3115         }
3116     }
3117 #endif
3118     return fd;
3119 }
3120 
3121 /* do_socket() Must return target values and target errnos. */
3122 static abi_long do_socket(int domain, int type, int protocol)
3123 {
3124     int target_type = type;
3125     int ret;
3126 
3127     ret = target_to_host_sock_type(&type);
3128     if (ret) {
3129         return ret;
3130     }
3131 
3132     if (domain == PF_NETLINK && !(
3133 #ifdef CONFIG_RTNETLINK
3134          protocol == NETLINK_ROUTE ||
3135 #endif
3136          protocol == NETLINK_KOBJECT_UEVENT ||
3137          protocol == NETLINK_AUDIT)) {
3138         return -TARGET_EPROTONOSUPPORT;
3139     }
3140 
3141     if (domain == AF_PACKET ||
3142         (domain == AF_INET && type == SOCK_PACKET)) {
3143         protocol = tswap16(protocol);
3144     }
3145 
3146     ret = get_errno(socket(domain, type, protocol));
3147     if (ret >= 0) {
3148         ret = sock_flags_fixup(ret, target_type);
3149         if (type == SOCK_PACKET) {
3150             /* Manage an obsolete case :
3151              * if socket type is SOCK_PACKET, bind by name
3152              */
3153             fd_trans_register(ret, &target_packet_trans);
3154         } else if (domain == PF_NETLINK) {
3155             switch (protocol) {
3156 #ifdef CONFIG_RTNETLINK
3157             case NETLINK_ROUTE:
3158                 fd_trans_register(ret, &target_netlink_route_trans);
3159                 break;
3160 #endif
3161             case NETLINK_KOBJECT_UEVENT:
3162                 /* nothing to do: messages are strings */
3163                 break;
3164             case NETLINK_AUDIT:
3165                 fd_trans_register(ret, &target_netlink_audit_trans);
3166                 break;
3167             default:
3168                 g_assert_not_reached();
3169             }
3170         }
3171     }
3172     return ret;
3173 }
3174 
3175 /* do_bind() Must return target values and target errnos. */
3176 static abi_long do_bind(int sockfd, abi_ulong target_addr,
3177                         socklen_t addrlen)
3178 {
3179     void *addr;
3180     abi_long ret;
3181 
3182     if ((int)addrlen < 0) {
3183         return -TARGET_EINVAL;
3184     }
3185 
3186     addr = alloca(addrlen+1);
3187 
3188     ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3189     if (ret)
3190         return ret;
3191 
3192     return get_errno(bind(sockfd, addr, addrlen));
3193 }
3194 
3195 /* do_connect() Must return target values and target errnos. */
3196 static abi_long do_connect(int sockfd, abi_ulong target_addr,
3197                            socklen_t addrlen)
3198 {
3199     void *addr;
3200     abi_long ret;
3201 
3202     if ((int)addrlen < 0) {
3203         return -TARGET_EINVAL;
3204     }
3205 
3206     addr = alloca(addrlen+1);
3207 
3208     ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3209     if (ret)
3210         return ret;
3211 
3212     return get_errno(safe_connect(sockfd, addr, addrlen));
3213 }
3214 
3215 /* do_sendrecvmsg_locked() Must return target values and target errnos. */
3216 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp,
3217                                       int flags, int send)
3218 {
3219     abi_long ret, len;
3220     struct msghdr msg;
3221     abi_ulong count;
3222     struct iovec *vec;
3223     abi_ulong target_vec;
3224 
3225     if (msgp->msg_name) {
3226         msg.msg_namelen = tswap32(msgp->msg_namelen);
3227         msg.msg_name = alloca(msg.msg_namelen+1);
3228         ret = target_to_host_sockaddr(fd, msg.msg_name,
3229                                       tswapal(msgp->msg_name),
3230                                       msg.msg_namelen);
3231         if (ret == -TARGET_EFAULT) {
3232             /* For connected sockets msg_name and msg_namelen must
3233              * be ignored, so returning EFAULT immediately is wrong.
3234              * Instead, pass a bad msg_name to the host kernel, and
3235              * let it decide whether to return EFAULT or not.
3236              */
3237             msg.msg_name = (void *)-1;
3238         } else if (ret) {
3239             goto out2;
3240         }
3241     } else {
3242         msg.msg_name = NULL;
3243         msg.msg_namelen = 0;
3244     }
3245     msg.msg_controllen = 2 * tswapal(msgp->msg_controllen);
3246     msg.msg_control = alloca(msg.msg_controllen);
3247     memset(msg.msg_control, 0, msg.msg_controllen);
3248 
3249     msg.msg_flags = tswap32(msgp->msg_flags);
3250 
3251     count = tswapal(msgp->msg_iovlen);
3252     target_vec = tswapal(msgp->msg_iov);
3253 
3254     if (count > IOV_MAX) {
3255         /* sendrcvmsg returns a different errno for this condition than
3256          * readv/writev, so we must catch it here before lock_iovec() does.
3257          */
3258         ret = -TARGET_EMSGSIZE;
3259         goto out2;
3260     }
3261 
3262     vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE,
3263                      target_vec, count, send);
3264     if (vec == NULL) {
3265         ret = -host_to_target_errno(errno);
3266         /* allow sending packet without any iov, e.g. with MSG_MORE flag */
3267         if (!send || ret) {
3268             goto out2;
3269         }
3270     }
3271     msg.msg_iovlen = count;
3272     msg.msg_iov = vec;
3273 
3274     if (send) {
3275         if (fd_trans_target_to_host_data(fd)) {
3276             void *host_msg;
3277 
3278             host_msg = g_malloc(msg.msg_iov->iov_len);
3279             memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len);
3280             ret = fd_trans_target_to_host_data(fd)(host_msg,
3281                                                    msg.msg_iov->iov_len);
3282             if (ret >= 0) {
3283                 msg.msg_iov->iov_base = host_msg;
3284                 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3285             }
3286             g_free(host_msg);
3287         } else {
3288             ret = target_to_host_cmsg(&msg, msgp);
3289             if (ret == 0) {
3290                 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3291             }
3292         }
3293     } else {
3294         ret = get_errno(safe_recvmsg(fd, &msg, flags));
3295         if (!is_error(ret)) {
3296             len = ret;
3297             if (fd_trans_host_to_target_data(fd)) {
3298                 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base,
3299                                                MIN(msg.msg_iov->iov_len, len));
3300             }
3301             if (!is_error(ret)) {
3302                 ret = host_to_target_cmsg(msgp, &msg);
3303             }
3304             if (!is_error(ret)) {
3305                 msgp->msg_namelen = tswap32(msg.msg_namelen);
3306                 msgp->msg_flags = tswap32(msg.msg_flags);
3307                 if (msg.msg_name != NULL && msg.msg_name != (void *)-1) {
3308                     ret = host_to_target_sockaddr(tswapal(msgp->msg_name),
3309                                     msg.msg_name, msg.msg_namelen);
3310                     if (ret) {
3311                         goto out;
3312                     }
3313                 }
3314 
3315                 ret = len;
3316             }
3317         }
3318     }
3319 
3320 out:
3321     if (vec) {
3322         unlock_iovec(vec, target_vec, count, !send);
3323     }
3324 out2:
3325     return ret;
3326 }
3327 
3328 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg,
3329                                int flags, int send)
3330 {
3331     abi_long ret;
3332     struct target_msghdr *msgp;
3333 
3334     if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE,
3335                           msgp,
3336                           target_msg,
3337                           send ? 1 : 0)) {
3338         return -TARGET_EFAULT;
3339     }
3340     ret = do_sendrecvmsg_locked(fd, msgp, flags, send);
3341     unlock_user_struct(msgp, target_msg, send ? 0 : 1);
3342     return ret;
3343 }
3344 
3345 /* We don't rely on the C library to have sendmmsg/recvmmsg support,
3346  * so it might not have this *mmsg-specific flag either.
3347  */
3348 #ifndef MSG_WAITFORONE
3349 #define MSG_WAITFORONE 0x10000
3350 #endif
3351 
3352 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec,
3353                                 unsigned int vlen, unsigned int flags,
3354                                 int send)
3355 {
3356     struct target_mmsghdr *mmsgp;
3357     abi_long ret = 0;
3358     int i;
3359 
3360     if (vlen > UIO_MAXIOV) {
3361         vlen = UIO_MAXIOV;
3362     }
3363 
3364     mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1);
3365     if (!mmsgp) {
3366         return -TARGET_EFAULT;
3367     }
3368 
3369     for (i = 0; i < vlen; i++) {
3370         ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send);
3371         if (is_error(ret)) {
3372             break;
3373         }
3374         mmsgp[i].msg_len = tswap32(ret);
3375         /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
3376         if (flags & MSG_WAITFORONE) {
3377             flags |= MSG_DONTWAIT;
3378         }
3379     }
3380 
3381     unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i);
3382 
3383     /* Return number of datagrams sent if we sent any at all;
3384      * otherwise return the error.
3385      */
3386     if (i) {
3387         return i;
3388     }
3389     return ret;
3390 }
3391 
3392 /* do_accept4() Must return target values and target errnos. */
3393 static abi_long do_accept4(int fd, abi_ulong target_addr,
3394                            abi_ulong target_addrlen_addr, int flags)
3395 {
3396     socklen_t addrlen, ret_addrlen;
3397     void *addr;
3398     abi_long ret;
3399     int host_flags;
3400 
3401     if (flags & ~(TARGET_SOCK_CLOEXEC | TARGET_SOCK_NONBLOCK)) {
3402         return -TARGET_EINVAL;
3403     }
3404 
3405     host_flags = 0;
3406     if (flags & TARGET_SOCK_NONBLOCK) {
3407         host_flags |= SOCK_NONBLOCK;
3408     }
3409     if (flags & TARGET_SOCK_CLOEXEC) {
3410         host_flags |= SOCK_CLOEXEC;
3411     }
3412 
3413     if (target_addr == 0) {
3414         return get_errno(safe_accept4(fd, NULL, NULL, host_flags));
3415     }
3416 
3417     /* linux returns EFAULT if addrlen pointer is invalid */
3418     if (get_user_u32(addrlen, target_addrlen_addr))
3419         return -TARGET_EFAULT;
3420 
3421     if ((int)addrlen < 0) {
3422         return -TARGET_EINVAL;
3423     }
3424 
3425     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3426         return -TARGET_EFAULT;
3427     }
3428 
3429     addr = alloca(addrlen);
3430 
3431     ret_addrlen = addrlen;
3432     ret = get_errno(safe_accept4(fd, addr, &ret_addrlen, host_flags));
3433     if (!is_error(ret)) {
3434         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3435         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3436             ret = -TARGET_EFAULT;
3437         }
3438     }
3439     return ret;
3440 }
3441 
3442 /* do_getpeername() Must return target values and target errnos. */
3443 static abi_long do_getpeername(int fd, abi_ulong target_addr,
3444                                abi_ulong target_addrlen_addr)
3445 {
3446     socklen_t addrlen, ret_addrlen;
3447     void *addr;
3448     abi_long ret;
3449 
3450     if (get_user_u32(addrlen, target_addrlen_addr))
3451         return -TARGET_EFAULT;
3452 
3453     if ((int)addrlen < 0) {
3454         return -TARGET_EINVAL;
3455     }
3456 
3457     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3458         return -TARGET_EFAULT;
3459     }
3460 
3461     addr = alloca(addrlen);
3462 
3463     ret_addrlen = addrlen;
3464     ret = get_errno(getpeername(fd, addr, &ret_addrlen));
3465     if (!is_error(ret)) {
3466         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3467         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3468             ret = -TARGET_EFAULT;
3469         }
3470     }
3471     return ret;
3472 }
3473 
3474 /* do_getsockname() Must return target values and target errnos. */
3475 static abi_long do_getsockname(int fd, abi_ulong target_addr,
3476                                abi_ulong target_addrlen_addr)
3477 {
3478     socklen_t addrlen, ret_addrlen;
3479     void *addr;
3480     abi_long ret;
3481 
3482     if (get_user_u32(addrlen, target_addrlen_addr))
3483         return -TARGET_EFAULT;
3484 
3485     if ((int)addrlen < 0) {
3486         return -TARGET_EINVAL;
3487     }
3488 
3489     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3490         return -TARGET_EFAULT;
3491     }
3492 
3493     addr = alloca(addrlen);
3494 
3495     ret_addrlen = addrlen;
3496     ret = get_errno(getsockname(fd, addr, &ret_addrlen));
3497     if (!is_error(ret)) {
3498         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3499         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3500             ret = -TARGET_EFAULT;
3501         }
3502     }
3503     return ret;
3504 }
3505 
3506 /* do_socketpair() Must return target values and target errnos. */
3507 static abi_long do_socketpair(int domain, int type, int protocol,
3508                               abi_ulong target_tab_addr)
3509 {
3510     int tab[2];
3511     abi_long ret;
3512 
3513     target_to_host_sock_type(&type);
3514 
3515     ret = get_errno(socketpair(domain, type, protocol, tab));
3516     if (!is_error(ret)) {
3517         if (put_user_s32(tab[0], target_tab_addr)
3518             || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0])))
3519             ret = -TARGET_EFAULT;
3520     }
3521     return ret;
3522 }
3523 
3524 /* do_sendto() Must return target values and target errnos. */
3525 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags,
3526                           abi_ulong target_addr, socklen_t addrlen)
3527 {
3528     void *addr;
3529     void *host_msg;
3530     void *copy_msg = NULL;
3531     abi_long ret;
3532 
3533     if ((int)addrlen < 0) {
3534         return -TARGET_EINVAL;
3535     }
3536 
3537     host_msg = lock_user(VERIFY_READ, msg, len, 1);
3538     if (!host_msg)
3539         return -TARGET_EFAULT;
3540     if (fd_trans_target_to_host_data(fd)) {
3541         copy_msg = host_msg;
3542         host_msg = g_malloc(len);
3543         memcpy(host_msg, copy_msg, len);
3544         ret = fd_trans_target_to_host_data(fd)(host_msg, len);
3545         if (ret < 0) {
3546             goto fail;
3547         }
3548     }
3549     if (target_addr) {
3550         addr = alloca(addrlen+1);
3551         ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen);
3552         if (ret) {
3553             goto fail;
3554         }
3555         ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen));
3556     } else {
3557         ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0));
3558     }
3559 fail:
3560     if (copy_msg) {
3561         g_free(host_msg);
3562         host_msg = copy_msg;
3563     }
3564     unlock_user(host_msg, msg, 0);
3565     return ret;
3566 }
3567 
3568 /* do_recvfrom() Must return target values and target errnos. */
3569 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags,
3570                             abi_ulong target_addr,
3571                             abi_ulong target_addrlen)
3572 {
3573     socklen_t addrlen, ret_addrlen;
3574     void *addr;
3575     void *host_msg;
3576     abi_long ret;
3577 
3578     if (!msg) {
3579         host_msg = NULL;
3580     } else {
3581         host_msg = lock_user(VERIFY_WRITE, msg, len, 0);
3582         if (!host_msg) {
3583             return -TARGET_EFAULT;
3584         }
3585     }
3586     if (target_addr) {
3587         if (get_user_u32(addrlen, target_addrlen)) {
3588             ret = -TARGET_EFAULT;
3589             goto fail;
3590         }
3591         if ((int)addrlen < 0) {
3592             ret = -TARGET_EINVAL;
3593             goto fail;
3594         }
3595         addr = alloca(addrlen);
3596         ret_addrlen = addrlen;
3597         ret = get_errno(safe_recvfrom(fd, host_msg, len, flags,
3598                                       addr, &ret_addrlen));
3599     } else {
3600         addr = NULL; /* To keep compiler quiet.  */
3601         addrlen = 0; /* To keep compiler quiet.  */
3602         ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0));
3603     }
3604     if (!is_error(ret)) {
3605         if (fd_trans_host_to_target_data(fd)) {
3606             abi_long trans;
3607             trans = fd_trans_host_to_target_data(fd)(host_msg, MIN(ret, len));
3608             if (is_error(trans)) {
3609                 ret = trans;
3610                 goto fail;
3611             }
3612         }
3613         if (target_addr) {
3614             host_to_target_sockaddr(target_addr, addr,
3615                                     MIN(addrlen, ret_addrlen));
3616             if (put_user_u32(ret_addrlen, target_addrlen)) {
3617                 ret = -TARGET_EFAULT;
3618                 goto fail;
3619             }
3620         }
3621         unlock_user(host_msg, msg, len);
3622     } else {
3623 fail:
3624         unlock_user(host_msg, msg, 0);
3625     }
3626     return ret;
3627 }
3628 
3629 #ifdef TARGET_NR_socketcall
3630 /* do_socketcall() must return target values and target errnos. */
3631 static abi_long do_socketcall(int num, abi_ulong vptr)
3632 {
3633     static const unsigned nargs[] = { /* number of arguments per operation */
3634         [TARGET_SYS_SOCKET] = 3,      /* domain, type, protocol */
3635         [TARGET_SYS_BIND] = 3,        /* fd, addr, addrlen */
3636         [TARGET_SYS_CONNECT] = 3,     /* fd, addr, addrlen */
3637         [TARGET_SYS_LISTEN] = 2,      /* fd, backlog */
3638         [TARGET_SYS_ACCEPT] = 3,      /* fd, addr, addrlen */
3639         [TARGET_SYS_GETSOCKNAME] = 3, /* fd, addr, addrlen */
3640         [TARGET_SYS_GETPEERNAME] = 3, /* fd, addr, addrlen */
3641         [TARGET_SYS_SOCKETPAIR] = 4,  /* domain, type, protocol, tab */
3642         [TARGET_SYS_SEND] = 4,        /* fd, msg, len, flags */
3643         [TARGET_SYS_RECV] = 4,        /* fd, msg, len, flags */
3644         [TARGET_SYS_SENDTO] = 6,      /* fd, msg, len, flags, addr, addrlen */
3645         [TARGET_SYS_RECVFROM] = 6,    /* fd, msg, len, flags, addr, addrlen */
3646         [TARGET_SYS_SHUTDOWN] = 2,    /* fd, how */
3647         [TARGET_SYS_SETSOCKOPT] = 5,  /* fd, level, optname, optval, optlen */
3648         [TARGET_SYS_GETSOCKOPT] = 5,  /* fd, level, optname, optval, optlen */
3649         [TARGET_SYS_SENDMSG] = 3,     /* fd, msg, flags */
3650         [TARGET_SYS_RECVMSG] = 3,     /* fd, msg, flags */
3651         [TARGET_SYS_ACCEPT4] = 4,     /* fd, addr, addrlen, flags */
3652         [TARGET_SYS_RECVMMSG] = 4,    /* fd, msgvec, vlen, flags */
3653         [TARGET_SYS_SENDMMSG] = 4,    /* fd, msgvec, vlen, flags */
3654     };
3655     abi_long a[6]; /* max 6 args */
3656     unsigned i;
3657 
3658     /* check the range of the first argument num */
3659     /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */
3660     if (num < 1 || num > TARGET_SYS_SENDMMSG) {
3661         return -TARGET_EINVAL;
3662     }
3663     /* ensure we have space for args */
3664     if (nargs[num] > ARRAY_SIZE(a)) {
3665         return -TARGET_EINVAL;
3666     }
3667     /* collect the arguments in a[] according to nargs[] */
3668     for (i = 0; i < nargs[num]; ++i) {
3669         if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) {
3670             return -TARGET_EFAULT;
3671         }
3672     }
3673     /* now when we have the args, invoke the appropriate underlying function */
3674     switch (num) {
3675     case TARGET_SYS_SOCKET: /* domain, type, protocol */
3676         return do_socket(a[0], a[1], a[2]);
3677     case TARGET_SYS_BIND: /* sockfd, addr, addrlen */
3678         return do_bind(a[0], a[1], a[2]);
3679     case TARGET_SYS_CONNECT: /* sockfd, addr, addrlen */
3680         return do_connect(a[0], a[1], a[2]);
3681     case TARGET_SYS_LISTEN: /* sockfd, backlog */
3682         return get_errno(listen(a[0], a[1]));
3683     case TARGET_SYS_ACCEPT: /* sockfd, addr, addrlen */
3684         return do_accept4(a[0], a[1], a[2], 0);
3685     case TARGET_SYS_GETSOCKNAME: /* sockfd, addr, addrlen */
3686         return do_getsockname(a[0], a[1], a[2]);
3687     case TARGET_SYS_GETPEERNAME: /* sockfd, addr, addrlen */
3688         return do_getpeername(a[0], a[1], a[2]);
3689     case TARGET_SYS_SOCKETPAIR: /* domain, type, protocol, tab */
3690         return do_socketpair(a[0], a[1], a[2], a[3]);
3691     case TARGET_SYS_SEND: /* sockfd, msg, len, flags */
3692         return do_sendto(a[0], a[1], a[2], a[3], 0, 0);
3693     case TARGET_SYS_RECV: /* sockfd, msg, len, flags */
3694         return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0);
3695     case TARGET_SYS_SENDTO: /* sockfd, msg, len, flags, addr, addrlen */
3696         return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]);
3697     case TARGET_SYS_RECVFROM: /* sockfd, msg, len, flags, addr, addrlen */
3698         return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]);
3699     case TARGET_SYS_SHUTDOWN: /* sockfd, how */
3700         return get_errno(shutdown(a[0], a[1]));
3701     case TARGET_SYS_SETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3702         return do_setsockopt(a[0], a[1], a[2], a[3], a[4]);
3703     case TARGET_SYS_GETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3704         return do_getsockopt(a[0], a[1], a[2], a[3], a[4]);
3705     case TARGET_SYS_SENDMSG: /* sockfd, msg, flags */
3706         return do_sendrecvmsg(a[0], a[1], a[2], 1);
3707     case TARGET_SYS_RECVMSG: /* sockfd, msg, flags */
3708         return do_sendrecvmsg(a[0], a[1], a[2], 0);
3709     case TARGET_SYS_ACCEPT4: /* sockfd, addr, addrlen, flags */
3710         return do_accept4(a[0], a[1], a[2], a[3]);
3711     case TARGET_SYS_RECVMMSG: /* sockfd, msgvec, vlen, flags */
3712         return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0);
3713     case TARGET_SYS_SENDMMSG: /* sockfd, msgvec, vlen, flags */
3714         return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1);
3715     default:
3716         qemu_log_mask(LOG_UNIMP, "Unsupported socketcall: %d\n", num);
3717         return -TARGET_EINVAL;
3718     }
3719 }
3720 #endif
3721 
3722 #ifndef TARGET_SEMID64_DS
3723 /* asm-generic version of this struct */
3724 struct target_semid64_ds
3725 {
3726   struct target_ipc_perm sem_perm;
3727   abi_ulong sem_otime;
3728 #if TARGET_ABI_BITS == 32
3729   abi_ulong __unused1;
3730 #endif
3731   abi_ulong sem_ctime;
3732 #if TARGET_ABI_BITS == 32
3733   abi_ulong __unused2;
3734 #endif
3735   abi_ulong sem_nsems;
3736   abi_ulong __unused3;
3737   abi_ulong __unused4;
3738 };
3739 #endif
3740 
3741 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip,
3742                                                abi_ulong target_addr)
3743 {
3744     struct target_ipc_perm *target_ip;
3745     struct target_semid64_ds *target_sd;
3746 
3747     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3748         return -TARGET_EFAULT;
3749     target_ip = &(target_sd->sem_perm);
3750     host_ip->__key = tswap32(target_ip->__key);
3751     host_ip->uid = tswap32(target_ip->uid);
3752     host_ip->gid = tswap32(target_ip->gid);
3753     host_ip->cuid = tswap32(target_ip->cuid);
3754     host_ip->cgid = tswap32(target_ip->cgid);
3755 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3756     host_ip->mode = tswap32(target_ip->mode);
3757 #else
3758     host_ip->mode = tswap16(target_ip->mode);
3759 #endif
3760 #if defined(TARGET_PPC)
3761     host_ip->__seq = tswap32(target_ip->__seq);
3762 #else
3763     host_ip->__seq = tswap16(target_ip->__seq);
3764 #endif
3765     unlock_user_struct(target_sd, target_addr, 0);
3766     return 0;
3767 }
3768 
3769 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr,
3770                                                struct ipc_perm *host_ip)
3771 {
3772     struct target_ipc_perm *target_ip;
3773     struct target_semid64_ds *target_sd;
3774 
3775     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3776         return -TARGET_EFAULT;
3777     target_ip = &(target_sd->sem_perm);
3778     target_ip->__key = tswap32(host_ip->__key);
3779     target_ip->uid = tswap32(host_ip->uid);
3780     target_ip->gid = tswap32(host_ip->gid);
3781     target_ip->cuid = tswap32(host_ip->cuid);
3782     target_ip->cgid = tswap32(host_ip->cgid);
3783 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3784     target_ip->mode = tswap32(host_ip->mode);
3785 #else
3786     target_ip->mode = tswap16(host_ip->mode);
3787 #endif
3788 #if defined(TARGET_PPC)
3789     target_ip->__seq = tswap32(host_ip->__seq);
3790 #else
3791     target_ip->__seq = tswap16(host_ip->__seq);
3792 #endif
3793     unlock_user_struct(target_sd, target_addr, 1);
3794     return 0;
3795 }
3796 
3797 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd,
3798                                                abi_ulong target_addr)
3799 {
3800     struct target_semid64_ds *target_sd;
3801 
3802     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3803         return -TARGET_EFAULT;
3804     if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr))
3805         return -TARGET_EFAULT;
3806     host_sd->sem_nsems = tswapal(target_sd->sem_nsems);
3807     host_sd->sem_otime = tswapal(target_sd->sem_otime);
3808     host_sd->sem_ctime = tswapal(target_sd->sem_ctime);
3809     unlock_user_struct(target_sd, target_addr, 0);
3810     return 0;
3811 }
3812 
3813 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr,
3814                                                struct semid_ds *host_sd)
3815 {
3816     struct target_semid64_ds *target_sd;
3817 
3818     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3819         return -TARGET_EFAULT;
3820     if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm)))
3821         return -TARGET_EFAULT;
3822     target_sd->sem_nsems = tswapal(host_sd->sem_nsems);
3823     target_sd->sem_otime = tswapal(host_sd->sem_otime);
3824     target_sd->sem_ctime = tswapal(host_sd->sem_ctime);
3825     unlock_user_struct(target_sd, target_addr, 1);
3826     return 0;
3827 }
3828 
3829 struct target_seminfo {
3830     int semmap;
3831     int semmni;
3832     int semmns;
3833     int semmnu;
3834     int semmsl;
3835     int semopm;
3836     int semume;
3837     int semusz;
3838     int semvmx;
3839     int semaem;
3840 };
3841 
3842 static inline abi_long host_to_target_seminfo(abi_ulong target_addr,
3843                                               struct seminfo *host_seminfo)
3844 {
3845     struct target_seminfo *target_seminfo;
3846     if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0))
3847         return -TARGET_EFAULT;
3848     __put_user(host_seminfo->semmap, &target_seminfo->semmap);
3849     __put_user(host_seminfo->semmni, &target_seminfo->semmni);
3850     __put_user(host_seminfo->semmns, &target_seminfo->semmns);
3851     __put_user(host_seminfo->semmnu, &target_seminfo->semmnu);
3852     __put_user(host_seminfo->semmsl, &target_seminfo->semmsl);
3853     __put_user(host_seminfo->semopm, &target_seminfo->semopm);
3854     __put_user(host_seminfo->semume, &target_seminfo->semume);
3855     __put_user(host_seminfo->semusz, &target_seminfo->semusz);
3856     __put_user(host_seminfo->semvmx, &target_seminfo->semvmx);
3857     __put_user(host_seminfo->semaem, &target_seminfo->semaem);
3858     unlock_user_struct(target_seminfo, target_addr, 1);
3859     return 0;
3860 }
3861 
3862 union semun {
3863 	int val;
3864 	struct semid_ds *buf;
3865 	unsigned short *array;
3866 	struct seminfo *__buf;
3867 };
3868 
3869 union target_semun {
3870 	int val;
3871 	abi_ulong buf;
3872 	abi_ulong array;
3873 	abi_ulong __buf;
3874 };
3875 
3876 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array,
3877                                                abi_ulong target_addr)
3878 {
3879     int nsems;
3880     unsigned short *array;
3881     union semun semun;
3882     struct semid_ds semid_ds;
3883     int i, ret;
3884 
3885     semun.buf = &semid_ds;
3886 
3887     ret = semctl(semid, 0, IPC_STAT, semun);
3888     if (ret == -1)
3889         return get_errno(ret);
3890 
3891     nsems = semid_ds.sem_nsems;
3892 
3893     *host_array = g_try_new(unsigned short, nsems);
3894     if (!*host_array) {
3895         return -TARGET_ENOMEM;
3896     }
3897     array = lock_user(VERIFY_READ, target_addr,
3898                       nsems*sizeof(unsigned short), 1);
3899     if (!array) {
3900         g_free(*host_array);
3901         return -TARGET_EFAULT;
3902     }
3903 
3904     for(i=0; i<nsems; i++) {
3905         __get_user((*host_array)[i], &array[i]);
3906     }
3907     unlock_user(array, target_addr, 0);
3908 
3909     return 0;
3910 }
3911 
3912 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr,
3913                                                unsigned short **host_array)
3914 {
3915     int nsems;
3916     unsigned short *array;
3917     union semun semun;
3918     struct semid_ds semid_ds;
3919     int i, ret;
3920 
3921     semun.buf = &semid_ds;
3922 
3923     ret = semctl(semid, 0, IPC_STAT, semun);
3924     if (ret == -1)
3925         return get_errno(ret);
3926 
3927     nsems = semid_ds.sem_nsems;
3928 
3929     array = lock_user(VERIFY_WRITE, target_addr,
3930                       nsems*sizeof(unsigned short), 0);
3931     if (!array)
3932         return -TARGET_EFAULT;
3933 
3934     for(i=0; i<nsems; i++) {
3935         __put_user((*host_array)[i], &array[i]);
3936     }
3937     g_free(*host_array);
3938     unlock_user(array, target_addr, 1);
3939 
3940     return 0;
3941 }
3942 
3943 static inline abi_long do_semctl(int semid, int semnum, int cmd,
3944                                  abi_ulong target_arg)
3945 {
3946     union target_semun target_su = { .buf = target_arg };
3947     union semun arg;
3948     struct semid_ds dsarg;
3949     unsigned short *array = NULL;
3950     struct seminfo seminfo;
3951     abi_long ret = -TARGET_EINVAL;
3952     abi_long err;
3953     cmd &= 0xff;
3954 
3955     switch( cmd ) {
3956 	case GETVAL:
3957 	case SETVAL:
3958             /* In 64 bit cross-endian situations, we will erroneously pick up
3959              * the wrong half of the union for the "val" element.  To rectify
3960              * this, the entire 8-byte structure is byteswapped, followed by
3961 	     * a swap of the 4 byte val field. In other cases, the data is
3962 	     * already in proper host byte order. */
3963 	    if (sizeof(target_su.val) != (sizeof(target_su.buf))) {
3964 		target_su.buf = tswapal(target_su.buf);
3965 		arg.val = tswap32(target_su.val);
3966 	    } else {
3967 		arg.val = target_su.val;
3968 	    }
3969             ret = get_errno(semctl(semid, semnum, cmd, arg));
3970             break;
3971 	case GETALL:
3972 	case SETALL:
3973             err = target_to_host_semarray(semid, &array, target_su.array);
3974             if (err)
3975                 return err;
3976             arg.array = array;
3977             ret = get_errno(semctl(semid, semnum, cmd, arg));
3978             err = host_to_target_semarray(semid, target_su.array, &array);
3979             if (err)
3980                 return err;
3981             break;
3982 	case IPC_STAT:
3983 	case IPC_SET:
3984 	case SEM_STAT:
3985             err = target_to_host_semid_ds(&dsarg, target_su.buf);
3986             if (err)
3987                 return err;
3988             arg.buf = &dsarg;
3989             ret = get_errno(semctl(semid, semnum, cmd, arg));
3990             err = host_to_target_semid_ds(target_su.buf, &dsarg);
3991             if (err)
3992                 return err;
3993             break;
3994 	case IPC_INFO:
3995 	case SEM_INFO:
3996             arg.__buf = &seminfo;
3997             ret = get_errno(semctl(semid, semnum, cmd, arg));
3998             err = host_to_target_seminfo(target_su.__buf, &seminfo);
3999             if (err)
4000                 return err;
4001             break;
4002 	case IPC_RMID:
4003 	case GETPID:
4004 	case GETNCNT:
4005 	case GETZCNT:
4006             ret = get_errno(semctl(semid, semnum, cmd, NULL));
4007             break;
4008     }
4009 
4010     return ret;
4011 }
4012 
4013 struct target_sembuf {
4014     unsigned short sem_num;
4015     short sem_op;
4016     short sem_flg;
4017 };
4018 
4019 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf,
4020                                              abi_ulong target_addr,
4021                                              unsigned nsops)
4022 {
4023     struct target_sembuf *target_sembuf;
4024     int i;
4025 
4026     target_sembuf = lock_user(VERIFY_READ, target_addr,
4027                               nsops*sizeof(struct target_sembuf), 1);
4028     if (!target_sembuf)
4029         return -TARGET_EFAULT;
4030 
4031     for(i=0; i<nsops; i++) {
4032         __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num);
4033         __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op);
4034         __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg);
4035     }
4036 
4037     unlock_user(target_sembuf, target_addr, 0);
4038 
4039     return 0;
4040 }
4041 
4042 #if defined(TARGET_NR_ipc) || defined(TARGET_NR_semop) || \
4043     defined(TARGET_NR_semtimedop) || defined(TARGET_NR_semtimedop_time64)
4044 
4045 /*
4046  * This macro is required to handle the s390 variants, which passes the
4047  * arguments in a different order than default.
4048  */
4049 #ifdef __s390x__
4050 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4051   (__nsops), (__timeout), (__sops)
4052 #else
4053 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4054   (__nsops), 0, (__sops), (__timeout)
4055 #endif
4056 
4057 static inline abi_long do_semtimedop(int semid,
4058                                      abi_long ptr,
4059                                      unsigned nsops,
4060                                      abi_long timeout, bool time64)
4061 {
4062     struct sembuf *sops;
4063     struct timespec ts, *pts = NULL;
4064     abi_long ret;
4065 
4066     if (timeout) {
4067         pts = &ts;
4068         if (time64) {
4069             if (target_to_host_timespec64(pts, timeout)) {
4070                 return -TARGET_EFAULT;
4071             }
4072         } else {
4073             if (target_to_host_timespec(pts, timeout)) {
4074                 return -TARGET_EFAULT;
4075             }
4076         }
4077     }
4078 
4079     if (nsops > TARGET_SEMOPM) {
4080         return -TARGET_E2BIG;
4081     }
4082 
4083     sops = g_new(struct sembuf, nsops);
4084 
4085     if (target_to_host_sembuf(sops, ptr, nsops)) {
4086         g_free(sops);
4087         return -TARGET_EFAULT;
4088     }
4089 
4090     ret = -TARGET_ENOSYS;
4091 #ifdef __NR_semtimedop
4092     ret = get_errno(safe_semtimedop(semid, sops, nsops, pts));
4093 #endif
4094 #ifdef __NR_ipc
4095     if (ret == -TARGET_ENOSYS) {
4096         ret = get_errno(safe_ipc(IPCOP_semtimedop, semid,
4097                                  SEMTIMEDOP_IPC_ARGS(nsops, sops, (long)pts)));
4098     }
4099 #endif
4100     g_free(sops);
4101     return ret;
4102 }
4103 #endif
4104 
4105 struct target_msqid_ds
4106 {
4107     struct target_ipc_perm msg_perm;
4108     abi_ulong msg_stime;
4109 #if TARGET_ABI_BITS == 32
4110     abi_ulong __unused1;
4111 #endif
4112     abi_ulong msg_rtime;
4113 #if TARGET_ABI_BITS == 32
4114     abi_ulong __unused2;
4115 #endif
4116     abi_ulong msg_ctime;
4117 #if TARGET_ABI_BITS == 32
4118     abi_ulong __unused3;
4119 #endif
4120     abi_ulong __msg_cbytes;
4121     abi_ulong msg_qnum;
4122     abi_ulong msg_qbytes;
4123     abi_ulong msg_lspid;
4124     abi_ulong msg_lrpid;
4125     abi_ulong __unused4;
4126     abi_ulong __unused5;
4127 };
4128 
4129 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md,
4130                                                abi_ulong target_addr)
4131 {
4132     struct target_msqid_ds *target_md;
4133 
4134     if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1))
4135         return -TARGET_EFAULT;
4136     if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr))
4137         return -TARGET_EFAULT;
4138     host_md->msg_stime = tswapal(target_md->msg_stime);
4139     host_md->msg_rtime = tswapal(target_md->msg_rtime);
4140     host_md->msg_ctime = tswapal(target_md->msg_ctime);
4141     host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes);
4142     host_md->msg_qnum = tswapal(target_md->msg_qnum);
4143     host_md->msg_qbytes = tswapal(target_md->msg_qbytes);
4144     host_md->msg_lspid = tswapal(target_md->msg_lspid);
4145     host_md->msg_lrpid = tswapal(target_md->msg_lrpid);
4146     unlock_user_struct(target_md, target_addr, 0);
4147     return 0;
4148 }
4149 
4150 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr,
4151                                                struct msqid_ds *host_md)
4152 {
4153     struct target_msqid_ds *target_md;
4154 
4155     if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0))
4156         return -TARGET_EFAULT;
4157     if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm)))
4158         return -TARGET_EFAULT;
4159     target_md->msg_stime = tswapal(host_md->msg_stime);
4160     target_md->msg_rtime = tswapal(host_md->msg_rtime);
4161     target_md->msg_ctime = tswapal(host_md->msg_ctime);
4162     target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes);
4163     target_md->msg_qnum = tswapal(host_md->msg_qnum);
4164     target_md->msg_qbytes = tswapal(host_md->msg_qbytes);
4165     target_md->msg_lspid = tswapal(host_md->msg_lspid);
4166     target_md->msg_lrpid = tswapal(host_md->msg_lrpid);
4167     unlock_user_struct(target_md, target_addr, 1);
4168     return 0;
4169 }
4170 
4171 struct target_msginfo {
4172     int msgpool;
4173     int msgmap;
4174     int msgmax;
4175     int msgmnb;
4176     int msgmni;
4177     int msgssz;
4178     int msgtql;
4179     unsigned short int msgseg;
4180 };
4181 
4182 static inline abi_long host_to_target_msginfo(abi_ulong target_addr,
4183                                               struct msginfo *host_msginfo)
4184 {
4185     struct target_msginfo *target_msginfo;
4186     if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0))
4187         return -TARGET_EFAULT;
4188     __put_user(host_msginfo->msgpool, &target_msginfo->msgpool);
4189     __put_user(host_msginfo->msgmap, &target_msginfo->msgmap);
4190     __put_user(host_msginfo->msgmax, &target_msginfo->msgmax);
4191     __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb);
4192     __put_user(host_msginfo->msgmni, &target_msginfo->msgmni);
4193     __put_user(host_msginfo->msgssz, &target_msginfo->msgssz);
4194     __put_user(host_msginfo->msgtql, &target_msginfo->msgtql);
4195     __put_user(host_msginfo->msgseg, &target_msginfo->msgseg);
4196     unlock_user_struct(target_msginfo, target_addr, 1);
4197     return 0;
4198 }
4199 
4200 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr)
4201 {
4202     struct msqid_ds dsarg;
4203     struct msginfo msginfo;
4204     abi_long ret = -TARGET_EINVAL;
4205 
4206     cmd &= 0xff;
4207 
4208     switch (cmd) {
4209     case IPC_STAT:
4210     case IPC_SET:
4211     case MSG_STAT:
4212         if (target_to_host_msqid_ds(&dsarg,ptr))
4213             return -TARGET_EFAULT;
4214         ret = get_errno(msgctl(msgid, cmd, &dsarg));
4215         if (host_to_target_msqid_ds(ptr,&dsarg))
4216             return -TARGET_EFAULT;
4217         break;
4218     case IPC_RMID:
4219         ret = get_errno(msgctl(msgid, cmd, NULL));
4220         break;
4221     case IPC_INFO:
4222     case MSG_INFO:
4223         ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo));
4224         if (host_to_target_msginfo(ptr, &msginfo))
4225             return -TARGET_EFAULT;
4226         break;
4227     }
4228 
4229     return ret;
4230 }
4231 
4232 struct target_msgbuf {
4233     abi_long mtype;
4234     char	mtext[1];
4235 };
4236 
4237 static inline abi_long do_msgsnd(int msqid, abi_long msgp,
4238                                  ssize_t msgsz, int msgflg)
4239 {
4240     struct target_msgbuf *target_mb;
4241     struct msgbuf *host_mb;
4242     abi_long ret = 0;
4243 
4244     if (msgsz < 0) {
4245         return -TARGET_EINVAL;
4246     }
4247 
4248     if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0))
4249         return -TARGET_EFAULT;
4250     host_mb = g_try_malloc(msgsz + sizeof(long));
4251     if (!host_mb) {
4252         unlock_user_struct(target_mb, msgp, 0);
4253         return -TARGET_ENOMEM;
4254     }
4255     host_mb->mtype = (abi_long) tswapal(target_mb->mtype);
4256     memcpy(host_mb->mtext, target_mb->mtext, msgsz);
4257     ret = -TARGET_ENOSYS;
4258 #ifdef __NR_msgsnd
4259     ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg));
4260 #endif
4261 #ifdef __NR_ipc
4262     if (ret == -TARGET_ENOSYS) {
4263 #ifdef __s390x__
4264         ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4265                                  host_mb));
4266 #else
4267         ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4268                                  host_mb, 0));
4269 #endif
4270     }
4271 #endif
4272     g_free(host_mb);
4273     unlock_user_struct(target_mb, msgp, 0);
4274 
4275     return ret;
4276 }
4277 
4278 #ifdef __NR_ipc
4279 #if defined(__sparc__)
4280 /* SPARC for msgrcv it does not use the kludge on final 2 arguments.  */
4281 #define MSGRCV_ARGS(__msgp, __msgtyp) __msgp, __msgtyp
4282 #elif defined(__s390x__)
4283 /* The s390 sys_ipc variant has only five parameters.  */
4284 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4285     ((long int[]){(long int)__msgp, __msgtyp})
4286 #else
4287 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4288     ((long int[]){(long int)__msgp, __msgtyp}), 0
4289 #endif
4290 #endif
4291 
4292 static inline abi_long do_msgrcv(int msqid, abi_long msgp,
4293                                  ssize_t msgsz, abi_long msgtyp,
4294                                  int msgflg)
4295 {
4296     struct target_msgbuf *target_mb;
4297     char *target_mtext;
4298     struct msgbuf *host_mb;
4299     abi_long ret = 0;
4300 
4301     if (msgsz < 0) {
4302         return -TARGET_EINVAL;
4303     }
4304 
4305     if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0))
4306         return -TARGET_EFAULT;
4307 
4308     host_mb = g_try_malloc(msgsz + sizeof(long));
4309     if (!host_mb) {
4310         ret = -TARGET_ENOMEM;
4311         goto end;
4312     }
4313     ret = -TARGET_ENOSYS;
4314 #ifdef __NR_msgrcv
4315     ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg));
4316 #endif
4317 #ifdef __NR_ipc
4318     if (ret == -TARGET_ENOSYS) {
4319         ret = get_errno(safe_ipc(IPCOP_CALL(1, IPCOP_msgrcv), msqid, msgsz,
4320                         msgflg, MSGRCV_ARGS(host_mb, msgtyp)));
4321     }
4322 #endif
4323 
4324     if (ret > 0) {
4325         abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong);
4326         target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0);
4327         if (!target_mtext) {
4328             ret = -TARGET_EFAULT;
4329             goto end;
4330         }
4331         memcpy(target_mb->mtext, host_mb->mtext, ret);
4332         unlock_user(target_mtext, target_mtext_addr, ret);
4333     }
4334 
4335     target_mb->mtype = tswapal(host_mb->mtype);
4336 
4337 end:
4338     if (target_mb)
4339         unlock_user_struct(target_mb, msgp, 1);
4340     g_free(host_mb);
4341     return ret;
4342 }
4343 
4344 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd,
4345                                                abi_ulong target_addr)
4346 {
4347     struct target_shmid_ds *target_sd;
4348 
4349     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
4350         return -TARGET_EFAULT;
4351     if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr))
4352         return -TARGET_EFAULT;
4353     __get_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4354     __get_user(host_sd->shm_atime, &target_sd->shm_atime);
4355     __get_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4356     __get_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4357     __get_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4358     __get_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4359     __get_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4360     unlock_user_struct(target_sd, target_addr, 0);
4361     return 0;
4362 }
4363 
4364 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr,
4365                                                struct shmid_ds *host_sd)
4366 {
4367     struct target_shmid_ds *target_sd;
4368 
4369     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
4370         return -TARGET_EFAULT;
4371     if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm)))
4372         return -TARGET_EFAULT;
4373     __put_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4374     __put_user(host_sd->shm_atime, &target_sd->shm_atime);
4375     __put_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4376     __put_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4377     __put_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4378     __put_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4379     __put_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4380     unlock_user_struct(target_sd, target_addr, 1);
4381     return 0;
4382 }
4383 
4384 struct  target_shminfo {
4385     abi_ulong shmmax;
4386     abi_ulong shmmin;
4387     abi_ulong shmmni;
4388     abi_ulong shmseg;
4389     abi_ulong shmall;
4390 };
4391 
4392 static inline abi_long host_to_target_shminfo(abi_ulong target_addr,
4393                                               struct shminfo *host_shminfo)
4394 {
4395     struct target_shminfo *target_shminfo;
4396     if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0))
4397         return -TARGET_EFAULT;
4398     __put_user(host_shminfo->shmmax, &target_shminfo->shmmax);
4399     __put_user(host_shminfo->shmmin, &target_shminfo->shmmin);
4400     __put_user(host_shminfo->shmmni, &target_shminfo->shmmni);
4401     __put_user(host_shminfo->shmseg, &target_shminfo->shmseg);
4402     __put_user(host_shminfo->shmall, &target_shminfo->shmall);
4403     unlock_user_struct(target_shminfo, target_addr, 1);
4404     return 0;
4405 }
4406 
4407 struct target_shm_info {
4408     int used_ids;
4409     abi_ulong shm_tot;
4410     abi_ulong shm_rss;
4411     abi_ulong shm_swp;
4412     abi_ulong swap_attempts;
4413     abi_ulong swap_successes;
4414 };
4415 
4416 static inline abi_long host_to_target_shm_info(abi_ulong target_addr,
4417                                                struct shm_info *host_shm_info)
4418 {
4419     struct target_shm_info *target_shm_info;
4420     if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0))
4421         return -TARGET_EFAULT;
4422     __put_user(host_shm_info->used_ids, &target_shm_info->used_ids);
4423     __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot);
4424     __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss);
4425     __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp);
4426     __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts);
4427     __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes);
4428     unlock_user_struct(target_shm_info, target_addr, 1);
4429     return 0;
4430 }
4431 
4432 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf)
4433 {
4434     struct shmid_ds dsarg;
4435     struct shminfo shminfo;
4436     struct shm_info shm_info;
4437     abi_long ret = -TARGET_EINVAL;
4438 
4439     cmd &= 0xff;
4440 
4441     switch(cmd) {
4442     case IPC_STAT:
4443     case IPC_SET:
4444     case SHM_STAT:
4445         if (target_to_host_shmid_ds(&dsarg, buf))
4446             return -TARGET_EFAULT;
4447         ret = get_errno(shmctl(shmid, cmd, &dsarg));
4448         if (host_to_target_shmid_ds(buf, &dsarg))
4449             return -TARGET_EFAULT;
4450         break;
4451     case IPC_INFO:
4452         ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo));
4453         if (host_to_target_shminfo(buf, &shminfo))
4454             return -TARGET_EFAULT;
4455         break;
4456     case SHM_INFO:
4457         ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info));
4458         if (host_to_target_shm_info(buf, &shm_info))
4459             return -TARGET_EFAULT;
4460         break;
4461     case IPC_RMID:
4462     case SHM_LOCK:
4463     case SHM_UNLOCK:
4464         ret = get_errno(shmctl(shmid, cmd, NULL));
4465         break;
4466     }
4467 
4468     return ret;
4469 }
4470 
4471 #ifdef TARGET_NR_ipc
4472 /* ??? This only works with linear mappings.  */
4473 /* do_ipc() must return target values and target errnos. */
4474 static abi_long do_ipc(CPUArchState *cpu_env,
4475                        unsigned int call, abi_long first,
4476                        abi_long second, abi_long third,
4477                        abi_long ptr, abi_long fifth)
4478 {
4479     int version;
4480     abi_long ret = 0;
4481 
4482     version = call >> 16;
4483     call &= 0xffff;
4484 
4485     switch (call) {
4486     case IPCOP_semop:
4487         ret = do_semtimedop(first, ptr, second, 0, false);
4488         break;
4489     case IPCOP_semtimedop:
4490     /*
4491      * The s390 sys_ipc variant has only five parameters instead of six
4492      * (as for default variant) and the only difference is the handling of
4493      * SEMTIMEDOP where on s390 the third parameter is used as a pointer
4494      * to a struct timespec where the generic variant uses fifth parameter.
4495      */
4496 #if defined(TARGET_S390X)
4497         ret = do_semtimedop(first, ptr, second, third, TARGET_ABI_BITS == 64);
4498 #else
4499         ret = do_semtimedop(first, ptr, second, fifth, TARGET_ABI_BITS == 64);
4500 #endif
4501         break;
4502 
4503     case IPCOP_semget:
4504         ret = get_errno(semget(first, second, third));
4505         break;
4506 
4507     case IPCOP_semctl: {
4508         /* The semun argument to semctl is passed by value, so dereference the
4509          * ptr argument. */
4510         abi_ulong atptr;
4511         get_user_ual(atptr, ptr);
4512         ret = do_semctl(first, second, third, atptr);
4513         break;
4514     }
4515 
4516     case IPCOP_msgget:
4517         ret = get_errno(msgget(first, second));
4518         break;
4519 
4520     case IPCOP_msgsnd:
4521         ret = do_msgsnd(first, ptr, second, third);
4522         break;
4523 
4524     case IPCOP_msgctl:
4525         ret = do_msgctl(first, second, ptr);
4526         break;
4527 
4528     case IPCOP_msgrcv:
4529         switch (version) {
4530         case 0:
4531             {
4532                 struct target_ipc_kludge {
4533                     abi_long msgp;
4534                     abi_long msgtyp;
4535                 } *tmp;
4536 
4537                 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) {
4538                     ret = -TARGET_EFAULT;
4539                     break;
4540                 }
4541 
4542                 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third);
4543 
4544                 unlock_user_struct(tmp, ptr, 0);
4545                 break;
4546             }
4547         default:
4548             ret = do_msgrcv(first, ptr, second, fifth, third);
4549         }
4550         break;
4551 
4552     case IPCOP_shmat:
4553         switch (version) {
4554         default:
4555         {
4556             abi_ulong raddr;
4557             raddr = target_shmat(cpu_env, first, ptr, second);
4558             if (is_error(raddr))
4559                 return get_errno(raddr);
4560             if (put_user_ual(raddr, third))
4561                 return -TARGET_EFAULT;
4562             break;
4563         }
4564         case 1:
4565             ret = -TARGET_EINVAL;
4566             break;
4567         }
4568 	break;
4569     case IPCOP_shmdt:
4570         ret = target_shmdt(ptr);
4571 	break;
4572 
4573     case IPCOP_shmget:
4574 	/* IPC_* flag values are the same on all linux platforms */
4575 	ret = get_errno(shmget(first, second, third));
4576 	break;
4577 
4578 	/* IPC_* and SHM_* command values are the same on all linux platforms */
4579     case IPCOP_shmctl:
4580         ret = do_shmctl(first, second, ptr);
4581         break;
4582     default:
4583         qemu_log_mask(LOG_UNIMP, "Unsupported ipc call: %d (version %d)\n",
4584                       call, version);
4585 	ret = -TARGET_ENOSYS;
4586 	break;
4587     }
4588     return ret;
4589 }
4590 #endif
4591 
4592 /* kernel structure types definitions */
4593 
4594 #define STRUCT(name, ...) STRUCT_ ## name,
4595 #define STRUCT_SPECIAL(name) STRUCT_ ## name,
4596 enum {
4597 #include "syscall_types.h"
4598 STRUCT_MAX
4599 };
4600 #undef STRUCT
4601 #undef STRUCT_SPECIAL
4602 
4603 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = {  __VA_ARGS__, TYPE_NULL };
4604 #define STRUCT_SPECIAL(name)
4605 #include "syscall_types.h"
4606 #undef STRUCT
4607 #undef STRUCT_SPECIAL
4608 
4609 #define MAX_STRUCT_SIZE 4096
4610 
4611 #ifdef CONFIG_FIEMAP
4612 /* So fiemap access checks don't overflow on 32 bit systems.
4613  * This is very slightly smaller than the limit imposed by
4614  * the underlying kernel.
4615  */
4616 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap))  \
4617                             / sizeof(struct fiemap_extent))
4618 
4619 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp,
4620                                        int fd, int cmd, abi_long arg)
4621 {
4622     /* The parameter for this ioctl is a struct fiemap followed
4623      * by an array of struct fiemap_extent whose size is set
4624      * in fiemap->fm_extent_count. The array is filled in by the
4625      * ioctl.
4626      */
4627     int target_size_in, target_size_out;
4628     struct fiemap *fm;
4629     const argtype *arg_type = ie->arg_type;
4630     const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) };
4631     void *argptr, *p;
4632     abi_long ret;
4633     int i, extent_size = thunk_type_size(extent_arg_type, 0);
4634     uint32_t outbufsz;
4635     int free_fm = 0;
4636 
4637     assert(arg_type[0] == TYPE_PTR);
4638     assert(ie->access == IOC_RW);
4639     arg_type++;
4640     target_size_in = thunk_type_size(arg_type, 0);
4641     argptr = lock_user(VERIFY_READ, arg, target_size_in, 1);
4642     if (!argptr) {
4643         return -TARGET_EFAULT;
4644     }
4645     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4646     unlock_user(argptr, arg, 0);
4647     fm = (struct fiemap *)buf_temp;
4648     if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) {
4649         return -TARGET_EINVAL;
4650     }
4651 
4652     outbufsz = sizeof (*fm) +
4653         (sizeof(struct fiemap_extent) * fm->fm_extent_count);
4654 
4655     if (outbufsz > MAX_STRUCT_SIZE) {
4656         /* We can't fit all the extents into the fixed size buffer.
4657          * Allocate one that is large enough and use it instead.
4658          */
4659         fm = g_try_malloc(outbufsz);
4660         if (!fm) {
4661             return -TARGET_ENOMEM;
4662         }
4663         memcpy(fm, buf_temp, sizeof(struct fiemap));
4664         free_fm = 1;
4665     }
4666     ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm));
4667     if (!is_error(ret)) {
4668         target_size_out = target_size_in;
4669         /* An extent_count of 0 means we were only counting the extents
4670          * so there are no structs to copy
4671          */
4672         if (fm->fm_extent_count != 0) {
4673             target_size_out += fm->fm_mapped_extents * extent_size;
4674         }
4675         argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0);
4676         if (!argptr) {
4677             ret = -TARGET_EFAULT;
4678         } else {
4679             /* Convert the struct fiemap */
4680             thunk_convert(argptr, fm, arg_type, THUNK_TARGET);
4681             if (fm->fm_extent_count != 0) {
4682                 p = argptr + target_size_in;
4683                 /* ...and then all the struct fiemap_extents */
4684                 for (i = 0; i < fm->fm_mapped_extents; i++) {
4685                     thunk_convert(p, &fm->fm_extents[i], extent_arg_type,
4686                                   THUNK_TARGET);
4687                     p += extent_size;
4688                 }
4689             }
4690             unlock_user(argptr, arg, target_size_out);
4691         }
4692     }
4693     if (free_fm) {
4694         g_free(fm);
4695     }
4696     return ret;
4697 }
4698 #endif
4699 
4700 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp,
4701                                 int fd, int cmd, abi_long arg)
4702 {
4703     const argtype *arg_type = ie->arg_type;
4704     int target_size;
4705     void *argptr;
4706     int ret;
4707     struct ifconf *host_ifconf;
4708     uint32_t outbufsz;
4709     const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) };
4710     const argtype ifreq_max_type[] = { MK_STRUCT(STRUCT_ifmap_ifreq) };
4711     int target_ifreq_size;
4712     int nb_ifreq;
4713     int free_buf = 0;
4714     int i;
4715     int target_ifc_len;
4716     abi_long target_ifc_buf;
4717     int host_ifc_len;
4718     char *host_ifc_buf;
4719 
4720     assert(arg_type[0] == TYPE_PTR);
4721     assert(ie->access == IOC_RW);
4722 
4723     arg_type++;
4724     target_size = thunk_type_size(arg_type, 0);
4725 
4726     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4727     if (!argptr)
4728         return -TARGET_EFAULT;
4729     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4730     unlock_user(argptr, arg, 0);
4731 
4732     host_ifconf = (struct ifconf *)(unsigned long)buf_temp;
4733     target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf;
4734     target_ifreq_size = thunk_type_size(ifreq_max_type, 0);
4735 
4736     if (target_ifc_buf != 0) {
4737         target_ifc_len = host_ifconf->ifc_len;
4738         nb_ifreq = target_ifc_len / target_ifreq_size;
4739         host_ifc_len = nb_ifreq * sizeof(struct ifreq);
4740 
4741         outbufsz = sizeof(*host_ifconf) + host_ifc_len;
4742         if (outbufsz > MAX_STRUCT_SIZE) {
4743             /*
4744              * We can't fit all the extents into the fixed size buffer.
4745              * Allocate one that is large enough and use it instead.
4746              */
4747             host_ifconf = g_try_malloc(outbufsz);
4748             if (!host_ifconf) {
4749                 return -TARGET_ENOMEM;
4750             }
4751             memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf));
4752             free_buf = 1;
4753         }
4754         host_ifc_buf = (char *)host_ifconf + sizeof(*host_ifconf);
4755 
4756         host_ifconf->ifc_len = host_ifc_len;
4757     } else {
4758       host_ifc_buf = NULL;
4759     }
4760     host_ifconf->ifc_buf = host_ifc_buf;
4761 
4762     ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf));
4763     if (!is_error(ret)) {
4764 	/* convert host ifc_len to target ifc_len */
4765 
4766         nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq);
4767         target_ifc_len = nb_ifreq * target_ifreq_size;
4768         host_ifconf->ifc_len = target_ifc_len;
4769 
4770 	/* restore target ifc_buf */
4771 
4772         host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf;
4773 
4774 	/* copy struct ifconf to target user */
4775 
4776         argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4777         if (!argptr)
4778             return -TARGET_EFAULT;
4779         thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET);
4780         unlock_user(argptr, arg, target_size);
4781 
4782         if (target_ifc_buf != 0) {
4783             /* copy ifreq[] to target user */
4784             argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0);
4785             for (i = 0; i < nb_ifreq ; i++) {
4786                 thunk_convert(argptr + i * target_ifreq_size,
4787                               host_ifc_buf + i * sizeof(struct ifreq),
4788                               ifreq_arg_type, THUNK_TARGET);
4789             }
4790             unlock_user(argptr, target_ifc_buf, target_ifc_len);
4791         }
4792     }
4793 
4794     if (free_buf) {
4795         g_free(host_ifconf);
4796     }
4797 
4798     return ret;
4799 }
4800 
4801 #if defined(CONFIG_USBFS)
4802 #if HOST_LONG_BITS > 64
4803 #error USBDEVFS thunks do not support >64 bit hosts yet.
4804 #endif
4805 struct live_urb {
4806     uint64_t target_urb_adr;
4807     uint64_t target_buf_adr;
4808     char *target_buf_ptr;
4809     struct usbdevfs_urb host_urb;
4810 };
4811 
4812 static GHashTable *usbdevfs_urb_hashtable(void)
4813 {
4814     static GHashTable *urb_hashtable;
4815 
4816     if (!urb_hashtable) {
4817         urb_hashtable = g_hash_table_new(g_int64_hash, g_int64_equal);
4818     }
4819     return urb_hashtable;
4820 }
4821 
4822 static void urb_hashtable_insert(struct live_urb *urb)
4823 {
4824     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4825     g_hash_table_insert(urb_hashtable, urb, urb);
4826 }
4827 
4828 static struct live_urb *urb_hashtable_lookup(uint64_t target_urb_adr)
4829 {
4830     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4831     return g_hash_table_lookup(urb_hashtable, &target_urb_adr);
4832 }
4833 
4834 static void urb_hashtable_remove(struct live_urb *urb)
4835 {
4836     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4837     g_hash_table_remove(urb_hashtable, urb);
4838 }
4839 
4840 static abi_long
4841 do_ioctl_usbdevfs_reapurb(const IOCTLEntry *ie, uint8_t *buf_temp,
4842                           int fd, int cmd, abi_long arg)
4843 {
4844     const argtype usbfsurb_arg_type[] = { MK_STRUCT(STRUCT_usbdevfs_urb) };
4845     const argtype ptrvoid_arg_type[] = { TYPE_PTRVOID, 0, 0 };
4846     struct live_urb *lurb;
4847     void *argptr;
4848     uint64_t hurb;
4849     int target_size;
4850     uintptr_t target_urb_adr;
4851     abi_long ret;
4852 
4853     target_size = thunk_type_size(usbfsurb_arg_type, THUNK_TARGET);
4854 
4855     memset(buf_temp, 0, sizeof(uint64_t));
4856     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
4857     if (is_error(ret)) {
4858         return ret;
4859     }
4860 
4861     memcpy(&hurb, buf_temp, sizeof(uint64_t));
4862     lurb = (void *)((uintptr_t)hurb - offsetof(struct live_urb, host_urb));
4863     if (!lurb->target_urb_adr) {
4864         return -TARGET_EFAULT;
4865     }
4866     urb_hashtable_remove(lurb);
4867     unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr,
4868         lurb->host_urb.buffer_length);
4869     lurb->target_buf_ptr = NULL;
4870 
4871     /* restore the guest buffer pointer */
4872     lurb->host_urb.buffer = (void *)(uintptr_t)lurb->target_buf_adr;
4873 
4874     /* update the guest urb struct */
4875     argptr = lock_user(VERIFY_WRITE, lurb->target_urb_adr, target_size, 0);
4876     if (!argptr) {
4877         g_free(lurb);
4878         return -TARGET_EFAULT;
4879     }
4880     thunk_convert(argptr, &lurb->host_urb, usbfsurb_arg_type, THUNK_TARGET);
4881     unlock_user(argptr, lurb->target_urb_adr, target_size);
4882 
4883     target_size = thunk_type_size(ptrvoid_arg_type, THUNK_TARGET);
4884     /* write back the urb handle */
4885     argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4886     if (!argptr) {
4887         g_free(lurb);
4888         return -TARGET_EFAULT;
4889     }
4890 
4891     /* GHashTable uses 64-bit keys but thunk_convert expects uintptr_t */
4892     target_urb_adr = lurb->target_urb_adr;
4893     thunk_convert(argptr, &target_urb_adr, ptrvoid_arg_type, THUNK_TARGET);
4894     unlock_user(argptr, arg, target_size);
4895 
4896     g_free(lurb);
4897     return ret;
4898 }
4899 
4900 static abi_long
4901 do_ioctl_usbdevfs_discardurb(const IOCTLEntry *ie,
4902                              uint8_t *buf_temp __attribute__((unused)),
4903                              int fd, int cmd, abi_long arg)
4904 {
4905     struct live_urb *lurb;
4906 
4907     /* map target address back to host URB with metadata. */
4908     lurb = urb_hashtable_lookup(arg);
4909     if (!lurb) {
4910         return -TARGET_EFAULT;
4911     }
4912     return get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
4913 }
4914 
4915 static abi_long
4916 do_ioctl_usbdevfs_submiturb(const IOCTLEntry *ie, uint8_t *buf_temp,
4917                             int fd, int cmd, abi_long arg)
4918 {
4919     const argtype *arg_type = ie->arg_type;
4920     int target_size;
4921     abi_long ret;
4922     void *argptr;
4923     int rw_dir;
4924     struct live_urb *lurb;
4925 
4926     /*
4927      * each submitted URB needs to map to a unique ID for the
4928      * kernel, and that unique ID needs to be a pointer to
4929      * host memory.  hence, we need to malloc for each URB.
4930      * isochronous transfers have a variable length struct.
4931      */
4932     arg_type++;
4933     target_size = thunk_type_size(arg_type, THUNK_TARGET);
4934 
4935     /* construct host copy of urb and metadata */
4936     lurb = g_try_new0(struct live_urb, 1);
4937     if (!lurb) {
4938         return -TARGET_ENOMEM;
4939     }
4940 
4941     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4942     if (!argptr) {
4943         g_free(lurb);
4944         return -TARGET_EFAULT;
4945     }
4946     thunk_convert(&lurb->host_urb, argptr, arg_type, THUNK_HOST);
4947     unlock_user(argptr, arg, 0);
4948 
4949     lurb->target_urb_adr = arg;
4950     lurb->target_buf_adr = (uintptr_t)lurb->host_urb.buffer;
4951 
4952     /* buffer space used depends on endpoint type so lock the entire buffer */
4953     /* control type urbs should check the buffer contents for true direction */
4954     rw_dir = lurb->host_urb.endpoint & USB_DIR_IN ? VERIFY_WRITE : VERIFY_READ;
4955     lurb->target_buf_ptr = lock_user(rw_dir, lurb->target_buf_adr,
4956         lurb->host_urb.buffer_length, 1);
4957     if (lurb->target_buf_ptr == NULL) {
4958         g_free(lurb);
4959         return -TARGET_EFAULT;
4960     }
4961 
4962     /* update buffer pointer in host copy */
4963     lurb->host_urb.buffer = lurb->target_buf_ptr;
4964 
4965     ret = get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
4966     if (is_error(ret)) {
4967         unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr, 0);
4968         g_free(lurb);
4969     } else {
4970         urb_hashtable_insert(lurb);
4971     }
4972 
4973     return ret;
4974 }
4975 #endif /* CONFIG_USBFS */
4976 
4977 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
4978                             int cmd, abi_long arg)
4979 {
4980     void *argptr;
4981     struct dm_ioctl *host_dm;
4982     abi_long guest_data;
4983     uint32_t guest_data_size;
4984     int target_size;
4985     const argtype *arg_type = ie->arg_type;
4986     abi_long ret;
4987     void *big_buf = NULL;
4988     char *host_data;
4989 
4990     arg_type++;
4991     target_size = thunk_type_size(arg_type, 0);
4992     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4993     if (!argptr) {
4994         ret = -TARGET_EFAULT;
4995         goto out;
4996     }
4997     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4998     unlock_user(argptr, arg, 0);
4999 
5000     /* buf_temp is too small, so fetch things into a bigger buffer */
5001     big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2);
5002     memcpy(big_buf, buf_temp, target_size);
5003     buf_temp = big_buf;
5004     host_dm = big_buf;
5005 
5006     guest_data = arg + host_dm->data_start;
5007     if ((guest_data - arg) < 0) {
5008         ret = -TARGET_EINVAL;
5009         goto out;
5010     }
5011     guest_data_size = host_dm->data_size - host_dm->data_start;
5012     host_data = (char*)host_dm + host_dm->data_start;
5013 
5014     argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1);
5015     if (!argptr) {
5016         ret = -TARGET_EFAULT;
5017         goto out;
5018     }
5019 
5020     switch (ie->host_cmd) {
5021     case DM_REMOVE_ALL:
5022     case DM_LIST_DEVICES:
5023     case DM_DEV_CREATE:
5024     case DM_DEV_REMOVE:
5025     case DM_DEV_SUSPEND:
5026     case DM_DEV_STATUS:
5027     case DM_DEV_WAIT:
5028     case DM_TABLE_STATUS:
5029     case DM_TABLE_CLEAR:
5030     case DM_TABLE_DEPS:
5031     case DM_LIST_VERSIONS:
5032         /* no input data */
5033         break;
5034     case DM_DEV_RENAME:
5035     case DM_DEV_SET_GEOMETRY:
5036         /* data contains only strings */
5037         memcpy(host_data, argptr, guest_data_size);
5038         break;
5039     case DM_TARGET_MSG:
5040         memcpy(host_data, argptr, guest_data_size);
5041         *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr);
5042         break;
5043     case DM_TABLE_LOAD:
5044     {
5045         void *gspec = argptr;
5046         void *cur_data = host_data;
5047         const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5048         int spec_size = thunk_type_size(dm_arg_type, 0);
5049         int i;
5050 
5051         for (i = 0; i < host_dm->target_count; i++) {
5052             struct dm_target_spec *spec = cur_data;
5053             uint32_t next;
5054             int slen;
5055 
5056             thunk_convert(spec, gspec, dm_arg_type, THUNK_HOST);
5057             slen = strlen((char*)gspec + spec_size) + 1;
5058             next = spec->next;
5059             spec->next = sizeof(*spec) + slen;
5060             strcpy((char*)&spec[1], gspec + spec_size);
5061             gspec += next;
5062             cur_data += spec->next;
5063         }
5064         break;
5065     }
5066     default:
5067         ret = -TARGET_EINVAL;
5068         unlock_user(argptr, guest_data, 0);
5069         goto out;
5070     }
5071     unlock_user(argptr, guest_data, 0);
5072 
5073     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5074     if (!is_error(ret)) {
5075         guest_data = arg + host_dm->data_start;
5076         guest_data_size = host_dm->data_size - host_dm->data_start;
5077         argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0);
5078         switch (ie->host_cmd) {
5079         case DM_REMOVE_ALL:
5080         case DM_DEV_CREATE:
5081         case DM_DEV_REMOVE:
5082         case DM_DEV_RENAME:
5083         case DM_DEV_SUSPEND:
5084         case DM_DEV_STATUS:
5085         case DM_TABLE_LOAD:
5086         case DM_TABLE_CLEAR:
5087         case DM_TARGET_MSG:
5088         case DM_DEV_SET_GEOMETRY:
5089             /* no return data */
5090             break;
5091         case DM_LIST_DEVICES:
5092         {
5093             struct dm_name_list *nl = (void*)host_dm + host_dm->data_start;
5094             uint32_t remaining_data = guest_data_size;
5095             void *cur_data = argptr;
5096             const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) };
5097             int nl_size = 12; /* can't use thunk_size due to alignment */
5098 
5099             while (1) {
5100                 uint32_t next = nl->next;
5101                 if (next) {
5102                     nl->next = nl_size + (strlen(nl->name) + 1);
5103                 }
5104                 if (remaining_data < nl->next) {
5105                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5106                     break;
5107                 }
5108                 thunk_convert(cur_data, nl, dm_arg_type, THUNK_TARGET);
5109                 strcpy(cur_data + nl_size, nl->name);
5110                 cur_data += nl->next;
5111                 remaining_data -= nl->next;
5112                 if (!next) {
5113                     break;
5114                 }
5115                 nl = (void*)nl + next;
5116             }
5117             break;
5118         }
5119         case DM_DEV_WAIT:
5120         case DM_TABLE_STATUS:
5121         {
5122             struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start;
5123             void *cur_data = argptr;
5124             const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5125             int spec_size = thunk_type_size(dm_arg_type, 0);
5126             int i;
5127 
5128             for (i = 0; i < host_dm->target_count; i++) {
5129                 uint32_t next = spec->next;
5130                 int slen = strlen((char*)&spec[1]) + 1;
5131                 spec->next = (cur_data - argptr) + spec_size + slen;
5132                 if (guest_data_size < spec->next) {
5133                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5134                     break;
5135                 }
5136                 thunk_convert(cur_data, spec, dm_arg_type, THUNK_TARGET);
5137                 strcpy(cur_data + spec_size, (char*)&spec[1]);
5138                 cur_data = argptr + spec->next;
5139                 spec = (void*)host_dm + host_dm->data_start + next;
5140             }
5141             break;
5142         }
5143         case DM_TABLE_DEPS:
5144         {
5145             void *hdata = (void*)host_dm + host_dm->data_start;
5146             int count = *(uint32_t*)hdata;
5147             uint64_t *hdev = hdata + 8;
5148             uint64_t *gdev = argptr + 8;
5149             int i;
5150 
5151             *(uint32_t*)argptr = tswap32(count);
5152             for (i = 0; i < count; i++) {
5153                 *gdev = tswap64(*hdev);
5154                 gdev++;
5155                 hdev++;
5156             }
5157             break;
5158         }
5159         case DM_LIST_VERSIONS:
5160         {
5161             struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start;
5162             uint32_t remaining_data = guest_data_size;
5163             void *cur_data = argptr;
5164             const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) };
5165             int vers_size = thunk_type_size(dm_arg_type, 0);
5166 
5167             while (1) {
5168                 uint32_t next = vers->next;
5169                 if (next) {
5170                     vers->next = vers_size + (strlen(vers->name) + 1);
5171                 }
5172                 if (remaining_data < vers->next) {
5173                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5174                     break;
5175                 }
5176                 thunk_convert(cur_data, vers, dm_arg_type, THUNK_TARGET);
5177                 strcpy(cur_data + vers_size, vers->name);
5178                 cur_data += vers->next;
5179                 remaining_data -= vers->next;
5180                 if (!next) {
5181                     break;
5182                 }
5183                 vers = (void*)vers + next;
5184             }
5185             break;
5186         }
5187         default:
5188             unlock_user(argptr, guest_data, 0);
5189             ret = -TARGET_EINVAL;
5190             goto out;
5191         }
5192         unlock_user(argptr, guest_data, guest_data_size);
5193 
5194         argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5195         if (!argptr) {
5196             ret = -TARGET_EFAULT;
5197             goto out;
5198         }
5199         thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5200         unlock_user(argptr, arg, target_size);
5201     }
5202 out:
5203     g_free(big_buf);
5204     return ret;
5205 }
5206 
5207 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
5208                                int cmd, abi_long arg)
5209 {
5210     void *argptr;
5211     int target_size;
5212     const argtype *arg_type = ie->arg_type;
5213     const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) };
5214     abi_long ret;
5215 
5216     struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp;
5217     struct blkpg_partition host_part;
5218 
5219     /* Read and convert blkpg */
5220     arg_type++;
5221     target_size = thunk_type_size(arg_type, 0);
5222     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5223     if (!argptr) {
5224         ret = -TARGET_EFAULT;
5225         goto out;
5226     }
5227     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5228     unlock_user(argptr, arg, 0);
5229 
5230     switch (host_blkpg->op) {
5231     case BLKPG_ADD_PARTITION:
5232     case BLKPG_DEL_PARTITION:
5233         /* payload is struct blkpg_partition */
5234         break;
5235     default:
5236         /* Unknown opcode */
5237         ret = -TARGET_EINVAL;
5238         goto out;
5239     }
5240 
5241     /* Read and convert blkpg->data */
5242     arg = (abi_long)(uintptr_t)host_blkpg->data;
5243     target_size = thunk_type_size(part_arg_type, 0);
5244     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5245     if (!argptr) {
5246         ret = -TARGET_EFAULT;
5247         goto out;
5248     }
5249     thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST);
5250     unlock_user(argptr, arg, 0);
5251 
5252     /* Swizzle the data pointer to our local copy and call! */
5253     host_blkpg->data = &host_part;
5254     ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg));
5255 
5256 out:
5257     return ret;
5258 }
5259 
5260 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp,
5261                                 int fd, int cmd, abi_long arg)
5262 {
5263     const argtype *arg_type = ie->arg_type;
5264     const StructEntry *se;
5265     const argtype *field_types;
5266     const int *dst_offsets, *src_offsets;
5267     int target_size;
5268     void *argptr;
5269     abi_ulong *target_rt_dev_ptr = NULL;
5270     unsigned long *host_rt_dev_ptr = NULL;
5271     abi_long ret;
5272     int i;
5273 
5274     assert(ie->access == IOC_W);
5275     assert(*arg_type == TYPE_PTR);
5276     arg_type++;
5277     assert(*arg_type == TYPE_STRUCT);
5278     target_size = thunk_type_size(arg_type, 0);
5279     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5280     if (!argptr) {
5281         return -TARGET_EFAULT;
5282     }
5283     arg_type++;
5284     assert(*arg_type == (int)STRUCT_rtentry);
5285     se = struct_entries + *arg_type++;
5286     assert(se->convert[0] == NULL);
5287     /* convert struct here to be able to catch rt_dev string */
5288     field_types = se->field_types;
5289     dst_offsets = se->field_offsets[THUNK_HOST];
5290     src_offsets = se->field_offsets[THUNK_TARGET];
5291     for (i = 0; i < se->nb_fields; i++) {
5292         if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) {
5293             assert(*field_types == TYPE_PTRVOID);
5294             target_rt_dev_ptr = argptr + src_offsets[i];
5295             host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]);
5296             if (*target_rt_dev_ptr != 0) {
5297                 *host_rt_dev_ptr = (unsigned long)lock_user_string(
5298                                                   tswapal(*target_rt_dev_ptr));
5299                 if (!*host_rt_dev_ptr) {
5300                     unlock_user(argptr, arg, 0);
5301                     return -TARGET_EFAULT;
5302                 }
5303             } else {
5304                 *host_rt_dev_ptr = 0;
5305             }
5306             field_types++;
5307             continue;
5308         }
5309         field_types = thunk_convert(buf_temp + dst_offsets[i],
5310                                     argptr + src_offsets[i],
5311                                     field_types, THUNK_HOST);
5312     }
5313     unlock_user(argptr, arg, 0);
5314 
5315     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5316 
5317     assert(host_rt_dev_ptr != NULL);
5318     assert(target_rt_dev_ptr != NULL);
5319     if (*host_rt_dev_ptr != 0) {
5320         unlock_user((void *)*host_rt_dev_ptr,
5321                     *target_rt_dev_ptr, 0);
5322     }
5323     return ret;
5324 }
5325 
5326 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp,
5327                                      int fd, int cmd, abi_long arg)
5328 {
5329     int sig = target_to_host_signal(arg);
5330     return get_errno(safe_ioctl(fd, ie->host_cmd, sig));
5331 }
5332 
5333 static abi_long do_ioctl_SIOCGSTAMP(const IOCTLEntry *ie, uint8_t *buf_temp,
5334                                     int fd, int cmd, abi_long arg)
5335 {
5336     struct timeval tv;
5337     abi_long ret;
5338 
5339     ret = get_errno(safe_ioctl(fd, SIOCGSTAMP, &tv));
5340     if (is_error(ret)) {
5341         return ret;
5342     }
5343 
5344     if (cmd == (int)TARGET_SIOCGSTAMP_OLD) {
5345         if (copy_to_user_timeval(arg, &tv)) {
5346             return -TARGET_EFAULT;
5347         }
5348     } else {
5349         if (copy_to_user_timeval64(arg, &tv)) {
5350             return -TARGET_EFAULT;
5351         }
5352     }
5353 
5354     return ret;
5355 }
5356 
5357 static abi_long do_ioctl_SIOCGSTAMPNS(const IOCTLEntry *ie, uint8_t *buf_temp,
5358                                       int fd, int cmd, abi_long arg)
5359 {
5360     struct timespec ts;
5361     abi_long ret;
5362 
5363     ret = get_errno(safe_ioctl(fd, SIOCGSTAMPNS, &ts));
5364     if (is_error(ret)) {
5365         return ret;
5366     }
5367 
5368     if (cmd == (int)TARGET_SIOCGSTAMPNS_OLD) {
5369         if (host_to_target_timespec(arg, &ts)) {
5370             return -TARGET_EFAULT;
5371         }
5372     } else{
5373         if (host_to_target_timespec64(arg, &ts)) {
5374             return -TARGET_EFAULT;
5375         }
5376     }
5377 
5378     return ret;
5379 }
5380 
5381 #ifdef TIOCGPTPEER
5382 static abi_long do_ioctl_tiocgptpeer(const IOCTLEntry *ie, uint8_t *buf_temp,
5383                                      int fd, int cmd, abi_long arg)
5384 {
5385     int flags = target_to_host_bitmask(arg, fcntl_flags_tbl);
5386     return get_errno(safe_ioctl(fd, ie->host_cmd, flags));
5387 }
5388 #endif
5389 
5390 #ifdef HAVE_DRM_H
5391 
5392 static void unlock_drm_version(struct drm_version *host_ver,
5393                                struct target_drm_version *target_ver,
5394                                bool copy)
5395 {
5396     unlock_user(host_ver->name, target_ver->name,
5397                                 copy ? host_ver->name_len : 0);
5398     unlock_user(host_ver->date, target_ver->date,
5399                                 copy ? host_ver->date_len : 0);
5400     unlock_user(host_ver->desc, target_ver->desc,
5401                                 copy ? host_ver->desc_len : 0);
5402 }
5403 
5404 static inline abi_long target_to_host_drmversion(struct drm_version *host_ver,
5405                                           struct target_drm_version *target_ver)
5406 {
5407     memset(host_ver, 0, sizeof(*host_ver));
5408 
5409     __get_user(host_ver->name_len, &target_ver->name_len);
5410     if (host_ver->name_len) {
5411         host_ver->name = lock_user(VERIFY_WRITE, target_ver->name,
5412                                    target_ver->name_len, 0);
5413         if (!host_ver->name) {
5414             return -EFAULT;
5415         }
5416     }
5417 
5418     __get_user(host_ver->date_len, &target_ver->date_len);
5419     if (host_ver->date_len) {
5420         host_ver->date = lock_user(VERIFY_WRITE, target_ver->date,
5421                                    target_ver->date_len, 0);
5422         if (!host_ver->date) {
5423             goto err;
5424         }
5425     }
5426 
5427     __get_user(host_ver->desc_len, &target_ver->desc_len);
5428     if (host_ver->desc_len) {
5429         host_ver->desc = lock_user(VERIFY_WRITE, target_ver->desc,
5430                                    target_ver->desc_len, 0);
5431         if (!host_ver->desc) {
5432             goto err;
5433         }
5434     }
5435 
5436     return 0;
5437 err:
5438     unlock_drm_version(host_ver, target_ver, false);
5439     return -EFAULT;
5440 }
5441 
5442 static inline void host_to_target_drmversion(
5443                                           struct target_drm_version *target_ver,
5444                                           struct drm_version *host_ver)
5445 {
5446     __put_user(host_ver->version_major, &target_ver->version_major);
5447     __put_user(host_ver->version_minor, &target_ver->version_minor);
5448     __put_user(host_ver->version_patchlevel, &target_ver->version_patchlevel);
5449     __put_user(host_ver->name_len, &target_ver->name_len);
5450     __put_user(host_ver->date_len, &target_ver->date_len);
5451     __put_user(host_ver->desc_len, &target_ver->desc_len);
5452     unlock_drm_version(host_ver, target_ver, true);
5453 }
5454 
5455 static abi_long do_ioctl_drm(const IOCTLEntry *ie, uint8_t *buf_temp,
5456                              int fd, int cmd, abi_long arg)
5457 {
5458     struct drm_version *ver;
5459     struct target_drm_version *target_ver;
5460     abi_long ret;
5461 
5462     switch (ie->host_cmd) {
5463     case DRM_IOCTL_VERSION:
5464         if (!lock_user_struct(VERIFY_WRITE, target_ver, arg, 0)) {
5465             return -TARGET_EFAULT;
5466         }
5467         ver = (struct drm_version *)buf_temp;
5468         ret = target_to_host_drmversion(ver, target_ver);
5469         if (!is_error(ret)) {
5470             ret = get_errno(safe_ioctl(fd, ie->host_cmd, ver));
5471             if (is_error(ret)) {
5472                 unlock_drm_version(ver, target_ver, false);
5473             } else {
5474                 host_to_target_drmversion(target_ver, ver);
5475             }
5476         }
5477         unlock_user_struct(target_ver, arg, 0);
5478         return ret;
5479     }
5480     return -TARGET_ENOSYS;
5481 }
5482 
5483 static abi_long do_ioctl_drm_i915_getparam(const IOCTLEntry *ie,
5484                                            struct drm_i915_getparam *gparam,
5485                                            int fd, abi_long arg)
5486 {
5487     abi_long ret;
5488     int value;
5489     struct target_drm_i915_getparam *target_gparam;
5490 
5491     if (!lock_user_struct(VERIFY_READ, target_gparam, arg, 0)) {
5492         return -TARGET_EFAULT;
5493     }
5494 
5495     __get_user(gparam->param, &target_gparam->param);
5496     gparam->value = &value;
5497     ret = get_errno(safe_ioctl(fd, ie->host_cmd, gparam));
5498     put_user_s32(value, target_gparam->value);
5499 
5500     unlock_user_struct(target_gparam, arg, 0);
5501     return ret;
5502 }
5503 
5504 static abi_long do_ioctl_drm_i915(const IOCTLEntry *ie, uint8_t *buf_temp,
5505                                   int fd, int cmd, abi_long arg)
5506 {
5507     switch (ie->host_cmd) {
5508     case DRM_IOCTL_I915_GETPARAM:
5509         return do_ioctl_drm_i915_getparam(ie,
5510                                           (struct drm_i915_getparam *)buf_temp,
5511                                           fd, arg);
5512     default:
5513         return -TARGET_ENOSYS;
5514     }
5515 }
5516 
5517 #endif
5518 
5519 static abi_long do_ioctl_TUNSETTXFILTER(const IOCTLEntry *ie, uint8_t *buf_temp,
5520                                         int fd, int cmd, abi_long arg)
5521 {
5522     struct tun_filter *filter = (struct tun_filter *)buf_temp;
5523     struct tun_filter *target_filter;
5524     char *target_addr;
5525 
5526     assert(ie->access == IOC_W);
5527 
5528     target_filter = lock_user(VERIFY_READ, arg, sizeof(*target_filter), 1);
5529     if (!target_filter) {
5530         return -TARGET_EFAULT;
5531     }
5532     filter->flags = tswap16(target_filter->flags);
5533     filter->count = tswap16(target_filter->count);
5534     unlock_user(target_filter, arg, 0);
5535 
5536     if (filter->count) {
5537         if (offsetof(struct tun_filter, addr) + filter->count * ETH_ALEN >
5538             MAX_STRUCT_SIZE) {
5539             return -TARGET_EFAULT;
5540         }
5541 
5542         target_addr = lock_user(VERIFY_READ,
5543                                 arg + offsetof(struct tun_filter, addr),
5544                                 filter->count * ETH_ALEN, 1);
5545         if (!target_addr) {
5546             return -TARGET_EFAULT;
5547         }
5548         memcpy(filter->addr, target_addr, filter->count * ETH_ALEN);
5549         unlock_user(target_addr, arg + offsetof(struct tun_filter, addr), 0);
5550     }
5551 
5552     return get_errno(safe_ioctl(fd, ie->host_cmd, filter));
5553 }
5554 
5555 IOCTLEntry ioctl_entries[] = {
5556 #define IOCTL(cmd, access, ...) \
5557     { TARGET_ ## cmd, cmd, #cmd, access, 0, {  __VA_ARGS__ } },
5558 #define IOCTL_SPECIAL(cmd, access, dofn, ...)                      \
5559     { TARGET_ ## cmd, cmd, #cmd, access, dofn, {  __VA_ARGS__ } },
5560 #define IOCTL_IGNORE(cmd) \
5561     { TARGET_ ## cmd, 0, #cmd },
5562 #include "ioctls.h"
5563     { 0, 0, },
5564 };
5565 
5566 /* ??? Implement proper locking for ioctls.  */
5567 /* do_ioctl() Must return target values and target errnos. */
5568 static abi_long do_ioctl(int fd, int cmd, abi_long arg)
5569 {
5570     const IOCTLEntry *ie;
5571     const argtype *arg_type;
5572     abi_long ret;
5573     uint8_t buf_temp[MAX_STRUCT_SIZE];
5574     int target_size;
5575     void *argptr;
5576 
5577     ie = ioctl_entries;
5578     for(;;) {
5579         if (ie->target_cmd == 0) {
5580             qemu_log_mask(
5581                 LOG_UNIMP, "Unsupported ioctl: cmd=0x%04lx\n", (long)cmd);
5582             return -TARGET_ENOTTY;
5583         }
5584         if (ie->target_cmd == cmd)
5585             break;
5586         ie++;
5587     }
5588     arg_type = ie->arg_type;
5589     if (ie->do_ioctl) {
5590         return ie->do_ioctl(ie, buf_temp, fd, cmd, arg);
5591     } else if (!ie->host_cmd) {
5592         /* Some architectures define BSD ioctls in their headers
5593            that are not implemented in Linux.  */
5594         return -TARGET_ENOTTY;
5595     }
5596 
5597     switch(arg_type[0]) {
5598     case TYPE_NULL:
5599         /* no argument */
5600         ret = get_errno(safe_ioctl(fd, ie->host_cmd));
5601         break;
5602     case TYPE_PTRVOID:
5603     case TYPE_INT:
5604     case TYPE_LONG:
5605     case TYPE_ULONG:
5606         ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg));
5607         break;
5608     case TYPE_PTR:
5609         arg_type++;
5610         target_size = thunk_type_size(arg_type, 0);
5611         switch(ie->access) {
5612         case IOC_R:
5613             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5614             if (!is_error(ret)) {
5615                 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5616                 if (!argptr)
5617                     return -TARGET_EFAULT;
5618                 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5619                 unlock_user(argptr, arg, target_size);
5620             }
5621             break;
5622         case IOC_W:
5623             argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5624             if (!argptr)
5625                 return -TARGET_EFAULT;
5626             thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5627             unlock_user(argptr, arg, 0);
5628             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5629             break;
5630         default:
5631         case IOC_RW:
5632             argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5633             if (!argptr)
5634                 return -TARGET_EFAULT;
5635             thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5636             unlock_user(argptr, arg, 0);
5637             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5638             if (!is_error(ret)) {
5639                 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5640                 if (!argptr)
5641                     return -TARGET_EFAULT;
5642                 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5643                 unlock_user(argptr, arg, target_size);
5644             }
5645             break;
5646         }
5647         break;
5648     default:
5649         qemu_log_mask(LOG_UNIMP,
5650                       "Unsupported ioctl type: cmd=0x%04lx type=%d\n",
5651                       (long)cmd, arg_type[0]);
5652         ret = -TARGET_ENOTTY;
5653         break;
5654     }
5655     return ret;
5656 }
5657 
5658 static const bitmask_transtbl iflag_tbl[] = {
5659         { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK },
5660         { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT },
5661         { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR },
5662         { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK },
5663         { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK },
5664         { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP },
5665         { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR },
5666         { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR },
5667         { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL },
5668         { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC },
5669         { TARGET_IXON, TARGET_IXON, IXON, IXON },
5670         { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY },
5671         { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF },
5672         { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL },
5673         { TARGET_IUTF8, TARGET_IUTF8, IUTF8, IUTF8},
5674 };
5675 
5676 static const bitmask_transtbl oflag_tbl[] = {
5677 	{ TARGET_OPOST, TARGET_OPOST, OPOST, OPOST },
5678 	{ TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC },
5679 	{ TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR },
5680 	{ TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL },
5681 	{ TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR },
5682 	{ TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET },
5683 	{ TARGET_OFILL, TARGET_OFILL, OFILL, OFILL },
5684 	{ TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL },
5685 	{ TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 },
5686 	{ TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 },
5687 	{ TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 },
5688 	{ TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 },
5689 	{ TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 },
5690 	{ TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 },
5691 	{ TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 },
5692 	{ TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 },
5693 	{ TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 },
5694 	{ TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 },
5695 	{ TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 },
5696 	{ TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 },
5697 	{ TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 },
5698 	{ TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 },
5699 	{ TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 },
5700 	{ TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 },
5701 };
5702 
5703 static const bitmask_transtbl cflag_tbl[] = {
5704 	{ TARGET_CBAUD, TARGET_B0, CBAUD, B0 },
5705 	{ TARGET_CBAUD, TARGET_B50, CBAUD, B50 },
5706 	{ TARGET_CBAUD, TARGET_B75, CBAUD, B75 },
5707 	{ TARGET_CBAUD, TARGET_B110, CBAUD, B110 },
5708 	{ TARGET_CBAUD, TARGET_B134, CBAUD, B134 },
5709 	{ TARGET_CBAUD, TARGET_B150, CBAUD, B150 },
5710 	{ TARGET_CBAUD, TARGET_B200, CBAUD, B200 },
5711 	{ TARGET_CBAUD, TARGET_B300, CBAUD, B300 },
5712 	{ TARGET_CBAUD, TARGET_B600, CBAUD, B600 },
5713 	{ TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 },
5714 	{ TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 },
5715 	{ TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 },
5716 	{ TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 },
5717 	{ TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 },
5718 	{ TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 },
5719 	{ TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 },
5720 	{ TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 },
5721 	{ TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 },
5722 	{ TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 },
5723 	{ TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 },
5724 	{ TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 },
5725 	{ TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 },
5726 	{ TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 },
5727 	{ TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 },
5728 	{ TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB },
5729 	{ TARGET_CREAD, TARGET_CREAD, CREAD, CREAD },
5730 	{ TARGET_PARENB, TARGET_PARENB, PARENB, PARENB },
5731 	{ TARGET_PARODD, TARGET_PARODD, PARODD, PARODD },
5732 	{ TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL },
5733 	{ TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL },
5734 	{ TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS },
5735 };
5736 
5737 static const bitmask_transtbl lflag_tbl[] = {
5738   { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG },
5739   { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON },
5740   { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE },
5741   { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO },
5742   { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE },
5743   { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK },
5744   { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL },
5745   { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH },
5746   { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP },
5747   { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL },
5748   { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT },
5749   { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE },
5750   { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO },
5751   { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN },
5752   { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN },
5753   { TARGET_EXTPROC, TARGET_EXTPROC, EXTPROC, EXTPROC},
5754 };
5755 
5756 static void target_to_host_termios (void *dst, const void *src)
5757 {
5758     struct host_termios *host = dst;
5759     const struct target_termios *target = src;
5760 
5761     host->c_iflag =
5762         target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl);
5763     host->c_oflag =
5764         target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl);
5765     host->c_cflag =
5766         target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl);
5767     host->c_lflag =
5768         target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl);
5769     host->c_line = target->c_line;
5770 
5771     memset(host->c_cc, 0, sizeof(host->c_cc));
5772     host->c_cc[VINTR] = target->c_cc[TARGET_VINTR];
5773     host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT];
5774     host->c_cc[VERASE] = target->c_cc[TARGET_VERASE];
5775     host->c_cc[VKILL] = target->c_cc[TARGET_VKILL];
5776     host->c_cc[VEOF] = target->c_cc[TARGET_VEOF];
5777     host->c_cc[VTIME] = target->c_cc[TARGET_VTIME];
5778     host->c_cc[VMIN] = target->c_cc[TARGET_VMIN];
5779     host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC];
5780     host->c_cc[VSTART] = target->c_cc[TARGET_VSTART];
5781     host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP];
5782     host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP];
5783     host->c_cc[VEOL] = target->c_cc[TARGET_VEOL];
5784     host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT];
5785     host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD];
5786     host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE];
5787     host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT];
5788     host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2];
5789 }
5790 
5791 static void host_to_target_termios (void *dst, const void *src)
5792 {
5793     struct target_termios *target = dst;
5794     const struct host_termios *host = src;
5795 
5796     target->c_iflag =
5797         tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl));
5798     target->c_oflag =
5799         tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl));
5800     target->c_cflag =
5801         tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl));
5802     target->c_lflag =
5803         tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl));
5804     target->c_line = host->c_line;
5805 
5806     memset(target->c_cc, 0, sizeof(target->c_cc));
5807     target->c_cc[TARGET_VINTR] = host->c_cc[VINTR];
5808     target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT];
5809     target->c_cc[TARGET_VERASE] = host->c_cc[VERASE];
5810     target->c_cc[TARGET_VKILL] = host->c_cc[VKILL];
5811     target->c_cc[TARGET_VEOF] = host->c_cc[VEOF];
5812     target->c_cc[TARGET_VTIME] = host->c_cc[VTIME];
5813     target->c_cc[TARGET_VMIN] = host->c_cc[VMIN];
5814     target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC];
5815     target->c_cc[TARGET_VSTART] = host->c_cc[VSTART];
5816     target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP];
5817     target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP];
5818     target->c_cc[TARGET_VEOL] = host->c_cc[VEOL];
5819     target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT];
5820     target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD];
5821     target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE];
5822     target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT];
5823     target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2];
5824 }
5825 
5826 static const StructEntry struct_termios_def = {
5827     .convert = { host_to_target_termios, target_to_host_termios },
5828     .size = { sizeof(struct target_termios), sizeof(struct host_termios) },
5829     .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) },
5830     .print = print_termios,
5831 };
5832 
5833 /* If the host does not provide these bits, they may be safely discarded. */
5834 #ifndef MAP_SYNC
5835 #define MAP_SYNC 0
5836 #endif
5837 #ifndef MAP_UNINITIALIZED
5838 #define MAP_UNINITIALIZED 0
5839 #endif
5840 
5841 static const bitmask_transtbl mmap_flags_tbl[] = {
5842     { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED },
5843     { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS,
5844       MAP_ANONYMOUS, MAP_ANONYMOUS },
5845     { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN,
5846       MAP_GROWSDOWN, MAP_GROWSDOWN },
5847     { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE,
5848       MAP_DENYWRITE, MAP_DENYWRITE },
5849     { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE,
5850       MAP_EXECUTABLE, MAP_EXECUTABLE },
5851     { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED },
5852     { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE,
5853       MAP_NORESERVE, MAP_NORESERVE },
5854     { TARGET_MAP_HUGETLB, TARGET_MAP_HUGETLB, MAP_HUGETLB, MAP_HUGETLB },
5855     /* MAP_STACK had been ignored by the kernel for quite some time.
5856        Recognize it for the target insofar as we do not want to pass
5857        it through to the host.  */
5858     { TARGET_MAP_STACK, TARGET_MAP_STACK, 0, 0 },
5859     { TARGET_MAP_NONBLOCK, TARGET_MAP_NONBLOCK, MAP_NONBLOCK, MAP_NONBLOCK },
5860     { TARGET_MAP_POPULATE, TARGET_MAP_POPULATE, MAP_POPULATE, MAP_POPULATE },
5861     { TARGET_MAP_FIXED_NOREPLACE, TARGET_MAP_FIXED_NOREPLACE,
5862       MAP_FIXED_NOREPLACE, MAP_FIXED_NOREPLACE },
5863     { TARGET_MAP_UNINITIALIZED, TARGET_MAP_UNINITIALIZED,
5864       MAP_UNINITIALIZED, MAP_UNINITIALIZED },
5865 };
5866 
5867 /*
5868  * Arrange for legacy / undefined architecture specific flags to be
5869  * ignored by mmap handling code.
5870  */
5871 #ifndef TARGET_MAP_32BIT
5872 #define TARGET_MAP_32BIT 0
5873 #endif
5874 #ifndef TARGET_MAP_HUGE_2MB
5875 #define TARGET_MAP_HUGE_2MB 0
5876 #endif
5877 #ifndef TARGET_MAP_HUGE_1GB
5878 #define TARGET_MAP_HUGE_1GB 0
5879 #endif
5880 
5881 static abi_long do_mmap(abi_ulong addr, abi_ulong len, int prot,
5882                         int target_flags, int fd, off_t offset)
5883 {
5884     /*
5885      * The historical set of flags that all mmap types implicitly support.
5886      */
5887     enum {
5888         TARGET_LEGACY_MAP_MASK = TARGET_MAP_SHARED
5889                                | TARGET_MAP_PRIVATE
5890                                | TARGET_MAP_FIXED
5891                                | TARGET_MAP_ANONYMOUS
5892                                | TARGET_MAP_DENYWRITE
5893                                | TARGET_MAP_EXECUTABLE
5894                                | TARGET_MAP_UNINITIALIZED
5895                                | TARGET_MAP_GROWSDOWN
5896                                | TARGET_MAP_LOCKED
5897                                | TARGET_MAP_NORESERVE
5898                                | TARGET_MAP_POPULATE
5899                                | TARGET_MAP_NONBLOCK
5900                                | TARGET_MAP_STACK
5901                                | TARGET_MAP_HUGETLB
5902                                | TARGET_MAP_32BIT
5903                                | TARGET_MAP_HUGE_2MB
5904                                | TARGET_MAP_HUGE_1GB
5905     };
5906     int host_flags;
5907 
5908     switch (target_flags & TARGET_MAP_TYPE) {
5909     case TARGET_MAP_PRIVATE:
5910         host_flags = MAP_PRIVATE;
5911         break;
5912     case TARGET_MAP_SHARED:
5913         host_flags = MAP_SHARED;
5914         break;
5915     case TARGET_MAP_SHARED_VALIDATE:
5916         /*
5917          * MAP_SYNC is only supported for MAP_SHARED_VALIDATE, and is
5918          * therefore omitted from mmap_flags_tbl and TARGET_LEGACY_MAP_MASK.
5919          */
5920         if (target_flags & ~(TARGET_LEGACY_MAP_MASK | TARGET_MAP_SYNC)) {
5921             return -TARGET_EOPNOTSUPP;
5922         }
5923         host_flags = MAP_SHARED_VALIDATE;
5924         if (target_flags & TARGET_MAP_SYNC) {
5925             host_flags |= MAP_SYNC;
5926         }
5927         break;
5928     default:
5929         return -TARGET_EINVAL;
5930     }
5931     host_flags |= target_to_host_bitmask(target_flags, mmap_flags_tbl);
5932 
5933     return get_errno(target_mmap(addr, len, prot, host_flags, fd, offset));
5934 }
5935 
5936 /*
5937  * NOTE: TARGET_ABI32 is defined for TARGET_I386 (but not for TARGET_X86_64)
5938  *       TARGET_I386 is defined if TARGET_X86_64 is defined
5939  */
5940 #if defined(TARGET_I386)
5941 
5942 /* NOTE: there is really one LDT for all the threads */
5943 static uint8_t *ldt_table;
5944 
5945 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount)
5946 {
5947     int size;
5948     void *p;
5949 
5950     if (!ldt_table)
5951         return 0;
5952     size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE;
5953     if (size > bytecount)
5954         size = bytecount;
5955     p = lock_user(VERIFY_WRITE, ptr, size, 0);
5956     if (!p)
5957         return -TARGET_EFAULT;
5958     /* ??? Should this by byteswapped?  */
5959     memcpy(p, ldt_table, size);
5960     unlock_user(p, ptr, size);
5961     return size;
5962 }
5963 
5964 /* XXX: add locking support */
5965 static abi_long write_ldt(CPUX86State *env,
5966                           abi_ulong ptr, unsigned long bytecount, int oldmode)
5967 {
5968     struct target_modify_ldt_ldt_s ldt_info;
5969     struct target_modify_ldt_ldt_s *target_ldt_info;
5970     int seg_32bit, contents, read_exec_only, limit_in_pages;
5971     int seg_not_present, useable, lm;
5972     uint32_t *lp, entry_1, entry_2;
5973 
5974     if (bytecount != sizeof(ldt_info))
5975         return -TARGET_EINVAL;
5976     if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1))
5977         return -TARGET_EFAULT;
5978     ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
5979     ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
5980     ldt_info.limit = tswap32(target_ldt_info->limit);
5981     ldt_info.flags = tswap32(target_ldt_info->flags);
5982     unlock_user_struct(target_ldt_info, ptr, 0);
5983 
5984     if (ldt_info.entry_number >= TARGET_LDT_ENTRIES)
5985         return -TARGET_EINVAL;
5986     seg_32bit = ldt_info.flags & 1;
5987     contents = (ldt_info.flags >> 1) & 3;
5988     read_exec_only = (ldt_info.flags >> 3) & 1;
5989     limit_in_pages = (ldt_info.flags >> 4) & 1;
5990     seg_not_present = (ldt_info.flags >> 5) & 1;
5991     useable = (ldt_info.flags >> 6) & 1;
5992 #ifdef TARGET_ABI32
5993     lm = 0;
5994 #else
5995     lm = (ldt_info.flags >> 7) & 1;
5996 #endif
5997     if (contents == 3) {
5998         if (oldmode)
5999             return -TARGET_EINVAL;
6000         if (seg_not_present == 0)
6001             return -TARGET_EINVAL;
6002     }
6003     /* allocate the LDT */
6004     if (!ldt_table) {
6005         env->ldt.base = target_mmap(0,
6006                                     TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE,
6007                                     PROT_READ|PROT_WRITE,
6008                                     MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
6009         if (env->ldt.base == -1)
6010             return -TARGET_ENOMEM;
6011         memset(g2h_untagged(env->ldt.base), 0,
6012                TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE);
6013         env->ldt.limit = 0xffff;
6014         ldt_table = g2h_untagged(env->ldt.base);
6015     }
6016 
6017     /* NOTE: same code as Linux kernel */
6018     /* Allow LDTs to be cleared by the user. */
6019     if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6020         if (oldmode ||
6021             (contents == 0		&&
6022              read_exec_only == 1	&&
6023              seg_32bit == 0		&&
6024              limit_in_pages == 0	&&
6025              seg_not_present == 1	&&
6026              useable == 0 )) {
6027             entry_1 = 0;
6028             entry_2 = 0;
6029             goto install;
6030         }
6031     }
6032 
6033     entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6034         (ldt_info.limit & 0x0ffff);
6035     entry_2 = (ldt_info.base_addr & 0xff000000) |
6036         ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6037         (ldt_info.limit & 0xf0000) |
6038         ((read_exec_only ^ 1) << 9) |
6039         (contents << 10) |
6040         ((seg_not_present ^ 1) << 15) |
6041         (seg_32bit << 22) |
6042         (limit_in_pages << 23) |
6043         (lm << 21) |
6044         0x7000;
6045     if (!oldmode)
6046         entry_2 |= (useable << 20);
6047 
6048     /* Install the new entry ...  */
6049 install:
6050     lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3));
6051     lp[0] = tswap32(entry_1);
6052     lp[1] = tswap32(entry_2);
6053     return 0;
6054 }
6055 
6056 /* specific and weird i386 syscalls */
6057 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr,
6058                               unsigned long bytecount)
6059 {
6060     abi_long ret;
6061 
6062     switch (func) {
6063     case 0:
6064         ret = read_ldt(ptr, bytecount);
6065         break;
6066     case 1:
6067         ret = write_ldt(env, ptr, bytecount, 1);
6068         break;
6069     case 0x11:
6070         ret = write_ldt(env, ptr, bytecount, 0);
6071         break;
6072     default:
6073         ret = -TARGET_ENOSYS;
6074         break;
6075     }
6076     return ret;
6077 }
6078 
6079 #if defined(TARGET_ABI32)
6080 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr)
6081 {
6082     uint64_t *gdt_table = g2h_untagged(env->gdt.base);
6083     struct target_modify_ldt_ldt_s ldt_info;
6084     struct target_modify_ldt_ldt_s *target_ldt_info;
6085     int seg_32bit, contents, read_exec_only, limit_in_pages;
6086     int seg_not_present, useable, lm;
6087     uint32_t *lp, entry_1, entry_2;
6088     int i;
6089 
6090     lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6091     if (!target_ldt_info)
6092         return -TARGET_EFAULT;
6093     ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
6094     ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
6095     ldt_info.limit = tswap32(target_ldt_info->limit);
6096     ldt_info.flags = tswap32(target_ldt_info->flags);
6097     if (ldt_info.entry_number == -1) {
6098         for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) {
6099             if (gdt_table[i] == 0) {
6100                 ldt_info.entry_number = i;
6101                 target_ldt_info->entry_number = tswap32(i);
6102                 break;
6103             }
6104         }
6105     }
6106     unlock_user_struct(target_ldt_info, ptr, 1);
6107 
6108     if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN ||
6109         ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX)
6110            return -TARGET_EINVAL;
6111     seg_32bit = ldt_info.flags & 1;
6112     contents = (ldt_info.flags >> 1) & 3;
6113     read_exec_only = (ldt_info.flags >> 3) & 1;
6114     limit_in_pages = (ldt_info.flags >> 4) & 1;
6115     seg_not_present = (ldt_info.flags >> 5) & 1;
6116     useable = (ldt_info.flags >> 6) & 1;
6117 #ifdef TARGET_ABI32
6118     lm = 0;
6119 #else
6120     lm = (ldt_info.flags >> 7) & 1;
6121 #endif
6122 
6123     if (contents == 3) {
6124         if (seg_not_present == 0)
6125             return -TARGET_EINVAL;
6126     }
6127 
6128     /* NOTE: same code as Linux kernel */
6129     /* Allow LDTs to be cleared by the user. */
6130     if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6131         if ((contents == 0             &&
6132              read_exec_only == 1       &&
6133              seg_32bit == 0            &&
6134              limit_in_pages == 0       &&
6135              seg_not_present == 1      &&
6136              useable == 0 )) {
6137             entry_1 = 0;
6138             entry_2 = 0;
6139             goto install;
6140         }
6141     }
6142 
6143     entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6144         (ldt_info.limit & 0x0ffff);
6145     entry_2 = (ldt_info.base_addr & 0xff000000) |
6146         ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6147         (ldt_info.limit & 0xf0000) |
6148         ((read_exec_only ^ 1) << 9) |
6149         (contents << 10) |
6150         ((seg_not_present ^ 1) << 15) |
6151         (seg_32bit << 22) |
6152         (limit_in_pages << 23) |
6153         (useable << 20) |
6154         (lm << 21) |
6155         0x7000;
6156 
6157     /* Install the new entry ...  */
6158 install:
6159     lp = (uint32_t *)(gdt_table + ldt_info.entry_number);
6160     lp[0] = tswap32(entry_1);
6161     lp[1] = tswap32(entry_2);
6162     return 0;
6163 }
6164 
6165 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr)
6166 {
6167     struct target_modify_ldt_ldt_s *target_ldt_info;
6168     uint64_t *gdt_table = g2h_untagged(env->gdt.base);
6169     uint32_t base_addr, limit, flags;
6170     int seg_32bit, contents, read_exec_only, limit_in_pages, idx;
6171     int seg_not_present, useable, lm;
6172     uint32_t *lp, entry_1, entry_2;
6173 
6174     lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6175     if (!target_ldt_info)
6176         return -TARGET_EFAULT;
6177     idx = tswap32(target_ldt_info->entry_number);
6178     if (idx < TARGET_GDT_ENTRY_TLS_MIN ||
6179         idx > TARGET_GDT_ENTRY_TLS_MAX) {
6180         unlock_user_struct(target_ldt_info, ptr, 1);
6181         return -TARGET_EINVAL;
6182     }
6183     lp = (uint32_t *)(gdt_table + idx);
6184     entry_1 = tswap32(lp[0]);
6185     entry_2 = tswap32(lp[1]);
6186 
6187     read_exec_only = ((entry_2 >> 9) & 1) ^ 1;
6188     contents = (entry_2 >> 10) & 3;
6189     seg_not_present = ((entry_2 >> 15) & 1) ^ 1;
6190     seg_32bit = (entry_2 >> 22) & 1;
6191     limit_in_pages = (entry_2 >> 23) & 1;
6192     useable = (entry_2 >> 20) & 1;
6193 #ifdef TARGET_ABI32
6194     lm = 0;
6195 #else
6196     lm = (entry_2 >> 21) & 1;
6197 #endif
6198     flags = (seg_32bit << 0) | (contents << 1) |
6199         (read_exec_only << 3) | (limit_in_pages << 4) |
6200         (seg_not_present << 5) | (useable << 6) | (lm << 7);
6201     limit = (entry_1 & 0xffff) | (entry_2  & 0xf0000);
6202     base_addr = (entry_1 >> 16) |
6203         (entry_2 & 0xff000000) |
6204         ((entry_2 & 0xff) << 16);
6205     target_ldt_info->base_addr = tswapal(base_addr);
6206     target_ldt_info->limit = tswap32(limit);
6207     target_ldt_info->flags = tswap32(flags);
6208     unlock_user_struct(target_ldt_info, ptr, 1);
6209     return 0;
6210 }
6211 
6212 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6213 {
6214     return -TARGET_ENOSYS;
6215 }
6216 #else
6217 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6218 {
6219     abi_long ret = 0;
6220     abi_ulong val;
6221     int idx;
6222 
6223     switch(code) {
6224     case TARGET_ARCH_SET_GS:
6225     case TARGET_ARCH_SET_FS:
6226         if (code == TARGET_ARCH_SET_GS)
6227             idx = R_GS;
6228         else
6229             idx = R_FS;
6230         cpu_x86_load_seg(env, idx, 0);
6231         env->segs[idx].base = addr;
6232         break;
6233     case TARGET_ARCH_GET_GS:
6234     case TARGET_ARCH_GET_FS:
6235         if (code == TARGET_ARCH_GET_GS)
6236             idx = R_GS;
6237         else
6238             idx = R_FS;
6239         val = env->segs[idx].base;
6240         if (put_user(val, addr, abi_ulong))
6241             ret = -TARGET_EFAULT;
6242         break;
6243     default:
6244         ret = -TARGET_EINVAL;
6245         break;
6246     }
6247     return ret;
6248 }
6249 #endif /* defined(TARGET_ABI32 */
6250 #endif /* defined(TARGET_I386) */
6251 
6252 /*
6253  * These constants are generic.  Supply any that are missing from the host.
6254  */
6255 #ifndef PR_SET_NAME
6256 # define PR_SET_NAME    15
6257 # define PR_GET_NAME    16
6258 #endif
6259 #ifndef PR_SET_FP_MODE
6260 # define PR_SET_FP_MODE 45
6261 # define PR_GET_FP_MODE 46
6262 # define PR_FP_MODE_FR   (1 << 0)
6263 # define PR_FP_MODE_FRE  (1 << 1)
6264 #endif
6265 #ifndef PR_SVE_SET_VL
6266 # define PR_SVE_SET_VL  50
6267 # define PR_SVE_GET_VL  51
6268 # define PR_SVE_VL_LEN_MASK  0xffff
6269 # define PR_SVE_VL_INHERIT   (1 << 17)
6270 #endif
6271 #ifndef PR_PAC_RESET_KEYS
6272 # define PR_PAC_RESET_KEYS  54
6273 # define PR_PAC_APIAKEY   (1 << 0)
6274 # define PR_PAC_APIBKEY   (1 << 1)
6275 # define PR_PAC_APDAKEY   (1 << 2)
6276 # define PR_PAC_APDBKEY   (1 << 3)
6277 # define PR_PAC_APGAKEY   (1 << 4)
6278 #endif
6279 #ifndef PR_SET_TAGGED_ADDR_CTRL
6280 # define PR_SET_TAGGED_ADDR_CTRL 55
6281 # define PR_GET_TAGGED_ADDR_CTRL 56
6282 # define PR_TAGGED_ADDR_ENABLE  (1UL << 0)
6283 #endif
6284 #ifndef PR_MTE_TCF_SHIFT
6285 # define PR_MTE_TCF_SHIFT       1
6286 # define PR_MTE_TCF_NONE        (0UL << PR_MTE_TCF_SHIFT)
6287 # define PR_MTE_TCF_SYNC        (1UL << PR_MTE_TCF_SHIFT)
6288 # define PR_MTE_TCF_ASYNC       (2UL << PR_MTE_TCF_SHIFT)
6289 # define PR_MTE_TCF_MASK        (3UL << PR_MTE_TCF_SHIFT)
6290 # define PR_MTE_TAG_SHIFT       3
6291 # define PR_MTE_TAG_MASK        (0xffffUL << PR_MTE_TAG_SHIFT)
6292 #endif
6293 #ifndef PR_SET_IO_FLUSHER
6294 # define PR_SET_IO_FLUSHER 57
6295 # define PR_GET_IO_FLUSHER 58
6296 #endif
6297 #ifndef PR_SET_SYSCALL_USER_DISPATCH
6298 # define PR_SET_SYSCALL_USER_DISPATCH 59
6299 #endif
6300 #ifndef PR_SME_SET_VL
6301 # define PR_SME_SET_VL  63
6302 # define PR_SME_GET_VL  64
6303 # define PR_SME_VL_LEN_MASK  0xffff
6304 # define PR_SME_VL_INHERIT   (1 << 17)
6305 #endif
6306 
6307 #include "target_prctl.h"
6308 
6309 static abi_long do_prctl_inval0(CPUArchState *env)
6310 {
6311     return -TARGET_EINVAL;
6312 }
6313 
6314 static abi_long do_prctl_inval1(CPUArchState *env, abi_long arg2)
6315 {
6316     return -TARGET_EINVAL;
6317 }
6318 
6319 #ifndef do_prctl_get_fp_mode
6320 #define do_prctl_get_fp_mode do_prctl_inval0
6321 #endif
6322 #ifndef do_prctl_set_fp_mode
6323 #define do_prctl_set_fp_mode do_prctl_inval1
6324 #endif
6325 #ifndef do_prctl_sve_get_vl
6326 #define do_prctl_sve_get_vl do_prctl_inval0
6327 #endif
6328 #ifndef do_prctl_sve_set_vl
6329 #define do_prctl_sve_set_vl do_prctl_inval1
6330 #endif
6331 #ifndef do_prctl_reset_keys
6332 #define do_prctl_reset_keys do_prctl_inval1
6333 #endif
6334 #ifndef do_prctl_set_tagged_addr_ctrl
6335 #define do_prctl_set_tagged_addr_ctrl do_prctl_inval1
6336 #endif
6337 #ifndef do_prctl_get_tagged_addr_ctrl
6338 #define do_prctl_get_tagged_addr_ctrl do_prctl_inval0
6339 #endif
6340 #ifndef do_prctl_get_unalign
6341 #define do_prctl_get_unalign do_prctl_inval1
6342 #endif
6343 #ifndef do_prctl_set_unalign
6344 #define do_prctl_set_unalign do_prctl_inval1
6345 #endif
6346 #ifndef do_prctl_sme_get_vl
6347 #define do_prctl_sme_get_vl do_prctl_inval0
6348 #endif
6349 #ifndef do_prctl_sme_set_vl
6350 #define do_prctl_sme_set_vl do_prctl_inval1
6351 #endif
6352 
6353 static abi_long do_prctl(CPUArchState *env, abi_long option, abi_long arg2,
6354                          abi_long arg3, abi_long arg4, abi_long arg5)
6355 {
6356     abi_long ret;
6357 
6358     switch (option) {
6359     case PR_GET_PDEATHSIG:
6360         {
6361             int deathsig;
6362             ret = get_errno(prctl(PR_GET_PDEATHSIG, &deathsig,
6363                                   arg3, arg4, arg5));
6364             if (!is_error(ret) &&
6365                 put_user_s32(host_to_target_signal(deathsig), arg2)) {
6366                 return -TARGET_EFAULT;
6367             }
6368             return ret;
6369         }
6370     case PR_SET_PDEATHSIG:
6371         return get_errno(prctl(PR_SET_PDEATHSIG, target_to_host_signal(arg2),
6372                                arg3, arg4, arg5));
6373     case PR_GET_NAME:
6374         {
6375             void *name = lock_user(VERIFY_WRITE, arg2, 16, 1);
6376             if (!name) {
6377                 return -TARGET_EFAULT;
6378             }
6379             ret = get_errno(prctl(PR_GET_NAME, (uintptr_t)name,
6380                                   arg3, arg4, arg5));
6381             unlock_user(name, arg2, 16);
6382             return ret;
6383         }
6384     case PR_SET_NAME:
6385         {
6386             void *name = lock_user(VERIFY_READ, arg2, 16, 1);
6387             if (!name) {
6388                 return -TARGET_EFAULT;
6389             }
6390             ret = get_errno(prctl(PR_SET_NAME, (uintptr_t)name,
6391                                   arg3, arg4, arg5));
6392             unlock_user(name, arg2, 0);
6393             return ret;
6394         }
6395     case PR_GET_FP_MODE:
6396         return do_prctl_get_fp_mode(env);
6397     case PR_SET_FP_MODE:
6398         return do_prctl_set_fp_mode(env, arg2);
6399     case PR_SVE_GET_VL:
6400         return do_prctl_sve_get_vl(env);
6401     case PR_SVE_SET_VL:
6402         return do_prctl_sve_set_vl(env, arg2);
6403     case PR_SME_GET_VL:
6404         return do_prctl_sme_get_vl(env);
6405     case PR_SME_SET_VL:
6406         return do_prctl_sme_set_vl(env, arg2);
6407     case PR_PAC_RESET_KEYS:
6408         if (arg3 || arg4 || arg5) {
6409             return -TARGET_EINVAL;
6410         }
6411         return do_prctl_reset_keys(env, arg2);
6412     case PR_SET_TAGGED_ADDR_CTRL:
6413         if (arg3 || arg4 || arg5) {
6414             return -TARGET_EINVAL;
6415         }
6416         return do_prctl_set_tagged_addr_ctrl(env, arg2);
6417     case PR_GET_TAGGED_ADDR_CTRL:
6418         if (arg2 || arg3 || arg4 || arg5) {
6419             return -TARGET_EINVAL;
6420         }
6421         return do_prctl_get_tagged_addr_ctrl(env);
6422 
6423     case PR_GET_UNALIGN:
6424         return do_prctl_get_unalign(env, arg2);
6425     case PR_SET_UNALIGN:
6426         return do_prctl_set_unalign(env, arg2);
6427 
6428     case PR_CAP_AMBIENT:
6429     case PR_CAPBSET_READ:
6430     case PR_CAPBSET_DROP:
6431     case PR_GET_DUMPABLE:
6432     case PR_SET_DUMPABLE:
6433     case PR_GET_KEEPCAPS:
6434     case PR_SET_KEEPCAPS:
6435     case PR_GET_SECUREBITS:
6436     case PR_SET_SECUREBITS:
6437     case PR_GET_TIMING:
6438     case PR_SET_TIMING:
6439     case PR_GET_TIMERSLACK:
6440     case PR_SET_TIMERSLACK:
6441     case PR_MCE_KILL:
6442     case PR_MCE_KILL_GET:
6443     case PR_GET_NO_NEW_PRIVS:
6444     case PR_SET_NO_NEW_PRIVS:
6445     case PR_GET_IO_FLUSHER:
6446     case PR_SET_IO_FLUSHER:
6447     case PR_SET_CHILD_SUBREAPER:
6448     case PR_GET_SPECULATION_CTRL:
6449     case PR_SET_SPECULATION_CTRL:
6450         /* Some prctl options have no pointer arguments and we can pass on. */
6451         return get_errno(prctl(option, arg2, arg3, arg4, arg5));
6452 
6453     case PR_GET_CHILD_SUBREAPER:
6454         {
6455             int val;
6456             ret = get_errno(prctl(PR_GET_CHILD_SUBREAPER, &val,
6457                                   arg3, arg4, arg5));
6458             if (!is_error(ret) && put_user_s32(val, arg2)) {
6459                 return -TARGET_EFAULT;
6460             }
6461             return ret;
6462         }
6463 
6464     case PR_GET_TID_ADDRESS:
6465         {
6466             TaskState *ts = get_task_state(env_cpu(env));
6467             return put_user_ual(ts->child_tidptr, arg2);
6468         }
6469 
6470     case PR_GET_FPEXC:
6471     case PR_SET_FPEXC:
6472         /* Was used for SPE on PowerPC. */
6473         return -TARGET_EINVAL;
6474 
6475     case PR_GET_ENDIAN:
6476     case PR_SET_ENDIAN:
6477     case PR_GET_FPEMU:
6478     case PR_SET_FPEMU:
6479     case PR_SET_MM:
6480     case PR_GET_SECCOMP:
6481     case PR_SET_SECCOMP:
6482     case PR_SET_SYSCALL_USER_DISPATCH:
6483     case PR_GET_THP_DISABLE:
6484     case PR_SET_THP_DISABLE:
6485     case PR_GET_TSC:
6486     case PR_SET_TSC:
6487         /* Disable to prevent the target disabling stuff we need. */
6488         return -TARGET_EINVAL;
6489 
6490     default:
6491         qemu_log_mask(LOG_UNIMP, "Unsupported prctl: " TARGET_ABI_FMT_ld "\n",
6492                       option);
6493         return -TARGET_EINVAL;
6494     }
6495 }
6496 
6497 #define NEW_STACK_SIZE 0x40000
6498 
6499 
6500 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER;
6501 typedef struct {
6502     CPUArchState *env;
6503     pthread_mutex_t mutex;
6504     pthread_cond_t cond;
6505     pthread_t thread;
6506     uint32_t tid;
6507     abi_ulong child_tidptr;
6508     abi_ulong parent_tidptr;
6509     sigset_t sigmask;
6510 } new_thread_info;
6511 
6512 static void *clone_func(void *arg)
6513 {
6514     new_thread_info *info = arg;
6515     CPUArchState *env;
6516     CPUState *cpu;
6517     TaskState *ts;
6518 
6519     rcu_register_thread();
6520     tcg_register_thread();
6521     env = info->env;
6522     cpu = env_cpu(env);
6523     thread_cpu = cpu;
6524     ts = get_task_state(cpu);
6525     info->tid = sys_gettid();
6526     task_settid(ts);
6527     if (info->child_tidptr)
6528         put_user_u32(info->tid, info->child_tidptr);
6529     if (info->parent_tidptr)
6530         put_user_u32(info->tid, info->parent_tidptr);
6531     qemu_guest_random_seed_thread_part2(cpu->random_seed);
6532     /* Enable signals.  */
6533     sigprocmask(SIG_SETMASK, &info->sigmask, NULL);
6534     /* Signal to the parent that we're ready.  */
6535     pthread_mutex_lock(&info->mutex);
6536     pthread_cond_broadcast(&info->cond);
6537     pthread_mutex_unlock(&info->mutex);
6538     /* Wait until the parent has finished initializing the tls state.  */
6539     pthread_mutex_lock(&clone_lock);
6540     pthread_mutex_unlock(&clone_lock);
6541     cpu_loop(env);
6542     /* never exits */
6543     return NULL;
6544 }
6545 
6546 /* do_fork() Must return host values and target errnos (unlike most
6547    do_*() functions). */
6548 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp,
6549                    abi_ulong parent_tidptr, target_ulong newtls,
6550                    abi_ulong child_tidptr)
6551 {
6552     CPUState *cpu = env_cpu(env);
6553     int ret;
6554     TaskState *ts;
6555     CPUState *new_cpu;
6556     CPUArchState *new_env;
6557     sigset_t sigmask;
6558 
6559     flags &= ~CLONE_IGNORED_FLAGS;
6560 
6561     /* Emulate vfork() with fork() */
6562     if (flags & CLONE_VFORK)
6563         flags &= ~(CLONE_VFORK | CLONE_VM);
6564 
6565     if (flags & CLONE_VM) {
6566         TaskState *parent_ts = get_task_state(cpu);
6567         new_thread_info info;
6568         pthread_attr_t attr;
6569 
6570         if (((flags & CLONE_THREAD_FLAGS) != CLONE_THREAD_FLAGS) ||
6571             (flags & CLONE_INVALID_THREAD_FLAGS)) {
6572             return -TARGET_EINVAL;
6573         }
6574 
6575         ts = g_new0(TaskState, 1);
6576         init_task_state(ts);
6577 
6578         /* Grab a mutex so that thread setup appears atomic.  */
6579         pthread_mutex_lock(&clone_lock);
6580 
6581         /*
6582          * If this is our first additional thread, we need to ensure we
6583          * generate code for parallel execution and flush old translations.
6584          * Do this now so that the copy gets CF_PARALLEL too.
6585          */
6586         if (!tcg_cflags_has(cpu, CF_PARALLEL)) {
6587             tcg_cflags_set(cpu, CF_PARALLEL);
6588             tb_flush(cpu);
6589         }
6590 
6591         /* we create a new CPU instance. */
6592         new_env = cpu_copy(env);
6593         /* Init regs that differ from the parent.  */
6594         cpu_clone_regs_child(new_env, newsp, flags);
6595         cpu_clone_regs_parent(env, flags);
6596         new_cpu = env_cpu(new_env);
6597         new_cpu->opaque = ts;
6598         ts->bprm = parent_ts->bprm;
6599         ts->info = parent_ts->info;
6600         ts->signal_mask = parent_ts->signal_mask;
6601 
6602         if (flags & CLONE_CHILD_CLEARTID) {
6603             ts->child_tidptr = child_tidptr;
6604         }
6605 
6606         if (flags & CLONE_SETTLS) {
6607             cpu_set_tls (new_env, newtls);
6608         }
6609 
6610         memset(&info, 0, sizeof(info));
6611         pthread_mutex_init(&info.mutex, NULL);
6612         pthread_mutex_lock(&info.mutex);
6613         pthread_cond_init(&info.cond, NULL);
6614         info.env = new_env;
6615         if (flags & CLONE_CHILD_SETTID) {
6616             info.child_tidptr = child_tidptr;
6617         }
6618         if (flags & CLONE_PARENT_SETTID) {
6619             info.parent_tidptr = parent_tidptr;
6620         }
6621 
6622         ret = pthread_attr_init(&attr);
6623         ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE);
6624         ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
6625         /* It is not safe to deliver signals until the child has finished
6626            initializing, so temporarily block all signals.  */
6627         sigfillset(&sigmask);
6628         sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask);
6629         cpu->random_seed = qemu_guest_random_seed_thread_part1();
6630 
6631         ret = pthread_create(&info.thread, &attr, clone_func, &info);
6632         /* TODO: Free new CPU state if thread creation failed.  */
6633 
6634         sigprocmask(SIG_SETMASK, &info.sigmask, NULL);
6635         pthread_attr_destroy(&attr);
6636         if (ret == 0) {
6637             /* Wait for the child to initialize.  */
6638             pthread_cond_wait(&info.cond, &info.mutex);
6639             ret = info.tid;
6640         } else {
6641             ret = -1;
6642         }
6643         pthread_mutex_unlock(&info.mutex);
6644         pthread_cond_destroy(&info.cond);
6645         pthread_mutex_destroy(&info.mutex);
6646         pthread_mutex_unlock(&clone_lock);
6647     } else {
6648         /* if no CLONE_VM, we consider it is a fork */
6649         if (flags & CLONE_INVALID_FORK_FLAGS) {
6650             return -TARGET_EINVAL;
6651         }
6652 
6653         /* We can't support custom termination signals */
6654         if ((flags & CSIGNAL) != TARGET_SIGCHLD) {
6655             return -TARGET_EINVAL;
6656         }
6657 
6658 #if !defined(__NR_pidfd_open) || !defined(TARGET_NR_pidfd_open)
6659         if (flags & CLONE_PIDFD) {
6660             return -TARGET_EINVAL;
6661         }
6662 #endif
6663 
6664         /* Can not allow CLONE_PIDFD with CLONE_PARENT_SETTID */
6665         if ((flags & CLONE_PIDFD) && (flags & CLONE_PARENT_SETTID)) {
6666             return -TARGET_EINVAL;
6667         }
6668 
6669         if (block_signals()) {
6670             return -QEMU_ERESTARTSYS;
6671         }
6672 
6673         fork_start();
6674         ret = fork();
6675         if (ret == 0) {
6676             /* Child Process.  */
6677             cpu_clone_regs_child(env, newsp, flags);
6678             fork_end(ret);
6679             /* There is a race condition here.  The parent process could
6680                theoretically read the TID in the child process before the child
6681                tid is set.  This would require using either ptrace
6682                (not implemented) or having *_tidptr to point at a shared memory
6683                mapping.  We can't repeat the spinlock hack used above because
6684                the child process gets its own copy of the lock.  */
6685             if (flags & CLONE_CHILD_SETTID)
6686                 put_user_u32(sys_gettid(), child_tidptr);
6687             if (flags & CLONE_PARENT_SETTID)
6688                 put_user_u32(sys_gettid(), parent_tidptr);
6689             ts = get_task_state(cpu);
6690             if (flags & CLONE_SETTLS)
6691                 cpu_set_tls (env, newtls);
6692             if (flags & CLONE_CHILD_CLEARTID)
6693                 ts->child_tidptr = child_tidptr;
6694         } else {
6695             cpu_clone_regs_parent(env, flags);
6696             if (flags & CLONE_PIDFD) {
6697                 int pid_fd = 0;
6698 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
6699                 int pid_child = ret;
6700                 pid_fd = pidfd_open(pid_child, 0);
6701                 if (pid_fd >= 0) {
6702                         fcntl(pid_fd, F_SETFD, fcntl(pid_fd, F_GETFL)
6703                                                | FD_CLOEXEC);
6704                 } else {
6705                         pid_fd = 0;
6706                 }
6707 #endif
6708                 put_user_u32(pid_fd, parent_tidptr);
6709             }
6710             fork_end(ret);
6711         }
6712         g_assert(!cpu_in_exclusive_context(cpu));
6713     }
6714     return ret;
6715 }
6716 
6717 /* warning : doesn't handle linux specific flags... */
6718 static int target_to_host_fcntl_cmd(int cmd)
6719 {
6720     int ret;
6721 
6722     switch(cmd) {
6723     case TARGET_F_DUPFD:
6724     case TARGET_F_GETFD:
6725     case TARGET_F_SETFD:
6726     case TARGET_F_GETFL:
6727     case TARGET_F_SETFL:
6728     case TARGET_F_OFD_GETLK:
6729     case TARGET_F_OFD_SETLK:
6730     case TARGET_F_OFD_SETLKW:
6731         ret = cmd;
6732         break;
6733     case TARGET_F_GETLK:
6734         ret = F_GETLK64;
6735         break;
6736     case TARGET_F_SETLK:
6737         ret = F_SETLK64;
6738         break;
6739     case TARGET_F_SETLKW:
6740         ret = F_SETLKW64;
6741         break;
6742     case TARGET_F_GETOWN:
6743         ret = F_GETOWN;
6744         break;
6745     case TARGET_F_SETOWN:
6746         ret = F_SETOWN;
6747         break;
6748     case TARGET_F_GETSIG:
6749         ret = F_GETSIG;
6750         break;
6751     case TARGET_F_SETSIG:
6752         ret = F_SETSIG;
6753         break;
6754 #if TARGET_ABI_BITS == 32
6755     case TARGET_F_GETLK64:
6756         ret = F_GETLK64;
6757         break;
6758     case TARGET_F_SETLK64:
6759         ret = F_SETLK64;
6760         break;
6761     case TARGET_F_SETLKW64:
6762         ret = F_SETLKW64;
6763         break;
6764 #endif
6765     case TARGET_F_SETLEASE:
6766         ret = F_SETLEASE;
6767         break;
6768     case TARGET_F_GETLEASE:
6769         ret = F_GETLEASE;
6770         break;
6771 #ifdef F_DUPFD_CLOEXEC
6772     case TARGET_F_DUPFD_CLOEXEC:
6773         ret = F_DUPFD_CLOEXEC;
6774         break;
6775 #endif
6776     case TARGET_F_NOTIFY:
6777         ret = F_NOTIFY;
6778         break;
6779 #ifdef F_GETOWN_EX
6780     case TARGET_F_GETOWN_EX:
6781         ret = F_GETOWN_EX;
6782         break;
6783 #endif
6784 #ifdef F_SETOWN_EX
6785     case TARGET_F_SETOWN_EX:
6786         ret = F_SETOWN_EX;
6787         break;
6788 #endif
6789 #ifdef F_SETPIPE_SZ
6790     case TARGET_F_SETPIPE_SZ:
6791         ret = F_SETPIPE_SZ;
6792         break;
6793     case TARGET_F_GETPIPE_SZ:
6794         ret = F_GETPIPE_SZ;
6795         break;
6796 #endif
6797 #ifdef F_ADD_SEALS
6798     case TARGET_F_ADD_SEALS:
6799         ret = F_ADD_SEALS;
6800         break;
6801     case TARGET_F_GET_SEALS:
6802         ret = F_GET_SEALS;
6803         break;
6804 #endif
6805     default:
6806         ret = -TARGET_EINVAL;
6807         break;
6808     }
6809 
6810 #if defined(__powerpc64__)
6811     /* On PPC64, glibc headers has the F_*LK* defined to 12, 13 and 14 and
6812      * is not supported by kernel. The glibc fcntl call actually adjusts
6813      * them to 5, 6 and 7 before making the syscall(). Since we make the
6814      * syscall directly, adjust to what is supported by the kernel.
6815      */
6816     if (ret >= F_GETLK64 && ret <= F_SETLKW64) {
6817         ret -= F_GETLK64 - 5;
6818     }
6819 #endif
6820 
6821     return ret;
6822 }
6823 
6824 #define FLOCK_TRANSTBL \
6825     switch (type) { \
6826     TRANSTBL_CONVERT(F_RDLCK); \
6827     TRANSTBL_CONVERT(F_WRLCK); \
6828     TRANSTBL_CONVERT(F_UNLCK); \
6829     }
6830 
6831 static int target_to_host_flock(int type)
6832 {
6833 #define TRANSTBL_CONVERT(a) case TARGET_##a: return a
6834     FLOCK_TRANSTBL
6835 #undef  TRANSTBL_CONVERT
6836     return -TARGET_EINVAL;
6837 }
6838 
6839 static int host_to_target_flock(int type)
6840 {
6841 #define TRANSTBL_CONVERT(a) case a: return TARGET_##a
6842     FLOCK_TRANSTBL
6843 #undef  TRANSTBL_CONVERT
6844     /* if we don't know how to convert the value coming
6845      * from the host we copy to the target field as-is
6846      */
6847     return type;
6848 }
6849 
6850 static inline abi_long copy_from_user_flock(struct flock64 *fl,
6851                                             abi_ulong target_flock_addr)
6852 {
6853     struct target_flock *target_fl;
6854     int l_type;
6855 
6856     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6857         return -TARGET_EFAULT;
6858     }
6859 
6860     __get_user(l_type, &target_fl->l_type);
6861     l_type = target_to_host_flock(l_type);
6862     if (l_type < 0) {
6863         return l_type;
6864     }
6865     fl->l_type = l_type;
6866     __get_user(fl->l_whence, &target_fl->l_whence);
6867     __get_user(fl->l_start, &target_fl->l_start);
6868     __get_user(fl->l_len, &target_fl->l_len);
6869     __get_user(fl->l_pid, &target_fl->l_pid);
6870     unlock_user_struct(target_fl, target_flock_addr, 0);
6871     return 0;
6872 }
6873 
6874 static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr,
6875                                           const struct flock64 *fl)
6876 {
6877     struct target_flock *target_fl;
6878     short l_type;
6879 
6880     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6881         return -TARGET_EFAULT;
6882     }
6883 
6884     l_type = host_to_target_flock(fl->l_type);
6885     __put_user(l_type, &target_fl->l_type);
6886     __put_user(fl->l_whence, &target_fl->l_whence);
6887     __put_user(fl->l_start, &target_fl->l_start);
6888     __put_user(fl->l_len, &target_fl->l_len);
6889     __put_user(fl->l_pid, &target_fl->l_pid);
6890     unlock_user_struct(target_fl, target_flock_addr, 1);
6891     return 0;
6892 }
6893 
6894 typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr);
6895 typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl);
6896 
6897 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32
6898 struct target_oabi_flock64 {
6899     abi_short l_type;
6900     abi_short l_whence;
6901     abi_llong l_start;
6902     abi_llong l_len;
6903     abi_int   l_pid;
6904 } QEMU_PACKED;
6905 
6906 static inline abi_long copy_from_user_oabi_flock64(struct flock64 *fl,
6907                                                    abi_ulong target_flock_addr)
6908 {
6909     struct target_oabi_flock64 *target_fl;
6910     int l_type;
6911 
6912     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6913         return -TARGET_EFAULT;
6914     }
6915 
6916     __get_user(l_type, &target_fl->l_type);
6917     l_type = target_to_host_flock(l_type);
6918     if (l_type < 0) {
6919         return l_type;
6920     }
6921     fl->l_type = l_type;
6922     __get_user(fl->l_whence, &target_fl->l_whence);
6923     __get_user(fl->l_start, &target_fl->l_start);
6924     __get_user(fl->l_len, &target_fl->l_len);
6925     __get_user(fl->l_pid, &target_fl->l_pid);
6926     unlock_user_struct(target_fl, target_flock_addr, 0);
6927     return 0;
6928 }
6929 
6930 static inline abi_long copy_to_user_oabi_flock64(abi_ulong target_flock_addr,
6931                                                  const struct flock64 *fl)
6932 {
6933     struct target_oabi_flock64 *target_fl;
6934     short l_type;
6935 
6936     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6937         return -TARGET_EFAULT;
6938     }
6939 
6940     l_type = host_to_target_flock(fl->l_type);
6941     __put_user(l_type, &target_fl->l_type);
6942     __put_user(fl->l_whence, &target_fl->l_whence);
6943     __put_user(fl->l_start, &target_fl->l_start);
6944     __put_user(fl->l_len, &target_fl->l_len);
6945     __put_user(fl->l_pid, &target_fl->l_pid);
6946     unlock_user_struct(target_fl, target_flock_addr, 1);
6947     return 0;
6948 }
6949 #endif
6950 
6951 static inline abi_long copy_from_user_flock64(struct flock64 *fl,
6952                                               abi_ulong target_flock_addr)
6953 {
6954     struct target_flock64 *target_fl;
6955     int l_type;
6956 
6957     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6958         return -TARGET_EFAULT;
6959     }
6960 
6961     __get_user(l_type, &target_fl->l_type);
6962     l_type = target_to_host_flock(l_type);
6963     if (l_type < 0) {
6964         return l_type;
6965     }
6966     fl->l_type = l_type;
6967     __get_user(fl->l_whence, &target_fl->l_whence);
6968     __get_user(fl->l_start, &target_fl->l_start);
6969     __get_user(fl->l_len, &target_fl->l_len);
6970     __get_user(fl->l_pid, &target_fl->l_pid);
6971     unlock_user_struct(target_fl, target_flock_addr, 0);
6972     return 0;
6973 }
6974 
6975 static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr,
6976                                             const struct flock64 *fl)
6977 {
6978     struct target_flock64 *target_fl;
6979     short l_type;
6980 
6981     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6982         return -TARGET_EFAULT;
6983     }
6984 
6985     l_type = host_to_target_flock(fl->l_type);
6986     __put_user(l_type, &target_fl->l_type);
6987     __put_user(fl->l_whence, &target_fl->l_whence);
6988     __put_user(fl->l_start, &target_fl->l_start);
6989     __put_user(fl->l_len, &target_fl->l_len);
6990     __put_user(fl->l_pid, &target_fl->l_pid);
6991     unlock_user_struct(target_fl, target_flock_addr, 1);
6992     return 0;
6993 }
6994 
6995 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg)
6996 {
6997     struct flock64 fl64;
6998 #ifdef F_GETOWN_EX
6999     struct f_owner_ex fox;
7000     struct target_f_owner_ex *target_fox;
7001 #endif
7002     abi_long ret;
7003     int host_cmd = target_to_host_fcntl_cmd(cmd);
7004 
7005     if (host_cmd == -TARGET_EINVAL)
7006 	    return host_cmd;
7007 
7008     switch(cmd) {
7009     case TARGET_F_GETLK:
7010         ret = copy_from_user_flock(&fl64, arg);
7011         if (ret) {
7012             return ret;
7013         }
7014         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7015         if (ret == 0) {
7016             ret = copy_to_user_flock(arg, &fl64);
7017         }
7018         break;
7019 
7020     case TARGET_F_SETLK:
7021     case TARGET_F_SETLKW:
7022         ret = copy_from_user_flock(&fl64, arg);
7023         if (ret) {
7024             return ret;
7025         }
7026         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7027         break;
7028 
7029     case TARGET_F_GETLK64:
7030     case TARGET_F_OFD_GETLK:
7031         ret = copy_from_user_flock64(&fl64, arg);
7032         if (ret) {
7033             return ret;
7034         }
7035         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7036         if (ret == 0) {
7037             ret = copy_to_user_flock64(arg, &fl64);
7038         }
7039         break;
7040     case TARGET_F_SETLK64:
7041     case TARGET_F_SETLKW64:
7042     case TARGET_F_OFD_SETLK:
7043     case TARGET_F_OFD_SETLKW:
7044         ret = copy_from_user_flock64(&fl64, arg);
7045         if (ret) {
7046             return ret;
7047         }
7048         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7049         break;
7050 
7051     case TARGET_F_GETFL:
7052         ret = get_errno(safe_fcntl(fd, host_cmd, arg));
7053         if (ret >= 0) {
7054             ret = host_to_target_bitmask(ret, fcntl_flags_tbl);
7055             /* tell 32-bit guests it uses largefile on 64-bit hosts: */
7056             if (O_LARGEFILE == 0 && HOST_LONG_BITS == 64) {
7057                 ret |= TARGET_O_LARGEFILE;
7058             }
7059         }
7060         break;
7061 
7062     case TARGET_F_SETFL:
7063         ret = get_errno(safe_fcntl(fd, host_cmd,
7064                                    target_to_host_bitmask(arg,
7065                                                           fcntl_flags_tbl)));
7066         break;
7067 
7068 #ifdef F_GETOWN_EX
7069     case TARGET_F_GETOWN_EX:
7070         ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
7071         if (ret >= 0) {
7072             if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0))
7073                 return -TARGET_EFAULT;
7074             target_fox->type = tswap32(fox.type);
7075             target_fox->pid = tswap32(fox.pid);
7076             unlock_user_struct(target_fox, arg, 1);
7077         }
7078         break;
7079 #endif
7080 
7081 #ifdef F_SETOWN_EX
7082     case TARGET_F_SETOWN_EX:
7083         if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1))
7084             return -TARGET_EFAULT;
7085         fox.type = tswap32(target_fox->type);
7086         fox.pid = tswap32(target_fox->pid);
7087         unlock_user_struct(target_fox, arg, 0);
7088         ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
7089         break;
7090 #endif
7091 
7092     case TARGET_F_SETSIG:
7093         ret = get_errno(safe_fcntl(fd, host_cmd, target_to_host_signal(arg)));
7094         break;
7095 
7096     case TARGET_F_GETSIG:
7097         ret = host_to_target_signal(get_errno(safe_fcntl(fd, host_cmd, arg)));
7098         break;
7099 
7100     case TARGET_F_SETOWN:
7101     case TARGET_F_GETOWN:
7102     case TARGET_F_SETLEASE:
7103     case TARGET_F_GETLEASE:
7104     case TARGET_F_SETPIPE_SZ:
7105     case TARGET_F_GETPIPE_SZ:
7106     case TARGET_F_ADD_SEALS:
7107     case TARGET_F_GET_SEALS:
7108         ret = get_errno(safe_fcntl(fd, host_cmd, arg));
7109         break;
7110 
7111     default:
7112         ret = get_errno(safe_fcntl(fd, cmd, arg));
7113         break;
7114     }
7115     return ret;
7116 }
7117 
7118 #ifdef USE_UID16
7119 
7120 static inline int high2lowuid(int uid)
7121 {
7122     if (uid > 65535)
7123         return 65534;
7124     else
7125         return uid;
7126 }
7127 
7128 static inline int high2lowgid(int gid)
7129 {
7130     if (gid > 65535)
7131         return 65534;
7132     else
7133         return gid;
7134 }
7135 
7136 static inline int low2highuid(int uid)
7137 {
7138     if ((int16_t)uid == -1)
7139         return -1;
7140     else
7141         return uid;
7142 }
7143 
7144 static inline int low2highgid(int gid)
7145 {
7146     if ((int16_t)gid == -1)
7147         return -1;
7148     else
7149         return gid;
7150 }
7151 static inline int tswapid(int id)
7152 {
7153     return tswap16(id);
7154 }
7155 
7156 #define put_user_id(x, gaddr) put_user_u16(x, gaddr)
7157 
7158 #else /* !USE_UID16 */
7159 static inline int high2lowuid(int uid)
7160 {
7161     return uid;
7162 }
7163 static inline int high2lowgid(int gid)
7164 {
7165     return gid;
7166 }
7167 static inline int low2highuid(int uid)
7168 {
7169     return uid;
7170 }
7171 static inline int low2highgid(int gid)
7172 {
7173     return gid;
7174 }
7175 static inline int tswapid(int id)
7176 {
7177     return tswap32(id);
7178 }
7179 
7180 #define put_user_id(x, gaddr) put_user_u32(x, gaddr)
7181 
7182 #endif /* USE_UID16 */
7183 
7184 /* We must do direct syscalls for setting UID/GID, because we want to
7185  * implement the Linux system call semantics of "change only for this thread",
7186  * not the libc/POSIX semantics of "change for all threads in process".
7187  * (See http://ewontfix.com/17/ for more details.)
7188  * We use the 32-bit version of the syscalls if present; if it is not
7189  * then either the host architecture supports 32-bit UIDs natively with
7190  * the standard syscall, or the 16-bit UID is the best we can do.
7191  */
7192 #ifdef __NR_setuid32
7193 #define __NR_sys_setuid __NR_setuid32
7194 #else
7195 #define __NR_sys_setuid __NR_setuid
7196 #endif
7197 #ifdef __NR_setgid32
7198 #define __NR_sys_setgid __NR_setgid32
7199 #else
7200 #define __NR_sys_setgid __NR_setgid
7201 #endif
7202 #ifdef __NR_setresuid32
7203 #define __NR_sys_setresuid __NR_setresuid32
7204 #else
7205 #define __NR_sys_setresuid __NR_setresuid
7206 #endif
7207 #ifdef __NR_setresgid32
7208 #define __NR_sys_setresgid __NR_setresgid32
7209 #else
7210 #define __NR_sys_setresgid __NR_setresgid
7211 #endif
7212 #ifdef __NR_setgroups32
7213 #define __NR_sys_setgroups __NR_setgroups32
7214 #else
7215 #define __NR_sys_setgroups __NR_setgroups
7216 #endif
7217 
7218 _syscall1(int, sys_setuid, uid_t, uid)
7219 _syscall1(int, sys_setgid, gid_t, gid)
7220 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
7221 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
7222 _syscall2(int, sys_setgroups, int, size, gid_t *, grouplist)
7223 
7224 void syscall_init(void)
7225 {
7226     IOCTLEntry *ie;
7227     const argtype *arg_type;
7228     int size;
7229 
7230     thunk_init(STRUCT_MAX);
7231 
7232 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
7233 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
7234 #include "syscall_types.h"
7235 #undef STRUCT
7236 #undef STRUCT_SPECIAL
7237 
7238     /* we patch the ioctl size if necessary. We rely on the fact that
7239        no ioctl has all the bits at '1' in the size field */
7240     ie = ioctl_entries;
7241     while (ie->target_cmd != 0) {
7242         if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) ==
7243             TARGET_IOC_SIZEMASK) {
7244             arg_type = ie->arg_type;
7245             if (arg_type[0] != TYPE_PTR) {
7246                 fprintf(stderr, "cannot patch size for ioctl 0x%x\n",
7247                         ie->target_cmd);
7248                 exit(1);
7249             }
7250             arg_type++;
7251             size = thunk_type_size(arg_type, 0);
7252             ie->target_cmd = (ie->target_cmd &
7253                               ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) |
7254                 (size << TARGET_IOC_SIZESHIFT);
7255         }
7256 
7257         /* automatic consistency check if same arch */
7258 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
7259     (defined(__x86_64__) && defined(TARGET_X86_64))
7260         if (unlikely(ie->target_cmd != ie->host_cmd)) {
7261             fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
7262                     ie->name, ie->target_cmd, ie->host_cmd);
7263         }
7264 #endif
7265         ie++;
7266     }
7267 }
7268 
7269 #ifdef TARGET_NR_truncate64
7270 static inline abi_long target_truncate64(CPUArchState *cpu_env, const char *arg1,
7271                                          abi_long arg2,
7272                                          abi_long arg3,
7273                                          abi_long arg4)
7274 {
7275     if (regpairs_aligned(cpu_env, TARGET_NR_truncate64)) {
7276         arg2 = arg3;
7277         arg3 = arg4;
7278     }
7279     return get_errno(truncate64(arg1, target_offset64(arg2, arg3)));
7280 }
7281 #endif
7282 
7283 #ifdef TARGET_NR_ftruncate64
7284 static inline abi_long target_ftruncate64(CPUArchState *cpu_env, abi_long arg1,
7285                                           abi_long arg2,
7286                                           abi_long arg3,
7287                                           abi_long arg4)
7288 {
7289     if (regpairs_aligned(cpu_env, TARGET_NR_ftruncate64)) {
7290         arg2 = arg3;
7291         arg3 = arg4;
7292     }
7293     return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3)));
7294 }
7295 #endif
7296 
7297 #if defined(TARGET_NR_timer_settime) || \
7298     (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
7299 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_its,
7300                                                  abi_ulong target_addr)
7301 {
7302     if (target_to_host_timespec(&host_its->it_interval, target_addr +
7303                                 offsetof(struct target_itimerspec,
7304                                          it_interval)) ||
7305         target_to_host_timespec(&host_its->it_value, target_addr +
7306                                 offsetof(struct target_itimerspec,
7307                                          it_value))) {
7308         return -TARGET_EFAULT;
7309     }
7310 
7311     return 0;
7312 }
7313 #endif
7314 
7315 #if defined(TARGET_NR_timer_settime64) || \
7316     (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD))
7317 static inline abi_long target_to_host_itimerspec64(struct itimerspec *host_its,
7318                                                    abi_ulong target_addr)
7319 {
7320     if (target_to_host_timespec64(&host_its->it_interval, target_addr +
7321                                   offsetof(struct target__kernel_itimerspec,
7322                                            it_interval)) ||
7323         target_to_host_timespec64(&host_its->it_value, target_addr +
7324                                   offsetof(struct target__kernel_itimerspec,
7325                                            it_value))) {
7326         return -TARGET_EFAULT;
7327     }
7328 
7329     return 0;
7330 }
7331 #endif
7332 
7333 #if ((defined(TARGET_NR_timerfd_gettime) || \
7334       defined(TARGET_NR_timerfd_settime)) && defined(CONFIG_TIMERFD)) || \
7335       defined(TARGET_NR_timer_gettime) || defined(TARGET_NR_timer_settime)
7336 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr,
7337                                                  struct itimerspec *host_its)
7338 {
7339     if (host_to_target_timespec(target_addr + offsetof(struct target_itimerspec,
7340                                                        it_interval),
7341                                 &host_its->it_interval) ||
7342         host_to_target_timespec(target_addr + offsetof(struct target_itimerspec,
7343                                                        it_value),
7344                                 &host_its->it_value)) {
7345         return -TARGET_EFAULT;
7346     }
7347     return 0;
7348 }
7349 #endif
7350 
7351 #if ((defined(TARGET_NR_timerfd_gettime64) || \
7352       defined(TARGET_NR_timerfd_settime64)) && defined(CONFIG_TIMERFD)) || \
7353       defined(TARGET_NR_timer_gettime64) || defined(TARGET_NR_timer_settime64)
7354 static inline abi_long host_to_target_itimerspec64(abi_ulong target_addr,
7355                                                    struct itimerspec *host_its)
7356 {
7357     if (host_to_target_timespec64(target_addr +
7358                                   offsetof(struct target__kernel_itimerspec,
7359                                            it_interval),
7360                                   &host_its->it_interval) ||
7361         host_to_target_timespec64(target_addr +
7362                                   offsetof(struct target__kernel_itimerspec,
7363                                            it_value),
7364                                   &host_its->it_value)) {
7365         return -TARGET_EFAULT;
7366     }
7367     return 0;
7368 }
7369 #endif
7370 
7371 #if defined(TARGET_NR_adjtimex) || \
7372     (defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME))
7373 static inline abi_long target_to_host_timex(struct timex *host_tx,
7374                                             abi_long target_addr)
7375 {
7376     struct target_timex *target_tx;
7377 
7378     if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7379         return -TARGET_EFAULT;
7380     }
7381 
7382     __get_user(host_tx->modes, &target_tx->modes);
7383     __get_user(host_tx->offset, &target_tx->offset);
7384     __get_user(host_tx->freq, &target_tx->freq);
7385     __get_user(host_tx->maxerror, &target_tx->maxerror);
7386     __get_user(host_tx->esterror, &target_tx->esterror);
7387     __get_user(host_tx->status, &target_tx->status);
7388     __get_user(host_tx->constant, &target_tx->constant);
7389     __get_user(host_tx->precision, &target_tx->precision);
7390     __get_user(host_tx->tolerance, &target_tx->tolerance);
7391     __get_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7392     __get_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7393     __get_user(host_tx->tick, &target_tx->tick);
7394     __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7395     __get_user(host_tx->jitter, &target_tx->jitter);
7396     __get_user(host_tx->shift, &target_tx->shift);
7397     __get_user(host_tx->stabil, &target_tx->stabil);
7398     __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7399     __get_user(host_tx->calcnt, &target_tx->calcnt);
7400     __get_user(host_tx->errcnt, &target_tx->errcnt);
7401     __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7402     __get_user(host_tx->tai, &target_tx->tai);
7403 
7404     unlock_user_struct(target_tx, target_addr, 0);
7405     return 0;
7406 }
7407 
7408 static inline abi_long host_to_target_timex(abi_long target_addr,
7409                                             struct timex *host_tx)
7410 {
7411     struct target_timex *target_tx;
7412 
7413     if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7414         return -TARGET_EFAULT;
7415     }
7416 
7417     __put_user(host_tx->modes, &target_tx->modes);
7418     __put_user(host_tx->offset, &target_tx->offset);
7419     __put_user(host_tx->freq, &target_tx->freq);
7420     __put_user(host_tx->maxerror, &target_tx->maxerror);
7421     __put_user(host_tx->esterror, &target_tx->esterror);
7422     __put_user(host_tx->status, &target_tx->status);
7423     __put_user(host_tx->constant, &target_tx->constant);
7424     __put_user(host_tx->precision, &target_tx->precision);
7425     __put_user(host_tx->tolerance, &target_tx->tolerance);
7426     __put_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7427     __put_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7428     __put_user(host_tx->tick, &target_tx->tick);
7429     __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7430     __put_user(host_tx->jitter, &target_tx->jitter);
7431     __put_user(host_tx->shift, &target_tx->shift);
7432     __put_user(host_tx->stabil, &target_tx->stabil);
7433     __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7434     __put_user(host_tx->calcnt, &target_tx->calcnt);
7435     __put_user(host_tx->errcnt, &target_tx->errcnt);
7436     __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7437     __put_user(host_tx->tai, &target_tx->tai);
7438 
7439     unlock_user_struct(target_tx, target_addr, 1);
7440     return 0;
7441 }
7442 #endif
7443 
7444 
7445 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
7446 static inline abi_long target_to_host_timex64(struct timex *host_tx,
7447                                               abi_long target_addr)
7448 {
7449     struct target__kernel_timex *target_tx;
7450 
7451     if (copy_from_user_timeval64(&host_tx->time, target_addr +
7452                                  offsetof(struct target__kernel_timex,
7453                                           time))) {
7454         return -TARGET_EFAULT;
7455     }
7456 
7457     if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7458         return -TARGET_EFAULT;
7459     }
7460 
7461     __get_user(host_tx->modes, &target_tx->modes);
7462     __get_user(host_tx->offset, &target_tx->offset);
7463     __get_user(host_tx->freq, &target_tx->freq);
7464     __get_user(host_tx->maxerror, &target_tx->maxerror);
7465     __get_user(host_tx->esterror, &target_tx->esterror);
7466     __get_user(host_tx->status, &target_tx->status);
7467     __get_user(host_tx->constant, &target_tx->constant);
7468     __get_user(host_tx->precision, &target_tx->precision);
7469     __get_user(host_tx->tolerance, &target_tx->tolerance);
7470     __get_user(host_tx->tick, &target_tx->tick);
7471     __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7472     __get_user(host_tx->jitter, &target_tx->jitter);
7473     __get_user(host_tx->shift, &target_tx->shift);
7474     __get_user(host_tx->stabil, &target_tx->stabil);
7475     __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7476     __get_user(host_tx->calcnt, &target_tx->calcnt);
7477     __get_user(host_tx->errcnt, &target_tx->errcnt);
7478     __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7479     __get_user(host_tx->tai, &target_tx->tai);
7480 
7481     unlock_user_struct(target_tx, target_addr, 0);
7482     return 0;
7483 }
7484 
7485 static inline abi_long host_to_target_timex64(abi_long target_addr,
7486                                               struct timex *host_tx)
7487 {
7488     struct target__kernel_timex *target_tx;
7489 
7490    if (copy_to_user_timeval64(target_addr +
7491                               offsetof(struct target__kernel_timex, time),
7492                               &host_tx->time)) {
7493         return -TARGET_EFAULT;
7494     }
7495 
7496     if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7497         return -TARGET_EFAULT;
7498     }
7499 
7500     __put_user(host_tx->modes, &target_tx->modes);
7501     __put_user(host_tx->offset, &target_tx->offset);
7502     __put_user(host_tx->freq, &target_tx->freq);
7503     __put_user(host_tx->maxerror, &target_tx->maxerror);
7504     __put_user(host_tx->esterror, &target_tx->esterror);
7505     __put_user(host_tx->status, &target_tx->status);
7506     __put_user(host_tx->constant, &target_tx->constant);
7507     __put_user(host_tx->precision, &target_tx->precision);
7508     __put_user(host_tx->tolerance, &target_tx->tolerance);
7509     __put_user(host_tx->tick, &target_tx->tick);
7510     __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7511     __put_user(host_tx->jitter, &target_tx->jitter);
7512     __put_user(host_tx->shift, &target_tx->shift);
7513     __put_user(host_tx->stabil, &target_tx->stabil);
7514     __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7515     __put_user(host_tx->calcnt, &target_tx->calcnt);
7516     __put_user(host_tx->errcnt, &target_tx->errcnt);
7517     __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7518     __put_user(host_tx->tai, &target_tx->tai);
7519 
7520     unlock_user_struct(target_tx, target_addr, 1);
7521     return 0;
7522 }
7523 #endif
7524 
7525 #ifndef HAVE_SIGEV_NOTIFY_THREAD_ID
7526 #define sigev_notify_thread_id _sigev_un._tid
7527 #endif
7528 
7529 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp,
7530                                                abi_ulong target_addr)
7531 {
7532     struct target_sigevent *target_sevp;
7533 
7534     if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) {
7535         return -TARGET_EFAULT;
7536     }
7537 
7538     /* This union is awkward on 64 bit systems because it has a 32 bit
7539      * integer and a pointer in it; we follow the conversion approach
7540      * used for handling sigval types in signal.c so the guest should get
7541      * the correct value back even if we did a 64 bit byteswap and it's
7542      * using the 32 bit integer.
7543      */
7544     host_sevp->sigev_value.sival_ptr =
7545         (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr);
7546     host_sevp->sigev_signo =
7547         target_to_host_signal(tswap32(target_sevp->sigev_signo));
7548     host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify);
7549     host_sevp->sigev_notify_thread_id = tswap32(target_sevp->_sigev_un._tid);
7550 
7551     unlock_user_struct(target_sevp, target_addr, 1);
7552     return 0;
7553 }
7554 
7555 #if defined(TARGET_NR_mlockall)
7556 static inline int target_to_host_mlockall_arg(int arg)
7557 {
7558     int result = 0;
7559 
7560     if (arg & TARGET_MCL_CURRENT) {
7561         result |= MCL_CURRENT;
7562     }
7563     if (arg & TARGET_MCL_FUTURE) {
7564         result |= MCL_FUTURE;
7565     }
7566 #ifdef MCL_ONFAULT
7567     if (arg & TARGET_MCL_ONFAULT) {
7568         result |= MCL_ONFAULT;
7569     }
7570 #endif
7571 
7572     return result;
7573 }
7574 #endif
7575 
7576 static inline int target_to_host_msync_arg(abi_long arg)
7577 {
7578     return ((arg & TARGET_MS_ASYNC) ? MS_ASYNC : 0) |
7579            ((arg & TARGET_MS_INVALIDATE) ? MS_INVALIDATE : 0) |
7580            ((arg & TARGET_MS_SYNC) ? MS_SYNC : 0) |
7581            (arg & ~(TARGET_MS_ASYNC | TARGET_MS_INVALIDATE | TARGET_MS_SYNC));
7582 }
7583 
7584 #if (defined(TARGET_NR_stat64) || defined(TARGET_NR_lstat64) ||     \
7585      defined(TARGET_NR_fstat64) || defined(TARGET_NR_fstatat64) ||  \
7586      defined(TARGET_NR_newfstatat))
7587 static inline abi_long host_to_target_stat64(CPUArchState *cpu_env,
7588                                              abi_ulong target_addr,
7589                                              struct stat *host_st)
7590 {
7591 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
7592     if (cpu_env->eabi) {
7593         struct target_eabi_stat64 *target_st;
7594 
7595         if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7596             return -TARGET_EFAULT;
7597         memset(target_st, 0, sizeof(struct target_eabi_stat64));
7598         __put_user(host_st->st_dev, &target_st->st_dev);
7599         __put_user(host_st->st_ino, &target_st->st_ino);
7600 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7601         __put_user(host_st->st_ino, &target_st->__st_ino);
7602 #endif
7603         __put_user(host_st->st_mode, &target_st->st_mode);
7604         __put_user(host_st->st_nlink, &target_st->st_nlink);
7605         __put_user(host_st->st_uid, &target_st->st_uid);
7606         __put_user(host_st->st_gid, &target_st->st_gid);
7607         __put_user(host_st->st_rdev, &target_st->st_rdev);
7608         __put_user(host_st->st_size, &target_st->st_size);
7609         __put_user(host_st->st_blksize, &target_st->st_blksize);
7610         __put_user(host_st->st_blocks, &target_st->st_blocks);
7611         __put_user(host_st->st_atime, &target_st->target_st_atime);
7612         __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7613         __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7614 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7615         __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
7616         __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
7617         __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
7618 #endif
7619         unlock_user_struct(target_st, target_addr, 1);
7620     } else
7621 #endif
7622     {
7623 #if defined(TARGET_HAS_STRUCT_STAT64)
7624         struct target_stat64 *target_st;
7625 #else
7626         struct target_stat *target_st;
7627 #endif
7628 
7629         if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7630             return -TARGET_EFAULT;
7631         memset(target_st, 0, sizeof(*target_st));
7632         __put_user(host_st->st_dev, &target_st->st_dev);
7633         __put_user(host_st->st_ino, &target_st->st_ino);
7634 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7635         __put_user(host_st->st_ino, &target_st->__st_ino);
7636 #endif
7637         __put_user(host_st->st_mode, &target_st->st_mode);
7638         __put_user(host_st->st_nlink, &target_st->st_nlink);
7639         __put_user(host_st->st_uid, &target_st->st_uid);
7640         __put_user(host_st->st_gid, &target_st->st_gid);
7641         __put_user(host_st->st_rdev, &target_st->st_rdev);
7642         /* XXX: better use of kernel struct */
7643         __put_user(host_st->st_size, &target_st->st_size);
7644         __put_user(host_st->st_blksize, &target_st->st_blksize);
7645         __put_user(host_st->st_blocks, &target_st->st_blocks);
7646         __put_user(host_st->st_atime, &target_st->target_st_atime);
7647         __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7648         __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7649 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7650         __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
7651         __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
7652         __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
7653 #endif
7654         unlock_user_struct(target_st, target_addr, 1);
7655     }
7656 
7657     return 0;
7658 }
7659 #endif
7660 
7661 #if defined(TARGET_NR_statx) && defined(__NR_statx)
7662 static inline abi_long host_to_target_statx(struct target_statx *host_stx,
7663                                             abi_ulong target_addr)
7664 {
7665     struct target_statx *target_stx;
7666 
7667     if (!lock_user_struct(VERIFY_WRITE, target_stx, target_addr,  0)) {
7668         return -TARGET_EFAULT;
7669     }
7670     memset(target_stx, 0, sizeof(*target_stx));
7671 
7672     __put_user(host_stx->stx_mask, &target_stx->stx_mask);
7673     __put_user(host_stx->stx_blksize, &target_stx->stx_blksize);
7674     __put_user(host_stx->stx_attributes, &target_stx->stx_attributes);
7675     __put_user(host_stx->stx_nlink, &target_stx->stx_nlink);
7676     __put_user(host_stx->stx_uid, &target_stx->stx_uid);
7677     __put_user(host_stx->stx_gid, &target_stx->stx_gid);
7678     __put_user(host_stx->stx_mode, &target_stx->stx_mode);
7679     __put_user(host_stx->stx_ino, &target_stx->stx_ino);
7680     __put_user(host_stx->stx_size, &target_stx->stx_size);
7681     __put_user(host_stx->stx_blocks, &target_stx->stx_blocks);
7682     __put_user(host_stx->stx_attributes_mask, &target_stx->stx_attributes_mask);
7683     __put_user(host_stx->stx_atime.tv_sec, &target_stx->stx_atime.tv_sec);
7684     __put_user(host_stx->stx_atime.tv_nsec, &target_stx->stx_atime.tv_nsec);
7685     __put_user(host_stx->stx_btime.tv_sec, &target_stx->stx_btime.tv_sec);
7686     __put_user(host_stx->stx_btime.tv_nsec, &target_stx->stx_btime.tv_nsec);
7687     __put_user(host_stx->stx_ctime.tv_sec, &target_stx->stx_ctime.tv_sec);
7688     __put_user(host_stx->stx_ctime.tv_nsec, &target_stx->stx_ctime.tv_nsec);
7689     __put_user(host_stx->stx_mtime.tv_sec, &target_stx->stx_mtime.tv_sec);
7690     __put_user(host_stx->stx_mtime.tv_nsec, &target_stx->stx_mtime.tv_nsec);
7691     __put_user(host_stx->stx_rdev_major, &target_stx->stx_rdev_major);
7692     __put_user(host_stx->stx_rdev_minor, &target_stx->stx_rdev_minor);
7693     __put_user(host_stx->stx_dev_major, &target_stx->stx_dev_major);
7694     __put_user(host_stx->stx_dev_minor, &target_stx->stx_dev_minor);
7695 
7696     unlock_user_struct(target_stx, target_addr, 1);
7697 
7698     return 0;
7699 }
7700 #endif
7701 
7702 static int do_sys_futex(int *uaddr, int op, int val,
7703                          const struct timespec *timeout, int *uaddr2,
7704                          int val3)
7705 {
7706 #if HOST_LONG_BITS == 64
7707 #if defined(__NR_futex)
7708     /* always a 64-bit time_t, it doesn't define _time64 version  */
7709     return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
7710 
7711 #endif
7712 #else /* HOST_LONG_BITS == 64 */
7713 #if defined(__NR_futex_time64)
7714     if (sizeof(timeout->tv_sec) == 8) {
7715         /* _time64 function on 32bit arch */
7716         return sys_futex_time64(uaddr, op, val, timeout, uaddr2, val3);
7717     }
7718 #endif
7719 #if defined(__NR_futex)
7720     /* old function on 32bit arch */
7721     return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
7722 #endif
7723 #endif /* HOST_LONG_BITS == 64 */
7724     g_assert_not_reached();
7725 }
7726 
7727 static int do_safe_futex(int *uaddr, int op, int val,
7728                          const struct timespec *timeout, int *uaddr2,
7729                          int val3)
7730 {
7731 #if HOST_LONG_BITS == 64
7732 #if defined(__NR_futex)
7733     /* always a 64-bit time_t, it doesn't define _time64 version  */
7734     return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
7735 #endif
7736 #else /* HOST_LONG_BITS == 64 */
7737 #if defined(__NR_futex_time64)
7738     if (sizeof(timeout->tv_sec) == 8) {
7739         /* _time64 function on 32bit arch */
7740         return get_errno(safe_futex_time64(uaddr, op, val, timeout, uaddr2,
7741                                            val3));
7742     }
7743 #endif
7744 #if defined(__NR_futex)
7745     /* old function on 32bit arch */
7746     return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
7747 #endif
7748 #endif /* HOST_LONG_BITS == 64 */
7749     return -TARGET_ENOSYS;
7750 }
7751 
7752 /* ??? Using host futex calls even when target atomic operations
7753    are not really atomic probably breaks things.  However implementing
7754    futexes locally would make futexes shared between multiple processes
7755    tricky.  However they're probably useless because guest atomic
7756    operations won't work either.  */
7757 #if defined(TARGET_NR_futex) || defined(TARGET_NR_futex_time64)
7758 static int do_futex(CPUState *cpu, bool time64, target_ulong uaddr,
7759                     int op, int val, target_ulong timeout,
7760                     target_ulong uaddr2, int val3)
7761 {
7762     struct timespec ts, *pts = NULL;
7763     void *haddr2 = NULL;
7764     int base_op;
7765 
7766     /* We assume FUTEX_* constants are the same on both host and target. */
7767 #ifdef FUTEX_CMD_MASK
7768     base_op = op & FUTEX_CMD_MASK;
7769 #else
7770     base_op = op;
7771 #endif
7772     switch (base_op) {
7773     case FUTEX_WAIT:
7774     case FUTEX_WAIT_BITSET:
7775         val = tswap32(val);
7776         break;
7777     case FUTEX_WAIT_REQUEUE_PI:
7778         val = tswap32(val);
7779         haddr2 = g2h(cpu, uaddr2);
7780         break;
7781     case FUTEX_LOCK_PI:
7782     case FUTEX_LOCK_PI2:
7783         break;
7784     case FUTEX_WAKE:
7785     case FUTEX_WAKE_BITSET:
7786     case FUTEX_TRYLOCK_PI:
7787     case FUTEX_UNLOCK_PI:
7788         timeout = 0;
7789         break;
7790     case FUTEX_FD:
7791         val = target_to_host_signal(val);
7792         timeout = 0;
7793         break;
7794     case FUTEX_CMP_REQUEUE:
7795     case FUTEX_CMP_REQUEUE_PI:
7796         val3 = tswap32(val3);
7797         /* fall through */
7798     case FUTEX_REQUEUE:
7799     case FUTEX_WAKE_OP:
7800         /*
7801          * For these, the 4th argument is not TIMEOUT, but VAL2.
7802          * But the prototype of do_safe_futex takes a pointer, so
7803          * insert casts to satisfy the compiler.  We do not need
7804          * to tswap VAL2 since it's not compared to guest memory.
7805           */
7806         pts = (struct timespec *)(uintptr_t)timeout;
7807         timeout = 0;
7808         haddr2 = g2h(cpu, uaddr2);
7809         break;
7810     default:
7811         return -TARGET_ENOSYS;
7812     }
7813     if (timeout) {
7814         pts = &ts;
7815         if (time64
7816             ? target_to_host_timespec64(pts, timeout)
7817             : target_to_host_timespec(pts, timeout)) {
7818             return -TARGET_EFAULT;
7819         }
7820     }
7821     return do_safe_futex(g2h(cpu, uaddr), op, val, pts, haddr2, val3);
7822 }
7823 #endif
7824 
7825 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7826 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname,
7827                                      abi_long handle, abi_long mount_id,
7828                                      abi_long flags)
7829 {
7830     struct file_handle *target_fh;
7831     struct file_handle *fh;
7832     int mid = 0;
7833     abi_long ret;
7834     char *name;
7835     unsigned int size, total_size;
7836 
7837     if (get_user_s32(size, handle)) {
7838         return -TARGET_EFAULT;
7839     }
7840 
7841     name = lock_user_string(pathname);
7842     if (!name) {
7843         return -TARGET_EFAULT;
7844     }
7845 
7846     total_size = sizeof(struct file_handle) + size;
7847     target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0);
7848     if (!target_fh) {
7849         unlock_user(name, pathname, 0);
7850         return -TARGET_EFAULT;
7851     }
7852 
7853     fh = g_malloc0(total_size);
7854     fh->handle_bytes = size;
7855 
7856     ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags));
7857     unlock_user(name, pathname, 0);
7858 
7859     /* man name_to_handle_at(2):
7860      * Other than the use of the handle_bytes field, the caller should treat
7861      * the file_handle structure as an opaque data type
7862      */
7863 
7864     memcpy(target_fh, fh, total_size);
7865     target_fh->handle_bytes = tswap32(fh->handle_bytes);
7866     target_fh->handle_type = tswap32(fh->handle_type);
7867     g_free(fh);
7868     unlock_user(target_fh, handle, total_size);
7869 
7870     if (put_user_s32(mid, mount_id)) {
7871         return -TARGET_EFAULT;
7872     }
7873 
7874     return ret;
7875 
7876 }
7877 #endif
7878 
7879 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7880 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle,
7881                                      abi_long flags)
7882 {
7883     struct file_handle *target_fh;
7884     struct file_handle *fh;
7885     unsigned int size, total_size;
7886     abi_long ret;
7887 
7888     if (get_user_s32(size, handle)) {
7889         return -TARGET_EFAULT;
7890     }
7891 
7892     total_size = sizeof(struct file_handle) + size;
7893     target_fh = lock_user(VERIFY_READ, handle, total_size, 1);
7894     if (!target_fh) {
7895         return -TARGET_EFAULT;
7896     }
7897 
7898     fh = g_memdup(target_fh, total_size);
7899     fh->handle_bytes = size;
7900     fh->handle_type = tswap32(target_fh->handle_type);
7901 
7902     ret = get_errno(open_by_handle_at(mount_fd, fh,
7903                     target_to_host_bitmask(flags, fcntl_flags_tbl)));
7904 
7905     g_free(fh);
7906 
7907     unlock_user(target_fh, handle, total_size);
7908 
7909     return ret;
7910 }
7911 #endif
7912 
7913 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4)
7914 
7915 static abi_long do_signalfd4(int fd, abi_long mask, int flags)
7916 {
7917     int host_flags;
7918     target_sigset_t *target_mask;
7919     sigset_t host_mask;
7920     abi_long ret;
7921 
7922     if (flags & ~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC)) {
7923         return -TARGET_EINVAL;
7924     }
7925     if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) {
7926         return -TARGET_EFAULT;
7927     }
7928 
7929     target_to_host_sigset(&host_mask, target_mask);
7930 
7931     host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
7932 
7933     ret = get_errno(signalfd(fd, &host_mask, host_flags));
7934     if (ret >= 0) {
7935         fd_trans_register(ret, &target_signalfd_trans);
7936     }
7937 
7938     unlock_user_struct(target_mask, mask, 0);
7939 
7940     return ret;
7941 }
7942 #endif
7943 
7944 /* Map host to target signal numbers for the wait family of syscalls.
7945    Assume all other status bits are the same.  */
7946 int host_to_target_waitstatus(int status)
7947 {
7948     if (WIFSIGNALED(status)) {
7949         return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f);
7950     }
7951     if (WIFSTOPPED(status)) {
7952         return (host_to_target_signal(WSTOPSIG(status)) << 8)
7953                | (status & 0xff);
7954     }
7955     return status;
7956 }
7957 
7958 static int open_self_cmdline(CPUArchState *cpu_env, int fd)
7959 {
7960     CPUState *cpu = env_cpu(cpu_env);
7961     struct linux_binprm *bprm = get_task_state(cpu)->bprm;
7962     int i;
7963 
7964     for (i = 0; i < bprm->argc; i++) {
7965         size_t len = strlen(bprm->argv[i]) + 1;
7966 
7967         if (write(fd, bprm->argv[i], len) != len) {
7968             return -1;
7969         }
7970     }
7971 
7972     return 0;
7973 }
7974 
7975 struct open_self_maps_data {
7976     TaskState *ts;
7977     IntervalTreeRoot *host_maps;
7978     int fd;
7979     bool smaps;
7980 };
7981 
7982 /*
7983  * Subroutine to output one line of /proc/self/maps,
7984  * or one region of /proc/self/smaps.
7985  */
7986 
7987 #ifdef TARGET_HPPA
7988 # define test_stack(S, E, L)  (E == L)
7989 #else
7990 # define test_stack(S, E, L)  (S == L)
7991 #endif
7992 
7993 static void open_self_maps_4(const struct open_self_maps_data *d,
7994                              const MapInfo *mi, abi_ptr start,
7995                              abi_ptr end, unsigned flags)
7996 {
7997     const struct image_info *info = d->ts->info;
7998     const char *path = mi->path;
7999     uint64_t offset;
8000     int fd = d->fd;
8001     int count;
8002 
8003     if (test_stack(start, end, info->stack_limit)) {
8004         path = "[stack]";
8005     } else if (start == info->brk) {
8006         path = "[heap]";
8007     } else if (start == info->vdso) {
8008         path = "[vdso]";
8009 #ifdef TARGET_X86_64
8010     } else if (start == TARGET_VSYSCALL_PAGE) {
8011         path = "[vsyscall]";
8012 #endif
8013     }
8014 
8015     /* Except null device (MAP_ANON), adjust offset for this fragment. */
8016     offset = mi->offset;
8017     if (mi->dev) {
8018         uintptr_t hstart = (uintptr_t)g2h_untagged(start);
8019         offset += hstart - mi->itree.start;
8020     }
8021 
8022     count = dprintf(fd, TARGET_ABI_FMT_ptr "-" TARGET_ABI_FMT_ptr
8023                     " %c%c%c%c %08" PRIx64 " %02x:%02x %"PRId64,
8024                     start, end,
8025                     (flags & PAGE_READ) ? 'r' : '-',
8026                     (flags & PAGE_WRITE_ORG) ? 'w' : '-',
8027                     (flags & PAGE_EXEC) ? 'x' : '-',
8028                     mi->is_priv ? 'p' : 's',
8029                     offset, major(mi->dev), minor(mi->dev),
8030                     (uint64_t)mi->inode);
8031     if (path) {
8032         dprintf(fd, "%*s%s\n", 73 - count, "", path);
8033     } else {
8034         dprintf(fd, "\n");
8035     }
8036 
8037     if (d->smaps) {
8038         unsigned long size = end - start;
8039         unsigned long page_size_kb = TARGET_PAGE_SIZE >> 10;
8040         unsigned long size_kb = size >> 10;
8041 
8042         dprintf(fd, "Size:                  %lu kB\n"
8043                 "KernelPageSize:        %lu kB\n"
8044                 "MMUPageSize:           %lu kB\n"
8045                 "Rss:                   0 kB\n"
8046                 "Pss:                   0 kB\n"
8047                 "Pss_Dirty:             0 kB\n"
8048                 "Shared_Clean:          0 kB\n"
8049                 "Shared_Dirty:          0 kB\n"
8050                 "Private_Clean:         0 kB\n"
8051                 "Private_Dirty:         0 kB\n"
8052                 "Referenced:            0 kB\n"
8053                 "Anonymous:             %lu kB\n"
8054                 "LazyFree:              0 kB\n"
8055                 "AnonHugePages:         0 kB\n"
8056                 "ShmemPmdMapped:        0 kB\n"
8057                 "FilePmdMapped:         0 kB\n"
8058                 "Shared_Hugetlb:        0 kB\n"
8059                 "Private_Hugetlb:       0 kB\n"
8060                 "Swap:                  0 kB\n"
8061                 "SwapPss:               0 kB\n"
8062                 "Locked:                0 kB\n"
8063                 "THPeligible:    0\n"
8064                 "VmFlags:%s%s%s%s%s%s%s%s\n",
8065                 size_kb, page_size_kb, page_size_kb,
8066                 (flags & PAGE_ANON ? size_kb : 0),
8067                 (flags & PAGE_READ) ? " rd" : "",
8068                 (flags & PAGE_WRITE_ORG) ? " wr" : "",
8069                 (flags & PAGE_EXEC) ? " ex" : "",
8070                 mi->is_priv ? "" : " sh",
8071                 (flags & PAGE_READ) ? " mr" : "",
8072                 (flags & PAGE_WRITE_ORG) ? " mw" : "",
8073                 (flags & PAGE_EXEC) ? " me" : "",
8074                 mi->is_priv ? "" : " ms");
8075     }
8076 }
8077 
8078 /*
8079  * Callback for walk_memory_regions, when read_self_maps() fails.
8080  * Proceed without the benefit of host /proc/self/maps cross-check.
8081  */
8082 static int open_self_maps_3(void *opaque, target_ulong guest_start,
8083                             target_ulong guest_end, unsigned long flags)
8084 {
8085     static const MapInfo mi = { .is_priv = true };
8086 
8087     open_self_maps_4(opaque, &mi, guest_start, guest_end, flags);
8088     return 0;
8089 }
8090 
8091 /*
8092  * Callback for walk_memory_regions, when read_self_maps() succeeds.
8093  */
8094 static int open_self_maps_2(void *opaque, target_ulong guest_start,
8095                             target_ulong guest_end, unsigned long flags)
8096 {
8097     const struct open_self_maps_data *d = opaque;
8098     uintptr_t host_start = (uintptr_t)g2h_untagged(guest_start);
8099     uintptr_t host_last = (uintptr_t)g2h_untagged(guest_end - 1);
8100 
8101 #ifdef TARGET_X86_64
8102     /*
8103      * Because of the extremely high position of the page within the guest
8104      * virtual address space, this is not backed by host memory at all.
8105      * Therefore the loop below would fail.  This is the only instance
8106      * of not having host backing memory.
8107      */
8108     if (guest_start == TARGET_VSYSCALL_PAGE) {
8109         return open_self_maps_3(opaque, guest_start, guest_end, flags);
8110     }
8111 #endif
8112 
8113     while (1) {
8114         IntervalTreeNode *n =
8115             interval_tree_iter_first(d->host_maps, host_start, host_start);
8116         MapInfo *mi = container_of(n, MapInfo, itree);
8117         uintptr_t this_hlast = MIN(host_last, n->last);
8118         target_ulong this_gend = h2g(this_hlast) + 1;
8119 
8120         open_self_maps_4(d, mi, guest_start, this_gend, flags);
8121 
8122         if (this_hlast == host_last) {
8123             return 0;
8124         }
8125         host_start = this_hlast + 1;
8126         guest_start = h2g(host_start);
8127     }
8128 }
8129 
8130 static int open_self_maps_1(CPUArchState *env, int fd, bool smaps)
8131 {
8132     struct open_self_maps_data d = {
8133         .ts = get_task_state(env_cpu(env)),
8134         .host_maps = read_self_maps(),
8135         .fd = fd,
8136         .smaps = smaps
8137     };
8138 
8139     if (d.host_maps) {
8140         walk_memory_regions(&d, open_self_maps_2);
8141         free_self_maps(d.host_maps);
8142     } else {
8143         walk_memory_regions(&d, open_self_maps_3);
8144     }
8145     return 0;
8146 }
8147 
8148 static int open_self_maps(CPUArchState *cpu_env, int fd)
8149 {
8150     return open_self_maps_1(cpu_env, fd, false);
8151 }
8152 
8153 static int open_self_smaps(CPUArchState *cpu_env, int fd)
8154 {
8155     return open_self_maps_1(cpu_env, fd, true);
8156 }
8157 
8158 static int open_self_stat(CPUArchState *cpu_env, int fd)
8159 {
8160     CPUState *cpu = env_cpu(cpu_env);
8161     TaskState *ts = get_task_state(cpu);
8162     g_autoptr(GString) buf = g_string_new(NULL);
8163     int i;
8164 
8165     for (i = 0; i < 44; i++) {
8166         if (i == 0) {
8167             /* pid */
8168             g_string_printf(buf, FMT_pid " ", getpid());
8169         } else if (i == 1) {
8170             /* app name */
8171             gchar *bin = g_strrstr(ts->bprm->argv[0], "/");
8172             bin = bin ? bin + 1 : ts->bprm->argv[0];
8173             g_string_printf(buf, "(%.15s) ", bin);
8174         } else if (i == 2) {
8175             /* task state */
8176             g_string_assign(buf, "R "); /* we are running right now */
8177         } else if (i == 3) {
8178             /* ppid */
8179             g_string_printf(buf, FMT_pid " ", getppid());
8180         } else if (i == 21) {
8181             /* starttime */
8182             g_string_printf(buf, "%" PRIu64 " ", ts->start_boottime);
8183         } else if (i == 27) {
8184             /* stack bottom */
8185             g_string_printf(buf, TARGET_ABI_FMT_ld " ", ts->info->start_stack);
8186         } else {
8187             /* for the rest, there is MasterCard */
8188             g_string_printf(buf, "0%c", i == 43 ? '\n' : ' ');
8189         }
8190 
8191         if (write(fd, buf->str, buf->len) != buf->len) {
8192             return -1;
8193         }
8194     }
8195 
8196     return 0;
8197 }
8198 
8199 static int open_self_auxv(CPUArchState *cpu_env, int fd)
8200 {
8201     CPUState *cpu = env_cpu(cpu_env);
8202     TaskState *ts = get_task_state(cpu);
8203     abi_ulong auxv = ts->info->saved_auxv;
8204     abi_ulong len = ts->info->auxv_len;
8205     char *ptr;
8206 
8207     /*
8208      * Auxiliary vector is stored in target process stack.
8209      * read in whole auxv vector and copy it to file
8210      */
8211     ptr = lock_user(VERIFY_READ, auxv, len, 0);
8212     if (ptr != NULL) {
8213         while (len > 0) {
8214             ssize_t r;
8215             r = write(fd, ptr, len);
8216             if (r <= 0) {
8217                 break;
8218             }
8219             len -= r;
8220             ptr += r;
8221         }
8222         lseek(fd, 0, SEEK_SET);
8223         unlock_user(ptr, auxv, len);
8224     }
8225 
8226     return 0;
8227 }
8228 
8229 static int is_proc_myself(const char *filename, const char *entry)
8230 {
8231     if (!strncmp(filename, "/proc/", strlen("/proc/"))) {
8232         filename += strlen("/proc/");
8233         if (!strncmp(filename, "self/", strlen("self/"))) {
8234             filename += strlen("self/");
8235         } else if (*filename >= '1' && *filename <= '9') {
8236             char myself[80];
8237             snprintf(myself, sizeof(myself), "%d/", getpid());
8238             if (!strncmp(filename, myself, strlen(myself))) {
8239                 filename += strlen(myself);
8240             } else {
8241                 return 0;
8242             }
8243         } else {
8244             return 0;
8245         }
8246         if (!strcmp(filename, entry)) {
8247             return 1;
8248         }
8249     }
8250     return 0;
8251 }
8252 
8253 static void excp_dump_file(FILE *logfile, CPUArchState *env,
8254                       const char *fmt, int code)
8255 {
8256     if (logfile) {
8257         CPUState *cs = env_cpu(env);
8258 
8259         fprintf(logfile, fmt, code);
8260         fprintf(logfile, "Failing executable: %s\n", exec_path);
8261         cpu_dump_state(cs, logfile, 0);
8262         open_self_maps(env, fileno(logfile));
8263     }
8264 }
8265 
8266 void target_exception_dump(CPUArchState *env, const char *fmt, int code)
8267 {
8268     /* dump to console */
8269     excp_dump_file(stderr, env, fmt, code);
8270 
8271     /* dump to log file */
8272     if (qemu_log_separate()) {
8273         FILE *logfile = qemu_log_trylock();
8274 
8275         excp_dump_file(logfile, env, fmt, code);
8276         qemu_log_unlock(logfile);
8277     }
8278 }
8279 
8280 #include "target_proc.h"
8281 
8282 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN || \
8283     defined(HAVE_ARCH_PROC_CPUINFO) || \
8284     defined(HAVE_ARCH_PROC_HARDWARE)
8285 static int is_proc(const char *filename, const char *entry)
8286 {
8287     return strcmp(filename, entry) == 0;
8288 }
8289 #endif
8290 
8291 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
8292 static int open_net_route(CPUArchState *cpu_env, int fd)
8293 {
8294     FILE *fp;
8295     char *line = NULL;
8296     size_t len = 0;
8297     ssize_t read;
8298 
8299     fp = fopen("/proc/net/route", "r");
8300     if (fp == NULL) {
8301         return -1;
8302     }
8303 
8304     /* read header */
8305 
8306     read = getline(&line, &len, fp);
8307     dprintf(fd, "%s", line);
8308 
8309     /* read routes */
8310 
8311     while ((read = getline(&line, &len, fp)) != -1) {
8312         char iface[16];
8313         uint32_t dest, gw, mask;
8314         unsigned int flags, refcnt, use, metric, mtu, window, irtt;
8315         int fields;
8316 
8317         fields = sscanf(line,
8318                         "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8319                         iface, &dest, &gw, &flags, &refcnt, &use, &metric,
8320                         &mask, &mtu, &window, &irtt);
8321         if (fields != 11) {
8322             continue;
8323         }
8324         dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8325                 iface, tswap32(dest), tswap32(gw), flags, refcnt, use,
8326                 metric, tswap32(mask), mtu, window, irtt);
8327     }
8328 
8329     free(line);
8330     fclose(fp);
8331 
8332     return 0;
8333 }
8334 #endif
8335 
8336 int do_guest_openat(CPUArchState *cpu_env, int dirfd, const char *fname,
8337                     int flags, mode_t mode, bool safe)
8338 {
8339     g_autofree char *proc_name = NULL;
8340     const char *pathname;
8341     struct fake_open {
8342         const char *filename;
8343         int (*fill)(CPUArchState *cpu_env, int fd);
8344         int (*cmp)(const char *s1, const char *s2);
8345     };
8346     const struct fake_open *fake_open;
8347     static const struct fake_open fakes[] = {
8348         { "maps", open_self_maps, is_proc_myself },
8349         { "smaps", open_self_smaps, is_proc_myself },
8350         { "stat", open_self_stat, is_proc_myself },
8351         { "auxv", open_self_auxv, is_proc_myself },
8352         { "cmdline", open_self_cmdline, is_proc_myself },
8353 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
8354         { "/proc/net/route", open_net_route, is_proc },
8355 #endif
8356 #if defined(HAVE_ARCH_PROC_CPUINFO)
8357         { "/proc/cpuinfo", open_cpuinfo, is_proc },
8358 #endif
8359 #if defined(HAVE_ARCH_PROC_HARDWARE)
8360         { "/proc/hardware", open_hardware, is_proc },
8361 #endif
8362         { NULL, NULL, NULL }
8363     };
8364 
8365     /* if this is a file from /proc/ filesystem, expand full name */
8366     proc_name = realpath(fname, NULL);
8367     if (proc_name && strncmp(proc_name, "/proc/", 6) == 0) {
8368         pathname = proc_name;
8369     } else {
8370         pathname = fname;
8371     }
8372 
8373     if (is_proc_myself(pathname, "exe")) {
8374         if (safe) {
8375             return safe_openat(dirfd, exec_path, flags, mode);
8376         } else {
8377             return openat(dirfd, exec_path, flags, mode);
8378         }
8379     }
8380 
8381     for (fake_open = fakes; fake_open->filename; fake_open++) {
8382         if (fake_open->cmp(pathname, fake_open->filename)) {
8383             break;
8384         }
8385     }
8386 
8387     if (fake_open->filename) {
8388         const char *tmpdir;
8389         char filename[PATH_MAX];
8390         int fd, r;
8391 
8392         fd = memfd_create("qemu-open", 0);
8393         if (fd < 0) {
8394             if (errno != ENOSYS) {
8395                 return fd;
8396             }
8397             /* create temporary file to map stat to */
8398             tmpdir = getenv("TMPDIR");
8399             if (!tmpdir)
8400                 tmpdir = "/tmp";
8401             snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir);
8402             fd = mkstemp(filename);
8403             if (fd < 0) {
8404                 return fd;
8405             }
8406             unlink(filename);
8407         }
8408 
8409         if ((r = fake_open->fill(cpu_env, fd))) {
8410             int e = errno;
8411             close(fd);
8412             errno = e;
8413             return r;
8414         }
8415         lseek(fd, 0, SEEK_SET);
8416 
8417         return fd;
8418     }
8419 
8420     if (safe) {
8421         return safe_openat(dirfd, path(pathname), flags, mode);
8422     } else {
8423         return openat(dirfd, path(pathname), flags, mode);
8424     }
8425 }
8426 
8427 ssize_t do_guest_readlink(const char *pathname, char *buf, size_t bufsiz)
8428 {
8429     ssize_t ret;
8430 
8431     if (!pathname || !buf) {
8432         errno = EFAULT;
8433         return -1;
8434     }
8435 
8436     if (!bufsiz) {
8437         /* Short circuit this for the magic exe check. */
8438         errno = EINVAL;
8439         return -1;
8440     }
8441 
8442     if (is_proc_myself((const char *)pathname, "exe")) {
8443         /*
8444          * Don't worry about sign mismatch as earlier mapping
8445          * logic would have thrown a bad address error.
8446          */
8447         ret = MIN(strlen(exec_path), bufsiz);
8448         /* We cannot NUL terminate the string. */
8449         memcpy(buf, exec_path, ret);
8450     } else {
8451         ret = readlink(path(pathname), buf, bufsiz);
8452     }
8453 
8454     return ret;
8455 }
8456 
8457 static int do_execv(CPUArchState *cpu_env, int dirfd,
8458                     abi_long pathname, abi_long guest_argp,
8459                     abi_long guest_envp, int flags, bool is_execveat)
8460 {
8461     int ret;
8462     char **argp, **envp;
8463     int argc, envc;
8464     abi_ulong gp;
8465     abi_ulong addr;
8466     char **q;
8467     void *p;
8468 
8469     argc = 0;
8470 
8471     for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) {
8472         if (get_user_ual(addr, gp)) {
8473             return -TARGET_EFAULT;
8474         }
8475         if (!addr) {
8476             break;
8477         }
8478         argc++;
8479     }
8480     envc = 0;
8481     for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) {
8482         if (get_user_ual(addr, gp)) {
8483             return -TARGET_EFAULT;
8484         }
8485         if (!addr) {
8486             break;
8487         }
8488         envc++;
8489     }
8490 
8491     argp = g_new0(char *, argc + 1);
8492     envp = g_new0(char *, envc + 1);
8493 
8494     for (gp = guest_argp, q = argp; gp; gp += sizeof(abi_ulong), q++) {
8495         if (get_user_ual(addr, gp)) {
8496             goto execve_efault;
8497         }
8498         if (!addr) {
8499             break;
8500         }
8501         *q = lock_user_string(addr);
8502         if (!*q) {
8503             goto execve_efault;
8504         }
8505     }
8506     *q = NULL;
8507 
8508     for (gp = guest_envp, q = envp; gp; gp += sizeof(abi_ulong), q++) {
8509         if (get_user_ual(addr, gp)) {
8510             goto execve_efault;
8511         }
8512         if (!addr) {
8513             break;
8514         }
8515         *q = lock_user_string(addr);
8516         if (!*q) {
8517             goto execve_efault;
8518         }
8519     }
8520     *q = NULL;
8521 
8522     /*
8523      * Although execve() is not an interruptible syscall it is
8524      * a special case where we must use the safe_syscall wrapper:
8525      * if we allow a signal to happen before we make the host
8526      * syscall then we will 'lose' it, because at the point of
8527      * execve the process leaves QEMU's control. So we use the
8528      * safe syscall wrapper to ensure that we either take the
8529      * signal as a guest signal, or else it does not happen
8530      * before the execve completes and makes it the other
8531      * program's problem.
8532      */
8533     p = lock_user_string(pathname);
8534     if (!p) {
8535         goto execve_efault;
8536     }
8537 
8538     const char *exe = p;
8539     if (is_proc_myself(p, "exe")) {
8540         exe = exec_path;
8541     }
8542     ret = is_execveat
8543         ? safe_execveat(dirfd, exe, argp, envp, flags)
8544         : safe_execve(exe, argp, envp);
8545     ret = get_errno(ret);
8546 
8547     unlock_user(p, pathname, 0);
8548 
8549     goto execve_end;
8550 
8551 execve_efault:
8552     ret = -TARGET_EFAULT;
8553 
8554 execve_end:
8555     for (gp = guest_argp, q = argp; *q; gp += sizeof(abi_ulong), q++) {
8556         if (get_user_ual(addr, gp) || !addr) {
8557             break;
8558         }
8559         unlock_user(*q, addr, 0);
8560     }
8561     for (gp = guest_envp, q = envp; *q; gp += sizeof(abi_ulong), q++) {
8562         if (get_user_ual(addr, gp) || !addr) {
8563             break;
8564         }
8565         unlock_user(*q, addr, 0);
8566     }
8567 
8568     g_free(argp);
8569     g_free(envp);
8570     return ret;
8571 }
8572 
8573 #define TIMER_MAGIC 0x0caf0000
8574 #define TIMER_MAGIC_MASK 0xffff0000
8575 
8576 /* Convert QEMU provided timer ID back to internal 16bit index format */
8577 static target_timer_t get_timer_id(abi_long arg)
8578 {
8579     target_timer_t timerid = arg;
8580 
8581     if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) {
8582         return -TARGET_EINVAL;
8583     }
8584 
8585     timerid &= 0xffff;
8586 
8587     if (timerid >= ARRAY_SIZE(g_posix_timers)) {
8588         return -TARGET_EINVAL;
8589     }
8590 
8591     return timerid;
8592 }
8593 
8594 static int target_to_host_cpu_mask(unsigned long *host_mask,
8595                                    size_t host_size,
8596                                    abi_ulong target_addr,
8597                                    size_t target_size)
8598 {
8599     unsigned target_bits = sizeof(abi_ulong) * 8;
8600     unsigned host_bits = sizeof(*host_mask) * 8;
8601     abi_ulong *target_mask;
8602     unsigned i, j;
8603 
8604     assert(host_size >= target_size);
8605 
8606     target_mask = lock_user(VERIFY_READ, target_addr, target_size, 1);
8607     if (!target_mask) {
8608         return -TARGET_EFAULT;
8609     }
8610     memset(host_mask, 0, host_size);
8611 
8612     for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
8613         unsigned bit = i * target_bits;
8614         abi_ulong val;
8615 
8616         __get_user(val, &target_mask[i]);
8617         for (j = 0; j < target_bits; j++, bit++) {
8618             if (val & (1UL << j)) {
8619                 host_mask[bit / host_bits] |= 1UL << (bit % host_bits);
8620             }
8621         }
8622     }
8623 
8624     unlock_user(target_mask, target_addr, 0);
8625     return 0;
8626 }
8627 
8628 static int host_to_target_cpu_mask(const unsigned long *host_mask,
8629                                    size_t host_size,
8630                                    abi_ulong target_addr,
8631                                    size_t target_size)
8632 {
8633     unsigned target_bits = sizeof(abi_ulong) * 8;
8634     unsigned host_bits = sizeof(*host_mask) * 8;
8635     abi_ulong *target_mask;
8636     unsigned i, j;
8637 
8638     assert(host_size >= target_size);
8639 
8640     target_mask = lock_user(VERIFY_WRITE, target_addr, target_size, 0);
8641     if (!target_mask) {
8642         return -TARGET_EFAULT;
8643     }
8644 
8645     for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
8646         unsigned bit = i * target_bits;
8647         abi_ulong val = 0;
8648 
8649         for (j = 0; j < target_bits; j++, bit++) {
8650             if (host_mask[bit / host_bits] & (1UL << (bit % host_bits))) {
8651                 val |= 1UL << j;
8652             }
8653         }
8654         __put_user(val, &target_mask[i]);
8655     }
8656 
8657     unlock_user(target_mask, target_addr, target_size);
8658     return 0;
8659 }
8660 
8661 #ifdef TARGET_NR_getdents
8662 static int do_getdents(abi_long dirfd, abi_long arg2, abi_long count)
8663 {
8664     g_autofree void *hdirp = NULL;
8665     void *tdirp;
8666     int hlen, hoff, toff;
8667     int hreclen, treclen;
8668     off64_t prev_diroff = 0;
8669 
8670     hdirp = g_try_malloc(count);
8671     if (!hdirp) {
8672         return -TARGET_ENOMEM;
8673     }
8674 
8675 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8676     hlen = sys_getdents(dirfd, hdirp, count);
8677 #else
8678     hlen = sys_getdents64(dirfd, hdirp, count);
8679 #endif
8680 
8681     hlen = get_errno(hlen);
8682     if (is_error(hlen)) {
8683         return hlen;
8684     }
8685 
8686     tdirp = lock_user(VERIFY_WRITE, arg2, count, 0);
8687     if (!tdirp) {
8688         return -TARGET_EFAULT;
8689     }
8690 
8691     for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) {
8692 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8693         struct linux_dirent *hde = hdirp + hoff;
8694 #else
8695         struct linux_dirent64 *hde = hdirp + hoff;
8696 #endif
8697         struct target_dirent *tde = tdirp + toff;
8698         int namelen;
8699         uint8_t type;
8700 
8701         namelen = strlen(hde->d_name);
8702         hreclen = hde->d_reclen;
8703         treclen = offsetof(struct target_dirent, d_name) + namelen + 2;
8704         treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent));
8705 
8706         if (toff + treclen > count) {
8707             /*
8708              * If the host struct is smaller than the target struct, or
8709              * requires less alignment and thus packs into less space,
8710              * then the host can return more entries than we can pass
8711              * on to the guest.
8712              */
8713             if (toff == 0) {
8714                 toff = -TARGET_EINVAL; /* result buffer is too small */
8715                 break;
8716             }
8717             /*
8718              * Return what we have, resetting the file pointer to the
8719              * location of the first record not returned.
8720              */
8721             lseek64(dirfd, prev_diroff, SEEK_SET);
8722             break;
8723         }
8724 
8725         prev_diroff = hde->d_off;
8726         tde->d_ino = tswapal(hde->d_ino);
8727         tde->d_off = tswapal(hde->d_off);
8728         tde->d_reclen = tswap16(treclen);
8729         memcpy(tde->d_name, hde->d_name, namelen + 1);
8730 
8731         /*
8732          * The getdents type is in what was formerly a padding byte at the
8733          * end of the structure.
8734          */
8735 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8736         type = *((uint8_t *)hde + hreclen - 1);
8737 #else
8738         type = hde->d_type;
8739 #endif
8740         *((uint8_t *)tde + treclen - 1) = type;
8741     }
8742 
8743     unlock_user(tdirp, arg2, toff);
8744     return toff;
8745 }
8746 #endif /* TARGET_NR_getdents */
8747 
8748 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
8749 static int do_getdents64(abi_long dirfd, abi_long arg2, abi_long count)
8750 {
8751     g_autofree void *hdirp = NULL;
8752     void *tdirp;
8753     int hlen, hoff, toff;
8754     int hreclen, treclen;
8755     off64_t prev_diroff = 0;
8756 
8757     hdirp = g_try_malloc(count);
8758     if (!hdirp) {
8759         return -TARGET_ENOMEM;
8760     }
8761 
8762     hlen = get_errno(sys_getdents64(dirfd, hdirp, count));
8763     if (is_error(hlen)) {
8764         return hlen;
8765     }
8766 
8767     tdirp = lock_user(VERIFY_WRITE, arg2, count, 0);
8768     if (!tdirp) {
8769         return -TARGET_EFAULT;
8770     }
8771 
8772     for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) {
8773         struct linux_dirent64 *hde = hdirp + hoff;
8774         struct target_dirent64 *tde = tdirp + toff;
8775         int namelen;
8776 
8777         namelen = strlen(hde->d_name) + 1;
8778         hreclen = hde->d_reclen;
8779         treclen = offsetof(struct target_dirent64, d_name) + namelen;
8780         treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent64));
8781 
8782         if (toff + treclen > count) {
8783             /*
8784              * If the host struct is smaller than the target struct, or
8785              * requires less alignment and thus packs into less space,
8786              * then the host can return more entries than we can pass
8787              * on to the guest.
8788              */
8789             if (toff == 0) {
8790                 toff = -TARGET_EINVAL; /* result buffer is too small */
8791                 break;
8792             }
8793             /*
8794              * Return what we have, resetting the file pointer to the
8795              * location of the first record not returned.
8796              */
8797             lseek64(dirfd, prev_diroff, SEEK_SET);
8798             break;
8799         }
8800 
8801         prev_diroff = hde->d_off;
8802         tde->d_ino = tswap64(hde->d_ino);
8803         tde->d_off = tswap64(hde->d_off);
8804         tde->d_reclen = tswap16(treclen);
8805         tde->d_type = hde->d_type;
8806         memcpy(tde->d_name, hde->d_name, namelen);
8807     }
8808 
8809     unlock_user(tdirp, arg2, toff);
8810     return toff;
8811 }
8812 #endif /* TARGET_NR_getdents64 */
8813 
8814 #if defined(TARGET_NR_riscv_hwprobe)
8815 
8816 #define RISCV_HWPROBE_KEY_MVENDORID     0
8817 #define RISCV_HWPROBE_KEY_MARCHID       1
8818 #define RISCV_HWPROBE_KEY_MIMPID        2
8819 
8820 #define RISCV_HWPROBE_KEY_BASE_BEHAVIOR 3
8821 #define     RISCV_HWPROBE_BASE_BEHAVIOR_IMA (1 << 0)
8822 
8823 #define RISCV_HWPROBE_KEY_IMA_EXT_0         4
8824 #define     RISCV_HWPROBE_IMA_FD            (1 << 0)
8825 #define     RISCV_HWPROBE_IMA_C             (1 << 1)
8826 #define     RISCV_HWPROBE_IMA_V             (1 << 2)
8827 #define     RISCV_HWPROBE_EXT_ZBA           (1 << 3)
8828 #define     RISCV_HWPROBE_EXT_ZBB           (1 << 4)
8829 #define     RISCV_HWPROBE_EXT_ZBS           (1 << 5)
8830 #define     RISCV_HWPROBE_EXT_ZICBOZ        (1 << 6)
8831 #define     RISCV_HWPROBE_EXT_ZBC           (1 << 7)
8832 #define     RISCV_HWPROBE_EXT_ZBKB          (1 << 8)
8833 #define     RISCV_HWPROBE_EXT_ZBKC          (1 << 9)
8834 #define     RISCV_HWPROBE_EXT_ZBKX          (1 << 10)
8835 #define     RISCV_HWPROBE_EXT_ZKND          (1 << 11)
8836 #define     RISCV_HWPROBE_EXT_ZKNE          (1 << 12)
8837 #define     RISCV_HWPROBE_EXT_ZKNH          (1 << 13)
8838 #define     RISCV_HWPROBE_EXT_ZKSED         (1 << 14)
8839 #define     RISCV_HWPROBE_EXT_ZKSH          (1 << 15)
8840 #define     RISCV_HWPROBE_EXT_ZKT           (1 << 16)
8841 #define     RISCV_HWPROBE_EXT_ZVBB          (1 << 17)
8842 #define     RISCV_HWPROBE_EXT_ZVBC          (1 << 18)
8843 #define     RISCV_HWPROBE_EXT_ZVKB          (1 << 19)
8844 #define     RISCV_HWPROBE_EXT_ZVKG          (1 << 20)
8845 #define     RISCV_HWPROBE_EXT_ZVKNED        (1 << 21)
8846 #define     RISCV_HWPROBE_EXT_ZVKNHA        (1 << 22)
8847 #define     RISCV_HWPROBE_EXT_ZVKNHB        (1 << 23)
8848 #define     RISCV_HWPROBE_EXT_ZVKSED        (1 << 24)
8849 #define     RISCV_HWPROBE_EXT_ZVKSH         (1 << 25)
8850 #define     RISCV_HWPROBE_EXT_ZVKT          (1 << 26)
8851 #define     RISCV_HWPROBE_EXT_ZFH           (1 << 27)
8852 #define     RISCV_HWPROBE_EXT_ZFHMIN        (1 << 28)
8853 #define     RISCV_HWPROBE_EXT_ZIHINTNTL     (1 << 29)
8854 #define     RISCV_HWPROBE_EXT_ZVFH          (1 << 30)
8855 #define     RISCV_HWPROBE_EXT_ZVFHMIN       (1 << 31)
8856 #define     RISCV_HWPROBE_EXT_ZFA           (1ULL << 32)
8857 #define     RISCV_HWPROBE_EXT_ZTSO          (1ULL << 33)
8858 #define     RISCV_HWPROBE_EXT_ZACAS         (1ULL << 34)
8859 #define     RISCV_HWPROBE_EXT_ZICOND        (1ULL << 35)
8860 
8861 #define RISCV_HWPROBE_KEY_CPUPERF_0     5
8862 #define     RISCV_HWPROBE_MISALIGNED_UNKNOWN     (0 << 0)
8863 #define     RISCV_HWPROBE_MISALIGNED_EMULATED    (1 << 0)
8864 #define     RISCV_HWPROBE_MISALIGNED_SLOW        (2 << 0)
8865 #define     RISCV_HWPROBE_MISALIGNED_FAST        (3 << 0)
8866 #define     RISCV_HWPROBE_MISALIGNED_UNSUPPORTED (4 << 0)
8867 #define     RISCV_HWPROBE_MISALIGNED_MASK        (7 << 0)
8868 
8869 #define RISCV_HWPROBE_KEY_ZICBOZ_BLOCK_SIZE 6
8870 
8871 struct riscv_hwprobe {
8872     abi_llong  key;
8873     abi_ullong value;
8874 };
8875 
8876 static void risc_hwprobe_fill_pairs(CPURISCVState *env,
8877                                     struct riscv_hwprobe *pair,
8878                                     size_t pair_count)
8879 {
8880     const RISCVCPUConfig *cfg = riscv_cpu_cfg(env);
8881 
8882     for (; pair_count > 0; pair_count--, pair++) {
8883         abi_llong key;
8884         abi_ullong value;
8885         __put_user(0, &pair->value);
8886         __get_user(key, &pair->key);
8887         switch (key) {
8888         case RISCV_HWPROBE_KEY_MVENDORID:
8889             __put_user(cfg->mvendorid, &pair->value);
8890             break;
8891         case RISCV_HWPROBE_KEY_MARCHID:
8892             __put_user(cfg->marchid, &pair->value);
8893             break;
8894         case RISCV_HWPROBE_KEY_MIMPID:
8895             __put_user(cfg->mimpid, &pair->value);
8896             break;
8897         case RISCV_HWPROBE_KEY_BASE_BEHAVIOR:
8898             value = riscv_has_ext(env, RVI) &&
8899                     riscv_has_ext(env, RVM) &&
8900                     riscv_has_ext(env, RVA) ?
8901                     RISCV_HWPROBE_BASE_BEHAVIOR_IMA : 0;
8902             __put_user(value, &pair->value);
8903             break;
8904         case RISCV_HWPROBE_KEY_IMA_EXT_0:
8905             value = riscv_has_ext(env, RVF) &&
8906                     riscv_has_ext(env, RVD) ?
8907                     RISCV_HWPROBE_IMA_FD : 0;
8908             value |= riscv_has_ext(env, RVC) ?
8909                      RISCV_HWPROBE_IMA_C : 0;
8910             value |= riscv_has_ext(env, RVV) ?
8911                      RISCV_HWPROBE_IMA_V : 0;
8912             value |= cfg->ext_zba ?
8913                      RISCV_HWPROBE_EXT_ZBA : 0;
8914             value |= cfg->ext_zbb ?
8915                      RISCV_HWPROBE_EXT_ZBB : 0;
8916             value |= cfg->ext_zbs ?
8917                      RISCV_HWPROBE_EXT_ZBS : 0;
8918             value |= cfg->ext_zicboz ?
8919                      RISCV_HWPROBE_EXT_ZICBOZ : 0;
8920             value |= cfg->ext_zbc ?
8921                      RISCV_HWPROBE_EXT_ZBC : 0;
8922             value |= cfg->ext_zbkb ?
8923                      RISCV_HWPROBE_EXT_ZBKB : 0;
8924             value |= cfg->ext_zbkc ?
8925                      RISCV_HWPROBE_EXT_ZBKC : 0;
8926             value |= cfg->ext_zbkx ?
8927                      RISCV_HWPROBE_EXT_ZBKX : 0;
8928             value |= cfg->ext_zknd ?
8929                      RISCV_HWPROBE_EXT_ZKND : 0;
8930             value |= cfg->ext_zkne ?
8931                      RISCV_HWPROBE_EXT_ZKNE : 0;
8932             value |= cfg->ext_zknh ?
8933                      RISCV_HWPROBE_EXT_ZKNH : 0;
8934             value |= cfg->ext_zksed ?
8935                      RISCV_HWPROBE_EXT_ZKSED : 0;
8936             value |= cfg->ext_zksh ?
8937                      RISCV_HWPROBE_EXT_ZKSH : 0;
8938             value |= cfg->ext_zkt ?
8939                      RISCV_HWPROBE_EXT_ZKT : 0;
8940             value |= cfg->ext_zvbb ?
8941                      RISCV_HWPROBE_EXT_ZVBB : 0;
8942             value |= cfg->ext_zvbc ?
8943                      RISCV_HWPROBE_EXT_ZVBC : 0;
8944             value |= cfg->ext_zvkb ?
8945                      RISCV_HWPROBE_EXT_ZVKB : 0;
8946             value |= cfg->ext_zvkg ?
8947                      RISCV_HWPROBE_EXT_ZVKG : 0;
8948             value |= cfg->ext_zvkned ?
8949                      RISCV_HWPROBE_EXT_ZVKNED : 0;
8950             value |= cfg->ext_zvknha ?
8951                      RISCV_HWPROBE_EXT_ZVKNHA : 0;
8952             value |= cfg->ext_zvknhb ?
8953                      RISCV_HWPROBE_EXT_ZVKNHB : 0;
8954             value |= cfg->ext_zvksed ?
8955                      RISCV_HWPROBE_EXT_ZVKSED : 0;
8956             value |= cfg->ext_zvksh ?
8957                      RISCV_HWPROBE_EXT_ZVKSH : 0;
8958             value |= cfg->ext_zvkt ?
8959                      RISCV_HWPROBE_EXT_ZVKT : 0;
8960             value |= cfg->ext_zfh ?
8961                      RISCV_HWPROBE_EXT_ZFH : 0;
8962             value |= cfg->ext_zfhmin ?
8963                      RISCV_HWPROBE_EXT_ZFHMIN : 0;
8964             value |= cfg->ext_zihintntl ?
8965                      RISCV_HWPROBE_EXT_ZIHINTNTL : 0;
8966             value |= cfg->ext_zvfh ?
8967                      RISCV_HWPROBE_EXT_ZVFH : 0;
8968             value |= cfg->ext_zvfhmin ?
8969                      RISCV_HWPROBE_EXT_ZVFHMIN : 0;
8970             value |= cfg->ext_zfa ?
8971                      RISCV_HWPROBE_EXT_ZFA : 0;
8972             value |= cfg->ext_ztso ?
8973                      RISCV_HWPROBE_EXT_ZTSO : 0;
8974             value |= cfg->ext_zacas ?
8975                      RISCV_HWPROBE_EXT_ZACAS : 0;
8976             value |= cfg->ext_zicond ?
8977                      RISCV_HWPROBE_EXT_ZICOND : 0;
8978             __put_user(value, &pair->value);
8979             break;
8980         case RISCV_HWPROBE_KEY_CPUPERF_0:
8981             __put_user(RISCV_HWPROBE_MISALIGNED_FAST, &pair->value);
8982             break;
8983         case RISCV_HWPROBE_KEY_ZICBOZ_BLOCK_SIZE:
8984             value = cfg->ext_zicboz ? cfg->cboz_blocksize : 0;
8985             __put_user(value, &pair->value);
8986             break;
8987         default:
8988             __put_user(-1, &pair->key);
8989             break;
8990         }
8991     }
8992 }
8993 
8994 static int cpu_set_valid(abi_long arg3, abi_long arg4)
8995 {
8996     int ret, i, tmp;
8997     size_t host_mask_size, target_mask_size;
8998     unsigned long *host_mask;
8999 
9000     /*
9001      * cpu_set_t represent CPU masks as bit masks of type unsigned long *.
9002      * arg3 contains the cpu count.
9003      */
9004     tmp = (8 * sizeof(abi_ulong));
9005     target_mask_size = ((arg3 + tmp - 1) / tmp) * sizeof(abi_ulong);
9006     host_mask_size = (target_mask_size + (sizeof(*host_mask) - 1)) &
9007                      ~(sizeof(*host_mask) - 1);
9008 
9009     host_mask = alloca(host_mask_size);
9010 
9011     ret = target_to_host_cpu_mask(host_mask, host_mask_size,
9012                                   arg4, target_mask_size);
9013     if (ret != 0) {
9014         return ret;
9015     }
9016 
9017     for (i = 0 ; i < host_mask_size / sizeof(*host_mask); i++) {
9018         if (host_mask[i] != 0) {
9019             return 0;
9020         }
9021     }
9022     return -TARGET_EINVAL;
9023 }
9024 
9025 static abi_long do_riscv_hwprobe(CPUArchState *cpu_env, abi_long arg1,
9026                                  abi_long arg2, abi_long arg3,
9027                                  abi_long arg4, abi_long arg5)
9028 {
9029     int ret;
9030     struct riscv_hwprobe *host_pairs;
9031 
9032     /* flags must be 0 */
9033     if (arg5 != 0) {
9034         return -TARGET_EINVAL;
9035     }
9036 
9037     /* check cpu_set */
9038     if (arg3 != 0) {
9039         ret = cpu_set_valid(arg3, arg4);
9040         if (ret != 0) {
9041             return ret;
9042         }
9043     } else if (arg4 != 0) {
9044         return -TARGET_EINVAL;
9045     }
9046 
9047     /* no pairs */
9048     if (arg2 == 0) {
9049         return 0;
9050     }
9051 
9052     host_pairs = lock_user(VERIFY_WRITE, arg1,
9053                            sizeof(*host_pairs) * (size_t)arg2, 0);
9054     if (host_pairs == NULL) {
9055         return -TARGET_EFAULT;
9056     }
9057     risc_hwprobe_fill_pairs(cpu_env, host_pairs, arg2);
9058     unlock_user(host_pairs, arg1, sizeof(*host_pairs) * (size_t)arg2);
9059     return 0;
9060 }
9061 #endif /* TARGET_NR_riscv_hwprobe */
9062 
9063 #if defined(TARGET_NR_pivot_root) && defined(__NR_pivot_root)
9064 _syscall2(int, pivot_root, const char *, new_root, const char *, put_old)
9065 #endif
9066 
9067 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree)
9068 #define __NR_sys_open_tree __NR_open_tree
9069 _syscall3(int, sys_open_tree, int, __dfd, const char *, __filename,
9070           unsigned int, __flags)
9071 #endif
9072 
9073 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount)
9074 #define __NR_sys_move_mount __NR_move_mount
9075 _syscall5(int, sys_move_mount, int, __from_dfd, const char *, __from_pathname,
9076            int, __to_dfd, const char *, __to_pathname, unsigned int, flag)
9077 #endif
9078 
9079 /* This is an internal helper for do_syscall so that it is easier
9080  * to have a single return point, so that actions, such as logging
9081  * of syscall results, can be performed.
9082  * All errnos that do_syscall() returns must be -TARGET_<errcode>.
9083  */
9084 static abi_long do_syscall1(CPUArchState *cpu_env, int num, abi_long arg1,
9085                             abi_long arg2, abi_long arg3, abi_long arg4,
9086                             abi_long arg5, abi_long arg6, abi_long arg7,
9087                             abi_long arg8)
9088 {
9089     CPUState *cpu = env_cpu(cpu_env);
9090     abi_long ret;
9091 #if defined(TARGET_NR_stat) || defined(TARGET_NR_stat64) \
9092     || defined(TARGET_NR_lstat) || defined(TARGET_NR_lstat64) \
9093     || defined(TARGET_NR_fstat) || defined(TARGET_NR_fstat64) \
9094     || defined(TARGET_NR_statx)
9095     struct stat st;
9096 #endif
9097 #if defined(TARGET_NR_statfs) || defined(TARGET_NR_statfs64) \
9098     || defined(TARGET_NR_fstatfs)
9099     struct statfs stfs;
9100 #endif
9101     void *p;
9102 
9103     switch(num) {
9104     case TARGET_NR_exit:
9105         /* In old applications this may be used to implement _exit(2).
9106            However in threaded applications it is used for thread termination,
9107            and _exit_group is used for application termination.
9108            Do thread termination if we have more then one thread.  */
9109 
9110         if (block_signals()) {
9111             return -QEMU_ERESTARTSYS;
9112         }
9113 
9114         pthread_mutex_lock(&clone_lock);
9115 
9116         if (CPU_NEXT(first_cpu)) {
9117             TaskState *ts = get_task_state(cpu);
9118 
9119             if (ts->child_tidptr) {
9120                 put_user_u32(0, ts->child_tidptr);
9121                 do_sys_futex(g2h(cpu, ts->child_tidptr),
9122                              FUTEX_WAKE, INT_MAX, NULL, NULL, 0);
9123             }
9124 
9125             object_unparent(OBJECT(cpu));
9126             object_unref(OBJECT(cpu));
9127             /*
9128              * At this point the CPU should be unrealized and removed
9129              * from cpu lists. We can clean-up the rest of the thread
9130              * data without the lock held.
9131              */
9132 
9133             pthread_mutex_unlock(&clone_lock);
9134 
9135             thread_cpu = NULL;
9136             g_free(ts);
9137             rcu_unregister_thread();
9138             pthread_exit(NULL);
9139         }
9140 
9141         pthread_mutex_unlock(&clone_lock);
9142         preexit_cleanup(cpu_env, arg1);
9143         _exit(arg1);
9144         return 0; /* avoid warning */
9145     case TARGET_NR_read:
9146         if (arg2 == 0 && arg3 == 0) {
9147             return get_errno(safe_read(arg1, 0, 0));
9148         } else {
9149             if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
9150                 return -TARGET_EFAULT;
9151             ret = get_errno(safe_read(arg1, p, arg3));
9152             if (ret >= 0 &&
9153                 fd_trans_host_to_target_data(arg1)) {
9154                 ret = fd_trans_host_to_target_data(arg1)(p, ret);
9155             }
9156             unlock_user(p, arg2, ret);
9157         }
9158         return ret;
9159     case TARGET_NR_write:
9160         if (arg2 == 0 && arg3 == 0) {
9161             return get_errno(safe_write(arg1, 0, 0));
9162         }
9163         if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
9164             return -TARGET_EFAULT;
9165         if (fd_trans_target_to_host_data(arg1)) {
9166             void *copy = g_malloc(arg3);
9167             memcpy(copy, p, arg3);
9168             ret = fd_trans_target_to_host_data(arg1)(copy, arg3);
9169             if (ret >= 0) {
9170                 ret = get_errno(safe_write(arg1, copy, ret));
9171             }
9172             g_free(copy);
9173         } else {
9174             ret = get_errno(safe_write(arg1, p, arg3));
9175         }
9176         unlock_user(p, arg2, 0);
9177         return ret;
9178 
9179 #ifdef TARGET_NR_open
9180     case TARGET_NR_open:
9181         if (!(p = lock_user_string(arg1)))
9182             return -TARGET_EFAULT;
9183         ret = get_errno(do_guest_openat(cpu_env, AT_FDCWD, p,
9184                                   target_to_host_bitmask(arg2, fcntl_flags_tbl),
9185                                   arg3, true));
9186         fd_trans_unregister(ret);
9187         unlock_user(p, arg1, 0);
9188         return ret;
9189 #endif
9190     case TARGET_NR_openat:
9191         if (!(p = lock_user_string(arg2)))
9192             return -TARGET_EFAULT;
9193         ret = get_errno(do_guest_openat(cpu_env, arg1, p,
9194                                   target_to_host_bitmask(arg3, fcntl_flags_tbl),
9195                                   arg4, true));
9196         fd_trans_unregister(ret);
9197         unlock_user(p, arg2, 0);
9198         return ret;
9199 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
9200     case TARGET_NR_name_to_handle_at:
9201         ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5);
9202         return ret;
9203 #endif
9204 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
9205     case TARGET_NR_open_by_handle_at:
9206         ret = do_open_by_handle_at(arg1, arg2, arg3);
9207         fd_trans_unregister(ret);
9208         return ret;
9209 #endif
9210 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
9211     case TARGET_NR_pidfd_open:
9212         return get_errno(pidfd_open(arg1, arg2));
9213 #endif
9214 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal)
9215     case TARGET_NR_pidfd_send_signal:
9216         {
9217             siginfo_t uinfo, *puinfo;
9218 
9219             if (arg3) {
9220                 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
9221                 if (!p) {
9222                     return -TARGET_EFAULT;
9223                  }
9224                  target_to_host_siginfo(&uinfo, p);
9225                  unlock_user(p, arg3, 0);
9226                  puinfo = &uinfo;
9227             } else {
9228                  puinfo = NULL;
9229             }
9230             ret = get_errno(pidfd_send_signal(arg1, target_to_host_signal(arg2),
9231                                               puinfo, arg4));
9232         }
9233         return ret;
9234 #endif
9235 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd)
9236     case TARGET_NR_pidfd_getfd:
9237         return get_errno(pidfd_getfd(arg1, arg2, arg3));
9238 #endif
9239     case TARGET_NR_close:
9240         fd_trans_unregister(arg1);
9241         return get_errno(close(arg1));
9242 #if defined(__NR_close_range) && defined(TARGET_NR_close_range)
9243     case TARGET_NR_close_range:
9244         ret = get_errno(sys_close_range(arg1, arg2, arg3));
9245         if (ret == 0 && !(arg3 & CLOSE_RANGE_CLOEXEC)) {
9246             abi_long fd, maxfd;
9247             maxfd = MIN(arg2, target_fd_max);
9248             for (fd = arg1; fd < maxfd; fd++) {
9249                 fd_trans_unregister(fd);
9250             }
9251         }
9252         return ret;
9253 #endif
9254 
9255     case TARGET_NR_brk:
9256         return do_brk(arg1);
9257 #ifdef TARGET_NR_fork
9258     case TARGET_NR_fork:
9259         return get_errno(do_fork(cpu_env, TARGET_SIGCHLD, 0, 0, 0, 0));
9260 #endif
9261 #ifdef TARGET_NR_waitpid
9262     case TARGET_NR_waitpid:
9263         {
9264             int status;
9265             ret = get_errno(safe_wait4(arg1, &status, arg3, 0));
9266             if (!is_error(ret) && arg2 && ret
9267                 && put_user_s32(host_to_target_waitstatus(status), arg2))
9268                 return -TARGET_EFAULT;
9269         }
9270         return ret;
9271 #endif
9272 #ifdef TARGET_NR_waitid
9273     case TARGET_NR_waitid:
9274         {
9275             struct rusage ru;
9276             siginfo_t info;
9277 
9278             ret = get_errno(safe_waitid(arg1, arg2, (arg3 ? &info : NULL),
9279                                         arg4, (arg5 ? &ru : NULL)));
9280             if (!is_error(ret)) {
9281                 if (arg3) {
9282                     p = lock_user(VERIFY_WRITE, arg3,
9283                                   sizeof(target_siginfo_t), 0);
9284                     if (!p) {
9285                         return -TARGET_EFAULT;
9286                     }
9287                     host_to_target_siginfo(p, &info);
9288                     unlock_user(p, arg3, sizeof(target_siginfo_t));
9289                 }
9290                 if (arg5 && host_to_target_rusage(arg5, &ru)) {
9291                     return -TARGET_EFAULT;
9292                 }
9293             }
9294         }
9295         return ret;
9296 #endif
9297 #ifdef TARGET_NR_creat /* not on alpha */
9298     case TARGET_NR_creat:
9299         if (!(p = lock_user_string(arg1)))
9300             return -TARGET_EFAULT;
9301         ret = get_errno(creat(p, arg2));
9302         fd_trans_unregister(ret);
9303         unlock_user(p, arg1, 0);
9304         return ret;
9305 #endif
9306 #ifdef TARGET_NR_link
9307     case TARGET_NR_link:
9308         {
9309             void * p2;
9310             p = lock_user_string(arg1);
9311             p2 = lock_user_string(arg2);
9312             if (!p || !p2)
9313                 ret = -TARGET_EFAULT;
9314             else
9315                 ret = get_errno(link(p, p2));
9316             unlock_user(p2, arg2, 0);
9317             unlock_user(p, arg1, 0);
9318         }
9319         return ret;
9320 #endif
9321 #if defined(TARGET_NR_linkat)
9322     case TARGET_NR_linkat:
9323         {
9324             void * p2 = NULL;
9325             if (!arg2 || !arg4)
9326                 return -TARGET_EFAULT;
9327             p  = lock_user_string(arg2);
9328             p2 = lock_user_string(arg4);
9329             if (!p || !p2)
9330                 ret = -TARGET_EFAULT;
9331             else
9332                 ret = get_errno(linkat(arg1, p, arg3, p2, arg5));
9333             unlock_user(p, arg2, 0);
9334             unlock_user(p2, arg4, 0);
9335         }
9336         return ret;
9337 #endif
9338 #ifdef TARGET_NR_unlink
9339     case TARGET_NR_unlink:
9340         if (!(p = lock_user_string(arg1)))
9341             return -TARGET_EFAULT;
9342         ret = get_errno(unlink(p));
9343         unlock_user(p, arg1, 0);
9344         return ret;
9345 #endif
9346 #if defined(TARGET_NR_unlinkat)
9347     case TARGET_NR_unlinkat:
9348         if (!(p = lock_user_string(arg2)))
9349             return -TARGET_EFAULT;
9350         ret = get_errno(unlinkat(arg1, p, arg3));
9351         unlock_user(p, arg2, 0);
9352         return ret;
9353 #endif
9354     case TARGET_NR_execveat:
9355         return do_execv(cpu_env, arg1, arg2, arg3, arg4, arg5, true);
9356     case TARGET_NR_execve:
9357         return do_execv(cpu_env, AT_FDCWD, arg1, arg2, arg3, 0, false);
9358     case TARGET_NR_chdir:
9359         if (!(p = lock_user_string(arg1)))
9360             return -TARGET_EFAULT;
9361         ret = get_errno(chdir(p));
9362         unlock_user(p, arg1, 0);
9363         return ret;
9364 #ifdef TARGET_NR_time
9365     case TARGET_NR_time:
9366         {
9367             time_t host_time;
9368             ret = get_errno(time(&host_time));
9369             if (!is_error(ret)
9370                 && arg1
9371                 && put_user_sal(host_time, arg1))
9372                 return -TARGET_EFAULT;
9373         }
9374         return ret;
9375 #endif
9376 #ifdef TARGET_NR_mknod
9377     case TARGET_NR_mknod:
9378         if (!(p = lock_user_string(arg1)))
9379             return -TARGET_EFAULT;
9380         ret = get_errno(mknod(p, arg2, arg3));
9381         unlock_user(p, arg1, 0);
9382         return ret;
9383 #endif
9384 #if defined(TARGET_NR_mknodat)
9385     case TARGET_NR_mknodat:
9386         if (!(p = lock_user_string(arg2)))
9387             return -TARGET_EFAULT;
9388         ret = get_errno(mknodat(arg1, p, arg3, arg4));
9389         unlock_user(p, arg2, 0);
9390         return ret;
9391 #endif
9392 #ifdef TARGET_NR_chmod
9393     case TARGET_NR_chmod:
9394         if (!(p = lock_user_string(arg1)))
9395             return -TARGET_EFAULT;
9396         ret = get_errno(chmod(p, arg2));
9397         unlock_user(p, arg1, 0);
9398         return ret;
9399 #endif
9400 #ifdef TARGET_NR_lseek
9401     case TARGET_NR_lseek:
9402         return get_errno(lseek(arg1, arg2, arg3));
9403 #endif
9404 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
9405     /* Alpha specific */
9406     case TARGET_NR_getxpid:
9407         cpu_env->ir[IR_A4] = getppid();
9408         return get_errno(getpid());
9409 #endif
9410 #ifdef TARGET_NR_getpid
9411     case TARGET_NR_getpid:
9412         return get_errno(getpid());
9413 #endif
9414     case TARGET_NR_mount:
9415         {
9416             /* need to look at the data field */
9417             void *p2, *p3;
9418 
9419             if (arg1) {
9420                 p = lock_user_string(arg1);
9421                 if (!p) {
9422                     return -TARGET_EFAULT;
9423                 }
9424             } else {
9425                 p = NULL;
9426             }
9427 
9428             p2 = lock_user_string(arg2);
9429             if (!p2) {
9430                 if (arg1) {
9431                     unlock_user(p, arg1, 0);
9432                 }
9433                 return -TARGET_EFAULT;
9434             }
9435 
9436             if (arg3) {
9437                 p3 = lock_user_string(arg3);
9438                 if (!p3) {
9439                     if (arg1) {
9440                         unlock_user(p, arg1, 0);
9441                     }
9442                     unlock_user(p2, arg2, 0);
9443                     return -TARGET_EFAULT;
9444                 }
9445             } else {
9446                 p3 = NULL;
9447             }
9448 
9449             /* FIXME - arg5 should be locked, but it isn't clear how to
9450              * do that since it's not guaranteed to be a NULL-terminated
9451              * string.
9452              */
9453             if (!arg5) {
9454                 ret = mount(p, p2, p3, (unsigned long)arg4, NULL);
9455             } else {
9456                 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(cpu, arg5));
9457             }
9458             ret = get_errno(ret);
9459 
9460             if (arg1) {
9461                 unlock_user(p, arg1, 0);
9462             }
9463             unlock_user(p2, arg2, 0);
9464             if (arg3) {
9465                 unlock_user(p3, arg3, 0);
9466             }
9467         }
9468         return ret;
9469 #if defined(TARGET_NR_umount) || defined(TARGET_NR_oldumount)
9470 #if defined(TARGET_NR_umount)
9471     case TARGET_NR_umount:
9472 #endif
9473 #if defined(TARGET_NR_oldumount)
9474     case TARGET_NR_oldumount:
9475 #endif
9476         if (!(p = lock_user_string(arg1)))
9477             return -TARGET_EFAULT;
9478         ret = get_errno(umount(p));
9479         unlock_user(p, arg1, 0);
9480         return ret;
9481 #endif
9482 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount)
9483     case TARGET_NR_move_mount:
9484         {
9485             void *p2, *p4;
9486 
9487             if (!arg2 || !arg4) {
9488                 return -TARGET_EFAULT;
9489             }
9490 
9491             p2 = lock_user_string(arg2);
9492             if (!p2) {
9493                 return -TARGET_EFAULT;
9494             }
9495 
9496             p4 = lock_user_string(arg4);
9497             if (!p4) {
9498                 unlock_user(p2, arg2, 0);
9499                 return -TARGET_EFAULT;
9500             }
9501             ret = get_errno(sys_move_mount(arg1, p2, arg3, p4, arg5));
9502 
9503             unlock_user(p2, arg2, 0);
9504             unlock_user(p4, arg4, 0);
9505 
9506             return ret;
9507         }
9508 #endif
9509 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree)
9510     case TARGET_NR_open_tree:
9511         {
9512             void *p2;
9513             int host_flags;
9514 
9515             if (!arg2) {
9516                 return -TARGET_EFAULT;
9517             }
9518 
9519             p2 = lock_user_string(arg2);
9520             if (!p2) {
9521                 return -TARGET_EFAULT;
9522             }
9523 
9524             host_flags = arg3 & ~TARGET_O_CLOEXEC;
9525             if (arg3 & TARGET_O_CLOEXEC) {
9526                 host_flags |= O_CLOEXEC;
9527             }
9528 
9529             ret = get_errno(sys_open_tree(arg1, p2, host_flags));
9530 
9531             unlock_user(p2, arg2, 0);
9532 
9533             return ret;
9534         }
9535 #endif
9536 #ifdef TARGET_NR_stime /* not on alpha */
9537     case TARGET_NR_stime:
9538         {
9539             struct timespec ts;
9540             ts.tv_nsec = 0;
9541             if (get_user_sal(ts.tv_sec, arg1)) {
9542                 return -TARGET_EFAULT;
9543             }
9544             return get_errno(clock_settime(CLOCK_REALTIME, &ts));
9545         }
9546 #endif
9547 #ifdef TARGET_NR_alarm /* not on alpha */
9548     case TARGET_NR_alarm:
9549         return alarm(arg1);
9550 #endif
9551 #ifdef TARGET_NR_pause /* not on alpha */
9552     case TARGET_NR_pause:
9553         if (!block_signals()) {
9554             sigsuspend(&get_task_state(cpu)->signal_mask);
9555         }
9556         return -TARGET_EINTR;
9557 #endif
9558 #ifdef TARGET_NR_utime
9559     case TARGET_NR_utime:
9560         {
9561             struct utimbuf tbuf, *host_tbuf;
9562             struct target_utimbuf *target_tbuf;
9563             if (arg2) {
9564                 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1))
9565                     return -TARGET_EFAULT;
9566                 tbuf.actime = tswapal(target_tbuf->actime);
9567                 tbuf.modtime = tswapal(target_tbuf->modtime);
9568                 unlock_user_struct(target_tbuf, arg2, 0);
9569                 host_tbuf = &tbuf;
9570             } else {
9571                 host_tbuf = NULL;
9572             }
9573             if (!(p = lock_user_string(arg1)))
9574                 return -TARGET_EFAULT;
9575             ret = get_errno(utime(p, host_tbuf));
9576             unlock_user(p, arg1, 0);
9577         }
9578         return ret;
9579 #endif
9580 #ifdef TARGET_NR_utimes
9581     case TARGET_NR_utimes:
9582         {
9583             struct timeval *tvp, tv[2];
9584             if (arg2) {
9585                 if (copy_from_user_timeval(&tv[0], arg2)
9586                     || copy_from_user_timeval(&tv[1],
9587                                               arg2 + sizeof(struct target_timeval)))
9588                     return -TARGET_EFAULT;
9589                 tvp = tv;
9590             } else {
9591                 tvp = NULL;
9592             }
9593             if (!(p = lock_user_string(arg1)))
9594                 return -TARGET_EFAULT;
9595             ret = get_errno(utimes(p, tvp));
9596             unlock_user(p, arg1, 0);
9597         }
9598         return ret;
9599 #endif
9600 #if defined(TARGET_NR_futimesat)
9601     case TARGET_NR_futimesat:
9602         {
9603             struct timeval *tvp, tv[2];
9604             if (arg3) {
9605                 if (copy_from_user_timeval(&tv[0], arg3)
9606                     || copy_from_user_timeval(&tv[1],
9607                                               arg3 + sizeof(struct target_timeval)))
9608                     return -TARGET_EFAULT;
9609                 tvp = tv;
9610             } else {
9611                 tvp = NULL;
9612             }
9613             if (!(p = lock_user_string(arg2))) {
9614                 return -TARGET_EFAULT;
9615             }
9616             ret = get_errno(futimesat(arg1, path(p), tvp));
9617             unlock_user(p, arg2, 0);
9618         }
9619         return ret;
9620 #endif
9621 #ifdef TARGET_NR_access
9622     case TARGET_NR_access:
9623         if (!(p = lock_user_string(arg1))) {
9624             return -TARGET_EFAULT;
9625         }
9626         ret = get_errno(access(path(p), arg2));
9627         unlock_user(p, arg1, 0);
9628         return ret;
9629 #endif
9630 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
9631     case TARGET_NR_faccessat:
9632         if (!(p = lock_user_string(arg2))) {
9633             return -TARGET_EFAULT;
9634         }
9635         ret = get_errno(faccessat(arg1, p, arg3, 0));
9636         unlock_user(p, arg2, 0);
9637         return ret;
9638 #endif
9639 #if defined(TARGET_NR_faccessat2)
9640     case TARGET_NR_faccessat2:
9641         if (!(p = lock_user_string(arg2))) {
9642             return -TARGET_EFAULT;
9643         }
9644         ret = get_errno(faccessat(arg1, p, arg3, arg4));
9645         unlock_user(p, arg2, 0);
9646         return ret;
9647 #endif
9648 #ifdef TARGET_NR_nice /* not on alpha */
9649     case TARGET_NR_nice:
9650         return get_errno(nice(arg1));
9651 #endif
9652     case TARGET_NR_sync:
9653         sync();
9654         return 0;
9655 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS)
9656     case TARGET_NR_syncfs:
9657         return get_errno(syncfs(arg1));
9658 #endif
9659     case TARGET_NR_kill:
9660         return get_errno(safe_kill(arg1, target_to_host_signal(arg2)));
9661 #ifdef TARGET_NR_rename
9662     case TARGET_NR_rename:
9663         {
9664             void *p2;
9665             p = lock_user_string(arg1);
9666             p2 = lock_user_string(arg2);
9667             if (!p || !p2)
9668                 ret = -TARGET_EFAULT;
9669             else
9670                 ret = get_errno(rename(p, p2));
9671             unlock_user(p2, arg2, 0);
9672             unlock_user(p, arg1, 0);
9673         }
9674         return ret;
9675 #endif
9676 #if defined(TARGET_NR_renameat)
9677     case TARGET_NR_renameat:
9678         {
9679             void *p2;
9680             p  = lock_user_string(arg2);
9681             p2 = lock_user_string(arg4);
9682             if (!p || !p2)
9683                 ret = -TARGET_EFAULT;
9684             else
9685                 ret = get_errno(renameat(arg1, p, arg3, p2));
9686             unlock_user(p2, arg4, 0);
9687             unlock_user(p, arg2, 0);
9688         }
9689         return ret;
9690 #endif
9691 #if defined(TARGET_NR_renameat2)
9692     case TARGET_NR_renameat2:
9693         {
9694             void *p2;
9695             p  = lock_user_string(arg2);
9696             p2 = lock_user_string(arg4);
9697             if (!p || !p2) {
9698                 ret = -TARGET_EFAULT;
9699             } else {
9700                 ret = get_errno(sys_renameat2(arg1, p, arg3, p2, arg5));
9701             }
9702             unlock_user(p2, arg4, 0);
9703             unlock_user(p, arg2, 0);
9704         }
9705         return ret;
9706 #endif
9707 #ifdef TARGET_NR_mkdir
9708     case TARGET_NR_mkdir:
9709         if (!(p = lock_user_string(arg1)))
9710             return -TARGET_EFAULT;
9711         ret = get_errno(mkdir(p, arg2));
9712         unlock_user(p, arg1, 0);
9713         return ret;
9714 #endif
9715 #if defined(TARGET_NR_mkdirat)
9716     case TARGET_NR_mkdirat:
9717         if (!(p = lock_user_string(arg2)))
9718             return -TARGET_EFAULT;
9719         ret = get_errno(mkdirat(arg1, p, arg3));
9720         unlock_user(p, arg2, 0);
9721         return ret;
9722 #endif
9723 #ifdef TARGET_NR_rmdir
9724     case TARGET_NR_rmdir:
9725         if (!(p = lock_user_string(arg1)))
9726             return -TARGET_EFAULT;
9727         ret = get_errno(rmdir(p));
9728         unlock_user(p, arg1, 0);
9729         return ret;
9730 #endif
9731     case TARGET_NR_dup:
9732         ret = get_errno(dup(arg1));
9733         if (ret >= 0) {
9734             fd_trans_dup(arg1, ret);
9735         }
9736         return ret;
9737 #ifdef TARGET_NR_pipe
9738     case TARGET_NR_pipe:
9739         return do_pipe(cpu_env, arg1, 0, 0);
9740 #endif
9741 #ifdef TARGET_NR_pipe2
9742     case TARGET_NR_pipe2:
9743         return do_pipe(cpu_env, arg1,
9744                        target_to_host_bitmask(arg2, fcntl_flags_tbl), 1);
9745 #endif
9746     case TARGET_NR_times:
9747         {
9748             struct target_tms *tmsp;
9749             struct tms tms;
9750             ret = get_errno(times(&tms));
9751             if (arg1) {
9752                 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0);
9753                 if (!tmsp)
9754                     return -TARGET_EFAULT;
9755                 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime));
9756                 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime));
9757                 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime));
9758                 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime));
9759             }
9760             if (!is_error(ret))
9761                 ret = host_to_target_clock_t(ret);
9762         }
9763         return ret;
9764     case TARGET_NR_acct:
9765         if (arg1 == 0) {
9766             ret = get_errno(acct(NULL));
9767         } else {
9768             if (!(p = lock_user_string(arg1))) {
9769                 return -TARGET_EFAULT;
9770             }
9771             ret = get_errno(acct(path(p)));
9772             unlock_user(p, arg1, 0);
9773         }
9774         return ret;
9775 #ifdef TARGET_NR_umount2
9776     case TARGET_NR_umount2:
9777         if (!(p = lock_user_string(arg1)))
9778             return -TARGET_EFAULT;
9779         ret = get_errno(umount2(p, arg2));
9780         unlock_user(p, arg1, 0);
9781         return ret;
9782 #endif
9783     case TARGET_NR_ioctl:
9784         return do_ioctl(arg1, arg2, arg3);
9785 #ifdef TARGET_NR_fcntl
9786     case TARGET_NR_fcntl:
9787         return do_fcntl(arg1, arg2, arg3);
9788 #endif
9789     case TARGET_NR_setpgid:
9790         return get_errno(setpgid(arg1, arg2));
9791     case TARGET_NR_umask:
9792         return get_errno(umask(arg1));
9793     case TARGET_NR_chroot:
9794         if (!(p = lock_user_string(arg1)))
9795             return -TARGET_EFAULT;
9796         ret = get_errno(chroot(p));
9797         unlock_user(p, arg1, 0);
9798         return ret;
9799 #ifdef TARGET_NR_dup2
9800     case TARGET_NR_dup2:
9801         ret = get_errno(dup2(arg1, arg2));
9802         if (ret >= 0) {
9803             fd_trans_dup(arg1, arg2);
9804         }
9805         return ret;
9806 #endif
9807 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
9808     case TARGET_NR_dup3:
9809     {
9810         int host_flags;
9811 
9812         if ((arg3 & ~TARGET_O_CLOEXEC) != 0) {
9813             return -EINVAL;
9814         }
9815         host_flags = target_to_host_bitmask(arg3, fcntl_flags_tbl);
9816         ret = get_errno(dup3(arg1, arg2, host_flags));
9817         if (ret >= 0) {
9818             fd_trans_dup(arg1, arg2);
9819         }
9820         return ret;
9821     }
9822 #endif
9823 #ifdef TARGET_NR_getppid /* not on alpha */
9824     case TARGET_NR_getppid:
9825         return get_errno(getppid());
9826 #endif
9827 #ifdef TARGET_NR_getpgrp
9828     case TARGET_NR_getpgrp:
9829         return get_errno(getpgrp());
9830 #endif
9831     case TARGET_NR_setsid:
9832         return get_errno(setsid());
9833 #ifdef TARGET_NR_sigaction
9834     case TARGET_NR_sigaction:
9835         {
9836 #if defined(TARGET_MIPS)
9837 	    struct target_sigaction act, oact, *pact, *old_act;
9838 
9839 	    if (arg2) {
9840                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
9841                     return -TARGET_EFAULT;
9842 		act._sa_handler = old_act->_sa_handler;
9843 		target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]);
9844 		act.sa_flags = old_act->sa_flags;
9845 		unlock_user_struct(old_act, arg2, 0);
9846 		pact = &act;
9847 	    } else {
9848 		pact = NULL;
9849 	    }
9850 
9851         ret = get_errno(do_sigaction(arg1, pact, &oact, 0));
9852 
9853 	    if (!is_error(ret) && arg3) {
9854                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
9855                     return -TARGET_EFAULT;
9856 		old_act->_sa_handler = oact._sa_handler;
9857 		old_act->sa_flags = oact.sa_flags;
9858 		old_act->sa_mask.sig[0] = oact.sa_mask.sig[0];
9859 		old_act->sa_mask.sig[1] = 0;
9860 		old_act->sa_mask.sig[2] = 0;
9861 		old_act->sa_mask.sig[3] = 0;
9862 		unlock_user_struct(old_act, arg3, 1);
9863 	    }
9864 #else
9865             struct target_old_sigaction *old_act;
9866             struct target_sigaction act, oact, *pact;
9867             if (arg2) {
9868                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
9869                     return -TARGET_EFAULT;
9870                 act._sa_handler = old_act->_sa_handler;
9871                 target_siginitset(&act.sa_mask, old_act->sa_mask);
9872                 act.sa_flags = old_act->sa_flags;
9873 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9874                 act.sa_restorer = old_act->sa_restorer;
9875 #endif
9876                 unlock_user_struct(old_act, arg2, 0);
9877                 pact = &act;
9878             } else {
9879                 pact = NULL;
9880             }
9881             ret = get_errno(do_sigaction(arg1, pact, &oact, 0));
9882             if (!is_error(ret) && arg3) {
9883                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
9884                     return -TARGET_EFAULT;
9885                 old_act->_sa_handler = oact._sa_handler;
9886                 old_act->sa_mask = oact.sa_mask.sig[0];
9887                 old_act->sa_flags = oact.sa_flags;
9888 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9889                 old_act->sa_restorer = oact.sa_restorer;
9890 #endif
9891                 unlock_user_struct(old_act, arg3, 1);
9892             }
9893 #endif
9894         }
9895         return ret;
9896 #endif
9897     case TARGET_NR_rt_sigaction:
9898         {
9899             /*
9900              * For Alpha and SPARC this is a 5 argument syscall, with
9901              * a 'restorer' parameter which must be copied into the
9902              * sa_restorer field of the sigaction struct.
9903              * For Alpha that 'restorer' is arg5; for SPARC it is arg4,
9904              * and arg5 is the sigsetsize.
9905              */
9906 #if defined(TARGET_ALPHA)
9907             target_ulong sigsetsize = arg4;
9908             target_ulong restorer = arg5;
9909 #elif defined(TARGET_SPARC)
9910             target_ulong restorer = arg4;
9911             target_ulong sigsetsize = arg5;
9912 #else
9913             target_ulong sigsetsize = arg4;
9914             target_ulong restorer = 0;
9915 #endif
9916             struct target_sigaction *act = NULL;
9917             struct target_sigaction *oact = NULL;
9918 
9919             if (sigsetsize != sizeof(target_sigset_t)) {
9920                 return -TARGET_EINVAL;
9921             }
9922             if (arg2 && !lock_user_struct(VERIFY_READ, act, arg2, 1)) {
9923                 return -TARGET_EFAULT;
9924             }
9925             if (arg3 && !lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) {
9926                 ret = -TARGET_EFAULT;
9927             } else {
9928                 ret = get_errno(do_sigaction(arg1, act, oact, restorer));
9929                 if (oact) {
9930                     unlock_user_struct(oact, arg3, 1);
9931                 }
9932             }
9933             if (act) {
9934                 unlock_user_struct(act, arg2, 0);
9935             }
9936         }
9937         return ret;
9938 #ifdef TARGET_NR_sgetmask /* not on alpha */
9939     case TARGET_NR_sgetmask:
9940         {
9941             sigset_t cur_set;
9942             abi_ulong target_set;
9943             ret = do_sigprocmask(0, NULL, &cur_set);
9944             if (!ret) {
9945                 host_to_target_old_sigset(&target_set, &cur_set);
9946                 ret = target_set;
9947             }
9948         }
9949         return ret;
9950 #endif
9951 #ifdef TARGET_NR_ssetmask /* not on alpha */
9952     case TARGET_NR_ssetmask:
9953         {
9954             sigset_t set, oset;
9955             abi_ulong target_set = arg1;
9956             target_to_host_old_sigset(&set, &target_set);
9957             ret = do_sigprocmask(SIG_SETMASK, &set, &oset);
9958             if (!ret) {
9959                 host_to_target_old_sigset(&target_set, &oset);
9960                 ret = target_set;
9961             }
9962         }
9963         return ret;
9964 #endif
9965 #ifdef TARGET_NR_sigprocmask
9966     case TARGET_NR_sigprocmask:
9967         {
9968 #if defined(TARGET_ALPHA)
9969             sigset_t set, oldset;
9970             abi_ulong mask;
9971             int how;
9972 
9973             switch (arg1) {
9974             case TARGET_SIG_BLOCK:
9975                 how = SIG_BLOCK;
9976                 break;
9977             case TARGET_SIG_UNBLOCK:
9978                 how = SIG_UNBLOCK;
9979                 break;
9980             case TARGET_SIG_SETMASK:
9981                 how = SIG_SETMASK;
9982                 break;
9983             default:
9984                 return -TARGET_EINVAL;
9985             }
9986             mask = arg2;
9987             target_to_host_old_sigset(&set, &mask);
9988 
9989             ret = do_sigprocmask(how, &set, &oldset);
9990             if (!is_error(ret)) {
9991                 host_to_target_old_sigset(&mask, &oldset);
9992                 ret = mask;
9993                 cpu_env->ir[IR_V0] = 0; /* force no error */
9994             }
9995 #else
9996             sigset_t set, oldset, *set_ptr;
9997             int how;
9998 
9999             if (arg2) {
10000                 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1);
10001                 if (!p) {
10002                     return -TARGET_EFAULT;
10003                 }
10004                 target_to_host_old_sigset(&set, p);
10005                 unlock_user(p, arg2, 0);
10006                 set_ptr = &set;
10007                 switch (arg1) {
10008                 case TARGET_SIG_BLOCK:
10009                     how = SIG_BLOCK;
10010                     break;
10011                 case TARGET_SIG_UNBLOCK:
10012                     how = SIG_UNBLOCK;
10013                     break;
10014                 case TARGET_SIG_SETMASK:
10015                     how = SIG_SETMASK;
10016                     break;
10017                 default:
10018                     return -TARGET_EINVAL;
10019                 }
10020             } else {
10021                 how = 0;
10022                 set_ptr = NULL;
10023             }
10024             ret = do_sigprocmask(how, set_ptr, &oldset);
10025             if (!is_error(ret) && arg3) {
10026                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
10027                     return -TARGET_EFAULT;
10028                 host_to_target_old_sigset(p, &oldset);
10029                 unlock_user(p, arg3, sizeof(target_sigset_t));
10030             }
10031 #endif
10032         }
10033         return ret;
10034 #endif
10035     case TARGET_NR_rt_sigprocmask:
10036         {
10037             int how = arg1;
10038             sigset_t set, oldset, *set_ptr;
10039 
10040             if (arg4 != sizeof(target_sigset_t)) {
10041                 return -TARGET_EINVAL;
10042             }
10043 
10044             if (arg2) {
10045                 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1);
10046                 if (!p) {
10047                     return -TARGET_EFAULT;
10048                 }
10049                 target_to_host_sigset(&set, p);
10050                 unlock_user(p, arg2, 0);
10051                 set_ptr = &set;
10052                 switch(how) {
10053                 case TARGET_SIG_BLOCK:
10054                     how = SIG_BLOCK;
10055                     break;
10056                 case TARGET_SIG_UNBLOCK:
10057                     how = SIG_UNBLOCK;
10058                     break;
10059                 case TARGET_SIG_SETMASK:
10060                     how = SIG_SETMASK;
10061                     break;
10062                 default:
10063                     return -TARGET_EINVAL;
10064                 }
10065             } else {
10066                 how = 0;
10067                 set_ptr = NULL;
10068             }
10069             ret = do_sigprocmask(how, set_ptr, &oldset);
10070             if (!is_error(ret) && arg3) {
10071                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
10072                     return -TARGET_EFAULT;
10073                 host_to_target_sigset(p, &oldset);
10074                 unlock_user(p, arg3, sizeof(target_sigset_t));
10075             }
10076         }
10077         return ret;
10078 #ifdef TARGET_NR_sigpending
10079     case TARGET_NR_sigpending:
10080         {
10081             sigset_t set;
10082             ret = get_errno(sigpending(&set));
10083             if (!is_error(ret)) {
10084                 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
10085                     return -TARGET_EFAULT;
10086                 host_to_target_old_sigset(p, &set);
10087                 unlock_user(p, arg1, sizeof(target_sigset_t));
10088             }
10089         }
10090         return ret;
10091 #endif
10092     case TARGET_NR_rt_sigpending:
10093         {
10094             sigset_t set;
10095 
10096             /* Yes, this check is >, not != like most. We follow the kernel's
10097              * logic and it does it like this because it implements
10098              * NR_sigpending through the same code path, and in that case
10099              * the old_sigset_t is smaller in size.
10100              */
10101             if (arg2 > sizeof(target_sigset_t)) {
10102                 return -TARGET_EINVAL;
10103             }
10104 
10105             ret = get_errno(sigpending(&set));
10106             if (!is_error(ret)) {
10107                 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
10108                     return -TARGET_EFAULT;
10109                 host_to_target_sigset(p, &set);
10110                 unlock_user(p, arg1, sizeof(target_sigset_t));
10111             }
10112         }
10113         return ret;
10114 #ifdef TARGET_NR_sigsuspend
10115     case TARGET_NR_sigsuspend:
10116         {
10117             sigset_t *set;
10118 
10119 #if defined(TARGET_ALPHA)
10120             TaskState *ts = get_task_state(cpu);
10121             /* target_to_host_old_sigset will bswap back */
10122             abi_ulong mask = tswapal(arg1);
10123             set = &ts->sigsuspend_mask;
10124             target_to_host_old_sigset(set, &mask);
10125 #else
10126             ret = process_sigsuspend_mask(&set, arg1, sizeof(target_sigset_t));
10127             if (ret != 0) {
10128                 return ret;
10129             }
10130 #endif
10131             ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE));
10132             finish_sigsuspend_mask(ret);
10133         }
10134         return ret;
10135 #endif
10136     case TARGET_NR_rt_sigsuspend:
10137         {
10138             sigset_t *set;
10139 
10140             ret = process_sigsuspend_mask(&set, arg1, arg2);
10141             if (ret != 0) {
10142                 return ret;
10143             }
10144             ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE));
10145             finish_sigsuspend_mask(ret);
10146         }
10147         return ret;
10148 #ifdef TARGET_NR_rt_sigtimedwait
10149     case TARGET_NR_rt_sigtimedwait:
10150         {
10151             sigset_t set;
10152             struct timespec uts, *puts;
10153             siginfo_t uinfo;
10154 
10155             if (arg4 != sizeof(target_sigset_t)) {
10156                 return -TARGET_EINVAL;
10157             }
10158 
10159             if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
10160                 return -TARGET_EFAULT;
10161             target_to_host_sigset(&set, p);
10162             unlock_user(p, arg1, 0);
10163             if (arg3) {
10164                 puts = &uts;
10165                 if (target_to_host_timespec(puts, arg3)) {
10166                     return -TARGET_EFAULT;
10167                 }
10168             } else {
10169                 puts = NULL;
10170             }
10171             ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
10172                                                  SIGSET_T_SIZE));
10173             if (!is_error(ret)) {
10174                 if (arg2) {
10175                     p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t),
10176                                   0);
10177                     if (!p) {
10178                         return -TARGET_EFAULT;
10179                     }
10180                     host_to_target_siginfo(p, &uinfo);
10181                     unlock_user(p, arg2, sizeof(target_siginfo_t));
10182                 }
10183                 ret = host_to_target_signal(ret);
10184             }
10185         }
10186         return ret;
10187 #endif
10188 #ifdef TARGET_NR_rt_sigtimedwait_time64
10189     case TARGET_NR_rt_sigtimedwait_time64:
10190         {
10191             sigset_t set;
10192             struct timespec uts, *puts;
10193             siginfo_t uinfo;
10194 
10195             if (arg4 != sizeof(target_sigset_t)) {
10196                 return -TARGET_EINVAL;
10197             }
10198 
10199             p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1);
10200             if (!p) {
10201                 return -TARGET_EFAULT;
10202             }
10203             target_to_host_sigset(&set, p);
10204             unlock_user(p, arg1, 0);
10205             if (arg3) {
10206                 puts = &uts;
10207                 if (target_to_host_timespec64(puts, arg3)) {
10208                     return -TARGET_EFAULT;
10209                 }
10210             } else {
10211                 puts = NULL;
10212             }
10213             ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
10214                                                  SIGSET_T_SIZE));
10215             if (!is_error(ret)) {
10216                 if (arg2) {
10217                     p = lock_user(VERIFY_WRITE, arg2,
10218                                   sizeof(target_siginfo_t), 0);
10219                     if (!p) {
10220                         return -TARGET_EFAULT;
10221                     }
10222                     host_to_target_siginfo(p, &uinfo);
10223                     unlock_user(p, arg2, sizeof(target_siginfo_t));
10224                 }
10225                 ret = host_to_target_signal(ret);
10226             }
10227         }
10228         return ret;
10229 #endif
10230     case TARGET_NR_rt_sigqueueinfo:
10231         {
10232             siginfo_t uinfo;
10233 
10234             p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
10235             if (!p) {
10236                 return -TARGET_EFAULT;
10237             }
10238             target_to_host_siginfo(&uinfo, p);
10239             unlock_user(p, arg3, 0);
10240             ret = get_errno(sys_rt_sigqueueinfo(arg1, target_to_host_signal(arg2), &uinfo));
10241         }
10242         return ret;
10243     case TARGET_NR_rt_tgsigqueueinfo:
10244         {
10245             siginfo_t uinfo;
10246 
10247             p = lock_user(VERIFY_READ, arg4, sizeof(target_siginfo_t), 1);
10248             if (!p) {
10249                 return -TARGET_EFAULT;
10250             }
10251             target_to_host_siginfo(&uinfo, p);
10252             unlock_user(p, arg4, 0);
10253             ret = get_errno(sys_rt_tgsigqueueinfo(arg1, arg2, target_to_host_signal(arg3), &uinfo));
10254         }
10255         return ret;
10256 #ifdef TARGET_NR_sigreturn
10257     case TARGET_NR_sigreturn:
10258         if (block_signals()) {
10259             return -QEMU_ERESTARTSYS;
10260         }
10261         return do_sigreturn(cpu_env);
10262 #endif
10263     case TARGET_NR_rt_sigreturn:
10264         if (block_signals()) {
10265             return -QEMU_ERESTARTSYS;
10266         }
10267         return do_rt_sigreturn(cpu_env);
10268     case TARGET_NR_sethostname:
10269         if (!(p = lock_user_string(arg1)))
10270             return -TARGET_EFAULT;
10271         ret = get_errno(sethostname(p, arg2));
10272         unlock_user(p, arg1, 0);
10273         return ret;
10274 #ifdef TARGET_NR_setrlimit
10275     case TARGET_NR_setrlimit:
10276         {
10277             int resource = target_to_host_resource(arg1);
10278             struct target_rlimit *target_rlim;
10279             struct rlimit rlim;
10280             if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1))
10281                 return -TARGET_EFAULT;
10282             rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur);
10283             rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max);
10284             unlock_user_struct(target_rlim, arg2, 0);
10285             /*
10286              * If we just passed through resource limit settings for memory then
10287              * they would also apply to QEMU's own allocations, and QEMU will
10288              * crash or hang or die if its allocations fail. Ideally we would
10289              * track the guest allocations in QEMU and apply the limits ourselves.
10290              * For now, just tell the guest the call succeeded but don't actually
10291              * limit anything.
10292              */
10293             if (resource != RLIMIT_AS &&
10294                 resource != RLIMIT_DATA &&
10295                 resource != RLIMIT_STACK) {
10296                 return get_errno(setrlimit(resource, &rlim));
10297             } else {
10298                 return 0;
10299             }
10300         }
10301 #endif
10302 #ifdef TARGET_NR_getrlimit
10303     case TARGET_NR_getrlimit:
10304         {
10305             int resource = target_to_host_resource(arg1);
10306             struct target_rlimit *target_rlim;
10307             struct rlimit rlim;
10308 
10309             ret = get_errno(getrlimit(resource, &rlim));
10310             if (!is_error(ret)) {
10311                 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
10312                     return -TARGET_EFAULT;
10313                 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
10314                 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
10315                 unlock_user_struct(target_rlim, arg2, 1);
10316             }
10317         }
10318         return ret;
10319 #endif
10320     case TARGET_NR_getrusage:
10321         {
10322             struct rusage rusage;
10323             ret = get_errno(getrusage(arg1, &rusage));
10324             if (!is_error(ret)) {
10325                 ret = host_to_target_rusage(arg2, &rusage);
10326             }
10327         }
10328         return ret;
10329 #if defined(TARGET_NR_gettimeofday)
10330     case TARGET_NR_gettimeofday:
10331         {
10332             struct timeval tv;
10333             struct timezone tz;
10334 
10335             ret = get_errno(gettimeofday(&tv, &tz));
10336             if (!is_error(ret)) {
10337                 if (arg1 && copy_to_user_timeval(arg1, &tv)) {
10338                     return -TARGET_EFAULT;
10339                 }
10340                 if (arg2 && copy_to_user_timezone(arg2, &tz)) {
10341                     return -TARGET_EFAULT;
10342                 }
10343             }
10344         }
10345         return ret;
10346 #endif
10347 #if defined(TARGET_NR_settimeofday)
10348     case TARGET_NR_settimeofday:
10349         {
10350             struct timeval tv, *ptv = NULL;
10351             struct timezone tz, *ptz = NULL;
10352 
10353             if (arg1) {
10354                 if (copy_from_user_timeval(&tv, arg1)) {
10355                     return -TARGET_EFAULT;
10356                 }
10357                 ptv = &tv;
10358             }
10359 
10360             if (arg2) {
10361                 if (copy_from_user_timezone(&tz, arg2)) {
10362                     return -TARGET_EFAULT;
10363                 }
10364                 ptz = &tz;
10365             }
10366 
10367             return get_errno(settimeofday(ptv, ptz));
10368         }
10369 #endif
10370 #if defined(TARGET_NR_select)
10371     case TARGET_NR_select:
10372 #if defined(TARGET_WANT_NI_OLD_SELECT)
10373         /* some architectures used to have old_select here
10374          * but now ENOSYS it.
10375          */
10376         ret = -TARGET_ENOSYS;
10377 #elif defined(TARGET_WANT_OLD_SYS_SELECT)
10378         ret = do_old_select(arg1);
10379 #else
10380         ret = do_select(arg1, arg2, arg3, arg4, arg5);
10381 #endif
10382         return ret;
10383 #endif
10384 #ifdef TARGET_NR_pselect6
10385     case TARGET_NR_pselect6:
10386         return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, false);
10387 #endif
10388 #ifdef TARGET_NR_pselect6_time64
10389     case TARGET_NR_pselect6_time64:
10390         return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, true);
10391 #endif
10392 #ifdef TARGET_NR_symlink
10393     case TARGET_NR_symlink:
10394         {
10395             void *p2;
10396             p = lock_user_string(arg1);
10397             p2 = lock_user_string(arg2);
10398             if (!p || !p2)
10399                 ret = -TARGET_EFAULT;
10400             else
10401                 ret = get_errno(symlink(p, p2));
10402             unlock_user(p2, arg2, 0);
10403             unlock_user(p, arg1, 0);
10404         }
10405         return ret;
10406 #endif
10407 #if defined(TARGET_NR_symlinkat)
10408     case TARGET_NR_symlinkat:
10409         {
10410             void *p2;
10411             p  = lock_user_string(arg1);
10412             p2 = lock_user_string(arg3);
10413             if (!p || !p2)
10414                 ret = -TARGET_EFAULT;
10415             else
10416                 ret = get_errno(symlinkat(p, arg2, p2));
10417             unlock_user(p2, arg3, 0);
10418             unlock_user(p, arg1, 0);
10419         }
10420         return ret;
10421 #endif
10422 #ifdef TARGET_NR_readlink
10423     case TARGET_NR_readlink:
10424         {
10425             void *p2;
10426             p = lock_user_string(arg1);
10427             p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10428             ret = get_errno(do_guest_readlink(p, p2, arg3));
10429             unlock_user(p2, arg2, ret);
10430             unlock_user(p, arg1, 0);
10431         }
10432         return ret;
10433 #endif
10434 #if defined(TARGET_NR_readlinkat)
10435     case TARGET_NR_readlinkat:
10436         {
10437             void *p2;
10438             p  = lock_user_string(arg2);
10439             p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0);
10440             if (!p || !p2) {
10441                 ret = -TARGET_EFAULT;
10442             } else if (!arg4) {
10443                 /* Short circuit this for the magic exe check. */
10444                 ret = -TARGET_EINVAL;
10445             } else if (is_proc_myself((const char *)p, "exe")) {
10446                 /*
10447                  * Don't worry about sign mismatch as earlier mapping
10448                  * logic would have thrown a bad address error.
10449                  */
10450                 ret = MIN(strlen(exec_path), arg4);
10451                 /* We cannot NUL terminate the string. */
10452                 memcpy(p2, exec_path, ret);
10453             } else {
10454                 ret = get_errno(readlinkat(arg1, path(p), p2, arg4));
10455             }
10456             unlock_user(p2, arg3, ret);
10457             unlock_user(p, arg2, 0);
10458         }
10459         return ret;
10460 #endif
10461 #ifdef TARGET_NR_swapon
10462     case TARGET_NR_swapon:
10463         if (!(p = lock_user_string(arg1)))
10464             return -TARGET_EFAULT;
10465         ret = get_errno(swapon(p, arg2));
10466         unlock_user(p, arg1, 0);
10467         return ret;
10468 #endif
10469     case TARGET_NR_reboot:
10470         if (arg3 == LINUX_REBOOT_CMD_RESTART2) {
10471            /* arg4 must be ignored in all other cases */
10472            p = lock_user_string(arg4);
10473            if (!p) {
10474                return -TARGET_EFAULT;
10475            }
10476            ret = get_errno(reboot(arg1, arg2, arg3, p));
10477            unlock_user(p, arg4, 0);
10478         } else {
10479            ret = get_errno(reboot(arg1, arg2, arg3, NULL));
10480         }
10481         return ret;
10482 #ifdef TARGET_NR_mmap
10483     case TARGET_NR_mmap:
10484 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \
10485     (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \
10486     defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
10487     || defined(TARGET_S390X)
10488         {
10489             abi_ulong *v;
10490             abi_ulong v1, v2, v3, v4, v5, v6;
10491             if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1)))
10492                 return -TARGET_EFAULT;
10493             v1 = tswapal(v[0]);
10494             v2 = tswapal(v[1]);
10495             v3 = tswapal(v[2]);
10496             v4 = tswapal(v[3]);
10497             v5 = tswapal(v[4]);
10498             v6 = tswapal(v[5]);
10499             unlock_user(v, arg1, 0);
10500             return do_mmap(v1, v2, v3, v4, v5, v6);
10501         }
10502 #else
10503         /* mmap pointers are always untagged */
10504         return do_mmap(arg1, arg2, arg3, arg4, arg5, arg6);
10505 #endif
10506 #endif
10507 #ifdef TARGET_NR_mmap2
10508     case TARGET_NR_mmap2:
10509 #ifndef MMAP_SHIFT
10510 #define MMAP_SHIFT 12
10511 #endif
10512         return do_mmap(arg1, arg2, arg3, arg4, arg5,
10513                        (off_t)(abi_ulong)arg6 << MMAP_SHIFT);
10514 #endif
10515     case TARGET_NR_munmap:
10516         arg1 = cpu_untagged_addr(cpu, arg1);
10517         return get_errno(target_munmap(arg1, arg2));
10518     case TARGET_NR_mprotect:
10519         arg1 = cpu_untagged_addr(cpu, arg1);
10520         {
10521             TaskState *ts = get_task_state(cpu);
10522             /* Special hack to detect libc making the stack executable.  */
10523             if ((arg3 & PROT_GROWSDOWN)
10524                 && arg1 >= ts->info->stack_limit
10525                 && arg1 <= ts->info->start_stack) {
10526                 arg3 &= ~PROT_GROWSDOWN;
10527                 arg2 = arg2 + arg1 - ts->info->stack_limit;
10528                 arg1 = ts->info->stack_limit;
10529             }
10530         }
10531         return get_errno(target_mprotect(arg1, arg2, arg3));
10532 #ifdef TARGET_NR_mremap
10533     case TARGET_NR_mremap:
10534         arg1 = cpu_untagged_addr(cpu, arg1);
10535         /* mremap new_addr (arg5) is always untagged */
10536         return get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5));
10537 #endif
10538         /* ??? msync/mlock/munlock are broken for softmmu.  */
10539 #ifdef TARGET_NR_msync
10540     case TARGET_NR_msync:
10541         return get_errno(msync(g2h(cpu, arg1), arg2,
10542                                target_to_host_msync_arg(arg3)));
10543 #endif
10544 #ifdef TARGET_NR_mlock
10545     case TARGET_NR_mlock:
10546         return get_errno(mlock(g2h(cpu, arg1), arg2));
10547 #endif
10548 #ifdef TARGET_NR_munlock
10549     case TARGET_NR_munlock:
10550         return get_errno(munlock(g2h(cpu, arg1), arg2));
10551 #endif
10552 #ifdef TARGET_NR_mlockall
10553     case TARGET_NR_mlockall:
10554         return get_errno(mlockall(target_to_host_mlockall_arg(arg1)));
10555 #endif
10556 #ifdef TARGET_NR_munlockall
10557     case TARGET_NR_munlockall:
10558         return get_errno(munlockall());
10559 #endif
10560 #ifdef TARGET_NR_truncate
10561     case TARGET_NR_truncate:
10562         if (!(p = lock_user_string(arg1)))
10563             return -TARGET_EFAULT;
10564         ret = get_errno(truncate(p, arg2));
10565         unlock_user(p, arg1, 0);
10566         return ret;
10567 #endif
10568 #ifdef TARGET_NR_ftruncate
10569     case TARGET_NR_ftruncate:
10570         return get_errno(ftruncate(arg1, arg2));
10571 #endif
10572     case TARGET_NR_fchmod:
10573         return get_errno(fchmod(arg1, arg2));
10574 #if defined(TARGET_NR_fchmodat)
10575     case TARGET_NR_fchmodat:
10576         if (!(p = lock_user_string(arg2)))
10577             return -TARGET_EFAULT;
10578         ret = get_errno(fchmodat(arg1, p, arg3, 0));
10579         unlock_user(p, arg2, 0);
10580         return ret;
10581 #endif
10582     case TARGET_NR_getpriority:
10583         /* Note that negative values are valid for getpriority, so we must
10584            differentiate based on errno settings.  */
10585         errno = 0;
10586         ret = getpriority(arg1, arg2);
10587         if (ret == -1 && errno != 0) {
10588             return -host_to_target_errno(errno);
10589         }
10590 #ifdef TARGET_ALPHA
10591         /* Return value is the unbiased priority.  Signal no error.  */
10592         cpu_env->ir[IR_V0] = 0;
10593 #else
10594         /* Return value is a biased priority to avoid negative numbers.  */
10595         ret = 20 - ret;
10596 #endif
10597         return ret;
10598     case TARGET_NR_setpriority:
10599         return get_errno(setpriority(arg1, arg2, arg3));
10600 #ifdef TARGET_NR_statfs
10601     case TARGET_NR_statfs:
10602         if (!(p = lock_user_string(arg1))) {
10603             return -TARGET_EFAULT;
10604         }
10605         ret = get_errno(statfs(path(p), &stfs));
10606         unlock_user(p, arg1, 0);
10607     convert_statfs:
10608         if (!is_error(ret)) {
10609             struct target_statfs *target_stfs;
10610 
10611             if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0))
10612                 return -TARGET_EFAULT;
10613             __put_user(stfs.f_type, &target_stfs->f_type);
10614             __put_user(stfs.f_bsize, &target_stfs->f_bsize);
10615             __put_user(stfs.f_blocks, &target_stfs->f_blocks);
10616             __put_user(stfs.f_bfree, &target_stfs->f_bfree);
10617             __put_user(stfs.f_bavail, &target_stfs->f_bavail);
10618             __put_user(stfs.f_files, &target_stfs->f_files);
10619             __put_user(stfs.f_ffree, &target_stfs->f_ffree);
10620             __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
10621             __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
10622             __put_user(stfs.f_namelen, &target_stfs->f_namelen);
10623             __put_user(stfs.f_frsize, &target_stfs->f_frsize);
10624 #ifdef _STATFS_F_FLAGS
10625             __put_user(stfs.f_flags, &target_stfs->f_flags);
10626 #else
10627             __put_user(0, &target_stfs->f_flags);
10628 #endif
10629             memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
10630             unlock_user_struct(target_stfs, arg2, 1);
10631         }
10632         return ret;
10633 #endif
10634 #ifdef TARGET_NR_fstatfs
10635     case TARGET_NR_fstatfs:
10636         ret = get_errno(fstatfs(arg1, &stfs));
10637         goto convert_statfs;
10638 #endif
10639 #ifdef TARGET_NR_statfs64
10640     case TARGET_NR_statfs64:
10641         if (!(p = lock_user_string(arg1))) {
10642             return -TARGET_EFAULT;
10643         }
10644         ret = get_errno(statfs(path(p), &stfs));
10645         unlock_user(p, arg1, 0);
10646     convert_statfs64:
10647         if (!is_error(ret)) {
10648             struct target_statfs64 *target_stfs;
10649 
10650             if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0))
10651                 return -TARGET_EFAULT;
10652             __put_user(stfs.f_type, &target_stfs->f_type);
10653             __put_user(stfs.f_bsize, &target_stfs->f_bsize);
10654             __put_user(stfs.f_blocks, &target_stfs->f_blocks);
10655             __put_user(stfs.f_bfree, &target_stfs->f_bfree);
10656             __put_user(stfs.f_bavail, &target_stfs->f_bavail);
10657             __put_user(stfs.f_files, &target_stfs->f_files);
10658             __put_user(stfs.f_ffree, &target_stfs->f_ffree);
10659             __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
10660             __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
10661             __put_user(stfs.f_namelen, &target_stfs->f_namelen);
10662             __put_user(stfs.f_frsize, &target_stfs->f_frsize);
10663 #ifdef _STATFS_F_FLAGS
10664             __put_user(stfs.f_flags, &target_stfs->f_flags);
10665 #else
10666             __put_user(0, &target_stfs->f_flags);
10667 #endif
10668             memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
10669             unlock_user_struct(target_stfs, arg3, 1);
10670         }
10671         return ret;
10672     case TARGET_NR_fstatfs64:
10673         ret = get_errno(fstatfs(arg1, &stfs));
10674         goto convert_statfs64;
10675 #endif
10676 #ifdef TARGET_NR_socketcall
10677     case TARGET_NR_socketcall:
10678         return do_socketcall(arg1, arg2);
10679 #endif
10680 #ifdef TARGET_NR_accept
10681     case TARGET_NR_accept:
10682         return do_accept4(arg1, arg2, arg3, 0);
10683 #endif
10684 #ifdef TARGET_NR_accept4
10685     case TARGET_NR_accept4:
10686         return do_accept4(arg1, arg2, arg3, arg4);
10687 #endif
10688 #ifdef TARGET_NR_bind
10689     case TARGET_NR_bind:
10690         return do_bind(arg1, arg2, arg3);
10691 #endif
10692 #ifdef TARGET_NR_connect
10693     case TARGET_NR_connect:
10694         return do_connect(arg1, arg2, arg3);
10695 #endif
10696 #ifdef TARGET_NR_getpeername
10697     case TARGET_NR_getpeername:
10698         return do_getpeername(arg1, arg2, arg3);
10699 #endif
10700 #ifdef TARGET_NR_getsockname
10701     case TARGET_NR_getsockname:
10702         return do_getsockname(arg1, arg2, arg3);
10703 #endif
10704 #ifdef TARGET_NR_getsockopt
10705     case TARGET_NR_getsockopt:
10706         return do_getsockopt(arg1, arg2, arg3, arg4, arg5);
10707 #endif
10708 #ifdef TARGET_NR_listen
10709     case TARGET_NR_listen:
10710         return get_errno(listen(arg1, arg2));
10711 #endif
10712 #ifdef TARGET_NR_recv
10713     case TARGET_NR_recv:
10714         return do_recvfrom(arg1, arg2, arg3, arg4, 0, 0);
10715 #endif
10716 #ifdef TARGET_NR_recvfrom
10717     case TARGET_NR_recvfrom:
10718         return do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6);
10719 #endif
10720 #ifdef TARGET_NR_recvmsg
10721     case TARGET_NR_recvmsg:
10722         return do_sendrecvmsg(arg1, arg2, arg3, 0);
10723 #endif
10724 #ifdef TARGET_NR_send
10725     case TARGET_NR_send:
10726         return do_sendto(arg1, arg2, arg3, arg4, 0, 0);
10727 #endif
10728 #ifdef TARGET_NR_sendmsg
10729     case TARGET_NR_sendmsg:
10730         return do_sendrecvmsg(arg1, arg2, arg3, 1);
10731 #endif
10732 #ifdef TARGET_NR_sendmmsg
10733     case TARGET_NR_sendmmsg:
10734         return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1);
10735 #endif
10736 #ifdef TARGET_NR_recvmmsg
10737     case TARGET_NR_recvmmsg:
10738         return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0);
10739 #endif
10740 #ifdef TARGET_NR_sendto
10741     case TARGET_NR_sendto:
10742         return do_sendto(arg1, arg2, arg3, arg4, arg5, arg6);
10743 #endif
10744 #ifdef TARGET_NR_shutdown
10745     case TARGET_NR_shutdown:
10746         return get_errno(shutdown(arg1, arg2));
10747 #endif
10748 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
10749     case TARGET_NR_getrandom:
10750         p = lock_user(VERIFY_WRITE, arg1, arg2, 0);
10751         if (!p) {
10752             return -TARGET_EFAULT;
10753         }
10754         ret = get_errno(getrandom(p, arg2, arg3));
10755         unlock_user(p, arg1, ret);
10756         return ret;
10757 #endif
10758 #ifdef TARGET_NR_socket
10759     case TARGET_NR_socket:
10760         return do_socket(arg1, arg2, arg3);
10761 #endif
10762 #ifdef TARGET_NR_socketpair
10763     case TARGET_NR_socketpair:
10764         return do_socketpair(arg1, arg2, arg3, arg4);
10765 #endif
10766 #ifdef TARGET_NR_setsockopt
10767     case TARGET_NR_setsockopt:
10768         return do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5);
10769 #endif
10770 #if defined(TARGET_NR_syslog)
10771     case TARGET_NR_syslog:
10772         {
10773             int len = arg2;
10774 
10775             switch (arg1) {
10776             case TARGET_SYSLOG_ACTION_CLOSE:         /* Close log */
10777             case TARGET_SYSLOG_ACTION_OPEN:          /* Open log */
10778             case TARGET_SYSLOG_ACTION_CLEAR:         /* Clear ring buffer */
10779             case TARGET_SYSLOG_ACTION_CONSOLE_OFF:   /* Disable logging */
10780             case TARGET_SYSLOG_ACTION_CONSOLE_ON:    /* Enable logging */
10781             case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL: /* Set messages level */
10782             case TARGET_SYSLOG_ACTION_SIZE_UNREAD:   /* Number of chars */
10783             case TARGET_SYSLOG_ACTION_SIZE_BUFFER:   /* Size of the buffer */
10784                 return get_errno(sys_syslog((int)arg1, NULL, (int)arg3));
10785             case TARGET_SYSLOG_ACTION_READ:          /* Read from log */
10786             case TARGET_SYSLOG_ACTION_READ_CLEAR:    /* Read/clear msgs */
10787             case TARGET_SYSLOG_ACTION_READ_ALL:      /* Read last messages */
10788                 {
10789                     if (len < 0) {
10790                         return -TARGET_EINVAL;
10791                     }
10792                     if (len == 0) {
10793                         return 0;
10794                     }
10795                     p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10796                     if (!p) {
10797                         return -TARGET_EFAULT;
10798                     }
10799                     ret = get_errno(sys_syslog((int)arg1, p, (int)arg3));
10800                     unlock_user(p, arg2, arg3);
10801                 }
10802                 return ret;
10803             default:
10804                 return -TARGET_EINVAL;
10805             }
10806         }
10807         break;
10808 #endif
10809     case TARGET_NR_setitimer:
10810         {
10811             struct itimerval value, ovalue, *pvalue;
10812 
10813             if (arg2) {
10814                 pvalue = &value;
10815                 if (copy_from_user_timeval(&pvalue->it_interval, arg2)
10816                     || copy_from_user_timeval(&pvalue->it_value,
10817                                               arg2 + sizeof(struct target_timeval)))
10818                     return -TARGET_EFAULT;
10819             } else {
10820                 pvalue = NULL;
10821             }
10822             ret = get_errno(setitimer(arg1, pvalue, &ovalue));
10823             if (!is_error(ret) && arg3) {
10824                 if (copy_to_user_timeval(arg3,
10825                                          &ovalue.it_interval)
10826                     || copy_to_user_timeval(arg3 + sizeof(struct target_timeval),
10827                                             &ovalue.it_value))
10828                     return -TARGET_EFAULT;
10829             }
10830         }
10831         return ret;
10832     case TARGET_NR_getitimer:
10833         {
10834             struct itimerval value;
10835 
10836             ret = get_errno(getitimer(arg1, &value));
10837             if (!is_error(ret) && arg2) {
10838                 if (copy_to_user_timeval(arg2,
10839                                          &value.it_interval)
10840                     || copy_to_user_timeval(arg2 + sizeof(struct target_timeval),
10841                                             &value.it_value))
10842                     return -TARGET_EFAULT;
10843             }
10844         }
10845         return ret;
10846 #ifdef TARGET_NR_stat
10847     case TARGET_NR_stat:
10848         if (!(p = lock_user_string(arg1))) {
10849             return -TARGET_EFAULT;
10850         }
10851         ret = get_errno(stat(path(p), &st));
10852         unlock_user(p, arg1, 0);
10853         goto do_stat;
10854 #endif
10855 #ifdef TARGET_NR_lstat
10856     case TARGET_NR_lstat:
10857         if (!(p = lock_user_string(arg1))) {
10858             return -TARGET_EFAULT;
10859         }
10860         ret = get_errno(lstat(path(p), &st));
10861         unlock_user(p, arg1, 0);
10862         goto do_stat;
10863 #endif
10864 #ifdef TARGET_NR_fstat
10865     case TARGET_NR_fstat:
10866         {
10867             ret = get_errno(fstat(arg1, &st));
10868 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat)
10869         do_stat:
10870 #endif
10871             if (!is_error(ret)) {
10872                 struct target_stat *target_st;
10873 
10874                 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0))
10875                     return -TARGET_EFAULT;
10876                 memset(target_st, 0, sizeof(*target_st));
10877                 __put_user(st.st_dev, &target_st->st_dev);
10878                 __put_user(st.st_ino, &target_st->st_ino);
10879                 __put_user(st.st_mode, &target_st->st_mode);
10880                 __put_user(st.st_uid, &target_st->st_uid);
10881                 __put_user(st.st_gid, &target_st->st_gid);
10882                 __put_user(st.st_nlink, &target_st->st_nlink);
10883                 __put_user(st.st_rdev, &target_st->st_rdev);
10884                 __put_user(st.st_size, &target_st->st_size);
10885                 __put_user(st.st_blksize, &target_st->st_blksize);
10886                 __put_user(st.st_blocks, &target_st->st_blocks);
10887                 __put_user(st.st_atime, &target_st->target_st_atime);
10888                 __put_user(st.st_mtime, &target_st->target_st_mtime);
10889                 __put_user(st.st_ctime, &target_st->target_st_ctime);
10890 #if defined(HAVE_STRUCT_STAT_ST_ATIM) && defined(TARGET_STAT_HAVE_NSEC)
10891                 __put_user(st.st_atim.tv_nsec,
10892                            &target_st->target_st_atime_nsec);
10893                 __put_user(st.st_mtim.tv_nsec,
10894                            &target_st->target_st_mtime_nsec);
10895                 __put_user(st.st_ctim.tv_nsec,
10896                            &target_st->target_st_ctime_nsec);
10897 #endif
10898                 unlock_user_struct(target_st, arg2, 1);
10899             }
10900         }
10901         return ret;
10902 #endif
10903     case TARGET_NR_vhangup:
10904         return get_errno(vhangup());
10905 #ifdef TARGET_NR_syscall
10906     case TARGET_NR_syscall:
10907         return do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5,
10908                           arg6, arg7, arg8, 0);
10909 #endif
10910 #if defined(TARGET_NR_wait4)
10911     case TARGET_NR_wait4:
10912         {
10913             int status;
10914             abi_long status_ptr = arg2;
10915             struct rusage rusage, *rusage_ptr;
10916             abi_ulong target_rusage = arg4;
10917             abi_long rusage_err;
10918             if (target_rusage)
10919                 rusage_ptr = &rusage;
10920             else
10921                 rusage_ptr = NULL;
10922             ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr));
10923             if (!is_error(ret)) {
10924                 if (status_ptr && ret) {
10925                     status = host_to_target_waitstatus(status);
10926                     if (put_user_s32(status, status_ptr))
10927                         return -TARGET_EFAULT;
10928                 }
10929                 if (target_rusage) {
10930                     rusage_err = host_to_target_rusage(target_rusage, &rusage);
10931                     if (rusage_err) {
10932                         ret = rusage_err;
10933                     }
10934                 }
10935             }
10936         }
10937         return ret;
10938 #endif
10939 #ifdef TARGET_NR_swapoff
10940     case TARGET_NR_swapoff:
10941         if (!(p = lock_user_string(arg1)))
10942             return -TARGET_EFAULT;
10943         ret = get_errno(swapoff(p));
10944         unlock_user(p, arg1, 0);
10945         return ret;
10946 #endif
10947     case TARGET_NR_sysinfo:
10948         {
10949             struct target_sysinfo *target_value;
10950             struct sysinfo value;
10951             ret = get_errno(sysinfo(&value));
10952             if (!is_error(ret) && arg1)
10953             {
10954                 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0))
10955                     return -TARGET_EFAULT;
10956                 __put_user(value.uptime, &target_value->uptime);
10957                 __put_user(value.loads[0], &target_value->loads[0]);
10958                 __put_user(value.loads[1], &target_value->loads[1]);
10959                 __put_user(value.loads[2], &target_value->loads[2]);
10960                 __put_user(value.totalram, &target_value->totalram);
10961                 __put_user(value.freeram, &target_value->freeram);
10962                 __put_user(value.sharedram, &target_value->sharedram);
10963                 __put_user(value.bufferram, &target_value->bufferram);
10964                 __put_user(value.totalswap, &target_value->totalswap);
10965                 __put_user(value.freeswap, &target_value->freeswap);
10966                 __put_user(value.procs, &target_value->procs);
10967                 __put_user(value.totalhigh, &target_value->totalhigh);
10968                 __put_user(value.freehigh, &target_value->freehigh);
10969                 __put_user(value.mem_unit, &target_value->mem_unit);
10970                 unlock_user_struct(target_value, arg1, 1);
10971             }
10972         }
10973         return ret;
10974 #ifdef TARGET_NR_ipc
10975     case TARGET_NR_ipc:
10976         return do_ipc(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6);
10977 #endif
10978 #ifdef TARGET_NR_semget
10979     case TARGET_NR_semget:
10980         return get_errno(semget(arg1, arg2, arg3));
10981 #endif
10982 #ifdef TARGET_NR_semop
10983     case TARGET_NR_semop:
10984         return do_semtimedop(arg1, arg2, arg3, 0, false);
10985 #endif
10986 #ifdef TARGET_NR_semtimedop
10987     case TARGET_NR_semtimedop:
10988         return do_semtimedop(arg1, arg2, arg3, arg4, false);
10989 #endif
10990 #ifdef TARGET_NR_semtimedop_time64
10991     case TARGET_NR_semtimedop_time64:
10992         return do_semtimedop(arg1, arg2, arg3, arg4, true);
10993 #endif
10994 #ifdef TARGET_NR_semctl
10995     case TARGET_NR_semctl:
10996         return do_semctl(arg1, arg2, arg3, arg4);
10997 #endif
10998 #ifdef TARGET_NR_msgctl
10999     case TARGET_NR_msgctl:
11000         return do_msgctl(arg1, arg2, arg3);
11001 #endif
11002 #ifdef TARGET_NR_msgget
11003     case TARGET_NR_msgget:
11004         return get_errno(msgget(arg1, arg2));
11005 #endif
11006 #ifdef TARGET_NR_msgrcv
11007     case TARGET_NR_msgrcv:
11008         return do_msgrcv(arg1, arg2, arg3, arg4, arg5);
11009 #endif
11010 #ifdef TARGET_NR_msgsnd
11011     case TARGET_NR_msgsnd:
11012         return do_msgsnd(arg1, arg2, arg3, arg4);
11013 #endif
11014 #ifdef TARGET_NR_shmget
11015     case TARGET_NR_shmget:
11016         return get_errno(shmget(arg1, arg2, arg3));
11017 #endif
11018 #ifdef TARGET_NR_shmctl
11019     case TARGET_NR_shmctl:
11020         return do_shmctl(arg1, arg2, arg3);
11021 #endif
11022 #ifdef TARGET_NR_shmat
11023     case TARGET_NR_shmat:
11024         return target_shmat(cpu_env, arg1, arg2, arg3);
11025 #endif
11026 #ifdef TARGET_NR_shmdt
11027     case TARGET_NR_shmdt:
11028         return target_shmdt(arg1);
11029 #endif
11030     case TARGET_NR_fsync:
11031         return get_errno(fsync(arg1));
11032     case TARGET_NR_clone:
11033         /* Linux manages to have three different orderings for its
11034          * arguments to clone(); the BACKWARDS and BACKWARDS2 defines
11035          * match the kernel's CONFIG_CLONE_* settings.
11036          * Microblaze is further special in that it uses a sixth
11037          * implicit argument to clone for the TLS pointer.
11038          */
11039 #if defined(TARGET_MICROBLAZE)
11040         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5));
11041 #elif defined(TARGET_CLONE_BACKWARDS)
11042         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5));
11043 #elif defined(TARGET_CLONE_BACKWARDS2)
11044         ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4));
11045 #else
11046         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4));
11047 #endif
11048         return ret;
11049 #ifdef __NR_exit_group
11050         /* new thread calls */
11051     case TARGET_NR_exit_group:
11052         preexit_cleanup(cpu_env, arg1);
11053         return get_errno(exit_group(arg1));
11054 #endif
11055     case TARGET_NR_setdomainname:
11056         if (!(p = lock_user_string(arg1)))
11057             return -TARGET_EFAULT;
11058         ret = get_errno(setdomainname(p, arg2));
11059         unlock_user(p, arg1, 0);
11060         return ret;
11061     case TARGET_NR_uname:
11062         /* no need to transcode because we use the linux syscall */
11063         {
11064             struct new_utsname * buf;
11065 
11066             if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0))
11067                 return -TARGET_EFAULT;
11068             ret = get_errno(sys_uname(buf));
11069             if (!is_error(ret)) {
11070                 /* Overwrite the native machine name with whatever is being
11071                    emulated. */
11072                 g_strlcpy(buf->machine, cpu_to_uname_machine(cpu_env),
11073                           sizeof(buf->machine));
11074                 /* Allow the user to override the reported release.  */
11075                 if (qemu_uname_release && *qemu_uname_release) {
11076                     g_strlcpy(buf->release, qemu_uname_release,
11077                               sizeof(buf->release));
11078                 }
11079             }
11080             unlock_user_struct(buf, arg1, 1);
11081         }
11082         return ret;
11083 #ifdef TARGET_I386
11084     case TARGET_NR_modify_ldt:
11085         return do_modify_ldt(cpu_env, arg1, arg2, arg3);
11086 #if !defined(TARGET_X86_64)
11087     case TARGET_NR_vm86:
11088         return do_vm86(cpu_env, arg1, arg2);
11089 #endif
11090 #endif
11091 #if defined(TARGET_NR_adjtimex)
11092     case TARGET_NR_adjtimex:
11093         {
11094             struct timex host_buf;
11095 
11096             if (target_to_host_timex(&host_buf, arg1) != 0) {
11097                 return -TARGET_EFAULT;
11098             }
11099             ret = get_errno(adjtimex(&host_buf));
11100             if (!is_error(ret)) {
11101                 if (host_to_target_timex(arg1, &host_buf) != 0) {
11102                     return -TARGET_EFAULT;
11103                 }
11104             }
11105         }
11106         return ret;
11107 #endif
11108 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)
11109     case TARGET_NR_clock_adjtime:
11110         {
11111             struct timex htx;
11112 
11113             if (target_to_host_timex(&htx, arg2) != 0) {
11114                 return -TARGET_EFAULT;
11115             }
11116             ret = get_errno(clock_adjtime(arg1, &htx));
11117             if (!is_error(ret) && host_to_target_timex(arg2, &htx)) {
11118                 return -TARGET_EFAULT;
11119             }
11120         }
11121         return ret;
11122 #endif
11123 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
11124     case TARGET_NR_clock_adjtime64:
11125         {
11126             struct timex htx;
11127 
11128             if (target_to_host_timex64(&htx, arg2) != 0) {
11129                 return -TARGET_EFAULT;
11130             }
11131             ret = get_errno(clock_adjtime(arg1, &htx));
11132             if (!is_error(ret) && host_to_target_timex64(arg2, &htx)) {
11133                     return -TARGET_EFAULT;
11134             }
11135         }
11136         return ret;
11137 #endif
11138     case TARGET_NR_getpgid:
11139         return get_errno(getpgid(arg1));
11140     case TARGET_NR_fchdir:
11141         return get_errno(fchdir(arg1));
11142     case TARGET_NR_personality:
11143         return get_errno(personality(arg1));
11144 #ifdef TARGET_NR__llseek /* Not on alpha */
11145     case TARGET_NR__llseek:
11146         {
11147             int64_t res;
11148 #if !defined(__NR_llseek)
11149             res = lseek(arg1, ((uint64_t)arg2 << 32) | (abi_ulong)arg3, arg5);
11150             if (res == -1) {
11151                 ret = get_errno(res);
11152             } else {
11153                 ret = 0;
11154             }
11155 #else
11156             ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5));
11157 #endif
11158             if ((ret == 0) && put_user_s64(res, arg4)) {
11159                 return -TARGET_EFAULT;
11160             }
11161         }
11162         return ret;
11163 #endif
11164 #ifdef TARGET_NR_getdents
11165     case TARGET_NR_getdents:
11166         return do_getdents(arg1, arg2, arg3);
11167 #endif /* TARGET_NR_getdents */
11168 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
11169     case TARGET_NR_getdents64:
11170         return do_getdents64(arg1, arg2, arg3);
11171 #endif /* TARGET_NR_getdents64 */
11172 #if defined(TARGET_NR__newselect)
11173     case TARGET_NR__newselect:
11174         return do_select(arg1, arg2, arg3, arg4, arg5);
11175 #endif
11176 #ifdef TARGET_NR_poll
11177     case TARGET_NR_poll:
11178         return do_ppoll(arg1, arg2, arg3, arg4, arg5, false, false);
11179 #endif
11180 #ifdef TARGET_NR_ppoll
11181     case TARGET_NR_ppoll:
11182         return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, false);
11183 #endif
11184 #ifdef TARGET_NR_ppoll_time64
11185     case TARGET_NR_ppoll_time64:
11186         return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, true);
11187 #endif
11188     case TARGET_NR_flock:
11189         /* NOTE: the flock constant seems to be the same for every
11190            Linux platform */
11191         return get_errno(safe_flock(arg1, arg2));
11192     case TARGET_NR_readv:
11193         {
11194             struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
11195             if (vec != NULL) {
11196                 ret = get_errno(safe_readv(arg1, vec, arg3));
11197                 unlock_iovec(vec, arg2, arg3, 1);
11198             } else {
11199                 ret = -host_to_target_errno(errno);
11200             }
11201         }
11202         return ret;
11203     case TARGET_NR_writev:
11204         {
11205             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
11206             if (vec != NULL) {
11207                 ret = get_errno(safe_writev(arg1, vec, arg3));
11208                 unlock_iovec(vec, arg2, arg3, 0);
11209             } else {
11210                 ret = -host_to_target_errno(errno);
11211             }
11212         }
11213         return ret;
11214 #if defined(TARGET_NR_preadv)
11215     case TARGET_NR_preadv:
11216         {
11217             struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
11218             if (vec != NULL) {
11219                 unsigned long low, high;
11220 
11221                 target_to_host_low_high(arg4, arg5, &low, &high);
11222                 ret = get_errno(safe_preadv(arg1, vec, arg3, low, high));
11223                 unlock_iovec(vec, arg2, arg3, 1);
11224             } else {
11225                 ret = -host_to_target_errno(errno);
11226            }
11227         }
11228         return ret;
11229 #endif
11230 #if defined(TARGET_NR_pwritev)
11231     case TARGET_NR_pwritev:
11232         {
11233             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
11234             if (vec != NULL) {
11235                 unsigned long low, high;
11236 
11237                 target_to_host_low_high(arg4, arg5, &low, &high);
11238                 ret = get_errno(safe_pwritev(arg1, vec, arg3, low, high));
11239                 unlock_iovec(vec, arg2, arg3, 0);
11240             } else {
11241                 ret = -host_to_target_errno(errno);
11242            }
11243         }
11244         return ret;
11245 #endif
11246     case TARGET_NR_getsid:
11247         return get_errno(getsid(arg1));
11248 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
11249     case TARGET_NR_fdatasync:
11250         return get_errno(fdatasync(arg1));
11251 #endif
11252     case TARGET_NR_sched_getaffinity:
11253         {
11254             unsigned int mask_size;
11255             unsigned long *mask;
11256 
11257             /*
11258              * sched_getaffinity needs multiples of ulong, so need to take
11259              * care of mismatches between target ulong and host ulong sizes.
11260              */
11261             if (arg2 & (sizeof(abi_ulong) - 1)) {
11262                 return -TARGET_EINVAL;
11263             }
11264             mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
11265 
11266             mask = alloca(mask_size);
11267             memset(mask, 0, mask_size);
11268             ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask));
11269 
11270             if (!is_error(ret)) {
11271                 if (ret > arg2) {
11272                     /* More data returned than the caller's buffer will fit.
11273                      * This only happens if sizeof(abi_long) < sizeof(long)
11274                      * and the caller passed us a buffer holding an odd number
11275                      * of abi_longs. If the host kernel is actually using the
11276                      * extra 4 bytes then fail EINVAL; otherwise we can just
11277                      * ignore them and only copy the interesting part.
11278                      */
11279                     int numcpus = sysconf(_SC_NPROCESSORS_CONF);
11280                     if (numcpus > arg2 * 8) {
11281                         return -TARGET_EINVAL;
11282                     }
11283                     ret = arg2;
11284                 }
11285 
11286                 if (host_to_target_cpu_mask(mask, mask_size, arg3, ret)) {
11287                     return -TARGET_EFAULT;
11288                 }
11289             }
11290         }
11291         return ret;
11292     case TARGET_NR_sched_setaffinity:
11293         {
11294             unsigned int mask_size;
11295             unsigned long *mask;
11296 
11297             /*
11298              * sched_setaffinity needs multiples of ulong, so need to take
11299              * care of mismatches between target ulong and host ulong sizes.
11300              */
11301             if (arg2 & (sizeof(abi_ulong) - 1)) {
11302                 return -TARGET_EINVAL;
11303             }
11304             mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
11305             mask = alloca(mask_size);
11306 
11307             ret = target_to_host_cpu_mask(mask, mask_size, arg3, arg2);
11308             if (ret) {
11309                 return ret;
11310             }
11311 
11312             return get_errno(sys_sched_setaffinity(arg1, mask_size, mask));
11313         }
11314     case TARGET_NR_getcpu:
11315         {
11316             unsigned cpuid, node;
11317             ret = get_errno(sys_getcpu(arg1 ? &cpuid : NULL,
11318                                        arg2 ? &node : NULL,
11319                                        NULL));
11320             if (is_error(ret)) {
11321                 return ret;
11322             }
11323             if (arg1 && put_user_u32(cpuid, arg1)) {
11324                 return -TARGET_EFAULT;
11325             }
11326             if (arg2 && put_user_u32(node, arg2)) {
11327                 return -TARGET_EFAULT;
11328             }
11329         }
11330         return ret;
11331     case TARGET_NR_sched_setparam:
11332         {
11333             struct target_sched_param *target_schp;
11334             struct sched_param schp;
11335 
11336             if (arg2 == 0) {
11337                 return -TARGET_EINVAL;
11338             }
11339             if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1)) {
11340                 return -TARGET_EFAULT;
11341             }
11342             schp.sched_priority = tswap32(target_schp->sched_priority);
11343             unlock_user_struct(target_schp, arg2, 0);
11344             return get_errno(sys_sched_setparam(arg1, &schp));
11345         }
11346     case TARGET_NR_sched_getparam:
11347         {
11348             struct target_sched_param *target_schp;
11349             struct sched_param schp;
11350 
11351             if (arg2 == 0) {
11352                 return -TARGET_EINVAL;
11353             }
11354             ret = get_errno(sys_sched_getparam(arg1, &schp));
11355             if (!is_error(ret)) {
11356                 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0)) {
11357                     return -TARGET_EFAULT;
11358                 }
11359                 target_schp->sched_priority = tswap32(schp.sched_priority);
11360                 unlock_user_struct(target_schp, arg2, 1);
11361             }
11362         }
11363         return ret;
11364     case TARGET_NR_sched_setscheduler:
11365         {
11366             struct target_sched_param *target_schp;
11367             struct sched_param schp;
11368             if (arg3 == 0) {
11369                 return -TARGET_EINVAL;
11370             }
11371             if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1)) {
11372                 return -TARGET_EFAULT;
11373             }
11374             schp.sched_priority = tswap32(target_schp->sched_priority);
11375             unlock_user_struct(target_schp, arg3, 0);
11376             return get_errno(sys_sched_setscheduler(arg1, arg2, &schp));
11377         }
11378     case TARGET_NR_sched_getscheduler:
11379         return get_errno(sys_sched_getscheduler(arg1));
11380     case TARGET_NR_sched_getattr:
11381         {
11382             struct target_sched_attr *target_scha;
11383             struct sched_attr scha;
11384             if (arg2 == 0) {
11385                 return -TARGET_EINVAL;
11386             }
11387             if (arg3 > sizeof(scha)) {
11388                 arg3 = sizeof(scha);
11389             }
11390             ret = get_errno(sys_sched_getattr(arg1, &scha, arg3, arg4));
11391             if (!is_error(ret)) {
11392                 target_scha = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11393                 if (!target_scha) {
11394                     return -TARGET_EFAULT;
11395                 }
11396                 target_scha->size = tswap32(scha.size);
11397                 target_scha->sched_policy = tswap32(scha.sched_policy);
11398                 target_scha->sched_flags = tswap64(scha.sched_flags);
11399                 target_scha->sched_nice = tswap32(scha.sched_nice);
11400                 target_scha->sched_priority = tswap32(scha.sched_priority);
11401                 target_scha->sched_runtime = tswap64(scha.sched_runtime);
11402                 target_scha->sched_deadline = tswap64(scha.sched_deadline);
11403                 target_scha->sched_period = tswap64(scha.sched_period);
11404                 if (scha.size > offsetof(struct sched_attr, sched_util_min)) {
11405                     target_scha->sched_util_min = tswap32(scha.sched_util_min);
11406                     target_scha->sched_util_max = tswap32(scha.sched_util_max);
11407                 }
11408                 unlock_user(target_scha, arg2, arg3);
11409             }
11410             return ret;
11411         }
11412     case TARGET_NR_sched_setattr:
11413         {
11414             struct target_sched_attr *target_scha;
11415             struct sched_attr scha;
11416             uint32_t size;
11417             int zeroed;
11418             if (arg2 == 0) {
11419                 return -TARGET_EINVAL;
11420             }
11421             if (get_user_u32(size, arg2)) {
11422                 return -TARGET_EFAULT;
11423             }
11424             if (!size) {
11425                 size = offsetof(struct target_sched_attr, sched_util_min);
11426             }
11427             if (size < offsetof(struct target_sched_attr, sched_util_min)) {
11428                 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) {
11429                     return -TARGET_EFAULT;
11430                 }
11431                 return -TARGET_E2BIG;
11432             }
11433 
11434             zeroed = check_zeroed_user(arg2, sizeof(struct target_sched_attr), size);
11435             if (zeroed < 0) {
11436                 return zeroed;
11437             } else if (zeroed == 0) {
11438                 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) {
11439                     return -TARGET_EFAULT;
11440                 }
11441                 return -TARGET_E2BIG;
11442             }
11443             if (size > sizeof(struct target_sched_attr)) {
11444                 size = sizeof(struct target_sched_attr);
11445             }
11446 
11447             target_scha = lock_user(VERIFY_READ, arg2, size, 1);
11448             if (!target_scha) {
11449                 return -TARGET_EFAULT;
11450             }
11451             scha.size = size;
11452             scha.sched_policy = tswap32(target_scha->sched_policy);
11453             scha.sched_flags = tswap64(target_scha->sched_flags);
11454             scha.sched_nice = tswap32(target_scha->sched_nice);
11455             scha.sched_priority = tswap32(target_scha->sched_priority);
11456             scha.sched_runtime = tswap64(target_scha->sched_runtime);
11457             scha.sched_deadline = tswap64(target_scha->sched_deadline);
11458             scha.sched_period = tswap64(target_scha->sched_period);
11459             if (size > offsetof(struct target_sched_attr, sched_util_min)) {
11460                 scha.sched_util_min = tswap32(target_scha->sched_util_min);
11461                 scha.sched_util_max = tswap32(target_scha->sched_util_max);
11462             }
11463             unlock_user(target_scha, arg2, 0);
11464             return get_errno(sys_sched_setattr(arg1, &scha, arg3));
11465         }
11466     case TARGET_NR_sched_yield:
11467         return get_errno(sched_yield());
11468     case TARGET_NR_sched_get_priority_max:
11469         return get_errno(sched_get_priority_max(arg1));
11470     case TARGET_NR_sched_get_priority_min:
11471         return get_errno(sched_get_priority_min(arg1));
11472 #ifdef TARGET_NR_sched_rr_get_interval
11473     case TARGET_NR_sched_rr_get_interval:
11474         {
11475             struct timespec ts;
11476             ret = get_errno(sched_rr_get_interval(arg1, &ts));
11477             if (!is_error(ret)) {
11478                 ret = host_to_target_timespec(arg2, &ts);
11479             }
11480         }
11481         return ret;
11482 #endif
11483 #ifdef TARGET_NR_sched_rr_get_interval_time64
11484     case TARGET_NR_sched_rr_get_interval_time64:
11485         {
11486             struct timespec ts;
11487             ret = get_errno(sched_rr_get_interval(arg1, &ts));
11488             if (!is_error(ret)) {
11489                 ret = host_to_target_timespec64(arg2, &ts);
11490             }
11491         }
11492         return ret;
11493 #endif
11494 #if defined(TARGET_NR_nanosleep)
11495     case TARGET_NR_nanosleep:
11496         {
11497             struct timespec req, rem;
11498             target_to_host_timespec(&req, arg1);
11499             ret = get_errno(safe_nanosleep(&req, &rem));
11500             if (is_error(ret) && arg2) {
11501                 host_to_target_timespec(arg2, &rem);
11502             }
11503         }
11504         return ret;
11505 #endif
11506     case TARGET_NR_prctl:
11507         return do_prctl(cpu_env, arg1, arg2, arg3, arg4, arg5);
11508         break;
11509 #ifdef TARGET_NR_arch_prctl
11510     case TARGET_NR_arch_prctl:
11511         return do_arch_prctl(cpu_env, arg1, arg2);
11512 #endif
11513 #ifdef TARGET_NR_pread64
11514     case TARGET_NR_pread64:
11515         if (regpairs_aligned(cpu_env, num)) {
11516             arg4 = arg5;
11517             arg5 = arg6;
11518         }
11519         if (arg2 == 0 && arg3 == 0) {
11520             /* Special-case NULL buffer and zero length, which should succeed */
11521             p = 0;
11522         } else {
11523             p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11524             if (!p) {
11525                 return -TARGET_EFAULT;
11526             }
11527         }
11528         ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5)));
11529         unlock_user(p, arg2, ret);
11530         return ret;
11531     case TARGET_NR_pwrite64:
11532         if (regpairs_aligned(cpu_env, num)) {
11533             arg4 = arg5;
11534             arg5 = arg6;
11535         }
11536         if (arg2 == 0 && arg3 == 0) {
11537             /* Special-case NULL buffer and zero length, which should succeed */
11538             p = 0;
11539         } else {
11540             p = lock_user(VERIFY_READ, arg2, arg3, 1);
11541             if (!p) {
11542                 return -TARGET_EFAULT;
11543             }
11544         }
11545         ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5)));
11546         unlock_user(p, arg2, 0);
11547         return ret;
11548 #endif
11549     case TARGET_NR_getcwd:
11550         if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0)))
11551             return -TARGET_EFAULT;
11552         ret = get_errno(sys_getcwd1(p, arg2));
11553         unlock_user(p, arg1, ret);
11554         return ret;
11555     case TARGET_NR_capget:
11556     case TARGET_NR_capset:
11557     {
11558         struct target_user_cap_header *target_header;
11559         struct target_user_cap_data *target_data = NULL;
11560         struct __user_cap_header_struct header;
11561         struct __user_cap_data_struct data[2];
11562         struct __user_cap_data_struct *dataptr = NULL;
11563         int i, target_datalen;
11564         int data_items = 1;
11565 
11566         if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) {
11567             return -TARGET_EFAULT;
11568         }
11569         header.version = tswap32(target_header->version);
11570         header.pid = tswap32(target_header->pid);
11571 
11572         if (header.version != _LINUX_CAPABILITY_VERSION) {
11573             /* Version 2 and up takes pointer to two user_data structs */
11574             data_items = 2;
11575         }
11576 
11577         target_datalen = sizeof(*target_data) * data_items;
11578 
11579         if (arg2) {
11580             if (num == TARGET_NR_capget) {
11581                 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0);
11582             } else {
11583                 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1);
11584             }
11585             if (!target_data) {
11586                 unlock_user_struct(target_header, arg1, 0);
11587                 return -TARGET_EFAULT;
11588             }
11589 
11590             if (num == TARGET_NR_capset) {
11591                 for (i = 0; i < data_items; i++) {
11592                     data[i].effective = tswap32(target_data[i].effective);
11593                     data[i].permitted = tswap32(target_data[i].permitted);
11594                     data[i].inheritable = tswap32(target_data[i].inheritable);
11595                 }
11596             }
11597 
11598             dataptr = data;
11599         }
11600 
11601         if (num == TARGET_NR_capget) {
11602             ret = get_errno(capget(&header, dataptr));
11603         } else {
11604             ret = get_errno(capset(&header, dataptr));
11605         }
11606 
11607         /* The kernel always updates version for both capget and capset */
11608         target_header->version = tswap32(header.version);
11609         unlock_user_struct(target_header, arg1, 1);
11610 
11611         if (arg2) {
11612             if (num == TARGET_NR_capget) {
11613                 for (i = 0; i < data_items; i++) {
11614                     target_data[i].effective = tswap32(data[i].effective);
11615                     target_data[i].permitted = tswap32(data[i].permitted);
11616                     target_data[i].inheritable = tswap32(data[i].inheritable);
11617                 }
11618                 unlock_user(target_data, arg2, target_datalen);
11619             } else {
11620                 unlock_user(target_data, arg2, 0);
11621             }
11622         }
11623         return ret;
11624     }
11625     case TARGET_NR_sigaltstack:
11626         return do_sigaltstack(arg1, arg2, cpu_env);
11627 
11628 #ifdef CONFIG_SENDFILE
11629 #ifdef TARGET_NR_sendfile
11630     case TARGET_NR_sendfile:
11631     {
11632         off_t *offp = NULL;
11633         off_t off;
11634         if (arg3) {
11635             ret = get_user_sal(off, arg3);
11636             if (is_error(ret)) {
11637                 return ret;
11638             }
11639             offp = &off;
11640         }
11641         ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11642         if (!is_error(ret) && arg3) {
11643             abi_long ret2 = put_user_sal(off, arg3);
11644             if (is_error(ret2)) {
11645                 ret = ret2;
11646             }
11647         }
11648         return ret;
11649     }
11650 #endif
11651 #ifdef TARGET_NR_sendfile64
11652     case TARGET_NR_sendfile64:
11653     {
11654         off_t *offp = NULL;
11655         off_t off;
11656         if (arg3) {
11657             ret = get_user_s64(off, arg3);
11658             if (is_error(ret)) {
11659                 return ret;
11660             }
11661             offp = &off;
11662         }
11663         ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11664         if (!is_error(ret) && arg3) {
11665             abi_long ret2 = put_user_s64(off, arg3);
11666             if (is_error(ret2)) {
11667                 ret = ret2;
11668             }
11669         }
11670         return ret;
11671     }
11672 #endif
11673 #endif
11674 #ifdef TARGET_NR_vfork
11675     case TARGET_NR_vfork:
11676         return get_errno(do_fork(cpu_env,
11677                          CLONE_VFORK | CLONE_VM | TARGET_SIGCHLD,
11678                          0, 0, 0, 0));
11679 #endif
11680 #ifdef TARGET_NR_ugetrlimit
11681     case TARGET_NR_ugetrlimit:
11682     {
11683 	struct rlimit rlim;
11684 	int resource = target_to_host_resource(arg1);
11685 	ret = get_errno(getrlimit(resource, &rlim));
11686 	if (!is_error(ret)) {
11687 	    struct target_rlimit *target_rlim;
11688             if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
11689                 return -TARGET_EFAULT;
11690 	    target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
11691 	    target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
11692             unlock_user_struct(target_rlim, arg2, 1);
11693 	}
11694         return ret;
11695     }
11696 #endif
11697 #ifdef TARGET_NR_truncate64
11698     case TARGET_NR_truncate64:
11699         if (!(p = lock_user_string(arg1)))
11700             return -TARGET_EFAULT;
11701 	ret = target_truncate64(cpu_env, p, arg2, arg3, arg4);
11702         unlock_user(p, arg1, 0);
11703         return ret;
11704 #endif
11705 #ifdef TARGET_NR_ftruncate64
11706     case TARGET_NR_ftruncate64:
11707         return target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4);
11708 #endif
11709 #ifdef TARGET_NR_stat64
11710     case TARGET_NR_stat64:
11711         if (!(p = lock_user_string(arg1))) {
11712             return -TARGET_EFAULT;
11713         }
11714         ret = get_errno(stat(path(p), &st));
11715         unlock_user(p, arg1, 0);
11716         if (!is_error(ret))
11717             ret = host_to_target_stat64(cpu_env, arg2, &st);
11718         return ret;
11719 #endif
11720 #ifdef TARGET_NR_lstat64
11721     case TARGET_NR_lstat64:
11722         if (!(p = lock_user_string(arg1))) {
11723             return -TARGET_EFAULT;
11724         }
11725         ret = get_errno(lstat(path(p), &st));
11726         unlock_user(p, arg1, 0);
11727         if (!is_error(ret))
11728             ret = host_to_target_stat64(cpu_env, arg2, &st);
11729         return ret;
11730 #endif
11731 #ifdef TARGET_NR_fstat64
11732     case TARGET_NR_fstat64:
11733         ret = get_errno(fstat(arg1, &st));
11734         if (!is_error(ret))
11735             ret = host_to_target_stat64(cpu_env, arg2, &st);
11736         return ret;
11737 #endif
11738 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat))
11739 #ifdef TARGET_NR_fstatat64
11740     case TARGET_NR_fstatat64:
11741 #endif
11742 #ifdef TARGET_NR_newfstatat
11743     case TARGET_NR_newfstatat:
11744 #endif
11745         if (!(p = lock_user_string(arg2))) {
11746             return -TARGET_EFAULT;
11747         }
11748         ret = get_errno(fstatat(arg1, path(p), &st, arg4));
11749         unlock_user(p, arg2, 0);
11750         if (!is_error(ret))
11751             ret = host_to_target_stat64(cpu_env, arg3, &st);
11752         return ret;
11753 #endif
11754 #if defined(TARGET_NR_statx)
11755     case TARGET_NR_statx:
11756         {
11757             struct target_statx *target_stx;
11758             int dirfd = arg1;
11759             int flags = arg3;
11760 
11761             p = lock_user_string(arg2);
11762             if (p == NULL) {
11763                 return -TARGET_EFAULT;
11764             }
11765 #if defined(__NR_statx)
11766             {
11767                 /*
11768                  * It is assumed that struct statx is architecture independent.
11769                  */
11770                 struct target_statx host_stx;
11771                 int mask = arg4;
11772 
11773                 ret = get_errno(sys_statx(dirfd, p, flags, mask, &host_stx));
11774                 if (!is_error(ret)) {
11775                     if (host_to_target_statx(&host_stx, arg5) != 0) {
11776                         unlock_user(p, arg2, 0);
11777                         return -TARGET_EFAULT;
11778                     }
11779                 }
11780 
11781                 if (ret != -TARGET_ENOSYS) {
11782                     unlock_user(p, arg2, 0);
11783                     return ret;
11784                 }
11785             }
11786 #endif
11787             ret = get_errno(fstatat(dirfd, path(p), &st, flags));
11788             unlock_user(p, arg2, 0);
11789 
11790             if (!is_error(ret)) {
11791                 if (!lock_user_struct(VERIFY_WRITE, target_stx, arg5, 0)) {
11792                     return -TARGET_EFAULT;
11793                 }
11794                 memset(target_stx, 0, sizeof(*target_stx));
11795                 __put_user(major(st.st_dev), &target_stx->stx_dev_major);
11796                 __put_user(minor(st.st_dev), &target_stx->stx_dev_minor);
11797                 __put_user(st.st_ino, &target_stx->stx_ino);
11798                 __put_user(st.st_mode, &target_stx->stx_mode);
11799                 __put_user(st.st_uid, &target_stx->stx_uid);
11800                 __put_user(st.st_gid, &target_stx->stx_gid);
11801                 __put_user(st.st_nlink, &target_stx->stx_nlink);
11802                 __put_user(major(st.st_rdev), &target_stx->stx_rdev_major);
11803                 __put_user(minor(st.st_rdev), &target_stx->stx_rdev_minor);
11804                 __put_user(st.st_size, &target_stx->stx_size);
11805                 __put_user(st.st_blksize, &target_stx->stx_blksize);
11806                 __put_user(st.st_blocks, &target_stx->stx_blocks);
11807                 __put_user(st.st_atime, &target_stx->stx_atime.tv_sec);
11808                 __put_user(st.st_mtime, &target_stx->stx_mtime.tv_sec);
11809                 __put_user(st.st_ctime, &target_stx->stx_ctime.tv_sec);
11810                 unlock_user_struct(target_stx, arg5, 1);
11811             }
11812         }
11813         return ret;
11814 #endif
11815 #ifdef TARGET_NR_lchown
11816     case TARGET_NR_lchown:
11817         if (!(p = lock_user_string(arg1)))
11818             return -TARGET_EFAULT;
11819         ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3)));
11820         unlock_user(p, arg1, 0);
11821         return ret;
11822 #endif
11823 #ifdef TARGET_NR_getuid
11824     case TARGET_NR_getuid:
11825         return get_errno(high2lowuid(getuid()));
11826 #endif
11827 #ifdef TARGET_NR_getgid
11828     case TARGET_NR_getgid:
11829         return get_errno(high2lowgid(getgid()));
11830 #endif
11831 #ifdef TARGET_NR_geteuid
11832     case TARGET_NR_geteuid:
11833         return get_errno(high2lowuid(geteuid()));
11834 #endif
11835 #ifdef TARGET_NR_getegid
11836     case TARGET_NR_getegid:
11837         return get_errno(high2lowgid(getegid()));
11838 #endif
11839     case TARGET_NR_setreuid:
11840         return get_errno(setreuid(low2highuid(arg1), low2highuid(arg2)));
11841     case TARGET_NR_setregid:
11842         return get_errno(setregid(low2highgid(arg1), low2highgid(arg2)));
11843     case TARGET_NR_getgroups:
11844         { /* the same code as for TARGET_NR_getgroups32 */
11845             int gidsetsize = arg1;
11846             target_id *target_grouplist;
11847             g_autofree gid_t *grouplist = NULL;
11848             int i;
11849 
11850             if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
11851                 return -TARGET_EINVAL;
11852             }
11853             if (gidsetsize > 0) {
11854                 grouplist = g_try_new(gid_t, gidsetsize);
11855                 if (!grouplist) {
11856                     return -TARGET_ENOMEM;
11857                 }
11858             }
11859             ret = get_errno(getgroups(gidsetsize, grouplist));
11860             if (!is_error(ret) && gidsetsize > 0) {
11861                 target_grouplist = lock_user(VERIFY_WRITE, arg2,
11862                                              gidsetsize * sizeof(target_id), 0);
11863                 if (!target_grouplist) {
11864                     return -TARGET_EFAULT;
11865                 }
11866                 for (i = 0; i < ret; i++) {
11867                     target_grouplist[i] = tswapid(high2lowgid(grouplist[i]));
11868                 }
11869                 unlock_user(target_grouplist, arg2,
11870                             gidsetsize * sizeof(target_id));
11871             }
11872             return ret;
11873         }
11874     case TARGET_NR_setgroups:
11875         { /* the same code as for TARGET_NR_setgroups32 */
11876             int gidsetsize = arg1;
11877             target_id *target_grouplist;
11878             g_autofree gid_t *grouplist = NULL;
11879             int i;
11880 
11881             if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
11882                 return -TARGET_EINVAL;
11883             }
11884             if (gidsetsize > 0) {
11885                 grouplist = g_try_new(gid_t, gidsetsize);
11886                 if (!grouplist) {
11887                     return -TARGET_ENOMEM;
11888                 }
11889                 target_grouplist = lock_user(VERIFY_READ, arg2,
11890                                              gidsetsize * sizeof(target_id), 1);
11891                 if (!target_grouplist) {
11892                     return -TARGET_EFAULT;
11893                 }
11894                 for (i = 0; i < gidsetsize; i++) {
11895                     grouplist[i] = low2highgid(tswapid(target_grouplist[i]));
11896                 }
11897                 unlock_user(target_grouplist, arg2,
11898                             gidsetsize * sizeof(target_id));
11899             }
11900             return get_errno(sys_setgroups(gidsetsize, grouplist));
11901         }
11902     case TARGET_NR_fchown:
11903         return get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3)));
11904 #if defined(TARGET_NR_fchownat)
11905     case TARGET_NR_fchownat:
11906         if (!(p = lock_user_string(arg2)))
11907             return -TARGET_EFAULT;
11908         ret = get_errno(fchownat(arg1, p, low2highuid(arg3),
11909                                  low2highgid(arg4), arg5));
11910         unlock_user(p, arg2, 0);
11911         return ret;
11912 #endif
11913 #ifdef TARGET_NR_setresuid
11914     case TARGET_NR_setresuid:
11915         return get_errno(sys_setresuid(low2highuid(arg1),
11916                                        low2highuid(arg2),
11917                                        low2highuid(arg3)));
11918 #endif
11919 #ifdef TARGET_NR_getresuid
11920     case TARGET_NR_getresuid:
11921         {
11922             uid_t ruid, euid, suid;
11923             ret = get_errno(getresuid(&ruid, &euid, &suid));
11924             if (!is_error(ret)) {
11925                 if (put_user_id(high2lowuid(ruid), arg1)
11926                     || put_user_id(high2lowuid(euid), arg2)
11927                     || put_user_id(high2lowuid(suid), arg3))
11928                     return -TARGET_EFAULT;
11929             }
11930         }
11931         return ret;
11932 #endif
11933 #ifdef TARGET_NR_getresgid
11934     case TARGET_NR_setresgid:
11935         return get_errno(sys_setresgid(low2highgid(arg1),
11936                                        low2highgid(arg2),
11937                                        low2highgid(arg3)));
11938 #endif
11939 #ifdef TARGET_NR_getresgid
11940     case TARGET_NR_getresgid:
11941         {
11942             gid_t rgid, egid, sgid;
11943             ret = get_errno(getresgid(&rgid, &egid, &sgid));
11944             if (!is_error(ret)) {
11945                 if (put_user_id(high2lowgid(rgid), arg1)
11946                     || put_user_id(high2lowgid(egid), arg2)
11947                     || put_user_id(high2lowgid(sgid), arg3))
11948                     return -TARGET_EFAULT;
11949             }
11950         }
11951         return ret;
11952 #endif
11953 #ifdef TARGET_NR_chown
11954     case TARGET_NR_chown:
11955         if (!(p = lock_user_string(arg1)))
11956             return -TARGET_EFAULT;
11957         ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3)));
11958         unlock_user(p, arg1, 0);
11959         return ret;
11960 #endif
11961     case TARGET_NR_setuid:
11962         return get_errno(sys_setuid(low2highuid(arg1)));
11963     case TARGET_NR_setgid:
11964         return get_errno(sys_setgid(low2highgid(arg1)));
11965     case TARGET_NR_setfsuid:
11966         return get_errno(setfsuid(arg1));
11967     case TARGET_NR_setfsgid:
11968         return get_errno(setfsgid(arg1));
11969 
11970 #ifdef TARGET_NR_lchown32
11971     case TARGET_NR_lchown32:
11972         if (!(p = lock_user_string(arg1)))
11973             return -TARGET_EFAULT;
11974         ret = get_errno(lchown(p, arg2, arg3));
11975         unlock_user(p, arg1, 0);
11976         return ret;
11977 #endif
11978 #ifdef TARGET_NR_getuid32
11979     case TARGET_NR_getuid32:
11980         return get_errno(getuid());
11981 #endif
11982 
11983 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
11984    /* Alpha specific */
11985     case TARGET_NR_getxuid:
11986          {
11987             uid_t euid;
11988             euid=geteuid();
11989             cpu_env->ir[IR_A4]=euid;
11990          }
11991         return get_errno(getuid());
11992 #endif
11993 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
11994    /* Alpha specific */
11995     case TARGET_NR_getxgid:
11996          {
11997             uid_t egid;
11998             egid=getegid();
11999             cpu_env->ir[IR_A4]=egid;
12000          }
12001         return get_errno(getgid());
12002 #endif
12003 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
12004     /* Alpha specific */
12005     case TARGET_NR_osf_getsysinfo:
12006         ret = -TARGET_EOPNOTSUPP;
12007         switch (arg1) {
12008           case TARGET_GSI_IEEE_FP_CONTROL:
12009             {
12010                 uint64_t fpcr = cpu_alpha_load_fpcr(cpu_env);
12011                 uint64_t swcr = cpu_env->swcr;
12012 
12013                 swcr &= ~SWCR_STATUS_MASK;
12014                 swcr |= (fpcr >> 35) & SWCR_STATUS_MASK;
12015 
12016                 if (put_user_u64 (swcr, arg2))
12017                         return -TARGET_EFAULT;
12018                 ret = 0;
12019             }
12020             break;
12021 
12022           /* case GSI_IEEE_STATE_AT_SIGNAL:
12023              -- Not implemented in linux kernel.
12024              case GSI_UACPROC:
12025              -- Retrieves current unaligned access state; not much used.
12026              case GSI_PROC_TYPE:
12027              -- Retrieves implver information; surely not used.
12028              case GSI_GET_HWRPB:
12029              -- Grabs a copy of the HWRPB; surely not used.
12030           */
12031         }
12032         return ret;
12033 #endif
12034 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
12035     /* Alpha specific */
12036     case TARGET_NR_osf_setsysinfo:
12037         ret = -TARGET_EOPNOTSUPP;
12038         switch (arg1) {
12039           case TARGET_SSI_IEEE_FP_CONTROL:
12040             {
12041                 uint64_t swcr, fpcr;
12042 
12043                 if (get_user_u64 (swcr, arg2)) {
12044                     return -TARGET_EFAULT;
12045                 }
12046 
12047                 /*
12048                  * The kernel calls swcr_update_status to update the
12049                  * status bits from the fpcr at every point that it
12050                  * could be queried.  Therefore, we store the status
12051                  * bits only in FPCR.
12052                  */
12053                 cpu_env->swcr = swcr & (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK);
12054 
12055                 fpcr = cpu_alpha_load_fpcr(cpu_env);
12056                 fpcr &= ((uint64_t)FPCR_DYN_MASK << 32);
12057                 fpcr |= alpha_ieee_swcr_to_fpcr(swcr);
12058                 cpu_alpha_store_fpcr(cpu_env, fpcr);
12059                 ret = 0;
12060             }
12061             break;
12062 
12063           case TARGET_SSI_IEEE_RAISE_EXCEPTION:
12064             {
12065                 uint64_t exc, fpcr, fex;
12066 
12067                 if (get_user_u64(exc, arg2)) {
12068                     return -TARGET_EFAULT;
12069                 }
12070                 exc &= SWCR_STATUS_MASK;
12071                 fpcr = cpu_alpha_load_fpcr(cpu_env);
12072 
12073                 /* Old exceptions are not signaled.  */
12074                 fex = alpha_ieee_fpcr_to_swcr(fpcr);
12075                 fex = exc & ~fex;
12076                 fex >>= SWCR_STATUS_TO_EXCSUM_SHIFT;
12077                 fex &= (cpu_env)->swcr;
12078 
12079                 /* Update the hardware fpcr.  */
12080                 fpcr |= alpha_ieee_swcr_to_fpcr(exc);
12081                 cpu_alpha_store_fpcr(cpu_env, fpcr);
12082 
12083                 if (fex) {
12084                     int si_code = TARGET_FPE_FLTUNK;
12085                     target_siginfo_t info;
12086 
12087                     if (fex & SWCR_TRAP_ENABLE_DNO) {
12088                         si_code = TARGET_FPE_FLTUND;
12089                     }
12090                     if (fex & SWCR_TRAP_ENABLE_INE) {
12091                         si_code = TARGET_FPE_FLTRES;
12092                     }
12093                     if (fex & SWCR_TRAP_ENABLE_UNF) {
12094                         si_code = TARGET_FPE_FLTUND;
12095                     }
12096                     if (fex & SWCR_TRAP_ENABLE_OVF) {
12097                         si_code = TARGET_FPE_FLTOVF;
12098                     }
12099                     if (fex & SWCR_TRAP_ENABLE_DZE) {
12100                         si_code = TARGET_FPE_FLTDIV;
12101                     }
12102                     if (fex & SWCR_TRAP_ENABLE_INV) {
12103                         si_code = TARGET_FPE_FLTINV;
12104                     }
12105 
12106                     info.si_signo = SIGFPE;
12107                     info.si_errno = 0;
12108                     info.si_code = si_code;
12109                     info._sifields._sigfault._addr = (cpu_env)->pc;
12110                     queue_signal(cpu_env, info.si_signo,
12111                                  QEMU_SI_FAULT, &info);
12112                 }
12113                 ret = 0;
12114             }
12115             break;
12116 
12117           /* case SSI_NVPAIRS:
12118              -- Used with SSIN_UACPROC to enable unaligned accesses.
12119              case SSI_IEEE_STATE_AT_SIGNAL:
12120              case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
12121              -- Not implemented in linux kernel
12122           */
12123         }
12124         return ret;
12125 #endif
12126 #ifdef TARGET_NR_osf_sigprocmask
12127     /* Alpha specific.  */
12128     case TARGET_NR_osf_sigprocmask:
12129         {
12130             abi_ulong mask;
12131             int how;
12132             sigset_t set, oldset;
12133 
12134             switch(arg1) {
12135             case TARGET_SIG_BLOCK:
12136                 how = SIG_BLOCK;
12137                 break;
12138             case TARGET_SIG_UNBLOCK:
12139                 how = SIG_UNBLOCK;
12140                 break;
12141             case TARGET_SIG_SETMASK:
12142                 how = SIG_SETMASK;
12143                 break;
12144             default:
12145                 return -TARGET_EINVAL;
12146             }
12147             mask = arg2;
12148             target_to_host_old_sigset(&set, &mask);
12149             ret = do_sigprocmask(how, &set, &oldset);
12150             if (!ret) {
12151                 host_to_target_old_sigset(&mask, &oldset);
12152                 ret = mask;
12153             }
12154         }
12155         return ret;
12156 #endif
12157 
12158 #ifdef TARGET_NR_getgid32
12159     case TARGET_NR_getgid32:
12160         return get_errno(getgid());
12161 #endif
12162 #ifdef TARGET_NR_geteuid32
12163     case TARGET_NR_geteuid32:
12164         return get_errno(geteuid());
12165 #endif
12166 #ifdef TARGET_NR_getegid32
12167     case TARGET_NR_getegid32:
12168         return get_errno(getegid());
12169 #endif
12170 #ifdef TARGET_NR_setreuid32
12171     case TARGET_NR_setreuid32:
12172         return get_errno(setreuid(arg1, arg2));
12173 #endif
12174 #ifdef TARGET_NR_setregid32
12175     case TARGET_NR_setregid32:
12176         return get_errno(setregid(arg1, arg2));
12177 #endif
12178 #ifdef TARGET_NR_getgroups32
12179     case TARGET_NR_getgroups32:
12180         { /* the same code as for TARGET_NR_getgroups */
12181             int gidsetsize = arg1;
12182             uint32_t *target_grouplist;
12183             g_autofree gid_t *grouplist = NULL;
12184             int i;
12185 
12186             if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
12187                 return -TARGET_EINVAL;
12188             }
12189             if (gidsetsize > 0) {
12190                 grouplist = g_try_new(gid_t, gidsetsize);
12191                 if (!grouplist) {
12192                     return -TARGET_ENOMEM;
12193                 }
12194             }
12195             ret = get_errno(getgroups(gidsetsize, grouplist));
12196             if (!is_error(ret) && gidsetsize > 0) {
12197                 target_grouplist = lock_user(VERIFY_WRITE, arg2,
12198                                              gidsetsize * 4, 0);
12199                 if (!target_grouplist) {
12200                     return -TARGET_EFAULT;
12201                 }
12202                 for (i = 0; i < ret; i++) {
12203                     target_grouplist[i] = tswap32(grouplist[i]);
12204                 }
12205                 unlock_user(target_grouplist, arg2, gidsetsize * 4);
12206             }
12207             return ret;
12208         }
12209 #endif
12210 #ifdef TARGET_NR_setgroups32
12211     case TARGET_NR_setgroups32:
12212         { /* the same code as for TARGET_NR_setgroups */
12213             int gidsetsize = arg1;
12214             uint32_t *target_grouplist;
12215             g_autofree gid_t *grouplist = NULL;
12216             int i;
12217 
12218             if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
12219                 return -TARGET_EINVAL;
12220             }
12221             if (gidsetsize > 0) {
12222                 grouplist = g_try_new(gid_t, gidsetsize);
12223                 if (!grouplist) {
12224                     return -TARGET_ENOMEM;
12225                 }
12226                 target_grouplist = lock_user(VERIFY_READ, arg2,
12227                                              gidsetsize * 4, 1);
12228                 if (!target_grouplist) {
12229                     return -TARGET_EFAULT;
12230                 }
12231                 for (i = 0; i < gidsetsize; i++) {
12232                     grouplist[i] = tswap32(target_grouplist[i]);
12233                 }
12234                 unlock_user(target_grouplist, arg2, 0);
12235             }
12236             return get_errno(sys_setgroups(gidsetsize, grouplist));
12237         }
12238 #endif
12239 #ifdef TARGET_NR_fchown32
12240     case TARGET_NR_fchown32:
12241         return get_errno(fchown(arg1, arg2, arg3));
12242 #endif
12243 #ifdef TARGET_NR_setresuid32
12244     case TARGET_NR_setresuid32:
12245         return get_errno(sys_setresuid(arg1, arg2, arg3));
12246 #endif
12247 #ifdef TARGET_NR_getresuid32
12248     case TARGET_NR_getresuid32:
12249         {
12250             uid_t ruid, euid, suid;
12251             ret = get_errno(getresuid(&ruid, &euid, &suid));
12252             if (!is_error(ret)) {
12253                 if (put_user_u32(ruid, arg1)
12254                     || put_user_u32(euid, arg2)
12255                     || put_user_u32(suid, arg3))
12256                     return -TARGET_EFAULT;
12257             }
12258         }
12259         return ret;
12260 #endif
12261 #ifdef TARGET_NR_setresgid32
12262     case TARGET_NR_setresgid32:
12263         return get_errno(sys_setresgid(arg1, arg2, arg3));
12264 #endif
12265 #ifdef TARGET_NR_getresgid32
12266     case TARGET_NR_getresgid32:
12267         {
12268             gid_t rgid, egid, sgid;
12269             ret = get_errno(getresgid(&rgid, &egid, &sgid));
12270             if (!is_error(ret)) {
12271                 if (put_user_u32(rgid, arg1)
12272                     || put_user_u32(egid, arg2)
12273                     || put_user_u32(sgid, arg3))
12274                     return -TARGET_EFAULT;
12275             }
12276         }
12277         return ret;
12278 #endif
12279 #ifdef TARGET_NR_chown32
12280     case TARGET_NR_chown32:
12281         if (!(p = lock_user_string(arg1)))
12282             return -TARGET_EFAULT;
12283         ret = get_errno(chown(p, arg2, arg3));
12284         unlock_user(p, arg1, 0);
12285         return ret;
12286 #endif
12287 #ifdef TARGET_NR_setuid32
12288     case TARGET_NR_setuid32:
12289         return get_errno(sys_setuid(arg1));
12290 #endif
12291 #ifdef TARGET_NR_setgid32
12292     case TARGET_NR_setgid32:
12293         return get_errno(sys_setgid(arg1));
12294 #endif
12295 #ifdef TARGET_NR_setfsuid32
12296     case TARGET_NR_setfsuid32:
12297         return get_errno(setfsuid(arg1));
12298 #endif
12299 #ifdef TARGET_NR_setfsgid32
12300     case TARGET_NR_setfsgid32:
12301         return get_errno(setfsgid(arg1));
12302 #endif
12303 #ifdef TARGET_NR_mincore
12304     case TARGET_NR_mincore:
12305         {
12306             void *a = lock_user(VERIFY_NONE, arg1, arg2, 0);
12307             if (!a) {
12308                 return -TARGET_ENOMEM;
12309             }
12310             p = lock_user_string(arg3);
12311             if (!p) {
12312                 ret = -TARGET_EFAULT;
12313             } else {
12314                 ret = get_errno(mincore(a, arg2, p));
12315                 unlock_user(p, arg3, ret);
12316             }
12317             unlock_user(a, arg1, 0);
12318         }
12319         return ret;
12320 #endif
12321 #ifdef TARGET_NR_arm_fadvise64_64
12322     case TARGET_NR_arm_fadvise64_64:
12323         /* arm_fadvise64_64 looks like fadvise64_64 but
12324          * with different argument order: fd, advice, offset, len
12325          * rather than the usual fd, offset, len, advice.
12326          * Note that offset and len are both 64-bit so appear as
12327          * pairs of 32-bit registers.
12328          */
12329         ret = posix_fadvise(arg1, target_offset64(arg3, arg4),
12330                             target_offset64(arg5, arg6), arg2);
12331         return -host_to_target_errno(ret);
12332 #endif
12333 
12334 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
12335 
12336 #ifdef TARGET_NR_fadvise64_64
12337     case TARGET_NR_fadvise64_64:
12338 #if defined(TARGET_PPC) || defined(TARGET_XTENSA)
12339         /* 6 args: fd, advice, offset (high, low), len (high, low) */
12340         ret = arg2;
12341         arg2 = arg3;
12342         arg3 = arg4;
12343         arg4 = arg5;
12344         arg5 = arg6;
12345         arg6 = ret;
12346 #else
12347         /* 6 args: fd, offset (high, low), len (high, low), advice */
12348         if (regpairs_aligned(cpu_env, num)) {
12349             /* offset is in (3,4), len in (5,6) and advice in 7 */
12350             arg2 = arg3;
12351             arg3 = arg4;
12352             arg4 = arg5;
12353             arg5 = arg6;
12354             arg6 = arg7;
12355         }
12356 #endif
12357         ret = posix_fadvise(arg1, target_offset64(arg2, arg3),
12358                             target_offset64(arg4, arg5), arg6);
12359         return -host_to_target_errno(ret);
12360 #endif
12361 
12362 #ifdef TARGET_NR_fadvise64
12363     case TARGET_NR_fadvise64:
12364         /* 5 args: fd, offset (high, low), len, advice */
12365         if (regpairs_aligned(cpu_env, num)) {
12366             /* offset is in (3,4), len in 5 and advice in 6 */
12367             arg2 = arg3;
12368             arg3 = arg4;
12369             arg4 = arg5;
12370             arg5 = arg6;
12371         }
12372         ret = posix_fadvise(arg1, target_offset64(arg2, arg3), arg4, arg5);
12373         return -host_to_target_errno(ret);
12374 #endif
12375 
12376 #else /* not a 32-bit ABI */
12377 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64)
12378 #ifdef TARGET_NR_fadvise64_64
12379     case TARGET_NR_fadvise64_64:
12380 #endif
12381 #ifdef TARGET_NR_fadvise64
12382     case TARGET_NR_fadvise64:
12383 #endif
12384 #ifdef TARGET_S390X
12385         switch (arg4) {
12386         case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */
12387         case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */
12388         case 6: arg4 = POSIX_FADV_DONTNEED; break;
12389         case 7: arg4 = POSIX_FADV_NOREUSE; break;
12390         default: break;
12391         }
12392 #endif
12393         return -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4));
12394 #endif
12395 #endif /* end of 64-bit ABI fadvise handling */
12396 
12397 #ifdef TARGET_NR_madvise
12398     case TARGET_NR_madvise:
12399         return target_madvise(arg1, arg2, arg3);
12400 #endif
12401 #ifdef TARGET_NR_fcntl64
12402     case TARGET_NR_fcntl64:
12403     {
12404         int cmd;
12405         struct flock64 fl;
12406         from_flock64_fn *copyfrom = copy_from_user_flock64;
12407         to_flock64_fn *copyto = copy_to_user_flock64;
12408 
12409 #ifdef TARGET_ARM
12410         if (!cpu_env->eabi) {
12411             copyfrom = copy_from_user_oabi_flock64;
12412             copyto = copy_to_user_oabi_flock64;
12413         }
12414 #endif
12415 
12416         cmd = target_to_host_fcntl_cmd(arg2);
12417         if (cmd == -TARGET_EINVAL) {
12418             return cmd;
12419         }
12420 
12421         switch(arg2) {
12422         case TARGET_F_GETLK64:
12423             ret = copyfrom(&fl, arg3);
12424             if (ret) {
12425                 break;
12426             }
12427             ret = get_errno(safe_fcntl(arg1, cmd, &fl));
12428             if (ret == 0) {
12429                 ret = copyto(arg3, &fl);
12430             }
12431 	    break;
12432 
12433         case TARGET_F_SETLK64:
12434         case TARGET_F_SETLKW64:
12435             ret = copyfrom(&fl, arg3);
12436             if (ret) {
12437                 break;
12438             }
12439             ret = get_errno(safe_fcntl(arg1, cmd, &fl));
12440 	    break;
12441         default:
12442             ret = do_fcntl(arg1, arg2, arg3);
12443             break;
12444         }
12445         return ret;
12446     }
12447 #endif
12448 #ifdef TARGET_NR_cacheflush
12449     case TARGET_NR_cacheflush:
12450         /* self-modifying code is handled automatically, so nothing needed */
12451         return 0;
12452 #endif
12453 #ifdef TARGET_NR_getpagesize
12454     case TARGET_NR_getpagesize:
12455         return TARGET_PAGE_SIZE;
12456 #endif
12457     case TARGET_NR_gettid:
12458         return get_errno(sys_gettid());
12459 #ifdef TARGET_NR_readahead
12460     case TARGET_NR_readahead:
12461 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
12462         if (regpairs_aligned(cpu_env, num)) {
12463             arg2 = arg3;
12464             arg3 = arg4;
12465             arg4 = arg5;
12466         }
12467         ret = get_errno(readahead(arg1, target_offset64(arg2, arg3) , arg4));
12468 #else
12469         ret = get_errno(readahead(arg1, arg2, arg3));
12470 #endif
12471         return ret;
12472 #endif
12473 #ifdef CONFIG_ATTR
12474 #ifdef TARGET_NR_setxattr
12475     case TARGET_NR_listxattr:
12476     case TARGET_NR_llistxattr:
12477     {
12478         void *b = 0;
12479         if (arg2) {
12480             b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
12481             if (!b) {
12482                 return -TARGET_EFAULT;
12483             }
12484         }
12485         p = lock_user_string(arg1);
12486         if (p) {
12487             if (num == TARGET_NR_listxattr) {
12488                 ret = get_errno(listxattr(p, b, arg3));
12489             } else {
12490                 ret = get_errno(llistxattr(p, b, arg3));
12491             }
12492         } else {
12493             ret = -TARGET_EFAULT;
12494         }
12495         unlock_user(p, arg1, 0);
12496         unlock_user(b, arg2, arg3);
12497         return ret;
12498     }
12499     case TARGET_NR_flistxattr:
12500     {
12501         void *b = 0;
12502         if (arg2) {
12503             b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
12504             if (!b) {
12505                 return -TARGET_EFAULT;
12506             }
12507         }
12508         ret = get_errno(flistxattr(arg1, b, arg3));
12509         unlock_user(b, arg2, arg3);
12510         return ret;
12511     }
12512     case TARGET_NR_setxattr:
12513     case TARGET_NR_lsetxattr:
12514         {
12515             void *n, *v = 0;
12516             if (arg3) {
12517                 v = lock_user(VERIFY_READ, arg3, arg4, 1);
12518                 if (!v) {
12519                     return -TARGET_EFAULT;
12520                 }
12521             }
12522             p = lock_user_string(arg1);
12523             n = lock_user_string(arg2);
12524             if (p && n) {
12525                 if (num == TARGET_NR_setxattr) {
12526                     ret = get_errno(setxattr(p, n, v, arg4, arg5));
12527                 } else {
12528                     ret = get_errno(lsetxattr(p, n, v, arg4, arg5));
12529                 }
12530             } else {
12531                 ret = -TARGET_EFAULT;
12532             }
12533             unlock_user(p, arg1, 0);
12534             unlock_user(n, arg2, 0);
12535             unlock_user(v, arg3, 0);
12536         }
12537         return ret;
12538     case TARGET_NR_fsetxattr:
12539         {
12540             void *n, *v = 0;
12541             if (arg3) {
12542                 v = lock_user(VERIFY_READ, arg3, arg4, 1);
12543                 if (!v) {
12544                     return -TARGET_EFAULT;
12545                 }
12546             }
12547             n = lock_user_string(arg2);
12548             if (n) {
12549                 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5));
12550             } else {
12551                 ret = -TARGET_EFAULT;
12552             }
12553             unlock_user(n, arg2, 0);
12554             unlock_user(v, arg3, 0);
12555         }
12556         return ret;
12557     case TARGET_NR_getxattr:
12558     case TARGET_NR_lgetxattr:
12559         {
12560             void *n, *v = 0;
12561             if (arg3) {
12562                 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
12563                 if (!v) {
12564                     return -TARGET_EFAULT;
12565                 }
12566             }
12567             p = lock_user_string(arg1);
12568             n = lock_user_string(arg2);
12569             if (p && n) {
12570                 if (num == TARGET_NR_getxattr) {
12571                     ret = get_errno(getxattr(p, n, v, arg4));
12572                 } else {
12573                     ret = get_errno(lgetxattr(p, n, v, arg4));
12574                 }
12575             } else {
12576                 ret = -TARGET_EFAULT;
12577             }
12578             unlock_user(p, arg1, 0);
12579             unlock_user(n, arg2, 0);
12580             unlock_user(v, arg3, arg4);
12581         }
12582         return ret;
12583     case TARGET_NR_fgetxattr:
12584         {
12585             void *n, *v = 0;
12586             if (arg3) {
12587                 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
12588                 if (!v) {
12589                     return -TARGET_EFAULT;
12590                 }
12591             }
12592             n = lock_user_string(arg2);
12593             if (n) {
12594                 ret = get_errno(fgetxattr(arg1, n, v, arg4));
12595             } else {
12596                 ret = -TARGET_EFAULT;
12597             }
12598             unlock_user(n, arg2, 0);
12599             unlock_user(v, arg3, arg4);
12600         }
12601         return ret;
12602     case TARGET_NR_removexattr:
12603     case TARGET_NR_lremovexattr:
12604         {
12605             void *n;
12606             p = lock_user_string(arg1);
12607             n = lock_user_string(arg2);
12608             if (p && n) {
12609                 if (num == TARGET_NR_removexattr) {
12610                     ret = get_errno(removexattr(p, n));
12611                 } else {
12612                     ret = get_errno(lremovexattr(p, n));
12613                 }
12614             } else {
12615                 ret = -TARGET_EFAULT;
12616             }
12617             unlock_user(p, arg1, 0);
12618             unlock_user(n, arg2, 0);
12619         }
12620         return ret;
12621     case TARGET_NR_fremovexattr:
12622         {
12623             void *n;
12624             n = lock_user_string(arg2);
12625             if (n) {
12626                 ret = get_errno(fremovexattr(arg1, n));
12627             } else {
12628                 ret = -TARGET_EFAULT;
12629             }
12630             unlock_user(n, arg2, 0);
12631         }
12632         return ret;
12633 #endif
12634 #endif /* CONFIG_ATTR */
12635 #ifdef TARGET_NR_set_thread_area
12636     case TARGET_NR_set_thread_area:
12637 #if defined(TARGET_MIPS)
12638       cpu_env->active_tc.CP0_UserLocal = arg1;
12639       return 0;
12640 #elif defined(TARGET_CRIS)
12641       if (arg1 & 0xff)
12642           ret = -TARGET_EINVAL;
12643       else {
12644           cpu_env->pregs[PR_PID] = arg1;
12645           ret = 0;
12646       }
12647       return ret;
12648 #elif defined(TARGET_I386) && defined(TARGET_ABI32)
12649       return do_set_thread_area(cpu_env, arg1);
12650 #elif defined(TARGET_M68K)
12651       {
12652           TaskState *ts = get_task_state(cpu);
12653           ts->tp_value = arg1;
12654           return 0;
12655       }
12656 #else
12657       return -TARGET_ENOSYS;
12658 #endif
12659 #endif
12660 #ifdef TARGET_NR_get_thread_area
12661     case TARGET_NR_get_thread_area:
12662 #if defined(TARGET_I386) && defined(TARGET_ABI32)
12663         return do_get_thread_area(cpu_env, arg1);
12664 #elif defined(TARGET_M68K)
12665         {
12666             TaskState *ts = get_task_state(cpu);
12667             return ts->tp_value;
12668         }
12669 #else
12670         return -TARGET_ENOSYS;
12671 #endif
12672 #endif
12673 #ifdef TARGET_NR_getdomainname
12674     case TARGET_NR_getdomainname:
12675         return -TARGET_ENOSYS;
12676 #endif
12677 
12678 #ifdef TARGET_NR_clock_settime
12679     case TARGET_NR_clock_settime:
12680     {
12681         struct timespec ts;
12682 
12683         ret = target_to_host_timespec(&ts, arg2);
12684         if (!is_error(ret)) {
12685             ret = get_errno(clock_settime(arg1, &ts));
12686         }
12687         return ret;
12688     }
12689 #endif
12690 #ifdef TARGET_NR_clock_settime64
12691     case TARGET_NR_clock_settime64:
12692     {
12693         struct timespec ts;
12694 
12695         ret = target_to_host_timespec64(&ts, arg2);
12696         if (!is_error(ret)) {
12697             ret = get_errno(clock_settime(arg1, &ts));
12698         }
12699         return ret;
12700     }
12701 #endif
12702 #ifdef TARGET_NR_clock_gettime
12703     case TARGET_NR_clock_gettime:
12704     {
12705         struct timespec ts;
12706         ret = get_errno(clock_gettime(arg1, &ts));
12707         if (!is_error(ret)) {
12708             ret = host_to_target_timespec(arg2, &ts);
12709         }
12710         return ret;
12711     }
12712 #endif
12713 #ifdef TARGET_NR_clock_gettime64
12714     case TARGET_NR_clock_gettime64:
12715     {
12716         struct timespec ts;
12717         ret = get_errno(clock_gettime(arg1, &ts));
12718         if (!is_error(ret)) {
12719             ret = host_to_target_timespec64(arg2, &ts);
12720         }
12721         return ret;
12722     }
12723 #endif
12724 #ifdef TARGET_NR_clock_getres
12725     case TARGET_NR_clock_getres:
12726     {
12727         struct timespec ts;
12728         ret = get_errno(clock_getres(arg1, &ts));
12729         if (!is_error(ret)) {
12730             host_to_target_timespec(arg2, &ts);
12731         }
12732         return ret;
12733     }
12734 #endif
12735 #ifdef TARGET_NR_clock_getres_time64
12736     case TARGET_NR_clock_getres_time64:
12737     {
12738         struct timespec ts;
12739         ret = get_errno(clock_getres(arg1, &ts));
12740         if (!is_error(ret)) {
12741             host_to_target_timespec64(arg2, &ts);
12742         }
12743         return ret;
12744     }
12745 #endif
12746 #ifdef TARGET_NR_clock_nanosleep
12747     case TARGET_NR_clock_nanosleep:
12748     {
12749         struct timespec ts;
12750         if (target_to_host_timespec(&ts, arg3)) {
12751             return -TARGET_EFAULT;
12752         }
12753         ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12754                                              &ts, arg4 ? &ts : NULL));
12755         /*
12756          * if the call is interrupted by a signal handler, it fails
12757          * with error -TARGET_EINTR and if arg4 is not NULL and arg2 is not
12758          * TIMER_ABSTIME, it returns the remaining unslept time in arg4.
12759          */
12760         if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME &&
12761             host_to_target_timespec(arg4, &ts)) {
12762               return -TARGET_EFAULT;
12763         }
12764 
12765         return ret;
12766     }
12767 #endif
12768 #ifdef TARGET_NR_clock_nanosleep_time64
12769     case TARGET_NR_clock_nanosleep_time64:
12770     {
12771         struct timespec ts;
12772 
12773         if (target_to_host_timespec64(&ts, arg3)) {
12774             return -TARGET_EFAULT;
12775         }
12776 
12777         ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12778                                              &ts, arg4 ? &ts : NULL));
12779 
12780         if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME &&
12781             host_to_target_timespec64(arg4, &ts)) {
12782             return -TARGET_EFAULT;
12783         }
12784         return ret;
12785     }
12786 #endif
12787 
12788 #if defined(TARGET_NR_set_tid_address)
12789     case TARGET_NR_set_tid_address:
12790     {
12791         TaskState *ts = get_task_state(cpu);
12792         ts->child_tidptr = arg1;
12793         /* do not call host set_tid_address() syscall, instead return tid() */
12794         return get_errno(sys_gettid());
12795     }
12796 #endif
12797 
12798     case TARGET_NR_tkill:
12799         return get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2)));
12800 
12801     case TARGET_NR_tgkill:
12802         return get_errno(safe_tgkill((int)arg1, (int)arg2,
12803                          target_to_host_signal(arg3)));
12804 
12805 #ifdef TARGET_NR_set_robust_list
12806     case TARGET_NR_set_robust_list:
12807     case TARGET_NR_get_robust_list:
12808         /* The ABI for supporting robust futexes has userspace pass
12809          * the kernel a pointer to a linked list which is updated by
12810          * userspace after the syscall; the list is walked by the kernel
12811          * when the thread exits. Since the linked list in QEMU guest
12812          * memory isn't a valid linked list for the host and we have
12813          * no way to reliably intercept the thread-death event, we can't
12814          * support these. Silently return ENOSYS so that guest userspace
12815          * falls back to a non-robust futex implementation (which should
12816          * be OK except in the corner case of the guest crashing while
12817          * holding a mutex that is shared with another process via
12818          * shared memory).
12819          */
12820         return -TARGET_ENOSYS;
12821 #endif
12822 
12823 #if defined(TARGET_NR_utimensat)
12824     case TARGET_NR_utimensat:
12825         {
12826             struct timespec *tsp, ts[2];
12827             if (!arg3) {
12828                 tsp = NULL;
12829             } else {
12830                 if (target_to_host_timespec(ts, arg3)) {
12831                     return -TARGET_EFAULT;
12832                 }
12833                 if (target_to_host_timespec(ts + 1, arg3 +
12834                                             sizeof(struct target_timespec))) {
12835                     return -TARGET_EFAULT;
12836                 }
12837                 tsp = ts;
12838             }
12839             if (!arg2)
12840                 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12841             else {
12842                 if (!(p = lock_user_string(arg2))) {
12843                     return -TARGET_EFAULT;
12844                 }
12845                 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12846                 unlock_user(p, arg2, 0);
12847             }
12848         }
12849         return ret;
12850 #endif
12851 #ifdef TARGET_NR_utimensat_time64
12852     case TARGET_NR_utimensat_time64:
12853         {
12854             struct timespec *tsp, ts[2];
12855             if (!arg3) {
12856                 tsp = NULL;
12857             } else {
12858                 if (target_to_host_timespec64(ts, arg3)) {
12859                     return -TARGET_EFAULT;
12860                 }
12861                 if (target_to_host_timespec64(ts + 1, arg3 +
12862                                      sizeof(struct target__kernel_timespec))) {
12863                     return -TARGET_EFAULT;
12864                 }
12865                 tsp = ts;
12866             }
12867             if (!arg2)
12868                 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12869             else {
12870                 p = lock_user_string(arg2);
12871                 if (!p) {
12872                     return -TARGET_EFAULT;
12873                 }
12874                 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12875                 unlock_user(p, arg2, 0);
12876             }
12877         }
12878         return ret;
12879 #endif
12880 #ifdef TARGET_NR_futex
12881     case TARGET_NR_futex:
12882         return do_futex(cpu, false, arg1, arg2, arg3, arg4, arg5, arg6);
12883 #endif
12884 #ifdef TARGET_NR_futex_time64
12885     case TARGET_NR_futex_time64:
12886         return do_futex(cpu, true, arg1, arg2, arg3, arg4, arg5, arg6);
12887 #endif
12888 #ifdef CONFIG_INOTIFY
12889 #if defined(TARGET_NR_inotify_init)
12890     case TARGET_NR_inotify_init:
12891         ret = get_errno(inotify_init());
12892         if (ret >= 0) {
12893             fd_trans_register(ret, &target_inotify_trans);
12894         }
12895         return ret;
12896 #endif
12897 #if defined(TARGET_NR_inotify_init1) && defined(CONFIG_INOTIFY1)
12898     case TARGET_NR_inotify_init1:
12899         ret = get_errno(inotify_init1(target_to_host_bitmask(arg1,
12900                                           fcntl_flags_tbl)));
12901         if (ret >= 0) {
12902             fd_trans_register(ret, &target_inotify_trans);
12903         }
12904         return ret;
12905 #endif
12906 #if defined(TARGET_NR_inotify_add_watch)
12907     case TARGET_NR_inotify_add_watch:
12908         p = lock_user_string(arg2);
12909         ret = get_errno(inotify_add_watch(arg1, path(p), arg3));
12910         unlock_user(p, arg2, 0);
12911         return ret;
12912 #endif
12913 #if defined(TARGET_NR_inotify_rm_watch)
12914     case TARGET_NR_inotify_rm_watch:
12915         return get_errno(inotify_rm_watch(arg1, arg2));
12916 #endif
12917 #endif
12918 
12919 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
12920     case TARGET_NR_mq_open:
12921         {
12922             struct mq_attr posix_mq_attr;
12923             struct mq_attr *pposix_mq_attr;
12924             int host_flags;
12925 
12926             host_flags = target_to_host_bitmask(arg2, fcntl_flags_tbl);
12927             pposix_mq_attr = NULL;
12928             if (arg4) {
12929                 if (copy_from_user_mq_attr(&posix_mq_attr, arg4) != 0) {
12930                     return -TARGET_EFAULT;
12931                 }
12932                 pposix_mq_attr = &posix_mq_attr;
12933             }
12934             p = lock_user_string(arg1 - 1);
12935             if (!p) {
12936                 return -TARGET_EFAULT;
12937             }
12938             ret = get_errno(mq_open(p, host_flags, arg3, pposix_mq_attr));
12939             unlock_user (p, arg1, 0);
12940         }
12941         return ret;
12942 
12943     case TARGET_NR_mq_unlink:
12944         p = lock_user_string(arg1 - 1);
12945         if (!p) {
12946             return -TARGET_EFAULT;
12947         }
12948         ret = get_errno(mq_unlink(p));
12949         unlock_user (p, arg1, 0);
12950         return ret;
12951 
12952 #ifdef TARGET_NR_mq_timedsend
12953     case TARGET_NR_mq_timedsend:
12954         {
12955             struct timespec ts;
12956 
12957             p = lock_user (VERIFY_READ, arg2, arg3, 1);
12958             if (arg5 != 0) {
12959                 if (target_to_host_timespec(&ts, arg5)) {
12960                     return -TARGET_EFAULT;
12961                 }
12962                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12963                 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) {
12964                     return -TARGET_EFAULT;
12965                 }
12966             } else {
12967                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12968             }
12969             unlock_user (p, arg2, arg3);
12970         }
12971         return ret;
12972 #endif
12973 #ifdef TARGET_NR_mq_timedsend_time64
12974     case TARGET_NR_mq_timedsend_time64:
12975         {
12976             struct timespec ts;
12977 
12978             p = lock_user(VERIFY_READ, arg2, arg3, 1);
12979             if (arg5 != 0) {
12980                 if (target_to_host_timespec64(&ts, arg5)) {
12981                     return -TARGET_EFAULT;
12982                 }
12983                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12984                 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) {
12985                     return -TARGET_EFAULT;
12986                 }
12987             } else {
12988                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12989             }
12990             unlock_user(p, arg2, arg3);
12991         }
12992         return ret;
12993 #endif
12994 
12995 #ifdef TARGET_NR_mq_timedreceive
12996     case TARGET_NR_mq_timedreceive:
12997         {
12998             struct timespec ts;
12999             unsigned int prio;
13000 
13001             p = lock_user (VERIFY_READ, arg2, arg3, 1);
13002             if (arg5 != 0) {
13003                 if (target_to_host_timespec(&ts, arg5)) {
13004                     return -TARGET_EFAULT;
13005                 }
13006                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
13007                                                      &prio, &ts));
13008                 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) {
13009                     return -TARGET_EFAULT;
13010                 }
13011             } else {
13012                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
13013                                                      &prio, NULL));
13014             }
13015             unlock_user (p, arg2, arg3);
13016             if (arg4 != 0)
13017                 put_user_u32(prio, arg4);
13018         }
13019         return ret;
13020 #endif
13021 #ifdef TARGET_NR_mq_timedreceive_time64
13022     case TARGET_NR_mq_timedreceive_time64:
13023         {
13024             struct timespec ts;
13025             unsigned int prio;
13026 
13027             p = lock_user(VERIFY_READ, arg2, arg3, 1);
13028             if (arg5 != 0) {
13029                 if (target_to_host_timespec64(&ts, arg5)) {
13030                     return -TARGET_EFAULT;
13031                 }
13032                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
13033                                                      &prio, &ts));
13034                 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) {
13035                     return -TARGET_EFAULT;
13036                 }
13037             } else {
13038                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
13039                                                      &prio, NULL));
13040             }
13041             unlock_user(p, arg2, arg3);
13042             if (arg4 != 0) {
13043                 put_user_u32(prio, arg4);
13044             }
13045         }
13046         return ret;
13047 #endif
13048 
13049     /* Not implemented for now... */
13050 /*     case TARGET_NR_mq_notify: */
13051 /*         break; */
13052 
13053     case TARGET_NR_mq_getsetattr:
13054         {
13055             struct mq_attr posix_mq_attr_in, posix_mq_attr_out;
13056             ret = 0;
13057             if (arg2 != 0) {
13058                 copy_from_user_mq_attr(&posix_mq_attr_in, arg2);
13059                 ret = get_errno(mq_setattr(arg1, &posix_mq_attr_in,
13060                                            &posix_mq_attr_out));
13061             } else if (arg3 != 0) {
13062                 ret = get_errno(mq_getattr(arg1, &posix_mq_attr_out));
13063             }
13064             if (ret == 0 && arg3 != 0) {
13065                 copy_to_user_mq_attr(arg3, &posix_mq_attr_out);
13066             }
13067         }
13068         return ret;
13069 #endif
13070 
13071 #ifdef CONFIG_SPLICE
13072 #ifdef TARGET_NR_tee
13073     case TARGET_NR_tee:
13074         {
13075             ret = get_errno(tee(arg1,arg2,arg3,arg4));
13076         }
13077         return ret;
13078 #endif
13079 #ifdef TARGET_NR_splice
13080     case TARGET_NR_splice:
13081         {
13082             loff_t loff_in, loff_out;
13083             loff_t *ploff_in = NULL, *ploff_out = NULL;
13084             if (arg2) {
13085                 if (get_user_u64(loff_in, arg2)) {
13086                     return -TARGET_EFAULT;
13087                 }
13088                 ploff_in = &loff_in;
13089             }
13090             if (arg4) {
13091                 if (get_user_u64(loff_out, arg4)) {
13092                     return -TARGET_EFAULT;
13093                 }
13094                 ploff_out = &loff_out;
13095             }
13096             ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6));
13097             if (arg2) {
13098                 if (put_user_u64(loff_in, arg2)) {
13099                     return -TARGET_EFAULT;
13100                 }
13101             }
13102             if (arg4) {
13103                 if (put_user_u64(loff_out, arg4)) {
13104                     return -TARGET_EFAULT;
13105                 }
13106             }
13107         }
13108         return ret;
13109 #endif
13110 #ifdef TARGET_NR_vmsplice
13111 	case TARGET_NR_vmsplice:
13112         {
13113             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
13114             if (vec != NULL) {
13115                 ret = get_errno(vmsplice(arg1, vec, arg3, arg4));
13116                 unlock_iovec(vec, arg2, arg3, 0);
13117             } else {
13118                 ret = -host_to_target_errno(errno);
13119             }
13120         }
13121         return ret;
13122 #endif
13123 #endif /* CONFIG_SPLICE */
13124 #ifdef CONFIG_EVENTFD
13125 #if defined(TARGET_NR_eventfd)
13126     case TARGET_NR_eventfd:
13127         ret = get_errno(eventfd(arg1, 0));
13128         if (ret >= 0) {
13129             fd_trans_register(ret, &target_eventfd_trans);
13130         }
13131         return ret;
13132 #endif
13133 #if defined(TARGET_NR_eventfd2)
13134     case TARGET_NR_eventfd2:
13135     {
13136         int host_flags = arg2 & (~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC));
13137         if (arg2 & TARGET_O_NONBLOCK) {
13138             host_flags |= O_NONBLOCK;
13139         }
13140         if (arg2 & TARGET_O_CLOEXEC) {
13141             host_flags |= O_CLOEXEC;
13142         }
13143         ret = get_errno(eventfd(arg1, host_flags));
13144         if (ret >= 0) {
13145             fd_trans_register(ret, &target_eventfd_trans);
13146         }
13147         return ret;
13148     }
13149 #endif
13150 #endif /* CONFIG_EVENTFD  */
13151 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
13152     case TARGET_NR_fallocate:
13153 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13154         ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4),
13155                                   target_offset64(arg5, arg6)));
13156 #else
13157         ret = get_errno(fallocate(arg1, arg2, arg3, arg4));
13158 #endif
13159         return ret;
13160 #endif
13161 #if defined(CONFIG_SYNC_FILE_RANGE)
13162 #if defined(TARGET_NR_sync_file_range)
13163     case TARGET_NR_sync_file_range:
13164 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13165 #if defined(TARGET_MIPS)
13166         ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
13167                                         target_offset64(arg5, arg6), arg7));
13168 #else
13169         ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3),
13170                                         target_offset64(arg4, arg5), arg6));
13171 #endif /* !TARGET_MIPS */
13172 #else
13173         ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4));
13174 #endif
13175         return ret;
13176 #endif
13177 #if defined(TARGET_NR_sync_file_range2) || \
13178     defined(TARGET_NR_arm_sync_file_range)
13179 #if defined(TARGET_NR_sync_file_range2)
13180     case TARGET_NR_sync_file_range2:
13181 #endif
13182 #if defined(TARGET_NR_arm_sync_file_range)
13183     case TARGET_NR_arm_sync_file_range:
13184 #endif
13185         /* This is like sync_file_range but the arguments are reordered */
13186 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13187         ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
13188                                         target_offset64(arg5, arg6), arg2));
13189 #else
13190         ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2));
13191 #endif
13192         return ret;
13193 #endif
13194 #endif
13195 #if defined(TARGET_NR_signalfd4)
13196     case TARGET_NR_signalfd4:
13197         return do_signalfd4(arg1, arg2, arg4);
13198 #endif
13199 #if defined(TARGET_NR_signalfd)
13200     case TARGET_NR_signalfd:
13201         return do_signalfd4(arg1, arg2, 0);
13202 #endif
13203 #if defined(CONFIG_EPOLL)
13204 #if defined(TARGET_NR_epoll_create)
13205     case TARGET_NR_epoll_create:
13206         return get_errno(epoll_create(arg1));
13207 #endif
13208 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
13209     case TARGET_NR_epoll_create1:
13210         return get_errno(epoll_create1(target_to_host_bitmask(arg1, fcntl_flags_tbl)));
13211 #endif
13212 #if defined(TARGET_NR_epoll_ctl)
13213     case TARGET_NR_epoll_ctl:
13214     {
13215         struct epoll_event ep;
13216         struct epoll_event *epp = 0;
13217         if (arg4) {
13218             if (arg2 != EPOLL_CTL_DEL) {
13219                 struct target_epoll_event *target_ep;
13220                 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) {
13221                     return -TARGET_EFAULT;
13222                 }
13223                 ep.events = tswap32(target_ep->events);
13224                 /*
13225                  * The epoll_data_t union is just opaque data to the kernel,
13226                  * so we transfer all 64 bits across and need not worry what
13227                  * actual data type it is.
13228                  */
13229                 ep.data.u64 = tswap64(target_ep->data.u64);
13230                 unlock_user_struct(target_ep, arg4, 0);
13231             }
13232             /*
13233              * before kernel 2.6.9, EPOLL_CTL_DEL operation required a
13234              * non-null pointer, even though this argument is ignored.
13235              *
13236              */
13237             epp = &ep;
13238         }
13239         return get_errno(epoll_ctl(arg1, arg2, arg3, epp));
13240     }
13241 #endif
13242 
13243 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait)
13244 #if defined(TARGET_NR_epoll_wait)
13245     case TARGET_NR_epoll_wait:
13246 #endif
13247 #if defined(TARGET_NR_epoll_pwait)
13248     case TARGET_NR_epoll_pwait:
13249 #endif
13250     {
13251         struct target_epoll_event *target_ep;
13252         struct epoll_event *ep;
13253         int epfd = arg1;
13254         int maxevents = arg3;
13255         int timeout = arg4;
13256 
13257         if (maxevents <= 0 || maxevents > TARGET_EP_MAX_EVENTS) {
13258             return -TARGET_EINVAL;
13259         }
13260 
13261         target_ep = lock_user(VERIFY_WRITE, arg2,
13262                               maxevents * sizeof(struct target_epoll_event), 1);
13263         if (!target_ep) {
13264             return -TARGET_EFAULT;
13265         }
13266 
13267         ep = g_try_new(struct epoll_event, maxevents);
13268         if (!ep) {
13269             unlock_user(target_ep, arg2, 0);
13270             return -TARGET_ENOMEM;
13271         }
13272 
13273         switch (num) {
13274 #if defined(TARGET_NR_epoll_pwait)
13275         case TARGET_NR_epoll_pwait:
13276         {
13277             sigset_t *set = NULL;
13278 
13279             if (arg5) {
13280                 ret = process_sigsuspend_mask(&set, arg5, arg6);
13281                 if (ret != 0) {
13282                     break;
13283                 }
13284             }
13285 
13286             ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
13287                                              set, SIGSET_T_SIZE));
13288 
13289             if (set) {
13290                 finish_sigsuspend_mask(ret);
13291             }
13292             break;
13293         }
13294 #endif
13295 #if defined(TARGET_NR_epoll_wait)
13296         case TARGET_NR_epoll_wait:
13297             ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
13298                                              NULL, 0));
13299             break;
13300 #endif
13301         default:
13302             ret = -TARGET_ENOSYS;
13303         }
13304         if (!is_error(ret)) {
13305             int i;
13306             for (i = 0; i < ret; i++) {
13307                 target_ep[i].events = tswap32(ep[i].events);
13308                 target_ep[i].data.u64 = tswap64(ep[i].data.u64);
13309             }
13310             unlock_user(target_ep, arg2,
13311                         ret * sizeof(struct target_epoll_event));
13312         } else {
13313             unlock_user(target_ep, arg2, 0);
13314         }
13315         g_free(ep);
13316         return ret;
13317     }
13318 #endif
13319 #endif
13320 #ifdef TARGET_NR_prlimit64
13321     case TARGET_NR_prlimit64:
13322     {
13323         /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
13324         struct target_rlimit64 *target_rnew, *target_rold;
13325         struct host_rlimit64 rnew, rold, *rnewp = 0;
13326         int resource = target_to_host_resource(arg2);
13327 
13328         if (arg3 && (resource != RLIMIT_AS &&
13329                      resource != RLIMIT_DATA &&
13330                      resource != RLIMIT_STACK)) {
13331             if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) {
13332                 return -TARGET_EFAULT;
13333             }
13334             __get_user(rnew.rlim_cur, &target_rnew->rlim_cur);
13335             __get_user(rnew.rlim_max, &target_rnew->rlim_max);
13336             unlock_user_struct(target_rnew, arg3, 0);
13337             rnewp = &rnew;
13338         }
13339 
13340         ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0));
13341         if (!is_error(ret) && arg4) {
13342             if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) {
13343                 return -TARGET_EFAULT;
13344             }
13345             __put_user(rold.rlim_cur, &target_rold->rlim_cur);
13346             __put_user(rold.rlim_max, &target_rold->rlim_max);
13347             unlock_user_struct(target_rold, arg4, 1);
13348         }
13349         return ret;
13350     }
13351 #endif
13352 #ifdef TARGET_NR_gethostname
13353     case TARGET_NR_gethostname:
13354     {
13355         char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0);
13356         if (name) {
13357             ret = get_errno(gethostname(name, arg2));
13358             unlock_user(name, arg1, arg2);
13359         } else {
13360             ret = -TARGET_EFAULT;
13361         }
13362         return ret;
13363     }
13364 #endif
13365 #ifdef TARGET_NR_atomic_cmpxchg_32
13366     case TARGET_NR_atomic_cmpxchg_32:
13367     {
13368         /* should use start_exclusive from main.c */
13369         abi_ulong mem_value;
13370         if (get_user_u32(mem_value, arg6)) {
13371             target_siginfo_t info;
13372             info.si_signo = SIGSEGV;
13373             info.si_errno = 0;
13374             info.si_code = TARGET_SEGV_MAPERR;
13375             info._sifields._sigfault._addr = arg6;
13376             queue_signal(cpu_env, info.si_signo, QEMU_SI_FAULT, &info);
13377             ret = 0xdeadbeef;
13378 
13379         }
13380         if (mem_value == arg2)
13381             put_user_u32(arg1, arg6);
13382         return mem_value;
13383     }
13384 #endif
13385 #ifdef TARGET_NR_atomic_barrier
13386     case TARGET_NR_atomic_barrier:
13387         /* Like the kernel implementation and the
13388            qemu arm barrier, no-op this? */
13389         return 0;
13390 #endif
13391 
13392 #ifdef TARGET_NR_timer_create
13393     case TARGET_NR_timer_create:
13394     {
13395         /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */
13396 
13397         struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL;
13398 
13399         int clkid = arg1;
13400         int timer_index = next_free_host_timer();
13401 
13402         if (timer_index < 0) {
13403             ret = -TARGET_EAGAIN;
13404         } else {
13405             timer_t *phtimer = g_posix_timers  + timer_index;
13406 
13407             if (arg2) {
13408                 phost_sevp = &host_sevp;
13409                 ret = target_to_host_sigevent(phost_sevp, arg2);
13410                 if (ret != 0) {
13411                     free_host_timer_slot(timer_index);
13412                     return ret;
13413                 }
13414             }
13415 
13416             ret = get_errno(timer_create(clkid, phost_sevp, phtimer));
13417             if (ret) {
13418                 free_host_timer_slot(timer_index);
13419             } else {
13420                 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) {
13421                     timer_delete(*phtimer);
13422                     free_host_timer_slot(timer_index);
13423                     return -TARGET_EFAULT;
13424                 }
13425             }
13426         }
13427         return ret;
13428     }
13429 #endif
13430 
13431 #ifdef TARGET_NR_timer_settime
13432     case TARGET_NR_timer_settime:
13433     {
13434         /* args: timer_t timerid, int flags, const struct itimerspec *new_value,
13435          * struct itimerspec * old_value */
13436         target_timer_t timerid = get_timer_id(arg1);
13437 
13438         if (timerid < 0) {
13439             ret = timerid;
13440         } else if (arg3 == 0) {
13441             ret = -TARGET_EINVAL;
13442         } else {
13443             timer_t htimer = g_posix_timers[timerid];
13444             struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
13445 
13446             if (target_to_host_itimerspec(&hspec_new, arg3)) {
13447                 return -TARGET_EFAULT;
13448             }
13449             ret = get_errno(
13450                           timer_settime(htimer, arg2, &hspec_new, &hspec_old));
13451             if (arg4 && host_to_target_itimerspec(arg4, &hspec_old)) {
13452                 return -TARGET_EFAULT;
13453             }
13454         }
13455         return ret;
13456     }
13457 #endif
13458 
13459 #ifdef TARGET_NR_timer_settime64
13460     case TARGET_NR_timer_settime64:
13461     {
13462         target_timer_t timerid = get_timer_id(arg1);
13463 
13464         if (timerid < 0) {
13465             ret = timerid;
13466         } else if (arg3 == 0) {
13467             ret = -TARGET_EINVAL;
13468         } else {
13469             timer_t htimer = g_posix_timers[timerid];
13470             struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
13471 
13472             if (target_to_host_itimerspec64(&hspec_new, arg3)) {
13473                 return -TARGET_EFAULT;
13474             }
13475             ret = get_errno(
13476                           timer_settime(htimer, arg2, &hspec_new, &hspec_old));
13477             if (arg4 && host_to_target_itimerspec64(arg4, &hspec_old)) {
13478                 return -TARGET_EFAULT;
13479             }
13480         }
13481         return ret;
13482     }
13483 #endif
13484 
13485 #ifdef TARGET_NR_timer_gettime
13486     case TARGET_NR_timer_gettime:
13487     {
13488         /* args: timer_t timerid, struct itimerspec *curr_value */
13489         target_timer_t timerid = get_timer_id(arg1);
13490 
13491         if (timerid < 0) {
13492             ret = timerid;
13493         } else if (!arg2) {
13494             ret = -TARGET_EFAULT;
13495         } else {
13496             timer_t htimer = g_posix_timers[timerid];
13497             struct itimerspec hspec;
13498             ret = get_errno(timer_gettime(htimer, &hspec));
13499 
13500             if (host_to_target_itimerspec(arg2, &hspec)) {
13501                 ret = -TARGET_EFAULT;
13502             }
13503         }
13504         return ret;
13505     }
13506 #endif
13507 
13508 #ifdef TARGET_NR_timer_gettime64
13509     case TARGET_NR_timer_gettime64:
13510     {
13511         /* args: timer_t timerid, struct itimerspec64 *curr_value */
13512         target_timer_t timerid = get_timer_id(arg1);
13513 
13514         if (timerid < 0) {
13515             ret = timerid;
13516         } else if (!arg2) {
13517             ret = -TARGET_EFAULT;
13518         } else {
13519             timer_t htimer = g_posix_timers[timerid];
13520             struct itimerspec hspec;
13521             ret = get_errno(timer_gettime(htimer, &hspec));
13522 
13523             if (host_to_target_itimerspec64(arg2, &hspec)) {
13524                 ret = -TARGET_EFAULT;
13525             }
13526         }
13527         return ret;
13528     }
13529 #endif
13530 
13531 #ifdef TARGET_NR_timer_getoverrun
13532     case TARGET_NR_timer_getoverrun:
13533     {
13534         /* args: timer_t timerid */
13535         target_timer_t timerid = get_timer_id(arg1);
13536 
13537         if (timerid < 0) {
13538             ret = timerid;
13539         } else {
13540             timer_t htimer = g_posix_timers[timerid];
13541             ret = get_errno(timer_getoverrun(htimer));
13542         }
13543         return ret;
13544     }
13545 #endif
13546 
13547 #ifdef TARGET_NR_timer_delete
13548     case TARGET_NR_timer_delete:
13549     {
13550         /* args: timer_t timerid */
13551         target_timer_t timerid = get_timer_id(arg1);
13552 
13553         if (timerid < 0) {
13554             ret = timerid;
13555         } else {
13556             timer_t htimer = g_posix_timers[timerid];
13557             ret = get_errno(timer_delete(htimer));
13558             free_host_timer_slot(timerid);
13559         }
13560         return ret;
13561     }
13562 #endif
13563 
13564 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD)
13565     case TARGET_NR_timerfd_create:
13566         ret = get_errno(timerfd_create(arg1,
13567                         target_to_host_bitmask(arg2, fcntl_flags_tbl)));
13568         if (ret >= 0) {
13569             fd_trans_register(ret, &target_timerfd_trans);
13570         }
13571         return ret;
13572 #endif
13573 
13574 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD)
13575     case TARGET_NR_timerfd_gettime:
13576         {
13577             struct itimerspec its_curr;
13578 
13579             ret = get_errno(timerfd_gettime(arg1, &its_curr));
13580 
13581             if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) {
13582                 return -TARGET_EFAULT;
13583             }
13584         }
13585         return ret;
13586 #endif
13587 
13588 #if defined(TARGET_NR_timerfd_gettime64) && defined(CONFIG_TIMERFD)
13589     case TARGET_NR_timerfd_gettime64:
13590         {
13591             struct itimerspec its_curr;
13592 
13593             ret = get_errno(timerfd_gettime(arg1, &its_curr));
13594 
13595             if (arg2 && host_to_target_itimerspec64(arg2, &its_curr)) {
13596                 return -TARGET_EFAULT;
13597             }
13598         }
13599         return ret;
13600 #endif
13601 
13602 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)
13603     case TARGET_NR_timerfd_settime:
13604         {
13605             struct itimerspec its_new, its_old, *p_new;
13606 
13607             if (arg3) {
13608                 if (target_to_host_itimerspec(&its_new, arg3)) {
13609                     return -TARGET_EFAULT;
13610                 }
13611                 p_new = &its_new;
13612             } else {
13613                 p_new = NULL;
13614             }
13615 
13616             ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
13617 
13618             if (arg4 && host_to_target_itimerspec(arg4, &its_old)) {
13619                 return -TARGET_EFAULT;
13620             }
13621         }
13622         return ret;
13623 #endif
13624 
13625 #if defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)
13626     case TARGET_NR_timerfd_settime64:
13627         {
13628             struct itimerspec its_new, its_old, *p_new;
13629 
13630             if (arg3) {
13631                 if (target_to_host_itimerspec64(&its_new, arg3)) {
13632                     return -TARGET_EFAULT;
13633                 }
13634                 p_new = &its_new;
13635             } else {
13636                 p_new = NULL;
13637             }
13638 
13639             ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
13640 
13641             if (arg4 && host_to_target_itimerspec64(arg4, &its_old)) {
13642                 return -TARGET_EFAULT;
13643             }
13644         }
13645         return ret;
13646 #endif
13647 
13648 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
13649     case TARGET_NR_ioprio_get:
13650         return get_errno(ioprio_get(arg1, arg2));
13651 #endif
13652 
13653 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
13654     case TARGET_NR_ioprio_set:
13655         return get_errno(ioprio_set(arg1, arg2, arg3));
13656 #endif
13657 
13658 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS)
13659     case TARGET_NR_setns:
13660         return get_errno(setns(arg1, arg2));
13661 #endif
13662 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS)
13663     case TARGET_NR_unshare:
13664         return get_errno(unshare(arg1));
13665 #endif
13666 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
13667     case TARGET_NR_kcmp:
13668         return get_errno(kcmp(arg1, arg2, arg3, arg4, arg5));
13669 #endif
13670 #ifdef TARGET_NR_swapcontext
13671     case TARGET_NR_swapcontext:
13672         /* PowerPC specific.  */
13673         return do_swapcontext(cpu_env, arg1, arg2, arg3);
13674 #endif
13675 #ifdef TARGET_NR_memfd_create
13676     case TARGET_NR_memfd_create:
13677         p = lock_user_string(arg1);
13678         if (!p) {
13679             return -TARGET_EFAULT;
13680         }
13681         ret = get_errno(memfd_create(p, arg2));
13682         fd_trans_unregister(ret);
13683         unlock_user(p, arg1, 0);
13684         return ret;
13685 #endif
13686 #if defined TARGET_NR_membarrier && defined __NR_membarrier
13687     case TARGET_NR_membarrier:
13688         return get_errno(membarrier(arg1, arg2));
13689 #endif
13690 
13691 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
13692     case TARGET_NR_copy_file_range:
13693         {
13694             loff_t inoff, outoff;
13695             loff_t *pinoff = NULL, *poutoff = NULL;
13696 
13697             if (arg2) {
13698                 if (get_user_u64(inoff, arg2)) {
13699                     return -TARGET_EFAULT;
13700                 }
13701                 pinoff = &inoff;
13702             }
13703             if (arg4) {
13704                 if (get_user_u64(outoff, arg4)) {
13705                     return -TARGET_EFAULT;
13706                 }
13707                 poutoff = &outoff;
13708             }
13709             /* Do not sign-extend the count parameter. */
13710             ret = get_errno(safe_copy_file_range(arg1, pinoff, arg3, poutoff,
13711                                                  (abi_ulong)arg5, arg6));
13712             if (!is_error(ret) && ret > 0) {
13713                 if (arg2) {
13714                     if (put_user_u64(inoff, arg2)) {
13715                         return -TARGET_EFAULT;
13716                     }
13717                 }
13718                 if (arg4) {
13719                     if (put_user_u64(outoff, arg4)) {
13720                         return -TARGET_EFAULT;
13721                     }
13722                 }
13723             }
13724         }
13725         return ret;
13726 #endif
13727 
13728 #if defined(TARGET_NR_pivot_root)
13729     case TARGET_NR_pivot_root:
13730         {
13731             void *p2;
13732             p = lock_user_string(arg1); /* new_root */
13733             p2 = lock_user_string(arg2); /* put_old */
13734             if (!p || !p2) {
13735                 ret = -TARGET_EFAULT;
13736             } else {
13737                 ret = get_errno(pivot_root(p, p2));
13738             }
13739             unlock_user(p2, arg2, 0);
13740             unlock_user(p, arg1, 0);
13741         }
13742         return ret;
13743 #endif
13744 
13745 #if defined(TARGET_NR_riscv_hwprobe)
13746     case TARGET_NR_riscv_hwprobe:
13747         return do_riscv_hwprobe(cpu_env, arg1, arg2, arg3, arg4, arg5);
13748 #endif
13749 
13750     default:
13751         qemu_log_mask(LOG_UNIMP, "Unsupported syscall: %d\n", num);
13752         return -TARGET_ENOSYS;
13753     }
13754     return ret;
13755 }
13756 
13757 abi_long do_syscall(CPUArchState *cpu_env, int num, abi_long arg1,
13758                     abi_long arg2, abi_long arg3, abi_long arg4,
13759                     abi_long arg5, abi_long arg6, abi_long arg7,
13760                     abi_long arg8)
13761 {
13762     CPUState *cpu = env_cpu(cpu_env);
13763     abi_long ret;
13764 
13765 #ifdef DEBUG_ERESTARTSYS
13766     /* Debug-only code for exercising the syscall-restart code paths
13767      * in the per-architecture cpu main loops: restart every syscall
13768      * the guest makes once before letting it through.
13769      */
13770     {
13771         static bool flag;
13772         flag = !flag;
13773         if (flag) {
13774             return -QEMU_ERESTARTSYS;
13775         }
13776     }
13777 #endif
13778 
13779     record_syscall_start(cpu, num, arg1,
13780                          arg2, arg3, arg4, arg5, arg6, arg7, arg8);
13781 
13782     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
13783         print_syscall(cpu_env, num, arg1, arg2, arg3, arg4, arg5, arg6);
13784     }
13785 
13786     ret = do_syscall1(cpu_env, num, arg1, arg2, arg3, arg4,
13787                       arg5, arg6, arg7, arg8);
13788 
13789     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
13790         print_syscall_ret(cpu_env, num, ret, arg1, arg2,
13791                           arg3, arg4, arg5, arg6);
13792     }
13793 
13794     record_syscall_return(cpu, num, ret);
13795     return ret;
13796 }
13797