1 /* 2 * Linux syscalls 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #define _ATFILE_SOURCE 20 #include "qemu/osdep.h" 21 #include "qemu/cutils.h" 22 #include "qemu/path.h" 23 #include <elf.h> 24 #include <endian.h> 25 #include <grp.h> 26 #include <sys/ipc.h> 27 #include <sys/msg.h> 28 #include <sys/wait.h> 29 #include <sys/mount.h> 30 #include <sys/file.h> 31 #include <sys/fsuid.h> 32 #include <sys/personality.h> 33 #include <sys/prctl.h> 34 #include <sys/resource.h> 35 #include <sys/swap.h> 36 #include <linux/capability.h> 37 #include <sched.h> 38 #include <sys/timex.h> 39 #include <sys/socket.h> 40 #include <sys/un.h> 41 #include <sys/uio.h> 42 #include <poll.h> 43 #include <sys/times.h> 44 #include <sys/shm.h> 45 #include <sys/sem.h> 46 #include <sys/statfs.h> 47 #include <utime.h> 48 #include <sys/sysinfo.h> 49 #include <sys/signalfd.h> 50 //#include <sys/user.h> 51 #include <netinet/ip.h> 52 #include <netinet/tcp.h> 53 #include <linux/wireless.h> 54 #include <linux/icmp.h> 55 #include <linux/icmpv6.h> 56 #include <linux/errqueue.h> 57 #include <linux/random.h> 58 #include "qemu-common.h" 59 #ifdef CONFIG_TIMERFD 60 #include <sys/timerfd.h> 61 #endif 62 #ifdef TARGET_GPROF 63 #include <sys/gmon.h> 64 #endif 65 #ifdef CONFIG_EVENTFD 66 #include <sys/eventfd.h> 67 #endif 68 #ifdef CONFIG_EPOLL 69 #include <sys/epoll.h> 70 #endif 71 #ifdef CONFIG_ATTR 72 #include "qemu/xattr.h" 73 #endif 74 #ifdef CONFIG_SENDFILE 75 #include <sys/sendfile.h> 76 #endif 77 78 #define termios host_termios 79 #define winsize host_winsize 80 #define termio host_termio 81 #define sgttyb host_sgttyb /* same as target */ 82 #define tchars host_tchars /* same as target */ 83 #define ltchars host_ltchars /* same as target */ 84 85 #include <linux/termios.h> 86 #include <linux/unistd.h> 87 #include <linux/cdrom.h> 88 #include <linux/hdreg.h> 89 #include <linux/soundcard.h> 90 #include <linux/kd.h> 91 #include <linux/mtio.h> 92 #include <linux/fs.h> 93 #if defined(CONFIG_FIEMAP) 94 #include <linux/fiemap.h> 95 #endif 96 #include <linux/fb.h> 97 #include <linux/vt.h> 98 #include <linux/dm-ioctl.h> 99 #include <linux/reboot.h> 100 #include <linux/route.h> 101 #include <linux/filter.h> 102 #include <linux/blkpg.h> 103 #include <netpacket/packet.h> 104 #include <linux/netlink.h> 105 #ifdef CONFIG_RTNETLINK 106 #include <linux/rtnetlink.h> 107 #include <linux/if_bridge.h> 108 #endif 109 #include <linux/audit.h> 110 #include "linux_loop.h" 111 #include "uname.h" 112 113 #include "qemu.h" 114 115 #ifndef CLONE_IO 116 #define CLONE_IO 0x80000000 /* Clone io context */ 117 #endif 118 119 /* We can't directly call the host clone syscall, because this will 120 * badly confuse libc (breaking mutexes, for example). So we must 121 * divide clone flags into: 122 * * flag combinations that look like pthread_create() 123 * * flag combinations that look like fork() 124 * * flags we can implement within QEMU itself 125 * * flags we can't support and will return an error for 126 */ 127 /* For thread creation, all these flags must be present; for 128 * fork, none must be present. 129 */ 130 #define CLONE_THREAD_FLAGS \ 131 (CLONE_VM | CLONE_FS | CLONE_FILES | \ 132 CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM) 133 134 /* These flags are ignored: 135 * CLONE_DETACHED is now ignored by the kernel; 136 * CLONE_IO is just an optimisation hint to the I/O scheduler 137 */ 138 #define CLONE_IGNORED_FLAGS \ 139 (CLONE_DETACHED | CLONE_IO) 140 141 /* Flags for fork which we can implement within QEMU itself */ 142 #define CLONE_OPTIONAL_FORK_FLAGS \ 143 (CLONE_SETTLS | CLONE_PARENT_SETTID | \ 144 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID) 145 146 /* Flags for thread creation which we can implement within QEMU itself */ 147 #define CLONE_OPTIONAL_THREAD_FLAGS \ 148 (CLONE_SETTLS | CLONE_PARENT_SETTID | \ 149 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT) 150 151 #define CLONE_INVALID_FORK_FLAGS \ 152 (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS)) 153 154 #define CLONE_INVALID_THREAD_FLAGS \ 155 (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS | \ 156 CLONE_IGNORED_FLAGS)) 157 158 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits 159 * have almost all been allocated. We cannot support any of 160 * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC, 161 * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED. 162 * The checks against the invalid thread masks above will catch these. 163 * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.) 164 */ 165 166 //#define DEBUG 167 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted 168 * once. This exercises the codepaths for restart. 169 */ 170 //#define DEBUG_ERESTARTSYS 171 172 //#include <linux/msdos_fs.h> 173 #define VFAT_IOCTL_READDIR_BOTH _IOR('r', 1, struct linux_dirent [2]) 174 #define VFAT_IOCTL_READDIR_SHORT _IOR('r', 2, struct linux_dirent [2]) 175 176 #undef _syscall0 177 #undef _syscall1 178 #undef _syscall2 179 #undef _syscall3 180 #undef _syscall4 181 #undef _syscall5 182 #undef _syscall6 183 184 #define _syscall0(type,name) \ 185 static type name (void) \ 186 { \ 187 return syscall(__NR_##name); \ 188 } 189 190 #define _syscall1(type,name,type1,arg1) \ 191 static type name (type1 arg1) \ 192 { \ 193 return syscall(__NR_##name, arg1); \ 194 } 195 196 #define _syscall2(type,name,type1,arg1,type2,arg2) \ 197 static type name (type1 arg1,type2 arg2) \ 198 { \ 199 return syscall(__NR_##name, arg1, arg2); \ 200 } 201 202 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \ 203 static type name (type1 arg1,type2 arg2,type3 arg3) \ 204 { \ 205 return syscall(__NR_##name, arg1, arg2, arg3); \ 206 } 207 208 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \ 209 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4) \ 210 { \ 211 return syscall(__NR_##name, arg1, arg2, arg3, arg4); \ 212 } 213 214 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \ 215 type5,arg5) \ 216 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \ 217 { \ 218 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \ 219 } 220 221 222 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \ 223 type5,arg5,type6,arg6) \ 224 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5, \ 225 type6 arg6) \ 226 { \ 227 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \ 228 } 229 230 231 #define __NR_sys_uname __NR_uname 232 #define __NR_sys_getcwd1 __NR_getcwd 233 #define __NR_sys_getdents __NR_getdents 234 #define __NR_sys_getdents64 __NR_getdents64 235 #define __NR_sys_getpriority __NR_getpriority 236 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo 237 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo 238 #define __NR_sys_syslog __NR_syslog 239 #define __NR_sys_futex __NR_futex 240 #define __NR_sys_inotify_init __NR_inotify_init 241 #define __NR_sys_inotify_add_watch __NR_inotify_add_watch 242 #define __NR_sys_inotify_rm_watch __NR_inotify_rm_watch 243 244 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__) 245 #define __NR__llseek __NR_lseek 246 #endif 247 248 /* Newer kernel ports have llseek() instead of _llseek() */ 249 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek) 250 #define TARGET_NR__llseek TARGET_NR_llseek 251 #endif 252 253 #ifdef __NR_gettid 254 _syscall0(int, gettid) 255 #else 256 /* This is a replacement for the host gettid() and must return a host 257 errno. */ 258 static int gettid(void) { 259 return -ENOSYS; 260 } 261 #endif 262 263 /* For the 64-bit guest on 32-bit host case we must emulate 264 * getdents using getdents64, because otherwise the host 265 * might hand us back more dirent records than we can fit 266 * into the guest buffer after structure format conversion. 267 * Otherwise we emulate getdents with getdents if the host has it. 268 */ 269 #if defined(__NR_getdents) && HOST_LONG_BITS >= TARGET_ABI_BITS 270 #define EMULATE_GETDENTS_WITH_GETDENTS 271 #endif 272 273 #if defined(TARGET_NR_getdents) && defined(EMULATE_GETDENTS_WITH_GETDENTS) 274 _syscall3(int, sys_getdents, uint, fd, struct linux_dirent *, dirp, uint, count); 275 #endif 276 #if (defined(TARGET_NR_getdents) && \ 277 !defined(EMULATE_GETDENTS_WITH_GETDENTS)) || \ 278 (defined(TARGET_NR_getdents64) && defined(__NR_getdents64)) 279 _syscall3(int, sys_getdents64, uint, fd, struct linux_dirent64 *, dirp, uint, count); 280 #endif 281 #if defined(TARGET_NR__llseek) && defined(__NR_llseek) 282 _syscall5(int, _llseek, uint, fd, ulong, hi, ulong, lo, 283 loff_t *, res, uint, wh); 284 #endif 285 _syscall3(int, sys_rt_sigqueueinfo, pid_t, pid, int, sig, siginfo_t *, uinfo) 286 _syscall4(int, sys_rt_tgsigqueueinfo, pid_t, pid, pid_t, tid, int, sig, 287 siginfo_t *, uinfo) 288 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len) 289 #ifdef __NR_exit_group 290 _syscall1(int,exit_group,int,error_code) 291 #endif 292 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address) 293 _syscall1(int,set_tid_address,int *,tidptr) 294 #endif 295 #if defined(TARGET_NR_futex) && defined(__NR_futex) 296 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val, 297 const struct timespec *,timeout,int *,uaddr2,int,val3) 298 #endif 299 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity 300 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len, 301 unsigned long *, user_mask_ptr); 302 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity 303 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len, 304 unsigned long *, user_mask_ptr); 305 #define __NR_sys_getcpu __NR_getcpu 306 _syscall3(int, sys_getcpu, unsigned *, cpu, unsigned *, node, void *, tcache); 307 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd, 308 void *, arg); 309 _syscall2(int, capget, struct __user_cap_header_struct *, header, 310 struct __user_cap_data_struct *, data); 311 _syscall2(int, capset, struct __user_cap_header_struct *, header, 312 struct __user_cap_data_struct *, data); 313 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get) 314 _syscall2(int, ioprio_get, int, which, int, who) 315 #endif 316 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set) 317 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio) 318 #endif 319 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom) 320 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags) 321 #endif 322 323 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp) 324 _syscall5(int, kcmp, pid_t, pid1, pid_t, pid2, int, type, 325 unsigned long, idx1, unsigned long, idx2) 326 #endif 327 328 static bitmask_transtbl fcntl_flags_tbl[] = { 329 { TARGET_O_ACCMODE, TARGET_O_WRONLY, O_ACCMODE, O_WRONLY, }, 330 { TARGET_O_ACCMODE, TARGET_O_RDWR, O_ACCMODE, O_RDWR, }, 331 { TARGET_O_CREAT, TARGET_O_CREAT, O_CREAT, O_CREAT, }, 332 { TARGET_O_EXCL, TARGET_O_EXCL, O_EXCL, O_EXCL, }, 333 { TARGET_O_NOCTTY, TARGET_O_NOCTTY, O_NOCTTY, O_NOCTTY, }, 334 { TARGET_O_TRUNC, TARGET_O_TRUNC, O_TRUNC, O_TRUNC, }, 335 { TARGET_O_APPEND, TARGET_O_APPEND, O_APPEND, O_APPEND, }, 336 { TARGET_O_NONBLOCK, TARGET_O_NONBLOCK, O_NONBLOCK, O_NONBLOCK, }, 337 { TARGET_O_SYNC, TARGET_O_DSYNC, O_SYNC, O_DSYNC, }, 338 { TARGET_O_SYNC, TARGET_O_SYNC, O_SYNC, O_SYNC, }, 339 { TARGET_FASYNC, TARGET_FASYNC, FASYNC, FASYNC, }, 340 { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, }, 341 { TARGET_O_NOFOLLOW, TARGET_O_NOFOLLOW, O_NOFOLLOW, O_NOFOLLOW, }, 342 #if defined(O_DIRECT) 343 { TARGET_O_DIRECT, TARGET_O_DIRECT, O_DIRECT, O_DIRECT, }, 344 #endif 345 #if defined(O_NOATIME) 346 { TARGET_O_NOATIME, TARGET_O_NOATIME, O_NOATIME, O_NOATIME }, 347 #endif 348 #if defined(O_CLOEXEC) 349 { TARGET_O_CLOEXEC, TARGET_O_CLOEXEC, O_CLOEXEC, O_CLOEXEC }, 350 #endif 351 #if defined(O_PATH) 352 { TARGET_O_PATH, TARGET_O_PATH, O_PATH, O_PATH }, 353 #endif 354 #if defined(O_TMPFILE) 355 { TARGET_O_TMPFILE, TARGET_O_TMPFILE, O_TMPFILE, O_TMPFILE }, 356 #endif 357 /* Don't terminate the list prematurely on 64-bit host+guest. */ 358 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0 359 { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, }, 360 #endif 361 { 0, 0, 0, 0 } 362 }; 363 364 enum { 365 QEMU_IFLA_BR_UNSPEC, 366 QEMU_IFLA_BR_FORWARD_DELAY, 367 QEMU_IFLA_BR_HELLO_TIME, 368 QEMU_IFLA_BR_MAX_AGE, 369 QEMU_IFLA_BR_AGEING_TIME, 370 QEMU_IFLA_BR_STP_STATE, 371 QEMU_IFLA_BR_PRIORITY, 372 QEMU_IFLA_BR_VLAN_FILTERING, 373 QEMU_IFLA_BR_VLAN_PROTOCOL, 374 QEMU_IFLA_BR_GROUP_FWD_MASK, 375 QEMU_IFLA_BR_ROOT_ID, 376 QEMU_IFLA_BR_BRIDGE_ID, 377 QEMU_IFLA_BR_ROOT_PORT, 378 QEMU_IFLA_BR_ROOT_PATH_COST, 379 QEMU_IFLA_BR_TOPOLOGY_CHANGE, 380 QEMU_IFLA_BR_TOPOLOGY_CHANGE_DETECTED, 381 QEMU_IFLA_BR_HELLO_TIMER, 382 QEMU_IFLA_BR_TCN_TIMER, 383 QEMU_IFLA_BR_TOPOLOGY_CHANGE_TIMER, 384 QEMU_IFLA_BR_GC_TIMER, 385 QEMU_IFLA_BR_GROUP_ADDR, 386 QEMU_IFLA_BR_FDB_FLUSH, 387 QEMU_IFLA_BR_MCAST_ROUTER, 388 QEMU_IFLA_BR_MCAST_SNOOPING, 389 QEMU_IFLA_BR_MCAST_QUERY_USE_IFADDR, 390 QEMU_IFLA_BR_MCAST_QUERIER, 391 QEMU_IFLA_BR_MCAST_HASH_ELASTICITY, 392 QEMU_IFLA_BR_MCAST_HASH_MAX, 393 QEMU_IFLA_BR_MCAST_LAST_MEMBER_CNT, 394 QEMU_IFLA_BR_MCAST_STARTUP_QUERY_CNT, 395 QEMU_IFLA_BR_MCAST_LAST_MEMBER_INTVL, 396 QEMU_IFLA_BR_MCAST_MEMBERSHIP_INTVL, 397 QEMU_IFLA_BR_MCAST_QUERIER_INTVL, 398 QEMU_IFLA_BR_MCAST_QUERY_INTVL, 399 QEMU_IFLA_BR_MCAST_QUERY_RESPONSE_INTVL, 400 QEMU_IFLA_BR_MCAST_STARTUP_QUERY_INTVL, 401 QEMU_IFLA_BR_NF_CALL_IPTABLES, 402 QEMU_IFLA_BR_NF_CALL_IP6TABLES, 403 QEMU_IFLA_BR_NF_CALL_ARPTABLES, 404 QEMU_IFLA_BR_VLAN_DEFAULT_PVID, 405 QEMU_IFLA_BR_PAD, 406 QEMU_IFLA_BR_VLAN_STATS_ENABLED, 407 QEMU_IFLA_BR_MCAST_STATS_ENABLED, 408 QEMU_IFLA_BR_MCAST_IGMP_VERSION, 409 QEMU_IFLA_BR_MCAST_MLD_VERSION, 410 QEMU___IFLA_BR_MAX, 411 }; 412 413 enum { 414 QEMU_IFLA_UNSPEC, 415 QEMU_IFLA_ADDRESS, 416 QEMU_IFLA_BROADCAST, 417 QEMU_IFLA_IFNAME, 418 QEMU_IFLA_MTU, 419 QEMU_IFLA_LINK, 420 QEMU_IFLA_QDISC, 421 QEMU_IFLA_STATS, 422 QEMU_IFLA_COST, 423 QEMU_IFLA_PRIORITY, 424 QEMU_IFLA_MASTER, 425 QEMU_IFLA_WIRELESS, 426 QEMU_IFLA_PROTINFO, 427 QEMU_IFLA_TXQLEN, 428 QEMU_IFLA_MAP, 429 QEMU_IFLA_WEIGHT, 430 QEMU_IFLA_OPERSTATE, 431 QEMU_IFLA_LINKMODE, 432 QEMU_IFLA_LINKINFO, 433 QEMU_IFLA_NET_NS_PID, 434 QEMU_IFLA_IFALIAS, 435 QEMU_IFLA_NUM_VF, 436 QEMU_IFLA_VFINFO_LIST, 437 QEMU_IFLA_STATS64, 438 QEMU_IFLA_VF_PORTS, 439 QEMU_IFLA_PORT_SELF, 440 QEMU_IFLA_AF_SPEC, 441 QEMU_IFLA_GROUP, 442 QEMU_IFLA_NET_NS_FD, 443 QEMU_IFLA_EXT_MASK, 444 QEMU_IFLA_PROMISCUITY, 445 QEMU_IFLA_NUM_TX_QUEUES, 446 QEMU_IFLA_NUM_RX_QUEUES, 447 QEMU_IFLA_CARRIER, 448 QEMU_IFLA_PHYS_PORT_ID, 449 QEMU_IFLA_CARRIER_CHANGES, 450 QEMU_IFLA_PHYS_SWITCH_ID, 451 QEMU_IFLA_LINK_NETNSID, 452 QEMU_IFLA_PHYS_PORT_NAME, 453 QEMU_IFLA_PROTO_DOWN, 454 QEMU_IFLA_GSO_MAX_SEGS, 455 QEMU_IFLA_GSO_MAX_SIZE, 456 QEMU_IFLA_PAD, 457 QEMU_IFLA_XDP, 458 QEMU_IFLA_EVENT, 459 QEMU_IFLA_NEW_NETNSID, 460 QEMU_IFLA_IF_NETNSID, 461 QEMU_IFLA_CARRIER_UP_COUNT, 462 QEMU_IFLA_CARRIER_DOWN_COUNT, 463 QEMU_IFLA_NEW_IFINDEX, 464 QEMU___IFLA_MAX 465 }; 466 467 enum { 468 QEMU_IFLA_BRPORT_UNSPEC, 469 QEMU_IFLA_BRPORT_STATE, 470 QEMU_IFLA_BRPORT_PRIORITY, 471 QEMU_IFLA_BRPORT_COST, 472 QEMU_IFLA_BRPORT_MODE, 473 QEMU_IFLA_BRPORT_GUARD, 474 QEMU_IFLA_BRPORT_PROTECT, 475 QEMU_IFLA_BRPORT_FAST_LEAVE, 476 QEMU_IFLA_BRPORT_LEARNING, 477 QEMU_IFLA_BRPORT_UNICAST_FLOOD, 478 QEMU_IFLA_BRPORT_PROXYARP, 479 QEMU_IFLA_BRPORT_LEARNING_SYNC, 480 QEMU_IFLA_BRPORT_PROXYARP_WIFI, 481 QEMU_IFLA_BRPORT_ROOT_ID, 482 QEMU_IFLA_BRPORT_BRIDGE_ID, 483 QEMU_IFLA_BRPORT_DESIGNATED_PORT, 484 QEMU_IFLA_BRPORT_DESIGNATED_COST, 485 QEMU_IFLA_BRPORT_ID, 486 QEMU_IFLA_BRPORT_NO, 487 QEMU_IFLA_BRPORT_TOPOLOGY_CHANGE_ACK, 488 QEMU_IFLA_BRPORT_CONFIG_PENDING, 489 QEMU_IFLA_BRPORT_MESSAGE_AGE_TIMER, 490 QEMU_IFLA_BRPORT_FORWARD_DELAY_TIMER, 491 QEMU_IFLA_BRPORT_HOLD_TIMER, 492 QEMU_IFLA_BRPORT_FLUSH, 493 QEMU_IFLA_BRPORT_MULTICAST_ROUTER, 494 QEMU_IFLA_BRPORT_PAD, 495 QEMU_IFLA_BRPORT_MCAST_FLOOD, 496 QEMU_IFLA_BRPORT_MCAST_TO_UCAST, 497 QEMU_IFLA_BRPORT_VLAN_TUNNEL, 498 QEMU_IFLA_BRPORT_BCAST_FLOOD, 499 QEMU_IFLA_BRPORT_GROUP_FWD_MASK, 500 QEMU_IFLA_BRPORT_NEIGH_SUPPRESS, 501 QEMU___IFLA_BRPORT_MAX 502 }; 503 504 enum { 505 QEMU_IFLA_INFO_UNSPEC, 506 QEMU_IFLA_INFO_KIND, 507 QEMU_IFLA_INFO_DATA, 508 QEMU_IFLA_INFO_XSTATS, 509 QEMU_IFLA_INFO_SLAVE_KIND, 510 QEMU_IFLA_INFO_SLAVE_DATA, 511 QEMU___IFLA_INFO_MAX, 512 }; 513 514 enum { 515 QEMU_IFLA_INET_UNSPEC, 516 QEMU_IFLA_INET_CONF, 517 QEMU___IFLA_INET_MAX, 518 }; 519 520 enum { 521 QEMU_IFLA_INET6_UNSPEC, 522 QEMU_IFLA_INET6_FLAGS, 523 QEMU_IFLA_INET6_CONF, 524 QEMU_IFLA_INET6_STATS, 525 QEMU_IFLA_INET6_MCAST, 526 QEMU_IFLA_INET6_CACHEINFO, 527 QEMU_IFLA_INET6_ICMP6STATS, 528 QEMU_IFLA_INET6_TOKEN, 529 QEMU_IFLA_INET6_ADDR_GEN_MODE, 530 QEMU___IFLA_INET6_MAX 531 }; 532 533 enum { 534 QEMU_IFLA_XDP_UNSPEC, 535 QEMU_IFLA_XDP_FD, 536 QEMU_IFLA_XDP_ATTACHED, 537 QEMU_IFLA_XDP_FLAGS, 538 QEMU_IFLA_XDP_PROG_ID, 539 QEMU___IFLA_XDP_MAX, 540 }; 541 542 typedef abi_long (*TargetFdDataFunc)(void *, size_t); 543 typedef abi_long (*TargetFdAddrFunc)(void *, abi_ulong, socklen_t); 544 typedef struct TargetFdTrans { 545 TargetFdDataFunc host_to_target_data; 546 TargetFdDataFunc target_to_host_data; 547 TargetFdAddrFunc target_to_host_addr; 548 } TargetFdTrans; 549 550 static TargetFdTrans **target_fd_trans; 551 552 static unsigned int target_fd_max; 553 554 static TargetFdDataFunc fd_trans_target_to_host_data(int fd) 555 { 556 if (fd >= 0 && fd < target_fd_max && target_fd_trans[fd]) { 557 return target_fd_trans[fd]->target_to_host_data; 558 } 559 return NULL; 560 } 561 562 static TargetFdDataFunc fd_trans_host_to_target_data(int fd) 563 { 564 if (fd >= 0 && fd < target_fd_max && target_fd_trans[fd]) { 565 return target_fd_trans[fd]->host_to_target_data; 566 } 567 return NULL; 568 } 569 570 static TargetFdAddrFunc fd_trans_target_to_host_addr(int fd) 571 { 572 if (fd >= 0 && fd < target_fd_max && target_fd_trans[fd]) { 573 return target_fd_trans[fd]->target_to_host_addr; 574 } 575 return NULL; 576 } 577 578 static void fd_trans_register(int fd, TargetFdTrans *trans) 579 { 580 unsigned int oldmax; 581 582 if (fd >= target_fd_max) { 583 oldmax = target_fd_max; 584 target_fd_max = ((fd >> 6) + 1) << 6; /* by slice of 64 entries */ 585 target_fd_trans = g_renew(TargetFdTrans *, 586 target_fd_trans, target_fd_max); 587 memset((void *)(target_fd_trans + oldmax), 0, 588 (target_fd_max - oldmax) * sizeof(TargetFdTrans *)); 589 } 590 target_fd_trans[fd] = trans; 591 } 592 593 static void fd_trans_unregister(int fd) 594 { 595 if (fd >= 0 && fd < target_fd_max) { 596 target_fd_trans[fd] = NULL; 597 } 598 } 599 600 static void fd_trans_dup(int oldfd, int newfd) 601 { 602 fd_trans_unregister(newfd); 603 if (oldfd < target_fd_max && target_fd_trans[oldfd]) { 604 fd_trans_register(newfd, target_fd_trans[oldfd]); 605 } 606 } 607 608 static int sys_getcwd1(char *buf, size_t size) 609 { 610 if (getcwd(buf, size) == NULL) { 611 /* getcwd() sets errno */ 612 return (-1); 613 } 614 return strlen(buf)+1; 615 } 616 617 #ifdef TARGET_NR_utimensat 618 #if defined(__NR_utimensat) 619 #define __NR_sys_utimensat __NR_utimensat 620 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname, 621 const struct timespec *,tsp,int,flags) 622 #else 623 static int sys_utimensat(int dirfd, const char *pathname, 624 const struct timespec times[2], int flags) 625 { 626 errno = ENOSYS; 627 return -1; 628 } 629 #endif 630 #endif /* TARGET_NR_utimensat */ 631 632 #ifdef TARGET_NR_renameat2 633 #if defined(__NR_renameat2) 634 #define __NR_sys_renameat2 __NR_renameat2 635 _syscall5(int, sys_renameat2, int, oldfd, const char *, old, int, newfd, 636 const char *, new, unsigned int, flags) 637 #else 638 static int sys_renameat2(int oldfd, const char *old, 639 int newfd, const char *new, int flags) 640 { 641 if (flags == 0) { 642 return renameat(oldfd, old, newfd, new); 643 } 644 errno = ENOSYS; 645 return -1; 646 } 647 #endif 648 #endif /* TARGET_NR_renameat2 */ 649 650 #ifdef CONFIG_INOTIFY 651 #include <sys/inotify.h> 652 653 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init) 654 static int sys_inotify_init(void) 655 { 656 return (inotify_init()); 657 } 658 #endif 659 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch) 660 static int sys_inotify_add_watch(int fd,const char *pathname, int32_t mask) 661 { 662 return (inotify_add_watch(fd, pathname, mask)); 663 } 664 #endif 665 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch) 666 static int sys_inotify_rm_watch(int fd, int32_t wd) 667 { 668 return (inotify_rm_watch(fd, wd)); 669 } 670 #endif 671 #ifdef CONFIG_INOTIFY1 672 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1) 673 static int sys_inotify_init1(int flags) 674 { 675 return (inotify_init1(flags)); 676 } 677 #endif 678 #endif 679 #else 680 /* Userspace can usually survive runtime without inotify */ 681 #undef TARGET_NR_inotify_init 682 #undef TARGET_NR_inotify_init1 683 #undef TARGET_NR_inotify_add_watch 684 #undef TARGET_NR_inotify_rm_watch 685 #endif /* CONFIG_INOTIFY */ 686 687 #if defined(TARGET_NR_prlimit64) 688 #ifndef __NR_prlimit64 689 # define __NR_prlimit64 -1 690 #endif 691 #define __NR_sys_prlimit64 __NR_prlimit64 692 /* The glibc rlimit structure may not be that used by the underlying syscall */ 693 struct host_rlimit64 { 694 uint64_t rlim_cur; 695 uint64_t rlim_max; 696 }; 697 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource, 698 const struct host_rlimit64 *, new_limit, 699 struct host_rlimit64 *, old_limit) 700 #endif 701 702 703 #if defined(TARGET_NR_timer_create) 704 /* Maxiumum of 32 active POSIX timers allowed at any one time. */ 705 static timer_t g_posix_timers[32] = { 0, } ; 706 707 static inline int next_free_host_timer(void) 708 { 709 int k ; 710 /* FIXME: Does finding the next free slot require a lock? */ 711 for (k = 0; k < ARRAY_SIZE(g_posix_timers); k++) { 712 if (g_posix_timers[k] == 0) { 713 g_posix_timers[k] = (timer_t) 1; 714 return k; 715 } 716 } 717 return -1; 718 } 719 #endif 720 721 /* ARM EABI and MIPS expect 64bit types aligned even on pairs or registers */ 722 #ifdef TARGET_ARM 723 static inline int regpairs_aligned(void *cpu_env, int num) 724 { 725 return ((((CPUARMState *)cpu_env)->eabi) == 1) ; 726 } 727 #elif defined(TARGET_MIPS) && (TARGET_ABI_BITS == 32) 728 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; } 729 #elif defined(TARGET_PPC) && !defined(TARGET_PPC64) 730 /* SysV AVI for PPC32 expects 64bit parameters to be passed on odd/even pairs 731 * of registers which translates to the same as ARM/MIPS, because we start with 732 * r3 as arg1 */ 733 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; } 734 #elif defined(TARGET_SH4) 735 /* SH4 doesn't align register pairs, except for p{read,write}64 */ 736 static inline int regpairs_aligned(void *cpu_env, int num) 737 { 738 switch (num) { 739 case TARGET_NR_pread64: 740 case TARGET_NR_pwrite64: 741 return 1; 742 743 default: 744 return 0; 745 } 746 } 747 #elif defined(TARGET_XTENSA) 748 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; } 749 #else 750 static inline int regpairs_aligned(void *cpu_env, int num) { return 0; } 751 #endif 752 753 #define ERRNO_TABLE_SIZE 1200 754 755 /* target_to_host_errno_table[] is initialized from 756 * host_to_target_errno_table[] in syscall_init(). */ 757 static uint16_t target_to_host_errno_table[ERRNO_TABLE_SIZE] = { 758 }; 759 760 /* 761 * This list is the union of errno values overridden in asm-<arch>/errno.h 762 * minus the errnos that are not actually generic to all archs. 763 */ 764 static uint16_t host_to_target_errno_table[ERRNO_TABLE_SIZE] = { 765 [EAGAIN] = TARGET_EAGAIN, 766 [EIDRM] = TARGET_EIDRM, 767 [ECHRNG] = TARGET_ECHRNG, 768 [EL2NSYNC] = TARGET_EL2NSYNC, 769 [EL3HLT] = TARGET_EL3HLT, 770 [EL3RST] = TARGET_EL3RST, 771 [ELNRNG] = TARGET_ELNRNG, 772 [EUNATCH] = TARGET_EUNATCH, 773 [ENOCSI] = TARGET_ENOCSI, 774 [EL2HLT] = TARGET_EL2HLT, 775 [EDEADLK] = TARGET_EDEADLK, 776 [ENOLCK] = TARGET_ENOLCK, 777 [EBADE] = TARGET_EBADE, 778 [EBADR] = TARGET_EBADR, 779 [EXFULL] = TARGET_EXFULL, 780 [ENOANO] = TARGET_ENOANO, 781 [EBADRQC] = TARGET_EBADRQC, 782 [EBADSLT] = TARGET_EBADSLT, 783 [EBFONT] = TARGET_EBFONT, 784 [ENOSTR] = TARGET_ENOSTR, 785 [ENODATA] = TARGET_ENODATA, 786 [ETIME] = TARGET_ETIME, 787 [ENOSR] = TARGET_ENOSR, 788 [ENONET] = TARGET_ENONET, 789 [ENOPKG] = TARGET_ENOPKG, 790 [EREMOTE] = TARGET_EREMOTE, 791 [ENOLINK] = TARGET_ENOLINK, 792 [EADV] = TARGET_EADV, 793 [ESRMNT] = TARGET_ESRMNT, 794 [ECOMM] = TARGET_ECOMM, 795 [EPROTO] = TARGET_EPROTO, 796 [EDOTDOT] = TARGET_EDOTDOT, 797 [EMULTIHOP] = TARGET_EMULTIHOP, 798 [EBADMSG] = TARGET_EBADMSG, 799 [ENAMETOOLONG] = TARGET_ENAMETOOLONG, 800 [EOVERFLOW] = TARGET_EOVERFLOW, 801 [ENOTUNIQ] = TARGET_ENOTUNIQ, 802 [EBADFD] = TARGET_EBADFD, 803 [EREMCHG] = TARGET_EREMCHG, 804 [ELIBACC] = TARGET_ELIBACC, 805 [ELIBBAD] = TARGET_ELIBBAD, 806 [ELIBSCN] = TARGET_ELIBSCN, 807 [ELIBMAX] = TARGET_ELIBMAX, 808 [ELIBEXEC] = TARGET_ELIBEXEC, 809 [EILSEQ] = TARGET_EILSEQ, 810 [ENOSYS] = TARGET_ENOSYS, 811 [ELOOP] = TARGET_ELOOP, 812 [ERESTART] = TARGET_ERESTART, 813 [ESTRPIPE] = TARGET_ESTRPIPE, 814 [ENOTEMPTY] = TARGET_ENOTEMPTY, 815 [EUSERS] = TARGET_EUSERS, 816 [ENOTSOCK] = TARGET_ENOTSOCK, 817 [EDESTADDRREQ] = TARGET_EDESTADDRREQ, 818 [EMSGSIZE] = TARGET_EMSGSIZE, 819 [EPROTOTYPE] = TARGET_EPROTOTYPE, 820 [ENOPROTOOPT] = TARGET_ENOPROTOOPT, 821 [EPROTONOSUPPORT] = TARGET_EPROTONOSUPPORT, 822 [ESOCKTNOSUPPORT] = TARGET_ESOCKTNOSUPPORT, 823 [EOPNOTSUPP] = TARGET_EOPNOTSUPP, 824 [EPFNOSUPPORT] = TARGET_EPFNOSUPPORT, 825 [EAFNOSUPPORT] = TARGET_EAFNOSUPPORT, 826 [EADDRINUSE] = TARGET_EADDRINUSE, 827 [EADDRNOTAVAIL] = TARGET_EADDRNOTAVAIL, 828 [ENETDOWN] = TARGET_ENETDOWN, 829 [ENETUNREACH] = TARGET_ENETUNREACH, 830 [ENETRESET] = TARGET_ENETRESET, 831 [ECONNABORTED] = TARGET_ECONNABORTED, 832 [ECONNRESET] = TARGET_ECONNRESET, 833 [ENOBUFS] = TARGET_ENOBUFS, 834 [EISCONN] = TARGET_EISCONN, 835 [ENOTCONN] = TARGET_ENOTCONN, 836 [EUCLEAN] = TARGET_EUCLEAN, 837 [ENOTNAM] = TARGET_ENOTNAM, 838 [ENAVAIL] = TARGET_ENAVAIL, 839 [EISNAM] = TARGET_EISNAM, 840 [EREMOTEIO] = TARGET_EREMOTEIO, 841 [EDQUOT] = TARGET_EDQUOT, 842 [ESHUTDOWN] = TARGET_ESHUTDOWN, 843 [ETOOMANYREFS] = TARGET_ETOOMANYREFS, 844 [ETIMEDOUT] = TARGET_ETIMEDOUT, 845 [ECONNREFUSED] = TARGET_ECONNREFUSED, 846 [EHOSTDOWN] = TARGET_EHOSTDOWN, 847 [EHOSTUNREACH] = TARGET_EHOSTUNREACH, 848 [EALREADY] = TARGET_EALREADY, 849 [EINPROGRESS] = TARGET_EINPROGRESS, 850 [ESTALE] = TARGET_ESTALE, 851 [ECANCELED] = TARGET_ECANCELED, 852 [ENOMEDIUM] = TARGET_ENOMEDIUM, 853 [EMEDIUMTYPE] = TARGET_EMEDIUMTYPE, 854 #ifdef ENOKEY 855 [ENOKEY] = TARGET_ENOKEY, 856 #endif 857 #ifdef EKEYEXPIRED 858 [EKEYEXPIRED] = TARGET_EKEYEXPIRED, 859 #endif 860 #ifdef EKEYREVOKED 861 [EKEYREVOKED] = TARGET_EKEYREVOKED, 862 #endif 863 #ifdef EKEYREJECTED 864 [EKEYREJECTED] = TARGET_EKEYREJECTED, 865 #endif 866 #ifdef EOWNERDEAD 867 [EOWNERDEAD] = TARGET_EOWNERDEAD, 868 #endif 869 #ifdef ENOTRECOVERABLE 870 [ENOTRECOVERABLE] = TARGET_ENOTRECOVERABLE, 871 #endif 872 #ifdef ENOMSG 873 [ENOMSG] = TARGET_ENOMSG, 874 #endif 875 #ifdef ERKFILL 876 [ERFKILL] = TARGET_ERFKILL, 877 #endif 878 #ifdef EHWPOISON 879 [EHWPOISON] = TARGET_EHWPOISON, 880 #endif 881 }; 882 883 static inline int host_to_target_errno(int err) 884 { 885 if (err >= 0 && err < ERRNO_TABLE_SIZE && 886 host_to_target_errno_table[err]) { 887 return host_to_target_errno_table[err]; 888 } 889 return err; 890 } 891 892 static inline int target_to_host_errno(int err) 893 { 894 if (err >= 0 && err < ERRNO_TABLE_SIZE && 895 target_to_host_errno_table[err]) { 896 return target_to_host_errno_table[err]; 897 } 898 return err; 899 } 900 901 static inline abi_long get_errno(abi_long ret) 902 { 903 if (ret == -1) 904 return -host_to_target_errno(errno); 905 else 906 return ret; 907 } 908 909 const char *target_strerror(int err) 910 { 911 if (err == TARGET_ERESTARTSYS) { 912 return "To be restarted"; 913 } 914 if (err == TARGET_QEMU_ESIGRETURN) { 915 return "Successful exit from sigreturn"; 916 } 917 918 if ((err >= ERRNO_TABLE_SIZE) || (err < 0)) { 919 return NULL; 920 } 921 return strerror(target_to_host_errno(err)); 922 } 923 924 #define safe_syscall0(type, name) \ 925 static type safe_##name(void) \ 926 { \ 927 return safe_syscall(__NR_##name); \ 928 } 929 930 #define safe_syscall1(type, name, type1, arg1) \ 931 static type safe_##name(type1 arg1) \ 932 { \ 933 return safe_syscall(__NR_##name, arg1); \ 934 } 935 936 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \ 937 static type safe_##name(type1 arg1, type2 arg2) \ 938 { \ 939 return safe_syscall(__NR_##name, arg1, arg2); \ 940 } 941 942 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \ 943 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \ 944 { \ 945 return safe_syscall(__NR_##name, arg1, arg2, arg3); \ 946 } 947 948 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \ 949 type4, arg4) \ 950 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \ 951 { \ 952 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \ 953 } 954 955 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \ 956 type4, arg4, type5, arg5) \ 957 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \ 958 type5 arg5) \ 959 { \ 960 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \ 961 } 962 963 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \ 964 type4, arg4, type5, arg5, type6, arg6) \ 965 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \ 966 type5 arg5, type6 arg6) \ 967 { \ 968 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \ 969 } 970 971 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count) 972 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count) 973 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \ 974 int, flags, mode_t, mode) 975 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \ 976 struct rusage *, rusage) 977 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \ 978 int, options, struct rusage *, rusage) 979 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp) 980 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \ 981 fd_set *, exceptfds, struct timespec *, timeout, void *, sig) 982 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds, 983 struct timespec *, tsp, const sigset_t *, sigmask, 984 size_t, sigsetsize) 985 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events, 986 int, maxevents, int, timeout, const sigset_t *, sigmask, 987 size_t, sigsetsize) 988 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \ 989 const struct timespec *,timeout,int *,uaddr2,int,val3) 990 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize) 991 safe_syscall2(int, kill, pid_t, pid, int, sig) 992 safe_syscall2(int, tkill, int, tid, int, sig) 993 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig) 994 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt) 995 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt) 996 safe_syscall5(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt, 997 unsigned long, pos_l, unsigned long, pos_h) 998 safe_syscall5(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt, 999 unsigned long, pos_l, unsigned long, pos_h) 1000 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr, 1001 socklen_t, addrlen) 1002 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len, 1003 int, flags, const struct sockaddr *, addr, socklen_t, addrlen) 1004 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len, 1005 int, flags, struct sockaddr *, addr, socklen_t *, addrlen) 1006 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags) 1007 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags) 1008 safe_syscall2(int, flock, int, fd, int, operation) 1009 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo, 1010 const struct timespec *, uts, size_t, sigsetsize) 1011 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len, 1012 int, flags) 1013 safe_syscall2(int, nanosleep, const struct timespec *, req, 1014 struct timespec *, rem) 1015 #ifdef TARGET_NR_clock_nanosleep 1016 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags, 1017 const struct timespec *, req, struct timespec *, rem) 1018 #endif 1019 #ifdef __NR_msgsnd 1020 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz, 1021 int, flags) 1022 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz, 1023 long, msgtype, int, flags) 1024 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops, 1025 unsigned, nsops, const struct timespec *, timeout) 1026 #else 1027 /* This host kernel architecture uses a single ipc syscall; fake up 1028 * wrappers for the sub-operations to hide this implementation detail. 1029 * Annoyingly we can't include linux/ipc.h to get the constant definitions 1030 * for the call parameter because some structs in there conflict with the 1031 * sys/ipc.h ones. So we just define them here, and rely on them being 1032 * the same for all host architectures. 1033 */ 1034 #define Q_SEMTIMEDOP 4 1035 #define Q_MSGSND 11 1036 #define Q_MSGRCV 12 1037 #define Q_IPCCALL(VERSION, OP) ((VERSION) << 16 | (OP)) 1038 1039 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third, 1040 void *, ptr, long, fifth) 1041 static int safe_msgsnd(int msgid, const void *msgp, size_t sz, int flags) 1042 { 1043 return safe_ipc(Q_IPCCALL(0, Q_MSGSND), msgid, sz, flags, (void *)msgp, 0); 1044 } 1045 static int safe_msgrcv(int msgid, void *msgp, size_t sz, long type, int flags) 1046 { 1047 return safe_ipc(Q_IPCCALL(1, Q_MSGRCV), msgid, sz, flags, msgp, type); 1048 } 1049 static int safe_semtimedop(int semid, struct sembuf *tsops, unsigned nsops, 1050 const struct timespec *timeout) 1051 { 1052 return safe_ipc(Q_IPCCALL(0, Q_SEMTIMEDOP), semid, nsops, 0, tsops, 1053 (long)timeout); 1054 } 1055 #endif 1056 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open) 1057 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr, 1058 size_t, len, unsigned, prio, const struct timespec *, timeout) 1059 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr, 1060 size_t, len, unsigned *, prio, const struct timespec *, timeout) 1061 #endif 1062 /* We do ioctl like this rather than via safe_syscall3 to preserve the 1063 * "third argument might be integer or pointer or not present" behaviour of 1064 * the libc function. 1065 */ 1066 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__) 1067 /* Similarly for fcntl. Note that callers must always: 1068 * pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK 1069 * use the flock64 struct rather than unsuffixed flock 1070 * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts. 1071 */ 1072 #ifdef __NR_fcntl64 1073 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__) 1074 #else 1075 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__) 1076 #endif 1077 1078 static inline int host_to_target_sock_type(int host_type) 1079 { 1080 int target_type; 1081 1082 switch (host_type & 0xf /* SOCK_TYPE_MASK */) { 1083 case SOCK_DGRAM: 1084 target_type = TARGET_SOCK_DGRAM; 1085 break; 1086 case SOCK_STREAM: 1087 target_type = TARGET_SOCK_STREAM; 1088 break; 1089 default: 1090 target_type = host_type & 0xf /* SOCK_TYPE_MASK */; 1091 break; 1092 } 1093 1094 #if defined(SOCK_CLOEXEC) 1095 if (host_type & SOCK_CLOEXEC) { 1096 target_type |= TARGET_SOCK_CLOEXEC; 1097 } 1098 #endif 1099 1100 #if defined(SOCK_NONBLOCK) 1101 if (host_type & SOCK_NONBLOCK) { 1102 target_type |= TARGET_SOCK_NONBLOCK; 1103 } 1104 #endif 1105 1106 return target_type; 1107 } 1108 1109 static abi_ulong target_brk; 1110 static abi_ulong target_original_brk; 1111 static abi_ulong brk_page; 1112 1113 void target_set_brk(abi_ulong new_brk) 1114 { 1115 target_original_brk = target_brk = HOST_PAGE_ALIGN(new_brk); 1116 brk_page = HOST_PAGE_ALIGN(target_brk); 1117 } 1118 1119 //#define DEBUGF_BRK(message, args...) do { fprintf(stderr, (message), ## args); } while (0) 1120 #define DEBUGF_BRK(message, args...) 1121 1122 /* do_brk() must return target values and target errnos. */ 1123 abi_long do_brk(abi_ulong new_brk) 1124 { 1125 abi_long mapped_addr; 1126 abi_ulong new_alloc_size; 1127 1128 DEBUGF_BRK("do_brk(" TARGET_ABI_FMT_lx ") -> ", new_brk); 1129 1130 if (!new_brk) { 1131 DEBUGF_BRK(TARGET_ABI_FMT_lx " (!new_brk)\n", target_brk); 1132 return target_brk; 1133 } 1134 if (new_brk < target_original_brk) { 1135 DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk < target_original_brk)\n", 1136 target_brk); 1137 return target_brk; 1138 } 1139 1140 /* If the new brk is less than the highest page reserved to the 1141 * target heap allocation, set it and we're almost done... */ 1142 if (new_brk <= brk_page) { 1143 /* Heap contents are initialized to zero, as for anonymous 1144 * mapped pages. */ 1145 if (new_brk > target_brk) { 1146 memset(g2h(target_brk), 0, new_brk - target_brk); 1147 } 1148 target_brk = new_brk; 1149 DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk <= brk_page)\n", target_brk); 1150 return target_brk; 1151 } 1152 1153 /* We need to allocate more memory after the brk... Note that 1154 * we don't use MAP_FIXED because that will map over the top of 1155 * any existing mapping (like the one with the host libc or qemu 1156 * itself); instead we treat "mapped but at wrong address" as 1157 * a failure and unmap again. 1158 */ 1159 new_alloc_size = HOST_PAGE_ALIGN(new_brk - brk_page); 1160 mapped_addr = get_errno(target_mmap(brk_page, new_alloc_size, 1161 PROT_READ|PROT_WRITE, 1162 MAP_ANON|MAP_PRIVATE, 0, 0)); 1163 1164 if (mapped_addr == brk_page) { 1165 /* Heap contents are initialized to zero, as for anonymous 1166 * mapped pages. Technically the new pages are already 1167 * initialized to zero since they *are* anonymous mapped 1168 * pages, however we have to take care with the contents that 1169 * come from the remaining part of the previous page: it may 1170 * contains garbage data due to a previous heap usage (grown 1171 * then shrunken). */ 1172 memset(g2h(target_brk), 0, brk_page - target_brk); 1173 1174 target_brk = new_brk; 1175 brk_page = HOST_PAGE_ALIGN(target_brk); 1176 DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr == brk_page)\n", 1177 target_brk); 1178 return target_brk; 1179 } else if (mapped_addr != -1) { 1180 /* Mapped but at wrong address, meaning there wasn't actually 1181 * enough space for this brk. 1182 */ 1183 target_munmap(mapped_addr, new_alloc_size); 1184 mapped_addr = -1; 1185 DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr != -1)\n", target_brk); 1186 } 1187 else { 1188 DEBUGF_BRK(TARGET_ABI_FMT_lx " (otherwise)\n", target_brk); 1189 } 1190 1191 #if defined(TARGET_ALPHA) 1192 /* We (partially) emulate OSF/1 on Alpha, which requires we 1193 return a proper errno, not an unchanged brk value. */ 1194 return -TARGET_ENOMEM; 1195 #endif 1196 /* For everything else, return the previous break. */ 1197 return target_brk; 1198 } 1199 1200 static inline abi_long copy_from_user_fdset(fd_set *fds, 1201 abi_ulong target_fds_addr, 1202 int n) 1203 { 1204 int i, nw, j, k; 1205 abi_ulong b, *target_fds; 1206 1207 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS); 1208 if (!(target_fds = lock_user(VERIFY_READ, 1209 target_fds_addr, 1210 sizeof(abi_ulong) * nw, 1211 1))) 1212 return -TARGET_EFAULT; 1213 1214 FD_ZERO(fds); 1215 k = 0; 1216 for (i = 0; i < nw; i++) { 1217 /* grab the abi_ulong */ 1218 __get_user(b, &target_fds[i]); 1219 for (j = 0; j < TARGET_ABI_BITS; j++) { 1220 /* check the bit inside the abi_ulong */ 1221 if ((b >> j) & 1) 1222 FD_SET(k, fds); 1223 k++; 1224 } 1225 } 1226 1227 unlock_user(target_fds, target_fds_addr, 0); 1228 1229 return 0; 1230 } 1231 1232 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr, 1233 abi_ulong target_fds_addr, 1234 int n) 1235 { 1236 if (target_fds_addr) { 1237 if (copy_from_user_fdset(fds, target_fds_addr, n)) 1238 return -TARGET_EFAULT; 1239 *fds_ptr = fds; 1240 } else { 1241 *fds_ptr = NULL; 1242 } 1243 return 0; 1244 } 1245 1246 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr, 1247 const fd_set *fds, 1248 int n) 1249 { 1250 int i, nw, j, k; 1251 abi_long v; 1252 abi_ulong *target_fds; 1253 1254 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS); 1255 if (!(target_fds = lock_user(VERIFY_WRITE, 1256 target_fds_addr, 1257 sizeof(abi_ulong) * nw, 1258 0))) 1259 return -TARGET_EFAULT; 1260 1261 k = 0; 1262 for (i = 0; i < nw; i++) { 1263 v = 0; 1264 for (j = 0; j < TARGET_ABI_BITS; j++) { 1265 v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j); 1266 k++; 1267 } 1268 __put_user(v, &target_fds[i]); 1269 } 1270 1271 unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw); 1272 1273 return 0; 1274 } 1275 1276 #if defined(__alpha__) 1277 #define HOST_HZ 1024 1278 #else 1279 #define HOST_HZ 100 1280 #endif 1281 1282 static inline abi_long host_to_target_clock_t(long ticks) 1283 { 1284 #if HOST_HZ == TARGET_HZ 1285 return ticks; 1286 #else 1287 return ((int64_t)ticks * TARGET_HZ) / HOST_HZ; 1288 #endif 1289 } 1290 1291 static inline abi_long host_to_target_rusage(abi_ulong target_addr, 1292 const struct rusage *rusage) 1293 { 1294 struct target_rusage *target_rusage; 1295 1296 if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0)) 1297 return -TARGET_EFAULT; 1298 target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec); 1299 target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec); 1300 target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec); 1301 target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec); 1302 target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss); 1303 target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss); 1304 target_rusage->ru_idrss = tswapal(rusage->ru_idrss); 1305 target_rusage->ru_isrss = tswapal(rusage->ru_isrss); 1306 target_rusage->ru_minflt = tswapal(rusage->ru_minflt); 1307 target_rusage->ru_majflt = tswapal(rusage->ru_majflt); 1308 target_rusage->ru_nswap = tswapal(rusage->ru_nswap); 1309 target_rusage->ru_inblock = tswapal(rusage->ru_inblock); 1310 target_rusage->ru_oublock = tswapal(rusage->ru_oublock); 1311 target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd); 1312 target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv); 1313 target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals); 1314 target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw); 1315 target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw); 1316 unlock_user_struct(target_rusage, target_addr, 1); 1317 1318 return 0; 1319 } 1320 1321 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim) 1322 { 1323 abi_ulong target_rlim_swap; 1324 rlim_t result; 1325 1326 target_rlim_swap = tswapal(target_rlim); 1327 if (target_rlim_swap == TARGET_RLIM_INFINITY) 1328 return RLIM_INFINITY; 1329 1330 result = target_rlim_swap; 1331 if (target_rlim_swap != (rlim_t)result) 1332 return RLIM_INFINITY; 1333 1334 return result; 1335 } 1336 1337 static inline abi_ulong host_to_target_rlim(rlim_t rlim) 1338 { 1339 abi_ulong target_rlim_swap; 1340 abi_ulong result; 1341 1342 if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim) 1343 target_rlim_swap = TARGET_RLIM_INFINITY; 1344 else 1345 target_rlim_swap = rlim; 1346 result = tswapal(target_rlim_swap); 1347 1348 return result; 1349 } 1350 1351 static inline int target_to_host_resource(int code) 1352 { 1353 switch (code) { 1354 case TARGET_RLIMIT_AS: 1355 return RLIMIT_AS; 1356 case TARGET_RLIMIT_CORE: 1357 return RLIMIT_CORE; 1358 case TARGET_RLIMIT_CPU: 1359 return RLIMIT_CPU; 1360 case TARGET_RLIMIT_DATA: 1361 return RLIMIT_DATA; 1362 case TARGET_RLIMIT_FSIZE: 1363 return RLIMIT_FSIZE; 1364 case TARGET_RLIMIT_LOCKS: 1365 return RLIMIT_LOCKS; 1366 case TARGET_RLIMIT_MEMLOCK: 1367 return RLIMIT_MEMLOCK; 1368 case TARGET_RLIMIT_MSGQUEUE: 1369 return RLIMIT_MSGQUEUE; 1370 case TARGET_RLIMIT_NICE: 1371 return RLIMIT_NICE; 1372 case TARGET_RLIMIT_NOFILE: 1373 return RLIMIT_NOFILE; 1374 case TARGET_RLIMIT_NPROC: 1375 return RLIMIT_NPROC; 1376 case TARGET_RLIMIT_RSS: 1377 return RLIMIT_RSS; 1378 case TARGET_RLIMIT_RTPRIO: 1379 return RLIMIT_RTPRIO; 1380 case TARGET_RLIMIT_SIGPENDING: 1381 return RLIMIT_SIGPENDING; 1382 case TARGET_RLIMIT_STACK: 1383 return RLIMIT_STACK; 1384 default: 1385 return code; 1386 } 1387 } 1388 1389 static inline abi_long copy_from_user_timeval(struct timeval *tv, 1390 abi_ulong target_tv_addr) 1391 { 1392 struct target_timeval *target_tv; 1393 1394 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) 1395 return -TARGET_EFAULT; 1396 1397 __get_user(tv->tv_sec, &target_tv->tv_sec); 1398 __get_user(tv->tv_usec, &target_tv->tv_usec); 1399 1400 unlock_user_struct(target_tv, target_tv_addr, 0); 1401 1402 return 0; 1403 } 1404 1405 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr, 1406 const struct timeval *tv) 1407 { 1408 struct target_timeval *target_tv; 1409 1410 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) 1411 return -TARGET_EFAULT; 1412 1413 __put_user(tv->tv_sec, &target_tv->tv_sec); 1414 __put_user(tv->tv_usec, &target_tv->tv_usec); 1415 1416 unlock_user_struct(target_tv, target_tv_addr, 1); 1417 1418 return 0; 1419 } 1420 1421 static inline abi_long copy_from_user_timezone(struct timezone *tz, 1422 abi_ulong target_tz_addr) 1423 { 1424 struct target_timezone *target_tz; 1425 1426 if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) { 1427 return -TARGET_EFAULT; 1428 } 1429 1430 __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest); 1431 __get_user(tz->tz_dsttime, &target_tz->tz_dsttime); 1432 1433 unlock_user_struct(target_tz, target_tz_addr, 0); 1434 1435 return 0; 1436 } 1437 1438 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open) 1439 #include <mqueue.h> 1440 1441 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr, 1442 abi_ulong target_mq_attr_addr) 1443 { 1444 struct target_mq_attr *target_mq_attr; 1445 1446 if (!lock_user_struct(VERIFY_READ, target_mq_attr, 1447 target_mq_attr_addr, 1)) 1448 return -TARGET_EFAULT; 1449 1450 __get_user(attr->mq_flags, &target_mq_attr->mq_flags); 1451 __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg); 1452 __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize); 1453 __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs); 1454 1455 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0); 1456 1457 return 0; 1458 } 1459 1460 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr, 1461 const struct mq_attr *attr) 1462 { 1463 struct target_mq_attr *target_mq_attr; 1464 1465 if (!lock_user_struct(VERIFY_WRITE, target_mq_attr, 1466 target_mq_attr_addr, 0)) 1467 return -TARGET_EFAULT; 1468 1469 __put_user(attr->mq_flags, &target_mq_attr->mq_flags); 1470 __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg); 1471 __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize); 1472 __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs); 1473 1474 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1); 1475 1476 return 0; 1477 } 1478 #endif 1479 1480 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) 1481 /* do_select() must return target values and target errnos. */ 1482 static abi_long do_select(int n, 1483 abi_ulong rfd_addr, abi_ulong wfd_addr, 1484 abi_ulong efd_addr, abi_ulong target_tv_addr) 1485 { 1486 fd_set rfds, wfds, efds; 1487 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr; 1488 struct timeval tv; 1489 struct timespec ts, *ts_ptr; 1490 abi_long ret; 1491 1492 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n); 1493 if (ret) { 1494 return ret; 1495 } 1496 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n); 1497 if (ret) { 1498 return ret; 1499 } 1500 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n); 1501 if (ret) { 1502 return ret; 1503 } 1504 1505 if (target_tv_addr) { 1506 if (copy_from_user_timeval(&tv, target_tv_addr)) 1507 return -TARGET_EFAULT; 1508 ts.tv_sec = tv.tv_sec; 1509 ts.tv_nsec = tv.tv_usec * 1000; 1510 ts_ptr = &ts; 1511 } else { 1512 ts_ptr = NULL; 1513 } 1514 1515 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr, 1516 ts_ptr, NULL)); 1517 1518 if (!is_error(ret)) { 1519 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) 1520 return -TARGET_EFAULT; 1521 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) 1522 return -TARGET_EFAULT; 1523 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) 1524 return -TARGET_EFAULT; 1525 1526 if (target_tv_addr) { 1527 tv.tv_sec = ts.tv_sec; 1528 tv.tv_usec = ts.tv_nsec / 1000; 1529 if (copy_to_user_timeval(target_tv_addr, &tv)) { 1530 return -TARGET_EFAULT; 1531 } 1532 } 1533 } 1534 1535 return ret; 1536 } 1537 1538 #if defined(TARGET_WANT_OLD_SYS_SELECT) 1539 static abi_long do_old_select(abi_ulong arg1) 1540 { 1541 struct target_sel_arg_struct *sel; 1542 abi_ulong inp, outp, exp, tvp; 1543 long nsel; 1544 1545 if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) { 1546 return -TARGET_EFAULT; 1547 } 1548 1549 nsel = tswapal(sel->n); 1550 inp = tswapal(sel->inp); 1551 outp = tswapal(sel->outp); 1552 exp = tswapal(sel->exp); 1553 tvp = tswapal(sel->tvp); 1554 1555 unlock_user_struct(sel, arg1, 0); 1556 1557 return do_select(nsel, inp, outp, exp, tvp); 1558 } 1559 #endif 1560 #endif 1561 1562 static abi_long do_pipe2(int host_pipe[], int flags) 1563 { 1564 #ifdef CONFIG_PIPE2 1565 return pipe2(host_pipe, flags); 1566 #else 1567 return -ENOSYS; 1568 #endif 1569 } 1570 1571 static abi_long do_pipe(void *cpu_env, abi_ulong pipedes, 1572 int flags, int is_pipe2) 1573 { 1574 int host_pipe[2]; 1575 abi_long ret; 1576 ret = flags ? do_pipe2(host_pipe, flags) : pipe(host_pipe); 1577 1578 if (is_error(ret)) 1579 return get_errno(ret); 1580 1581 /* Several targets have special calling conventions for the original 1582 pipe syscall, but didn't replicate this into the pipe2 syscall. */ 1583 if (!is_pipe2) { 1584 #if defined(TARGET_ALPHA) 1585 ((CPUAlphaState *)cpu_env)->ir[IR_A4] = host_pipe[1]; 1586 return host_pipe[0]; 1587 #elif defined(TARGET_MIPS) 1588 ((CPUMIPSState*)cpu_env)->active_tc.gpr[3] = host_pipe[1]; 1589 return host_pipe[0]; 1590 #elif defined(TARGET_SH4) 1591 ((CPUSH4State*)cpu_env)->gregs[1] = host_pipe[1]; 1592 return host_pipe[0]; 1593 #elif defined(TARGET_SPARC) 1594 ((CPUSPARCState*)cpu_env)->regwptr[1] = host_pipe[1]; 1595 return host_pipe[0]; 1596 #endif 1597 } 1598 1599 if (put_user_s32(host_pipe[0], pipedes) 1600 || put_user_s32(host_pipe[1], pipedes + sizeof(host_pipe[0]))) 1601 return -TARGET_EFAULT; 1602 return get_errno(ret); 1603 } 1604 1605 static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn, 1606 abi_ulong target_addr, 1607 socklen_t len) 1608 { 1609 struct target_ip_mreqn *target_smreqn; 1610 1611 target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1); 1612 if (!target_smreqn) 1613 return -TARGET_EFAULT; 1614 mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr; 1615 mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr; 1616 if (len == sizeof(struct target_ip_mreqn)) 1617 mreqn->imr_ifindex = tswapal(target_smreqn->imr_ifindex); 1618 unlock_user(target_smreqn, target_addr, 0); 1619 1620 return 0; 1621 } 1622 1623 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr, 1624 abi_ulong target_addr, 1625 socklen_t len) 1626 { 1627 const socklen_t unix_maxlen = sizeof (struct sockaddr_un); 1628 sa_family_t sa_family; 1629 struct target_sockaddr *target_saddr; 1630 1631 if (fd_trans_target_to_host_addr(fd)) { 1632 return fd_trans_target_to_host_addr(fd)(addr, target_addr, len); 1633 } 1634 1635 target_saddr = lock_user(VERIFY_READ, target_addr, len, 1); 1636 if (!target_saddr) 1637 return -TARGET_EFAULT; 1638 1639 sa_family = tswap16(target_saddr->sa_family); 1640 1641 /* Oops. The caller might send a incomplete sun_path; sun_path 1642 * must be terminated by \0 (see the manual page), but 1643 * unfortunately it is quite common to specify sockaddr_un 1644 * length as "strlen(x->sun_path)" while it should be 1645 * "strlen(...) + 1". We'll fix that here if needed. 1646 * Linux kernel has a similar feature. 1647 */ 1648 1649 if (sa_family == AF_UNIX) { 1650 if (len < unix_maxlen && len > 0) { 1651 char *cp = (char*)target_saddr; 1652 1653 if ( cp[len-1] && !cp[len] ) 1654 len++; 1655 } 1656 if (len > unix_maxlen) 1657 len = unix_maxlen; 1658 } 1659 1660 memcpy(addr, target_saddr, len); 1661 addr->sa_family = sa_family; 1662 if (sa_family == AF_NETLINK) { 1663 struct sockaddr_nl *nladdr; 1664 1665 nladdr = (struct sockaddr_nl *)addr; 1666 nladdr->nl_pid = tswap32(nladdr->nl_pid); 1667 nladdr->nl_groups = tswap32(nladdr->nl_groups); 1668 } else if (sa_family == AF_PACKET) { 1669 struct target_sockaddr_ll *lladdr; 1670 1671 lladdr = (struct target_sockaddr_ll *)addr; 1672 lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex); 1673 lladdr->sll_hatype = tswap16(lladdr->sll_hatype); 1674 } 1675 unlock_user(target_saddr, target_addr, 0); 1676 1677 return 0; 1678 } 1679 1680 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr, 1681 struct sockaddr *addr, 1682 socklen_t len) 1683 { 1684 struct target_sockaddr *target_saddr; 1685 1686 if (len == 0) { 1687 return 0; 1688 } 1689 assert(addr); 1690 1691 target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0); 1692 if (!target_saddr) 1693 return -TARGET_EFAULT; 1694 memcpy(target_saddr, addr, len); 1695 if (len >= offsetof(struct target_sockaddr, sa_family) + 1696 sizeof(target_saddr->sa_family)) { 1697 target_saddr->sa_family = tswap16(addr->sa_family); 1698 } 1699 if (addr->sa_family == AF_NETLINK && len >= sizeof(struct sockaddr_nl)) { 1700 struct sockaddr_nl *target_nl = (struct sockaddr_nl *)target_saddr; 1701 target_nl->nl_pid = tswap32(target_nl->nl_pid); 1702 target_nl->nl_groups = tswap32(target_nl->nl_groups); 1703 } else if (addr->sa_family == AF_PACKET) { 1704 struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr; 1705 target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex); 1706 target_ll->sll_hatype = tswap16(target_ll->sll_hatype); 1707 } else if (addr->sa_family == AF_INET6 && 1708 len >= sizeof(struct target_sockaddr_in6)) { 1709 struct target_sockaddr_in6 *target_in6 = 1710 (struct target_sockaddr_in6 *)target_saddr; 1711 target_in6->sin6_scope_id = tswap16(target_in6->sin6_scope_id); 1712 } 1713 unlock_user(target_saddr, target_addr, len); 1714 1715 return 0; 1716 } 1717 1718 static inline abi_long target_to_host_cmsg(struct msghdr *msgh, 1719 struct target_msghdr *target_msgh) 1720 { 1721 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh); 1722 abi_long msg_controllen; 1723 abi_ulong target_cmsg_addr; 1724 struct target_cmsghdr *target_cmsg, *target_cmsg_start; 1725 socklen_t space = 0; 1726 1727 msg_controllen = tswapal(target_msgh->msg_controllen); 1728 if (msg_controllen < sizeof (struct target_cmsghdr)) 1729 goto the_end; 1730 target_cmsg_addr = tswapal(target_msgh->msg_control); 1731 target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1); 1732 target_cmsg_start = target_cmsg; 1733 if (!target_cmsg) 1734 return -TARGET_EFAULT; 1735 1736 while (cmsg && target_cmsg) { 1737 void *data = CMSG_DATA(cmsg); 1738 void *target_data = TARGET_CMSG_DATA(target_cmsg); 1739 1740 int len = tswapal(target_cmsg->cmsg_len) 1741 - sizeof(struct target_cmsghdr); 1742 1743 space += CMSG_SPACE(len); 1744 if (space > msgh->msg_controllen) { 1745 space -= CMSG_SPACE(len); 1746 /* This is a QEMU bug, since we allocated the payload 1747 * area ourselves (unlike overflow in host-to-target 1748 * conversion, which is just the guest giving us a buffer 1749 * that's too small). It can't happen for the payload types 1750 * we currently support; if it becomes an issue in future 1751 * we would need to improve our allocation strategy to 1752 * something more intelligent than "twice the size of the 1753 * target buffer we're reading from". 1754 */ 1755 gemu_log("Host cmsg overflow\n"); 1756 break; 1757 } 1758 1759 if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) { 1760 cmsg->cmsg_level = SOL_SOCKET; 1761 } else { 1762 cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level); 1763 } 1764 cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type); 1765 cmsg->cmsg_len = CMSG_LEN(len); 1766 1767 if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) { 1768 int *fd = (int *)data; 1769 int *target_fd = (int *)target_data; 1770 int i, numfds = len / sizeof(int); 1771 1772 for (i = 0; i < numfds; i++) { 1773 __get_user(fd[i], target_fd + i); 1774 } 1775 } else if (cmsg->cmsg_level == SOL_SOCKET 1776 && cmsg->cmsg_type == SCM_CREDENTIALS) { 1777 struct ucred *cred = (struct ucred *)data; 1778 struct target_ucred *target_cred = 1779 (struct target_ucred *)target_data; 1780 1781 __get_user(cred->pid, &target_cred->pid); 1782 __get_user(cred->uid, &target_cred->uid); 1783 __get_user(cred->gid, &target_cred->gid); 1784 } else { 1785 gemu_log("Unsupported ancillary data: %d/%d\n", 1786 cmsg->cmsg_level, cmsg->cmsg_type); 1787 memcpy(data, target_data, len); 1788 } 1789 1790 cmsg = CMSG_NXTHDR(msgh, cmsg); 1791 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg, 1792 target_cmsg_start); 1793 } 1794 unlock_user(target_cmsg, target_cmsg_addr, 0); 1795 the_end: 1796 msgh->msg_controllen = space; 1797 return 0; 1798 } 1799 1800 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh, 1801 struct msghdr *msgh) 1802 { 1803 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh); 1804 abi_long msg_controllen; 1805 abi_ulong target_cmsg_addr; 1806 struct target_cmsghdr *target_cmsg, *target_cmsg_start; 1807 socklen_t space = 0; 1808 1809 msg_controllen = tswapal(target_msgh->msg_controllen); 1810 if (msg_controllen < sizeof (struct target_cmsghdr)) 1811 goto the_end; 1812 target_cmsg_addr = tswapal(target_msgh->msg_control); 1813 target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0); 1814 target_cmsg_start = target_cmsg; 1815 if (!target_cmsg) 1816 return -TARGET_EFAULT; 1817 1818 while (cmsg && target_cmsg) { 1819 void *data = CMSG_DATA(cmsg); 1820 void *target_data = TARGET_CMSG_DATA(target_cmsg); 1821 1822 int len = cmsg->cmsg_len - sizeof(struct cmsghdr); 1823 int tgt_len, tgt_space; 1824 1825 /* We never copy a half-header but may copy half-data; 1826 * this is Linux's behaviour in put_cmsg(). Note that 1827 * truncation here is a guest problem (which we report 1828 * to the guest via the CTRUNC bit), unlike truncation 1829 * in target_to_host_cmsg, which is a QEMU bug. 1830 */ 1831 if (msg_controllen < sizeof(struct target_cmsghdr)) { 1832 target_msgh->msg_flags |= tswap32(MSG_CTRUNC); 1833 break; 1834 } 1835 1836 if (cmsg->cmsg_level == SOL_SOCKET) { 1837 target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET); 1838 } else { 1839 target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level); 1840 } 1841 target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type); 1842 1843 /* Payload types which need a different size of payload on 1844 * the target must adjust tgt_len here. 1845 */ 1846 tgt_len = len; 1847 switch (cmsg->cmsg_level) { 1848 case SOL_SOCKET: 1849 switch (cmsg->cmsg_type) { 1850 case SO_TIMESTAMP: 1851 tgt_len = sizeof(struct target_timeval); 1852 break; 1853 default: 1854 break; 1855 } 1856 break; 1857 default: 1858 break; 1859 } 1860 1861 if (msg_controllen < TARGET_CMSG_LEN(tgt_len)) { 1862 target_msgh->msg_flags |= tswap32(MSG_CTRUNC); 1863 tgt_len = msg_controllen - sizeof(struct target_cmsghdr); 1864 } 1865 1866 /* We must now copy-and-convert len bytes of payload 1867 * into tgt_len bytes of destination space. Bear in mind 1868 * that in both source and destination we may be dealing 1869 * with a truncated value! 1870 */ 1871 switch (cmsg->cmsg_level) { 1872 case SOL_SOCKET: 1873 switch (cmsg->cmsg_type) { 1874 case SCM_RIGHTS: 1875 { 1876 int *fd = (int *)data; 1877 int *target_fd = (int *)target_data; 1878 int i, numfds = tgt_len / sizeof(int); 1879 1880 for (i = 0; i < numfds; i++) { 1881 __put_user(fd[i], target_fd + i); 1882 } 1883 break; 1884 } 1885 case SO_TIMESTAMP: 1886 { 1887 struct timeval *tv = (struct timeval *)data; 1888 struct target_timeval *target_tv = 1889 (struct target_timeval *)target_data; 1890 1891 if (len != sizeof(struct timeval) || 1892 tgt_len != sizeof(struct target_timeval)) { 1893 goto unimplemented; 1894 } 1895 1896 /* copy struct timeval to target */ 1897 __put_user(tv->tv_sec, &target_tv->tv_sec); 1898 __put_user(tv->tv_usec, &target_tv->tv_usec); 1899 break; 1900 } 1901 case SCM_CREDENTIALS: 1902 { 1903 struct ucred *cred = (struct ucred *)data; 1904 struct target_ucred *target_cred = 1905 (struct target_ucred *)target_data; 1906 1907 __put_user(cred->pid, &target_cred->pid); 1908 __put_user(cred->uid, &target_cred->uid); 1909 __put_user(cred->gid, &target_cred->gid); 1910 break; 1911 } 1912 default: 1913 goto unimplemented; 1914 } 1915 break; 1916 1917 case SOL_IP: 1918 switch (cmsg->cmsg_type) { 1919 case IP_TTL: 1920 { 1921 uint32_t *v = (uint32_t *)data; 1922 uint32_t *t_int = (uint32_t *)target_data; 1923 1924 if (len != sizeof(uint32_t) || 1925 tgt_len != sizeof(uint32_t)) { 1926 goto unimplemented; 1927 } 1928 __put_user(*v, t_int); 1929 break; 1930 } 1931 case IP_RECVERR: 1932 { 1933 struct errhdr_t { 1934 struct sock_extended_err ee; 1935 struct sockaddr_in offender; 1936 }; 1937 struct errhdr_t *errh = (struct errhdr_t *)data; 1938 struct errhdr_t *target_errh = 1939 (struct errhdr_t *)target_data; 1940 1941 if (len != sizeof(struct errhdr_t) || 1942 tgt_len != sizeof(struct errhdr_t)) { 1943 goto unimplemented; 1944 } 1945 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno); 1946 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin); 1947 __put_user(errh->ee.ee_type, &target_errh->ee.ee_type); 1948 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code); 1949 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad); 1950 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info); 1951 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data); 1952 host_to_target_sockaddr((unsigned long) &target_errh->offender, 1953 (void *) &errh->offender, sizeof(errh->offender)); 1954 break; 1955 } 1956 default: 1957 goto unimplemented; 1958 } 1959 break; 1960 1961 case SOL_IPV6: 1962 switch (cmsg->cmsg_type) { 1963 case IPV6_HOPLIMIT: 1964 { 1965 uint32_t *v = (uint32_t *)data; 1966 uint32_t *t_int = (uint32_t *)target_data; 1967 1968 if (len != sizeof(uint32_t) || 1969 tgt_len != sizeof(uint32_t)) { 1970 goto unimplemented; 1971 } 1972 __put_user(*v, t_int); 1973 break; 1974 } 1975 case IPV6_RECVERR: 1976 { 1977 struct errhdr6_t { 1978 struct sock_extended_err ee; 1979 struct sockaddr_in6 offender; 1980 }; 1981 struct errhdr6_t *errh = (struct errhdr6_t *)data; 1982 struct errhdr6_t *target_errh = 1983 (struct errhdr6_t *)target_data; 1984 1985 if (len != sizeof(struct errhdr6_t) || 1986 tgt_len != sizeof(struct errhdr6_t)) { 1987 goto unimplemented; 1988 } 1989 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno); 1990 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin); 1991 __put_user(errh->ee.ee_type, &target_errh->ee.ee_type); 1992 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code); 1993 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad); 1994 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info); 1995 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data); 1996 host_to_target_sockaddr((unsigned long) &target_errh->offender, 1997 (void *) &errh->offender, sizeof(errh->offender)); 1998 break; 1999 } 2000 default: 2001 goto unimplemented; 2002 } 2003 break; 2004 2005 default: 2006 unimplemented: 2007 gemu_log("Unsupported ancillary data: %d/%d\n", 2008 cmsg->cmsg_level, cmsg->cmsg_type); 2009 memcpy(target_data, data, MIN(len, tgt_len)); 2010 if (tgt_len > len) { 2011 memset(target_data + len, 0, tgt_len - len); 2012 } 2013 } 2014 2015 target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(tgt_len)); 2016 tgt_space = TARGET_CMSG_SPACE(tgt_len); 2017 if (msg_controllen < tgt_space) { 2018 tgt_space = msg_controllen; 2019 } 2020 msg_controllen -= tgt_space; 2021 space += tgt_space; 2022 cmsg = CMSG_NXTHDR(msgh, cmsg); 2023 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg, 2024 target_cmsg_start); 2025 } 2026 unlock_user(target_cmsg, target_cmsg_addr, space); 2027 the_end: 2028 target_msgh->msg_controllen = tswapal(space); 2029 return 0; 2030 } 2031 2032 static void tswap_nlmsghdr(struct nlmsghdr *nlh) 2033 { 2034 nlh->nlmsg_len = tswap32(nlh->nlmsg_len); 2035 nlh->nlmsg_type = tswap16(nlh->nlmsg_type); 2036 nlh->nlmsg_flags = tswap16(nlh->nlmsg_flags); 2037 nlh->nlmsg_seq = tswap32(nlh->nlmsg_seq); 2038 nlh->nlmsg_pid = tswap32(nlh->nlmsg_pid); 2039 } 2040 2041 static abi_long host_to_target_for_each_nlmsg(struct nlmsghdr *nlh, 2042 size_t len, 2043 abi_long (*host_to_target_nlmsg) 2044 (struct nlmsghdr *)) 2045 { 2046 uint32_t nlmsg_len; 2047 abi_long ret; 2048 2049 while (len > sizeof(struct nlmsghdr)) { 2050 2051 nlmsg_len = nlh->nlmsg_len; 2052 if (nlmsg_len < sizeof(struct nlmsghdr) || 2053 nlmsg_len > len) { 2054 break; 2055 } 2056 2057 switch (nlh->nlmsg_type) { 2058 case NLMSG_DONE: 2059 tswap_nlmsghdr(nlh); 2060 return 0; 2061 case NLMSG_NOOP: 2062 break; 2063 case NLMSG_ERROR: 2064 { 2065 struct nlmsgerr *e = NLMSG_DATA(nlh); 2066 e->error = tswap32(e->error); 2067 tswap_nlmsghdr(&e->msg); 2068 tswap_nlmsghdr(nlh); 2069 return 0; 2070 } 2071 default: 2072 ret = host_to_target_nlmsg(nlh); 2073 if (ret < 0) { 2074 tswap_nlmsghdr(nlh); 2075 return ret; 2076 } 2077 break; 2078 } 2079 tswap_nlmsghdr(nlh); 2080 len -= NLMSG_ALIGN(nlmsg_len); 2081 nlh = (struct nlmsghdr *)(((char*)nlh) + NLMSG_ALIGN(nlmsg_len)); 2082 } 2083 return 0; 2084 } 2085 2086 static abi_long target_to_host_for_each_nlmsg(struct nlmsghdr *nlh, 2087 size_t len, 2088 abi_long (*target_to_host_nlmsg) 2089 (struct nlmsghdr *)) 2090 { 2091 int ret; 2092 2093 while (len > sizeof(struct nlmsghdr)) { 2094 if (tswap32(nlh->nlmsg_len) < sizeof(struct nlmsghdr) || 2095 tswap32(nlh->nlmsg_len) > len) { 2096 break; 2097 } 2098 tswap_nlmsghdr(nlh); 2099 switch (nlh->nlmsg_type) { 2100 case NLMSG_DONE: 2101 return 0; 2102 case NLMSG_NOOP: 2103 break; 2104 case NLMSG_ERROR: 2105 { 2106 struct nlmsgerr *e = NLMSG_DATA(nlh); 2107 e->error = tswap32(e->error); 2108 tswap_nlmsghdr(&e->msg); 2109 return 0; 2110 } 2111 default: 2112 ret = target_to_host_nlmsg(nlh); 2113 if (ret < 0) { 2114 return ret; 2115 } 2116 } 2117 len -= NLMSG_ALIGN(nlh->nlmsg_len); 2118 nlh = (struct nlmsghdr *)(((char *)nlh) + NLMSG_ALIGN(nlh->nlmsg_len)); 2119 } 2120 return 0; 2121 } 2122 2123 #ifdef CONFIG_RTNETLINK 2124 static abi_long host_to_target_for_each_nlattr(struct nlattr *nlattr, 2125 size_t len, void *context, 2126 abi_long (*host_to_target_nlattr) 2127 (struct nlattr *, 2128 void *context)) 2129 { 2130 unsigned short nla_len; 2131 abi_long ret; 2132 2133 while (len > sizeof(struct nlattr)) { 2134 nla_len = nlattr->nla_len; 2135 if (nla_len < sizeof(struct nlattr) || 2136 nla_len > len) { 2137 break; 2138 } 2139 ret = host_to_target_nlattr(nlattr, context); 2140 nlattr->nla_len = tswap16(nlattr->nla_len); 2141 nlattr->nla_type = tswap16(nlattr->nla_type); 2142 if (ret < 0) { 2143 return ret; 2144 } 2145 len -= NLA_ALIGN(nla_len); 2146 nlattr = (struct nlattr *)(((char *)nlattr) + NLA_ALIGN(nla_len)); 2147 } 2148 return 0; 2149 } 2150 2151 static abi_long host_to_target_for_each_rtattr(struct rtattr *rtattr, 2152 size_t len, 2153 abi_long (*host_to_target_rtattr) 2154 (struct rtattr *)) 2155 { 2156 unsigned short rta_len; 2157 abi_long ret; 2158 2159 while (len > sizeof(struct rtattr)) { 2160 rta_len = rtattr->rta_len; 2161 if (rta_len < sizeof(struct rtattr) || 2162 rta_len > len) { 2163 break; 2164 } 2165 ret = host_to_target_rtattr(rtattr); 2166 rtattr->rta_len = tswap16(rtattr->rta_len); 2167 rtattr->rta_type = tswap16(rtattr->rta_type); 2168 if (ret < 0) { 2169 return ret; 2170 } 2171 len -= RTA_ALIGN(rta_len); 2172 rtattr = (struct rtattr *)(((char *)rtattr) + RTA_ALIGN(rta_len)); 2173 } 2174 return 0; 2175 } 2176 2177 #define NLA_DATA(nla) ((void *)((char *)(nla)) + NLA_HDRLEN) 2178 2179 static abi_long host_to_target_data_bridge_nlattr(struct nlattr *nlattr, 2180 void *context) 2181 { 2182 uint16_t *u16; 2183 uint32_t *u32; 2184 uint64_t *u64; 2185 2186 switch (nlattr->nla_type) { 2187 /* no data */ 2188 case QEMU_IFLA_BR_FDB_FLUSH: 2189 break; 2190 /* binary */ 2191 case QEMU_IFLA_BR_GROUP_ADDR: 2192 break; 2193 /* uint8_t */ 2194 case QEMU_IFLA_BR_VLAN_FILTERING: 2195 case QEMU_IFLA_BR_TOPOLOGY_CHANGE: 2196 case QEMU_IFLA_BR_TOPOLOGY_CHANGE_DETECTED: 2197 case QEMU_IFLA_BR_MCAST_ROUTER: 2198 case QEMU_IFLA_BR_MCAST_SNOOPING: 2199 case QEMU_IFLA_BR_MCAST_QUERY_USE_IFADDR: 2200 case QEMU_IFLA_BR_MCAST_QUERIER: 2201 case QEMU_IFLA_BR_NF_CALL_IPTABLES: 2202 case QEMU_IFLA_BR_NF_CALL_IP6TABLES: 2203 case QEMU_IFLA_BR_NF_CALL_ARPTABLES: 2204 case QEMU_IFLA_BR_VLAN_STATS_ENABLED: 2205 case QEMU_IFLA_BR_MCAST_STATS_ENABLED: 2206 case QEMU_IFLA_BR_MCAST_IGMP_VERSION: 2207 case QEMU_IFLA_BR_MCAST_MLD_VERSION: 2208 break; 2209 /* uint16_t */ 2210 case QEMU_IFLA_BR_PRIORITY: 2211 case QEMU_IFLA_BR_VLAN_PROTOCOL: 2212 case QEMU_IFLA_BR_GROUP_FWD_MASK: 2213 case QEMU_IFLA_BR_ROOT_PORT: 2214 case QEMU_IFLA_BR_VLAN_DEFAULT_PVID: 2215 u16 = NLA_DATA(nlattr); 2216 *u16 = tswap16(*u16); 2217 break; 2218 /* uint32_t */ 2219 case QEMU_IFLA_BR_FORWARD_DELAY: 2220 case QEMU_IFLA_BR_HELLO_TIME: 2221 case QEMU_IFLA_BR_MAX_AGE: 2222 case QEMU_IFLA_BR_AGEING_TIME: 2223 case QEMU_IFLA_BR_STP_STATE: 2224 case QEMU_IFLA_BR_ROOT_PATH_COST: 2225 case QEMU_IFLA_BR_MCAST_HASH_ELASTICITY: 2226 case QEMU_IFLA_BR_MCAST_HASH_MAX: 2227 case QEMU_IFLA_BR_MCAST_LAST_MEMBER_CNT: 2228 case QEMU_IFLA_BR_MCAST_STARTUP_QUERY_CNT: 2229 u32 = NLA_DATA(nlattr); 2230 *u32 = tswap32(*u32); 2231 break; 2232 /* uint64_t */ 2233 case QEMU_IFLA_BR_HELLO_TIMER: 2234 case QEMU_IFLA_BR_TCN_TIMER: 2235 case QEMU_IFLA_BR_GC_TIMER: 2236 case QEMU_IFLA_BR_TOPOLOGY_CHANGE_TIMER: 2237 case QEMU_IFLA_BR_MCAST_LAST_MEMBER_INTVL: 2238 case QEMU_IFLA_BR_MCAST_MEMBERSHIP_INTVL: 2239 case QEMU_IFLA_BR_MCAST_QUERIER_INTVL: 2240 case QEMU_IFLA_BR_MCAST_QUERY_INTVL: 2241 case QEMU_IFLA_BR_MCAST_QUERY_RESPONSE_INTVL: 2242 case QEMU_IFLA_BR_MCAST_STARTUP_QUERY_INTVL: 2243 u64 = NLA_DATA(nlattr); 2244 *u64 = tswap64(*u64); 2245 break; 2246 /* ifla_bridge_id: uin8_t[] */ 2247 case QEMU_IFLA_BR_ROOT_ID: 2248 case QEMU_IFLA_BR_BRIDGE_ID: 2249 break; 2250 default: 2251 gemu_log("Unknown QEMU_IFLA_BR type %d\n", nlattr->nla_type); 2252 break; 2253 } 2254 return 0; 2255 } 2256 2257 static abi_long host_to_target_slave_data_bridge_nlattr(struct nlattr *nlattr, 2258 void *context) 2259 { 2260 uint16_t *u16; 2261 uint32_t *u32; 2262 uint64_t *u64; 2263 2264 switch (nlattr->nla_type) { 2265 /* uint8_t */ 2266 case QEMU_IFLA_BRPORT_STATE: 2267 case QEMU_IFLA_BRPORT_MODE: 2268 case QEMU_IFLA_BRPORT_GUARD: 2269 case QEMU_IFLA_BRPORT_PROTECT: 2270 case QEMU_IFLA_BRPORT_FAST_LEAVE: 2271 case QEMU_IFLA_BRPORT_LEARNING: 2272 case QEMU_IFLA_BRPORT_UNICAST_FLOOD: 2273 case QEMU_IFLA_BRPORT_PROXYARP: 2274 case QEMU_IFLA_BRPORT_LEARNING_SYNC: 2275 case QEMU_IFLA_BRPORT_PROXYARP_WIFI: 2276 case QEMU_IFLA_BRPORT_TOPOLOGY_CHANGE_ACK: 2277 case QEMU_IFLA_BRPORT_CONFIG_PENDING: 2278 case QEMU_IFLA_BRPORT_MULTICAST_ROUTER: 2279 case QEMU_IFLA_BRPORT_MCAST_FLOOD: 2280 case QEMU_IFLA_BRPORT_MCAST_TO_UCAST: 2281 case QEMU_IFLA_BRPORT_VLAN_TUNNEL: 2282 case QEMU_IFLA_BRPORT_BCAST_FLOOD: 2283 case QEMU_IFLA_BRPORT_NEIGH_SUPPRESS: 2284 break; 2285 /* uint16_t */ 2286 case QEMU_IFLA_BRPORT_PRIORITY: 2287 case QEMU_IFLA_BRPORT_DESIGNATED_PORT: 2288 case QEMU_IFLA_BRPORT_DESIGNATED_COST: 2289 case QEMU_IFLA_BRPORT_ID: 2290 case QEMU_IFLA_BRPORT_NO: 2291 case QEMU_IFLA_BRPORT_GROUP_FWD_MASK: 2292 u16 = NLA_DATA(nlattr); 2293 *u16 = tswap16(*u16); 2294 break; 2295 /* uin32_t */ 2296 case QEMU_IFLA_BRPORT_COST: 2297 u32 = NLA_DATA(nlattr); 2298 *u32 = tswap32(*u32); 2299 break; 2300 /* uint64_t */ 2301 case QEMU_IFLA_BRPORT_MESSAGE_AGE_TIMER: 2302 case QEMU_IFLA_BRPORT_FORWARD_DELAY_TIMER: 2303 case QEMU_IFLA_BRPORT_HOLD_TIMER: 2304 u64 = NLA_DATA(nlattr); 2305 *u64 = tswap64(*u64); 2306 break; 2307 /* ifla_bridge_id: uint8_t[] */ 2308 case QEMU_IFLA_BRPORT_ROOT_ID: 2309 case QEMU_IFLA_BRPORT_BRIDGE_ID: 2310 break; 2311 default: 2312 gemu_log("Unknown QEMU_IFLA_BRPORT type %d\n", nlattr->nla_type); 2313 break; 2314 } 2315 return 0; 2316 } 2317 2318 struct linkinfo_context { 2319 int len; 2320 char *name; 2321 int slave_len; 2322 char *slave_name; 2323 }; 2324 2325 static abi_long host_to_target_data_linkinfo_nlattr(struct nlattr *nlattr, 2326 void *context) 2327 { 2328 struct linkinfo_context *li_context = context; 2329 2330 switch (nlattr->nla_type) { 2331 /* string */ 2332 case QEMU_IFLA_INFO_KIND: 2333 li_context->name = NLA_DATA(nlattr); 2334 li_context->len = nlattr->nla_len - NLA_HDRLEN; 2335 break; 2336 case QEMU_IFLA_INFO_SLAVE_KIND: 2337 li_context->slave_name = NLA_DATA(nlattr); 2338 li_context->slave_len = nlattr->nla_len - NLA_HDRLEN; 2339 break; 2340 /* stats */ 2341 case QEMU_IFLA_INFO_XSTATS: 2342 /* FIXME: only used by CAN */ 2343 break; 2344 /* nested */ 2345 case QEMU_IFLA_INFO_DATA: 2346 if (strncmp(li_context->name, "bridge", 2347 li_context->len) == 0) { 2348 return host_to_target_for_each_nlattr(NLA_DATA(nlattr), 2349 nlattr->nla_len, 2350 NULL, 2351 host_to_target_data_bridge_nlattr); 2352 } else { 2353 gemu_log("Unknown QEMU_IFLA_INFO_KIND %s\n", li_context->name); 2354 } 2355 break; 2356 case QEMU_IFLA_INFO_SLAVE_DATA: 2357 if (strncmp(li_context->slave_name, "bridge", 2358 li_context->slave_len) == 0) { 2359 return host_to_target_for_each_nlattr(NLA_DATA(nlattr), 2360 nlattr->nla_len, 2361 NULL, 2362 host_to_target_slave_data_bridge_nlattr); 2363 } else { 2364 gemu_log("Unknown QEMU_IFLA_INFO_SLAVE_KIND %s\n", 2365 li_context->slave_name); 2366 } 2367 break; 2368 default: 2369 gemu_log("Unknown host QEMU_IFLA_INFO type: %d\n", nlattr->nla_type); 2370 break; 2371 } 2372 2373 return 0; 2374 } 2375 2376 static abi_long host_to_target_data_inet_nlattr(struct nlattr *nlattr, 2377 void *context) 2378 { 2379 uint32_t *u32; 2380 int i; 2381 2382 switch (nlattr->nla_type) { 2383 case QEMU_IFLA_INET_CONF: 2384 u32 = NLA_DATA(nlattr); 2385 for (i = 0; i < (nlattr->nla_len - NLA_HDRLEN) / sizeof(*u32); 2386 i++) { 2387 u32[i] = tswap32(u32[i]); 2388 } 2389 break; 2390 default: 2391 gemu_log("Unknown host AF_INET type: %d\n", nlattr->nla_type); 2392 } 2393 return 0; 2394 } 2395 2396 static abi_long host_to_target_data_inet6_nlattr(struct nlattr *nlattr, 2397 void *context) 2398 { 2399 uint32_t *u32; 2400 uint64_t *u64; 2401 struct ifla_cacheinfo *ci; 2402 int i; 2403 2404 switch (nlattr->nla_type) { 2405 /* binaries */ 2406 case QEMU_IFLA_INET6_TOKEN: 2407 break; 2408 /* uint8_t */ 2409 case QEMU_IFLA_INET6_ADDR_GEN_MODE: 2410 break; 2411 /* uint32_t */ 2412 case QEMU_IFLA_INET6_FLAGS: 2413 u32 = NLA_DATA(nlattr); 2414 *u32 = tswap32(*u32); 2415 break; 2416 /* uint32_t[] */ 2417 case QEMU_IFLA_INET6_CONF: 2418 u32 = NLA_DATA(nlattr); 2419 for (i = 0; i < (nlattr->nla_len - NLA_HDRLEN) / sizeof(*u32); 2420 i++) { 2421 u32[i] = tswap32(u32[i]); 2422 } 2423 break; 2424 /* ifla_cacheinfo */ 2425 case QEMU_IFLA_INET6_CACHEINFO: 2426 ci = NLA_DATA(nlattr); 2427 ci->max_reasm_len = tswap32(ci->max_reasm_len); 2428 ci->tstamp = tswap32(ci->tstamp); 2429 ci->reachable_time = tswap32(ci->reachable_time); 2430 ci->retrans_time = tswap32(ci->retrans_time); 2431 break; 2432 /* uint64_t[] */ 2433 case QEMU_IFLA_INET6_STATS: 2434 case QEMU_IFLA_INET6_ICMP6STATS: 2435 u64 = NLA_DATA(nlattr); 2436 for (i = 0; i < (nlattr->nla_len - NLA_HDRLEN) / sizeof(*u64); 2437 i++) { 2438 u64[i] = tswap64(u64[i]); 2439 } 2440 break; 2441 default: 2442 gemu_log("Unknown host AF_INET6 type: %d\n", nlattr->nla_type); 2443 } 2444 return 0; 2445 } 2446 2447 static abi_long host_to_target_data_spec_nlattr(struct nlattr *nlattr, 2448 void *context) 2449 { 2450 switch (nlattr->nla_type) { 2451 case AF_INET: 2452 return host_to_target_for_each_nlattr(NLA_DATA(nlattr), nlattr->nla_len, 2453 NULL, 2454 host_to_target_data_inet_nlattr); 2455 case AF_INET6: 2456 return host_to_target_for_each_nlattr(NLA_DATA(nlattr), nlattr->nla_len, 2457 NULL, 2458 host_to_target_data_inet6_nlattr); 2459 default: 2460 gemu_log("Unknown host AF_SPEC type: %d\n", nlattr->nla_type); 2461 break; 2462 } 2463 return 0; 2464 } 2465 2466 static abi_long host_to_target_data_xdp_nlattr(struct nlattr *nlattr, 2467 void *context) 2468 { 2469 uint32_t *u32; 2470 2471 switch (nlattr->nla_type) { 2472 /* uint8_t */ 2473 case QEMU_IFLA_XDP_ATTACHED: 2474 break; 2475 /* uint32_t */ 2476 case QEMU_IFLA_XDP_PROG_ID: 2477 u32 = NLA_DATA(nlattr); 2478 *u32 = tswap32(*u32); 2479 break; 2480 default: 2481 gemu_log("Unknown host XDP type: %d\n", nlattr->nla_type); 2482 break; 2483 } 2484 return 0; 2485 } 2486 2487 static abi_long host_to_target_data_link_rtattr(struct rtattr *rtattr) 2488 { 2489 uint32_t *u32; 2490 struct rtnl_link_stats *st; 2491 struct rtnl_link_stats64 *st64; 2492 struct rtnl_link_ifmap *map; 2493 struct linkinfo_context li_context; 2494 2495 switch (rtattr->rta_type) { 2496 /* binary stream */ 2497 case QEMU_IFLA_ADDRESS: 2498 case QEMU_IFLA_BROADCAST: 2499 /* string */ 2500 case QEMU_IFLA_IFNAME: 2501 case QEMU_IFLA_QDISC: 2502 break; 2503 /* uin8_t */ 2504 case QEMU_IFLA_OPERSTATE: 2505 case QEMU_IFLA_LINKMODE: 2506 case QEMU_IFLA_CARRIER: 2507 case QEMU_IFLA_PROTO_DOWN: 2508 break; 2509 /* uint32_t */ 2510 case QEMU_IFLA_MTU: 2511 case QEMU_IFLA_LINK: 2512 case QEMU_IFLA_WEIGHT: 2513 case QEMU_IFLA_TXQLEN: 2514 case QEMU_IFLA_CARRIER_CHANGES: 2515 case QEMU_IFLA_NUM_RX_QUEUES: 2516 case QEMU_IFLA_NUM_TX_QUEUES: 2517 case QEMU_IFLA_PROMISCUITY: 2518 case QEMU_IFLA_EXT_MASK: 2519 case QEMU_IFLA_LINK_NETNSID: 2520 case QEMU_IFLA_GROUP: 2521 case QEMU_IFLA_MASTER: 2522 case QEMU_IFLA_NUM_VF: 2523 case QEMU_IFLA_GSO_MAX_SEGS: 2524 case QEMU_IFLA_GSO_MAX_SIZE: 2525 case QEMU_IFLA_CARRIER_UP_COUNT: 2526 case QEMU_IFLA_CARRIER_DOWN_COUNT: 2527 u32 = RTA_DATA(rtattr); 2528 *u32 = tswap32(*u32); 2529 break; 2530 /* struct rtnl_link_stats */ 2531 case QEMU_IFLA_STATS: 2532 st = RTA_DATA(rtattr); 2533 st->rx_packets = tswap32(st->rx_packets); 2534 st->tx_packets = tswap32(st->tx_packets); 2535 st->rx_bytes = tswap32(st->rx_bytes); 2536 st->tx_bytes = tswap32(st->tx_bytes); 2537 st->rx_errors = tswap32(st->rx_errors); 2538 st->tx_errors = tswap32(st->tx_errors); 2539 st->rx_dropped = tswap32(st->rx_dropped); 2540 st->tx_dropped = tswap32(st->tx_dropped); 2541 st->multicast = tswap32(st->multicast); 2542 st->collisions = tswap32(st->collisions); 2543 2544 /* detailed rx_errors: */ 2545 st->rx_length_errors = tswap32(st->rx_length_errors); 2546 st->rx_over_errors = tswap32(st->rx_over_errors); 2547 st->rx_crc_errors = tswap32(st->rx_crc_errors); 2548 st->rx_frame_errors = tswap32(st->rx_frame_errors); 2549 st->rx_fifo_errors = tswap32(st->rx_fifo_errors); 2550 st->rx_missed_errors = tswap32(st->rx_missed_errors); 2551 2552 /* detailed tx_errors */ 2553 st->tx_aborted_errors = tswap32(st->tx_aborted_errors); 2554 st->tx_carrier_errors = tswap32(st->tx_carrier_errors); 2555 st->tx_fifo_errors = tswap32(st->tx_fifo_errors); 2556 st->tx_heartbeat_errors = tswap32(st->tx_heartbeat_errors); 2557 st->tx_window_errors = tswap32(st->tx_window_errors); 2558 2559 /* for cslip etc */ 2560 st->rx_compressed = tswap32(st->rx_compressed); 2561 st->tx_compressed = tswap32(st->tx_compressed); 2562 break; 2563 /* struct rtnl_link_stats64 */ 2564 case QEMU_IFLA_STATS64: 2565 st64 = RTA_DATA(rtattr); 2566 st64->rx_packets = tswap64(st64->rx_packets); 2567 st64->tx_packets = tswap64(st64->tx_packets); 2568 st64->rx_bytes = tswap64(st64->rx_bytes); 2569 st64->tx_bytes = tswap64(st64->tx_bytes); 2570 st64->rx_errors = tswap64(st64->rx_errors); 2571 st64->tx_errors = tswap64(st64->tx_errors); 2572 st64->rx_dropped = tswap64(st64->rx_dropped); 2573 st64->tx_dropped = tswap64(st64->tx_dropped); 2574 st64->multicast = tswap64(st64->multicast); 2575 st64->collisions = tswap64(st64->collisions); 2576 2577 /* detailed rx_errors: */ 2578 st64->rx_length_errors = tswap64(st64->rx_length_errors); 2579 st64->rx_over_errors = tswap64(st64->rx_over_errors); 2580 st64->rx_crc_errors = tswap64(st64->rx_crc_errors); 2581 st64->rx_frame_errors = tswap64(st64->rx_frame_errors); 2582 st64->rx_fifo_errors = tswap64(st64->rx_fifo_errors); 2583 st64->rx_missed_errors = tswap64(st64->rx_missed_errors); 2584 2585 /* detailed tx_errors */ 2586 st64->tx_aborted_errors = tswap64(st64->tx_aborted_errors); 2587 st64->tx_carrier_errors = tswap64(st64->tx_carrier_errors); 2588 st64->tx_fifo_errors = tswap64(st64->tx_fifo_errors); 2589 st64->tx_heartbeat_errors = tswap64(st64->tx_heartbeat_errors); 2590 st64->tx_window_errors = tswap64(st64->tx_window_errors); 2591 2592 /* for cslip etc */ 2593 st64->rx_compressed = tswap64(st64->rx_compressed); 2594 st64->tx_compressed = tswap64(st64->tx_compressed); 2595 break; 2596 /* struct rtnl_link_ifmap */ 2597 case QEMU_IFLA_MAP: 2598 map = RTA_DATA(rtattr); 2599 map->mem_start = tswap64(map->mem_start); 2600 map->mem_end = tswap64(map->mem_end); 2601 map->base_addr = tswap64(map->base_addr); 2602 map->irq = tswap16(map->irq); 2603 break; 2604 /* nested */ 2605 case QEMU_IFLA_LINKINFO: 2606 memset(&li_context, 0, sizeof(li_context)); 2607 return host_to_target_for_each_nlattr(RTA_DATA(rtattr), rtattr->rta_len, 2608 &li_context, 2609 host_to_target_data_linkinfo_nlattr); 2610 case QEMU_IFLA_AF_SPEC: 2611 return host_to_target_for_each_nlattr(RTA_DATA(rtattr), rtattr->rta_len, 2612 NULL, 2613 host_to_target_data_spec_nlattr); 2614 case QEMU_IFLA_XDP: 2615 return host_to_target_for_each_nlattr(RTA_DATA(rtattr), rtattr->rta_len, 2616 NULL, 2617 host_to_target_data_xdp_nlattr); 2618 default: 2619 gemu_log("Unknown host QEMU_IFLA type: %d\n", rtattr->rta_type); 2620 break; 2621 } 2622 return 0; 2623 } 2624 2625 static abi_long host_to_target_data_addr_rtattr(struct rtattr *rtattr) 2626 { 2627 uint32_t *u32; 2628 struct ifa_cacheinfo *ci; 2629 2630 switch (rtattr->rta_type) { 2631 /* binary: depends on family type */ 2632 case IFA_ADDRESS: 2633 case IFA_LOCAL: 2634 break; 2635 /* string */ 2636 case IFA_LABEL: 2637 break; 2638 /* u32 */ 2639 case IFA_FLAGS: 2640 case IFA_BROADCAST: 2641 u32 = RTA_DATA(rtattr); 2642 *u32 = tswap32(*u32); 2643 break; 2644 /* struct ifa_cacheinfo */ 2645 case IFA_CACHEINFO: 2646 ci = RTA_DATA(rtattr); 2647 ci->ifa_prefered = tswap32(ci->ifa_prefered); 2648 ci->ifa_valid = tswap32(ci->ifa_valid); 2649 ci->cstamp = tswap32(ci->cstamp); 2650 ci->tstamp = tswap32(ci->tstamp); 2651 break; 2652 default: 2653 gemu_log("Unknown host IFA type: %d\n", rtattr->rta_type); 2654 break; 2655 } 2656 return 0; 2657 } 2658 2659 static abi_long host_to_target_data_route_rtattr(struct rtattr *rtattr) 2660 { 2661 uint32_t *u32; 2662 switch (rtattr->rta_type) { 2663 /* binary: depends on family type */ 2664 case RTA_GATEWAY: 2665 case RTA_DST: 2666 case RTA_PREFSRC: 2667 break; 2668 /* u32 */ 2669 case RTA_PRIORITY: 2670 case RTA_TABLE: 2671 case RTA_OIF: 2672 u32 = RTA_DATA(rtattr); 2673 *u32 = tswap32(*u32); 2674 break; 2675 default: 2676 gemu_log("Unknown host RTA type: %d\n", rtattr->rta_type); 2677 break; 2678 } 2679 return 0; 2680 } 2681 2682 static abi_long host_to_target_link_rtattr(struct rtattr *rtattr, 2683 uint32_t rtattr_len) 2684 { 2685 return host_to_target_for_each_rtattr(rtattr, rtattr_len, 2686 host_to_target_data_link_rtattr); 2687 } 2688 2689 static abi_long host_to_target_addr_rtattr(struct rtattr *rtattr, 2690 uint32_t rtattr_len) 2691 { 2692 return host_to_target_for_each_rtattr(rtattr, rtattr_len, 2693 host_to_target_data_addr_rtattr); 2694 } 2695 2696 static abi_long host_to_target_route_rtattr(struct rtattr *rtattr, 2697 uint32_t rtattr_len) 2698 { 2699 return host_to_target_for_each_rtattr(rtattr, rtattr_len, 2700 host_to_target_data_route_rtattr); 2701 } 2702 2703 static abi_long host_to_target_data_route(struct nlmsghdr *nlh) 2704 { 2705 uint32_t nlmsg_len; 2706 struct ifinfomsg *ifi; 2707 struct ifaddrmsg *ifa; 2708 struct rtmsg *rtm; 2709 2710 nlmsg_len = nlh->nlmsg_len; 2711 switch (nlh->nlmsg_type) { 2712 case RTM_NEWLINK: 2713 case RTM_DELLINK: 2714 case RTM_GETLINK: 2715 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*ifi))) { 2716 ifi = NLMSG_DATA(nlh); 2717 ifi->ifi_type = tswap16(ifi->ifi_type); 2718 ifi->ifi_index = tswap32(ifi->ifi_index); 2719 ifi->ifi_flags = tswap32(ifi->ifi_flags); 2720 ifi->ifi_change = tswap32(ifi->ifi_change); 2721 host_to_target_link_rtattr(IFLA_RTA(ifi), 2722 nlmsg_len - NLMSG_LENGTH(sizeof(*ifi))); 2723 } 2724 break; 2725 case RTM_NEWADDR: 2726 case RTM_DELADDR: 2727 case RTM_GETADDR: 2728 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*ifa))) { 2729 ifa = NLMSG_DATA(nlh); 2730 ifa->ifa_index = tswap32(ifa->ifa_index); 2731 host_to_target_addr_rtattr(IFA_RTA(ifa), 2732 nlmsg_len - NLMSG_LENGTH(sizeof(*ifa))); 2733 } 2734 break; 2735 case RTM_NEWROUTE: 2736 case RTM_DELROUTE: 2737 case RTM_GETROUTE: 2738 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*rtm))) { 2739 rtm = NLMSG_DATA(nlh); 2740 rtm->rtm_flags = tswap32(rtm->rtm_flags); 2741 host_to_target_route_rtattr(RTM_RTA(rtm), 2742 nlmsg_len - NLMSG_LENGTH(sizeof(*rtm))); 2743 } 2744 break; 2745 default: 2746 return -TARGET_EINVAL; 2747 } 2748 return 0; 2749 } 2750 2751 static inline abi_long host_to_target_nlmsg_route(struct nlmsghdr *nlh, 2752 size_t len) 2753 { 2754 return host_to_target_for_each_nlmsg(nlh, len, host_to_target_data_route); 2755 } 2756 2757 static abi_long target_to_host_for_each_rtattr(struct rtattr *rtattr, 2758 size_t len, 2759 abi_long (*target_to_host_rtattr) 2760 (struct rtattr *)) 2761 { 2762 abi_long ret; 2763 2764 while (len >= sizeof(struct rtattr)) { 2765 if (tswap16(rtattr->rta_len) < sizeof(struct rtattr) || 2766 tswap16(rtattr->rta_len) > len) { 2767 break; 2768 } 2769 rtattr->rta_len = tswap16(rtattr->rta_len); 2770 rtattr->rta_type = tswap16(rtattr->rta_type); 2771 ret = target_to_host_rtattr(rtattr); 2772 if (ret < 0) { 2773 return ret; 2774 } 2775 len -= RTA_ALIGN(rtattr->rta_len); 2776 rtattr = (struct rtattr *)(((char *)rtattr) + 2777 RTA_ALIGN(rtattr->rta_len)); 2778 } 2779 return 0; 2780 } 2781 2782 static abi_long target_to_host_data_link_rtattr(struct rtattr *rtattr) 2783 { 2784 switch (rtattr->rta_type) { 2785 default: 2786 gemu_log("Unknown target QEMU_IFLA type: %d\n", rtattr->rta_type); 2787 break; 2788 } 2789 return 0; 2790 } 2791 2792 static abi_long target_to_host_data_addr_rtattr(struct rtattr *rtattr) 2793 { 2794 switch (rtattr->rta_type) { 2795 /* binary: depends on family type */ 2796 case IFA_LOCAL: 2797 case IFA_ADDRESS: 2798 break; 2799 default: 2800 gemu_log("Unknown target IFA type: %d\n", rtattr->rta_type); 2801 break; 2802 } 2803 return 0; 2804 } 2805 2806 static abi_long target_to_host_data_route_rtattr(struct rtattr *rtattr) 2807 { 2808 uint32_t *u32; 2809 switch (rtattr->rta_type) { 2810 /* binary: depends on family type */ 2811 case RTA_DST: 2812 case RTA_SRC: 2813 case RTA_GATEWAY: 2814 break; 2815 /* u32 */ 2816 case RTA_PRIORITY: 2817 case RTA_OIF: 2818 u32 = RTA_DATA(rtattr); 2819 *u32 = tswap32(*u32); 2820 break; 2821 default: 2822 gemu_log("Unknown target RTA type: %d\n", rtattr->rta_type); 2823 break; 2824 } 2825 return 0; 2826 } 2827 2828 static void target_to_host_link_rtattr(struct rtattr *rtattr, 2829 uint32_t rtattr_len) 2830 { 2831 target_to_host_for_each_rtattr(rtattr, rtattr_len, 2832 target_to_host_data_link_rtattr); 2833 } 2834 2835 static void target_to_host_addr_rtattr(struct rtattr *rtattr, 2836 uint32_t rtattr_len) 2837 { 2838 target_to_host_for_each_rtattr(rtattr, rtattr_len, 2839 target_to_host_data_addr_rtattr); 2840 } 2841 2842 static void target_to_host_route_rtattr(struct rtattr *rtattr, 2843 uint32_t rtattr_len) 2844 { 2845 target_to_host_for_each_rtattr(rtattr, rtattr_len, 2846 target_to_host_data_route_rtattr); 2847 } 2848 2849 static abi_long target_to_host_data_route(struct nlmsghdr *nlh) 2850 { 2851 struct ifinfomsg *ifi; 2852 struct ifaddrmsg *ifa; 2853 struct rtmsg *rtm; 2854 2855 switch (nlh->nlmsg_type) { 2856 case RTM_GETLINK: 2857 break; 2858 case RTM_NEWLINK: 2859 case RTM_DELLINK: 2860 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*ifi))) { 2861 ifi = NLMSG_DATA(nlh); 2862 ifi->ifi_type = tswap16(ifi->ifi_type); 2863 ifi->ifi_index = tswap32(ifi->ifi_index); 2864 ifi->ifi_flags = tswap32(ifi->ifi_flags); 2865 ifi->ifi_change = tswap32(ifi->ifi_change); 2866 target_to_host_link_rtattr(IFLA_RTA(ifi), nlh->nlmsg_len - 2867 NLMSG_LENGTH(sizeof(*ifi))); 2868 } 2869 break; 2870 case RTM_GETADDR: 2871 case RTM_NEWADDR: 2872 case RTM_DELADDR: 2873 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*ifa))) { 2874 ifa = NLMSG_DATA(nlh); 2875 ifa->ifa_index = tswap32(ifa->ifa_index); 2876 target_to_host_addr_rtattr(IFA_RTA(ifa), nlh->nlmsg_len - 2877 NLMSG_LENGTH(sizeof(*ifa))); 2878 } 2879 break; 2880 case RTM_GETROUTE: 2881 break; 2882 case RTM_NEWROUTE: 2883 case RTM_DELROUTE: 2884 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*rtm))) { 2885 rtm = NLMSG_DATA(nlh); 2886 rtm->rtm_flags = tswap32(rtm->rtm_flags); 2887 target_to_host_route_rtattr(RTM_RTA(rtm), nlh->nlmsg_len - 2888 NLMSG_LENGTH(sizeof(*rtm))); 2889 } 2890 break; 2891 default: 2892 return -TARGET_EOPNOTSUPP; 2893 } 2894 return 0; 2895 } 2896 2897 static abi_long target_to_host_nlmsg_route(struct nlmsghdr *nlh, size_t len) 2898 { 2899 return target_to_host_for_each_nlmsg(nlh, len, target_to_host_data_route); 2900 } 2901 #endif /* CONFIG_RTNETLINK */ 2902 2903 static abi_long host_to_target_data_audit(struct nlmsghdr *nlh) 2904 { 2905 switch (nlh->nlmsg_type) { 2906 default: 2907 gemu_log("Unknown host audit message type %d\n", 2908 nlh->nlmsg_type); 2909 return -TARGET_EINVAL; 2910 } 2911 return 0; 2912 } 2913 2914 static inline abi_long host_to_target_nlmsg_audit(struct nlmsghdr *nlh, 2915 size_t len) 2916 { 2917 return host_to_target_for_each_nlmsg(nlh, len, host_to_target_data_audit); 2918 } 2919 2920 static abi_long target_to_host_data_audit(struct nlmsghdr *nlh) 2921 { 2922 switch (nlh->nlmsg_type) { 2923 case AUDIT_USER: 2924 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 2925 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 2926 break; 2927 default: 2928 gemu_log("Unknown target audit message type %d\n", 2929 nlh->nlmsg_type); 2930 return -TARGET_EINVAL; 2931 } 2932 2933 return 0; 2934 } 2935 2936 static abi_long target_to_host_nlmsg_audit(struct nlmsghdr *nlh, size_t len) 2937 { 2938 return target_to_host_for_each_nlmsg(nlh, len, target_to_host_data_audit); 2939 } 2940 2941 /* do_setsockopt() Must return target values and target errnos. */ 2942 static abi_long do_setsockopt(int sockfd, int level, int optname, 2943 abi_ulong optval_addr, socklen_t optlen) 2944 { 2945 abi_long ret; 2946 int val; 2947 struct ip_mreqn *ip_mreq; 2948 struct ip_mreq_source *ip_mreq_source; 2949 2950 switch(level) { 2951 case SOL_TCP: 2952 /* TCP options all take an 'int' value. */ 2953 if (optlen < sizeof(uint32_t)) 2954 return -TARGET_EINVAL; 2955 2956 if (get_user_u32(val, optval_addr)) 2957 return -TARGET_EFAULT; 2958 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val))); 2959 break; 2960 case SOL_IP: 2961 switch(optname) { 2962 case IP_TOS: 2963 case IP_TTL: 2964 case IP_HDRINCL: 2965 case IP_ROUTER_ALERT: 2966 case IP_RECVOPTS: 2967 case IP_RETOPTS: 2968 case IP_PKTINFO: 2969 case IP_MTU_DISCOVER: 2970 case IP_RECVERR: 2971 case IP_RECVTTL: 2972 case IP_RECVTOS: 2973 #ifdef IP_FREEBIND 2974 case IP_FREEBIND: 2975 #endif 2976 case IP_MULTICAST_TTL: 2977 case IP_MULTICAST_LOOP: 2978 val = 0; 2979 if (optlen >= sizeof(uint32_t)) { 2980 if (get_user_u32(val, optval_addr)) 2981 return -TARGET_EFAULT; 2982 } else if (optlen >= 1) { 2983 if (get_user_u8(val, optval_addr)) 2984 return -TARGET_EFAULT; 2985 } 2986 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val))); 2987 break; 2988 case IP_ADD_MEMBERSHIP: 2989 case IP_DROP_MEMBERSHIP: 2990 if (optlen < sizeof (struct target_ip_mreq) || 2991 optlen > sizeof (struct target_ip_mreqn)) 2992 return -TARGET_EINVAL; 2993 2994 ip_mreq = (struct ip_mreqn *) alloca(optlen); 2995 target_to_host_ip_mreq(ip_mreq, optval_addr, optlen); 2996 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen)); 2997 break; 2998 2999 case IP_BLOCK_SOURCE: 3000 case IP_UNBLOCK_SOURCE: 3001 case IP_ADD_SOURCE_MEMBERSHIP: 3002 case IP_DROP_SOURCE_MEMBERSHIP: 3003 if (optlen != sizeof (struct target_ip_mreq_source)) 3004 return -TARGET_EINVAL; 3005 3006 ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1); 3007 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen)); 3008 unlock_user (ip_mreq_source, optval_addr, 0); 3009 break; 3010 3011 default: 3012 goto unimplemented; 3013 } 3014 break; 3015 case SOL_IPV6: 3016 switch (optname) { 3017 case IPV6_MTU_DISCOVER: 3018 case IPV6_MTU: 3019 case IPV6_V6ONLY: 3020 case IPV6_RECVPKTINFO: 3021 case IPV6_UNICAST_HOPS: 3022 case IPV6_MULTICAST_HOPS: 3023 case IPV6_MULTICAST_LOOP: 3024 case IPV6_RECVERR: 3025 case IPV6_RECVHOPLIMIT: 3026 case IPV6_2292HOPLIMIT: 3027 case IPV6_CHECKSUM: 3028 val = 0; 3029 if (optlen < sizeof(uint32_t)) { 3030 return -TARGET_EINVAL; 3031 } 3032 if (get_user_u32(val, optval_addr)) { 3033 return -TARGET_EFAULT; 3034 } 3035 ret = get_errno(setsockopt(sockfd, level, optname, 3036 &val, sizeof(val))); 3037 break; 3038 case IPV6_PKTINFO: 3039 { 3040 struct in6_pktinfo pki; 3041 3042 if (optlen < sizeof(pki)) { 3043 return -TARGET_EINVAL; 3044 } 3045 3046 if (copy_from_user(&pki, optval_addr, sizeof(pki))) { 3047 return -TARGET_EFAULT; 3048 } 3049 3050 pki.ipi6_ifindex = tswap32(pki.ipi6_ifindex); 3051 3052 ret = get_errno(setsockopt(sockfd, level, optname, 3053 &pki, sizeof(pki))); 3054 break; 3055 } 3056 default: 3057 goto unimplemented; 3058 } 3059 break; 3060 case SOL_ICMPV6: 3061 switch (optname) { 3062 case ICMPV6_FILTER: 3063 { 3064 struct icmp6_filter icmp6f; 3065 3066 if (optlen > sizeof(icmp6f)) { 3067 optlen = sizeof(icmp6f); 3068 } 3069 3070 if (copy_from_user(&icmp6f, optval_addr, optlen)) { 3071 return -TARGET_EFAULT; 3072 } 3073 3074 for (val = 0; val < 8; val++) { 3075 icmp6f.data[val] = tswap32(icmp6f.data[val]); 3076 } 3077 3078 ret = get_errno(setsockopt(sockfd, level, optname, 3079 &icmp6f, optlen)); 3080 break; 3081 } 3082 default: 3083 goto unimplemented; 3084 } 3085 break; 3086 case SOL_RAW: 3087 switch (optname) { 3088 case ICMP_FILTER: 3089 case IPV6_CHECKSUM: 3090 /* those take an u32 value */ 3091 if (optlen < sizeof(uint32_t)) { 3092 return -TARGET_EINVAL; 3093 } 3094 3095 if (get_user_u32(val, optval_addr)) { 3096 return -TARGET_EFAULT; 3097 } 3098 ret = get_errno(setsockopt(sockfd, level, optname, 3099 &val, sizeof(val))); 3100 break; 3101 3102 default: 3103 goto unimplemented; 3104 } 3105 break; 3106 case TARGET_SOL_SOCKET: 3107 switch (optname) { 3108 case TARGET_SO_RCVTIMEO: 3109 { 3110 struct timeval tv; 3111 3112 optname = SO_RCVTIMEO; 3113 3114 set_timeout: 3115 if (optlen != sizeof(struct target_timeval)) { 3116 return -TARGET_EINVAL; 3117 } 3118 3119 if (copy_from_user_timeval(&tv, optval_addr)) { 3120 return -TARGET_EFAULT; 3121 } 3122 3123 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, 3124 &tv, sizeof(tv))); 3125 return ret; 3126 } 3127 case TARGET_SO_SNDTIMEO: 3128 optname = SO_SNDTIMEO; 3129 goto set_timeout; 3130 case TARGET_SO_ATTACH_FILTER: 3131 { 3132 struct target_sock_fprog *tfprog; 3133 struct target_sock_filter *tfilter; 3134 struct sock_fprog fprog; 3135 struct sock_filter *filter; 3136 int i; 3137 3138 if (optlen != sizeof(*tfprog)) { 3139 return -TARGET_EINVAL; 3140 } 3141 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) { 3142 return -TARGET_EFAULT; 3143 } 3144 if (!lock_user_struct(VERIFY_READ, tfilter, 3145 tswapal(tfprog->filter), 0)) { 3146 unlock_user_struct(tfprog, optval_addr, 1); 3147 return -TARGET_EFAULT; 3148 } 3149 3150 fprog.len = tswap16(tfprog->len); 3151 filter = g_try_new(struct sock_filter, fprog.len); 3152 if (filter == NULL) { 3153 unlock_user_struct(tfilter, tfprog->filter, 1); 3154 unlock_user_struct(tfprog, optval_addr, 1); 3155 return -TARGET_ENOMEM; 3156 } 3157 for (i = 0; i < fprog.len; i++) { 3158 filter[i].code = tswap16(tfilter[i].code); 3159 filter[i].jt = tfilter[i].jt; 3160 filter[i].jf = tfilter[i].jf; 3161 filter[i].k = tswap32(tfilter[i].k); 3162 } 3163 fprog.filter = filter; 3164 3165 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, 3166 SO_ATTACH_FILTER, &fprog, sizeof(fprog))); 3167 g_free(filter); 3168 3169 unlock_user_struct(tfilter, tfprog->filter, 1); 3170 unlock_user_struct(tfprog, optval_addr, 1); 3171 return ret; 3172 } 3173 case TARGET_SO_BINDTODEVICE: 3174 { 3175 char *dev_ifname, *addr_ifname; 3176 3177 if (optlen > IFNAMSIZ - 1) { 3178 optlen = IFNAMSIZ - 1; 3179 } 3180 dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1); 3181 if (!dev_ifname) { 3182 return -TARGET_EFAULT; 3183 } 3184 optname = SO_BINDTODEVICE; 3185 addr_ifname = alloca(IFNAMSIZ); 3186 memcpy(addr_ifname, dev_ifname, optlen); 3187 addr_ifname[optlen] = 0; 3188 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, 3189 addr_ifname, optlen)); 3190 unlock_user (dev_ifname, optval_addr, 0); 3191 return ret; 3192 } 3193 /* Options with 'int' argument. */ 3194 case TARGET_SO_DEBUG: 3195 optname = SO_DEBUG; 3196 break; 3197 case TARGET_SO_REUSEADDR: 3198 optname = SO_REUSEADDR; 3199 break; 3200 case TARGET_SO_TYPE: 3201 optname = SO_TYPE; 3202 break; 3203 case TARGET_SO_ERROR: 3204 optname = SO_ERROR; 3205 break; 3206 case TARGET_SO_DONTROUTE: 3207 optname = SO_DONTROUTE; 3208 break; 3209 case TARGET_SO_BROADCAST: 3210 optname = SO_BROADCAST; 3211 break; 3212 case TARGET_SO_SNDBUF: 3213 optname = SO_SNDBUF; 3214 break; 3215 case TARGET_SO_SNDBUFFORCE: 3216 optname = SO_SNDBUFFORCE; 3217 break; 3218 case TARGET_SO_RCVBUF: 3219 optname = SO_RCVBUF; 3220 break; 3221 case TARGET_SO_RCVBUFFORCE: 3222 optname = SO_RCVBUFFORCE; 3223 break; 3224 case TARGET_SO_KEEPALIVE: 3225 optname = SO_KEEPALIVE; 3226 break; 3227 case TARGET_SO_OOBINLINE: 3228 optname = SO_OOBINLINE; 3229 break; 3230 case TARGET_SO_NO_CHECK: 3231 optname = SO_NO_CHECK; 3232 break; 3233 case TARGET_SO_PRIORITY: 3234 optname = SO_PRIORITY; 3235 break; 3236 #ifdef SO_BSDCOMPAT 3237 case TARGET_SO_BSDCOMPAT: 3238 optname = SO_BSDCOMPAT; 3239 break; 3240 #endif 3241 case TARGET_SO_PASSCRED: 3242 optname = SO_PASSCRED; 3243 break; 3244 case TARGET_SO_PASSSEC: 3245 optname = SO_PASSSEC; 3246 break; 3247 case TARGET_SO_TIMESTAMP: 3248 optname = SO_TIMESTAMP; 3249 break; 3250 case TARGET_SO_RCVLOWAT: 3251 optname = SO_RCVLOWAT; 3252 break; 3253 default: 3254 goto unimplemented; 3255 } 3256 if (optlen < sizeof(uint32_t)) 3257 return -TARGET_EINVAL; 3258 3259 if (get_user_u32(val, optval_addr)) 3260 return -TARGET_EFAULT; 3261 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val))); 3262 break; 3263 default: 3264 unimplemented: 3265 gemu_log("Unsupported setsockopt level=%d optname=%d\n", level, optname); 3266 ret = -TARGET_ENOPROTOOPT; 3267 } 3268 return ret; 3269 } 3270 3271 /* do_getsockopt() Must return target values and target errnos. */ 3272 static abi_long do_getsockopt(int sockfd, int level, int optname, 3273 abi_ulong optval_addr, abi_ulong optlen) 3274 { 3275 abi_long ret; 3276 int len, val; 3277 socklen_t lv; 3278 3279 switch(level) { 3280 case TARGET_SOL_SOCKET: 3281 level = SOL_SOCKET; 3282 switch (optname) { 3283 /* These don't just return a single integer */ 3284 case TARGET_SO_LINGER: 3285 case TARGET_SO_RCVTIMEO: 3286 case TARGET_SO_SNDTIMEO: 3287 case TARGET_SO_PEERNAME: 3288 goto unimplemented; 3289 case TARGET_SO_PEERCRED: { 3290 struct ucred cr; 3291 socklen_t crlen; 3292 struct target_ucred *tcr; 3293 3294 if (get_user_u32(len, optlen)) { 3295 return -TARGET_EFAULT; 3296 } 3297 if (len < 0) { 3298 return -TARGET_EINVAL; 3299 } 3300 3301 crlen = sizeof(cr); 3302 ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED, 3303 &cr, &crlen)); 3304 if (ret < 0) { 3305 return ret; 3306 } 3307 if (len > crlen) { 3308 len = crlen; 3309 } 3310 if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) { 3311 return -TARGET_EFAULT; 3312 } 3313 __put_user(cr.pid, &tcr->pid); 3314 __put_user(cr.uid, &tcr->uid); 3315 __put_user(cr.gid, &tcr->gid); 3316 unlock_user_struct(tcr, optval_addr, 1); 3317 if (put_user_u32(len, optlen)) { 3318 return -TARGET_EFAULT; 3319 } 3320 break; 3321 } 3322 /* Options with 'int' argument. */ 3323 case TARGET_SO_DEBUG: 3324 optname = SO_DEBUG; 3325 goto int_case; 3326 case TARGET_SO_REUSEADDR: 3327 optname = SO_REUSEADDR; 3328 goto int_case; 3329 case TARGET_SO_TYPE: 3330 optname = SO_TYPE; 3331 goto int_case; 3332 case TARGET_SO_ERROR: 3333 optname = SO_ERROR; 3334 goto int_case; 3335 case TARGET_SO_DONTROUTE: 3336 optname = SO_DONTROUTE; 3337 goto int_case; 3338 case TARGET_SO_BROADCAST: 3339 optname = SO_BROADCAST; 3340 goto int_case; 3341 case TARGET_SO_SNDBUF: 3342 optname = SO_SNDBUF; 3343 goto int_case; 3344 case TARGET_SO_RCVBUF: 3345 optname = SO_RCVBUF; 3346 goto int_case; 3347 case TARGET_SO_KEEPALIVE: 3348 optname = SO_KEEPALIVE; 3349 goto int_case; 3350 case TARGET_SO_OOBINLINE: 3351 optname = SO_OOBINLINE; 3352 goto int_case; 3353 case TARGET_SO_NO_CHECK: 3354 optname = SO_NO_CHECK; 3355 goto int_case; 3356 case TARGET_SO_PRIORITY: 3357 optname = SO_PRIORITY; 3358 goto int_case; 3359 #ifdef SO_BSDCOMPAT 3360 case TARGET_SO_BSDCOMPAT: 3361 optname = SO_BSDCOMPAT; 3362 goto int_case; 3363 #endif 3364 case TARGET_SO_PASSCRED: 3365 optname = SO_PASSCRED; 3366 goto int_case; 3367 case TARGET_SO_TIMESTAMP: 3368 optname = SO_TIMESTAMP; 3369 goto int_case; 3370 case TARGET_SO_RCVLOWAT: 3371 optname = SO_RCVLOWAT; 3372 goto int_case; 3373 case TARGET_SO_ACCEPTCONN: 3374 optname = SO_ACCEPTCONN; 3375 goto int_case; 3376 default: 3377 goto int_case; 3378 } 3379 break; 3380 case SOL_TCP: 3381 /* TCP options all take an 'int' value. */ 3382 int_case: 3383 if (get_user_u32(len, optlen)) 3384 return -TARGET_EFAULT; 3385 if (len < 0) 3386 return -TARGET_EINVAL; 3387 lv = sizeof(lv); 3388 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 3389 if (ret < 0) 3390 return ret; 3391 if (optname == SO_TYPE) { 3392 val = host_to_target_sock_type(val); 3393 } 3394 if (len > lv) 3395 len = lv; 3396 if (len == 4) { 3397 if (put_user_u32(val, optval_addr)) 3398 return -TARGET_EFAULT; 3399 } else { 3400 if (put_user_u8(val, optval_addr)) 3401 return -TARGET_EFAULT; 3402 } 3403 if (put_user_u32(len, optlen)) 3404 return -TARGET_EFAULT; 3405 break; 3406 case SOL_IP: 3407 switch(optname) { 3408 case IP_TOS: 3409 case IP_TTL: 3410 case IP_HDRINCL: 3411 case IP_ROUTER_ALERT: 3412 case IP_RECVOPTS: 3413 case IP_RETOPTS: 3414 case IP_PKTINFO: 3415 case IP_MTU_DISCOVER: 3416 case IP_RECVERR: 3417 case IP_RECVTOS: 3418 #ifdef IP_FREEBIND 3419 case IP_FREEBIND: 3420 #endif 3421 case IP_MULTICAST_TTL: 3422 case IP_MULTICAST_LOOP: 3423 if (get_user_u32(len, optlen)) 3424 return -TARGET_EFAULT; 3425 if (len < 0) 3426 return -TARGET_EINVAL; 3427 lv = sizeof(lv); 3428 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 3429 if (ret < 0) 3430 return ret; 3431 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) { 3432 len = 1; 3433 if (put_user_u32(len, optlen) 3434 || put_user_u8(val, optval_addr)) 3435 return -TARGET_EFAULT; 3436 } else { 3437 if (len > sizeof(int)) 3438 len = sizeof(int); 3439 if (put_user_u32(len, optlen) 3440 || put_user_u32(val, optval_addr)) 3441 return -TARGET_EFAULT; 3442 } 3443 break; 3444 default: 3445 ret = -TARGET_ENOPROTOOPT; 3446 break; 3447 } 3448 break; 3449 default: 3450 unimplemented: 3451 gemu_log("getsockopt level=%d optname=%d not yet supported\n", 3452 level, optname); 3453 ret = -TARGET_EOPNOTSUPP; 3454 break; 3455 } 3456 return ret; 3457 } 3458 3459 /* Convert target low/high pair representing file offset into the host 3460 * low/high pair. This function doesn't handle offsets bigger than 64 bits 3461 * as the kernel doesn't handle them either. 3462 */ 3463 static void target_to_host_low_high(abi_ulong tlow, 3464 abi_ulong thigh, 3465 unsigned long *hlow, 3466 unsigned long *hhigh) 3467 { 3468 uint64_t off = tlow | 3469 ((unsigned long long)thigh << TARGET_LONG_BITS / 2) << 3470 TARGET_LONG_BITS / 2; 3471 3472 *hlow = off; 3473 *hhigh = (off >> HOST_LONG_BITS / 2) >> HOST_LONG_BITS / 2; 3474 } 3475 3476 static struct iovec *lock_iovec(int type, abi_ulong target_addr, 3477 abi_ulong count, int copy) 3478 { 3479 struct target_iovec *target_vec; 3480 struct iovec *vec; 3481 abi_ulong total_len, max_len; 3482 int i; 3483 int err = 0; 3484 bool bad_address = false; 3485 3486 if (count == 0) { 3487 errno = 0; 3488 return NULL; 3489 } 3490 if (count > IOV_MAX) { 3491 errno = EINVAL; 3492 return NULL; 3493 } 3494 3495 vec = g_try_new0(struct iovec, count); 3496 if (vec == NULL) { 3497 errno = ENOMEM; 3498 return NULL; 3499 } 3500 3501 target_vec = lock_user(VERIFY_READ, target_addr, 3502 count * sizeof(struct target_iovec), 1); 3503 if (target_vec == NULL) { 3504 err = EFAULT; 3505 goto fail2; 3506 } 3507 3508 /* ??? If host page size > target page size, this will result in a 3509 value larger than what we can actually support. */ 3510 max_len = 0x7fffffff & TARGET_PAGE_MASK; 3511 total_len = 0; 3512 3513 for (i = 0; i < count; i++) { 3514 abi_ulong base = tswapal(target_vec[i].iov_base); 3515 abi_long len = tswapal(target_vec[i].iov_len); 3516 3517 if (len < 0) { 3518 err = EINVAL; 3519 goto fail; 3520 } else if (len == 0) { 3521 /* Zero length pointer is ignored. */ 3522 vec[i].iov_base = 0; 3523 } else { 3524 vec[i].iov_base = lock_user(type, base, len, copy); 3525 /* If the first buffer pointer is bad, this is a fault. But 3526 * subsequent bad buffers will result in a partial write; this 3527 * is realized by filling the vector with null pointers and 3528 * zero lengths. */ 3529 if (!vec[i].iov_base) { 3530 if (i == 0) { 3531 err = EFAULT; 3532 goto fail; 3533 } else { 3534 bad_address = true; 3535 } 3536 } 3537 if (bad_address) { 3538 len = 0; 3539 } 3540 if (len > max_len - total_len) { 3541 len = max_len - total_len; 3542 } 3543 } 3544 vec[i].iov_len = len; 3545 total_len += len; 3546 } 3547 3548 unlock_user(target_vec, target_addr, 0); 3549 return vec; 3550 3551 fail: 3552 while (--i >= 0) { 3553 if (tswapal(target_vec[i].iov_len) > 0) { 3554 unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0); 3555 } 3556 } 3557 unlock_user(target_vec, target_addr, 0); 3558 fail2: 3559 g_free(vec); 3560 errno = err; 3561 return NULL; 3562 } 3563 3564 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr, 3565 abi_ulong count, int copy) 3566 { 3567 struct target_iovec *target_vec; 3568 int i; 3569 3570 target_vec = lock_user(VERIFY_READ, target_addr, 3571 count * sizeof(struct target_iovec), 1); 3572 if (target_vec) { 3573 for (i = 0; i < count; i++) { 3574 abi_ulong base = tswapal(target_vec[i].iov_base); 3575 abi_long len = tswapal(target_vec[i].iov_len); 3576 if (len < 0) { 3577 break; 3578 } 3579 unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0); 3580 } 3581 unlock_user(target_vec, target_addr, 0); 3582 } 3583 3584 g_free(vec); 3585 } 3586 3587 static inline int target_to_host_sock_type(int *type) 3588 { 3589 int host_type = 0; 3590 int target_type = *type; 3591 3592 switch (target_type & TARGET_SOCK_TYPE_MASK) { 3593 case TARGET_SOCK_DGRAM: 3594 host_type = SOCK_DGRAM; 3595 break; 3596 case TARGET_SOCK_STREAM: 3597 host_type = SOCK_STREAM; 3598 break; 3599 default: 3600 host_type = target_type & TARGET_SOCK_TYPE_MASK; 3601 break; 3602 } 3603 if (target_type & TARGET_SOCK_CLOEXEC) { 3604 #if defined(SOCK_CLOEXEC) 3605 host_type |= SOCK_CLOEXEC; 3606 #else 3607 return -TARGET_EINVAL; 3608 #endif 3609 } 3610 if (target_type & TARGET_SOCK_NONBLOCK) { 3611 #if defined(SOCK_NONBLOCK) 3612 host_type |= SOCK_NONBLOCK; 3613 #elif !defined(O_NONBLOCK) 3614 return -TARGET_EINVAL; 3615 #endif 3616 } 3617 *type = host_type; 3618 return 0; 3619 } 3620 3621 /* Try to emulate socket type flags after socket creation. */ 3622 static int sock_flags_fixup(int fd, int target_type) 3623 { 3624 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK) 3625 if (target_type & TARGET_SOCK_NONBLOCK) { 3626 int flags = fcntl(fd, F_GETFL); 3627 if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) { 3628 close(fd); 3629 return -TARGET_EINVAL; 3630 } 3631 } 3632 #endif 3633 return fd; 3634 } 3635 3636 static abi_long packet_target_to_host_sockaddr(void *host_addr, 3637 abi_ulong target_addr, 3638 socklen_t len) 3639 { 3640 struct sockaddr *addr = host_addr; 3641 struct target_sockaddr *target_saddr; 3642 3643 target_saddr = lock_user(VERIFY_READ, target_addr, len, 1); 3644 if (!target_saddr) { 3645 return -TARGET_EFAULT; 3646 } 3647 3648 memcpy(addr, target_saddr, len); 3649 addr->sa_family = tswap16(target_saddr->sa_family); 3650 /* spkt_protocol is big-endian */ 3651 3652 unlock_user(target_saddr, target_addr, 0); 3653 return 0; 3654 } 3655 3656 static TargetFdTrans target_packet_trans = { 3657 .target_to_host_addr = packet_target_to_host_sockaddr, 3658 }; 3659 3660 #ifdef CONFIG_RTNETLINK 3661 static abi_long netlink_route_target_to_host(void *buf, size_t len) 3662 { 3663 abi_long ret; 3664 3665 ret = target_to_host_nlmsg_route(buf, len); 3666 if (ret < 0) { 3667 return ret; 3668 } 3669 3670 return len; 3671 } 3672 3673 static abi_long netlink_route_host_to_target(void *buf, size_t len) 3674 { 3675 abi_long ret; 3676 3677 ret = host_to_target_nlmsg_route(buf, len); 3678 if (ret < 0) { 3679 return ret; 3680 } 3681 3682 return len; 3683 } 3684 3685 static TargetFdTrans target_netlink_route_trans = { 3686 .target_to_host_data = netlink_route_target_to_host, 3687 .host_to_target_data = netlink_route_host_to_target, 3688 }; 3689 #endif /* CONFIG_RTNETLINK */ 3690 3691 static abi_long netlink_audit_target_to_host(void *buf, size_t len) 3692 { 3693 abi_long ret; 3694 3695 ret = target_to_host_nlmsg_audit(buf, len); 3696 if (ret < 0) { 3697 return ret; 3698 } 3699 3700 return len; 3701 } 3702 3703 static abi_long netlink_audit_host_to_target(void *buf, size_t len) 3704 { 3705 abi_long ret; 3706 3707 ret = host_to_target_nlmsg_audit(buf, len); 3708 if (ret < 0) { 3709 return ret; 3710 } 3711 3712 return len; 3713 } 3714 3715 static TargetFdTrans target_netlink_audit_trans = { 3716 .target_to_host_data = netlink_audit_target_to_host, 3717 .host_to_target_data = netlink_audit_host_to_target, 3718 }; 3719 3720 /* do_socket() Must return target values and target errnos. */ 3721 static abi_long do_socket(int domain, int type, int protocol) 3722 { 3723 int target_type = type; 3724 int ret; 3725 3726 ret = target_to_host_sock_type(&type); 3727 if (ret) { 3728 return ret; 3729 } 3730 3731 if (domain == PF_NETLINK && !( 3732 #ifdef CONFIG_RTNETLINK 3733 protocol == NETLINK_ROUTE || 3734 #endif 3735 protocol == NETLINK_KOBJECT_UEVENT || 3736 protocol == NETLINK_AUDIT)) { 3737 return -EPFNOSUPPORT; 3738 } 3739 3740 if (domain == AF_PACKET || 3741 (domain == AF_INET && type == SOCK_PACKET)) { 3742 protocol = tswap16(protocol); 3743 } 3744 3745 ret = get_errno(socket(domain, type, protocol)); 3746 if (ret >= 0) { 3747 ret = sock_flags_fixup(ret, target_type); 3748 if (type == SOCK_PACKET) { 3749 /* Manage an obsolete case : 3750 * if socket type is SOCK_PACKET, bind by name 3751 */ 3752 fd_trans_register(ret, &target_packet_trans); 3753 } else if (domain == PF_NETLINK) { 3754 switch (protocol) { 3755 #ifdef CONFIG_RTNETLINK 3756 case NETLINK_ROUTE: 3757 fd_trans_register(ret, &target_netlink_route_trans); 3758 break; 3759 #endif 3760 case NETLINK_KOBJECT_UEVENT: 3761 /* nothing to do: messages are strings */ 3762 break; 3763 case NETLINK_AUDIT: 3764 fd_trans_register(ret, &target_netlink_audit_trans); 3765 break; 3766 default: 3767 g_assert_not_reached(); 3768 } 3769 } 3770 } 3771 return ret; 3772 } 3773 3774 /* do_bind() Must return target values and target errnos. */ 3775 static abi_long do_bind(int sockfd, abi_ulong target_addr, 3776 socklen_t addrlen) 3777 { 3778 void *addr; 3779 abi_long ret; 3780 3781 if ((int)addrlen < 0) { 3782 return -TARGET_EINVAL; 3783 } 3784 3785 addr = alloca(addrlen+1); 3786 3787 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen); 3788 if (ret) 3789 return ret; 3790 3791 return get_errno(bind(sockfd, addr, addrlen)); 3792 } 3793 3794 /* do_connect() Must return target values and target errnos. */ 3795 static abi_long do_connect(int sockfd, abi_ulong target_addr, 3796 socklen_t addrlen) 3797 { 3798 void *addr; 3799 abi_long ret; 3800 3801 if ((int)addrlen < 0) { 3802 return -TARGET_EINVAL; 3803 } 3804 3805 addr = alloca(addrlen+1); 3806 3807 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen); 3808 if (ret) 3809 return ret; 3810 3811 return get_errno(safe_connect(sockfd, addr, addrlen)); 3812 } 3813 3814 /* do_sendrecvmsg_locked() Must return target values and target errnos. */ 3815 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp, 3816 int flags, int send) 3817 { 3818 abi_long ret, len; 3819 struct msghdr msg; 3820 abi_ulong count; 3821 struct iovec *vec; 3822 abi_ulong target_vec; 3823 3824 if (msgp->msg_name) { 3825 msg.msg_namelen = tswap32(msgp->msg_namelen); 3826 msg.msg_name = alloca(msg.msg_namelen+1); 3827 ret = target_to_host_sockaddr(fd, msg.msg_name, 3828 tswapal(msgp->msg_name), 3829 msg.msg_namelen); 3830 if (ret == -TARGET_EFAULT) { 3831 /* For connected sockets msg_name and msg_namelen must 3832 * be ignored, so returning EFAULT immediately is wrong. 3833 * Instead, pass a bad msg_name to the host kernel, and 3834 * let it decide whether to return EFAULT or not. 3835 */ 3836 msg.msg_name = (void *)-1; 3837 } else if (ret) { 3838 goto out2; 3839 } 3840 } else { 3841 msg.msg_name = NULL; 3842 msg.msg_namelen = 0; 3843 } 3844 msg.msg_controllen = 2 * tswapal(msgp->msg_controllen); 3845 msg.msg_control = alloca(msg.msg_controllen); 3846 msg.msg_flags = tswap32(msgp->msg_flags); 3847 3848 count = tswapal(msgp->msg_iovlen); 3849 target_vec = tswapal(msgp->msg_iov); 3850 3851 if (count > IOV_MAX) { 3852 /* sendrcvmsg returns a different errno for this condition than 3853 * readv/writev, so we must catch it here before lock_iovec() does. 3854 */ 3855 ret = -TARGET_EMSGSIZE; 3856 goto out2; 3857 } 3858 3859 vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE, 3860 target_vec, count, send); 3861 if (vec == NULL) { 3862 ret = -host_to_target_errno(errno); 3863 goto out2; 3864 } 3865 msg.msg_iovlen = count; 3866 msg.msg_iov = vec; 3867 3868 if (send) { 3869 if (fd_trans_target_to_host_data(fd)) { 3870 void *host_msg; 3871 3872 host_msg = g_malloc(msg.msg_iov->iov_len); 3873 memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len); 3874 ret = fd_trans_target_to_host_data(fd)(host_msg, 3875 msg.msg_iov->iov_len); 3876 if (ret >= 0) { 3877 msg.msg_iov->iov_base = host_msg; 3878 ret = get_errno(safe_sendmsg(fd, &msg, flags)); 3879 } 3880 g_free(host_msg); 3881 } else { 3882 ret = target_to_host_cmsg(&msg, msgp); 3883 if (ret == 0) { 3884 ret = get_errno(safe_sendmsg(fd, &msg, flags)); 3885 } 3886 } 3887 } else { 3888 ret = get_errno(safe_recvmsg(fd, &msg, flags)); 3889 if (!is_error(ret)) { 3890 len = ret; 3891 if (fd_trans_host_to_target_data(fd)) { 3892 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base, 3893 len); 3894 } else { 3895 ret = host_to_target_cmsg(msgp, &msg); 3896 } 3897 if (!is_error(ret)) { 3898 msgp->msg_namelen = tswap32(msg.msg_namelen); 3899 if (msg.msg_name != NULL && msg.msg_name != (void *)-1) { 3900 ret = host_to_target_sockaddr(tswapal(msgp->msg_name), 3901 msg.msg_name, msg.msg_namelen); 3902 if (ret) { 3903 goto out; 3904 } 3905 } 3906 3907 ret = len; 3908 } 3909 } 3910 } 3911 3912 out: 3913 unlock_iovec(vec, target_vec, count, !send); 3914 out2: 3915 return ret; 3916 } 3917 3918 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg, 3919 int flags, int send) 3920 { 3921 abi_long ret; 3922 struct target_msghdr *msgp; 3923 3924 if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE, 3925 msgp, 3926 target_msg, 3927 send ? 1 : 0)) { 3928 return -TARGET_EFAULT; 3929 } 3930 ret = do_sendrecvmsg_locked(fd, msgp, flags, send); 3931 unlock_user_struct(msgp, target_msg, send ? 0 : 1); 3932 return ret; 3933 } 3934 3935 /* We don't rely on the C library to have sendmmsg/recvmmsg support, 3936 * so it might not have this *mmsg-specific flag either. 3937 */ 3938 #ifndef MSG_WAITFORONE 3939 #define MSG_WAITFORONE 0x10000 3940 #endif 3941 3942 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec, 3943 unsigned int vlen, unsigned int flags, 3944 int send) 3945 { 3946 struct target_mmsghdr *mmsgp; 3947 abi_long ret = 0; 3948 int i; 3949 3950 if (vlen > UIO_MAXIOV) { 3951 vlen = UIO_MAXIOV; 3952 } 3953 3954 mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1); 3955 if (!mmsgp) { 3956 return -TARGET_EFAULT; 3957 } 3958 3959 for (i = 0; i < vlen; i++) { 3960 ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send); 3961 if (is_error(ret)) { 3962 break; 3963 } 3964 mmsgp[i].msg_len = tswap32(ret); 3965 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 3966 if (flags & MSG_WAITFORONE) { 3967 flags |= MSG_DONTWAIT; 3968 } 3969 } 3970 3971 unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i); 3972 3973 /* Return number of datagrams sent if we sent any at all; 3974 * otherwise return the error. 3975 */ 3976 if (i) { 3977 return i; 3978 } 3979 return ret; 3980 } 3981 3982 /* do_accept4() Must return target values and target errnos. */ 3983 static abi_long do_accept4(int fd, abi_ulong target_addr, 3984 abi_ulong target_addrlen_addr, int flags) 3985 { 3986 socklen_t addrlen; 3987 void *addr; 3988 abi_long ret; 3989 int host_flags; 3990 3991 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl); 3992 3993 if (target_addr == 0) { 3994 return get_errno(safe_accept4(fd, NULL, NULL, host_flags)); 3995 } 3996 3997 /* linux returns EINVAL if addrlen pointer is invalid */ 3998 if (get_user_u32(addrlen, target_addrlen_addr)) 3999 return -TARGET_EINVAL; 4000 4001 if ((int)addrlen < 0) { 4002 return -TARGET_EINVAL; 4003 } 4004 4005 if (!access_ok(VERIFY_WRITE, target_addr, addrlen)) 4006 return -TARGET_EINVAL; 4007 4008 addr = alloca(addrlen); 4009 4010 ret = get_errno(safe_accept4(fd, addr, &addrlen, host_flags)); 4011 if (!is_error(ret)) { 4012 host_to_target_sockaddr(target_addr, addr, addrlen); 4013 if (put_user_u32(addrlen, target_addrlen_addr)) 4014 ret = -TARGET_EFAULT; 4015 } 4016 return ret; 4017 } 4018 4019 /* do_getpeername() Must return target values and target errnos. */ 4020 static abi_long do_getpeername(int fd, abi_ulong target_addr, 4021 abi_ulong target_addrlen_addr) 4022 { 4023 socklen_t addrlen; 4024 void *addr; 4025 abi_long ret; 4026 4027 if (get_user_u32(addrlen, target_addrlen_addr)) 4028 return -TARGET_EFAULT; 4029 4030 if ((int)addrlen < 0) { 4031 return -TARGET_EINVAL; 4032 } 4033 4034 if (!access_ok(VERIFY_WRITE, target_addr, addrlen)) 4035 return -TARGET_EFAULT; 4036 4037 addr = alloca(addrlen); 4038 4039 ret = get_errno(getpeername(fd, addr, &addrlen)); 4040 if (!is_error(ret)) { 4041 host_to_target_sockaddr(target_addr, addr, addrlen); 4042 if (put_user_u32(addrlen, target_addrlen_addr)) 4043 ret = -TARGET_EFAULT; 4044 } 4045 return ret; 4046 } 4047 4048 /* do_getsockname() Must return target values and target errnos. */ 4049 static abi_long do_getsockname(int fd, abi_ulong target_addr, 4050 abi_ulong target_addrlen_addr) 4051 { 4052 socklen_t addrlen; 4053 void *addr; 4054 abi_long ret; 4055 4056 if (get_user_u32(addrlen, target_addrlen_addr)) 4057 return -TARGET_EFAULT; 4058 4059 if ((int)addrlen < 0) { 4060 return -TARGET_EINVAL; 4061 } 4062 4063 if (!access_ok(VERIFY_WRITE, target_addr, addrlen)) 4064 return -TARGET_EFAULT; 4065 4066 addr = alloca(addrlen); 4067 4068 ret = get_errno(getsockname(fd, addr, &addrlen)); 4069 if (!is_error(ret)) { 4070 host_to_target_sockaddr(target_addr, addr, addrlen); 4071 if (put_user_u32(addrlen, target_addrlen_addr)) 4072 ret = -TARGET_EFAULT; 4073 } 4074 return ret; 4075 } 4076 4077 /* do_socketpair() Must return target values and target errnos. */ 4078 static abi_long do_socketpair(int domain, int type, int protocol, 4079 abi_ulong target_tab_addr) 4080 { 4081 int tab[2]; 4082 abi_long ret; 4083 4084 target_to_host_sock_type(&type); 4085 4086 ret = get_errno(socketpair(domain, type, protocol, tab)); 4087 if (!is_error(ret)) { 4088 if (put_user_s32(tab[0], target_tab_addr) 4089 || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0]))) 4090 ret = -TARGET_EFAULT; 4091 } 4092 return ret; 4093 } 4094 4095 /* do_sendto() Must return target values and target errnos. */ 4096 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags, 4097 abi_ulong target_addr, socklen_t addrlen) 4098 { 4099 void *addr; 4100 void *host_msg; 4101 void *copy_msg = NULL; 4102 abi_long ret; 4103 4104 if ((int)addrlen < 0) { 4105 return -TARGET_EINVAL; 4106 } 4107 4108 host_msg = lock_user(VERIFY_READ, msg, len, 1); 4109 if (!host_msg) 4110 return -TARGET_EFAULT; 4111 if (fd_trans_target_to_host_data(fd)) { 4112 copy_msg = host_msg; 4113 host_msg = g_malloc(len); 4114 memcpy(host_msg, copy_msg, len); 4115 ret = fd_trans_target_to_host_data(fd)(host_msg, len); 4116 if (ret < 0) { 4117 goto fail; 4118 } 4119 } 4120 if (target_addr) { 4121 addr = alloca(addrlen+1); 4122 ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen); 4123 if (ret) { 4124 goto fail; 4125 } 4126 ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen)); 4127 } else { 4128 ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0)); 4129 } 4130 fail: 4131 if (copy_msg) { 4132 g_free(host_msg); 4133 host_msg = copy_msg; 4134 } 4135 unlock_user(host_msg, msg, 0); 4136 return ret; 4137 } 4138 4139 /* do_recvfrom() Must return target values and target errnos. */ 4140 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags, 4141 abi_ulong target_addr, 4142 abi_ulong target_addrlen) 4143 { 4144 socklen_t addrlen; 4145 void *addr; 4146 void *host_msg; 4147 abi_long ret; 4148 4149 host_msg = lock_user(VERIFY_WRITE, msg, len, 0); 4150 if (!host_msg) 4151 return -TARGET_EFAULT; 4152 if (target_addr) { 4153 if (get_user_u32(addrlen, target_addrlen)) { 4154 ret = -TARGET_EFAULT; 4155 goto fail; 4156 } 4157 if ((int)addrlen < 0) { 4158 ret = -TARGET_EINVAL; 4159 goto fail; 4160 } 4161 addr = alloca(addrlen); 4162 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, 4163 addr, &addrlen)); 4164 } else { 4165 addr = NULL; /* To keep compiler quiet. */ 4166 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0)); 4167 } 4168 if (!is_error(ret)) { 4169 if (fd_trans_host_to_target_data(fd)) { 4170 ret = fd_trans_host_to_target_data(fd)(host_msg, ret); 4171 } 4172 if (target_addr) { 4173 host_to_target_sockaddr(target_addr, addr, addrlen); 4174 if (put_user_u32(addrlen, target_addrlen)) { 4175 ret = -TARGET_EFAULT; 4176 goto fail; 4177 } 4178 } 4179 unlock_user(host_msg, msg, len); 4180 } else { 4181 fail: 4182 unlock_user(host_msg, msg, 0); 4183 } 4184 return ret; 4185 } 4186 4187 #ifdef TARGET_NR_socketcall 4188 /* do_socketcall() must return target values and target errnos. */ 4189 static abi_long do_socketcall(int num, abi_ulong vptr) 4190 { 4191 static const unsigned nargs[] = { /* number of arguments per operation */ 4192 [TARGET_SYS_SOCKET] = 3, /* domain, type, protocol */ 4193 [TARGET_SYS_BIND] = 3, /* fd, addr, addrlen */ 4194 [TARGET_SYS_CONNECT] = 3, /* fd, addr, addrlen */ 4195 [TARGET_SYS_LISTEN] = 2, /* fd, backlog */ 4196 [TARGET_SYS_ACCEPT] = 3, /* fd, addr, addrlen */ 4197 [TARGET_SYS_GETSOCKNAME] = 3, /* fd, addr, addrlen */ 4198 [TARGET_SYS_GETPEERNAME] = 3, /* fd, addr, addrlen */ 4199 [TARGET_SYS_SOCKETPAIR] = 4, /* domain, type, protocol, tab */ 4200 [TARGET_SYS_SEND] = 4, /* fd, msg, len, flags */ 4201 [TARGET_SYS_RECV] = 4, /* fd, msg, len, flags */ 4202 [TARGET_SYS_SENDTO] = 6, /* fd, msg, len, flags, addr, addrlen */ 4203 [TARGET_SYS_RECVFROM] = 6, /* fd, msg, len, flags, addr, addrlen */ 4204 [TARGET_SYS_SHUTDOWN] = 2, /* fd, how */ 4205 [TARGET_SYS_SETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */ 4206 [TARGET_SYS_GETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */ 4207 [TARGET_SYS_SENDMSG] = 3, /* fd, msg, flags */ 4208 [TARGET_SYS_RECVMSG] = 3, /* fd, msg, flags */ 4209 [TARGET_SYS_ACCEPT4] = 4, /* fd, addr, addrlen, flags */ 4210 [TARGET_SYS_RECVMMSG] = 4, /* fd, msgvec, vlen, flags */ 4211 [TARGET_SYS_SENDMMSG] = 4, /* fd, msgvec, vlen, flags */ 4212 }; 4213 abi_long a[6]; /* max 6 args */ 4214 unsigned i; 4215 4216 /* check the range of the first argument num */ 4217 /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */ 4218 if (num < 1 || num > TARGET_SYS_SENDMMSG) { 4219 return -TARGET_EINVAL; 4220 } 4221 /* ensure we have space for args */ 4222 if (nargs[num] > ARRAY_SIZE(a)) { 4223 return -TARGET_EINVAL; 4224 } 4225 /* collect the arguments in a[] according to nargs[] */ 4226 for (i = 0; i < nargs[num]; ++i) { 4227 if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) { 4228 return -TARGET_EFAULT; 4229 } 4230 } 4231 /* now when we have the args, invoke the appropriate underlying function */ 4232 switch (num) { 4233 case TARGET_SYS_SOCKET: /* domain, type, protocol */ 4234 return do_socket(a[0], a[1], a[2]); 4235 case TARGET_SYS_BIND: /* sockfd, addr, addrlen */ 4236 return do_bind(a[0], a[1], a[2]); 4237 case TARGET_SYS_CONNECT: /* sockfd, addr, addrlen */ 4238 return do_connect(a[0], a[1], a[2]); 4239 case TARGET_SYS_LISTEN: /* sockfd, backlog */ 4240 return get_errno(listen(a[0], a[1])); 4241 case TARGET_SYS_ACCEPT: /* sockfd, addr, addrlen */ 4242 return do_accept4(a[0], a[1], a[2], 0); 4243 case TARGET_SYS_GETSOCKNAME: /* sockfd, addr, addrlen */ 4244 return do_getsockname(a[0], a[1], a[2]); 4245 case TARGET_SYS_GETPEERNAME: /* sockfd, addr, addrlen */ 4246 return do_getpeername(a[0], a[1], a[2]); 4247 case TARGET_SYS_SOCKETPAIR: /* domain, type, protocol, tab */ 4248 return do_socketpair(a[0], a[1], a[2], a[3]); 4249 case TARGET_SYS_SEND: /* sockfd, msg, len, flags */ 4250 return do_sendto(a[0], a[1], a[2], a[3], 0, 0); 4251 case TARGET_SYS_RECV: /* sockfd, msg, len, flags */ 4252 return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0); 4253 case TARGET_SYS_SENDTO: /* sockfd, msg, len, flags, addr, addrlen */ 4254 return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]); 4255 case TARGET_SYS_RECVFROM: /* sockfd, msg, len, flags, addr, addrlen */ 4256 return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]); 4257 case TARGET_SYS_SHUTDOWN: /* sockfd, how */ 4258 return get_errno(shutdown(a[0], a[1])); 4259 case TARGET_SYS_SETSOCKOPT: /* sockfd, level, optname, optval, optlen */ 4260 return do_setsockopt(a[0], a[1], a[2], a[3], a[4]); 4261 case TARGET_SYS_GETSOCKOPT: /* sockfd, level, optname, optval, optlen */ 4262 return do_getsockopt(a[0], a[1], a[2], a[3], a[4]); 4263 case TARGET_SYS_SENDMSG: /* sockfd, msg, flags */ 4264 return do_sendrecvmsg(a[0], a[1], a[2], 1); 4265 case TARGET_SYS_RECVMSG: /* sockfd, msg, flags */ 4266 return do_sendrecvmsg(a[0], a[1], a[2], 0); 4267 case TARGET_SYS_ACCEPT4: /* sockfd, addr, addrlen, flags */ 4268 return do_accept4(a[0], a[1], a[2], a[3]); 4269 case TARGET_SYS_RECVMMSG: /* sockfd, msgvec, vlen, flags */ 4270 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0); 4271 case TARGET_SYS_SENDMMSG: /* sockfd, msgvec, vlen, flags */ 4272 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1); 4273 default: 4274 gemu_log("Unsupported socketcall: %d\n", num); 4275 return -TARGET_EINVAL; 4276 } 4277 } 4278 #endif 4279 4280 #define N_SHM_REGIONS 32 4281 4282 static struct shm_region { 4283 abi_ulong start; 4284 abi_ulong size; 4285 bool in_use; 4286 } shm_regions[N_SHM_REGIONS]; 4287 4288 #ifndef TARGET_SEMID64_DS 4289 /* asm-generic version of this struct */ 4290 struct target_semid64_ds 4291 { 4292 struct target_ipc_perm sem_perm; 4293 abi_ulong sem_otime; 4294 #if TARGET_ABI_BITS == 32 4295 abi_ulong __unused1; 4296 #endif 4297 abi_ulong sem_ctime; 4298 #if TARGET_ABI_BITS == 32 4299 abi_ulong __unused2; 4300 #endif 4301 abi_ulong sem_nsems; 4302 abi_ulong __unused3; 4303 abi_ulong __unused4; 4304 }; 4305 #endif 4306 4307 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip, 4308 abi_ulong target_addr) 4309 { 4310 struct target_ipc_perm *target_ip; 4311 struct target_semid64_ds *target_sd; 4312 4313 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 4314 return -TARGET_EFAULT; 4315 target_ip = &(target_sd->sem_perm); 4316 host_ip->__key = tswap32(target_ip->__key); 4317 host_ip->uid = tswap32(target_ip->uid); 4318 host_ip->gid = tswap32(target_ip->gid); 4319 host_ip->cuid = tswap32(target_ip->cuid); 4320 host_ip->cgid = tswap32(target_ip->cgid); 4321 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC) 4322 host_ip->mode = tswap32(target_ip->mode); 4323 #else 4324 host_ip->mode = tswap16(target_ip->mode); 4325 #endif 4326 #if defined(TARGET_PPC) 4327 host_ip->__seq = tswap32(target_ip->__seq); 4328 #else 4329 host_ip->__seq = tswap16(target_ip->__seq); 4330 #endif 4331 unlock_user_struct(target_sd, target_addr, 0); 4332 return 0; 4333 } 4334 4335 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr, 4336 struct ipc_perm *host_ip) 4337 { 4338 struct target_ipc_perm *target_ip; 4339 struct target_semid64_ds *target_sd; 4340 4341 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 4342 return -TARGET_EFAULT; 4343 target_ip = &(target_sd->sem_perm); 4344 target_ip->__key = tswap32(host_ip->__key); 4345 target_ip->uid = tswap32(host_ip->uid); 4346 target_ip->gid = tswap32(host_ip->gid); 4347 target_ip->cuid = tswap32(host_ip->cuid); 4348 target_ip->cgid = tswap32(host_ip->cgid); 4349 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC) 4350 target_ip->mode = tswap32(host_ip->mode); 4351 #else 4352 target_ip->mode = tswap16(host_ip->mode); 4353 #endif 4354 #if defined(TARGET_PPC) 4355 target_ip->__seq = tswap32(host_ip->__seq); 4356 #else 4357 target_ip->__seq = tswap16(host_ip->__seq); 4358 #endif 4359 unlock_user_struct(target_sd, target_addr, 1); 4360 return 0; 4361 } 4362 4363 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd, 4364 abi_ulong target_addr) 4365 { 4366 struct target_semid64_ds *target_sd; 4367 4368 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 4369 return -TARGET_EFAULT; 4370 if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr)) 4371 return -TARGET_EFAULT; 4372 host_sd->sem_nsems = tswapal(target_sd->sem_nsems); 4373 host_sd->sem_otime = tswapal(target_sd->sem_otime); 4374 host_sd->sem_ctime = tswapal(target_sd->sem_ctime); 4375 unlock_user_struct(target_sd, target_addr, 0); 4376 return 0; 4377 } 4378 4379 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr, 4380 struct semid_ds *host_sd) 4381 { 4382 struct target_semid64_ds *target_sd; 4383 4384 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 4385 return -TARGET_EFAULT; 4386 if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm))) 4387 return -TARGET_EFAULT; 4388 target_sd->sem_nsems = tswapal(host_sd->sem_nsems); 4389 target_sd->sem_otime = tswapal(host_sd->sem_otime); 4390 target_sd->sem_ctime = tswapal(host_sd->sem_ctime); 4391 unlock_user_struct(target_sd, target_addr, 1); 4392 return 0; 4393 } 4394 4395 struct target_seminfo { 4396 int semmap; 4397 int semmni; 4398 int semmns; 4399 int semmnu; 4400 int semmsl; 4401 int semopm; 4402 int semume; 4403 int semusz; 4404 int semvmx; 4405 int semaem; 4406 }; 4407 4408 static inline abi_long host_to_target_seminfo(abi_ulong target_addr, 4409 struct seminfo *host_seminfo) 4410 { 4411 struct target_seminfo *target_seminfo; 4412 if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0)) 4413 return -TARGET_EFAULT; 4414 __put_user(host_seminfo->semmap, &target_seminfo->semmap); 4415 __put_user(host_seminfo->semmni, &target_seminfo->semmni); 4416 __put_user(host_seminfo->semmns, &target_seminfo->semmns); 4417 __put_user(host_seminfo->semmnu, &target_seminfo->semmnu); 4418 __put_user(host_seminfo->semmsl, &target_seminfo->semmsl); 4419 __put_user(host_seminfo->semopm, &target_seminfo->semopm); 4420 __put_user(host_seminfo->semume, &target_seminfo->semume); 4421 __put_user(host_seminfo->semusz, &target_seminfo->semusz); 4422 __put_user(host_seminfo->semvmx, &target_seminfo->semvmx); 4423 __put_user(host_seminfo->semaem, &target_seminfo->semaem); 4424 unlock_user_struct(target_seminfo, target_addr, 1); 4425 return 0; 4426 } 4427 4428 union semun { 4429 int val; 4430 struct semid_ds *buf; 4431 unsigned short *array; 4432 struct seminfo *__buf; 4433 }; 4434 4435 union target_semun { 4436 int val; 4437 abi_ulong buf; 4438 abi_ulong array; 4439 abi_ulong __buf; 4440 }; 4441 4442 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array, 4443 abi_ulong target_addr) 4444 { 4445 int nsems; 4446 unsigned short *array; 4447 union semun semun; 4448 struct semid_ds semid_ds; 4449 int i, ret; 4450 4451 semun.buf = &semid_ds; 4452 4453 ret = semctl(semid, 0, IPC_STAT, semun); 4454 if (ret == -1) 4455 return get_errno(ret); 4456 4457 nsems = semid_ds.sem_nsems; 4458 4459 *host_array = g_try_new(unsigned short, nsems); 4460 if (!*host_array) { 4461 return -TARGET_ENOMEM; 4462 } 4463 array = lock_user(VERIFY_READ, target_addr, 4464 nsems*sizeof(unsigned short), 1); 4465 if (!array) { 4466 g_free(*host_array); 4467 return -TARGET_EFAULT; 4468 } 4469 4470 for(i=0; i<nsems; i++) { 4471 __get_user((*host_array)[i], &array[i]); 4472 } 4473 unlock_user(array, target_addr, 0); 4474 4475 return 0; 4476 } 4477 4478 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr, 4479 unsigned short **host_array) 4480 { 4481 int nsems; 4482 unsigned short *array; 4483 union semun semun; 4484 struct semid_ds semid_ds; 4485 int i, ret; 4486 4487 semun.buf = &semid_ds; 4488 4489 ret = semctl(semid, 0, IPC_STAT, semun); 4490 if (ret == -1) 4491 return get_errno(ret); 4492 4493 nsems = semid_ds.sem_nsems; 4494 4495 array = lock_user(VERIFY_WRITE, target_addr, 4496 nsems*sizeof(unsigned short), 0); 4497 if (!array) 4498 return -TARGET_EFAULT; 4499 4500 for(i=0; i<nsems; i++) { 4501 __put_user((*host_array)[i], &array[i]); 4502 } 4503 g_free(*host_array); 4504 unlock_user(array, target_addr, 1); 4505 4506 return 0; 4507 } 4508 4509 static inline abi_long do_semctl(int semid, int semnum, int cmd, 4510 abi_ulong target_arg) 4511 { 4512 union target_semun target_su = { .buf = target_arg }; 4513 union semun arg; 4514 struct semid_ds dsarg; 4515 unsigned short *array = NULL; 4516 struct seminfo seminfo; 4517 abi_long ret = -TARGET_EINVAL; 4518 abi_long err; 4519 cmd &= 0xff; 4520 4521 switch( cmd ) { 4522 case GETVAL: 4523 case SETVAL: 4524 /* In 64 bit cross-endian situations, we will erroneously pick up 4525 * the wrong half of the union for the "val" element. To rectify 4526 * this, the entire 8-byte structure is byteswapped, followed by 4527 * a swap of the 4 byte val field. In other cases, the data is 4528 * already in proper host byte order. */ 4529 if (sizeof(target_su.val) != (sizeof(target_su.buf))) { 4530 target_su.buf = tswapal(target_su.buf); 4531 arg.val = tswap32(target_su.val); 4532 } else { 4533 arg.val = target_su.val; 4534 } 4535 ret = get_errno(semctl(semid, semnum, cmd, arg)); 4536 break; 4537 case GETALL: 4538 case SETALL: 4539 err = target_to_host_semarray(semid, &array, target_su.array); 4540 if (err) 4541 return err; 4542 arg.array = array; 4543 ret = get_errno(semctl(semid, semnum, cmd, arg)); 4544 err = host_to_target_semarray(semid, target_su.array, &array); 4545 if (err) 4546 return err; 4547 break; 4548 case IPC_STAT: 4549 case IPC_SET: 4550 case SEM_STAT: 4551 err = target_to_host_semid_ds(&dsarg, target_su.buf); 4552 if (err) 4553 return err; 4554 arg.buf = &dsarg; 4555 ret = get_errno(semctl(semid, semnum, cmd, arg)); 4556 err = host_to_target_semid_ds(target_su.buf, &dsarg); 4557 if (err) 4558 return err; 4559 break; 4560 case IPC_INFO: 4561 case SEM_INFO: 4562 arg.__buf = &seminfo; 4563 ret = get_errno(semctl(semid, semnum, cmd, arg)); 4564 err = host_to_target_seminfo(target_su.__buf, &seminfo); 4565 if (err) 4566 return err; 4567 break; 4568 case IPC_RMID: 4569 case GETPID: 4570 case GETNCNT: 4571 case GETZCNT: 4572 ret = get_errno(semctl(semid, semnum, cmd, NULL)); 4573 break; 4574 } 4575 4576 return ret; 4577 } 4578 4579 struct target_sembuf { 4580 unsigned short sem_num; 4581 short sem_op; 4582 short sem_flg; 4583 }; 4584 4585 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf, 4586 abi_ulong target_addr, 4587 unsigned nsops) 4588 { 4589 struct target_sembuf *target_sembuf; 4590 int i; 4591 4592 target_sembuf = lock_user(VERIFY_READ, target_addr, 4593 nsops*sizeof(struct target_sembuf), 1); 4594 if (!target_sembuf) 4595 return -TARGET_EFAULT; 4596 4597 for(i=0; i<nsops; i++) { 4598 __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num); 4599 __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op); 4600 __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg); 4601 } 4602 4603 unlock_user(target_sembuf, target_addr, 0); 4604 4605 return 0; 4606 } 4607 4608 static inline abi_long do_semop(int semid, abi_long ptr, unsigned nsops) 4609 { 4610 struct sembuf sops[nsops]; 4611 4612 if (target_to_host_sembuf(sops, ptr, nsops)) 4613 return -TARGET_EFAULT; 4614 4615 return get_errno(safe_semtimedop(semid, sops, nsops, NULL)); 4616 } 4617 4618 struct target_msqid_ds 4619 { 4620 struct target_ipc_perm msg_perm; 4621 abi_ulong msg_stime; 4622 #if TARGET_ABI_BITS == 32 4623 abi_ulong __unused1; 4624 #endif 4625 abi_ulong msg_rtime; 4626 #if TARGET_ABI_BITS == 32 4627 abi_ulong __unused2; 4628 #endif 4629 abi_ulong msg_ctime; 4630 #if TARGET_ABI_BITS == 32 4631 abi_ulong __unused3; 4632 #endif 4633 abi_ulong __msg_cbytes; 4634 abi_ulong msg_qnum; 4635 abi_ulong msg_qbytes; 4636 abi_ulong msg_lspid; 4637 abi_ulong msg_lrpid; 4638 abi_ulong __unused4; 4639 abi_ulong __unused5; 4640 }; 4641 4642 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md, 4643 abi_ulong target_addr) 4644 { 4645 struct target_msqid_ds *target_md; 4646 4647 if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1)) 4648 return -TARGET_EFAULT; 4649 if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr)) 4650 return -TARGET_EFAULT; 4651 host_md->msg_stime = tswapal(target_md->msg_stime); 4652 host_md->msg_rtime = tswapal(target_md->msg_rtime); 4653 host_md->msg_ctime = tswapal(target_md->msg_ctime); 4654 host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes); 4655 host_md->msg_qnum = tswapal(target_md->msg_qnum); 4656 host_md->msg_qbytes = tswapal(target_md->msg_qbytes); 4657 host_md->msg_lspid = tswapal(target_md->msg_lspid); 4658 host_md->msg_lrpid = tswapal(target_md->msg_lrpid); 4659 unlock_user_struct(target_md, target_addr, 0); 4660 return 0; 4661 } 4662 4663 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr, 4664 struct msqid_ds *host_md) 4665 { 4666 struct target_msqid_ds *target_md; 4667 4668 if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0)) 4669 return -TARGET_EFAULT; 4670 if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm))) 4671 return -TARGET_EFAULT; 4672 target_md->msg_stime = tswapal(host_md->msg_stime); 4673 target_md->msg_rtime = tswapal(host_md->msg_rtime); 4674 target_md->msg_ctime = tswapal(host_md->msg_ctime); 4675 target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes); 4676 target_md->msg_qnum = tswapal(host_md->msg_qnum); 4677 target_md->msg_qbytes = tswapal(host_md->msg_qbytes); 4678 target_md->msg_lspid = tswapal(host_md->msg_lspid); 4679 target_md->msg_lrpid = tswapal(host_md->msg_lrpid); 4680 unlock_user_struct(target_md, target_addr, 1); 4681 return 0; 4682 } 4683 4684 struct target_msginfo { 4685 int msgpool; 4686 int msgmap; 4687 int msgmax; 4688 int msgmnb; 4689 int msgmni; 4690 int msgssz; 4691 int msgtql; 4692 unsigned short int msgseg; 4693 }; 4694 4695 static inline abi_long host_to_target_msginfo(abi_ulong target_addr, 4696 struct msginfo *host_msginfo) 4697 { 4698 struct target_msginfo *target_msginfo; 4699 if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0)) 4700 return -TARGET_EFAULT; 4701 __put_user(host_msginfo->msgpool, &target_msginfo->msgpool); 4702 __put_user(host_msginfo->msgmap, &target_msginfo->msgmap); 4703 __put_user(host_msginfo->msgmax, &target_msginfo->msgmax); 4704 __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb); 4705 __put_user(host_msginfo->msgmni, &target_msginfo->msgmni); 4706 __put_user(host_msginfo->msgssz, &target_msginfo->msgssz); 4707 __put_user(host_msginfo->msgtql, &target_msginfo->msgtql); 4708 __put_user(host_msginfo->msgseg, &target_msginfo->msgseg); 4709 unlock_user_struct(target_msginfo, target_addr, 1); 4710 return 0; 4711 } 4712 4713 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr) 4714 { 4715 struct msqid_ds dsarg; 4716 struct msginfo msginfo; 4717 abi_long ret = -TARGET_EINVAL; 4718 4719 cmd &= 0xff; 4720 4721 switch (cmd) { 4722 case IPC_STAT: 4723 case IPC_SET: 4724 case MSG_STAT: 4725 if (target_to_host_msqid_ds(&dsarg,ptr)) 4726 return -TARGET_EFAULT; 4727 ret = get_errno(msgctl(msgid, cmd, &dsarg)); 4728 if (host_to_target_msqid_ds(ptr,&dsarg)) 4729 return -TARGET_EFAULT; 4730 break; 4731 case IPC_RMID: 4732 ret = get_errno(msgctl(msgid, cmd, NULL)); 4733 break; 4734 case IPC_INFO: 4735 case MSG_INFO: 4736 ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo)); 4737 if (host_to_target_msginfo(ptr, &msginfo)) 4738 return -TARGET_EFAULT; 4739 break; 4740 } 4741 4742 return ret; 4743 } 4744 4745 struct target_msgbuf { 4746 abi_long mtype; 4747 char mtext[1]; 4748 }; 4749 4750 static inline abi_long do_msgsnd(int msqid, abi_long msgp, 4751 ssize_t msgsz, int msgflg) 4752 { 4753 struct target_msgbuf *target_mb; 4754 struct msgbuf *host_mb; 4755 abi_long ret = 0; 4756 4757 if (msgsz < 0) { 4758 return -TARGET_EINVAL; 4759 } 4760 4761 if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0)) 4762 return -TARGET_EFAULT; 4763 host_mb = g_try_malloc(msgsz + sizeof(long)); 4764 if (!host_mb) { 4765 unlock_user_struct(target_mb, msgp, 0); 4766 return -TARGET_ENOMEM; 4767 } 4768 host_mb->mtype = (abi_long) tswapal(target_mb->mtype); 4769 memcpy(host_mb->mtext, target_mb->mtext, msgsz); 4770 ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg)); 4771 g_free(host_mb); 4772 unlock_user_struct(target_mb, msgp, 0); 4773 4774 return ret; 4775 } 4776 4777 static inline abi_long do_msgrcv(int msqid, abi_long msgp, 4778 ssize_t msgsz, abi_long msgtyp, 4779 int msgflg) 4780 { 4781 struct target_msgbuf *target_mb; 4782 char *target_mtext; 4783 struct msgbuf *host_mb; 4784 abi_long ret = 0; 4785 4786 if (msgsz < 0) { 4787 return -TARGET_EINVAL; 4788 } 4789 4790 if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0)) 4791 return -TARGET_EFAULT; 4792 4793 host_mb = g_try_malloc(msgsz + sizeof(long)); 4794 if (!host_mb) { 4795 ret = -TARGET_ENOMEM; 4796 goto end; 4797 } 4798 ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg)); 4799 4800 if (ret > 0) { 4801 abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong); 4802 target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0); 4803 if (!target_mtext) { 4804 ret = -TARGET_EFAULT; 4805 goto end; 4806 } 4807 memcpy(target_mb->mtext, host_mb->mtext, ret); 4808 unlock_user(target_mtext, target_mtext_addr, ret); 4809 } 4810 4811 target_mb->mtype = tswapal(host_mb->mtype); 4812 4813 end: 4814 if (target_mb) 4815 unlock_user_struct(target_mb, msgp, 1); 4816 g_free(host_mb); 4817 return ret; 4818 } 4819 4820 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd, 4821 abi_ulong target_addr) 4822 { 4823 struct target_shmid_ds *target_sd; 4824 4825 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 4826 return -TARGET_EFAULT; 4827 if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr)) 4828 return -TARGET_EFAULT; 4829 __get_user(host_sd->shm_segsz, &target_sd->shm_segsz); 4830 __get_user(host_sd->shm_atime, &target_sd->shm_atime); 4831 __get_user(host_sd->shm_dtime, &target_sd->shm_dtime); 4832 __get_user(host_sd->shm_ctime, &target_sd->shm_ctime); 4833 __get_user(host_sd->shm_cpid, &target_sd->shm_cpid); 4834 __get_user(host_sd->shm_lpid, &target_sd->shm_lpid); 4835 __get_user(host_sd->shm_nattch, &target_sd->shm_nattch); 4836 unlock_user_struct(target_sd, target_addr, 0); 4837 return 0; 4838 } 4839 4840 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr, 4841 struct shmid_ds *host_sd) 4842 { 4843 struct target_shmid_ds *target_sd; 4844 4845 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 4846 return -TARGET_EFAULT; 4847 if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm))) 4848 return -TARGET_EFAULT; 4849 __put_user(host_sd->shm_segsz, &target_sd->shm_segsz); 4850 __put_user(host_sd->shm_atime, &target_sd->shm_atime); 4851 __put_user(host_sd->shm_dtime, &target_sd->shm_dtime); 4852 __put_user(host_sd->shm_ctime, &target_sd->shm_ctime); 4853 __put_user(host_sd->shm_cpid, &target_sd->shm_cpid); 4854 __put_user(host_sd->shm_lpid, &target_sd->shm_lpid); 4855 __put_user(host_sd->shm_nattch, &target_sd->shm_nattch); 4856 unlock_user_struct(target_sd, target_addr, 1); 4857 return 0; 4858 } 4859 4860 struct target_shminfo { 4861 abi_ulong shmmax; 4862 abi_ulong shmmin; 4863 abi_ulong shmmni; 4864 abi_ulong shmseg; 4865 abi_ulong shmall; 4866 }; 4867 4868 static inline abi_long host_to_target_shminfo(abi_ulong target_addr, 4869 struct shminfo *host_shminfo) 4870 { 4871 struct target_shminfo *target_shminfo; 4872 if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0)) 4873 return -TARGET_EFAULT; 4874 __put_user(host_shminfo->shmmax, &target_shminfo->shmmax); 4875 __put_user(host_shminfo->shmmin, &target_shminfo->shmmin); 4876 __put_user(host_shminfo->shmmni, &target_shminfo->shmmni); 4877 __put_user(host_shminfo->shmseg, &target_shminfo->shmseg); 4878 __put_user(host_shminfo->shmall, &target_shminfo->shmall); 4879 unlock_user_struct(target_shminfo, target_addr, 1); 4880 return 0; 4881 } 4882 4883 struct target_shm_info { 4884 int used_ids; 4885 abi_ulong shm_tot; 4886 abi_ulong shm_rss; 4887 abi_ulong shm_swp; 4888 abi_ulong swap_attempts; 4889 abi_ulong swap_successes; 4890 }; 4891 4892 static inline abi_long host_to_target_shm_info(abi_ulong target_addr, 4893 struct shm_info *host_shm_info) 4894 { 4895 struct target_shm_info *target_shm_info; 4896 if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0)) 4897 return -TARGET_EFAULT; 4898 __put_user(host_shm_info->used_ids, &target_shm_info->used_ids); 4899 __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot); 4900 __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss); 4901 __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp); 4902 __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts); 4903 __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes); 4904 unlock_user_struct(target_shm_info, target_addr, 1); 4905 return 0; 4906 } 4907 4908 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf) 4909 { 4910 struct shmid_ds dsarg; 4911 struct shminfo shminfo; 4912 struct shm_info shm_info; 4913 abi_long ret = -TARGET_EINVAL; 4914 4915 cmd &= 0xff; 4916 4917 switch(cmd) { 4918 case IPC_STAT: 4919 case IPC_SET: 4920 case SHM_STAT: 4921 if (target_to_host_shmid_ds(&dsarg, buf)) 4922 return -TARGET_EFAULT; 4923 ret = get_errno(shmctl(shmid, cmd, &dsarg)); 4924 if (host_to_target_shmid_ds(buf, &dsarg)) 4925 return -TARGET_EFAULT; 4926 break; 4927 case IPC_INFO: 4928 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo)); 4929 if (host_to_target_shminfo(buf, &shminfo)) 4930 return -TARGET_EFAULT; 4931 break; 4932 case SHM_INFO: 4933 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info)); 4934 if (host_to_target_shm_info(buf, &shm_info)) 4935 return -TARGET_EFAULT; 4936 break; 4937 case IPC_RMID: 4938 case SHM_LOCK: 4939 case SHM_UNLOCK: 4940 ret = get_errno(shmctl(shmid, cmd, NULL)); 4941 break; 4942 } 4943 4944 return ret; 4945 } 4946 4947 #ifndef TARGET_FORCE_SHMLBA 4948 /* For most architectures, SHMLBA is the same as the page size; 4949 * some architectures have larger values, in which case they should 4950 * define TARGET_FORCE_SHMLBA and provide a target_shmlba() function. 4951 * This corresponds to the kernel arch code defining __ARCH_FORCE_SHMLBA 4952 * and defining its own value for SHMLBA. 4953 * 4954 * The kernel also permits SHMLBA to be set by the architecture to a 4955 * value larger than the page size without setting __ARCH_FORCE_SHMLBA; 4956 * this means that addresses are rounded to the large size if 4957 * SHM_RND is set but addresses not aligned to that size are not rejected 4958 * as long as they are at least page-aligned. Since the only architecture 4959 * which uses this is ia64 this code doesn't provide for that oddity. 4960 */ 4961 static inline abi_ulong target_shmlba(CPUArchState *cpu_env) 4962 { 4963 return TARGET_PAGE_SIZE; 4964 } 4965 #endif 4966 4967 static inline abi_ulong do_shmat(CPUArchState *cpu_env, 4968 int shmid, abi_ulong shmaddr, int shmflg) 4969 { 4970 abi_long raddr; 4971 void *host_raddr; 4972 struct shmid_ds shm_info; 4973 int i,ret; 4974 abi_ulong shmlba; 4975 4976 /* find out the length of the shared memory segment */ 4977 ret = get_errno(shmctl(shmid, IPC_STAT, &shm_info)); 4978 if (is_error(ret)) { 4979 /* can't get length, bail out */ 4980 return ret; 4981 } 4982 4983 shmlba = target_shmlba(cpu_env); 4984 4985 if (shmaddr & (shmlba - 1)) { 4986 if (shmflg & SHM_RND) { 4987 shmaddr &= ~(shmlba - 1); 4988 } else { 4989 return -TARGET_EINVAL; 4990 } 4991 } 4992 if (!guest_range_valid(shmaddr, shm_info.shm_segsz)) { 4993 return -TARGET_EINVAL; 4994 } 4995 4996 mmap_lock(); 4997 4998 if (shmaddr) 4999 host_raddr = shmat(shmid, (void *)g2h(shmaddr), shmflg); 5000 else { 5001 abi_ulong mmap_start; 5002 5003 mmap_start = mmap_find_vma(0, shm_info.shm_segsz); 5004 5005 if (mmap_start == -1) { 5006 errno = ENOMEM; 5007 host_raddr = (void *)-1; 5008 } else 5009 host_raddr = shmat(shmid, g2h(mmap_start), shmflg | SHM_REMAP); 5010 } 5011 5012 if (host_raddr == (void *)-1) { 5013 mmap_unlock(); 5014 return get_errno((long)host_raddr); 5015 } 5016 raddr=h2g((unsigned long)host_raddr); 5017 5018 page_set_flags(raddr, raddr + shm_info.shm_segsz, 5019 PAGE_VALID | PAGE_READ | 5020 ((shmflg & SHM_RDONLY)? 0 : PAGE_WRITE)); 5021 5022 for (i = 0; i < N_SHM_REGIONS; i++) { 5023 if (!shm_regions[i].in_use) { 5024 shm_regions[i].in_use = true; 5025 shm_regions[i].start = raddr; 5026 shm_regions[i].size = shm_info.shm_segsz; 5027 break; 5028 } 5029 } 5030 5031 mmap_unlock(); 5032 return raddr; 5033 5034 } 5035 5036 static inline abi_long do_shmdt(abi_ulong shmaddr) 5037 { 5038 int i; 5039 abi_long rv; 5040 5041 mmap_lock(); 5042 5043 for (i = 0; i < N_SHM_REGIONS; ++i) { 5044 if (shm_regions[i].in_use && shm_regions[i].start == shmaddr) { 5045 shm_regions[i].in_use = false; 5046 page_set_flags(shmaddr, shmaddr + shm_regions[i].size, 0); 5047 break; 5048 } 5049 } 5050 rv = get_errno(shmdt(g2h(shmaddr))); 5051 5052 mmap_unlock(); 5053 5054 return rv; 5055 } 5056 5057 #ifdef TARGET_NR_ipc 5058 /* ??? This only works with linear mappings. */ 5059 /* do_ipc() must return target values and target errnos. */ 5060 static abi_long do_ipc(CPUArchState *cpu_env, 5061 unsigned int call, abi_long first, 5062 abi_long second, abi_long third, 5063 abi_long ptr, abi_long fifth) 5064 { 5065 int version; 5066 abi_long ret = 0; 5067 5068 version = call >> 16; 5069 call &= 0xffff; 5070 5071 switch (call) { 5072 case IPCOP_semop: 5073 ret = do_semop(first, ptr, second); 5074 break; 5075 5076 case IPCOP_semget: 5077 ret = get_errno(semget(first, second, third)); 5078 break; 5079 5080 case IPCOP_semctl: { 5081 /* The semun argument to semctl is passed by value, so dereference the 5082 * ptr argument. */ 5083 abi_ulong atptr; 5084 get_user_ual(atptr, ptr); 5085 ret = do_semctl(first, second, third, atptr); 5086 break; 5087 } 5088 5089 case IPCOP_msgget: 5090 ret = get_errno(msgget(first, second)); 5091 break; 5092 5093 case IPCOP_msgsnd: 5094 ret = do_msgsnd(first, ptr, second, third); 5095 break; 5096 5097 case IPCOP_msgctl: 5098 ret = do_msgctl(first, second, ptr); 5099 break; 5100 5101 case IPCOP_msgrcv: 5102 switch (version) { 5103 case 0: 5104 { 5105 struct target_ipc_kludge { 5106 abi_long msgp; 5107 abi_long msgtyp; 5108 } *tmp; 5109 5110 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) { 5111 ret = -TARGET_EFAULT; 5112 break; 5113 } 5114 5115 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third); 5116 5117 unlock_user_struct(tmp, ptr, 0); 5118 break; 5119 } 5120 default: 5121 ret = do_msgrcv(first, ptr, second, fifth, third); 5122 } 5123 break; 5124 5125 case IPCOP_shmat: 5126 switch (version) { 5127 default: 5128 { 5129 abi_ulong raddr; 5130 raddr = do_shmat(cpu_env, first, ptr, second); 5131 if (is_error(raddr)) 5132 return get_errno(raddr); 5133 if (put_user_ual(raddr, third)) 5134 return -TARGET_EFAULT; 5135 break; 5136 } 5137 case 1: 5138 ret = -TARGET_EINVAL; 5139 break; 5140 } 5141 break; 5142 case IPCOP_shmdt: 5143 ret = do_shmdt(ptr); 5144 break; 5145 5146 case IPCOP_shmget: 5147 /* IPC_* flag values are the same on all linux platforms */ 5148 ret = get_errno(shmget(first, second, third)); 5149 break; 5150 5151 /* IPC_* and SHM_* command values are the same on all linux platforms */ 5152 case IPCOP_shmctl: 5153 ret = do_shmctl(first, second, ptr); 5154 break; 5155 default: 5156 gemu_log("Unsupported ipc call: %d (version %d)\n", call, version); 5157 ret = -TARGET_ENOSYS; 5158 break; 5159 } 5160 return ret; 5161 } 5162 #endif 5163 5164 /* kernel structure types definitions */ 5165 5166 #define STRUCT(name, ...) STRUCT_ ## name, 5167 #define STRUCT_SPECIAL(name) STRUCT_ ## name, 5168 enum { 5169 #include "syscall_types.h" 5170 STRUCT_MAX 5171 }; 5172 #undef STRUCT 5173 #undef STRUCT_SPECIAL 5174 5175 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = { __VA_ARGS__, TYPE_NULL }; 5176 #define STRUCT_SPECIAL(name) 5177 #include "syscall_types.h" 5178 #undef STRUCT 5179 #undef STRUCT_SPECIAL 5180 5181 typedef struct IOCTLEntry IOCTLEntry; 5182 5183 typedef abi_long do_ioctl_fn(const IOCTLEntry *ie, uint8_t *buf_temp, 5184 int fd, int cmd, abi_long arg); 5185 5186 struct IOCTLEntry { 5187 int target_cmd; 5188 unsigned int host_cmd; 5189 const char *name; 5190 int access; 5191 do_ioctl_fn *do_ioctl; 5192 const argtype arg_type[5]; 5193 }; 5194 5195 #define IOC_R 0x0001 5196 #define IOC_W 0x0002 5197 #define IOC_RW (IOC_R | IOC_W) 5198 5199 #define MAX_STRUCT_SIZE 4096 5200 5201 #ifdef CONFIG_FIEMAP 5202 /* So fiemap access checks don't overflow on 32 bit systems. 5203 * This is very slightly smaller than the limit imposed by 5204 * the underlying kernel. 5205 */ 5206 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap)) \ 5207 / sizeof(struct fiemap_extent)) 5208 5209 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp, 5210 int fd, int cmd, abi_long arg) 5211 { 5212 /* The parameter for this ioctl is a struct fiemap followed 5213 * by an array of struct fiemap_extent whose size is set 5214 * in fiemap->fm_extent_count. The array is filled in by the 5215 * ioctl. 5216 */ 5217 int target_size_in, target_size_out; 5218 struct fiemap *fm; 5219 const argtype *arg_type = ie->arg_type; 5220 const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) }; 5221 void *argptr, *p; 5222 abi_long ret; 5223 int i, extent_size = thunk_type_size(extent_arg_type, 0); 5224 uint32_t outbufsz; 5225 int free_fm = 0; 5226 5227 assert(arg_type[0] == TYPE_PTR); 5228 assert(ie->access == IOC_RW); 5229 arg_type++; 5230 target_size_in = thunk_type_size(arg_type, 0); 5231 argptr = lock_user(VERIFY_READ, arg, target_size_in, 1); 5232 if (!argptr) { 5233 return -TARGET_EFAULT; 5234 } 5235 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5236 unlock_user(argptr, arg, 0); 5237 fm = (struct fiemap *)buf_temp; 5238 if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) { 5239 return -TARGET_EINVAL; 5240 } 5241 5242 outbufsz = sizeof (*fm) + 5243 (sizeof(struct fiemap_extent) * fm->fm_extent_count); 5244 5245 if (outbufsz > MAX_STRUCT_SIZE) { 5246 /* We can't fit all the extents into the fixed size buffer. 5247 * Allocate one that is large enough and use it instead. 5248 */ 5249 fm = g_try_malloc(outbufsz); 5250 if (!fm) { 5251 return -TARGET_ENOMEM; 5252 } 5253 memcpy(fm, buf_temp, sizeof(struct fiemap)); 5254 free_fm = 1; 5255 } 5256 ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm)); 5257 if (!is_error(ret)) { 5258 target_size_out = target_size_in; 5259 /* An extent_count of 0 means we were only counting the extents 5260 * so there are no structs to copy 5261 */ 5262 if (fm->fm_extent_count != 0) { 5263 target_size_out += fm->fm_mapped_extents * extent_size; 5264 } 5265 argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0); 5266 if (!argptr) { 5267 ret = -TARGET_EFAULT; 5268 } else { 5269 /* Convert the struct fiemap */ 5270 thunk_convert(argptr, fm, arg_type, THUNK_TARGET); 5271 if (fm->fm_extent_count != 0) { 5272 p = argptr + target_size_in; 5273 /* ...and then all the struct fiemap_extents */ 5274 for (i = 0; i < fm->fm_mapped_extents; i++) { 5275 thunk_convert(p, &fm->fm_extents[i], extent_arg_type, 5276 THUNK_TARGET); 5277 p += extent_size; 5278 } 5279 } 5280 unlock_user(argptr, arg, target_size_out); 5281 } 5282 } 5283 if (free_fm) { 5284 g_free(fm); 5285 } 5286 return ret; 5287 } 5288 #endif 5289 5290 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp, 5291 int fd, int cmd, abi_long arg) 5292 { 5293 const argtype *arg_type = ie->arg_type; 5294 int target_size; 5295 void *argptr; 5296 int ret; 5297 struct ifconf *host_ifconf; 5298 uint32_t outbufsz; 5299 const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) }; 5300 int target_ifreq_size; 5301 int nb_ifreq; 5302 int free_buf = 0; 5303 int i; 5304 int target_ifc_len; 5305 abi_long target_ifc_buf; 5306 int host_ifc_len; 5307 char *host_ifc_buf; 5308 5309 assert(arg_type[0] == TYPE_PTR); 5310 assert(ie->access == IOC_RW); 5311 5312 arg_type++; 5313 target_size = thunk_type_size(arg_type, 0); 5314 5315 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5316 if (!argptr) 5317 return -TARGET_EFAULT; 5318 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5319 unlock_user(argptr, arg, 0); 5320 5321 host_ifconf = (struct ifconf *)(unsigned long)buf_temp; 5322 target_ifc_len = host_ifconf->ifc_len; 5323 target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf; 5324 5325 target_ifreq_size = thunk_type_size(ifreq_arg_type, 0); 5326 nb_ifreq = target_ifc_len / target_ifreq_size; 5327 host_ifc_len = nb_ifreq * sizeof(struct ifreq); 5328 5329 outbufsz = sizeof(*host_ifconf) + host_ifc_len; 5330 if (outbufsz > MAX_STRUCT_SIZE) { 5331 /* We can't fit all the extents into the fixed size buffer. 5332 * Allocate one that is large enough and use it instead. 5333 */ 5334 host_ifconf = malloc(outbufsz); 5335 if (!host_ifconf) { 5336 return -TARGET_ENOMEM; 5337 } 5338 memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf)); 5339 free_buf = 1; 5340 } 5341 host_ifc_buf = (char*)host_ifconf + sizeof(*host_ifconf); 5342 5343 host_ifconf->ifc_len = host_ifc_len; 5344 host_ifconf->ifc_buf = host_ifc_buf; 5345 5346 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf)); 5347 if (!is_error(ret)) { 5348 /* convert host ifc_len to target ifc_len */ 5349 5350 nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq); 5351 target_ifc_len = nb_ifreq * target_ifreq_size; 5352 host_ifconf->ifc_len = target_ifc_len; 5353 5354 /* restore target ifc_buf */ 5355 5356 host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf; 5357 5358 /* copy struct ifconf to target user */ 5359 5360 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5361 if (!argptr) 5362 return -TARGET_EFAULT; 5363 thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET); 5364 unlock_user(argptr, arg, target_size); 5365 5366 /* copy ifreq[] to target user */ 5367 5368 argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0); 5369 for (i = 0; i < nb_ifreq ; i++) { 5370 thunk_convert(argptr + i * target_ifreq_size, 5371 host_ifc_buf + i * sizeof(struct ifreq), 5372 ifreq_arg_type, THUNK_TARGET); 5373 } 5374 unlock_user(argptr, target_ifc_buf, target_ifc_len); 5375 } 5376 5377 if (free_buf) { 5378 free(host_ifconf); 5379 } 5380 5381 return ret; 5382 } 5383 5384 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd, 5385 int cmd, abi_long arg) 5386 { 5387 void *argptr; 5388 struct dm_ioctl *host_dm; 5389 abi_long guest_data; 5390 uint32_t guest_data_size; 5391 int target_size; 5392 const argtype *arg_type = ie->arg_type; 5393 abi_long ret; 5394 void *big_buf = NULL; 5395 char *host_data; 5396 5397 arg_type++; 5398 target_size = thunk_type_size(arg_type, 0); 5399 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5400 if (!argptr) { 5401 ret = -TARGET_EFAULT; 5402 goto out; 5403 } 5404 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5405 unlock_user(argptr, arg, 0); 5406 5407 /* buf_temp is too small, so fetch things into a bigger buffer */ 5408 big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2); 5409 memcpy(big_buf, buf_temp, target_size); 5410 buf_temp = big_buf; 5411 host_dm = big_buf; 5412 5413 guest_data = arg + host_dm->data_start; 5414 if ((guest_data - arg) < 0) { 5415 ret = -TARGET_EINVAL; 5416 goto out; 5417 } 5418 guest_data_size = host_dm->data_size - host_dm->data_start; 5419 host_data = (char*)host_dm + host_dm->data_start; 5420 5421 argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1); 5422 if (!argptr) { 5423 ret = -TARGET_EFAULT; 5424 goto out; 5425 } 5426 5427 switch (ie->host_cmd) { 5428 case DM_REMOVE_ALL: 5429 case DM_LIST_DEVICES: 5430 case DM_DEV_CREATE: 5431 case DM_DEV_REMOVE: 5432 case DM_DEV_SUSPEND: 5433 case DM_DEV_STATUS: 5434 case DM_DEV_WAIT: 5435 case DM_TABLE_STATUS: 5436 case DM_TABLE_CLEAR: 5437 case DM_TABLE_DEPS: 5438 case DM_LIST_VERSIONS: 5439 /* no input data */ 5440 break; 5441 case DM_DEV_RENAME: 5442 case DM_DEV_SET_GEOMETRY: 5443 /* data contains only strings */ 5444 memcpy(host_data, argptr, guest_data_size); 5445 break; 5446 case DM_TARGET_MSG: 5447 memcpy(host_data, argptr, guest_data_size); 5448 *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr); 5449 break; 5450 case DM_TABLE_LOAD: 5451 { 5452 void *gspec = argptr; 5453 void *cur_data = host_data; 5454 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) }; 5455 int spec_size = thunk_type_size(arg_type, 0); 5456 int i; 5457 5458 for (i = 0; i < host_dm->target_count; i++) { 5459 struct dm_target_spec *spec = cur_data; 5460 uint32_t next; 5461 int slen; 5462 5463 thunk_convert(spec, gspec, arg_type, THUNK_HOST); 5464 slen = strlen((char*)gspec + spec_size) + 1; 5465 next = spec->next; 5466 spec->next = sizeof(*spec) + slen; 5467 strcpy((char*)&spec[1], gspec + spec_size); 5468 gspec += next; 5469 cur_data += spec->next; 5470 } 5471 break; 5472 } 5473 default: 5474 ret = -TARGET_EINVAL; 5475 unlock_user(argptr, guest_data, 0); 5476 goto out; 5477 } 5478 unlock_user(argptr, guest_data, 0); 5479 5480 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5481 if (!is_error(ret)) { 5482 guest_data = arg + host_dm->data_start; 5483 guest_data_size = host_dm->data_size - host_dm->data_start; 5484 argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0); 5485 switch (ie->host_cmd) { 5486 case DM_REMOVE_ALL: 5487 case DM_DEV_CREATE: 5488 case DM_DEV_REMOVE: 5489 case DM_DEV_RENAME: 5490 case DM_DEV_SUSPEND: 5491 case DM_DEV_STATUS: 5492 case DM_TABLE_LOAD: 5493 case DM_TABLE_CLEAR: 5494 case DM_TARGET_MSG: 5495 case DM_DEV_SET_GEOMETRY: 5496 /* no return data */ 5497 break; 5498 case DM_LIST_DEVICES: 5499 { 5500 struct dm_name_list *nl = (void*)host_dm + host_dm->data_start; 5501 uint32_t remaining_data = guest_data_size; 5502 void *cur_data = argptr; 5503 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) }; 5504 int nl_size = 12; /* can't use thunk_size due to alignment */ 5505 5506 while (1) { 5507 uint32_t next = nl->next; 5508 if (next) { 5509 nl->next = nl_size + (strlen(nl->name) + 1); 5510 } 5511 if (remaining_data < nl->next) { 5512 host_dm->flags |= DM_BUFFER_FULL_FLAG; 5513 break; 5514 } 5515 thunk_convert(cur_data, nl, arg_type, THUNK_TARGET); 5516 strcpy(cur_data + nl_size, nl->name); 5517 cur_data += nl->next; 5518 remaining_data -= nl->next; 5519 if (!next) { 5520 break; 5521 } 5522 nl = (void*)nl + next; 5523 } 5524 break; 5525 } 5526 case DM_DEV_WAIT: 5527 case DM_TABLE_STATUS: 5528 { 5529 struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start; 5530 void *cur_data = argptr; 5531 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) }; 5532 int spec_size = thunk_type_size(arg_type, 0); 5533 int i; 5534 5535 for (i = 0; i < host_dm->target_count; i++) { 5536 uint32_t next = spec->next; 5537 int slen = strlen((char*)&spec[1]) + 1; 5538 spec->next = (cur_data - argptr) + spec_size + slen; 5539 if (guest_data_size < spec->next) { 5540 host_dm->flags |= DM_BUFFER_FULL_FLAG; 5541 break; 5542 } 5543 thunk_convert(cur_data, spec, arg_type, THUNK_TARGET); 5544 strcpy(cur_data + spec_size, (char*)&spec[1]); 5545 cur_data = argptr + spec->next; 5546 spec = (void*)host_dm + host_dm->data_start + next; 5547 } 5548 break; 5549 } 5550 case DM_TABLE_DEPS: 5551 { 5552 void *hdata = (void*)host_dm + host_dm->data_start; 5553 int count = *(uint32_t*)hdata; 5554 uint64_t *hdev = hdata + 8; 5555 uint64_t *gdev = argptr + 8; 5556 int i; 5557 5558 *(uint32_t*)argptr = tswap32(count); 5559 for (i = 0; i < count; i++) { 5560 *gdev = tswap64(*hdev); 5561 gdev++; 5562 hdev++; 5563 } 5564 break; 5565 } 5566 case DM_LIST_VERSIONS: 5567 { 5568 struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start; 5569 uint32_t remaining_data = guest_data_size; 5570 void *cur_data = argptr; 5571 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) }; 5572 int vers_size = thunk_type_size(arg_type, 0); 5573 5574 while (1) { 5575 uint32_t next = vers->next; 5576 if (next) { 5577 vers->next = vers_size + (strlen(vers->name) + 1); 5578 } 5579 if (remaining_data < vers->next) { 5580 host_dm->flags |= DM_BUFFER_FULL_FLAG; 5581 break; 5582 } 5583 thunk_convert(cur_data, vers, arg_type, THUNK_TARGET); 5584 strcpy(cur_data + vers_size, vers->name); 5585 cur_data += vers->next; 5586 remaining_data -= vers->next; 5587 if (!next) { 5588 break; 5589 } 5590 vers = (void*)vers + next; 5591 } 5592 break; 5593 } 5594 default: 5595 unlock_user(argptr, guest_data, 0); 5596 ret = -TARGET_EINVAL; 5597 goto out; 5598 } 5599 unlock_user(argptr, guest_data, guest_data_size); 5600 5601 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5602 if (!argptr) { 5603 ret = -TARGET_EFAULT; 5604 goto out; 5605 } 5606 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 5607 unlock_user(argptr, arg, target_size); 5608 } 5609 out: 5610 g_free(big_buf); 5611 return ret; 5612 } 5613 5614 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd, 5615 int cmd, abi_long arg) 5616 { 5617 void *argptr; 5618 int target_size; 5619 const argtype *arg_type = ie->arg_type; 5620 const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) }; 5621 abi_long ret; 5622 5623 struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp; 5624 struct blkpg_partition host_part; 5625 5626 /* Read and convert blkpg */ 5627 arg_type++; 5628 target_size = thunk_type_size(arg_type, 0); 5629 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5630 if (!argptr) { 5631 ret = -TARGET_EFAULT; 5632 goto out; 5633 } 5634 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5635 unlock_user(argptr, arg, 0); 5636 5637 switch (host_blkpg->op) { 5638 case BLKPG_ADD_PARTITION: 5639 case BLKPG_DEL_PARTITION: 5640 /* payload is struct blkpg_partition */ 5641 break; 5642 default: 5643 /* Unknown opcode */ 5644 ret = -TARGET_EINVAL; 5645 goto out; 5646 } 5647 5648 /* Read and convert blkpg->data */ 5649 arg = (abi_long)(uintptr_t)host_blkpg->data; 5650 target_size = thunk_type_size(part_arg_type, 0); 5651 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5652 if (!argptr) { 5653 ret = -TARGET_EFAULT; 5654 goto out; 5655 } 5656 thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST); 5657 unlock_user(argptr, arg, 0); 5658 5659 /* Swizzle the data pointer to our local copy and call! */ 5660 host_blkpg->data = &host_part; 5661 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg)); 5662 5663 out: 5664 return ret; 5665 } 5666 5667 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp, 5668 int fd, int cmd, abi_long arg) 5669 { 5670 const argtype *arg_type = ie->arg_type; 5671 const StructEntry *se; 5672 const argtype *field_types; 5673 const int *dst_offsets, *src_offsets; 5674 int target_size; 5675 void *argptr; 5676 abi_ulong *target_rt_dev_ptr; 5677 unsigned long *host_rt_dev_ptr; 5678 abi_long ret; 5679 int i; 5680 5681 assert(ie->access == IOC_W); 5682 assert(*arg_type == TYPE_PTR); 5683 arg_type++; 5684 assert(*arg_type == TYPE_STRUCT); 5685 target_size = thunk_type_size(arg_type, 0); 5686 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5687 if (!argptr) { 5688 return -TARGET_EFAULT; 5689 } 5690 arg_type++; 5691 assert(*arg_type == (int)STRUCT_rtentry); 5692 se = struct_entries + *arg_type++; 5693 assert(se->convert[0] == NULL); 5694 /* convert struct here to be able to catch rt_dev string */ 5695 field_types = se->field_types; 5696 dst_offsets = se->field_offsets[THUNK_HOST]; 5697 src_offsets = se->field_offsets[THUNK_TARGET]; 5698 for (i = 0; i < se->nb_fields; i++) { 5699 if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) { 5700 assert(*field_types == TYPE_PTRVOID); 5701 target_rt_dev_ptr = (abi_ulong *)(argptr + src_offsets[i]); 5702 host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]); 5703 if (*target_rt_dev_ptr != 0) { 5704 *host_rt_dev_ptr = (unsigned long)lock_user_string( 5705 tswapal(*target_rt_dev_ptr)); 5706 if (!*host_rt_dev_ptr) { 5707 unlock_user(argptr, arg, 0); 5708 return -TARGET_EFAULT; 5709 } 5710 } else { 5711 *host_rt_dev_ptr = 0; 5712 } 5713 field_types++; 5714 continue; 5715 } 5716 field_types = thunk_convert(buf_temp + dst_offsets[i], 5717 argptr + src_offsets[i], 5718 field_types, THUNK_HOST); 5719 } 5720 unlock_user(argptr, arg, 0); 5721 5722 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5723 if (*host_rt_dev_ptr != 0) { 5724 unlock_user((void *)*host_rt_dev_ptr, 5725 *target_rt_dev_ptr, 0); 5726 } 5727 return ret; 5728 } 5729 5730 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp, 5731 int fd, int cmd, abi_long arg) 5732 { 5733 int sig = target_to_host_signal(arg); 5734 return get_errno(safe_ioctl(fd, ie->host_cmd, sig)); 5735 } 5736 5737 #ifdef TIOCGPTPEER 5738 static abi_long do_ioctl_tiocgptpeer(const IOCTLEntry *ie, uint8_t *buf_temp, 5739 int fd, int cmd, abi_long arg) 5740 { 5741 int flags = target_to_host_bitmask(arg, fcntl_flags_tbl); 5742 return get_errno(safe_ioctl(fd, ie->host_cmd, flags)); 5743 } 5744 #endif 5745 5746 static IOCTLEntry ioctl_entries[] = { 5747 #define IOCTL(cmd, access, ...) \ 5748 { TARGET_ ## cmd, cmd, #cmd, access, 0, { __VA_ARGS__ } }, 5749 #define IOCTL_SPECIAL(cmd, access, dofn, ...) \ 5750 { TARGET_ ## cmd, cmd, #cmd, access, dofn, { __VA_ARGS__ } }, 5751 #define IOCTL_IGNORE(cmd) \ 5752 { TARGET_ ## cmd, 0, #cmd }, 5753 #include "ioctls.h" 5754 { 0, 0, }, 5755 }; 5756 5757 /* ??? Implement proper locking for ioctls. */ 5758 /* do_ioctl() Must return target values and target errnos. */ 5759 static abi_long do_ioctl(int fd, int cmd, abi_long arg) 5760 { 5761 const IOCTLEntry *ie; 5762 const argtype *arg_type; 5763 abi_long ret; 5764 uint8_t buf_temp[MAX_STRUCT_SIZE]; 5765 int target_size; 5766 void *argptr; 5767 5768 ie = ioctl_entries; 5769 for(;;) { 5770 if (ie->target_cmd == 0) { 5771 gemu_log("Unsupported ioctl: cmd=0x%04lx\n", (long)cmd); 5772 return -TARGET_ENOSYS; 5773 } 5774 if (ie->target_cmd == cmd) 5775 break; 5776 ie++; 5777 } 5778 arg_type = ie->arg_type; 5779 #if defined(DEBUG) 5780 gemu_log("ioctl: cmd=0x%04lx (%s)\n", (long)cmd, ie->name); 5781 #endif 5782 if (ie->do_ioctl) { 5783 return ie->do_ioctl(ie, buf_temp, fd, cmd, arg); 5784 } else if (!ie->host_cmd) { 5785 /* Some architectures define BSD ioctls in their headers 5786 that are not implemented in Linux. */ 5787 return -TARGET_ENOSYS; 5788 } 5789 5790 switch(arg_type[0]) { 5791 case TYPE_NULL: 5792 /* no argument */ 5793 ret = get_errno(safe_ioctl(fd, ie->host_cmd)); 5794 break; 5795 case TYPE_PTRVOID: 5796 case TYPE_INT: 5797 ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg)); 5798 break; 5799 case TYPE_PTR: 5800 arg_type++; 5801 target_size = thunk_type_size(arg_type, 0); 5802 switch(ie->access) { 5803 case IOC_R: 5804 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5805 if (!is_error(ret)) { 5806 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5807 if (!argptr) 5808 return -TARGET_EFAULT; 5809 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 5810 unlock_user(argptr, arg, target_size); 5811 } 5812 break; 5813 case IOC_W: 5814 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5815 if (!argptr) 5816 return -TARGET_EFAULT; 5817 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5818 unlock_user(argptr, arg, 0); 5819 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5820 break; 5821 default: 5822 case IOC_RW: 5823 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5824 if (!argptr) 5825 return -TARGET_EFAULT; 5826 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5827 unlock_user(argptr, arg, 0); 5828 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5829 if (!is_error(ret)) { 5830 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5831 if (!argptr) 5832 return -TARGET_EFAULT; 5833 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 5834 unlock_user(argptr, arg, target_size); 5835 } 5836 break; 5837 } 5838 break; 5839 default: 5840 gemu_log("Unsupported ioctl type: cmd=0x%04lx type=%d\n", 5841 (long)cmd, arg_type[0]); 5842 ret = -TARGET_ENOSYS; 5843 break; 5844 } 5845 return ret; 5846 } 5847 5848 static const bitmask_transtbl iflag_tbl[] = { 5849 { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK }, 5850 { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT }, 5851 { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR }, 5852 { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK }, 5853 { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK }, 5854 { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP }, 5855 { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR }, 5856 { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR }, 5857 { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL }, 5858 { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC }, 5859 { TARGET_IXON, TARGET_IXON, IXON, IXON }, 5860 { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY }, 5861 { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF }, 5862 { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL }, 5863 { 0, 0, 0, 0 } 5864 }; 5865 5866 static const bitmask_transtbl oflag_tbl[] = { 5867 { TARGET_OPOST, TARGET_OPOST, OPOST, OPOST }, 5868 { TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC }, 5869 { TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR }, 5870 { TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL }, 5871 { TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR }, 5872 { TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET }, 5873 { TARGET_OFILL, TARGET_OFILL, OFILL, OFILL }, 5874 { TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL }, 5875 { TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 }, 5876 { TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 }, 5877 { TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 }, 5878 { TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 }, 5879 { TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 }, 5880 { TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 }, 5881 { TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 }, 5882 { TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 }, 5883 { TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 }, 5884 { TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 }, 5885 { TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 }, 5886 { TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 }, 5887 { TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 }, 5888 { TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 }, 5889 { TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 }, 5890 { TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 }, 5891 { 0, 0, 0, 0 } 5892 }; 5893 5894 static const bitmask_transtbl cflag_tbl[] = { 5895 { TARGET_CBAUD, TARGET_B0, CBAUD, B0 }, 5896 { TARGET_CBAUD, TARGET_B50, CBAUD, B50 }, 5897 { TARGET_CBAUD, TARGET_B75, CBAUD, B75 }, 5898 { TARGET_CBAUD, TARGET_B110, CBAUD, B110 }, 5899 { TARGET_CBAUD, TARGET_B134, CBAUD, B134 }, 5900 { TARGET_CBAUD, TARGET_B150, CBAUD, B150 }, 5901 { TARGET_CBAUD, TARGET_B200, CBAUD, B200 }, 5902 { TARGET_CBAUD, TARGET_B300, CBAUD, B300 }, 5903 { TARGET_CBAUD, TARGET_B600, CBAUD, B600 }, 5904 { TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 }, 5905 { TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 }, 5906 { TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 }, 5907 { TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 }, 5908 { TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 }, 5909 { TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 }, 5910 { TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 }, 5911 { TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 }, 5912 { TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 }, 5913 { TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 }, 5914 { TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 }, 5915 { TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 }, 5916 { TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 }, 5917 { TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 }, 5918 { TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 }, 5919 { TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB }, 5920 { TARGET_CREAD, TARGET_CREAD, CREAD, CREAD }, 5921 { TARGET_PARENB, TARGET_PARENB, PARENB, PARENB }, 5922 { TARGET_PARODD, TARGET_PARODD, PARODD, PARODD }, 5923 { TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL }, 5924 { TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL }, 5925 { TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS }, 5926 { 0, 0, 0, 0 } 5927 }; 5928 5929 static const bitmask_transtbl lflag_tbl[] = { 5930 { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG }, 5931 { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON }, 5932 { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE }, 5933 { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO }, 5934 { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE }, 5935 { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK }, 5936 { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL }, 5937 { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH }, 5938 { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP }, 5939 { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL }, 5940 { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT }, 5941 { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE }, 5942 { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO }, 5943 { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN }, 5944 { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN }, 5945 { 0, 0, 0, 0 } 5946 }; 5947 5948 static void target_to_host_termios (void *dst, const void *src) 5949 { 5950 struct host_termios *host = dst; 5951 const struct target_termios *target = src; 5952 5953 host->c_iflag = 5954 target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl); 5955 host->c_oflag = 5956 target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl); 5957 host->c_cflag = 5958 target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl); 5959 host->c_lflag = 5960 target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl); 5961 host->c_line = target->c_line; 5962 5963 memset(host->c_cc, 0, sizeof(host->c_cc)); 5964 host->c_cc[VINTR] = target->c_cc[TARGET_VINTR]; 5965 host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT]; 5966 host->c_cc[VERASE] = target->c_cc[TARGET_VERASE]; 5967 host->c_cc[VKILL] = target->c_cc[TARGET_VKILL]; 5968 host->c_cc[VEOF] = target->c_cc[TARGET_VEOF]; 5969 host->c_cc[VTIME] = target->c_cc[TARGET_VTIME]; 5970 host->c_cc[VMIN] = target->c_cc[TARGET_VMIN]; 5971 host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC]; 5972 host->c_cc[VSTART] = target->c_cc[TARGET_VSTART]; 5973 host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP]; 5974 host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP]; 5975 host->c_cc[VEOL] = target->c_cc[TARGET_VEOL]; 5976 host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT]; 5977 host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD]; 5978 host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE]; 5979 host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT]; 5980 host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2]; 5981 } 5982 5983 static void host_to_target_termios (void *dst, const void *src) 5984 { 5985 struct target_termios *target = dst; 5986 const struct host_termios *host = src; 5987 5988 target->c_iflag = 5989 tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl)); 5990 target->c_oflag = 5991 tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl)); 5992 target->c_cflag = 5993 tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl)); 5994 target->c_lflag = 5995 tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl)); 5996 target->c_line = host->c_line; 5997 5998 memset(target->c_cc, 0, sizeof(target->c_cc)); 5999 target->c_cc[TARGET_VINTR] = host->c_cc[VINTR]; 6000 target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT]; 6001 target->c_cc[TARGET_VERASE] = host->c_cc[VERASE]; 6002 target->c_cc[TARGET_VKILL] = host->c_cc[VKILL]; 6003 target->c_cc[TARGET_VEOF] = host->c_cc[VEOF]; 6004 target->c_cc[TARGET_VTIME] = host->c_cc[VTIME]; 6005 target->c_cc[TARGET_VMIN] = host->c_cc[VMIN]; 6006 target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC]; 6007 target->c_cc[TARGET_VSTART] = host->c_cc[VSTART]; 6008 target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP]; 6009 target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP]; 6010 target->c_cc[TARGET_VEOL] = host->c_cc[VEOL]; 6011 target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT]; 6012 target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD]; 6013 target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE]; 6014 target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT]; 6015 target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2]; 6016 } 6017 6018 static const StructEntry struct_termios_def = { 6019 .convert = { host_to_target_termios, target_to_host_termios }, 6020 .size = { sizeof(struct target_termios), sizeof(struct host_termios) }, 6021 .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) }, 6022 }; 6023 6024 static bitmask_transtbl mmap_flags_tbl[] = { 6025 { TARGET_MAP_SHARED, TARGET_MAP_SHARED, MAP_SHARED, MAP_SHARED }, 6026 { TARGET_MAP_PRIVATE, TARGET_MAP_PRIVATE, MAP_PRIVATE, MAP_PRIVATE }, 6027 { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED }, 6028 { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS, 6029 MAP_ANONYMOUS, MAP_ANONYMOUS }, 6030 { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN, 6031 MAP_GROWSDOWN, MAP_GROWSDOWN }, 6032 { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE, 6033 MAP_DENYWRITE, MAP_DENYWRITE }, 6034 { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE, 6035 MAP_EXECUTABLE, MAP_EXECUTABLE }, 6036 { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED }, 6037 { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE, 6038 MAP_NORESERVE, MAP_NORESERVE }, 6039 { TARGET_MAP_HUGETLB, TARGET_MAP_HUGETLB, MAP_HUGETLB, MAP_HUGETLB }, 6040 /* MAP_STACK had been ignored by the kernel for quite some time. 6041 Recognize it for the target insofar as we do not want to pass 6042 it through to the host. */ 6043 { TARGET_MAP_STACK, TARGET_MAP_STACK, 0, 0 }, 6044 { 0, 0, 0, 0 } 6045 }; 6046 6047 #if defined(TARGET_I386) 6048 6049 /* NOTE: there is really one LDT for all the threads */ 6050 static uint8_t *ldt_table; 6051 6052 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount) 6053 { 6054 int size; 6055 void *p; 6056 6057 if (!ldt_table) 6058 return 0; 6059 size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE; 6060 if (size > bytecount) 6061 size = bytecount; 6062 p = lock_user(VERIFY_WRITE, ptr, size, 0); 6063 if (!p) 6064 return -TARGET_EFAULT; 6065 /* ??? Should this by byteswapped? */ 6066 memcpy(p, ldt_table, size); 6067 unlock_user(p, ptr, size); 6068 return size; 6069 } 6070 6071 /* XXX: add locking support */ 6072 static abi_long write_ldt(CPUX86State *env, 6073 abi_ulong ptr, unsigned long bytecount, int oldmode) 6074 { 6075 struct target_modify_ldt_ldt_s ldt_info; 6076 struct target_modify_ldt_ldt_s *target_ldt_info; 6077 int seg_32bit, contents, read_exec_only, limit_in_pages; 6078 int seg_not_present, useable, lm; 6079 uint32_t *lp, entry_1, entry_2; 6080 6081 if (bytecount != sizeof(ldt_info)) 6082 return -TARGET_EINVAL; 6083 if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1)) 6084 return -TARGET_EFAULT; 6085 ldt_info.entry_number = tswap32(target_ldt_info->entry_number); 6086 ldt_info.base_addr = tswapal(target_ldt_info->base_addr); 6087 ldt_info.limit = tswap32(target_ldt_info->limit); 6088 ldt_info.flags = tswap32(target_ldt_info->flags); 6089 unlock_user_struct(target_ldt_info, ptr, 0); 6090 6091 if (ldt_info.entry_number >= TARGET_LDT_ENTRIES) 6092 return -TARGET_EINVAL; 6093 seg_32bit = ldt_info.flags & 1; 6094 contents = (ldt_info.flags >> 1) & 3; 6095 read_exec_only = (ldt_info.flags >> 3) & 1; 6096 limit_in_pages = (ldt_info.flags >> 4) & 1; 6097 seg_not_present = (ldt_info.flags >> 5) & 1; 6098 useable = (ldt_info.flags >> 6) & 1; 6099 #ifdef TARGET_ABI32 6100 lm = 0; 6101 #else 6102 lm = (ldt_info.flags >> 7) & 1; 6103 #endif 6104 if (contents == 3) { 6105 if (oldmode) 6106 return -TARGET_EINVAL; 6107 if (seg_not_present == 0) 6108 return -TARGET_EINVAL; 6109 } 6110 /* allocate the LDT */ 6111 if (!ldt_table) { 6112 env->ldt.base = target_mmap(0, 6113 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE, 6114 PROT_READ|PROT_WRITE, 6115 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 6116 if (env->ldt.base == -1) 6117 return -TARGET_ENOMEM; 6118 memset(g2h(env->ldt.base), 0, 6119 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE); 6120 env->ldt.limit = 0xffff; 6121 ldt_table = g2h(env->ldt.base); 6122 } 6123 6124 /* NOTE: same code as Linux kernel */ 6125 /* Allow LDTs to be cleared by the user. */ 6126 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) { 6127 if (oldmode || 6128 (contents == 0 && 6129 read_exec_only == 1 && 6130 seg_32bit == 0 && 6131 limit_in_pages == 0 && 6132 seg_not_present == 1 && 6133 useable == 0 )) { 6134 entry_1 = 0; 6135 entry_2 = 0; 6136 goto install; 6137 } 6138 } 6139 6140 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) | 6141 (ldt_info.limit & 0x0ffff); 6142 entry_2 = (ldt_info.base_addr & 0xff000000) | 6143 ((ldt_info.base_addr & 0x00ff0000) >> 16) | 6144 (ldt_info.limit & 0xf0000) | 6145 ((read_exec_only ^ 1) << 9) | 6146 (contents << 10) | 6147 ((seg_not_present ^ 1) << 15) | 6148 (seg_32bit << 22) | 6149 (limit_in_pages << 23) | 6150 (lm << 21) | 6151 0x7000; 6152 if (!oldmode) 6153 entry_2 |= (useable << 20); 6154 6155 /* Install the new entry ... */ 6156 install: 6157 lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3)); 6158 lp[0] = tswap32(entry_1); 6159 lp[1] = tswap32(entry_2); 6160 return 0; 6161 } 6162 6163 /* specific and weird i386 syscalls */ 6164 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr, 6165 unsigned long bytecount) 6166 { 6167 abi_long ret; 6168 6169 switch (func) { 6170 case 0: 6171 ret = read_ldt(ptr, bytecount); 6172 break; 6173 case 1: 6174 ret = write_ldt(env, ptr, bytecount, 1); 6175 break; 6176 case 0x11: 6177 ret = write_ldt(env, ptr, bytecount, 0); 6178 break; 6179 default: 6180 ret = -TARGET_ENOSYS; 6181 break; 6182 } 6183 return ret; 6184 } 6185 6186 #if defined(TARGET_I386) && defined(TARGET_ABI32) 6187 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr) 6188 { 6189 uint64_t *gdt_table = g2h(env->gdt.base); 6190 struct target_modify_ldt_ldt_s ldt_info; 6191 struct target_modify_ldt_ldt_s *target_ldt_info; 6192 int seg_32bit, contents, read_exec_only, limit_in_pages; 6193 int seg_not_present, useable, lm; 6194 uint32_t *lp, entry_1, entry_2; 6195 int i; 6196 6197 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1); 6198 if (!target_ldt_info) 6199 return -TARGET_EFAULT; 6200 ldt_info.entry_number = tswap32(target_ldt_info->entry_number); 6201 ldt_info.base_addr = tswapal(target_ldt_info->base_addr); 6202 ldt_info.limit = tswap32(target_ldt_info->limit); 6203 ldt_info.flags = tswap32(target_ldt_info->flags); 6204 if (ldt_info.entry_number == -1) { 6205 for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) { 6206 if (gdt_table[i] == 0) { 6207 ldt_info.entry_number = i; 6208 target_ldt_info->entry_number = tswap32(i); 6209 break; 6210 } 6211 } 6212 } 6213 unlock_user_struct(target_ldt_info, ptr, 1); 6214 6215 if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN || 6216 ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX) 6217 return -TARGET_EINVAL; 6218 seg_32bit = ldt_info.flags & 1; 6219 contents = (ldt_info.flags >> 1) & 3; 6220 read_exec_only = (ldt_info.flags >> 3) & 1; 6221 limit_in_pages = (ldt_info.flags >> 4) & 1; 6222 seg_not_present = (ldt_info.flags >> 5) & 1; 6223 useable = (ldt_info.flags >> 6) & 1; 6224 #ifdef TARGET_ABI32 6225 lm = 0; 6226 #else 6227 lm = (ldt_info.flags >> 7) & 1; 6228 #endif 6229 6230 if (contents == 3) { 6231 if (seg_not_present == 0) 6232 return -TARGET_EINVAL; 6233 } 6234 6235 /* NOTE: same code as Linux kernel */ 6236 /* Allow LDTs to be cleared by the user. */ 6237 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) { 6238 if ((contents == 0 && 6239 read_exec_only == 1 && 6240 seg_32bit == 0 && 6241 limit_in_pages == 0 && 6242 seg_not_present == 1 && 6243 useable == 0 )) { 6244 entry_1 = 0; 6245 entry_2 = 0; 6246 goto install; 6247 } 6248 } 6249 6250 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) | 6251 (ldt_info.limit & 0x0ffff); 6252 entry_2 = (ldt_info.base_addr & 0xff000000) | 6253 ((ldt_info.base_addr & 0x00ff0000) >> 16) | 6254 (ldt_info.limit & 0xf0000) | 6255 ((read_exec_only ^ 1) << 9) | 6256 (contents << 10) | 6257 ((seg_not_present ^ 1) << 15) | 6258 (seg_32bit << 22) | 6259 (limit_in_pages << 23) | 6260 (useable << 20) | 6261 (lm << 21) | 6262 0x7000; 6263 6264 /* Install the new entry ... */ 6265 install: 6266 lp = (uint32_t *)(gdt_table + ldt_info.entry_number); 6267 lp[0] = tswap32(entry_1); 6268 lp[1] = tswap32(entry_2); 6269 return 0; 6270 } 6271 6272 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr) 6273 { 6274 struct target_modify_ldt_ldt_s *target_ldt_info; 6275 uint64_t *gdt_table = g2h(env->gdt.base); 6276 uint32_t base_addr, limit, flags; 6277 int seg_32bit, contents, read_exec_only, limit_in_pages, idx; 6278 int seg_not_present, useable, lm; 6279 uint32_t *lp, entry_1, entry_2; 6280 6281 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1); 6282 if (!target_ldt_info) 6283 return -TARGET_EFAULT; 6284 idx = tswap32(target_ldt_info->entry_number); 6285 if (idx < TARGET_GDT_ENTRY_TLS_MIN || 6286 idx > TARGET_GDT_ENTRY_TLS_MAX) { 6287 unlock_user_struct(target_ldt_info, ptr, 1); 6288 return -TARGET_EINVAL; 6289 } 6290 lp = (uint32_t *)(gdt_table + idx); 6291 entry_1 = tswap32(lp[0]); 6292 entry_2 = tswap32(lp[1]); 6293 6294 read_exec_only = ((entry_2 >> 9) & 1) ^ 1; 6295 contents = (entry_2 >> 10) & 3; 6296 seg_not_present = ((entry_2 >> 15) & 1) ^ 1; 6297 seg_32bit = (entry_2 >> 22) & 1; 6298 limit_in_pages = (entry_2 >> 23) & 1; 6299 useable = (entry_2 >> 20) & 1; 6300 #ifdef TARGET_ABI32 6301 lm = 0; 6302 #else 6303 lm = (entry_2 >> 21) & 1; 6304 #endif 6305 flags = (seg_32bit << 0) | (contents << 1) | 6306 (read_exec_only << 3) | (limit_in_pages << 4) | 6307 (seg_not_present << 5) | (useable << 6) | (lm << 7); 6308 limit = (entry_1 & 0xffff) | (entry_2 & 0xf0000); 6309 base_addr = (entry_1 >> 16) | 6310 (entry_2 & 0xff000000) | 6311 ((entry_2 & 0xff) << 16); 6312 target_ldt_info->base_addr = tswapal(base_addr); 6313 target_ldt_info->limit = tswap32(limit); 6314 target_ldt_info->flags = tswap32(flags); 6315 unlock_user_struct(target_ldt_info, ptr, 1); 6316 return 0; 6317 } 6318 #endif /* TARGET_I386 && TARGET_ABI32 */ 6319 6320 #ifndef TARGET_ABI32 6321 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr) 6322 { 6323 abi_long ret = 0; 6324 abi_ulong val; 6325 int idx; 6326 6327 switch(code) { 6328 case TARGET_ARCH_SET_GS: 6329 case TARGET_ARCH_SET_FS: 6330 if (code == TARGET_ARCH_SET_GS) 6331 idx = R_GS; 6332 else 6333 idx = R_FS; 6334 cpu_x86_load_seg(env, idx, 0); 6335 env->segs[idx].base = addr; 6336 break; 6337 case TARGET_ARCH_GET_GS: 6338 case TARGET_ARCH_GET_FS: 6339 if (code == TARGET_ARCH_GET_GS) 6340 idx = R_GS; 6341 else 6342 idx = R_FS; 6343 val = env->segs[idx].base; 6344 if (put_user(val, addr, abi_ulong)) 6345 ret = -TARGET_EFAULT; 6346 break; 6347 default: 6348 ret = -TARGET_EINVAL; 6349 break; 6350 } 6351 return ret; 6352 } 6353 #endif 6354 6355 #endif /* defined(TARGET_I386) */ 6356 6357 #define NEW_STACK_SIZE 0x40000 6358 6359 6360 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER; 6361 typedef struct { 6362 CPUArchState *env; 6363 pthread_mutex_t mutex; 6364 pthread_cond_t cond; 6365 pthread_t thread; 6366 uint32_t tid; 6367 abi_ulong child_tidptr; 6368 abi_ulong parent_tidptr; 6369 sigset_t sigmask; 6370 } new_thread_info; 6371 6372 static void *clone_func(void *arg) 6373 { 6374 new_thread_info *info = arg; 6375 CPUArchState *env; 6376 CPUState *cpu; 6377 TaskState *ts; 6378 6379 rcu_register_thread(); 6380 tcg_register_thread(); 6381 env = info->env; 6382 cpu = ENV_GET_CPU(env); 6383 thread_cpu = cpu; 6384 ts = (TaskState *)cpu->opaque; 6385 info->tid = gettid(); 6386 task_settid(ts); 6387 if (info->child_tidptr) 6388 put_user_u32(info->tid, info->child_tidptr); 6389 if (info->parent_tidptr) 6390 put_user_u32(info->tid, info->parent_tidptr); 6391 /* Enable signals. */ 6392 sigprocmask(SIG_SETMASK, &info->sigmask, NULL); 6393 /* Signal to the parent that we're ready. */ 6394 pthread_mutex_lock(&info->mutex); 6395 pthread_cond_broadcast(&info->cond); 6396 pthread_mutex_unlock(&info->mutex); 6397 /* Wait until the parent has finished initializing the tls state. */ 6398 pthread_mutex_lock(&clone_lock); 6399 pthread_mutex_unlock(&clone_lock); 6400 cpu_loop(env); 6401 /* never exits */ 6402 return NULL; 6403 } 6404 6405 /* do_fork() Must return host values and target errnos (unlike most 6406 do_*() functions). */ 6407 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp, 6408 abi_ulong parent_tidptr, target_ulong newtls, 6409 abi_ulong child_tidptr) 6410 { 6411 CPUState *cpu = ENV_GET_CPU(env); 6412 int ret; 6413 TaskState *ts; 6414 CPUState *new_cpu; 6415 CPUArchState *new_env; 6416 sigset_t sigmask; 6417 6418 flags &= ~CLONE_IGNORED_FLAGS; 6419 6420 /* Emulate vfork() with fork() */ 6421 if (flags & CLONE_VFORK) 6422 flags &= ~(CLONE_VFORK | CLONE_VM); 6423 6424 if (flags & CLONE_VM) { 6425 TaskState *parent_ts = (TaskState *)cpu->opaque; 6426 new_thread_info info; 6427 pthread_attr_t attr; 6428 6429 if (((flags & CLONE_THREAD_FLAGS) != CLONE_THREAD_FLAGS) || 6430 (flags & CLONE_INVALID_THREAD_FLAGS)) { 6431 return -TARGET_EINVAL; 6432 } 6433 6434 ts = g_new0(TaskState, 1); 6435 init_task_state(ts); 6436 6437 /* Grab a mutex so that thread setup appears atomic. */ 6438 pthread_mutex_lock(&clone_lock); 6439 6440 /* we create a new CPU instance. */ 6441 new_env = cpu_copy(env); 6442 /* Init regs that differ from the parent. */ 6443 cpu_clone_regs(new_env, newsp); 6444 new_cpu = ENV_GET_CPU(new_env); 6445 new_cpu->opaque = ts; 6446 ts->bprm = parent_ts->bprm; 6447 ts->info = parent_ts->info; 6448 ts->signal_mask = parent_ts->signal_mask; 6449 6450 if (flags & CLONE_CHILD_CLEARTID) { 6451 ts->child_tidptr = child_tidptr; 6452 } 6453 6454 if (flags & CLONE_SETTLS) { 6455 cpu_set_tls (new_env, newtls); 6456 } 6457 6458 memset(&info, 0, sizeof(info)); 6459 pthread_mutex_init(&info.mutex, NULL); 6460 pthread_mutex_lock(&info.mutex); 6461 pthread_cond_init(&info.cond, NULL); 6462 info.env = new_env; 6463 if (flags & CLONE_CHILD_SETTID) { 6464 info.child_tidptr = child_tidptr; 6465 } 6466 if (flags & CLONE_PARENT_SETTID) { 6467 info.parent_tidptr = parent_tidptr; 6468 } 6469 6470 ret = pthread_attr_init(&attr); 6471 ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE); 6472 ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); 6473 /* It is not safe to deliver signals until the child has finished 6474 initializing, so temporarily block all signals. */ 6475 sigfillset(&sigmask); 6476 sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask); 6477 6478 /* If this is our first additional thread, we need to ensure we 6479 * generate code for parallel execution and flush old translations. 6480 */ 6481 if (!parallel_cpus) { 6482 parallel_cpus = true; 6483 tb_flush(cpu); 6484 } 6485 6486 ret = pthread_create(&info.thread, &attr, clone_func, &info); 6487 /* TODO: Free new CPU state if thread creation failed. */ 6488 6489 sigprocmask(SIG_SETMASK, &info.sigmask, NULL); 6490 pthread_attr_destroy(&attr); 6491 if (ret == 0) { 6492 /* Wait for the child to initialize. */ 6493 pthread_cond_wait(&info.cond, &info.mutex); 6494 ret = info.tid; 6495 } else { 6496 ret = -1; 6497 } 6498 pthread_mutex_unlock(&info.mutex); 6499 pthread_cond_destroy(&info.cond); 6500 pthread_mutex_destroy(&info.mutex); 6501 pthread_mutex_unlock(&clone_lock); 6502 } else { 6503 /* if no CLONE_VM, we consider it is a fork */ 6504 if (flags & CLONE_INVALID_FORK_FLAGS) { 6505 return -TARGET_EINVAL; 6506 } 6507 6508 /* We can't support custom termination signals */ 6509 if ((flags & CSIGNAL) != TARGET_SIGCHLD) { 6510 return -TARGET_EINVAL; 6511 } 6512 6513 if (block_signals()) { 6514 return -TARGET_ERESTARTSYS; 6515 } 6516 6517 fork_start(); 6518 ret = fork(); 6519 if (ret == 0) { 6520 /* Child Process. */ 6521 cpu_clone_regs(env, newsp); 6522 fork_end(1); 6523 /* There is a race condition here. The parent process could 6524 theoretically read the TID in the child process before the child 6525 tid is set. This would require using either ptrace 6526 (not implemented) or having *_tidptr to point at a shared memory 6527 mapping. We can't repeat the spinlock hack used above because 6528 the child process gets its own copy of the lock. */ 6529 if (flags & CLONE_CHILD_SETTID) 6530 put_user_u32(gettid(), child_tidptr); 6531 if (flags & CLONE_PARENT_SETTID) 6532 put_user_u32(gettid(), parent_tidptr); 6533 ts = (TaskState *)cpu->opaque; 6534 if (flags & CLONE_SETTLS) 6535 cpu_set_tls (env, newtls); 6536 if (flags & CLONE_CHILD_CLEARTID) 6537 ts->child_tidptr = child_tidptr; 6538 } else { 6539 fork_end(0); 6540 } 6541 } 6542 return ret; 6543 } 6544 6545 /* warning : doesn't handle linux specific flags... */ 6546 static int target_to_host_fcntl_cmd(int cmd) 6547 { 6548 switch(cmd) { 6549 case TARGET_F_DUPFD: 6550 case TARGET_F_GETFD: 6551 case TARGET_F_SETFD: 6552 case TARGET_F_GETFL: 6553 case TARGET_F_SETFL: 6554 return cmd; 6555 case TARGET_F_GETLK: 6556 return F_GETLK64; 6557 case TARGET_F_SETLK: 6558 return F_SETLK64; 6559 case TARGET_F_SETLKW: 6560 return F_SETLKW64; 6561 case TARGET_F_GETOWN: 6562 return F_GETOWN; 6563 case TARGET_F_SETOWN: 6564 return F_SETOWN; 6565 case TARGET_F_GETSIG: 6566 return F_GETSIG; 6567 case TARGET_F_SETSIG: 6568 return F_SETSIG; 6569 #if TARGET_ABI_BITS == 32 6570 case TARGET_F_GETLK64: 6571 return F_GETLK64; 6572 case TARGET_F_SETLK64: 6573 return F_SETLK64; 6574 case TARGET_F_SETLKW64: 6575 return F_SETLKW64; 6576 #endif 6577 case TARGET_F_SETLEASE: 6578 return F_SETLEASE; 6579 case TARGET_F_GETLEASE: 6580 return F_GETLEASE; 6581 #ifdef F_DUPFD_CLOEXEC 6582 case TARGET_F_DUPFD_CLOEXEC: 6583 return F_DUPFD_CLOEXEC; 6584 #endif 6585 case TARGET_F_NOTIFY: 6586 return F_NOTIFY; 6587 #ifdef F_GETOWN_EX 6588 case TARGET_F_GETOWN_EX: 6589 return F_GETOWN_EX; 6590 #endif 6591 #ifdef F_SETOWN_EX 6592 case TARGET_F_SETOWN_EX: 6593 return F_SETOWN_EX; 6594 #endif 6595 #ifdef F_SETPIPE_SZ 6596 case TARGET_F_SETPIPE_SZ: 6597 return F_SETPIPE_SZ; 6598 case TARGET_F_GETPIPE_SZ: 6599 return F_GETPIPE_SZ; 6600 #endif 6601 default: 6602 return -TARGET_EINVAL; 6603 } 6604 return -TARGET_EINVAL; 6605 } 6606 6607 #define FLOCK_TRANSTBL \ 6608 switch (type) { \ 6609 TRANSTBL_CONVERT(F_RDLCK); \ 6610 TRANSTBL_CONVERT(F_WRLCK); \ 6611 TRANSTBL_CONVERT(F_UNLCK); \ 6612 TRANSTBL_CONVERT(F_EXLCK); \ 6613 TRANSTBL_CONVERT(F_SHLCK); \ 6614 } 6615 6616 static int target_to_host_flock(int type) 6617 { 6618 #define TRANSTBL_CONVERT(a) case TARGET_##a: return a 6619 FLOCK_TRANSTBL 6620 #undef TRANSTBL_CONVERT 6621 return -TARGET_EINVAL; 6622 } 6623 6624 static int host_to_target_flock(int type) 6625 { 6626 #define TRANSTBL_CONVERT(a) case a: return TARGET_##a 6627 FLOCK_TRANSTBL 6628 #undef TRANSTBL_CONVERT 6629 /* if we don't know how to convert the value coming 6630 * from the host we copy to the target field as-is 6631 */ 6632 return type; 6633 } 6634 6635 static inline abi_long copy_from_user_flock(struct flock64 *fl, 6636 abi_ulong target_flock_addr) 6637 { 6638 struct target_flock *target_fl; 6639 int l_type; 6640 6641 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) { 6642 return -TARGET_EFAULT; 6643 } 6644 6645 __get_user(l_type, &target_fl->l_type); 6646 l_type = target_to_host_flock(l_type); 6647 if (l_type < 0) { 6648 return l_type; 6649 } 6650 fl->l_type = l_type; 6651 __get_user(fl->l_whence, &target_fl->l_whence); 6652 __get_user(fl->l_start, &target_fl->l_start); 6653 __get_user(fl->l_len, &target_fl->l_len); 6654 __get_user(fl->l_pid, &target_fl->l_pid); 6655 unlock_user_struct(target_fl, target_flock_addr, 0); 6656 return 0; 6657 } 6658 6659 static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr, 6660 const struct flock64 *fl) 6661 { 6662 struct target_flock *target_fl; 6663 short l_type; 6664 6665 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) { 6666 return -TARGET_EFAULT; 6667 } 6668 6669 l_type = host_to_target_flock(fl->l_type); 6670 __put_user(l_type, &target_fl->l_type); 6671 __put_user(fl->l_whence, &target_fl->l_whence); 6672 __put_user(fl->l_start, &target_fl->l_start); 6673 __put_user(fl->l_len, &target_fl->l_len); 6674 __put_user(fl->l_pid, &target_fl->l_pid); 6675 unlock_user_struct(target_fl, target_flock_addr, 1); 6676 return 0; 6677 } 6678 6679 typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr); 6680 typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl); 6681 6682 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32 6683 static inline abi_long copy_from_user_oabi_flock64(struct flock64 *fl, 6684 abi_ulong target_flock_addr) 6685 { 6686 struct target_oabi_flock64 *target_fl; 6687 int l_type; 6688 6689 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) { 6690 return -TARGET_EFAULT; 6691 } 6692 6693 __get_user(l_type, &target_fl->l_type); 6694 l_type = target_to_host_flock(l_type); 6695 if (l_type < 0) { 6696 return l_type; 6697 } 6698 fl->l_type = l_type; 6699 __get_user(fl->l_whence, &target_fl->l_whence); 6700 __get_user(fl->l_start, &target_fl->l_start); 6701 __get_user(fl->l_len, &target_fl->l_len); 6702 __get_user(fl->l_pid, &target_fl->l_pid); 6703 unlock_user_struct(target_fl, target_flock_addr, 0); 6704 return 0; 6705 } 6706 6707 static inline abi_long copy_to_user_oabi_flock64(abi_ulong target_flock_addr, 6708 const struct flock64 *fl) 6709 { 6710 struct target_oabi_flock64 *target_fl; 6711 short l_type; 6712 6713 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) { 6714 return -TARGET_EFAULT; 6715 } 6716 6717 l_type = host_to_target_flock(fl->l_type); 6718 __put_user(l_type, &target_fl->l_type); 6719 __put_user(fl->l_whence, &target_fl->l_whence); 6720 __put_user(fl->l_start, &target_fl->l_start); 6721 __put_user(fl->l_len, &target_fl->l_len); 6722 __put_user(fl->l_pid, &target_fl->l_pid); 6723 unlock_user_struct(target_fl, target_flock_addr, 1); 6724 return 0; 6725 } 6726 #endif 6727 6728 static inline abi_long copy_from_user_flock64(struct flock64 *fl, 6729 abi_ulong target_flock_addr) 6730 { 6731 struct target_flock64 *target_fl; 6732 int l_type; 6733 6734 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) { 6735 return -TARGET_EFAULT; 6736 } 6737 6738 __get_user(l_type, &target_fl->l_type); 6739 l_type = target_to_host_flock(l_type); 6740 if (l_type < 0) { 6741 return l_type; 6742 } 6743 fl->l_type = l_type; 6744 __get_user(fl->l_whence, &target_fl->l_whence); 6745 __get_user(fl->l_start, &target_fl->l_start); 6746 __get_user(fl->l_len, &target_fl->l_len); 6747 __get_user(fl->l_pid, &target_fl->l_pid); 6748 unlock_user_struct(target_fl, target_flock_addr, 0); 6749 return 0; 6750 } 6751 6752 static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr, 6753 const struct flock64 *fl) 6754 { 6755 struct target_flock64 *target_fl; 6756 short l_type; 6757 6758 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) { 6759 return -TARGET_EFAULT; 6760 } 6761 6762 l_type = host_to_target_flock(fl->l_type); 6763 __put_user(l_type, &target_fl->l_type); 6764 __put_user(fl->l_whence, &target_fl->l_whence); 6765 __put_user(fl->l_start, &target_fl->l_start); 6766 __put_user(fl->l_len, &target_fl->l_len); 6767 __put_user(fl->l_pid, &target_fl->l_pid); 6768 unlock_user_struct(target_fl, target_flock_addr, 1); 6769 return 0; 6770 } 6771 6772 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg) 6773 { 6774 struct flock64 fl64; 6775 #ifdef F_GETOWN_EX 6776 struct f_owner_ex fox; 6777 struct target_f_owner_ex *target_fox; 6778 #endif 6779 abi_long ret; 6780 int host_cmd = target_to_host_fcntl_cmd(cmd); 6781 6782 if (host_cmd == -TARGET_EINVAL) 6783 return host_cmd; 6784 6785 switch(cmd) { 6786 case TARGET_F_GETLK: 6787 ret = copy_from_user_flock(&fl64, arg); 6788 if (ret) { 6789 return ret; 6790 } 6791 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 6792 if (ret == 0) { 6793 ret = copy_to_user_flock(arg, &fl64); 6794 } 6795 break; 6796 6797 case TARGET_F_SETLK: 6798 case TARGET_F_SETLKW: 6799 ret = copy_from_user_flock(&fl64, arg); 6800 if (ret) { 6801 return ret; 6802 } 6803 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 6804 break; 6805 6806 case TARGET_F_GETLK64: 6807 ret = copy_from_user_flock64(&fl64, arg); 6808 if (ret) { 6809 return ret; 6810 } 6811 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 6812 if (ret == 0) { 6813 ret = copy_to_user_flock64(arg, &fl64); 6814 } 6815 break; 6816 case TARGET_F_SETLK64: 6817 case TARGET_F_SETLKW64: 6818 ret = copy_from_user_flock64(&fl64, arg); 6819 if (ret) { 6820 return ret; 6821 } 6822 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 6823 break; 6824 6825 case TARGET_F_GETFL: 6826 ret = get_errno(safe_fcntl(fd, host_cmd, arg)); 6827 if (ret >= 0) { 6828 ret = host_to_target_bitmask(ret, fcntl_flags_tbl); 6829 } 6830 break; 6831 6832 case TARGET_F_SETFL: 6833 ret = get_errno(safe_fcntl(fd, host_cmd, 6834 target_to_host_bitmask(arg, 6835 fcntl_flags_tbl))); 6836 break; 6837 6838 #ifdef F_GETOWN_EX 6839 case TARGET_F_GETOWN_EX: 6840 ret = get_errno(safe_fcntl(fd, host_cmd, &fox)); 6841 if (ret >= 0) { 6842 if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0)) 6843 return -TARGET_EFAULT; 6844 target_fox->type = tswap32(fox.type); 6845 target_fox->pid = tswap32(fox.pid); 6846 unlock_user_struct(target_fox, arg, 1); 6847 } 6848 break; 6849 #endif 6850 6851 #ifdef F_SETOWN_EX 6852 case TARGET_F_SETOWN_EX: 6853 if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1)) 6854 return -TARGET_EFAULT; 6855 fox.type = tswap32(target_fox->type); 6856 fox.pid = tswap32(target_fox->pid); 6857 unlock_user_struct(target_fox, arg, 0); 6858 ret = get_errno(safe_fcntl(fd, host_cmd, &fox)); 6859 break; 6860 #endif 6861 6862 case TARGET_F_SETOWN: 6863 case TARGET_F_GETOWN: 6864 case TARGET_F_SETSIG: 6865 case TARGET_F_GETSIG: 6866 case TARGET_F_SETLEASE: 6867 case TARGET_F_GETLEASE: 6868 case TARGET_F_SETPIPE_SZ: 6869 case TARGET_F_GETPIPE_SZ: 6870 ret = get_errno(safe_fcntl(fd, host_cmd, arg)); 6871 break; 6872 6873 default: 6874 ret = get_errno(safe_fcntl(fd, cmd, arg)); 6875 break; 6876 } 6877 return ret; 6878 } 6879 6880 #ifdef USE_UID16 6881 6882 static inline int high2lowuid(int uid) 6883 { 6884 if (uid > 65535) 6885 return 65534; 6886 else 6887 return uid; 6888 } 6889 6890 static inline int high2lowgid(int gid) 6891 { 6892 if (gid > 65535) 6893 return 65534; 6894 else 6895 return gid; 6896 } 6897 6898 static inline int low2highuid(int uid) 6899 { 6900 if ((int16_t)uid == -1) 6901 return -1; 6902 else 6903 return uid; 6904 } 6905 6906 static inline int low2highgid(int gid) 6907 { 6908 if ((int16_t)gid == -1) 6909 return -1; 6910 else 6911 return gid; 6912 } 6913 static inline int tswapid(int id) 6914 { 6915 return tswap16(id); 6916 } 6917 6918 #define put_user_id(x, gaddr) put_user_u16(x, gaddr) 6919 6920 #else /* !USE_UID16 */ 6921 static inline int high2lowuid(int uid) 6922 { 6923 return uid; 6924 } 6925 static inline int high2lowgid(int gid) 6926 { 6927 return gid; 6928 } 6929 static inline int low2highuid(int uid) 6930 { 6931 return uid; 6932 } 6933 static inline int low2highgid(int gid) 6934 { 6935 return gid; 6936 } 6937 static inline int tswapid(int id) 6938 { 6939 return tswap32(id); 6940 } 6941 6942 #define put_user_id(x, gaddr) put_user_u32(x, gaddr) 6943 6944 #endif /* USE_UID16 */ 6945 6946 /* We must do direct syscalls for setting UID/GID, because we want to 6947 * implement the Linux system call semantics of "change only for this thread", 6948 * not the libc/POSIX semantics of "change for all threads in process". 6949 * (See http://ewontfix.com/17/ for more details.) 6950 * We use the 32-bit version of the syscalls if present; if it is not 6951 * then either the host architecture supports 32-bit UIDs natively with 6952 * the standard syscall, or the 16-bit UID is the best we can do. 6953 */ 6954 #ifdef __NR_setuid32 6955 #define __NR_sys_setuid __NR_setuid32 6956 #else 6957 #define __NR_sys_setuid __NR_setuid 6958 #endif 6959 #ifdef __NR_setgid32 6960 #define __NR_sys_setgid __NR_setgid32 6961 #else 6962 #define __NR_sys_setgid __NR_setgid 6963 #endif 6964 #ifdef __NR_setresuid32 6965 #define __NR_sys_setresuid __NR_setresuid32 6966 #else 6967 #define __NR_sys_setresuid __NR_setresuid 6968 #endif 6969 #ifdef __NR_setresgid32 6970 #define __NR_sys_setresgid __NR_setresgid32 6971 #else 6972 #define __NR_sys_setresgid __NR_setresgid 6973 #endif 6974 6975 _syscall1(int, sys_setuid, uid_t, uid) 6976 _syscall1(int, sys_setgid, gid_t, gid) 6977 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid) 6978 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid) 6979 6980 void syscall_init(void) 6981 { 6982 IOCTLEntry *ie; 6983 const argtype *arg_type; 6984 int size; 6985 int i; 6986 6987 thunk_init(STRUCT_MAX); 6988 6989 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def); 6990 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def); 6991 #include "syscall_types.h" 6992 #undef STRUCT 6993 #undef STRUCT_SPECIAL 6994 6995 /* Build target_to_host_errno_table[] table from 6996 * host_to_target_errno_table[]. */ 6997 for (i = 0; i < ERRNO_TABLE_SIZE; i++) { 6998 target_to_host_errno_table[host_to_target_errno_table[i]] = i; 6999 } 7000 7001 /* we patch the ioctl size if necessary. We rely on the fact that 7002 no ioctl has all the bits at '1' in the size field */ 7003 ie = ioctl_entries; 7004 while (ie->target_cmd != 0) { 7005 if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) == 7006 TARGET_IOC_SIZEMASK) { 7007 arg_type = ie->arg_type; 7008 if (arg_type[0] != TYPE_PTR) { 7009 fprintf(stderr, "cannot patch size for ioctl 0x%x\n", 7010 ie->target_cmd); 7011 exit(1); 7012 } 7013 arg_type++; 7014 size = thunk_type_size(arg_type, 0); 7015 ie->target_cmd = (ie->target_cmd & 7016 ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) | 7017 (size << TARGET_IOC_SIZESHIFT); 7018 } 7019 7020 /* automatic consistency check if same arch */ 7021 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \ 7022 (defined(__x86_64__) && defined(TARGET_X86_64)) 7023 if (unlikely(ie->target_cmd != ie->host_cmd)) { 7024 fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n", 7025 ie->name, ie->target_cmd, ie->host_cmd); 7026 } 7027 #endif 7028 ie++; 7029 } 7030 } 7031 7032 #if TARGET_ABI_BITS == 32 7033 static inline uint64_t target_offset64(uint32_t word0, uint32_t word1) 7034 { 7035 #ifdef TARGET_WORDS_BIGENDIAN 7036 return ((uint64_t)word0 << 32) | word1; 7037 #else 7038 return ((uint64_t)word1 << 32) | word0; 7039 #endif 7040 } 7041 #else /* TARGET_ABI_BITS == 32 */ 7042 static inline uint64_t target_offset64(uint64_t word0, uint64_t word1) 7043 { 7044 return word0; 7045 } 7046 #endif /* TARGET_ABI_BITS != 32 */ 7047 7048 #ifdef TARGET_NR_truncate64 7049 static inline abi_long target_truncate64(void *cpu_env, const char *arg1, 7050 abi_long arg2, 7051 abi_long arg3, 7052 abi_long arg4) 7053 { 7054 if (regpairs_aligned(cpu_env, TARGET_NR_truncate64)) { 7055 arg2 = arg3; 7056 arg3 = arg4; 7057 } 7058 return get_errno(truncate64(arg1, target_offset64(arg2, arg3))); 7059 } 7060 #endif 7061 7062 #ifdef TARGET_NR_ftruncate64 7063 static inline abi_long target_ftruncate64(void *cpu_env, abi_long arg1, 7064 abi_long arg2, 7065 abi_long arg3, 7066 abi_long arg4) 7067 { 7068 if (regpairs_aligned(cpu_env, TARGET_NR_ftruncate64)) { 7069 arg2 = arg3; 7070 arg3 = arg4; 7071 } 7072 return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3))); 7073 } 7074 #endif 7075 7076 static inline abi_long target_to_host_timespec(struct timespec *host_ts, 7077 abi_ulong target_addr) 7078 { 7079 struct target_timespec *target_ts; 7080 7081 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) 7082 return -TARGET_EFAULT; 7083 __get_user(host_ts->tv_sec, &target_ts->tv_sec); 7084 __get_user(host_ts->tv_nsec, &target_ts->tv_nsec); 7085 unlock_user_struct(target_ts, target_addr, 0); 7086 return 0; 7087 } 7088 7089 static inline abi_long host_to_target_timespec(abi_ulong target_addr, 7090 struct timespec *host_ts) 7091 { 7092 struct target_timespec *target_ts; 7093 7094 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) 7095 return -TARGET_EFAULT; 7096 __put_user(host_ts->tv_sec, &target_ts->tv_sec); 7097 __put_user(host_ts->tv_nsec, &target_ts->tv_nsec); 7098 unlock_user_struct(target_ts, target_addr, 1); 7099 return 0; 7100 } 7101 7102 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_itspec, 7103 abi_ulong target_addr) 7104 { 7105 struct target_itimerspec *target_itspec; 7106 7107 if (!lock_user_struct(VERIFY_READ, target_itspec, target_addr, 1)) { 7108 return -TARGET_EFAULT; 7109 } 7110 7111 host_itspec->it_interval.tv_sec = 7112 tswapal(target_itspec->it_interval.tv_sec); 7113 host_itspec->it_interval.tv_nsec = 7114 tswapal(target_itspec->it_interval.tv_nsec); 7115 host_itspec->it_value.tv_sec = tswapal(target_itspec->it_value.tv_sec); 7116 host_itspec->it_value.tv_nsec = tswapal(target_itspec->it_value.tv_nsec); 7117 7118 unlock_user_struct(target_itspec, target_addr, 1); 7119 return 0; 7120 } 7121 7122 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr, 7123 struct itimerspec *host_its) 7124 { 7125 struct target_itimerspec *target_itspec; 7126 7127 if (!lock_user_struct(VERIFY_WRITE, target_itspec, target_addr, 0)) { 7128 return -TARGET_EFAULT; 7129 } 7130 7131 target_itspec->it_interval.tv_sec = tswapal(host_its->it_interval.tv_sec); 7132 target_itspec->it_interval.tv_nsec = tswapal(host_its->it_interval.tv_nsec); 7133 7134 target_itspec->it_value.tv_sec = tswapal(host_its->it_value.tv_sec); 7135 target_itspec->it_value.tv_nsec = tswapal(host_its->it_value.tv_nsec); 7136 7137 unlock_user_struct(target_itspec, target_addr, 0); 7138 return 0; 7139 } 7140 7141 static inline abi_long target_to_host_timex(struct timex *host_tx, 7142 abi_long target_addr) 7143 { 7144 struct target_timex *target_tx; 7145 7146 if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) { 7147 return -TARGET_EFAULT; 7148 } 7149 7150 __get_user(host_tx->modes, &target_tx->modes); 7151 __get_user(host_tx->offset, &target_tx->offset); 7152 __get_user(host_tx->freq, &target_tx->freq); 7153 __get_user(host_tx->maxerror, &target_tx->maxerror); 7154 __get_user(host_tx->esterror, &target_tx->esterror); 7155 __get_user(host_tx->status, &target_tx->status); 7156 __get_user(host_tx->constant, &target_tx->constant); 7157 __get_user(host_tx->precision, &target_tx->precision); 7158 __get_user(host_tx->tolerance, &target_tx->tolerance); 7159 __get_user(host_tx->time.tv_sec, &target_tx->time.tv_sec); 7160 __get_user(host_tx->time.tv_usec, &target_tx->time.tv_usec); 7161 __get_user(host_tx->tick, &target_tx->tick); 7162 __get_user(host_tx->ppsfreq, &target_tx->ppsfreq); 7163 __get_user(host_tx->jitter, &target_tx->jitter); 7164 __get_user(host_tx->shift, &target_tx->shift); 7165 __get_user(host_tx->stabil, &target_tx->stabil); 7166 __get_user(host_tx->jitcnt, &target_tx->jitcnt); 7167 __get_user(host_tx->calcnt, &target_tx->calcnt); 7168 __get_user(host_tx->errcnt, &target_tx->errcnt); 7169 __get_user(host_tx->stbcnt, &target_tx->stbcnt); 7170 __get_user(host_tx->tai, &target_tx->tai); 7171 7172 unlock_user_struct(target_tx, target_addr, 0); 7173 return 0; 7174 } 7175 7176 static inline abi_long host_to_target_timex(abi_long target_addr, 7177 struct timex *host_tx) 7178 { 7179 struct target_timex *target_tx; 7180 7181 if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) { 7182 return -TARGET_EFAULT; 7183 } 7184 7185 __put_user(host_tx->modes, &target_tx->modes); 7186 __put_user(host_tx->offset, &target_tx->offset); 7187 __put_user(host_tx->freq, &target_tx->freq); 7188 __put_user(host_tx->maxerror, &target_tx->maxerror); 7189 __put_user(host_tx->esterror, &target_tx->esterror); 7190 __put_user(host_tx->status, &target_tx->status); 7191 __put_user(host_tx->constant, &target_tx->constant); 7192 __put_user(host_tx->precision, &target_tx->precision); 7193 __put_user(host_tx->tolerance, &target_tx->tolerance); 7194 __put_user(host_tx->time.tv_sec, &target_tx->time.tv_sec); 7195 __put_user(host_tx->time.tv_usec, &target_tx->time.tv_usec); 7196 __put_user(host_tx->tick, &target_tx->tick); 7197 __put_user(host_tx->ppsfreq, &target_tx->ppsfreq); 7198 __put_user(host_tx->jitter, &target_tx->jitter); 7199 __put_user(host_tx->shift, &target_tx->shift); 7200 __put_user(host_tx->stabil, &target_tx->stabil); 7201 __put_user(host_tx->jitcnt, &target_tx->jitcnt); 7202 __put_user(host_tx->calcnt, &target_tx->calcnt); 7203 __put_user(host_tx->errcnt, &target_tx->errcnt); 7204 __put_user(host_tx->stbcnt, &target_tx->stbcnt); 7205 __put_user(host_tx->tai, &target_tx->tai); 7206 7207 unlock_user_struct(target_tx, target_addr, 1); 7208 return 0; 7209 } 7210 7211 7212 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp, 7213 abi_ulong target_addr) 7214 { 7215 struct target_sigevent *target_sevp; 7216 7217 if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) { 7218 return -TARGET_EFAULT; 7219 } 7220 7221 /* This union is awkward on 64 bit systems because it has a 32 bit 7222 * integer and a pointer in it; we follow the conversion approach 7223 * used for handling sigval types in signal.c so the guest should get 7224 * the correct value back even if we did a 64 bit byteswap and it's 7225 * using the 32 bit integer. 7226 */ 7227 host_sevp->sigev_value.sival_ptr = 7228 (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr); 7229 host_sevp->sigev_signo = 7230 target_to_host_signal(tswap32(target_sevp->sigev_signo)); 7231 host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify); 7232 host_sevp->_sigev_un._tid = tswap32(target_sevp->_sigev_un._tid); 7233 7234 unlock_user_struct(target_sevp, target_addr, 1); 7235 return 0; 7236 } 7237 7238 #if defined(TARGET_NR_mlockall) 7239 static inline int target_to_host_mlockall_arg(int arg) 7240 { 7241 int result = 0; 7242 7243 if (arg & TARGET_MLOCKALL_MCL_CURRENT) { 7244 result |= MCL_CURRENT; 7245 } 7246 if (arg & TARGET_MLOCKALL_MCL_FUTURE) { 7247 result |= MCL_FUTURE; 7248 } 7249 return result; 7250 } 7251 #endif 7252 7253 static inline abi_long host_to_target_stat64(void *cpu_env, 7254 abi_ulong target_addr, 7255 struct stat *host_st) 7256 { 7257 #if defined(TARGET_ARM) && defined(TARGET_ABI32) 7258 if (((CPUARMState *)cpu_env)->eabi) { 7259 struct target_eabi_stat64 *target_st; 7260 7261 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0)) 7262 return -TARGET_EFAULT; 7263 memset(target_st, 0, sizeof(struct target_eabi_stat64)); 7264 __put_user(host_st->st_dev, &target_st->st_dev); 7265 __put_user(host_st->st_ino, &target_st->st_ino); 7266 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO 7267 __put_user(host_st->st_ino, &target_st->__st_ino); 7268 #endif 7269 __put_user(host_st->st_mode, &target_st->st_mode); 7270 __put_user(host_st->st_nlink, &target_st->st_nlink); 7271 __put_user(host_st->st_uid, &target_st->st_uid); 7272 __put_user(host_st->st_gid, &target_st->st_gid); 7273 __put_user(host_st->st_rdev, &target_st->st_rdev); 7274 __put_user(host_st->st_size, &target_st->st_size); 7275 __put_user(host_st->st_blksize, &target_st->st_blksize); 7276 __put_user(host_st->st_blocks, &target_st->st_blocks); 7277 __put_user(host_st->st_atime, &target_st->target_st_atime); 7278 __put_user(host_st->st_mtime, &target_st->target_st_mtime); 7279 __put_user(host_st->st_ctime, &target_st->target_st_ctime); 7280 unlock_user_struct(target_st, target_addr, 1); 7281 } else 7282 #endif 7283 { 7284 #if defined(TARGET_HAS_STRUCT_STAT64) 7285 struct target_stat64 *target_st; 7286 #else 7287 struct target_stat *target_st; 7288 #endif 7289 7290 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0)) 7291 return -TARGET_EFAULT; 7292 memset(target_st, 0, sizeof(*target_st)); 7293 __put_user(host_st->st_dev, &target_st->st_dev); 7294 __put_user(host_st->st_ino, &target_st->st_ino); 7295 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO 7296 __put_user(host_st->st_ino, &target_st->__st_ino); 7297 #endif 7298 __put_user(host_st->st_mode, &target_st->st_mode); 7299 __put_user(host_st->st_nlink, &target_st->st_nlink); 7300 __put_user(host_st->st_uid, &target_st->st_uid); 7301 __put_user(host_st->st_gid, &target_st->st_gid); 7302 __put_user(host_st->st_rdev, &target_st->st_rdev); 7303 /* XXX: better use of kernel struct */ 7304 __put_user(host_st->st_size, &target_st->st_size); 7305 __put_user(host_st->st_blksize, &target_st->st_blksize); 7306 __put_user(host_st->st_blocks, &target_st->st_blocks); 7307 __put_user(host_st->st_atime, &target_st->target_st_atime); 7308 __put_user(host_st->st_mtime, &target_st->target_st_mtime); 7309 __put_user(host_st->st_ctime, &target_st->target_st_ctime); 7310 unlock_user_struct(target_st, target_addr, 1); 7311 } 7312 7313 return 0; 7314 } 7315 7316 /* ??? Using host futex calls even when target atomic operations 7317 are not really atomic probably breaks things. However implementing 7318 futexes locally would make futexes shared between multiple processes 7319 tricky. However they're probably useless because guest atomic 7320 operations won't work either. */ 7321 static int do_futex(target_ulong uaddr, int op, int val, target_ulong timeout, 7322 target_ulong uaddr2, int val3) 7323 { 7324 struct timespec ts, *pts; 7325 int base_op; 7326 7327 /* ??? We assume FUTEX_* constants are the same on both host 7328 and target. */ 7329 #ifdef FUTEX_CMD_MASK 7330 base_op = op & FUTEX_CMD_MASK; 7331 #else 7332 base_op = op; 7333 #endif 7334 switch (base_op) { 7335 case FUTEX_WAIT: 7336 case FUTEX_WAIT_BITSET: 7337 if (timeout) { 7338 pts = &ts; 7339 target_to_host_timespec(pts, timeout); 7340 } else { 7341 pts = NULL; 7342 } 7343 return get_errno(safe_futex(g2h(uaddr), op, tswap32(val), 7344 pts, NULL, val3)); 7345 case FUTEX_WAKE: 7346 return get_errno(safe_futex(g2h(uaddr), op, val, NULL, NULL, 0)); 7347 case FUTEX_FD: 7348 return get_errno(safe_futex(g2h(uaddr), op, val, NULL, NULL, 0)); 7349 case FUTEX_REQUEUE: 7350 case FUTEX_CMP_REQUEUE: 7351 case FUTEX_WAKE_OP: 7352 /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the 7353 TIMEOUT parameter is interpreted as a uint32_t by the kernel. 7354 But the prototype takes a `struct timespec *'; insert casts 7355 to satisfy the compiler. We do not need to tswap TIMEOUT 7356 since it's not compared to guest memory. */ 7357 pts = (struct timespec *)(uintptr_t) timeout; 7358 return get_errno(safe_futex(g2h(uaddr), op, val, pts, 7359 g2h(uaddr2), 7360 (base_op == FUTEX_CMP_REQUEUE 7361 ? tswap32(val3) 7362 : val3))); 7363 default: 7364 return -TARGET_ENOSYS; 7365 } 7366 } 7367 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 7368 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname, 7369 abi_long handle, abi_long mount_id, 7370 abi_long flags) 7371 { 7372 struct file_handle *target_fh; 7373 struct file_handle *fh; 7374 int mid = 0; 7375 abi_long ret; 7376 char *name; 7377 unsigned int size, total_size; 7378 7379 if (get_user_s32(size, handle)) { 7380 return -TARGET_EFAULT; 7381 } 7382 7383 name = lock_user_string(pathname); 7384 if (!name) { 7385 return -TARGET_EFAULT; 7386 } 7387 7388 total_size = sizeof(struct file_handle) + size; 7389 target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0); 7390 if (!target_fh) { 7391 unlock_user(name, pathname, 0); 7392 return -TARGET_EFAULT; 7393 } 7394 7395 fh = g_malloc0(total_size); 7396 fh->handle_bytes = size; 7397 7398 ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags)); 7399 unlock_user(name, pathname, 0); 7400 7401 /* man name_to_handle_at(2): 7402 * Other than the use of the handle_bytes field, the caller should treat 7403 * the file_handle structure as an opaque data type 7404 */ 7405 7406 memcpy(target_fh, fh, total_size); 7407 target_fh->handle_bytes = tswap32(fh->handle_bytes); 7408 target_fh->handle_type = tswap32(fh->handle_type); 7409 g_free(fh); 7410 unlock_user(target_fh, handle, total_size); 7411 7412 if (put_user_s32(mid, mount_id)) { 7413 return -TARGET_EFAULT; 7414 } 7415 7416 return ret; 7417 7418 } 7419 #endif 7420 7421 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 7422 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle, 7423 abi_long flags) 7424 { 7425 struct file_handle *target_fh; 7426 struct file_handle *fh; 7427 unsigned int size, total_size; 7428 abi_long ret; 7429 7430 if (get_user_s32(size, handle)) { 7431 return -TARGET_EFAULT; 7432 } 7433 7434 total_size = sizeof(struct file_handle) + size; 7435 target_fh = lock_user(VERIFY_READ, handle, total_size, 1); 7436 if (!target_fh) { 7437 return -TARGET_EFAULT; 7438 } 7439 7440 fh = g_memdup(target_fh, total_size); 7441 fh->handle_bytes = size; 7442 fh->handle_type = tswap32(target_fh->handle_type); 7443 7444 ret = get_errno(open_by_handle_at(mount_fd, fh, 7445 target_to_host_bitmask(flags, fcntl_flags_tbl))); 7446 7447 g_free(fh); 7448 7449 unlock_user(target_fh, handle, total_size); 7450 7451 return ret; 7452 } 7453 #endif 7454 7455 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4) 7456 7457 /* signalfd siginfo conversion */ 7458 7459 static void 7460 host_to_target_signalfd_siginfo(struct signalfd_siginfo *tinfo, 7461 const struct signalfd_siginfo *info) 7462 { 7463 int sig = host_to_target_signal(info->ssi_signo); 7464 7465 /* linux/signalfd.h defines a ssi_addr_lsb 7466 * not defined in sys/signalfd.h but used by some kernels 7467 */ 7468 7469 #ifdef BUS_MCEERR_AO 7470 if (tinfo->ssi_signo == SIGBUS && 7471 (tinfo->ssi_code == BUS_MCEERR_AR || 7472 tinfo->ssi_code == BUS_MCEERR_AO)) { 7473 uint16_t *ssi_addr_lsb = (uint16_t *)(&info->ssi_addr + 1); 7474 uint16_t *tssi_addr_lsb = (uint16_t *)(&tinfo->ssi_addr + 1); 7475 *tssi_addr_lsb = tswap16(*ssi_addr_lsb); 7476 } 7477 #endif 7478 7479 tinfo->ssi_signo = tswap32(sig); 7480 tinfo->ssi_errno = tswap32(tinfo->ssi_errno); 7481 tinfo->ssi_code = tswap32(info->ssi_code); 7482 tinfo->ssi_pid = tswap32(info->ssi_pid); 7483 tinfo->ssi_uid = tswap32(info->ssi_uid); 7484 tinfo->ssi_fd = tswap32(info->ssi_fd); 7485 tinfo->ssi_tid = tswap32(info->ssi_tid); 7486 tinfo->ssi_band = tswap32(info->ssi_band); 7487 tinfo->ssi_overrun = tswap32(info->ssi_overrun); 7488 tinfo->ssi_trapno = tswap32(info->ssi_trapno); 7489 tinfo->ssi_status = tswap32(info->ssi_status); 7490 tinfo->ssi_int = tswap32(info->ssi_int); 7491 tinfo->ssi_ptr = tswap64(info->ssi_ptr); 7492 tinfo->ssi_utime = tswap64(info->ssi_utime); 7493 tinfo->ssi_stime = tswap64(info->ssi_stime); 7494 tinfo->ssi_addr = tswap64(info->ssi_addr); 7495 } 7496 7497 static abi_long host_to_target_data_signalfd(void *buf, size_t len) 7498 { 7499 int i; 7500 7501 for (i = 0; i < len; i += sizeof(struct signalfd_siginfo)) { 7502 host_to_target_signalfd_siginfo(buf + i, buf + i); 7503 } 7504 7505 return len; 7506 } 7507 7508 static TargetFdTrans target_signalfd_trans = { 7509 .host_to_target_data = host_to_target_data_signalfd, 7510 }; 7511 7512 static abi_long do_signalfd4(int fd, abi_long mask, int flags) 7513 { 7514 int host_flags; 7515 target_sigset_t *target_mask; 7516 sigset_t host_mask; 7517 abi_long ret; 7518 7519 if (flags & ~(TARGET_O_NONBLOCK | TARGET_O_CLOEXEC)) { 7520 return -TARGET_EINVAL; 7521 } 7522 if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) { 7523 return -TARGET_EFAULT; 7524 } 7525 7526 target_to_host_sigset(&host_mask, target_mask); 7527 7528 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl); 7529 7530 ret = get_errno(signalfd(fd, &host_mask, host_flags)); 7531 if (ret >= 0) { 7532 fd_trans_register(ret, &target_signalfd_trans); 7533 } 7534 7535 unlock_user_struct(target_mask, mask, 0); 7536 7537 return ret; 7538 } 7539 #endif 7540 7541 /* Map host to target signal numbers for the wait family of syscalls. 7542 Assume all other status bits are the same. */ 7543 int host_to_target_waitstatus(int status) 7544 { 7545 if (WIFSIGNALED(status)) { 7546 return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f); 7547 } 7548 if (WIFSTOPPED(status)) { 7549 return (host_to_target_signal(WSTOPSIG(status)) << 8) 7550 | (status & 0xff); 7551 } 7552 return status; 7553 } 7554 7555 static int open_self_cmdline(void *cpu_env, int fd) 7556 { 7557 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env); 7558 struct linux_binprm *bprm = ((TaskState *)cpu->opaque)->bprm; 7559 int i; 7560 7561 for (i = 0; i < bprm->argc; i++) { 7562 size_t len = strlen(bprm->argv[i]) + 1; 7563 7564 if (write(fd, bprm->argv[i], len) != len) { 7565 return -1; 7566 } 7567 } 7568 7569 return 0; 7570 } 7571 7572 static int open_self_maps(void *cpu_env, int fd) 7573 { 7574 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env); 7575 TaskState *ts = cpu->opaque; 7576 FILE *fp; 7577 char *line = NULL; 7578 size_t len = 0; 7579 ssize_t read; 7580 7581 fp = fopen("/proc/self/maps", "r"); 7582 if (fp == NULL) { 7583 return -1; 7584 } 7585 7586 while ((read = getline(&line, &len, fp)) != -1) { 7587 int fields, dev_maj, dev_min, inode; 7588 uint64_t min, max, offset; 7589 char flag_r, flag_w, flag_x, flag_p; 7590 char path[512] = ""; 7591 fields = sscanf(line, "%"PRIx64"-%"PRIx64" %c%c%c%c %"PRIx64" %x:%x %d" 7592 " %512s", &min, &max, &flag_r, &flag_w, &flag_x, 7593 &flag_p, &offset, &dev_maj, &dev_min, &inode, path); 7594 7595 if ((fields < 10) || (fields > 11)) { 7596 continue; 7597 } 7598 if (h2g_valid(min)) { 7599 int flags = page_get_flags(h2g(min)); 7600 max = h2g_valid(max - 1) ? max : (uintptr_t)g2h(GUEST_ADDR_MAX) + 1; 7601 if (page_check_range(h2g(min), max - min, flags) == -1) { 7602 continue; 7603 } 7604 if (h2g(min) == ts->info->stack_limit) { 7605 pstrcpy(path, sizeof(path), " [stack]"); 7606 } 7607 dprintf(fd, TARGET_ABI_FMT_lx "-" TARGET_ABI_FMT_lx 7608 " %c%c%c%c %08" PRIx64 " %02x:%02x %d %s%s\n", 7609 h2g(min), h2g(max - 1) + 1, flag_r, flag_w, 7610 flag_x, flag_p, offset, dev_maj, dev_min, inode, 7611 path[0] ? " " : "", path); 7612 } 7613 } 7614 7615 free(line); 7616 fclose(fp); 7617 7618 return 0; 7619 } 7620 7621 static int open_self_stat(void *cpu_env, int fd) 7622 { 7623 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env); 7624 TaskState *ts = cpu->opaque; 7625 abi_ulong start_stack = ts->info->start_stack; 7626 int i; 7627 7628 for (i = 0; i < 44; i++) { 7629 char buf[128]; 7630 int len; 7631 uint64_t val = 0; 7632 7633 if (i == 0) { 7634 /* pid */ 7635 val = getpid(); 7636 snprintf(buf, sizeof(buf), "%"PRId64 " ", val); 7637 } else if (i == 1) { 7638 /* app name */ 7639 snprintf(buf, sizeof(buf), "(%s) ", ts->bprm->argv[0]); 7640 } else if (i == 27) { 7641 /* stack bottom */ 7642 val = start_stack; 7643 snprintf(buf, sizeof(buf), "%"PRId64 " ", val); 7644 } else { 7645 /* for the rest, there is MasterCard */ 7646 snprintf(buf, sizeof(buf), "0%c", i == 43 ? '\n' : ' '); 7647 } 7648 7649 len = strlen(buf); 7650 if (write(fd, buf, len) != len) { 7651 return -1; 7652 } 7653 } 7654 7655 return 0; 7656 } 7657 7658 static int open_self_auxv(void *cpu_env, int fd) 7659 { 7660 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env); 7661 TaskState *ts = cpu->opaque; 7662 abi_ulong auxv = ts->info->saved_auxv; 7663 abi_ulong len = ts->info->auxv_len; 7664 char *ptr; 7665 7666 /* 7667 * Auxiliary vector is stored in target process stack. 7668 * read in whole auxv vector and copy it to file 7669 */ 7670 ptr = lock_user(VERIFY_READ, auxv, len, 0); 7671 if (ptr != NULL) { 7672 while (len > 0) { 7673 ssize_t r; 7674 r = write(fd, ptr, len); 7675 if (r <= 0) { 7676 break; 7677 } 7678 len -= r; 7679 ptr += r; 7680 } 7681 lseek(fd, 0, SEEK_SET); 7682 unlock_user(ptr, auxv, len); 7683 } 7684 7685 return 0; 7686 } 7687 7688 static int is_proc_myself(const char *filename, const char *entry) 7689 { 7690 if (!strncmp(filename, "/proc/", strlen("/proc/"))) { 7691 filename += strlen("/proc/"); 7692 if (!strncmp(filename, "self/", strlen("self/"))) { 7693 filename += strlen("self/"); 7694 } else if (*filename >= '1' && *filename <= '9') { 7695 char myself[80]; 7696 snprintf(myself, sizeof(myself), "%d/", getpid()); 7697 if (!strncmp(filename, myself, strlen(myself))) { 7698 filename += strlen(myself); 7699 } else { 7700 return 0; 7701 } 7702 } else { 7703 return 0; 7704 } 7705 if (!strcmp(filename, entry)) { 7706 return 1; 7707 } 7708 } 7709 return 0; 7710 } 7711 7712 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 7713 static int is_proc(const char *filename, const char *entry) 7714 { 7715 return strcmp(filename, entry) == 0; 7716 } 7717 7718 static int open_net_route(void *cpu_env, int fd) 7719 { 7720 FILE *fp; 7721 char *line = NULL; 7722 size_t len = 0; 7723 ssize_t read; 7724 7725 fp = fopen("/proc/net/route", "r"); 7726 if (fp == NULL) { 7727 return -1; 7728 } 7729 7730 /* read header */ 7731 7732 read = getline(&line, &len, fp); 7733 dprintf(fd, "%s", line); 7734 7735 /* read routes */ 7736 7737 while ((read = getline(&line, &len, fp)) != -1) { 7738 char iface[16]; 7739 uint32_t dest, gw, mask; 7740 unsigned int flags, refcnt, use, metric, mtu, window, irtt; 7741 sscanf(line, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n", 7742 iface, &dest, &gw, &flags, &refcnt, &use, &metric, 7743 &mask, &mtu, &window, &irtt); 7744 dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n", 7745 iface, tswap32(dest), tswap32(gw), flags, refcnt, use, 7746 metric, tswap32(mask), mtu, window, irtt); 7747 } 7748 7749 free(line); 7750 fclose(fp); 7751 7752 return 0; 7753 } 7754 #endif 7755 7756 static int do_openat(void *cpu_env, int dirfd, const char *pathname, int flags, mode_t mode) 7757 { 7758 struct fake_open { 7759 const char *filename; 7760 int (*fill)(void *cpu_env, int fd); 7761 int (*cmp)(const char *s1, const char *s2); 7762 }; 7763 const struct fake_open *fake_open; 7764 static const struct fake_open fakes[] = { 7765 { "maps", open_self_maps, is_proc_myself }, 7766 { "stat", open_self_stat, is_proc_myself }, 7767 { "auxv", open_self_auxv, is_proc_myself }, 7768 { "cmdline", open_self_cmdline, is_proc_myself }, 7769 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 7770 { "/proc/net/route", open_net_route, is_proc }, 7771 #endif 7772 { NULL, NULL, NULL } 7773 }; 7774 7775 if (is_proc_myself(pathname, "exe")) { 7776 int execfd = qemu_getauxval(AT_EXECFD); 7777 return execfd ? execfd : safe_openat(dirfd, exec_path, flags, mode); 7778 } 7779 7780 for (fake_open = fakes; fake_open->filename; fake_open++) { 7781 if (fake_open->cmp(pathname, fake_open->filename)) { 7782 break; 7783 } 7784 } 7785 7786 if (fake_open->filename) { 7787 const char *tmpdir; 7788 char filename[PATH_MAX]; 7789 int fd, r; 7790 7791 /* create temporary file to map stat to */ 7792 tmpdir = getenv("TMPDIR"); 7793 if (!tmpdir) 7794 tmpdir = "/tmp"; 7795 snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir); 7796 fd = mkstemp(filename); 7797 if (fd < 0) { 7798 return fd; 7799 } 7800 unlink(filename); 7801 7802 if ((r = fake_open->fill(cpu_env, fd))) { 7803 int e = errno; 7804 close(fd); 7805 errno = e; 7806 return r; 7807 } 7808 lseek(fd, 0, SEEK_SET); 7809 7810 return fd; 7811 } 7812 7813 return safe_openat(dirfd, path(pathname), flags, mode); 7814 } 7815 7816 #define TIMER_MAGIC 0x0caf0000 7817 #define TIMER_MAGIC_MASK 0xffff0000 7818 7819 /* Convert QEMU provided timer ID back to internal 16bit index format */ 7820 static target_timer_t get_timer_id(abi_long arg) 7821 { 7822 target_timer_t timerid = arg; 7823 7824 if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) { 7825 return -TARGET_EINVAL; 7826 } 7827 7828 timerid &= 0xffff; 7829 7830 if (timerid >= ARRAY_SIZE(g_posix_timers)) { 7831 return -TARGET_EINVAL; 7832 } 7833 7834 return timerid; 7835 } 7836 7837 static abi_long swap_data_eventfd(void *buf, size_t len) 7838 { 7839 uint64_t *counter = buf; 7840 int i; 7841 7842 if (len < sizeof(uint64_t)) { 7843 return -EINVAL; 7844 } 7845 7846 for (i = 0; i < len; i += sizeof(uint64_t)) { 7847 *counter = tswap64(*counter); 7848 counter++; 7849 } 7850 7851 return len; 7852 } 7853 7854 static TargetFdTrans target_eventfd_trans = { 7855 .host_to_target_data = swap_data_eventfd, 7856 .target_to_host_data = swap_data_eventfd, 7857 }; 7858 7859 #if (defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)) || \ 7860 (defined(CONFIG_INOTIFY1) && defined(TARGET_NR_inotify_init1) && \ 7861 defined(__NR_inotify_init1)) 7862 static abi_long host_to_target_data_inotify(void *buf, size_t len) 7863 { 7864 struct inotify_event *ev; 7865 int i; 7866 uint32_t name_len; 7867 7868 for (i = 0; i < len; i += sizeof(struct inotify_event) + name_len) { 7869 ev = (struct inotify_event *)((char *)buf + i); 7870 name_len = ev->len; 7871 7872 ev->wd = tswap32(ev->wd); 7873 ev->mask = tswap32(ev->mask); 7874 ev->cookie = tswap32(ev->cookie); 7875 ev->len = tswap32(name_len); 7876 } 7877 7878 return len; 7879 } 7880 7881 static TargetFdTrans target_inotify_trans = { 7882 .host_to_target_data = host_to_target_data_inotify, 7883 }; 7884 #endif 7885 7886 static int target_to_host_cpu_mask(unsigned long *host_mask, 7887 size_t host_size, 7888 abi_ulong target_addr, 7889 size_t target_size) 7890 { 7891 unsigned target_bits = sizeof(abi_ulong) * 8; 7892 unsigned host_bits = sizeof(*host_mask) * 8; 7893 abi_ulong *target_mask; 7894 unsigned i, j; 7895 7896 assert(host_size >= target_size); 7897 7898 target_mask = lock_user(VERIFY_READ, target_addr, target_size, 1); 7899 if (!target_mask) { 7900 return -TARGET_EFAULT; 7901 } 7902 memset(host_mask, 0, host_size); 7903 7904 for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) { 7905 unsigned bit = i * target_bits; 7906 abi_ulong val; 7907 7908 __get_user(val, &target_mask[i]); 7909 for (j = 0; j < target_bits; j++, bit++) { 7910 if (val & (1UL << j)) { 7911 host_mask[bit / host_bits] |= 1UL << (bit % host_bits); 7912 } 7913 } 7914 } 7915 7916 unlock_user(target_mask, target_addr, 0); 7917 return 0; 7918 } 7919 7920 static int host_to_target_cpu_mask(const unsigned long *host_mask, 7921 size_t host_size, 7922 abi_ulong target_addr, 7923 size_t target_size) 7924 { 7925 unsigned target_bits = sizeof(abi_ulong) * 8; 7926 unsigned host_bits = sizeof(*host_mask) * 8; 7927 abi_ulong *target_mask; 7928 unsigned i, j; 7929 7930 assert(host_size >= target_size); 7931 7932 target_mask = lock_user(VERIFY_WRITE, target_addr, target_size, 0); 7933 if (!target_mask) { 7934 return -TARGET_EFAULT; 7935 } 7936 7937 for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) { 7938 unsigned bit = i * target_bits; 7939 abi_ulong val = 0; 7940 7941 for (j = 0; j < target_bits; j++, bit++) { 7942 if (host_mask[bit / host_bits] & (1UL << (bit % host_bits))) { 7943 val |= 1UL << j; 7944 } 7945 } 7946 __put_user(val, &target_mask[i]); 7947 } 7948 7949 unlock_user(target_mask, target_addr, target_size); 7950 return 0; 7951 } 7952 7953 /* do_syscall() should always have a single exit point at the end so 7954 that actions, such as logging of syscall results, can be performed. 7955 All errnos that do_syscall() returns must be -TARGET_<errcode>. */ 7956 abi_long do_syscall(void *cpu_env, int num, abi_long arg1, 7957 abi_long arg2, abi_long arg3, abi_long arg4, 7958 abi_long arg5, abi_long arg6, abi_long arg7, 7959 abi_long arg8) 7960 { 7961 CPUState *cpu = ENV_GET_CPU(cpu_env); 7962 abi_long ret; 7963 struct stat st; 7964 struct statfs stfs; 7965 void *p; 7966 7967 #if defined(DEBUG_ERESTARTSYS) 7968 /* Debug-only code for exercising the syscall-restart code paths 7969 * in the per-architecture cpu main loops: restart every syscall 7970 * the guest makes once before letting it through. 7971 */ 7972 { 7973 static int flag; 7974 7975 flag = !flag; 7976 if (flag) { 7977 return -TARGET_ERESTARTSYS; 7978 } 7979 } 7980 #endif 7981 7982 #ifdef DEBUG 7983 gemu_log("syscall %d", num); 7984 #endif 7985 trace_guest_user_syscall(cpu, num, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8); 7986 if(do_strace) 7987 print_syscall(num, arg1, arg2, arg3, arg4, arg5, arg6); 7988 7989 switch(num) { 7990 case TARGET_NR_exit: 7991 /* In old applications this may be used to implement _exit(2). 7992 However in threaded applictions it is used for thread termination, 7993 and _exit_group is used for application termination. 7994 Do thread termination if we have more then one thread. */ 7995 7996 if (block_signals()) { 7997 ret = -TARGET_ERESTARTSYS; 7998 break; 7999 } 8000 8001 cpu_list_lock(); 8002 8003 if (CPU_NEXT(first_cpu)) { 8004 TaskState *ts; 8005 8006 /* Remove the CPU from the list. */ 8007 QTAILQ_REMOVE(&cpus, cpu, node); 8008 8009 cpu_list_unlock(); 8010 8011 ts = cpu->opaque; 8012 if (ts->child_tidptr) { 8013 put_user_u32(0, ts->child_tidptr); 8014 sys_futex(g2h(ts->child_tidptr), FUTEX_WAKE, INT_MAX, 8015 NULL, NULL, 0); 8016 } 8017 thread_cpu = NULL; 8018 object_unref(OBJECT(cpu)); 8019 g_free(ts); 8020 rcu_unregister_thread(); 8021 pthread_exit(NULL); 8022 } 8023 8024 cpu_list_unlock(); 8025 preexit_cleanup(cpu_env, arg1); 8026 _exit(arg1); 8027 ret = 0; /* avoid warning */ 8028 break; 8029 case TARGET_NR_read: 8030 if (arg3 == 0) 8031 ret = 0; 8032 else { 8033 if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0))) 8034 goto efault; 8035 ret = get_errno(safe_read(arg1, p, arg3)); 8036 if (ret >= 0 && 8037 fd_trans_host_to_target_data(arg1)) { 8038 ret = fd_trans_host_to_target_data(arg1)(p, ret); 8039 } 8040 unlock_user(p, arg2, ret); 8041 } 8042 break; 8043 case TARGET_NR_write: 8044 if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1))) 8045 goto efault; 8046 if (fd_trans_target_to_host_data(arg1)) { 8047 void *copy = g_malloc(arg3); 8048 memcpy(copy, p, arg3); 8049 ret = fd_trans_target_to_host_data(arg1)(copy, arg3); 8050 if (ret >= 0) { 8051 ret = get_errno(safe_write(arg1, copy, ret)); 8052 } 8053 g_free(copy); 8054 } else { 8055 ret = get_errno(safe_write(arg1, p, arg3)); 8056 } 8057 unlock_user(p, arg2, 0); 8058 break; 8059 #ifdef TARGET_NR_open 8060 case TARGET_NR_open: 8061 if (!(p = lock_user_string(arg1))) 8062 goto efault; 8063 ret = get_errno(do_openat(cpu_env, AT_FDCWD, p, 8064 target_to_host_bitmask(arg2, fcntl_flags_tbl), 8065 arg3)); 8066 fd_trans_unregister(ret); 8067 unlock_user(p, arg1, 0); 8068 break; 8069 #endif 8070 case TARGET_NR_openat: 8071 if (!(p = lock_user_string(arg2))) 8072 goto efault; 8073 ret = get_errno(do_openat(cpu_env, arg1, p, 8074 target_to_host_bitmask(arg3, fcntl_flags_tbl), 8075 arg4)); 8076 fd_trans_unregister(ret); 8077 unlock_user(p, arg2, 0); 8078 break; 8079 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 8080 case TARGET_NR_name_to_handle_at: 8081 ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5); 8082 break; 8083 #endif 8084 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 8085 case TARGET_NR_open_by_handle_at: 8086 ret = do_open_by_handle_at(arg1, arg2, arg3); 8087 fd_trans_unregister(ret); 8088 break; 8089 #endif 8090 case TARGET_NR_close: 8091 fd_trans_unregister(arg1); 8092 ret = get_errno(close(arg1)); 8093 break; 8094 case TARGET_NR_brk: 8095 ret = do_brk(arg1); 8096 break; 8097 #ifdef TARGET_NR_fork 8098 case TARGET_NR_fork: 8099 ret = get_errno(do_fork(cpu_env, TARGET_SIGCHLD, 0, 0, 0, 0)); 8100 break; 8101 #endif 8102 #ifdef TARGET_NR_waitpid 8103 case TARGET_NR_waitpid: 8104 { 8105 int status; 8106 ret = get_errno(safe_wait4(arg1, &status, arg3, 0)); 8107 if (!is_error(ret) && arg2 && ret 8108 && put_user_s32(host_to_target_waitstatus(status), arg2)) 8109 goto efault; 8110 } 8111 break; 8112 #endif 8113 #ifdef TARGET_NR_waitid 8114 case TARGET_NR_waitid: 8115 { 8116 siginfo_t info; 8117 info.si_pid = 0; 8118 ret = get_errno(safe_waitid(arg1, arg2, &info, arg4, NULL)); 8119 if (!is_error(ret) && arg3 && info.si_pid != 0) { 8120 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_siginfo_t), 0))) 8121 goto efault; 8122 host_to_target_siginfo(p, &info); 8123 unlock_user(p, arg3, sizeof(target_siginfo_t)); 8124 } 8125 } 8126 break; 8127 #endif 8128 #ifdef TARGET_NR_creat /* not on alpha */ 8129 case TARGET_NR_creat: 8130 if (!(p = lock_user_string(arg1))) 8131 goto efault; 8132 ret = get_errno(creat(p, arg2)); 8133 fd_trans_unregister(ret); 8134 unlock_user(p, arg1, 0); 8135 break; 8136 #endif 8137 #ifdef TARGET_NR_link 8138 case TARGET_NR_link: 8139 { 8140 void * p2; 8141 p = lock_user_string(arg1); 8142 p2 = lock_user_string(arg2); 8143 if (!p || !p2) 8144 ret = -TARGET_EFAULT; 8145 else 8146 ret = get_errno(link(p, p2)); 8147 unlock_user(p2, arg2, 0); 8148 unlock_user(p, arg1, 0); 8149 } 8150 break; 8151 #endif 8152 #if defined(TARGET_NR_linkat) 8153 case TARGET_NR_linkat: 8154 { 8155 void * p2 = NULL; 8156 if (!arg2 || !arg4) 8157 goto efault; 8158 p = lock_user_string(arg2); 8159 p2 = lock_user_string(arg4); 8160 if (!p || !p2) 8161 ret = -TARGET_EFAULT; 8162 else 8163 ret = get_errno(linkat(arg1, p, arg3, p2, arg5)); 8164 unlock_user(p, arg2, 0); 8165 unlock_user(p2, arg4, 0); 8166 } 8167 break; 8168 #endif 8169 #ifdef TARGET_NR_unlink 8170 case TARGET_NR_unlink: 8171 if (!(p = lock_user_string(arg1))) 8172 goto efault; 8173 ret = get_errno(unlink(p)); 8174 unlock_user(p, arg1, 0); 8175 break; 8176 #endif 8177 #if defined(TARGET_NR_unlinkat) 8178 case TARGET_NR_unlinkat: 8179 if (!(p = lock_user_string(arg2))) 8180 goto efault; 8181 ret = get_errno(unlinkat(arg1, p, arg3)); 8182 unlock_user(p, arg2, 0); 8183 break; 8184 #endif 8185 case TARGET_NR_execve: 8186 { 8187 char **argp, **envp; 8188 int argc, envc; 8189 abi_ulong gp; 8190 abi_ulong guest_argp; 8191 abi_ulong guest_envp; 8192 abi_ulong addr; 8193 char **q; 8194 int total_size = 0; 8195 8196 argc = 0; 8197 guest_argp = arg2; 8198 for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) { 8199 if (get_user_ual(addr, gp)) 8200 goto efault; 8201 if (!addr) 8202 break; 8203 argc++; 8204 } 8205 envc = 0; 8206 guest_envp = arg3; 8207 for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) { 8208 if (get_user_ual(addr, gp)) 8209 goto efault; 8210 if (!addr) 8211 break; 8212 envc++; 8213 } 8214 8215 argp = g_new0(char *, argc + 1); 8216 envp = g_new0(char *, envc + 1); 8217 8218 for (gp = guest_argp, q = argp; gp; 8219 gp += sizeof(abi_ulong), q++) { 8220 if (get_user_ual(addr, gp)) 8221 goto execve_efault; 8222 if (!addr) 8223 break; 8224 if (!(*q = lock_user_string(addr))) 8225 goto execve_efault; 8226 total_size += strlen(*q) + 1; 8227 } 8228 *q = NULL; 8229 8230 for (gp = guest_envp, q = envp; gp; 8231 gp += sizeof(abi_ulong), q++) { 8232 if (get_user_ual(addr, gp)) 8233 goto execve_efault; 8234 if (!addr) 8235 break; 8236 if (!(*q = lock_user_string(addr))) 8237 goto execve_efault; 8238 total_size += strlen(*q) + 1; 8239 } 8240 *q = NULL; 8241 8242 if (!(p = lock_user_string(arg1))) 8243 goto execve_efault; 8244 /* Although execve() is not an interruptible syscall it is 8245 * a special case where we must use the safe_syscall wrapper: 8246 * if we allow a signal to happen before we make the host 8247 * syscall then we will 'lose' it, because at the point of 8248 * execve the process leaves QEMU's control. So we use the 8249 * safe syscall wrapper to ensure that we either take the 8250 * signal as a guest signal, or else it does not happen 8251 * before the execve completes and makes it the other 8252 * program's problem. 8253 */ 8254 ret = get_errno(safe_execve(p, argp, envp)); 8255 unlock_user(p, arg1, 0); 8256 8257 goto execve_end; 8258 8259 execve_efault: 8260 ret = -TARGET_EFAULT; 8261 8262 execve_end: 8263 for (gp = guest_argp, q = argp; *q; 8264 gp += sizeof(abi_ulong), q++) { 8265 if (get_user_ual(addr, gp) 8266 || !addr) 8267 break; 8268 unlock_user(*q, addr, 0); 8269 } 8270 for (gp = guest_envp, q = envp; *q; 8271 gp += sizeof(abi_ulong), q++) { 8272 if (get_user_ual(addr, gp) 8273 || !addr) 8274 break; 8275 unlock_user(*q, addr, 0); 8276 } 8277 8278 g_free(argp); 8279 g_free(envp); 8280 } 8281 break; 8282 case TARGET_NR_chdir: 8283 if (!(p = lock_user_string(arg1))) 8284 goto efault; 8285 ret = get_errno(chdir(p)); 8286 unlock_user(p, arg1, 0); 8287 break; 8288 #ifdef TARGET_NR_time 8289 case TARGET_NR_time: 8290 { 8291 time_t host_time; 8292 ret = get_errno(time(&host_time)); 8293 if (!is_error(ret) 8294 && arg1 8295 && put_user_sal(host_time, arg1)) 8296 goto efault; 8297 } 8298 break; 8299 #endif 8300 #ifdef TARGET_NR_mknod 8301 case TARGET_NR_mknod: 8302 if (!(p = lock_user_string(arg1))) 8303 goto efault; 8304 ret = get_errno(mknod(p, arg2, arg3)); 8305 unlock_user(p, arg1, 0); 8306 break; 8307 #endif 8308 #if defined(TARGET_NR_mknodat) 8309 case TARGET_NR_mknodat: 8310 if (!(p = lock_user_string(arg2))) 8311 goto efault; 8312 ret = get_errno(mknodat(arg1, p, arg3, arg4)); 8313 unlock_user(p, arg2, 0); 8314 break; 8315 #endif 8316 #ifdef TARGET_NR_chmod 8317 case TARGET_NR_chmod: 8318 if (!(p = lock_user_string(arg1))) 8319 goto efault; 8320 ret = get_errno(chmod(p, arg2)); 8321 unlock_user(p, arg1, 0); 8322 break; 8323 #endif 8324 #ifdef TARGET_NR_break 8325 case TARGET_NR_break: 8326 goto unimplemented; 8327 #endif 8328 #ifdef TARGET_NR_oldstat 8329 case TARGET_NR_oldstat: 8330 goto unimplemented; 8331 #endif 8332 case TARGET_NR_lseek: 8333 ret = get_errno(lseek(arg1, arg2, arg3)); 8334 break; 8335 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA) 8336 /* Alpha specific */ 8337 case TARGET_NR_getxpid: 8338 ((CPUAlphaState *)cpu_env)->ir[IR_A4] = getppid(); 8339 ret = get_errno(getpid()); 8340 break; 8341 #endif 8342 #ifdef TARGET_NR_getpid 8343 case TARGET_NR_getpid: 8344 ret = get_errno(getpid()); 8345 break; 8346 #endif 8347 case TARGET_NR_mount: 8348 { 8349 /* need to look at the data field */ 8350 void *p2, *p3; 8351 8352 if (arg1) { 8353 p = lock_user_string(arg1); 8354 if (!p) { 8355 goto efault; 8356 } 8357 } else { 8358 p = NULL; 8359 } 8360 8361 p2 = lock_user_string(arg2); 8362 if (!p2) { 8363 if (arg1) { 8364 unlock_user(p, arg1, 0); 8365 } 8366 goto efault; 8367 } 8368 8369 if (arg3) { 8370 p3 = lock_user_string(arg3); 8371 if (!p3) { 8372 if (arg1) { 8373 unlock_user(p, arg1, 0); 8374 } 8375 unlock_user(p2, arg2, 0); 8376 goto efault; 8377 } 8378 } else { 8379 p3 = NULL; 8380 } 8381 8382 /* FIXME - arg5 should be locked, but it isn't clear how to 8383 * do that since it's not guaranteed to be a NULL-terminated 8384 * string. 8385 */ 8386 if (!arg5) { 8387 ret = mount(p, p2, p3, (unsigned long)arg4, NULL); 8388 } else { 8389 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(arg5)); 8390 } 8391 ret = get_errno(ret); 8392 8393 if (arg1) { 8394 unlock_user(p, arg1, 0); 8395 } 8396 unlock_user(p2, arg2, 0); 8397 if (arg3) { 8398 unlock_user(p3, arg3, 0); 8399 } 8400 } 8401 break; 8402 #ifdef TARGET_NR_umount 8403 case TARGET_NR_umount: 8404 if (!(p = lock_user_string(arg1))) 8405 goto efault; 8406 ret = get_errno(umount(p)); 8407 unlock_user(p, arg1, 0); 8408 break; 8409 #endif 8410 #ifdef TARGET_NR_stime /* not on alpha */ 8411 case TARGET_NR_stime: 8412 { 8413 time_t host_time; 8414 if (get_user_sal(host_time, arg1)) 8415 goto efault; 8416 ret = get_errno(stime(&host_time)); 8417 } 8418 break; 8419 #endif 8420 case TARGET_NR_ptrace: 8421 goto unimplemented; 8422 #ifdef TARGET_NR_alarm /* not on alpha */ 8423 case TARGET_NR_alarm: 8424 ret = alarm(arg1); 8425 break; 8426 #endif 8427 #ifdef TARGET_NR_oldfstat 8428 case TARGET_NR_oldfstat: 8429 goto unimplemented; 8430 #endif 8431 #ifdef TARGET_NR_pause /* not on alpha */ 8432 case TARGET_NR_pause: 8433 if (!block_signals()) { 8434 sigsuspend(&((TaskState *)cpu->opaque)->signal_mask); 8435 } 8436 ret = -TARGET_EINTR; 8437 break; 8438 #endif 8439 #ifdef TARGET_NR_utime 8440 case TARGET_NR_utime: 8441 { 8442 struct utimbuf tbuf, *host_tbuf; 8443 struct target_utimbuf *target_tbuf; 8444 if (arg2) { 8445 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1)) 8446 goto efault; 8447 tbuf.actime = tswapal(target_tbuf->actime); 8448 tbuf.modtime = tswapal(target_tbuf->modtime); 8449 unlock_user_struct(target_tbuf, arg2, 0); 8450 host_tbuf = &tbuf; 8451 } else { 8452 host_tbuf = NULL; 8453 } 8454 if (!(p = lock_user_string(arg1))) 8455 goto efault; 8456 ret = get_errno(utime(p, host_tbuf)); 8457 unlock_user(p, arg1, 0); 8458 } 8459 break; 8460 #endif 8461 #ifdef TARGET_NR_utimes 8462 case TARGET_NR_utimes: 8463 { 8464 struct timeval *tvp, tv[2]; 8465 if (arg2) { 8466 if (copy_from_user_timeval(&tv[0], arg2) 8467 || copy_from_user_timeval(&tv[1], 8468 arg2 + sizeof(struct target_timeval))) 8469 goto efault; 8470 tvp = tv; 8471 } else { 8472 tvp = NULL; 8473 } 8474 if (!(p = lock_user_string(arg1))) 8475 goto efault; 8476 ret = get_errno(utimes(p, tvp)); 8477 unlock_user(p, arg1, 0); 8478 } 8479 break; 8480 #endif 8481 #if defined(TARGET_NR_futimesat) 8482 case TARGET_NR_futimesat: 8483 { 8484 struct timeval *tvp, tv[2]; 8485 if (arg3) { 8486 if (copy_from_user_timeval(&tv[0], arg3) 8487 || copy_from_user_timeval(&tv[1], 8488 arg3 + sizeof(struct target_timeval))) 8489 goto efault; 8490 tvp = tv; 8491 } else { 8492 tvp = NULL; 8493 } 8494 if (!(p = lock_user_string(arg2))) 8495 goto efault; 8496 ret = get_errno(futimesat(arg1, path(p), tvp)); 8497 unlock_user(p, arg2, 0); 8498 } 8499 break; 8500 #endif 8501 #ifdef TARGET_NR_stty 8502 case TARGET_NR_stty: 8503 goto unimplemented; 8504 #endif 8505 #ifdef TARGET_NR_gtty 8506 case TARGET_NR_gtty: 8507 goto unimplemented; 8508 #endif 8509 #ifdef TARGET_NR_access 8510 case TARGET_NR_access: 8511 if (!(p = lock_user_string(arg1))) 8512 goto efault; 8513 ret = get_errno(access(path(p), arg2)); 8514 unlock_user(p, arg1, 0); 8515 break; 8516 #endif 8517 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat) 8518 case TARGET_NR_faccessat: 8519 if (!(p = lock_user_string(arg2))) 8520 goto efault; 8521 ret = get_errno(faccessat(arg1, p, arg3, 0)); 8522 unlock_user(p, arg2, 0); 8523 break; 8524 #endif 8525 #ifdef TARGET_NR_nice /* not on alpha */ 8526 case TARGET_NR_nice: 8527 ret = get_errno(nice(arg1)); 8528 break; 8529 #endif 8530 #ifdef TARGET_NR_ftime 8531 case TARGET_NR_ftime: 8532 goto unimplemented; 8533 #endif 8534 case TARGET_NR_sync: 8535 sync(); 8536 ret = 0; 8537 break; 8538 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS) 8539 case TARGET_NR_syncfs: 8540 ret = get_errno(syncfs(arg1)); 8541 break; 8542 #endif 8543 case TARGET_NR_kill: 8544 ret = get_errno(safe_kill(arg1, target_to_host_signal(arg2))); 8545 break; 8546 #ifdef TARGET_NR_rename 8547 case TARGET_NR_rename: 8548 { 8549 void *p2; 8550 p = lock_user_string(arg1); 8551 p2 = lock_user_string(arg2); 8552 if (!p || !p2) 8553 ret = -TARGET_EFAULT; 8554 else 8555 ret = get_errno(rename(p, p2)); 8556 unlock_user(p2, arg2, 0); 8557 unlock_user(p, arg1, 0); 8558 } 8559 break; 8560 #endif 8561 #if defined(TARGET_NR_renameat) 8562 case TARGET_NR_renameat: 8563 { 8564 void *p2; 8565 p = lock_user_string(arg2); 8566 p2 = lock_user_string(arg4); 8567 if (!p || !p2) 8568 ret = -TARGET_EFAULT; 8569 else 8570 ret = get_errno(renameat(arg1, p, arg3, p2)); 8571 unlock_user(p2, arg4, 0); 8572 unlock_user(p, arg2, 0); 8573 } 8574 break; 8575 #endif 8576 #if defined(TARGET_NR_renameat2) 8577 case TARGET_NR_renameat2: 8578 { 8579 void *p2; 8580 p = lock_user_string(arg2); 8581 p2 = lock_user_string(arg4); 8582 if (!p || !p2) { 8583 ret = -TARGET_EFAULT; 8584 } else { 8585 ret = get_errno(sys_renameat2(arg1, p, arg3, p2, arg5)); 8586 } 8587 unlock_user(p2, arg4, 0); 8588 unlock_user(p, arg2, 0); 8589 } 8590 break; 8591 #endif 8592 #ifdef TARGET_NR_mkdir 8593 case TARGET_NR_mkdir: 8594 if (!(p = lock_user_string(arg1))) 8595 goto efault; 8596 ret = get_errno(mkdir(p, arg2)); 8597 unlock_user(p, arg1, 0); 8598 break; 8599 #endif 8600 #if defined(TARGET_NR_mkdirat) 8601 case TARGET_NR_mkdirat: 8602 if (!(p = lock_user_string(arg2))) 8603 goto efault; 8604 ret = get_errno(mkdirat(arg1, p, arg3)); 8605 unlock_user(p, arg2, 0); 8606 break; 8607 #endif 8608 #ifdef TARGET_NR_rmdir 8609 case TARGET_NR_rmdir: 8610 if (!(p = lock_user_string(arg1))) 8611 goto efault; 8612 ret = get_errno(rmdir(p)); 8613 unlock_user(p, arg1, 0); 8614 break; 8615 #endif 8616 case TARGET_NR_dup: 8617 ret = get_errno(dup(arg1)); 8618 if (ret >= 0) { 8619 fd_trans_dup(arg1, ret); 8620 } 8621 break; 8622 #ifdef TARGET_NR_pipe 8623 case TARGET_NR_pipe: 8624 ret = do_pipe(cpu_env, arg1, 0, 0); 8625 break; 8626 #endif 8627 #ifdef TARGET_NR_pipe2 8628 case TARGET_NR_pipe2: 8629 ret = do_pipe(cpu_env, arg1, 8630 target_to_host_bitmask(arg2, fcntl_flags_tbl), 1); 8631 break; 8632 #endif 8633 case TARGET_NR_times: 8634 { 8635 struct target_tms *tmsp; 8636 struct tms tms; 8637 ret = get_errno(times(&tms)); 8638 if (arg1) { 8639 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0); 8640 if (!tmsp) 8641 goto efault; 8642 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime)); 8643 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime)); 8644 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime)); 8645 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime)); 8646 } 8647 if (!is_error(ret)) 8648 ret = host_to_target_clock_t(ret); 8649 } 8650 break; 8651 #ifdef TARGET_NR_prof 8652 case TARGET_NR_prof: 8653 goto unimplemented; 8654 #endif 8655 #ifdef TARGET_NR_signal 8656 case TARGET_NR_signal: 8657 goto unimplemented; 8658 #endif 8659 case TARGET_NR_acct: 8660 if (arg1 == 0) { 8661 ret = get_errno(acct(NULL)); 8662 } else { 8663 if (!(p = lock_user_string(arg1))) 8664 goto efault; 8665 ret = get_errno(acct(path(p))); 8666 unlock_user(p, arg1, 0); 8667 } 8668 break; 8669 #ifdef TARGET_NR_umount2 8670 case TARGET_NR_umount2: 8671 if (!(p = lock_user_string(arg1))) 8672 goto efault; 8673 ret = get_errno(umount2(p, arg2)); 8674 unlock_user(p, arg1, 0); 8675 break; 8676 #endif 8677 #ifdef TARGET_NR_lock 8678 case TARGET_NR_lock: 8679 goto unimplemented; 8680 #endif 8681 case TARGET_NR_ioctl: 8682 ret = do_ioctl(arg1, arg2, arg3); 8683 break; 8684 #ifdef TARGET_NR_fcntl 8685 case TARGET_NR_fcntl: 8686 ret = do_fcntl(arg1, arg2, arg3); 8687 break; 8688 #endif 8689 #ifdef TARGET_NR_mpx 8690 case TARGET_NR_mpx: 8691 goto unimplemented; 8692 #endif 8693 case TARGET_NR_setpgid: 8694 ret = get_errno(setpgid(arg1, arg2)); 8695 break; 8696 #ifdef TARGET_NR_ulimit 8697 case TARGET_NR_ulimit: 8698 goto unimplemented; 8699 #endif 8700 #ifdef TARGET_NR_oldolduname 8701 case TARGET_NR_oldolduname: 8702 goto unimplemented; 8703 #endif 8704 case TARGET_NR_umask: 8705 ret = get_errno(umask(arg1)); 8706 break; 8707 case TARGET_NR_chroot: 8708 if (!(p = lock_user_string(arg1))) 8709 goto efault; 8710 ret = get_errno(chroot(p)); 8711 unlock_user(p, arg1, 0); 8712 break; 8713 #ifdef TARGET_NR_ustat 8714 case TARGET_NR_ustat: 8715 goto unimplemented; 8716 #endif 8717 #ifdef TARGET_NR_dup2 8718 case TARGET_NR_dup2: 8719 ret = get_errno(dup2(arg1, arg2)); 8720 if (ret >= 0) { 8721 fd_trans_dup(arg1, arg2); 8722 } 8723 break; 8724 #endif 8725 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3) 8726 case TARGET_NR_dup3: 8727 { 8728 int host_flags; 8729 8730 if ((arg3 & ~TARGET_O_CLOEXEC) != 0) { 8731 return -EINVAL; 8732 } 8733 host_flags = target_to_host_bitmask(arg3, fcntl_flags_tbl); 8734 ret = get_errno(dup3(arg1, arg2, host_flags)); 8735 if (ret >= 0) { 8736 fd_trans_dup(arg1, arg2); 8737 } 8738 break; 8739 } 8740 #endif 8741 #ifdef TARGET_NR_getppid /* not on alpha */ 8742 case TARGET_NR_getppid: 8743 ret = get_errno(getppid()); 8744 break; 8745 #endif 8746 #ifdef TARGET_NR_getpgrp 8747 case TARGET_NR_getpgrp: 8748 ret = get_errno(getpgrp()); 8749 break; 8750 #endif 8751 case TARGET_NR_setsid: 8752 ret = get_errno(setsid()); 8753 break; 8754 #ifdef TARGET_NR_sigaction 8755 case TARGET_NR_sigaction: 8756 { 8757 #if defined(TARGET_ALPHA) 8758 struct target_sigaction act, oact, *pact = 0; 8759 struct target_old_sigaction *old_act; 8760 if (arg2) { 8761 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1)) 8762 goto efault; 8763 act._sa_handler = old_act->_sa_handler; 8764 target_siginitset(&act.sa_mask, old_act->sa_mask); 8765 act.sa_flags = old_act->sa_flags; 8766 act.sa_restorer = 0; 8767 unlock_user_struct(old_act, arg2, 0); 8768 pact = &act; 8769 } 8770 ret = get_errno(do_sigaction(arg1, pact, &oact)); 8771 if (!is_error(ret) && arg3) { 8772 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0)) 8773 goto efault; 8774 old_act->_sa_handler = oact._sa_handler; 8775 old_act->sa_mask = oact.sa_mask.sig[0]; 8776 old_act->sa_flags = oact.sa_flags; 8777 unlock_user_struct(old_act, arg3, 1); 8778 } 8779 #elif defined(TARGET_MIPS) 8780 struct target_sigaction act, oact, *pact, *old_act; 8781 8782 if (arg2) { 8783 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1)) 8784 goto efault; 8785 act._sa_handler = old_act->_sa_handler; 8786 target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]); 8787 act.sa_flags = old_act->sa_flags; 8788 unlock_user_struct(old_act, arg2, 0); 8789 pact = &act; 8790 } else { 8791 pact = NULL; 8792 } 8793 8794 ret = get_errno(do_sigaction(arg1, pact, &oact)); 8795 8796 if (!is_error(ret) && arg3) { 8797 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0)) 8798 goto efault; 8799 old_act->_sa_handler = oact._sa_handler; 8800 old_act->sa_flags = oact.sa_flags; 8801 old_act->sa_mask.sig[0] = oact.sa_mask.sig[0]; 8802 old_act->sa_mask.sig[1] = 0; 8803 old_act->sa_mask.sig[2] = 0; 8804 old_act->sa_mask.sig[3] = 0; 8805 unlock_user_struct(old_act, arg3, 1); 8806 } 8807 #else 8808 struct target_old_sigaction *old_act; 8809 struct target_sigaction act, oact, *pact; 8810 if (arg2) { 8811 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1)) 8812 goto efault; 8813 act._sa_handler = old_act->_sa_handler; 8814 target_siginitset(&act.sa_mask, old_act->sa_mask); 8815 act.sa_flags = old_act->sa_flags; 8816 act.sa_restorer = old_act->sa_restorer; 8817 #ifdef TARGET_ARCH_HAS_KA_RESTORER 8818 act.ka_restorer = 0; 8819 #endif 8820 unlock_user_struct(old_act, arg2, 0); 8821 pact = &act; 8822 } else { 8823 pact = NULL; 8824 } 8825 ret = get_errno(do_sigaction(arg1, pact, &oact)); 8826 if (!is_error(ret) && arg3) { 8827 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0)) 8828 goto efault; 8829 old_act->_sa_handler = oact._sa_handler; 8830 old_act->sa_mask = oact.sa_mask.sig[0]; 8831 old_act->sa_flags = oact.sa_flags; 8832 old_act->sa_restorer = oact.sa_restorer; 8833 unlock_user_struct(old_act, arg3, 1); 8834 } 8835 #endif 8836 } 8837 break; 8838 #endif 8839 case TARGET_NR_rt_sigaction: 8840 { 8841 #if defined(TARGET_ALPHA) 8842 /* For Alpha and SPARC this is a 5 argument syscall, with 8843 * a 'restorer' parameter which must be copied into the 8844 * sa_restorer field of the sigaction struct. 8845 * For Alpha that 'restorer' is arg5; for SPARC it is arg4, 8846 * and arg5 is the sigsetsize. 8847 * Alpha also has a separate rt_sigaction struct that it uses 8848 * here; SPARC uses the usual sigaction struct. 8849 */ 8850 struct target_rt_sigaction *rt_act; 8851 struct target_sigaction act, oact, *pact = 0; 8852 8853 if (arg4 != sizeof(target_sigset_t)) { 8854 ret = -TARGET_EINVAL; 8855 break; 8856 } 8857 if (arg2) { 8858 if (!lock_user_struct(VERIFY_READ, rt_act, arg2, 1)) 8859 goto efault; 8860 act._sa_handler = rt_act->_sa_handler; 8861 act.sa_mask = rt_act->sa_mask; 8862 act.sa_flags = rt_act->sa_flags; 8863 act.sa_restorer = arg5; 8864 unlock_user_struct(rt_act, arg2, 0); 8865 pact = &act; 8866 } 8867 ret = get_errno(do_sigaction(arg1, pact, &oact)); 8868 if (!is_error(ret) && arg3) { 8869 if (!lock_user_struct(VERIFY_WRITE, rt_act, arg3, 0)) 8870 goto efault; 8871 rt_act->_sa_handler = oact._sa_handler; 8872 rt_act->sa_mask = oact.sa_mask; 8873 rt_act->sa_flags = oact.sa_flags; 8874 unlock_user_struct(rt_act, arg3, 1); 8875 } 8876 #else 8877 #ifdef TARGET_SPARC 8878 target_ulong restorer = arg4; 8879 target_ulong sigsetsize = arg5; 8880 #else 8881 target_ulong sigsetsize = arg4; 8882 #endif 8883 struct target_sigaction *act; 8884 struct target_sigaction *oact; 8885 8886 if (sigsetsize != sizeof(target_sigset_t)) { 8887 ret = -TARGET_EINVAL; 8888 break; 8889 } 8890 if (arg2) { 8891 if (!lock_user_struct(VERIFY_READ, act, arg2, 1)) { 8892 goto efault; 8893 } 8894 #ifdef TARGET_ARCH_HAS_KA_RESTORER 8895 act->ka_restorer = restorer; 8896 #endif 8897 } else { 8898 act = NULL; 8899 } 8900 if (arg3) { 8901 if (!lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) { 8902 ret = -TARGET_EFAULT; 8903 goto rt_sigaction_fail; 8904 } 8905 } else 8906 oact = NULL; 8907 ret = get_errno(do_sigaction(arg1, act, oact)); 8908 rt_sigaction_fail: 8909 if (act) 8910 unlock_user_struct(act, arg2, 0); 8911 if (oact) 8912 unlock_user_struct(oact, arg3, 1); 8913 #endif 8914 } 8915 break; 8916 #ifdef TARGET_NR_sgetmask /* not on alpha */ 8917 case TARGET_NR_sgetmask: 8918 { 8919 sigset_t cur_set; 8920 abi_ulong target_set; 8921 ret = do_sigprocmask(0, NULL, &cur_set); 8922 if (!ret) { 8923 host_to_target_old_sigset(&target_set, &cur_set); 8924 ret = target_set; 8925 } 8926 } 8927 break; 8928 #endif 8929 #ifdef TARGET_NR_ssetmask /* not on alpha */ 8930 case TARGET_NR_ssetmask: 8931 { 8932 sigset_t set, oset; 8933 abi_ulong target_set = arg1; 8934 target_to_host_old_sigset(&set, &target_set); 8935 ret = do_sigprocmask(SIG_SETMASK, &set, &oset); 8936 if (!ret) { 8937 host_to_target_old_sigset(&target_set, &oset); 8938 ret = target_set; 8939 } 8940 } 8941 break; 8942 #endif 8943 #ifdef TARGET_NR_sigprocmask 8944 case TARGET_NR_sigprocmask: 8945 { 8946 #if defined(TARGET_ALPHA) 8947 sigset_t set, oldset; 8948 abi_ulong mask; 8949 int how; 8950 8951 switch (arg1) { 8952 case TARGET_SIG_BLOCK: 8953 how = SIG_BLOCK; 8954 break; 8955 case TARGET_SIG_UNBLOCK: 8956 how = SIG_UNBLOCK; 8957 break; 8958 case TARGET_SIG_SETMASK: 8959 how = SIG_SETMASK; 8960 break; 8961 default: 8962 ret = -TARGET_EINVAL; 8963 goto fail; 8964 } 8965 mask = arg2; 8966 target_to_host_old_sigset(&set, &mask); 8967 8968 ret = do_sigprocmask(how, &set, &oldset); 8969 if (!is_error(ret)) { 8970 host_to_target_old_sigset(&mask, &oldset); 8971 ret = mask; 8972 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0; /* force no error */ 8973 } 8974 #else 8975 sigset_t set, oldset, *set_ptr; 8976 int how; 8977 8978 if (arg2) { 8979 switch (arg1) { 8980 case TARGET_SIG_BLOCK: 8981 how = SIG_BLOCK; 8982 break; 8983 case TARGET_SIG_UNBLOCK: 8984 how = SIG_UNBLOCK; 8985 break; 8986 case TARGET_SIG_SETMASK: 8987 how = SIG_SETMASK; 8988 break; 8989 default: 8990 ret = -TARGET_EINVAL; 8991 goto fail; 8992 } 8993 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1))) 8994 goto efault; 8995 target_to_host_old_sigset(&set, p); 8996 unlock_user(p, arg2, 0); 8997 set_ptr = &set; 8998 } else { 8999 how = 0; 9000 set_ptr = NULL; 9001 } 9002 ret = do_sigprocmask(how, set_ptr, &oldset); 9003 if (!is_error(ret) && arg3) { 9004 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0))) 9005 goto efault; 9006 host_to_target_old_sigset(p, &oldset); 9007 unlock_user(p, arg3, sizeof(target_sigset_t)); 9008 } 9009 #endif 9010 } 9011 break; 9012 #endif 9013 case TARGET_NR_rt_sigprocmask: 9014 { 9015 int how = arg1; 9016 sigset_t set, oldset, *set_ptr; 9017 9018 if (arg4 != sizeof(target_sigset_t)) { 9019 ret = -TARGET_EINVAL; 9020 break; 9021 } 9022 9023 if (arg2) { 9024 switch(how) { 9025 case TARGET_SIG_BLOCK: 9026 how = SIG_BLOCK; 9027 break; 9028 case TARGET_SIG_UNBLOCK: 9029 how = SIG_UNBLOCK; 9030 break; 9031 case TARGET_SIG_SETMASK: 9032 how = SIG_SETMASK; 9033 break; 9034 default: 9035 ret = -TARGET_EINVAL; 9036 goto fail; 9037 } 9038 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1))) 9039 goto efault; 9040 target_to_host_sigset(&set, p); 9041 unlock_user(p, arg2, 0); 9042 set_ptr = &set; 9043 } else { 9044 how = 0; 9045 set_ptr = NULL; 9046 } 9047 ret = do_sigprocmask(how, set_ptr, &oldset); 9048 if (!is_error(ret) && arg3) { 9049 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0))) 9050 goto efault; 9051 host_to_target_sigset(p, &oldset); 9052 unlock_user(p, arg3, sizeof(target_sigset_t)); 9053 } 9054 } 9055 break; 9056 #ifdef TARGET_NR_sigpending 9057 case TARGET_NR_sigpending: 9058 { 9059 sigset_t set; 9060 ret = get_errno(sigpending(&set)); 9061 if (!is_error(ret)) { 9062 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0))) 9063 goto efault; 9064 host_to_target_old_sigset(p, &set); 9065 unlock_user(p, arg1, sizeof(target_sigset_t)); 9066 } 9067 } 9068 break; 9069 #endif 9070 case TARGET_NR_rt_sigpending: 9071 { 9072 sigset_t set; 9073 9074 /* Yes, this check is >, not != like most. We follow the kernel's 9075 * logic and it does it like this because it implements 9076 * NR_sigpending through the same code path, and in that case 9077 * the old_sigset_t is smaller in size. 9078 */ 9079 if (arg2 > sizeof(target_sigset_t)) { 9080 ret = -TARGET_EINVAL; 9081 break; 9082 } 9083 9084 ret = get_errno(sigpending(&set)); 9085 if (!is_error(ret)) { 9086 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0))) 9087 goto efault; 9088 host_to_target_sigset(p, &set); 9089 unlock_user(p, arg1, sizeof(target_sigset_t)); 9090 } 9091 } 9092 break; 9093 #ifdef TARGET_NR_sigsuspend 9094 case TARGET_NR_sigsuspend: 9095 { 9096 TaskState *ts = cpu->opaque; 9097 #if defined(TARGET_ALPHA) 9098 abi_ulong mask = arg1; 9099 target_to_host_old_sigset(&ts->sigsuspend_mask, &mask); 9100 #else 9101 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1))) 9102 goto efault; 9103 target_to_host_old_sigset(&ts->sigsuspend_mask, p); 9104 unlock_user(p, arg1, 0); 9105 #endif 9106 ret = get_errno(safe_rt_sigsuspend(&ts->sigsuspend_mask, 9107 SIGSET_T_SIZE)); 9108 if (ret != -TARGET_ERESTARTSYS) { 9109 ts->in_sigsuspend = 1; 9110 } 9111 } 9112 break; 9113 #endif 9114 case TARGET_NR_rt_sigsuspend: 9115 { 9116 TaskState *ts = cpu->opaque; 9117 9118 if (arg2 != sizeof(target_sigset_t)) { 9119 ret = -TARGET_EINVAL; 9120 break; 9121 } 9122 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1))) 9123 goto efault; 9124 target_to_host_sigset(&ts->sigsuspend_mask, p); 9125 unlock_user(p, arg1, 0); 9126 ret = get_errno(safe_rt_sigsuspend(&ts->sigsuspend_mask, 9127 SIGSET_T_SIZE)); 9128 if (ret != -TARGET_ERESTARTSYS) { 9129 ts->in_sigsuspend = 1; 9130 } 9131 } 9132 break; 9133 case TARGET_NR_rt_sigtimedwait: 9134 { 9135 sigset_t set; 9136 struct timespec uts, *puts; 9137 siginfo_t uinfo; 9138 9139 if (arg4 != sizeof(target_sigset_t)) { 9140 ret = -TARGET_EINVAL; 9141 break; 9142 } 9143 9144 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1))) 9145 goto efault; 9146 target_to_host_sigset(&set, p); 9147 unlock_user(p, arg1, 0); 9148 if (arg3) { 9149 puts = &uts; 9150 target_to_host_timespec(puts, arg3); 9151 } else { 9152 puts = NULL; 9153 } 9154 ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts, 9155 SIGSET_T_SIZE)); 9156 if (!is_error(ret)) { 9157 if (arg2) { 9158 p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t), 9159 0); 9160 if (!p) { 9161 goto efault; 9162 } 9163 host_to_target_siginfo(p, &uinfo); 9164 unlock_user(p, arg2, sizeof(target_siginfo_t)); 9165 } 9166 ret = host_to_target_signal(ret); 9167 } 9168 } 9169 break; 9170 case TARGET_NR_rt_sigqueueinfo: 9171 { 9172 siginfo_t uinfo; 9173 9174 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1); 9175 if (!p) { 9176 goto efault; 9177 } 9178 target_to_host_siginfo(&uinfo, p); 9179 unlock_user(p, arg3, 0); 9180 ret = get_errno(sys_rt_sigqueueinfo(arg1, arg2, &uinfo)); 9181 } 9182 break; 9183 case TARGET_NR_rt_tgsigqueueinfo: 9184 { 9185 siginfo_t uinfo; 9186 9187 p = lock_user(VERIFY_READ, arg4, sizeof(target_siginfo_t), 1); 9188 if (!p) { 9189 goto efault; 9190 } 9191 target_to_host_siginfo(&uinfo, p); 9192 unlock_user(p, arg4, 0); 9193 ret = get_errno(sys_rt_tgsigqueueinfo(arg1, arg2, arg3, &uinfo)); 9194 } 9195 break; 9196 #ifdef TARGET_NR_sigreturn 9197 case TARGET_NR_sigreturn: 9198 if (block_signals()) { 9199 ret = -TARGET_ERESTARTSYS; 9200 } else { 9201 ret = do_sigreturn(cpu_env); 9202 } 9203 break; 9204 #endif 9205 case TARGET_NR_rt_sigreturn: 9206 if (block_signals()) { 9207 ret = -TARGET_ERESTARTSYS; 9208 } else { 9209 ret = do_rt_sigreturn(cpu_env); 9210 } 9211 break; 9212 case TARGET_NR_sethostname: 9213 if (!(p = lock_user_string(arg1))) 9214 goto efault; 9215 ret = get_errno(sethostname(p, arg2)); 9216 unlock_user(p, arg1, 0); 9217 break; 9218 case TARGET_NR_setrlimit: 9219 { 9220 int resource = target_to_host_resource(arg1); 9221 struct target_rlimit *target_rlim; 9222 struct rlimit rlim; 9223 if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1)) 9224 goto efault; 9225 rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur); 9226 rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max); 9227 unlock_user_struct(target_rlim, arg2, 0); 9228 ret = get_errno(setrlimit(resource, &rlim)); 9229 } 9230 break; 9231 case TARGET_NR_getrlimit: 9232 { 9233 int resource = target_to_host_resource(arg1); 9234 struct target_rlimit *target_rlim; 9235 struct rlimit rlim; 9236 9237 ret = get_errno(getrlimit(resource, &rlim)); 9238 if (!is_error(ret)) { 9239 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0)) 9240 goto efault; 9241 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur); 9242 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max); 9243 unlock_user_struct(target_rlim, arg2, 1); 9244 } 9245 } 9246 break; 9247 case TARGET_NR_getrusage: 9248 { 9249 struct rusage rusage; 9250 ret = get_errno(getrusage(arg1, &rusage)); 9251 if (!is_error(ret)) { 9252 ret = host_to_target_rusage(arg2, &rusage); 9253 } 9254 } 9255 break; 9256 case TARGET_NR_gettimeofday: 9257 { 9258 struct timeval tv; 9259 ret = get_errno(gettimeofday(&tv, NULL)); 9260 if (!is_error(ret)) { 9261 if (copy_to_user_timeval(arg1, &tv)) 9262 goto efault; 9263 } 9264 } 9265 break; 9266 case TARGET_NR_settimeofday: 9267 { 9268 struct timeval tv, *ptv = NULL; 9269 struct timezone tz, *ptz = NULL; 9270 9271 if (arg1) { 9272 if (copy_from_user_timeval(&tv, arg1)) { 9273 goto efault; 9274 } 9275 ptv = &tv; 9276 } 9277 9278 if (arg2) { 9279 if (copy_from_user_timezone(&tz, arg2)) { 9280 goto efault; 9281 } 9282 ptz = &tz; 9283 } 9284 9285 ret = get_errno(settimeofday(ptv, ptz)); 9286 } 9287 break; 9288 #if defined(TARGET_NR_select) 9289 case TARGET_NR_select: 9290 #if defined(TARGET_WANT_NI_OLD_SELECT) 9291 /* some architectures used to have old_select here 9292 * but now ENOSYS it. 9293 */ 9294 ret = -TARGET_ENOSYS; 9295 #elif defined(TARGET_WANT_OLD_SYS_SELECT) 9296 ret = do_old_select(arg1); 9297 #else 9298 ret = do_select(arg1, arg2, arg3, arg4, arg5); 9299 #endif 9300 break; 9301 #endif 9302 #ifdef TARGET_NR_pselect6 9303 case TARGET_NR_pselect6: 9304 { 9305 abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr; 9306 fd_set rfds, wfds, efds; 9307 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr; 9308 struct timespec ts, *ts_ptr; 9309 9310 /* 9311 * The 6th arg is actually two args smashed together, 9312 * so we cannot use the C library. 9313 */ 9314 sigset_t set; 9315 struct { 9316 sigset_t *set; 9317 size_t size; 9318 } sig, *sig_ptr; 9319 9320 abi_ulong arg_sigset, arg_sigsize, *arg7; 9321 target_sigset_t *target_sigset; 9322 9323 n = arg1; 9324 rfd_addr = arg2; 9325 wfd_addr = arg3; 9326 efd_addr = arg4; 9327 ts_addr = arg5; 9328 9329 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n); 9330 if (ret) { 9331 goto fail; 9332 } 9333 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n); 9334 if (ret) { 9335 goto fail; 9336 } 9337 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n); 9338 if (ret) { 9339 goto fail; 9340 } 9341 9342 /* 9343 * This takes a timespec, and not a timeval, so we cannot 9344 * use the do_select() helper ... 9345 */ 9346 if (ts_addr) { 9347 if (target_to_host_timespec(&ts, ts_addr)) { 9348 goto efault; 9349 } 9350 ts_ptr = &ts; 9351 } else { 9352 ts_ptr = NULL; 9353 } 9354 9355 /* Extract the two packed args for the sigset */ 9356 if (arg6) { 9357 sig_ptr = &sig; 9358 sig.size = SIGSET_T_SIZE; 9359 9360 arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1); 9361 if (!arg7) { 9362 goto efault; 9363 } 9364 arg_sigset = tswapal(arg7[0]); 9365 arg_sigsize = tswapal(arg7[1]); 9366 unlock_user(arg7, arg6, 0); 9367 9368 if (arg_sigset) { 9369 sig.set = &set; 9370 if (arg_sigsize != sizeof(*target_sigset)) { 9371 /* Like the kernel, we enforce correct size sigsets */ 9372 ret = -TARGET_EINVAL; 9373 goto fail; 9374 } 9375 target_sigset = lock_user(VERIFY_READ, arg_sigset, 9376 sizeof(*target_sigset), 1); 9377 if (!target_sigset) { 9378 goto efault; 9379 } 9380 target_to_host_sigset(&set, target_sigset); 9381 unlock_user(target_sigset, arg_sigset, 0); 9382 } else { 9383 sig.set = NULL; 9384 } 9385 } else { 9386 sig_ptr = NULL; 9387 } 9388 9389 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr, 9390 ts_ptr, sig_ptr)); 9391 9392 if (!is_error(ret)) { 9393 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) 9394 goto efault; 9395 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) 9396 goto efault; 9397 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) 9398 goto efault; 9399 9400 if (ts_addr && host_to_target_timespec(ts_addr, &ts)) 9401 goto efault; 9402 } 9403 } 9404 break; 9405 #endif 9406 #ifdef TARGET_NR_symlink 9407 case TARGET_NR_symlink: 9408 { 9409 void *p2; 9410 p = lock_user_string(arg1); 9411 p2 = lock_user_string(arg2); 9412 if (!p || !p2) 9413 ret = -TARGET_EFAULT; 9414 else 9415 ret = get_errno(symlink(p, p2)); 9416 unlock_user(p2, arg2, 0); 9417 unlock_user(p, arg1, 0); 9418 } 9419 break; 9420 #endif 9421 #if defined(TARGET_NR_symlinkat) 9422 case TARGET_NR_symlinkat: 9423 { 9424 void *p2; 9425 p = lock_user_string(arg1); 9426 p2 = lock_user_string(arg3); 9427 if (!p || !p2) 9428 ret = -TARGET_EFAULT; 9429 else 9430 ret = get_errno(symlinkat(p, arg2, p2)); 9431 unlock_user(p2, arg3, 0); 9432 unlock_user(p, arg1, 0); 9433 } 9434 break; 9435 #endif 9436 #ifdef TARGET_NR_oldlstat 9437 case TARGET_NR_oldlstat: 9438 goto unimplemented; 9439 #endif 9440 #ifdef TARGET_NR_readlink 9441 case TARGET_NR_readlink: 9442 { 9443 void *p2; 9444 p = lock_user_string(arg1); 9445 p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0); 9446 if (!p || !p2) { 9447 ret = -TARGET_EFAULT; 9448 } else if (!arg3) { 9449 /* Short circuit this for the magic exe check. */ 9450 ret = -TARGET_EINVAL; 9451 } else if (is_proc_myself((const char *)p, "exe")) { 9452 char real[PATH_MAX], *temp; 9453 temp = realpath(exec_path, real); 9454 /* Return value is # of bytes that we wrote to the buffer. */ 9455 if (temp == NULL) { 9456 ret = get_errno(-1); 9457 } else { 9458 /* Don't worry about sign mismatch as earlier mapping 9459 * logic would have thrown a bad address error. */ 9460 ret = MIN(strlen(real), arg3); 9461 /* We cannot NUL terminate the string. */ 9462 memcpy(p2, real, ret); 9463 } 9464 } else { 9465 ret = get_errno(readlink(path(p), p2, arg3)); 9466 } 9467 unlock_user(p2, arg2, ret); 9468 unlock_user(p, arg1, 0); 9469 } 9470 break; 9471 #endif 9472 #if defined(TARGET_NR_readlinkat) 9473 case TARGET_NR_readlinkat: 9474 { 9475 void *p2; 9476 p = lock_user_string(arg2); 9477 p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0); 9478 if (!p || !p2) { 9479 ret = -TARGET_EFAULT; 9480 } else if (is_proc_myself((const char *)p, "exe")) { 9481 char real[PATH_MAX], *temp; 9482 temp = realpath(exec_path, real); 9483 ret = temp == NULL ? get_errno(-1) : strlen(real) ; 9484 snprintf((char *)p2, arg4, "%s", real); 9485 } else { 9486 ret = get_errno(readlinkat(arg1, path(p), p2, arg4)); 9487 } 9488 unlock_user(p2, arg3, ret); 9489 unlock_user(p, arg2, 0); 9490 } 9491 break; 9492 #endif 9493 #ifdef TARGET_NR_uselib 9494 case TARGET_NR_uselib: 9495 goto unimplemented; 9496 #endif 9497 #ifdef TARGET_NR_swapon 9498 case TARGET_NR_swapon: 9499 if (!(p = lock_user_string(arg1))) 9500 goto efault; 9501 ret = get_errno(swapon(p, arg2)); 9502 unlock_user(p, arg1, 0); 9503 break; 9504 #endif 9505 case TARGET_NR_reboot: 9506 if (arg3 == LINUX_REBOOT_CMD_RESTART2) { 9507 /* arg4 must be ignored in all other cases */ 9508 p = lock_user_string(arg4); 9509 if (!p) { 9510 goto efault; 9511 } 9512 ret = get_errno(reboot(arg1, arg2, arg3, p)); 9513 unlock_user(p, arg4, 0); 9514 } else { 9515 ret = get_errno(reboot(arg1, arg2, arg3, NULL)); 9516 } 9517 break; 9518 #ifdef TARGET_NR_readdir 9519 case TARGET_NR_readdir: 9520 goto unimplemented; 9521 #endif 9522 #ifdef TARGET_NR_mmap 9523 case TARGET_NR_mmap: 9524 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \ 9525 (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \ 9526 defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \ 9527 || defined(TARGET_S390X) 9528 { 9529 abi_ulong *v; 9530 abi_ulong v1, v2, v3, v4, v5, v6; 9531 if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1))) 9532 goto efault; 9533 v1 = tswapal(v[0]); 9534 v2 = tswapal(v[1]); 9535 v3 = tswapal(v[2]); 9536 v4 = tswapal(v[3]); 9537 v5 = tswapal(v[4]); 9538 v6 = tswapal(v[5]); 9539 unlock_user(v, arg1, 0); 9540 ret = get_errno(target_mmap(v1, v2, v3, 9541 target_to_host_bitmask(v4, mmap_flags_tbl), 9542 v5, v6)); 9543 } 9544 #else 9545 ret = get_errno(target_mmap(arg1, arg2, arg3, 9546 target_to_host_bitmask(arg4, mmap_flags_tbl), 9547 arg5, 9548 arg6)); 9549 #endif 9550 break; 9551 #endif 9552 #ifdef TARGET_NR_mmap2 9553 case TARGET_NR_mmap2: 9554 #ifndef MMAP_SHIFT 9555 #define MMAP_SHIFT 12 9556 #endif 9557 ret = get_errno(target_mmap(arg1, arg2, arg3, 9558 target_to_host_bitmask(arg4, mmap_flags_tbl), 9559 arg5, 9560 arg6 << MMAP_SHIFT)); 9561 break; 9562 #endif 9563 case TARGET_NR_munmap: 9564 ret = get_errno(target_munmap(arg1, arg2)); 9565 break; 9566 case TARGET_NR_mprotect: 9567 { 9568 TaskState *ts = cpu->opaque; 9569 /* Special hack to detect libc making the stack executable. */ 9570 if ((arg3 & PROT_GROWSDOWN) 9571 && arg1 >= ts->info->stack_limit 9572 && arg1 <= ts->info->start_stack) { 9573 arg3 &= ~PROT_GROWSDOWN; 9574 arg2 = arg2 + arg1 - ts->info->stack_limit; 9575 arg1 = ts->info->stack_limit; 9576 } 9577 } 9578 ret = get_errno(target_mprotect(arg1, arg2, arg3)); 9579 break; 9580 #ifdef TARGET_NR_mremap 9581 case TARGET_NR_mremap: 9582 ret = get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5)); 9583 break; 9584 #endif 9585 /* ??? msync/mlock/munlock are broken for softmmu. */ 9586 #ifdef TARGET_NR_msync 9587 case TARGET_NR_msync: 9588 ret = get_errno(msync(g2h(arg1), arg2, arg3)); 9589 break; 9590 #endif 9591 #ifdef TARGET_NR_mlock 9592 case TARGET_NR_mlock: 9593 ret = get_errno(mlock(g2h(arg1), arg2)); 9594 break; 9595 #endif 9596 #ifdef TARGET_NR_munlock 9597 case TARGET_NR_munlock: 9598 ret = get_errno(munlock(g2h(arg1), arg2)); 9599 break; 9600 #endif 9601 #ifdef TARGET_NR_mlockall 9602 case TARGET_NR_mlockall: 9603 ret = get_errno(mlockall(target_to_host_mlockall_arg(arg1))); 9604 break; 9605 #endif 9606 #ifdef TARGET_NR_munlockall 9607 case TARGET_NR_munlockall: 9608 ret = get_errno(munlockall()); 9609 break; 9610 #endif 9611 case TARGET_NR_truncate: 9612 if (!(p = lock_user_string(arg1))) 9613 goto efault; 9614 ret = get_errno(truncate(p, arg2)); 9615 unlock_user(p, arg1, 0); 9616 break; 9617 case TARGET_NR_ftruncate: 9618 ret = get_errno(ftruncate(arg1, arg2)); 9619 break; 9620 case TARGET_NR_fchmod: 9621 ret = get_errno(fchmod(arg1, arg2)); 9622 break; 9623 #if defined(TARGET_NR_fchmodat) 9624 case TARGET_NR_fchmodat: 9625 if (!(p = lock_user_string(arg2))) 9626 goto efault; 9627 ret = get_errno(fchmodat(arg1, p, arg3, 0)); 9628 unlock_user(p, arg2, 0); 9629 break; 9630 #endif 9631 case TARGET_NR_getpriority: 9632 /* Note that negative values are valid for getpriority, so we must 9633 differentiate based on errno settings. */ 9634 errno = 0; 9635 ret = getpriority(arg1, arg2); 9636 if (ret == -1 && errno != 0) { 9637 ret = -host_to_target_errno(errno); 9638 break; 9639 } 9640 #ifdef TARGET_ALPHA 9641 /* Return value is the unbiased priority. Signal no error. */ 9642 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0; 9643 #else 9644 /* Return value is a biased priority to avoid negative numbers. */ 9645 ret = 20 - ret; 9646 #endif 9647 break; 9648 case TARGET_NR_setpriority: 9649 ret = get_errno(setpriority(arg1, arg2, arg3)); 9650 break; 9651 #ifdef TARGET_NR_profil 9652 case TARGET_NR_profil: 9653 goto unimplemented; 9654 #endif 9655 case TARGET_NR_statfs: 9656 if (!(p = lock_user_string(arg1))) 9657 goto efault; 9658 ret = get_errno(statfs(path(p), &stfs)); 9659 unlock_user(p, arg1, 0); 9660 convert_statfs: 9661 if (!is_error(ret)) { 9662 struct target_statfs *target_stfs; 9663 9664 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0)) 9665 goto efault; 9666 __put_user(stfs.f_type, &target_stfs->f_type); 9667 __put_user(stfs.f_bsize, &target_stfs->f_bsize); 9668 __put_user(stfs.f_blocks, &target_stfs->f_blocks); 9669 __put_user(stfs.f_bfree, &target_stfs->f_bfree); 9670 __put_user(stfs.f_bavail, &target_stfs->f_bavail); 9671 __put_user(stfs.f_files, &target_stfs->f_files); 9672 __put_user(stfs.f_ffree, &target_stfs->f_ffree); 9673 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]); 9674 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]); 9675 __put_user(stfs.f_namelen, &target_stfs->f_namelen); 9676 __put_user(stfs.f_frsize, &target_stfs->f_frsize); 9677 #ifdef _STATFS_F_FLAGS 9678 __put_user(stfs.f_flags, &target_stfs->f_flags); 9679 #else 9680 __put_user(0, &target_stfs->f_flags); 9681 #endif 9682 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare)); 9683 unlock_user_struct(target_stfs, arg2, 1); 9684 } 9685 break; 9686 case TARGET_NR_fstatfs: 9687 ret = get_errno(fstatfs(arg1, &stfs)); 9688 goto convert_statfs; 9689 #ifdef TARGET_NR_statfs64 9690 case TARGET_NR_statfs64: 9691 if (!(p = lock_user_string(arg1))) 9692 goto efault; 9693 ret = get_errno(statfs(path(p), &stfs)); 9694 unlock_user(p, arg1, 0); 9695 convert_statfs64: 9696 if (!is_error(ret)) { 9697 struct target_statfs64 *target_stfs; 9698 9699 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0)) 9700 goto efault; 9701 __put_user(stfs.f_type, &target_stfs->f_type); 9702 __put_user(stfs.f_bsize, &target_stfs->f_bsize); 9703 __put_user(stfs.f_blocks, &target_stfs->f_blocks); 9704 __put_user(stfs.f_bfree, &target_stfs->f_bfree); 9705 __put_user(stfs.f_bavail, &target_stfs->f_bavail); 9706 __put_user(stfs.f_files, &target_stfs->f_files); 9707 __put_user(stfs.f_ffree, &target_stfs->f_ffree); 9708 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]); 9709 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]); 9710 __put_user(stfs.f_namelen, &target_stfs->f_namelen); 9711 __put_user(stfs.f_frsize, &target_stfs->f_frsize); 9712 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare)); 9713 unlock_user_struct(target_stfs, arg3, 1); 9714 } 9715 break; 9716 case TARGET_NR_fstatfs64: 9717 ret = get_errno(fstatfs(arg1, &stfs)); 9718 goto convert_statfs64; 9719 #endif 9720 #ifdef TARGET_NR_ioperm 9721 case TARGET_NR_ioperm: 9722 goto unimplemented; 9723 #endif 9724 #ifdef TARGET_NR_socketcall 9725 case TARGET_NR_socketcall: 9726 ret = do_socketcall(arg1, arg2); 9727 break; 9728 #endif 9729 #ifdef TARGET_NR_accept 9730 case TARGET_NR_accept: 9731 ret = do_accept4(arg1, arg2, arg3, 0); 9732 break; 9733 #endif 9734 #ifdef TARGET_NR_accept4 9735 case TARGET_NR_accept4: 9736 ret = do_accept4(arg1, arg2, arg3, arg4); 9737 break; 9738 #endif 9739 #ifdef TARGET_NR_bind 9740 case TARGET_NR_bind: 9741 ret = do_bind(arg1, arg2, arg3); 9742 break; 9743 #endif 9744 #ifdef TARGET_NR_connect 9745 case TARGET_NR_connect: 9746 ret = do_connect(arg1, arg2, arg3); 9747 break; 9748 #endif 9749 #ifdef TARGET_NR_getpeername 9750 case TARGET_NR_getpeername: 9751 ret = do_getpeername(arg1, arg2, arg3); 9752 break; 9753 #endif 9754 #ifdef TARGET_NR_getsockname 9755 case TARGET_NR_getsockname: 9756 ret = do_getsockname(arg1, arg2, arg3); 9757 break; 9758 #endif 9759 #ifdef TARGET_NR_getsockopt 9760 case TARGET_NR_getsockopt: 9761 ret = do_getsockopt(arg1, arg2, arg3, arg4, arg5); 9762 break; 9763 #endif 9764 #ifdef TARGET_NR_listen 9765 case TARGET_NR_listen: 9766 ret = get_errno(listen(arg1, arg2)); 9767 break; 9768 #endif 9769 #ifdef TARGET_NR_recv 9770 case TARGET_NR_recv: 9771 ret = do_recvfrom(arg1, arg2, arg3, arg4, 0, 0); 9772 break; 9773 #endif 9774 #ifdef TARGET_NR_recvfrom 9775 case TARGET_NR_recvfrom: 9776 ret = do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6); 9777 break; 9778 #endif 9779 #ifdef TARGET_NR_recvmsg 9780 case TARGET_NR_recvmsg: 9781 ret = do_sendrecvmsg(arg1, arg2, arg3, 0); 9782 break; 9783 #endif 9784 #ifdef TARGET_NR_send 9785 case TARGET_NR_send: 9786 ret = do_sendto(arg1, arg2, arg3, arg4, 0, 0); 9787 break; 9788 #endif 9789 #ifdef TARGET_NR_sendmsg 9790 case TARGET_NR_sendmsg: 9791 ret = do_sendrecvmsg(arg1, arg2, arg3, 1); 9792 break; 9793 #endif 9794 #ifdef TARGET_NR_sendmmsg 9795 case TARGET_NR_sendmmsg: 9796 ret = do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1); 9797 break; 9798 case TARGET_NR_recvmmsg: 9799 ret = do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0); 9800 break; 9801 #endif 9802 #ifdef TARGET_NR_sendto 9803 case TARGET_NR_sendto: 9804 ret = do_sendto(arg1, arg2, arg3, arg4, arg5, arg6); 9805 break; 9806 #endif 9807 #ifdef TARGET_NR_shutdown 9808 case TARGET_NR_shutdown: 9809 ret = get_errno(shutdown(arg1, arg2)); 9810 break; 9811 #endif 9812 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom) 9813 case TARGET_NR_getrandom: 9814 p = lock_user(VERIFY_WRITE, arg1, arg2, 0); 9815 if (!p) { 9816 goto efault; 9817 } 9818 ret = get_errno(getrandom(p, arg2, arg3)); 9819 unlock_user(p, arg1, ret); 9820 break; 9821 #endif 9822 #ifdef TARGET_NR_socket 9823 case TARGET_NR_socket: 9824 ret = do_socket(arg1, arg2, arg3); 9825 break; 9826 #endif 9827 #ifdef TARGET_NR_socketpair 9828 case TARGET_NR_socketpair: 9829 ret = do_socketpair(arg1, arg2, arg3, arg4); 9830 break; 9831 #endif 9832 #ifdef TARGET_NR_setsockopt 9833 case TARGET_NR_setsockopt: 9834 ret = do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5); 9835 break; 9836 #endif 9837 #if defined(TARGET_NR_syslog) 9838 case TARGET_NR_syslog: 9839 { 9840 int len = arg2; 9841 9842 switch (arg1) { 9843 case TARGET_SYSLOG_ACTION_CLOSE: /* Close log */ 9844 case TARGET_SYSLOG_ACTION_OPEN: /* Open log */ 9845 case TARGET_SYSLOG_ACTION_CLEAR: /* Clear ring buffer */ 9846 case TARGET_SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging */ 9847 case TARGET_SYSLOG_ACTION_CONSOLE_ON: /* Enable logging */ 9848 case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL: /* Set messages level */ 9849 case TARGET_SYSLOG_ACTION_SIZE_UNREAD: /* Number of chars */ 9850 case TARGET_SYSLOG_ACTION_SIZE_BUFFER: /* Size of the buffer */ 9851 { 9852 ret = get_errno(sys_syslog((int)arg1, NULL, (int)arg3)); 9853 } 9854 break; 9855 case TARGET_SYSLOG_ACTION_READ: /* Read from log */ 9856 case TARGET_SYSLOG_ACTION_READ_CLEAR: /* Read/clear msgs */ 9857 case TARGET_SYSLOG_ACTION_READ_ALL: /* Read last messages */ 9858 { 9859 ret = -TARGET_EINVAL; 9860 if (len < 0) { 9861 goto fail; 9862 } 9863 ret = 0; 9864 if (len == 0) { 9865 break; 9866 } 9867 p = lock_user(VERIFY_WRITE, arg2, arg3, 0); 9868 if (!p) { 9869 ret = -TARGET_EFAULT; 9870 goto fail; 9871 } 9872 ret = get_errno(sys_syslog((int)arg1, p, (int)arg3)); 9873 unlock_user(p, arg2, arg3); 9874 } 9875 break; 9876 default: 9877 ret = -EINVAL; 9878 break; 9879 } 9880 } 9881 break; 9882 #endif 9883 case TARGET_NR_setitimer: 9884 { 9885 struct itimerval value, ovalue, *pvalue; 9886 9887 if (arg2) { 9888 pvalue = &value; 9889 if (copy_from_user_timeval(&pvalue->it_interval, arg2) 9890 || copy_from_user_timeval(&pvalue->it_value, 9891 arg2 + sizeof(struct target_timeval))) 9892 goto efault; 9893 } else { 9894 pvalue = NULL; 9895 } 9896 ret = get_errno(setitimer(arg1, pvalue, &ovalue)); 9897 if (!is_error(ret) && arg3) { 9898 if (copy_to_user_timeval(arg3, 9899 &ovalue.it_interval) 9900 || copy_to_user_timeval(arg3 + sizeof(struct target_timeval), 9901 &ovalue.it_value)) 9902 goto efault; 9903 } 9904 } 9905 break; 9906 case TARGET_NR_getitimer: 9907 { 9908 struct itimerval value; 9909 9910 ret = get_errno(getitimer(arg1, &value)); 9911 if (!is_error(ret) && arg2) { 9912 if (copy_to_user_timeval(arg2, 9913 &value.it_interval) 9914 || copy_to_user_timeval(arg2 + sizeof(struct target_timeval), 9915 &value.it_value)) 9916 goto efault; 9917 } 9918 } 9919 break; 9920 #ifdef TARGET_NR_stat 9921 case TARGET_NR_stat: 9922 if (!(p = lock_user_string(arg1))) 9923 goto efault; 9924 ret = get_errno(stat(path(p), &st)); 9925 unlock_user(p, arg1, 0); 9926 goto do_stat; 9927 #endif 9928 #ifdef TARGET_NR_lstat 9929 case TARGET_NR_lstat: 9930 if (!(p = lock_user_string(arg1))) 9931 goto efault; 9932 ret = get_errno(lstat(path(p), &st)); 9933 unlock_user(p, arg1, 0); 9934 goto do_stat; 9935 #endif 9936 case TARGET_NR_fstat: 9937 { 9938 ret = get_errno(fstat(arg1, &st)); 9939 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat) 9940 do_stat: 9941 #endif 9942 if (!is_error(ret)) { 9943 struct target_stat *target_st; 9944 9945 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0)) 9946 goto efault; 9947 memset(target_st, 0, sizeof(*target_st)); 9948 __put_user(st.st_dev, &target_st->st_dev); 9949 __put_user(st.st_ino, &target_st->st_ino); 9950 __put_user(st.st_mode, &target_st->st_mode); 9951 __put_user(st.st_uid, &target_st->st_uid); 9952 __put_user(st.st_gid, &target_st->st_gid); 9953 __put_user(st.st_nlink, &target_st->st_nlink); 9954 __put_user(st.st_rdev, &target_st->st_rdev); 9955 __put_user(st.st_size, &target_st->st_size); 9956 __put_user(st.st_blksize, &target_st->st_blksize); 9957 __put_user(st.st_blocks, &target_st->st_blocks); 9958 __put_user(st.st_atime, &target_st->target_st_atime); 9959 __put_user(st.st_mtime, &target_st->target_st_mtime); 9960 __put_user(st.st_ctime, &target_st->target_st_ctime); 9961 unlock_user_struct(target_st, arg2, 1); 9962 } 9963 } 9964 break; 9965 #ifdef TARGET_NR_olduname 9966 case TARGET_NR_olduname: 9967 goto unimplemented; 9968 #endif 9969 #ifdef TARGET_NR_iopl 9970 case TARGET_NR_iopl: 9971 goto unimplemented; 9972 #endif 9973 case TARGET_NR_vhangup: 9974 ret = get_errno(vhangup()); 9975 break; 9976 #ifdef TARGET_NR_idle 9977 case TARGET_NR_idle: 9978 goto unimplemented; 9979 #endif 9980 #ifdef TARGET_NR_syscall 9981 case TARGET_NR_syscall: 9982 ret = do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5, 9983 arg6, arg7, arg8, 0); 9984 break; 9985 #endif 9986 case TARGET_NR_wait4: 9987 { 9988 int status; 9989 abi_long status_ptr = arg2; 9990 struct rusage rusage, *rusage_ptr; 9991 abi_ulong target_rusage = arg4; 9992 abi_long rusage_err; 9993 if (target_rusage) 9994 rusage_ptr = &rusage; 9995 else 9996 rusage_ptr = NULL; 9997 ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr)); 9998 if (!is_error(ret)) { 9999 if (status_ptr && ret) { 10000 status = host_to_target_waitstatus(status); 10001 if (put_user_s32(status, status_ptr)) 10002 goto efault; 10003 } 10004 if (target_rusage) { 10005 rusage_err = host_to_target_rusage(target_rusage, &rusage); 10006 if (rusage_err) { 10007 ret = rusage_err; 10008 } 10009 } 10010 } 10011 } 10012 break; 10013 #ifdef TARGET_NR_swapoff 10014 case TARGET_NR_swapoff: 10015 if (!(p = lock_user_string(arg1))) 10016 goto efault; 10017 ret = get_errno(swapoff(p)); 10018 unlock_user(p, arg1, 0); 10019 break; 10020 #endif 10021 case TARGET_NR_sysinfo: 10022 { 10023 struct target_sysinfo *target_value; 10024 struct sysinfo value; 10025 ret = get_errno(sysinfo(&value)); 10026 if (!is_error(ret) && arg1) 10027 { 10028 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0)) 10029 goto efault; 10030 __put_user(value.uptime, &target_value->uptime); 10031 __put_user(value.loads[0], &target_value->loads[0]); 10032 __put_user(value.loads[1], &target_value->loads[1]); 10033 __put_user(value.loads[2], &target_value->loads[2]); 10034 __put_user(value.totalram, &target_value->totalram); 10035 __put_user(value.freeram, &target_value->freeram); 10036 __put_user(value.sharedram, &target_value->sharedram); 10037 __put_user(value.bufferram, &target_value->bufferram); 10038 __put_user(value.totalswap, &target_value->totalswap); 10039 __put_user(value.freeswap, &target_value->freeswap); 10040 __put_user(value.procs, &target_value->procs); 10041 __put_user(value.totalhigh, &target_value->totalhigh); 10042 __put_user(value.freehigh, &target_value->freehigh); 10043 __put_user(value.mem_unit, &target_value->mem_unit); 10044 unlock_user_struct(target_value, arg1, 1); 10045 } 10046 } 10047 break; 10048 #ifdef TARGET_NR_ipc 10049 case TARGET_NR_ipc: 10050 ret = do_ipc(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6); 10051 break; 10052 #endif 10053 #ifdef TARGET_NR_semget 10054 case TARGET_NR_semget: 10055 ret = get_errno(semget(arg1, arg2, arg3)); 10056 break; 10057 #endif 10058 #ifdef TARGET_NR_semop 10059 case TARGET_NR_semop: 10060 ret = do_semop(arg1, arg2, arg3); 10061 break; 10062 #endif 10063 #ifdef TARGET_NR_semctl 10064 case TARGET_NR_semctl: 10065 ret = do_semctl(arg1, arg2, arg3, arg4); 10066 break; 10067 #endif 10068 #ifdef TARGET_NR_msgctl 10069 case TARGET_NR_msgctl: 10070 ret = do_msgctl(arg1, arg2, arg3); 10071 break; 10072 #endif 10073 #ifdef TARGET_NR_msgget 10074 case TARGET_NR_msgget: 10075 ret = get_errno(msgget(arg1, arg2)); 10076 break; 10077 #endif 10078 #ifdef TARGET_NR_msgrcv 10079 case TARGET_NR_msgrcv: 10080 ret = do_msgrcv(arg1, arg2, arg3, arg4, arg5); 10081 break; 10082 #endif 10083 #ifdef TARGET_NR_msgsnd 10084 case TARGET_NR_msgsnd: 10085 ret = do_msgsnd(arg1, arg2, arg3, arg4); 10086 break; 10087 #endif 10088 #ifdef TARGET_NR_shmget 10089 case TARGET_NR_shmget: 10090 ret = get_errno(shmget(arg1, arg2, arg3)); 10091 break; 10092 #endif 10093 #ifdef TARGET_NR_shmctl 10094 case TARGET_NR_shmctl: 10095 ret = do_shmctl(arg1, arg2, arg3); 10096 break; 10097 #endif 10098 #ifdef TARGET_NR_shmat 10099 case TARGET_NR_shmat: 10100 ret = do_shmat(cpu_env, arg1, arg2, arg3); 10101 break; 10102 #endif 10103 #ifdef TARGET_NR_shmdt 10104 case TARGET_NR_shmdt: 10105 ret = do_shmdt(arg1); 10106 break; 10107 #endif 10108 case TARGET_NR_fsync: 10109 ret = get_errno(fsync(arg1)); 10110 break; 10111 case TARGET_NR_clone: 10112 /* Linux manages to have three different orderings for its 10113 * arguments to clone(); the BACKWARDS and BACKWARDS2 defines 10114 * match the kernel's CONFIG_CLONE_* settings. 10115 * Microblaze is further special in that it uses a sixth 10116 * implicit argument to clone for the TLS pointer. 10117 */ 10118 #if defined(TARGET_MICROBLAZE) 10119 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5)); 10120 #elif defined(TARGET_CLONE_BACKWARDS) 10121 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5)); 10122 #elif defined(TARGET_CLONE_BACKWARDS2) 10123 ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4)); 10124 #else 10125 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4)); 10126 #endif 10127 break; 10128 #ifdef __NR_exit_group 10129 /* new thread calls */ 10130 case TARGET_NR_exit_group: 10131 preexit_cleanup(cpu_env, arg1); 10132 ret = get_errno(exit_group(arg1)); 10133 break; 10134 #endif 10135 case TARGET_NR_setdomainname: 10136 if (!(p = lock_user_string(arg1))) 10137 goto efault; 10138 ret = get_errno(setdomainname(p, arg2)); 10139 unlock_user(p, arg1, 0); 10140 break; 10141 case TARGET_NR_uname: 10142 /* no need to transcode because we use the linux syscall */ 10143 { 10144 struct new_utsname * buf; 10145 10146 if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0)) 10147 goto efault; 10148 ret = get_errno(sys_uname(buf)); 10149 if (!is_error(ret)) { 10150 /* Overwrite the native machine name with whatever is being 10151 emulated. */ 10152 g_strlcpy(buf->machine, cpu_to_uname_machine(cpu_env), 10153 sizeof(buf->machine)); 10154 /* Allow the user to override the reported release. */ 10155 if (qemu_uname_release && *qemu_uname_release) { 10156 g_strlcpy(buf->release, qemu_uname_release, 10157 sizeof(buf->release)); 10158 } 10159 } 10160 unlock_user_struct(buf, arg1, 1); 10161 } 10162 break; 10163 #ifdef TARGET_I386 10164 case TARGET_NR_modify_ldt: 10165 ret = do_modify_ldt(cpu_env, arg1, arg2, arg3); 10166 break; 10167 #if !defined(TARGET_X86_64) 10168 case TARGET_NR_vm86old: 10169 goto unimplemented; 10170 case TARGET_NR_vm86: 10171 ret = do_vm86(cpu_env, arg1, arg2); 10172 break; 10173 #endif 10174 #endif 10175 case TARGET_NR_adjtimex: 10176 { 10177 struct timex host_buf; 10178 10179 if (target_to_host_timex(&host_buf, arg1) != 0) { 10180 goto efault; 10181 } 10182 ret = get_errno(adjtimex(&host_buf)); 10183 if (!is_error(ret)) { 10184 if (host_to_target_timex(arg1, &host_buf) != 0) { 10185 goto efault; 10186 } 10187 } 10188 } 10189 break; 10190 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME) 10191 case TARGET_NR_clock_adjtime: 10192 { 10193 struct timex htx, *phtx = &htx; 10194 10195 if (target_to_host_timex(phtx, arg2) != 0) { 10196 goto efault; 10197 } 10198 ret = get_errno(clock_adjtime(arg1, phtx)); 10199 if (!is_error(ret) && phtx) { 10200 if (host_to_target_timex(arg2, phtx) != 0) { 10201 goto efault; 10202 } 10203 } 10204 } 10205 break; 10206 #endif 10207 #ifdef TARGET_NR_create_module 10208 case TARGET_NR_create_module: 10209 #endif 10210 case TARGET_NR_init_module: 10211 case TARGET_NR_delete_module: 10212 #ifdef TARGET_NR_get_kernel_syms 10213 case TARGET_NR_get_kernel_syms: 10214 #endif 10215 goto unimplemented; 10216 case TARGET_NR_quotactl: 10217 goto unimplemented; 10218 case TARGET_NR_getpgid: 10219 ret = get_errno(getpgid(arg1)); 10220 break; 10221 case TARGET_NR_fchdir: 10222 ret = get_errno(fchdir(arg1)); 10223 break; 10224 #ifdef TARGET_NR_bdflush /* not on x86_64 */ 10225 case TARGET_NR_bdflush: 10226 goto unimplemented; 10227 #endif 10228 #ifdef TARGET_NR_sysfs 10229 case TARGET_NR_sysfs: 10230 goto unimplemented; 10231 #endif 10232 case TARGET_NR_personality: 10233 ret = get_errno(personality(arg1)); 10234 break; 10235 #ifdef TARGET_NR_afs_syscall 10236 case TARGET_NR_afs_syscall: 10237 goto unimplemented; 10238 #endif 10239 #ifdef TARGET_NR__llseek /* Not on alpha */ 10240 case TARGET_NR__llseek: 10241 { 10242 int64_t res; 10243 #if !defined(__NR_llseek) 10244 res = lseek(arg1, ((uint64_t)arg2 << 32) | (abi_ulong)arg3, arg5); 10245 if (res == -1) { 10246 ret = get_errno(res); 10247 } else { 10248 ret = 0; 10249 } 10250 #else 10251 ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5)); 10252 #endif 10253 if ((ret == 0) && put_user_s64(res, arg4)) { 10254 goto efault; 10255 } 10256 } 10257 break; 10258 #endif 10259 #ifdef TARGET_NR_getdents 10260 case TARGET_NR_getdents: 10261 #ifdef EMULATE_GETDENTS_WITH_GETDENTS 10262 #if TARGET_ABI_BITS == 32 && HOST_LONG_BITS == 64 10263 { 10264 struct target_dirent *target_dirp; 10265 struct linux_dirent *dirp; 10266 abi_long count = arg3; 10267 10268 dirp = g_try_malloc(count); 10269 if (!dirp) { 10270 ret = -TARGET_ENOMEM; 10271 goto fail; 10272 } 10273 10274 ret = get_errno(sys_getdents(arg1, dirp, count)); 10275 if (!is_error(ret)) { 10276 struct linux_dirent *de; 10277 struct target_dirent *tde; 10278 int len = ret; 10279 int reclen, treclen; 10280 int count1, tnamelen; 10281 10282 count1 = 0; 10283 de = dirp; 10284 if (!(target_dirp = lock_user(VERIFY_WRITE, arg2, count, 0))) 10285 goto efault; 10286 tde = target_dirp; 10287 while (len > 0) { 10288 reclen = de->d_reclen; 10289 tnamelen = reclen - offsetof(struct linux_dirent, d_name); 10290 assert(tnamelen >= 0); 10291 treclen = tnamelen + offsetof(struct target_dirent, d_name); 10292 assert(count1 + treclen <= count); 10293 tde->d_reclen = tswap16(treclen); 10294 tde->d_ino = tswapal(de->d_ino); 10295 tde->d_off = tswapal(de->d_off); 10296 memcpy(tde->d_name, de->d_name, tnamelen); 10297 de = (struct linux_dirent *)((char *)de + reclen); 10298 len -= reclen; 10299 tde = (struct target_dirent *)((char *)tde + treclen); 10300 count1 += treclen; 10301 } 10302 ret = count1; 10303 unlock_user(target_dirp, arg2, ret); 10304 } 10305 g_free(dirp); 10306 } 10307 #else 10308 { 10309 struct linux_dirent *dirp; 10310 abi_long count = arg3; 10311 10312 if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0))) 10313 goto efault; 10314 ret = get_errno(sys_getdents(arg1, dirp, count)); 10315 if (!is_error(ret)) { 10316 struct linux_dirent *de; 10317 int len = ret; 10318 int reclen; 10319 de = dirp; 10320 while (len > 0) { 10321 reclen = de->d_reclen; 10322 if (reclen > len) 10323 break; 10324 de->d_reclen = tswap16(reclen); 10325 tswapls(&de->d_ino); 10326 tswapls(&de->d_off); 10327 de = (struct linux_dirent *)((char *)de + reclen); 10328 len -= reclen; 10329 } 10330 } 10331 unlock_user(dirp, arg2, ret); 10332 } 10333 #endif 10334 #else 10335 /* Implement getdents in terms of getdents64 */ 10336 { 10337 struct linux_dirent64 *dirp; 10338 abi_long count = arg3; 10339 10340 dirp = lock_user(VERIFY_WRITE, arg2, count, 0); 10341 if (!dirp) { 10342 goto efault; 10343 } 10344 ret = get_errno(sys_getdents64(arg1, dirp, count)); 10345 if (!is_error(ret)) { 10346 /* Convert the dirent64 structs to target dirent. We do this 10347 * in-place, since we can guarantee that a target_dirent is no 10348 * larger than a dirent64; however this means we have to be 10349 * careful to read everything before writing in the new format. 10350 */ 10351 struct linux_dirent64 *de; 10352 struct target_dirent *tde; 10353 int len = ret; 10354 int tlen = 0; 10355 10356 de = dirp; 10357 tde = (struct target_dirent *)dirp; 10358 while (len > 0) { 10359 int namelen, treclen; 10360 int reclen = de->d_reclen; 10361 uint64_t ino = de->d_ino; 10362 int64_t off = de->d_off; 10363 uint8_t type = de->d_type; 10364 10365 namelen = strlen(de->d_name); 10366 treclen = offsetof(struct target_dirent, d_name) 10367 + namelen + 2; 10368 treclen = QEMU_ALIGN_UP(treclen, sizeof(abi_long)); 10369 10370 memmove(tde->d_name, de->d_name, namelen + 1); 10371 tde->d_ino = tswapal(ino); 10372 tde->d_off = tswapal(off); 10373 tde->d_reclen = tswap16(treclen); 10374 /* The target_dirent type is in what was formerly a padding 10375 * byte at the end of the structure: 10376 */ 10377 *(((char *)tde) + treclen - 1) = type; 10378 10379 de = (struct linux_dirent64 *)((char *)de + reclen); 10380 tde = (struct target_dirent *)((char *)tde + treclen); 10381 len -= reclen; 10382 tlen += treclen; 10383 } 10384 ret = tlen; 10385 } 10386 unlock_user(dirp, arg2, ret); 10387 } 10388 #endif 10389 break; 10390 #endif /* TARGET_NR_getdents */ 10391 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64) 10392 case TARGET_NR_getdents64: 10393 { 10394 struct linux_dirent64 *dirp; 10395 abi_long count = arg3; 10396 if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0))) 10397 goto efault; 10398 ret = get_errno(sys_getdents64(arg1, dirp, count)); 10399 if (!is_error(ret)) { 10400 struct linux_dirent64 *de; 10401 int len = ret; 10402 int reclen; 10403 de = dirp; 10404 while (len > 0) { 10405 reclen = de->d_reclen; 10406 if (reclen > len) 10407 break; 10408 de->d_reclen = tswap16(reclen); 10409 tswap64s((uint64_t *)&de->d_ino); 10410 tswap64s((uint64_t *)&de->d_off); 10411 de = (struct linux_dirent64 *)((char *)de + reclen); 10412 len -= reclen; 10413 } 10414 } 10415 unlock_user(dirp, arg2, ret); 10416 } 10417 break; 10418 #endif /* TARGET_NR_getdents64 */ 10419 #if defined(TARGET_NR__newselect) 10420 case TARGET_NR__newselect: 10421 ret = do_select(arg1, arg2, arg3, arg4, arg5); 10422 break; 10423 #endif 10424 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll) 10425 # ifdef TARGET_NR_poll 10426 case TARGET_NR_poll: 10427 # endif 10428 # ifdef TARGET_NR_ppoll 10429 case TARGET_NR_ppoll: 10430 # endif 10431 { 10432 struct target_pollfd *target_pfd; 10433 unsigned int nfds = arg2; 10434 struct pollfd *pfd; 10435 unsigned int i; 10436 10437 pfd = NULL; 10438 target_pfd = NULL; 10439 if (nfds) { 10440 if (nfds > (INT_MAX / sizeof(struct target_pollfd))) { 10441 ret = -TARGET_EINVAL; 10442 break; 10443 } 10444 10445 target_pfd = lock_user(VERIFY_WRITE, arg1, 10446 sizeof(struct target_pollfd) * nfds, 1); 10447 if (!target_pfd) { 10448 goto efault; 10449 } 10450 10451 pfd = alloca(sizeof(struct pollfd) * nfds); 10452 for (i = 0; i < nfds; i++) { 10453 pfd[i].fd = tswap32(target_pfd[i].fd); 10454 pfd[i].events = tswap16(target_pfd[i].events); 10455 } 10456 } 10457 10458 switch (num) { 10459 # ifdef TARGET_NR_ppoll 10460 case TARGET_NR_ppoll: 10461 { 10462 struct timespec _timeout_ts, *timeout_ts = &_timeout_ts; 10463 target_sigset_t *target_set; 10464 sigset_t _set, *set = &_set; 10465 10466 if (arg3) { 10467 if (target_to_host_timespec(timeout_ts, arg3)) { 10468 unlock_user(target_pfd, arg1, 0); 10469 goto efault; 10470 } 10471 } else { 10472 timeout_ts = NULL; 10473 } 10474 10475 if (arg4) { 10476 if (arg5 != sizeof(target_sigset_t)) { 10477 unlock_user(target_pfd, arg1, 0); 10478 ret = -TARGET_EINVAL; 10479 break; 10480 } 10481 10482 target_set = lock_user(VERIFY_READ, arg4, sizeof(target_sigset_t), 1); 10483 if (!target_set) { 10484 unlock_user(target_pfd, arg1, 0); 10485 goto efault; 10486 } 10487 target_to_host_sigset(set, target_set); 10488 } else { 10489 set = NULL; 10490 } 10491 10492 ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts, 10493 set, SIGSET_T_SIZE)); 10494 10495 if (!is_error(ret) && arg3) { 10496 host_to_target_timespec(arg3, timeout_ts); 10497 } 10498 if (arg4) { 10499 unlock_user(target_set, arg4, 0); 10500 } 10501 break; 10502 } 10503 # endif 10504 # ifdef TARGET_NR_poll 10505 case TARGET_NR_poll: 10506 { 10507 struct timespec ts, *pts; 10508 10509 if (arg3 >= 0) { 10510 /* Convert ms to secs, ns */ 10511 ts.tv_sec = arg3 / 1000; 10512 ts.tv_nsec = (arg3 % 1000) * 1000000LL; 10513 pts = &ts; 10514 } else { 10515 /* -ve poll() timeout means "infinite" */ 10516 pts = NULL; 10517 } 10518 ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0)); 10519 break; 10520 } 10521 # endif 10522 default: 10523 g_assert_not_reached(); 10524 } 10525 10526 if (!is_error(ret)) { 10527 for(i = 0; i < nfds; i++) { 10528 target_pfd[i].revents = tswap16(pfd[i].revents); 10529 } 10530 } 10531 unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds); 10532 } 10533 break; 10534 #endif 10535 case TARGET_NR_flock: 10536 /* NOTE: the flock constant seems to be the same for every 10537 Linux platform */ 10538 ret = get_errno(safe_flock(arg1, arg2)); 10539 break; 10540 case TARGET_NR_readv: 10541 { 10542 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0); 10543 if (vec != NULL) { 10544 ret = get_errno(safe_readv(arg1, vec, arg3)); 10545 unlock_iovec(vec, arg2, arg3, 1); 10546 } else { 10547 ret = -host_to_target_errno(errno); 10548 } 10549 } 10550 break; 10551 case TARGET_NR_writev: 10552 { 10553 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 10554 if (vec != NULL) { 10555 ret = get_errno(safe_writev(arg1, vec, arg3)); 10556 unlock_iovec(vec, arg2, arg3, 0); 10557 } else { 10558 ret = -host_to_target_errno(errno); 10559 } 10560 } 10561 break; 10562 #if defined(TARGET_NR_preadv) 10563 case TARGET_NR_preadv: 10564 { 10565 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0); 10566 if (vec != NULL) { 10567 unsigned long low, high; 10568 10569 target_to_host_low_high(arg4, arg5, &low, &high); 10570 ret = get_errno(safe_preadv(arg1, vec, arg3, low, high)); 10571 unlock_iovec(vec, arg2, arg3, 1); 10572 } else { 10573 ret = -host_to_target_errno(errno); 10574 } 10575 } 10576 break; 10577 #endif 10578 #if defined(TARGET_NR_pwritev) 10579 case TARGET_NR_pwritev: 10580 { 10581 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 10582 if (vec != NULL) { 10583 unsigned long low, high; 10584 10585 target_to_host_low_high(arg4, arg5, &low, &high); 10586 ret = get_errno(safe_pwritev(arg1, vec, arg3, low, high)); 10587 unlock_iovec(vec, arg2, arg3, 0); 10588 } else { 10589 ret = -host_to_target_errno(errno); 10590 } 10591 } 10592 break; 10593 #endif 10594 case TARGET_NR_getsid: 10595 ret = get_errno(getsid(arg1)); 10596 break; 10597 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */ 10598 case TARGET_NR_fdatasync: 10599 ret = get_errno(fdatasync(arg1)); 10600 break; 10601 #endif 10602 #ifdef TARGET_NR__sysctl 10603 case TARGET_NR__sysctl: 10604 /* We don't implement this, but ENOTDIR is always a safe 10605 return value. */ 10606 ret = -TARGET_ENOTDIR; 10607 break; 10608 #endif 10609 case TARGET_NR_sched_getaffinity: 10610 { 10611 unsigned int mask_size; 10612 unsigned long *mask; 10613 10614 /* 10615 * sched_getaffinity needs multiples of ulong, so need to take 10616 * care of mismatches between target ulong and host ulong sizes. 10617 */ 10618 if (arg2 & (sizeof(abi_ulong) - 1)) { 10619 ret = -TARGET_EINVAL; 10620 break; 10621 } 10622 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1); 10623 10624 mask = alloca(mask_size); 10625 memset(mask, 0, mask_size); 10626 ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask)); 10627 10628 if (!is_error(ret)) { 10629 if (ret > arg2) { 10630 /* More data returned than the caller's buffer will fit. 10631 * This only happens if sizeof(abi_long) < sizeof(long) 10632 * and the caller passed us a buffer holding an odd number 10633 * of abi_longs. If the host kernel is actually using the 10634 * extra 4 bytes then fail EINVAL; otherwise we can just 10635 * ignore them and only copy the interesting part. 10636 */ 10637 int numcpus = sysconf(_SC_NPROCESSORS_CONF); 10638 if (numcpus > arg2 * 8) { 10639 ret = -TARGET_EINVAL; 10640 break; 10641 } 10642 ret = arg2; 10643 } 10644 10645 if (host_to_target_cpu_mask(mask, mask_size, arg3, ret)) { 10646 goto efault; 10647 } 10648 } 10649 } 10650 break; 10651 case TARGET_NR_sched_setaffinity: 10652 { 10653 unsigned int mask_size; 10654 unsigned long *mask; 10655 10656 /* 10657 * sched_setaffinity needs multiples of ulong, so need to take 10658 * care of mismatches between target ulong and host ulong sizes. 10659 */ 10660 if (arg2 & (sizeof(abi_ulong) - 1)) { 10661 ret = -TARGET_EINVAL; 10662 break; 10663 } 10664 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1); 10665 mask = alloca(mask_size); 10666 10667 ret = target_to_host_cpu_mask(mask, mask_size, arg3, arg2); 10668 if (ret) { 10669 break; 10670 } 10671 10672 ret = get_errno(sys_sched_setaffinity(arg1, mask_size, mask)); 10673 } 10674 break; 10675 case TARGET_NR_getcpu: 10676 { 10677 unsigned cpu, node; 10678 ret = get_errno(sys_getcpu(arg1 ? &cpu : NULL, 10679 arg2 ? &node : NULL, 10680 NULL)); 10681 if (is_error(ret)) { 10682 goto fail; 10683 } 10684 if (arg1 && put_user_u32(cpu, arg1)) { 10685 goto efault; 10686 } 10687 if (arg2 && put_user_u32(node, arg2)) { 10688 goto efault; 10689 } 10690 } 10691 break; 10692 case TARGET_NR_sched_setparam: 10693 { 10694 struct sched_param *target_schp; 10695 struct sched_param schp; 10696 10697 if (arg2 == 0) { 10698 return -TARGET_EINVAL; 10699 } 10700 if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1)) 10701 goto efault; 10702 schp.sched_priority = tswap32(target_schp->sched_priority); 10703 unlock_user_struct(target_schp, arg2, 0); 10704 ret = get_errno(sched_setparam(arg1, &schp)); 10705 } 10706 break; 10707 case TARGET_NR_sched_getparam: 10708 { 10709 struct sched_param *target_schp; 10710 struct sched_param schp; 10711 10712 if (arg2 == 0) { 10713 return -TARGET_EINVAL; 10714 } 10715 ret = get_errno(sched_getparam(arg1, &schp)); 10716 if (!is_error(ret)) { 10717 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0)) 10718 goto efault; 10719 target_schp->sched_priority = tswap32(schp.sched_priority); 10720 unlock_user_struct(target_schp, arg2, 1); 10721 } 10722 } 10723 break; 10724 case TARGET_NR_sched_setscheduler: 10725 { 10726 struct sched_param *target_schp; 10727 struct sched_param schp; 10728 if (arg3 == 0) { 10729 return -TARGET_EINVAL; 10730 } 10731 if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1)) 10732 goto efault; 10733 schp.sched_priority = tswap32(target_schp->sched_priority); 10734 unlock_user_struct(target_schp, arg3, 0); 10735 ret = get_errno(sched_setscheduler(arg1, arg2, &schp)); 10736 } 10737 break; 10738 case TARGET_NR_sched_getscheduler: 10739 ret = get_errno(sched_getscheduler(arg1)); 10740 break; 10741 case TARGET_NR_sched_yield: 10742 ret = get_errno(sched_yield()); 10743 break; 10744 case TARGET_NR_sched_get_priority_max: 10745 ret = get_errno(sched_get_priority_max(arg1)); 10746 break; 10747 case TARGET_NR_sched_get_priority_min: 10748 ret = get_errno(sched_get_priority_min(arg1)); 10749 break; 10750 case TARGET_NR_sched_rr_get_interval: 10751 { 10752 struct timespec ts; 10753 ret = get_errno(sched_rr_get_interval(arg1, &ts)); 10754 if (!is_error(ret)) { 10755 ret = host_to_target_timespec(arg2, &ts); 10756 } 10757 } 10758 break; 10759 case TARGET_NR_nanosleep: 10760 { 10761 struct timespec req, rem; 10762 target_to_host_timespec(&req, arg1); 10763 ret = get_errno(safe_nanosleep(&req, &rem)); 10764 if (is_error(ret) && arg2) { 10765 host_to_target_timespec(arg2, &rem); 10766 } 10767 } 10768 break; 10769 #ifdef TARGET_NR_query_module 10770 case TARGET_NR_query_module: 10771 goto unimplemented; 10772 #endif 10773 #ifdef TARGET_NR_nfsservctl 10774 case TARGET_NR_nfsservctl: 10775 goto unimplemented; 10776 #endif 10777 case TARGET_NR_prctl: 10778 switch (arg1) { 10779 case PR_GET_PDEATHSIG: 10780 { 10781 int deathsig; 10782 ret = get_errno(prctl(arg1, &deathsig, arg3, arg4, arg5)); 10783 if (!is_error(ret) && arg2 10784 && put_user_ual(deathsig, arg2)) { 10785 goto efault; 10786 } 10787 break; 10788 } 10789 #ifdef PR_GET_NAME 10790 case PR_GET_NAME: 10791 { 10792 void *name = lock_user(VERIFY_WRITE, arg2, 16, 1); 10793 if (!name) { 10794 goto efault; 10795 } 10796 ret = get_errno(prctl(arg1, (unsigned long)name, 10797 arg3, arg4, arg5)); 10798 unlock_user(name, arg2, 16); 10799 break; 10800 } 10801 case PR_SET_NAME: 10802 { 10803 void *name = lock_user(VERIFY_READ, arg2, 16, 1); 10804 if (!name) { 10805 goto efault; 10806 } 10807 ret = get_errno(prctl(arg1, (unsigned long)name, 10808 arg3, arg4, arg5)); 10809 unlock_user(name, arg2, 0); 10810 break; 10811 } 10812 #endif 10813 #ifdef TARGET_AARCH64 10814 case TARGET_PR_SVE_SET_VL: 10815 /* We cannot support either PR_SVE_SET_VL_ONEXEC 10816 or PR_SVE_VL_INHERIT. Therefore, anything above 10817 ARM_MAX_VQ results in EINVAL. */ 10818 ret = -TARGET_EINVAL; 10819 if (arm_feature(cpu_env, ARM_FEATURE_SVE) 10820 && arg2 >= 0 && arg2 <= ARM_MAX_VQ * 16 && !(arg2 & 15)) { 10821 CPUARMState *env = cpu_env; 10822 int old_vq = (env->vfp.zcr_el[1] & 0xf) + 1; 10823 int vq = MAX(arg2 / 16, 1); 10824 10825 if (vq < old_vq) { 10826 aarch64_sve_narrow_vq(env, vq); 10827 } 10828 env->vfp.zcr_el[1] = vq - 1; 10829 ret = vq * 16; 10830 } 10831 break; 10832 case TARGET_PR_SVE_GET_VL: 10833 ret = -TARGET_EINVAL; 10834 if (arm_feature(cpu_env, ARM_FEATURE_SVE)) { 10835 CPUARMState *env = cpu_env; 10836 ret = ((env->vfp.zcr_el[1] & 0xf) + 1) * 16; 10837 } 10838 break; 10839 #endif /* AARCH64 */ 10840 case PR_GET_SECCOMP: 10841 case PR_SET_SECCOMP: 10842 /* Disable seccomp to prevent the target disabling syscalls we 10843 * need. */ 10844 ret = -TARGET_EINVAL; 10845 break; 10846 default: 10847 /* Most prctl options have no pointer arguments */ 10848 ret = get_errno(prctl(arg1, arg2, arg3, arg4, arg5)); 10849 break; 10850 } 10851 break; 10852 #ifdef TARGET_NR_arch_prctl 10853 case TARGET_NR_arch_prctl: 10854 #if defined(TARGET_I386) && !defined(TARGET_ABI32) 10855 ret = do_arch_prctl(cpu_env, arg1, arg2); 10856 break; 10857 #else 10858 goto unimplemented; 10859 #endif 10860 #endif 10861 #ifdef TARGET_NR_pread64 10862 case TARGET_NR_pread64: 10863 if (regpairs_aligned(cpu_env, num)) { 10864 arg4 = arg5; 10865 arg5 = arg6; 10866 } 10867 if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0))) 10868 goto efault; 10869 ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5))); 10870 unlock_user(p, arg2, ret); 10871 break; 10872 case TARGET_NR_pwrite64: 10873 if (regpairs_aligned(cpu_env, num)) { 10874 arg4 = arg5; 10875 arg5 = arg6; 10876 } 10877 if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1))) 10878 goto efault; 10879 ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5))); 10880 unlock_user(p, arg2, 0); 10881 break; 10882 #endif 10883 case TARGET_NR_getcwd: 10884 if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0))) 10885 goto efault; 10886 ret = get_errno(sys_getcwd1(p, arg2)); 10887 unlock_user(p, arg1, ret); 10888 break; 10889 case TARGET_NR_capget: 10890 case TARGET_NR_capset: 10891 { 10892 struct target_user_cap_header *target_header; 10893 struct target_user_cap_data *target_data = NULL; 10894 struct __user_cap_header_struct header; 10895 struct __user_cap_data_struct data[2]; 10896 struct __user_cap_data_struct *dataptr = NULL; 10897 int i, target_datalen; 10898 int data_items = 1; 10899 10900 if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) { 10901 goto efault; 10902 } 10903 header.version = tswap32(target_header->version); 10904 header.pid = tswap32(target_header->pid); 10905 10906 if (header.version != _LINUX_CAPABILITY_VERSION) { 10907 /* Version 2 and up takes pointer to two user_data structs */ 10908 data_items = 2; 10909 } 10910 10911 target_datalen = sizeof(*target_data) * data_items; 10912 10913 if (arg2) { 10914 if (num == TARGET_NR_capget) { 10915 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0); 10916 } else { 10917 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1); 10918 } 10919 if (!target_data) { 10920 unlock_user_struct(target_header, arg1, 0); 10921 goto efault; 10922 } 10923 10924 if (num == TARGET_NR_capset) { 10925 for (i = 0; i < data_items; i++) { 10926 data[i].effective = tswap32(target_data[i].effective); 10927 data[i].permitted = tswap32(target_data[i].permitted); 10928 data[i].inheritable = tswap32(target_data[i].inheritable); 10929 } 10930 } 10931 10932 dataptr = data; 10933 } 10934 10935 if (num == TARGET_NR_capget) { 10936 ret = get_errno(capget(&header, dataptr)); 10937 } else { 10938 ret = get_errno(capset(&header, dataptr)); 10939 } 10940 10941 /* The kernel always updates version for both capget and capset */ 10942 target_header->version = tswap32(header.version); 10943 unlock_user_struct(target_header, arg1, 1); 10944 10945 if (arg2) { 10946 if (num == TARGET_NR_capget) { 10947 for (i = 0; i < data_items; i++) { 10948 target_data[i].effective = tswap32(data[i].effective); 10949 target_data[i].permitted = tswap32(data[i].permitted); 10950 target_data[i].inheritable = tswap32(data[i].inheritable); 10951 } 10952 unlock_user(target_data, arg2, target_datalen); 10953 } else { 10954 unlock_user(target_data, arg2, 0); 10955 } 10956 } 10957 break; 10958 } 10959 case TARGET_NR_sigaltstack: 10960 ret = do_sigaltstack(arg1, arg2, get_sp_from_cpustate((CPUArchState *)cpu_env)); 10961 break; 10962 10963 #ifdef CONFIG_SENDFILE 10964 case TARGET_NR_sendfile: 10965 { 10966 off_t *offp = NULL; 10967 off_t off; 10968 if (arg3) { 10969 ret = get_user_sal(off, arg3); 10970 if (is_error(ret)) { 10971 break; 10972 } 10973 offp = &off; 10974 } 10975 ret = get_errno(sendfile(arg1, arg2, offp, arg4)); 10976 if (!is_error(ret) && arg3) { 10977 abi_long ret2 = put_user_sal(off, arg3); 10978 if (is_error(ret2)) { 10979 ret = ret2; 10980 } 10981 } 10982 break; 10983 } 10984 #ifdef TARGET_NR_sendfile64 10985 case TARGET_NR_sendfile64: 10986 { 10987 off_t *offp = NULL; 10988 off_t off; 10989 if (arg3) { 10990 ret = get_user_s64(off, arg3); 10991 if (is_error(ret)) { 10992 break; 10993 } 10994 offp = &off; 10995 } 10996 ret = get_errno(sendfile(arg1, arg2, offp, arg4)); 10997 if (!is_error(ret) && arg3) { 10998 abi_long ret2 = put_user_s64(off, arg3); 10999 if (is_error(ret2)) { 11000 ret = ret2; 11001 } 11002 } 11003 break; 11004 } 11005 #endif 11006 #else 11007 case TARGET_NR_sendfile: 11008 #ifdef TARGET_NR_sendfile64 11009 case TARGET_NR_sendfile64: 11010 #endif 11011 goto unimplemented; 11012 #endif 11013 11014 #ifdef TARGET_NR_getpmsg 11015 case TARGET_NR_getpmsg: 11016 goto unimplemented; 11017 #endif 11018 #ifdef TARGET_NR_putpmsg 11019 case TARGET_NR_putpmsg: 11020 goto unimplemented; 11021 #endif 11022 #ifdef TARGET_NR_vfork 11023 case TARGET_NR_vfork: 11024 ret = get_errno(do_fork(cpu_env, 11025 CLONE_VFORK | CLONE_VM | TARGET_SIGCHLD, 11026 0, 0, 0, 0)); 11027 break; 11028 #endif 11029 #ifdef TARGET_NR_ugetrlimit 11030 case TARGET_NR_ugetrlimit: 11031 { 11032 struct rlimit rlim; 11033 int resource = target_to_host_resource(arg1); 11034 ret = get_errno(getrlimit(resource, &rlim)); 11035 if (!is_error(ret)) { 11036 struct target_rlimit *target_rlim; 11037 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0)) 11038 goto efault; 11039 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur); 11040 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max); 11041 unlock_user_struct(target_rlim, arg2, 1); 11042 } 11043 break; 11044 } 11045 #endif 11046 #ifdef TARGET_NR_truncate64 11047 case TARGET_NR_truncate64: 11048 if (!(p = lock_user_string(arg1))) 11049 goto efault; 11050 ret = target_truncate64(cpu_env, p, arg2, arg3, arg4); 11051 unlock_user(p, arg1, 0); 11052 break; 11053 #endif 11054 #ifdef TARGET_NR_ftruncate64 11055 case TARGET_NR_ftruncate64: 11056 ret = target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4); 11057 break; 11058 #endif 11059 #ifdef TARGET_NR_stat64 11060 case TARGET_NR_stat64: 11061 if (!(p = lock_user_string(arg1))) 11062 goto efault; 11063 ret = get_errno(stat(path(p), &st)); 11064 unlock_user(p, arg1, 0); 11065 if (!is_error(ret)) 11066 ret = host_to_target_stat64(cpu_env, arg2, &st); 11067 break; 11068 #endif 11069 #ifdef TARGET_NR_lstat64 11070 case TARGET_NR_lstat64: 11071 if (!(p = lock_user_string(arg1))) 11072 goto efault; 11073 ret = get_errno(lstat(path(p), &st)); 11074 unlock_user(p, arg1, 0); 11075 if (!is_error(ret)) 11076 ret = host_to_target_stat64(cpu_env, arg2, &st); 11077 break; 11078 #endif 11079 #ifdef TARGET_NR_fstat64 11080 case TARGET_NR_fstat64: 11081 ret = get_errno(fstat(arg1, &st)); 11082 if (!is_error(ret)) 11083 ret = host_to_target_stat64(cpu_env, arg2, &st); 11084 break; 11085 #endif 11086 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat)) 11087 #ifdef TARGET_NR_fstatat64 11088 case TARGET_NR_fstatat64: 11089 #endif 11090 #ifdef TARGET_NR_newfstatat 11091 case TARGET_NR_newfstatat: 11092 #endif 11093 if (!(p = lock_user_string(arg2))) 11094 goto efault; 11095 ret = get_errno(fstatat(arg1, path(p), &st, arg4)); 11096 if (!is_error(ret)) 11097 ret = host_to_target_stat64(cpu_env, arg3, &st); 11098 break; 11099 #endif 11100 #ifdef TARGET_NR_lchown 11101 case TARGET_NR_lchown: 11102 if (!(p = lock_user_string(arg1))) 11103 goto efault; 11104 ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3))); 11105 unlock_user(p, arg1, 0); 11106 break; 11107 #endif 11108 #ifdef TARGET_NR_getuid 11109 case TARGET_NR_getuid: 11110 ret = get_errno(high2lowuid(getuid())); 11111 break; 11112 #endif 11113 #ifdef TARGET_NR_getgid 11114 case TARGET_NR_getgid: 11115 ret = get_errno(high2lowgid(getgid())); 11116 break; 11117 #endif 11118 #ifdef TARGET_NR_geteuid 11119 case TARGET_NR_geteuid: 11120 ret = get_errno(high2lowuid(geteuid())); 11121 break; 11122 #endif 11123 #ifdef TARGET_NR_getegid 11124 case TARGET_NR_getegid: 11125 ret = get_errno(high2lowgid(getegid())); 11126 break; 11127 #endif 11128 case TARGET_NR_setreuid: 11129 ret = get_errno(setreuid(low2highuid(arg1), low2highuid(arg2))); 11130 break; 11131 case TARGET_NR_setregid: 11132 ret = get_errno(setregid(low2highgid(arg1), low2highgid(arg2))); 11133 break; 11134 case TARGET_NR_getgroups: 11135 { 11136 int gidsetsize = arg1; 11137 target_id *target_grouplist; 11138 gid_t *grouplist; 11139 int i; 11140 11141 grouplist = alloca(gidsetsize * sizeof(gid_t)); 11142 ret = get_errno(getgroups(gidsetsize, grouplist)); 11143 if (gidsetsize == 0) 11144 break; 11145 if (!is_error(ret)) { 11146 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * sizeof(target_id), 0); 11147 if (!target_grouplist) 11148 goto efault; 11149 for(i = 0;i < ret; i++) 11150 target_grouplist[i] = tswapid(high2lowgid(grouplist[i])); 11151 unlock_user(target_grouplist, arg2, gidsetsize * sizeof(target_id)); 11152 } 11153 } 11154 break; 11155 case TARGET_NR_setgroups: 11156 { 11157 int gidsetsize = arg1; 11158 target_id *target_grouplist; 11159 gid_t *grouplist = NULL; 11160 int i; 11161 if (gidsetsize) { 11162 grouplist = alloca(gidsetsize * sizeof(gid_t)); 11163 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * sizeof(target_id), 1); 11164 if (!target_grouplist) { 11165 ret = -TARGET_EFAULT; 11166 goto fail; 11167 } 11168 for (i = 0; i < gidsetsize; i++) { 11169 grouplist[i] = low2highgid(tswapid(target_grouplist[i])); 11170 } 11171 unlock_user(target_grouplist, arg2, 0); 11172 } 11173 ret = get_errno(setgroups(gidsetsize, grouplist)); 11174 } 11175 break; 11176 case TARGET_NR_fchown: 11177 ret = get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3))); 11178 break; 11179 #if defined(TARGET_NR_fchownat) 11180 case TARGET_NR_fchownat: 11181 if (!(p = lock_user_string(arg2))) 11182 goto efault; 11183 ret = get_errno(fchownat(arg1, p, low2highuid(arg3), 11184 low2highgid(arg4), arg5)); 11185 unlock_user(p, arg2, 0); 11186 break; 11187 #endif 11188 #ifdef TARGET_NR_setresuid 11189 case TARGET_NR_setresuid: 11190 ret = get_errno(sys_setresuid(low2highuid(arg1), 11191 low2highuid(arg2), 11192 low2highuid(arg3))); 11193 break; 11194 #endif 11195 #ifdef TARGET_NR_getresuid 11196 case TARGET_NR_getresuid: 11197 { 11198 uid_t ruid, euid, suid; 11199 ret = get_errno(getresuid(&ruid, &euid, &suid)); 11200 if (!is_error(ret)) { 11201 if (put_user_id(high2lowuid(ruid), arg1) 11202 || put_user_id(high2lowuid(euid), arg2) 11203 || put_user_id(high2lowuid(suid), arg3)) 11204 goto efault; 11205 } 11206 } 11207 break; 11208 #endif 11209 #ifdef TARGET_NR_getresgid 11210 case TARGET_NR_setresgid: 11211 ret = get_errno(sys_setresgid(low2highgid(arg1), 11212 low2highgid(arg2), 11213 low2highgid(arg3))); 11214 break; 11215 #endif 11216 #ifdef TARGET_NR_getresgid 11217 case TARGET_NR_getresgid: 11218 { 11219 gid_t rgid, egid, sgid; 11220 ret = get_errno(getresgid(&rgid, &egid, &sgid)); 11221 if (!is_error(ret)) { 11222 if (put_user_id(high2lowgid(rgid), arg1) 11223 || put_user_id(high2lowgid(egid), arg2) 11224 || put_user_id(high2lowgid(sgid), arg3)) 11225 goto efault; 11226 } 11227 } 11228 break; 11229 #endif 11230 #ifdef TARGET_NR_chown 11231 case TARGET_NR_chown: 11232 if (!(p = lock_user_string(arg1))) 11233 goto efault; 11234 ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3))); 11235 unlock_user(p, arg1, 0); 11236 break; 11237 #endif 11238 case TARGET_NR_setuid: 11239 ret = get_errno(sys_setuid(low2highuid(arg1))); 11240 break; 11241 case TARGET_NR_setgid: 11242 ret = get_errno(sys_setgid(low2highgid(arg1))); 11243 break; 11244 case TARGET_NR_setfsuid: 11245 ret = get_errno(setfsuid(arg1)); 11246 break; 11247 case TARGET_NR_setfsgid: 11248 ret = get_errno(setfsgid(arg1)); 11249 break; 11250 11251 #ifdef TARGET_NR_lchown32 11252 case TARGET_NR_lchown32: 11253 if (!(p = lock_user_string(arg1))) 11254 goto efault; 11255 ret = get_errno(lchown(p, arg2, arg3)); 11256 unlock_user(p, arg1, 0); 11257 break; 11258 #endif 11259 #ifdef TARGET_NR_getuid32 11260 case TARGET_NR_getuid32: 11261 ret = get_errno(getuid()); 11262 break; 11263 #endif 11264 11265 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA) 11266 /* Alpha specific */ 11267 case TARGET_NR_getxuid: 11268 { 11269 uid_t euid; 11270 euid=geteuid(); 11271 ((CPUAlphaState *)cpu_env)->ir[IR_A4]=euid; 11272 } 11273 ret = get_errno(getuid()); 11274 break; 11275 #endif 11276 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA) 11277 /* Alpha specific */ 11278 case TARGET_NR_getxgid: 11279 { 11280 uid_t egid; 11281 egid=getegid(); 11282 ((CPUAlphaState *)cpu_env)->ir[IR_A4]=egid; 11283 } 11284 ret = get_errno(getgid()); 11285 break; 11286 #endif 11287 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA) 11288 /* Alpha specific */ 11289 case TARGET_NR_osf_getsysinfo: 11290 ret = -TARGET_EOPNOTSUPP; 11291 switch (arg1) { 11292 case TARGET_GSI_IEEE_FP_CONTROL: 11293 { 11294 uint64_t swcr, fpcr = cpu_alpha_load_fpcr (cpu_env); 11295 11296 /* Copied from linux ieee_fpcr_to_swcr. */ 11297 swcr = (fpcr >> 35) & SWCR_STATUS_MASK; 11298 swcr |= (fpcr >> 36) & SWCR_MAP_DMZ; 11299 swcr |= (~fpcr >> 48) & (SWCR_TRAP_ENABLE_INV 11300 | SWCR_TRAP_ENABLE_DZE 11301 | SWCR_TRAP_ENABLE_OVF); 11302 swcr |= (~fpcr >> 57) & (SWCR_TRAP_ENABLE_UNF 11303 | SWCR_TRAP_ENABLE_INE); 11304 swcr |= (fpcr >> 47) & SWCR_MAP_UMZ; 11305 swcr |= (~fpcr >> 41) & SWCR_TRAP_ENABLE_DNO; 11306 11307 if (put_user_u64 (swcr, arg2)) 11308 goto efault; 11309 ret = 0; 11310 } 11311 break; 11312 11313 /* case GSI_IEEE_STATE_AT_SIGNAL: 11314 -- Not implemented in linux kernel. 11315 case GSI_UACPROC: 11316 -- Retrieves current unaligned access state; not much used. 11317 case GSI_PROC_TYPE: 11318 -- Retrieves implver information; surely not used. 11319 case GSI_GET_HWRPB: 11320 -- Grabs a copy of the HWRPB; surely not used. 11321 */ 11322 } 11323 break; 11324 #endif 11325 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA) 11326 /* Alpha specific */ 11327 case TARGET_NR_osf_setsysinfo: 11328 ret = -TARGET_EOPNOTSUPP; 11329 switch (arg1) { 11330 case TARGET_SSI_IEEE_FP_CONTROL: 11331 { 11332 uint64_t swcr, fpcr, orig_fpcr; 11333 11334 if (get_user_u64 (swcr, arg2)) { 11335 goto efault; 11336 } 11337 orig_fpcr = cpu_alpha_load_fpcr(cpu_env); 11338 fpcr = orig_fpcr & FPCR_DYN_MASK; 11339 11340 /* Copied from linux ieee_swcr_to_fpcr. */ 11341 fpcr |= (swcr & SWCR_STATUS_MASK) << 35; 11342 fpcr |= (swcr & SWCR_MAP_DMZ) << 36; 11343 fpcr |= (~swcr & (SWCR_TRAP_ENABLE_INV 11344 | SWCR_TRAP_ENABLE_DZE 11345 | SWCR_TRAP_ENABLE_OVF)) << 48; 11346 fpcr |= (~swcr & (SWCR_TRAP_ENABLE_UNF 11347 | SWCR_TRAP_ENABLE_INE)) << 57; 11348 fpcr |= (swcr & SWCR_MAP_UMZ ? FPCR_UNDZ | FPCR_UNFD : 0); 11349 fpcr |= (~swcr & SWCR_TRAP_ENABLE_DNO) << 41; 11350 11351 cpu_alpha_store_fpcr(cpu_env, fpcr); 11352 ret = 0; 11353 } 11354 break; 11355 11356 case TARGET_SSI_IEEE_RAISE_EXCEPTION: 11357 { 11358 uint64_t exc, fpcr, orig_fpcr; 11359 int si_code; 11360 11361 if (get_user_u64(exc, arg2)) { 11362 goto efault; 11363 } 11364 11365 orig_fpcr = cpu_alpha_load_fpcr(cpu_env); 11366 11367 /* We only add to the exception status here. */ 11368 fpcr = orig_fpcr | ((exc & SWCR_STATUS_MASK) << 35); 11369 11370 cpu_alpha_store_fpcr(cpu_env, fpcr); 11371 ret = 0; 11372 11373 /* Old exceptions are not signaled. */ 11374 fpcr &= ~(orig_fpcr & FPCR_STATUS_MASK); 11375 11376 /* If any exceptions set by this call, 11377 and are unmasked, send a signal. */ 11378 si_code = 0; 11379 if ((fpcr & (FPCR_INE | FPCR_INED)) == FPCR_INE) { 11380 si_code = TARGET_FPE_FLTRES; 11381 } 11382 if ((fpcr & (FPCR_UNF | FPCR_UNFD)) == FPCR_UNF) { 11383 si_code = TARGET_FPE_FLTUND; 11384 } 11385 if ((fpcr & (FPCR_OVF | FPCR_OVFD)) == FPCR_OVF) { 11386 si_code = TARGET_FPE_FLTOVF; 11387 } 11388 if ((fpcr & (FPCR_DZE | FPCR_DZED)) == FPCR_DZE) { 11389 si_code = TARGET_FPE_FLTDIV; 11390 } 11391 if ((fpcr & (FPCR_INV | FPCR_INVD)) == FPCR_INV) { 11392 si_code = TARGET_FPE_FLTINV; 11393 } 11394 if (si_code != 0) { 11395 target_siginfo_t info; 11396 info.si_signo = SIGFPE; 11397 info.si_errno = 0; 11398 info.si_code = si_code; 11399 info._sifields._sigfault._addr 11400 = ((CPUArchState *)cpu_env)->pc; 11401 queue_signal((CPUArchState *)cpu_env, info.si_signo, 11402 QEMU_SI_FAULT, &info); 11403 } 11404 } 11405 break; 11406 11407 /* case SSI_NVPAIRS: 11408 -- Used with SSIN_UACPROC to enable unaligned accesses. 11409 case SSI_IEEE_STATE_AT_SIGNAL: 11410 case SSI_IEEE_IGNORE_STATE_AT_SIGNAL: 11411 -- Not implemented in linux kernel 11412 */ 11413 } 11414 break; 11415 #endif 11416 #ifdef TARGET_NR_osf_sigprocmask 11417 /* Alpha specific. */ 11418 case TARGET_NR_osf_sigprocmask: 11419 { 11420 abi_ulong mask; 11421 int how; 11422 sigset_t set, oldset; 11423 11424 switch(arg1) { 11425 case TARGET_SIG_BLOCK: 11426 how = SIG_BLOCK; 11427 break; 11428 case TARGET_SIG_UNBLOCK: 11429 how = SIG_UNBLOCK; 11430 break; 11431 case TARGET_SIG_SETMASK: 11432 how = SIG_SETMASK; 11433 break; 11434 default: 11435 ret = -TARGET_EINVAL; 11436 goto fail; 11437 } 11438 mask = arg2; 11439 target_to_host_old_sigset(&set, &mask); 11440 ret = do_sigprocmask(how, &set, &oldset); 11441 if (!ret) { 11442 host_to_target_old_sigset(&mask, &oldset); 11443 ret = mask; 11444 } 11445 } 11446 break; 11447 #endif 11448 11449 #ifdef TARGET_NR_getgid32 11450 case TARGET_NR_getgid32: 11451 ret = get_errno(getgid()); 11452 break; 11453 #endif 11454 #ifdef TARGET_NR_geteuid32 11455 case TARGET_NR_geteuid32: 11456 ret = get_errno(geteuid()); 11457 break; 11458 #endif 11459 #ifdef TARGET_NR_getegid32 11460 case TARGET_NR_getegid32: 11461 ret = get_errno(getegid()); 11462 break; 11463 #endif 11464 #ifdef TARGET_NR_setreuid32 11465 case TARGET_NR_setreuid32: 11466 ret = get_errno(setreuid(arg1, arg2)); 11467 break; 11468 #endif 11469 #ifdef TARGET_NR_setregid32 11470 case TARGET_NR_setregid32: 11471 ret = get_errno(setregid(arg1, arg2)); 11472 break; 11473 #endif 11474 #ifdef TARGET_NR_getgroups32 11475 case TARGET_NR_getgroups32: 11476 { 11477 int gidsetsize = arg1; 11478 uint32_t *target_grouplist; 11479 gid_t *grouplist; 11480 int i; 11481 11482 grouplist = alloca(gidsetsize * sizeof(gid_t)); 11483 ret = get_errno(getgroups(gidsetsize, grouplist)); 11484 if (gidsetsize == 0) 11485 break; 11486 if (!is_error(ret)) { 11487 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * 4, 0); 11488 if (!target_grouplist) { 11489 ret = -TARGET_EFAULT; 11490 goto fail; 11491 } 11492 for(i = 0;i < ret; i++) 11493 target_grouplist[i] = tswap32(grouplist[i]); 11494 unlock_user(target_grouplist, arg2, gidsetsize * 4); 11495 } 11496 } 11497 break; 11498 #endif 11499 #ifdef TARGET_NR_setgroups32 11500 case TARGET_NR_setgroups32: 11501 { 11502 int gidsetsize = arg1; 11503 uint32_t *target_grouplist; 11504 gid_t *grouplist; 11505 int i; 11506 11507 grouplist = alloca(gidsetsize * sizeof(gid_t)); 11508 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * 4, 1); 11509 if (!target_grouplist) { 11510 ret = -TARGET_EFAULT; 11511 goto fail; 11512 } 11513 for(i = 0;i < gidsetsize; i++) 11514 grouplist[i] = tswap32(target_grouplist[i]); 11515 unlock_user(target_grouplist, arg2, 0); 11516 ret = get_errno(setgroups(gidsetsize, grouplist)); 11517 } 11518 break; 11519 #endif 11520 #ifdef TARGET_NR_fchown32 11521 case TARGET_NR_fchown32: 11522 ret = get_errno(fchown(arg1, arg2, arg3)); 11523 break; 11524 #endif 11525 #ifdef TARGET_NR_setresuid32 11526 case TARGET_NR_setresuid32: 11527 ret = get_errno(sys_setresuid(arg1, arg2, arg3)); 11528 break; 11529 #endif 11530 #ifdef TARGET_NR_getresuid32 11531 case TARGET_NR_getresuid32: 11532 { 11533 uid_t ruid, euid, suid; 11534 ret = get_errno(getresuid(&ruid, &euid, &suid)); 11535 if (!is_error(ret)) { 11536 if (put_user_u32(ruid, arg1) 11537 || put_user_u32(euid, arg2) 11538 || put_user_u32(suid, arg3)) 11539 goto efault; 11540 } 11541 } 11542 break; 11543 #endif 11544 #ifdef TARGET_NR_setresgid32 11545 case TARGET_NR_setresgid32: 11546 ret = get_errno(sys_setresgid(arg1, arg2, arg3)); 11547 break; 11548 #endif 11549 #ifdef TARGET_NR_getresgid32 11550 case TARGET_NR_getresgid32: 11551 { 11552 gid_t rgid, egid, sgid; 11553 ret = get_errno(getresgid(&rgid, &egid, &sgid)); 11554 if (!is_error(ret)) { 11555 if (put_user_u32(rgid, arg1) 11556 || put_user_u32(egid, arg2) 11557 || put_user_u32(sgid, arg3)) 11558 goto efault; 11559 } 11560 } 11561 break; 11562 #endif 11563 #ifdef TARGET_NR_chown32 11564 case TARGET_NR_chown32: 11565 if (!(p = lock_user_string(arg1))) 11566 goto efault; 11567 ret = get_errno(chown(p, arg2, arg3)); 11568 unlock_user(p, arg1, 0); 11569 break; 11570 #endif 11571 #ifdef TARGET_NR_setuid32 11572 case TARGET_NR_setuid32: 11573 ret = get_errno(sys_setuid(arg1)); 11574 break; 11575 #endif 11576 #ifdef TARGET_NR_setgid32 11577 case TARGET_NR_setgid32: 11578 ret = get_errno(sys_setgid(arg1)); 11579 break; 11580 #endif 11581 #ifdef TARGET_NR_setfsuid32 11582 case TARGET_NR_setfsuid32: 11583 ret = get_errno(setfsuid(arg1)); 11584 break; 11585 #endif 11586 #ifdef TARGET_NR_setfsgid32 11587 case TARGET_NR_setfsgid32: 11588 ret = get_errno(setfsgid(arg1)); 11589 break; 11590 #endif 11591 11592 case TARGET_NR_pivot_root: 11593 goto unimplemented; 11594 #ifdef TARGET_NR_mincore 11595 case TARGET_NR_mincore: 11596 { 11597 void *a; 11598 ret = -TARGET_ENOMEM; 11599 a = lock_user(VERIFY_READ, arg1, arg2, 0); 11600 if (!a) { 11601 goto fail; 11602 } 11603 ret = -TARGET_EFAULT; 11604 p = lock_user_string(arg3); 11605 if (!p) { 11606 goto mincore_fail; 11607 } 11608 ret = get_errno(mincore(a, arg2, p)); 11609 unlock_user(p, arg3, ret); 11610 mincore_fail: 11611 unlock_user(a, arg1, 0); 11612 } 11613 break; 11614 #endif 11615 #ifdef TARGET_NR_arm_fadvise64_64 11616 case TARGET_NR_arm_fadvise64_64: 11617 /* arm_fadvise64_64 looks like fadvise64_64 but 11618 * with different argument order: fd, advice, offset, len 11619 * rather than the usual fd, offset, len, advice. 11620 * Note that offset and len are both 64-bit so appear as 11621 * pairs of 32-bit registers. 11622 */ 11623 ret = posix_fadvise(arg1, target_offset64(arg3, arg4), 11624 target_offset64(arg5, arg6), arg2); 11625 ret = -host_to_target_errno(ret); 11626 break; 11627 #endif 11628 11629 #if TARGET_ABI_BITS == 32 11630 11631 #ifdef TARGET_NR_fadvise64_64 11632 case TARGET_NR_fadvise64_64: 11633 #if defined(TARGET_PPC) || defined(TARGET_XTENSA) 11634 /* 6 args: fd, advice, offset (high, low), len (high, low) */ 11635 ret = arg2; 11636 arg2 = arg3; 11637 arg3 = arg4; 11638 arg4 = arg5; 11639 arg5 = arg6; 11640 arg6 = ret; 11641 #else 11642 /* 6 args: fd, offset (high, low), len (high, low), advice */ 11643 if (regpairs_aligned(cpu_env, num)) { 11644 /* offset is in (3,4), len in (5,6) and advice in 7 */ 11645 arg2 = arg3; 11646 arg3 = arg4; 11647 arg4 = arg5; 11648 arg5 = arg6; 11649 arg6 = arg7; 11650 } 11651 #endif 11652 ret = -host_to_target_errno(posix_fadvise(arg1, 11653 target_offset64(arg2, arg3), 11654 target_offset64(arg4, arg5), 11655 arg6)); 11656 break; 11657 #endif 11658 11659 #ifdef TARGET_NR_fadvise64 11660 case TARGET_NR_fadvise64: 11661 /* 5 args: fd, offset (high, low), len, advice */ 11662 if (regpairs_aligned(cpu_env, num)) { 11663 /* offset is in (3,4), len in 5 and advice in 6 */ 11664 arg2 = arg3; 11665 arg3 = arg4; 11666 arg4 = arg5; 11667 arg5 = arg6; 11668 } 11669 ret = -host_to_target_errno(posix_fadvise(arg1, 11670 target_offset64(arg2, arg3), 11671 arg4, arg5)); 11672 break; 11673 #endif 11674 11675 #else /* not a 32-bit ABI */ 11676 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64) 11677 #ifdef TARGET_NR_fadvise64_64 11678 case TARGET_NR_fadvise64_64: 11679 #endif 11680 #ifdef TARGET_NR_fadvise64 11681 case TARGET_NR_fadvise64: 11682 #endif 11683 #ifdef TARGET_S390X 11684 switch (arg4) { 11685 case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */ 11686 case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */ 11687 case 6: arg4 = POSIX_FADV_DONTNEED; break; 11688 case 7: arg4 = POSIX_FADV_NOREUSE; break; 11689 default: break; 11690 } 11691 #endif 11692 ret = -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4)); 11693 break; 11694 #endif 11695 #endif /* end of 64-bit ABI fadvise handling */ 11696 11697 #ifdef TARGET_NR_madvise 11698 case TARGET_NR_madvise: 11699 /* A straight passthrough may not be safe because qemu sometimes 11700 turns private file-backed mappings into anonymous mappings. 11701 This will break MADV_DONTNEED. 11702 This is a hint, so ignoring and returning success is ok. */ 11703 ret = get_errno(0); 11704 break; 11705 #endif 11706 #if TARGET_ABI_BITS == 32 11707 case TARGET_NR_fcntl64: 11708 { 11709 int cmd; 11710 struct flock64 fl; 11711 from_flock64_fn *copyfrom = copy_from_user_flock64; 11712 to_flock64_fn *copyto = copy_to_user_flock64; 11713 11714 #ifdef TARGET_ARM 11715 if (!((CPUARMState *)cpu_env)->eabi) { 11716 copyfrom = copy_from_user_oabi_flock64; 11717 copyto = copy_to_user_oabi_flock64; 11718 } 11719 #endif 11720 11721 cmd = target_to_host_fcntl_cmd(arg2); 11722 if (cmd == -TARGET_EINVAL) { 11723 ret = cmd; 11724 break; 11725 } 11726 11727 switch(arg2) { 11728 case TARGET_F_GETLK64: 11729 ret = copyfrom(&fl, arg3); 11730 if (ret) { 11731 break; 11732 } 11733 ret = get_errno(fcntl(arg1, cmd, &fl)); 11734 if (ret == 0) { 11735 ret = copyto(arg3, &fl); 11736 } 11737 break; 11738 11739 case TARGET_F_SETLK64: 11740 case TARGET_F_SETLKW64: 11741 ret = copyfrom(&fl, arg3); 11742 if (ret) { 11743 break; 11744 } 11745 ret = get_errno(safe_fcntl(arg1, cmd, &fl)); 11746 break; 11747 default: 11748 ret = do_fcntl(arg1, arg2, arg3); 11749 break; 11750 } 11751 break; 11752 } 11753 #endif 11754 #ifdef TARGET_NR_cacheflush 11755 case TARGET_NR_cacheflush: 11756 /* self-modifying code is handled automatically, so nothing needed */ 11757 ret = 0; 11758 break; 11759 #endif 11760 #ifdef TARGET_NR_security 11761 case TARGET_NR_security: 11762 goto unimplemented; 11763 #endif 11764 #ifdef TARGET_NR_getpagesize 11765 case TARGET_NR_getpagesize: 11766 ret = TARGET_PAGE_SIZE; 11767 break; 11768 #endif 11769 case TARGET_NR_gettid: 11770 ret = get_errno(gettid()); 11771 break; 11772 #ifdef TARGET_NR_readahead 11773 case TARGET_NR_readahead: 11774 #if TARGET_ABI_BITS == 32 11775 if (regpairs_aligned(cpu_env, num)) { 11776 arg2 = arg3; 11777 arg3 = arg4; 11778 arg4 = arg5; 11779 } 11780 ret = get_errno(readahead(arg1, target_offset64(arg2, arg3) , arg4)); 11781 #else 11782 ret = get_errno(readahead(arg1, arg2, arg3)); 11783 #endif 11784 break; 11785 #endif 11786 #ifdef CONFIG_ATTR 11787 #ifdef TARGET_NR_setxattr 11788 case TARGET_NR_listxattr: 11789 case TARGET_NR_llistxattr: 11790 { 11791 void *p, *b = 0; 11792 if (arg2) { 11793 b = lock_user(VERIFY_WRITE, arg2, arg3, 0); 11794 if (!b) { 11795 ret = -TARGET_EFAULT; 11796 break; 11797 } 11798 } 11799 p = lock_user_string(arg1); 11800 if (p) { 11801 if (num == TARGET_NR_listxattr) { 11802 ret = get_errno(listxattr(p, b, arg3)); 11803 } else { 11804 ret = get_errno(llistxattr(p, b, arg3)); 11805 } 11806 } else { 11807 ret = -TARGET_EFAULT; 11808 } 11809 unlock_user(p, arg1, 0); 11810 unlock_user(b, arg2, arg3); 11811 break; 11812 } 11813 case TARGET_NR_flistxattr: 11814 { 11815 void *b = 0; 11816 if (arg2) { 11817 b = lock_user(VERIFY_WRITE, arg2, arg3, 0); 11818 if (!b) { 11819 ret = -TARGET_EFAULT; 11820 break; 11821 } 11822 } 11823 ret = get_errno(flistxattr(arg1, b, arg3)); 11824 unlock_user(b, arg2, arg3); 11825 break; 11826 } 11827 case TARGET_NR_setxattr: 11828 case TARGET_NR_lsetxattr: 11829 { 11830 void *p, *n, *v = 0; 11831 if (arg3) { 11832 v = lock_user(VERIFY_READ, arg3, arg4, 1); 11833 if (!v) { 11834 ret = -TARGET_EFAULT; 11835 break; 11836 } 11837 } 11838 p = lock_user_string(arg1); 11839 n = lock_user_string(arg2); 11840 if (p && n) { 11841 if (num == TARGET_NR_setxattr) { 11842 ret = get_errno(setxattr(p, n, v, arg4, arg5)); 11843 } else { 11844 ret = get_errno(lsetxattr(p, n, v, arg4, arg5)); 11845 } 11846 } else { 11847 ret = -TARGET_EFAULT; 11848 } 11849 unlock_user(p, arg1, 0); 11850 unlock_user(n, arg2, 0); 11851 unlock_user(v, arg3, 0); 11852 } 11853 break; 11854 case TARGET_NR_fsetxattr: 11855 { 11856 void *n, *v = 0; 11857 if (arg3) { 11858 v = lock_user(VERIFY_READ, arg3, arg4, 1); 11859 if (!v) { 11860 ret = -TARGET_EFAULT; 11861 break; 11862 } 11863 } 11864 n = lock_user_string(arg2); 11865 if (n) { 11866 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5)); 11867 } else { 11868 ret = -TARGET_EFAULT; 11869 } 11870 unlock_user(n, arg2, 0); 11871 unlock_user(v, arg3, 0); 11872 } 11873 break; 11874 case TARGET_NR_getxattr: 11875 case TARGET_NR_lgetxattr: 11876 { 11877 void *p, *n, *v = 0; 11878 if (arg3) { 11879 v = lock_user(VERIFY_WRITE, arg3, arg4, 0); 11880 if (!v) { 11881 ret = -TARGET_EFAULT; 11882 break; 11883 } 11884 } 11885 p = lock_user_string(arg1); 11886 n = lock_user_string(arg2); 11887 if (p && n) { 11888 if (num == TARGET_NR_getxattr) { 11889 ret = get_errno(getxattr(p, n, v, arg4)); 11890 } else { 11891 ret = get_errno(lgetxattr(p, n, v, arg4)); 11892 } 11893 } else { 11894 ret = -TARGET_EFAULT; 11895 } 11896 unlock_user(p, arg1, 0); 11897 unlock_user(n, arg2, 0); 11898 unlock_user(v, arg3, arg4); 11899 } 11900 break; 11901 case TARGET_NR_fgetxattr: 11902 { 11903 void *n, *v = 0; 11904 if (arg3) { 11905 v = lock_user(VERIFY_WRITE, arg3, arg4, 0); 11906 if (!v) { 11907 ret = -TARGET_EFAULT; 11908 break; 11909 } 11910 } 11911 n = lock_user_string(arg2); 11912 if (n) { 11913 ret = get_errno(fgetxattr(arg1, n, v, arg4)); 11914 } else { 11915 ret = -TARGET_EFAULT; 11916 } 11917 unlock_user(n, arg2, 0); 11918 unlock_user(v, arg3, arg4); 11919 } 11920 break; 11921 case TARGET_NR_removexattr: 11922 case TARGET_NR_lremovexattr: 11923 { 11924 void *p, *n; 11925 p = lock_user_string(arg1); 11926 n = lock_user_string(arg2); 11927 if (p && n) { 11928 if (num == TARGET_NR_removexattr) { 11929 ret = get_errno(removexattr(p, n)); 11930 } else { 11931 ret = get_errno(lremovexattr(p, n)); 11932 } 11933 } else { 11934 ret = -TARGET_EFAULT; 11935 } 11936 unlock_user(p, arg1, 0); 11937 unlock_user(n, arg2, 0); 11938 } 11939 break; 11940 case TARGET_NR_fremovexattr: 11941 { 11942 void *n; 11943 n = lock_user_string(arg2); 11944 if (n) { 11945 ret = get_errno(fremovexattr(arg1, n)); 11946 } else { 11947 ret = -TARGET_EFAULT; 11948 } 11949 unlock_user(n, arg2, 0); 11950 } 11951 break; 11952 #endif 11953 #endif /* CONFIG_ATTR */ 11954 #ifdef TARGET_NR_set_thread_area 11955 case TARGET_NR_set_thread_area: 11956 #if defined(TARGET_MIPS) 11957 ((CPUMIPSState *) cpu_env)->active_tc.CP0_UserLocal = arg1; 11958 ret = 0; 11959 break; 11960 #elif defined(TARGET_CRIS) 11961 if (arg1 & 0xff) 11962 ret = -TARGET_EINVAL; 11963 else { 11964 ((CPUCRISState *) cpu_env)->pregs[PR_PID] = arg1; 11965 ret = 0; 11966 } 11967 break; 11968 #elif defined(TARGET_I386) && defined(TARGET_ABI32) 11969 ret = do_set_thread_area(cpu_env, arg1); 11970 break; 11971 #elif defined(TARGET_M68K) 11972 { 11973 TaskState *ts = cpu->opaque; 11974 ts->tp_value = arg1; 11975 ret = 0; 11976 break; 11977 } 11978 #else 11979 goto unimplemented_nowarn; 11980 #endif 11981 #endif 11982 #ifdef TARGET_NR_get_thread_area 11983 case TARGET_NR_get_thread_area: 11984 #if defined(TARGET_I386) && defined(TARGET_ABI32) 11985 ret = do_get_thread_area(cpu_env, arg1); 11986 break; 11987 #elif defined(TARGET_M68K) 11988 { 11989 TaskState *ts = cpu->opaque; 11990 ret = ts->tp_value; 11991 break; 11992 } 11993 #else 11994 goto unimplemented_nowarn; 11995 #endif 11996 #endif 11997 #ifdef TARGET_NR_getdomainname 11998 case TARGET_NR_getdomainname: 11999 goto unimplemented_nowarn; 12000 #endif 12001 12002 #ifdef TARGET_NR_clock_settime 12003 case TARGET_NR_clock_settime: 12004 { 12005 struct timespec ts; 12006 12007 ret = target_to_host_timespec(&ts, arg2); 12008 if (!is_error(ret)) { 12009 ret = get_errno(clock_settime(arg1, &ts)); 12010 } 12011 break; 12012 } 12013 #endif 12014 #ifdef TARGET_NR_clock_gettime 12015 case TARGET_NR_clock_gettime: 12016 { 12017 struct timespec ts; 12018 ret = get_errno(clock_gettime(arg1, &ts)); 12019 if (!is_error(ret)) { 12020 ret = host_to_target_timespec(arg2, &ts); 12021 } 12022 break; 12023 } 12024 #endif 12025 #ifdef TARGET_NR_clock_getres 12026 case TARGET_NR_clock_getres: 12027 { 12028 struct timespec ts; 12029 ret = get_errno(clock_getres(arg1, &ts)); 12030 if (!is_error(ret)) { 12031 host_to_target_timespec(arg2, &ts); 12032 } 12033 break; 12034 } 12035 #endif 12036 #ifdef TARGET_NR_clock_nanosleep 12037 case TARGET_NR_clock_nanosleep: 12038 { 12039 struct timespec ts; 12040 target_to_host_timespec(&ts, arg3); 12041 ret = get_errno(safe_clock_nanosleep(arg1, arg2, 12042 &ts, arg4 ? &ts : NULL)); 12043 if (arg4) 12044 host_to_target_timespec(arg4, &ts); 12045 12046 #if defined(TARGET_PPC) 12047 /* clock_nanosleep is odd in that it returns positive errno values. 12048 * On PPC, CR0 bit 3 should be set in such a situation. */ 12049 if (ret && ret != -TARGET_ERESTARTSYS) { 12050 ((CPUPPCState *)cpu_env)->crf[0] |= 1; 12051 } 12052 #endif 12053 break; 12054 } 12055 #endif 12056 12057 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address) 12058 case TARGET_NR_set_tid_address: 12059 ret = get_errno(set_tid_address((int *)g2h(arg1))); 12060 break; 12061 #endif 12062 12063 case TARGET_NR_tkill: 12064 ret = get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2))); 12065 break; 12066 12067 case TARGET_NR_tgkill: 12068 ret = get_errno(safe_tgkill((int)arg1, (int)arg2, 12069 target_to_host_signal(arg3))); 12070 break; 12071 12072 #ifdef TARGET_NR_set_robust_list 12073 case TARGET_NR_set_robust_list: 12074 case TARGET_NR_get_robust_list: 12075 /* The ABI for supporting robust futexes has userspace pass 12076 * the kernel a pointer to a linked list which is updated by 12077 * userspace after the syscall; the list is walked by the kernel 12078 * when the thread exits. Since the linked list in QEMU guest 12079 * memory isn't a valid linked list for the host and we have 12080 * no way to reliably intercept the thread-death event, we can't 12081 * support these. Silently return ENOSYS so that guest userspace 12082 * falls back to a non-robust futex implementation (which should 12083 * be OK except in the corner case of the guest crashing while 12084 * holding a mutex that is shared with another process via 12085 * shared memory). 12086 */ 12087 goto unimplemented_nowarn; 12088 #endif 12089 12090 #if defined(TARGET_NR_utimensat) 12091 case TARGET_NR_utimensat: 12092 { 12093 struct timespec *tsp, ts[2]; 12094 if (!arg3) { 12095 tsp = NULL; 12096 } else { 12097 target_to_host_timespec(ts, arg3); 12098 target_to_host_timespec(ts+1, arg3+sizeof(struct target_timespec)); 12099 tsp = ts; 12100 } 12101 if (!arg2) 12102 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4)); 12103 else { 12104 if (!(p = lock_user_string(arg2))) { 12105 ret = -TARGET_EFAULT; 12106 goto fail; 12107 } 12108 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4)); 12109 unlock_user(p, arg2, 0); 12110 } 12111 } 12112 break; 12113 #endif 12114 case TARGET_NR_futex: 12115 ret = do_futex(arg1, arg2, arg3, arg4, arg5, arg6); 12116 break; 12117 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init) 12118 case TARGET_NR_inotify_init: 12119 ret = get_errno(sys_inotify_init()); 12120 if (ret >= 0) { 12121 fd_trans_register(ret, &target_inotify_trans); 12122 } 12123 break; 12124 #endif 12125 #ifdef CONFIG_INOTIFY1 12126 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1) 12127 case TARGET_NR_inotify_init1: 12128 ret = get_errno(sys_inotify_init1(target_to_host_bitmask(arg1, 12129 fcntl_flags_tbl))); 12130 if (ret >= 0) { 12131 fd_trans_register(ret, &target_inotify_trans); 12132 } 12133 break; 12134 #endif 12135 #endif 12136 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch) 12137 case TARGET_NR_inotify_add_watch: 12138 p = lock_user_string(arg2); 12139 ret = get_errno(sys_inotify_add_watch(arg1, path(p), arg3)); 12140 unlock_user(p, arg2, 0); 12141 break; 12142 #endif 12143 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch) 12144 case TARGET_NR_inotify_rm_watch: 12145 ret = get_errno(sys_inotify_rm_watch(arg1, arg2)); 12146 break; 12147 #endif 12148 12149 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open) 12150 case TARGET_NR_mq_open: 12151 { 12152 struct mq_attr posix_mq_attr; 12153 struct mq_attr *pposix_mq_attr; 12154 int host_flags; 12155 12156 host_flags = target_to_host_bitmask(arg2, fcntl_flags_tbl); 12157 pposix_mq_attr = NULL; 12158 if (arg4) { 12159 if (copy_from_user_mq_attr(&posix_mq_attr, arg4) != 0) { 12160 goto efault; 12161 } 12162 pposix_mq_attr = &posix_mq_attr; 12163 } 12164 p = lock_user_string(arg1 - 1); 12165 if (!p) { 12166 goto efault; 12167 } 12168 ret = get_errno(mq_open(p, host_flags, arg3, pposix_mq_attr)); 12169 unlock_user (p, arg1, 0); 12170 } 12171 break; 12172 12173 case TARGET_NR_mq_unlink: 12174 p = lock_user_string(arg1 - 1); 12175 if (!p) { 12176 ret = -TARGET_EFAULT; 12177 break; 12178 } 12179 ret = get_errno(mq_unlink(p)); 12180 unlock_user (p, arg1, 0); 12181 break; 12182 12183 case TARGET_NR_mq_timedsend: 12184 { 12185 struct timespec ts; 12186 12187 p = lock_user (VERIFY_READ, arg2, arg3, 1); 12188 if (arg5 != 0) { 12189 target_to_host_timespec(&ts, arg5); 12190 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts)); 12191 host_to_target_timespec(arg5, &ts); 12192 } else { 12193 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL)); 12194 } 12195 unlock_user (p, arg2, arg3); 12196 } 12197 break; 12198 12199 case TARGET_NR_mq_timedreceive: 12200 { 12201 struct timespec ts; 12202 unsigned int prio; 12203 12204 p = lock_user (VERIFY_READ, arg2, arg3, 1); 12205 if (arg5 != 0) { 12206 target_to_host_timespec(&ts, arg5); 12207 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3, 12208 &prio, &ts)); 12209 host_to_target_timespec(arg5, &ts); 12210 } else { 12211 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3, 12212 &prio, NULL)); 12213 } 12214 unlock_user (p, arg2, arg3); 12215 if (arg4 != 0) 12216 put_user_u32(prio, arg4); 12217 } 12218 break; 12219 12220 /* Not implemented for now... */ 12221 /* case TARGET_NR_mq_notify: */ 12222 /* break; */ 12223 12224 case TARGET_NR_mq_getsetattr: 12225 { 12226 struct mq_attr posix_mq_attr_in, posix_mq_attr_out; 12227 ret = 0; 12228 if (arg2 != 0) { 12229 copy_from_user_mq_attr(&posix_mq_attr_in, arg2); 12230 ret = get_errno(mq_setattr(arg1, &posix_mq_attr_in, 12231 &posix_mq_attr_out)); 12232 } else if (arg3 != 0) { 12233 ret = get_errno(mq_getattr(arg1, &posix_mq_attr_out)); 12234 } 12235 if (ret == 0 && arg3 != 0) { 12236 copy_to_user_mq_attr(arg3, &posix_mq_attr_out); 12237 } 12238 } 12239 break; 12240 #endif 12241 12242 #ifdef CONFIG_SPLICE 12243 #ifdef TARGET_NR_tee 12244 case TARGET_NR_tee: 12245 { 12246 ret = get_errno(tee(arg1,arg2,arg3,arg4)); 12247 } 12248 break; 12249 #endif 12250 #ifdef TARGET_NR_splice 12251 case TARGET_NR_splice: 12252 { 12253 loff_t loff_in, loff_out; 12254 loff_t *ploff_in = NULL, *ploff_out = NULL; 12255 if (arg2) { 12256 if (get_user_u64(loff_in, arg2)) { 12257 goto efault; 12258 } 12259 ploff_in = &loff_in; 12260 } 12261 if (arg4) { 12262 if (get_user_u64(loff_out, arg4)) { 12263 goto efault; 12264 } 12265 ploff_out = &loff_out; 12266 } 12267 ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6)); 12268 if (arg2) { 12269 if (put_user_u64(loff_in, arg2)) { 12270 goto efault; 12271 } 12272 } 12273 if (arg4) { 12274 if (put_user_u64(loff_out, arg4)) { 12275 goto efault; 12276 } 12277 } 12278 } 12279 break; 12280 #endif 12281 #ifdef TARGET_NR_vmsplice 12282 case TARGET_NR_vmsplice: 12283 { 12284 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 12285 if (vec != NULL) { 12286 ret = get_errno(vmsplice(arg1, vec, arg3, arg4)); 12287 unlock_iovec(vec, arg2, arg3, 0); 12288 } else { 12289 ret = -host_to_target_errno(errno); 12290 } 12291 } 12292 break; 12293 #endif 12294 #endif /* CONFIG_SPLICE */ 12295 #ifdef CONFIG_EVENTFD 12296 #if defined(TARGET_NR_eventfd) 12297 case TARGET_NR_eventfd: 12298 ret = get_errno(eventfd(arg1, 0)); 12299 if (ret >= 0) { 12300 fd_trans_register(ret, &target_eventfd_trans); 12301 } 12302 break; 12303 #endif 12304 #if defined(TARGET_NR_eventfd2) 12305 case TARGET_NR_eventfd2: 12306 { 12307 int host_flags = arg2 & (~(TARGET_O_NONBLOCK | TARGET_O_CLOEXEC)); 12308 if (arg2 & TARGET_O_NONBLOCK) { 12309 host_flags |= O_NONBLOCK; 12310 } 12311 if (arg2 & TARGET_O_CLOEXEC) { 12312 host_flags |= O_CLOEXEC; 12313 } 12314 ret = get_errno(eventfd(arg1, host_flags)); 12315 if (ret >= 0) { 12316 fd_trans_register(ret, &target_eventfd_trans); 12317 } 12318 break; 12319 } 12320 #endif 12321 #endif /* CONFIG_EVENTFD */ 12322 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate) 12323 case TARGET_NR_fallocate: 12324 #if TARGET_ABI_BITS == 32 12325 ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4), 12326 target_offset64(arg5, arg6))); 12327 #else 12328 ret = get_errno(fallocate(arg1, arg2, arg3, arg4)); 12329 #endif 12330 break; 12331 #endif 12332 #if defined(CONFIG_SYNC_FILE_RANGE) 12333 #if defined(TARGET_NR_sync_file_range) 12334 case TARGET_NR_sync_file_range: 12335 #if TARGET_ABI_BITS == 32 12336 #if defined(TARGET_MIPS) 12337 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4), 12338 target_offset64(arg5, arg6), arg7)); 12339 #else 12340 ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3), 12341 target_offset64(arg4, arg5), arg6)); 12342 #endif /* !TARGET_MIPS */ 12343 #else 12344 ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4)); 12345 #endif 12346 break; 12347 #endif 12348 #if defined(TARGET_NR_sync_file_range2) 12349 case TARGET_NR_sync_file_range2: 12350 /* This is like sync_file_range but the arguments are reordered */ 12351 #if TARGET_ABI_BITS == 32 12352 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4), 12353 target_offset64(arg5, arg6), arg2)); 12354 #else 12355 ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2)); 12356 #endif 12357 break; 12358 #endif 12359 #endif 12360 #if defined(TARGET_NR_signalfd4) 12361 case TARGET_NR_signalfd4: 12362 ret = do_signalfd4(arg1, arg2, arg4); 12363 break; 12364 #endif 12365 #if defined(TARGET_NR_signalfd) 12366 case TARGET_NR_signalfd: 12367 ret = do_signalfd4(arg1, arg2, 0); 12368 break; 12369 #endif 12370 #if defined(CONFIG_EPOLL) 12371 #if defined(TARGET_NR_epoll_create) 12372 case TARGET_NR_epoll_create: 12373 ret = get_errno(epoll_create(arg1)); 12374 break; 12375 #endif 12376 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1) 12377 case TARGET_NR_epoll_create1: 12378 ret = get_errno(epoll_create1(arg1)); 12379 break; 12380 #endif 12381 #if defined(TARGET_NR_epoll_ctl) 12382 case TARGET_NR_epoll_ctl: 12383 { 12384 struct epoll_event ep; 12385 struct epoll_event *epp = 0; 12386 if (arg4) { 12387 struct target_epoll_event *target_ep; 12388 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) { 12389 goto efault; 12390 } 12391 ep.events = tswap32(target_ep->events); 12392 /* The epoll_data_t union is just opaque data to the kernel, 12393 * so we transfer all 64 bits across and need not worry what 12394 * actual data type it is. 12395 */ 12396 ep.data.u64 = tswap64(target_ep->data.u64); 12397 unlock_user_struct(target_ep, arg4, 0); 12398 epp = &ep; 12399 } 12400 ret = get_errno(epoll_ctl(arg1, arg2, arg3, epp)); 12401 break; 12402 } 12403 #endif 12404 12405 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait) 12406 #if defined(TARGET_NR_epoll_wait) 12407 case TARGET_NR_epoll_wait: 12408 #endif 12409 #if defined(TARGET_NR_epoll_pwait) 12410 case TARGET_NR_epoll_pwait: 12411 #endif 12412 { 12413 struct target_epoll_event *target_ep; 12414 struct epoll_event *ep; 12415 int epfd = arg1; 12416 int maxevents = arg3; 12417 int timeout = arg4; 12418 12419 if (maxevents <= 0 || maxevents > TARGET_EP_MAX_EVENTS) { 12420 ret = -TARGET_EINVAL; 12421 break; 12422 } 12423 12424 target_ep = lock_user(VERIFY_WRITE, arg2, 12425 maxevents * sizeof(struct target_epoll_event), 1); 12426 if (!target_ep) { 12427 goto efault; 12428 } 12429 12430 ep = g_try_new(struct epoll_event, maxevents); 12431 if (!ep) { 12432 unlock_user(target_ep, arg2, 0); 12433 ret = -TARGET_ENOMEM; 12434 break; 12435 } 12436 12437 switch (num) { 12438 #if defined(TARGET_NR_epoll_pwait) 12439 case TARGET_NR_epoll_pwait: 12440 { 12441 target_sigset_t *target_set; 12442 sigset_t _set, *set = &_set; 12443 12444 if (arg5) { 12445 if (arg6 != sizeof(target_sigset_t)) { 12446 ret = -TARGET_EINVAL; 12447 break; 12448 } 12449 12450 target_set = lock_user(VERIFY_READ, arg5, 12451 sizeof(target_sigset_t), 1); 12452 if (!target_set) { 12453 ret = -TARGET_EFAULT; 12454 break; 12455 } 12456 target_to_host_sigset(set, target_set); 12457 unlock_user(target_set, arg5, 0); 12458 } else { 12459 set = NULL; 12460 } 12461 12462 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout, 12463 set, SIGSET_T_SIZE)); 12464 break; 12465 } 12466 #endif 12467 #if defined(TARGET_NR_epoll_wait) 12468 case TARGET_NR_epoll_wait: 12469 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout, 12470 NULL, 0)); 12471 break; 12472 #endif 12473 default: 12474 ret = -TARGET_ENOSYS; 12475 } 12476 if (!is_error(ret)) { 12477 int i; 12478 for (i = 0; i < ret; i++) { 12479 target_ep[i].events = tswap32(ep[i].events); 12480 target_ep[i].data.u64 = tswap64(ep[i].data.u64); 12481 } 12482 unlock_user(target_ep, arg2, 12483 ret * sizeof(struct target_epoll_event)); 12484 } else { 12485 unlock_user(target_ep, arg2, 0); 12486 } 12487 g_free(ep); 12488 break; 12489 } 12490 #endif 12491 #endif 12492 #ifdef TARGET_NR_prlimit64 12493 case TARGET_NR_prlimit64: 12494 { 12495 /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */ 12496 struct target_rlimit64 *target_rnew, *target_rold; 12497 struct host_rlimit64 rnew, rold, *rnewp = 0; 12498 int resource = target_to_host_resource(arg2); 12499 if (arg3) { 12500 if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) { 12501 goto efault; 12502 } 12503 rnew.rlim_cur = tswap64(target_rnew->rlim_cur); 12504 rnew.rlim_max = tswap64(target_rnew->rlim_max); 12505 unlock_user_struct(target_rnew, arg3, 0); 12506 rnewp = &rnew; 12507 } 12508 12509 ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0)); 12510 if (!is_error(ret) && arg4) { 12511 if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) { 12512 goto efault; 12513 } 12514 target_rold->rlim_cur = tswap64(rold.rlim_cur); 12515 target_rold->rlim_max = tswap64(rold.rlim_max); 12516 unlock_user_struct(target_rold, arg4, 1); 12517 } 12518 break; 12519 } 12520 #endif 12521 #ifdef TARGET_NR_gethostname 12522 case TARGET_NR_gethostname: 12523 { 12524 char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0); 12525 if (name) { 12526 ret = get_errno(gethostname(name, arg2)); 12527 unlock_user(name, arg1, arg2); 12528 } else { 12529 ret = -TARGET_EFAULT; 12530 } 12531 break; 12532 } 12533 #endif 12534 #ifdef TARGET_NR_atomic_cmpxchg_32 12535 case TARGET_NR_atomic_cmpxchg_32: 12536 { 12537 /* should use start_exclusive from main.c */ 12538 abi_ulong mem_value; 12539 if (get_user_u32(mem_value, arg6)) { 12540 target_siginfo_t info; 12541 info.si_signo = SIGSEGV; 12542 info.si_errno = 0; 12543 info.si_code = TARGET_SEGV_MAPERR; 12544 info._sifields._sigfault._addr = arg6; 12545 queue_signal((CPUArchState *)cpu_env, info.si_signo, 12546 QEMU_SI_FAULT, &info); 12547 ret = 0xdeadbeef; 12548 12549 } 12550 if (mem_value == arg2) 12551 put_user_u32(arg1, arg6); 12552 ret = mem_value; 12553 break; 12554 } 12555 #endif 12556 #ifdef TARGET_NR_atomic_barrier 12557 case TARGET_NR_atomic_barrier: 12558 { 12559 /* Like the kernel implementation and the qemu arm barrier, no-op this? */ 12560 ret = 0; 12561 break; 12562 } 12563 #endif 12564 12565 #ifdef TARGET_NR_timer_create 12566 case TARGET_NR_timer_create: 12567 { 12568 /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */ 12569 12570 struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL; 12571 12572 int clkid = arg1; 12573 int timer_index = next_free_host_timer(); 12574 12575 if (timer_index < 0) { 12576 ret = -TARGET_EAGAIN; 12577 } else { 12578 timer_t *phtimer = g_posix_timers + timer_index; 12579 12580 if (arg2) { 12581 phost_sevp = &host_sevp; 12582 ret = target_to_host_sigevent(phost_sevp, arg2); 12583 if (ret != 0) { 12584 break; 12585 } 12586 } 12587 12588 ret = get_errno(timer_create(clkid, phost_sevp, phtimer)); 12589 if (ret) { 12590 phtimer = NULL; 12591 } else { 12592 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) { 12593 goto efault; 12594 } 12595 } 12596 } 12597 break; 12598 } 12599 #endif 12600 12601 #ifdef TARGET_NR_timer_settime 12602 case TARGET_NR_timer_settime: 12603 { 12604 /* args: timer_t timerid, int flags, const struct itimerspec *new_value, 12605 * struct itimerspec * old_value */ 12606 target_timer_t timerid = get_timer_id(arg1); 12607 12608 if (timerid < 0) { 12609 ret = timerid; 12610 } else if (arg3 == 0) { 12611 ret = -TARGET_EINVAL; 12612 } else { 12613 timer_t htimer = g_posix_timers[timerid]; 12614 struct itimerspec hspec_new = {{0},}, hspec_old = {{0},}; 12615 12616 if (target_to_host_itimerspec(&hspec_new, arg3)) { 12617 goto efault; 12618 } 12619 ret = get_errno( 12620 timer_settime(htimer, arg2, &hspec_new, &hspec_old)); 12621 if (arg4 && host_to_target_itimerspec(arg4, &hspec_old)) { 12622 goto efault; 12623 } 12624 } 12625 break; 12626 } 12627 #endif 12628 12629 #ifdef TARGET_NR_timer_gettime 12630 case TARGET_NR_timer_gettime: 12631 { 12632 /* args: timer_t timerid, struct itimerspec *curr_value */ 12633 target_timer_t timerid = get_timer_id(arg1); 12634 12635 if (timerid < 0) { 12636 ret = timerid; 12637 } else if (!arg2) { 12638 ret = -TARGET_EFAULT; 12639 } else { 12640 timer_t htimer = g_posix_timers[timerid]; 12641 struct itimerspec hspec; 12642 ret = get_errno(timer_gettime(htimer, &hspec)); 12643 12644 if (host_to_target_itimerspec(arg2, &hspec)) { 12645 ret = -TARGET_EFAULT; 12646 } 12647 } 12648 break; 12649 } 12650 #endif 12651 12652 #ifdef TARGET_NR_timer_getoverrun 12653 case TARGET_NR_timer_getoverrun: 12654 { 12655 /* args: timer_t timerid */ 12656 target_timer_t timerid = get_timer_id(arg1); 12657 12658 if (timerid < 0) { 12659 ret = timerid; 12660 } else { 12661 timer_t htimer = g_posix_timers[timerid]; 12662 ret = get_errno(timer_getoverrun(htimer)); 12663 } 12664 fd_trans_unregister(ret); 12665 break; 12666 } 12667 #endif 12668 12669 #ifdef TARGET_NR_timer_delete 12670 case TARGET_NR_timer_delete: 12671 { 12672 /* args: timer_t timerid */ 12673 target_timer_t timerid = get_timer_id(arg1); 12674 12675 if (timerid < 0) { 12676 ret = timerid; 12677 } else { 12678 timer_t htimer = g_posix_timers[timerid]; 12679 ret = get_errno(timer_delete(htimer)); 12680 g_posix_timers[timerid] = 0; 12681 } 12682 break; 12683 } 12684 #endif 12685 12686 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD) 12687 case TARGET_NR_timerfd_create: 12688 ret = get_errno(timerfd_create(arg1, 12689 target_to_host_bitmask(arg2, fcntl_flags_tbl))); 12690 break; 12691 #endif 12692 12693 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD) 12694 case TARGET_NR_timerfd_gettime: 12695 { 12696 struct itimerspec its_curr; 12697 12698 ret = get_errno(timerfd_gettime(arg1, &its_curr)); 12699 12700 if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) { 12701 goto efault; 12702 } 12703 } 12704 break; 12705 #endif 12706 12707 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD) 12708 case TARGET_NR_timerfd_settime: 12709 { 12710 struct itimerspec its_new, its_old, *p_new; 12711 12712 if (arg3) { 12713 if (target_to_host_itimerspec(&its_new, arg3)) { 12714 goto efault; 12715 } 12716 p_new = &its_new; 12717 } else { 12718 p_new = NULL; 12719 } 12720 12721 ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old)); 12722 12723 if (arg4 && host_to_target_itimerspec(arg4, &its_old)) { 12724 goto efault; 12725 } 12726 } 12727 break; 12728 #endif 12729 12730 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get) 12731 case TARGET_NR_ioprio_get: 12732 ret = get_errno(ioprio_get(arg1, arg2)); 12733 break; 12734 #endif 12735 12736 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set) 12737 case TARGET_NR_ioprio_set: 12738 ret = get_errno(ioprio_set(arg1, arg2, arg3)); 12739 break; 12740 #endif 12741 12742 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS) 12743 case TARGET_NR_setns: 12744 ret = get_errno(setns(arg1, arg2)); 12745 break; 12746 #endif 12747 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS) 12748 case TARGET_NR_unshare: 12749 ret = get_errno(unshare(arg1)); 12750 break; 12751 #endif 12752 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp) 12753 case TARGET_NR_kcmp: 12754 ret = get_errno(kcmp(arg1, arg2, arg3, arg4, arg5)); 12755 break; 12756 #endif 12757 12758 default: 12759 unimplemented: 12760 qemu_log_mask(LOG_UNIMP, "Unsupported syscall: %d\n", num); 12761 #if defined(TARGET_NR_setxattr) || defined(TARGET_NR_get_thread_area) || defined(TARGET_NR_getdomainname) || defined(TARGET_NR_set_robust_list) 12762 unimplemented_nowarn: 12763 #endif 12764 ret = -TARGET_ENOSYS; 12765 break; 12766 } 12767 fail: 12768 #ifdef DEBUG 12769 gemu_log(" = " TARGET_ABI_FMT_ld "\n", ret); 12770 #endif 12771 if(do_strace) 12772 print_syscall_ret(num, ret); 12773 trace_guest_user_syscall_ret(cpu, num, ret); 12774 return ret; 12775 efault: 12776 ret = -TARGET_EFAULT; 12777 goto fail; 12778 } 12779