1 /* 2 * Linux syscalls 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #define _ATFILE_SOURCE 20 #include "qemu/osdep.h" 21 #include "qemu/cutils.h" 22 #include "qemu/path.h" 23 #include <elf.h> 24 #include <endian.h> 25 #include <grp.h> 26 #include <sys/ipc.h> 27 #include <sys/msg.h> 28 #include <sys/wait.h> 29 #include <sys/mount.h> 30 #include <sys/file.h> 31 #include <sys/fsuid.h> 32 #include <sys/personality.h> 33 #include <sys/prctl.h> 34 #include <sys/resource.h> 35 #include <sys/swap.h> 36 #include <linux/capability.h> 37 #include <sched.h> 38 #include <sys/timex.h> 39 #include <sys/socket.h> 40 #include <sys/un.h> 41 #include <sys/uio.h> 42 #include <poll.h> 43 #include <sys/times.h> 44 #include <sys/shm.h> 45 #include <sys/sem.h> 46 #include <sys/statfs.h> 47 #include <utime.h> 48 #include <sys/sysinfo.h> 49 #include <sys/signalfd.h> 50 //#include <sys/user.h> 51 #include <netinet/ip.h> 52 #include <netinet/tcp.h> 53 #include <linux/wireless.h> 54 #include <linux/icmp.h> 55 #include <linux/icmpv6.h> 56 #include <linux/errqueue.h> 57 #include <linux/random.h> 58 #include "qemu-common.h" 59 #ifdef CONFIG_TIMERFD 60 #include <sys/timerfd.h> 61 #endif 62 #ifdef TARGET_GPROF 63 #include <sys/gmon.h> 64 #endif 65 #ifdef CONFIG_EVENTFD 66 #include <sys/eventfd.h> 67 #endif 68 #ifdef CONFIG_EPOLL 69 #include <sys/epoll.h> 70 #endif 71 #ifdef CONFIG_ATTR 72 #include "qemu/xattr.h" 73 #endif 74 #ifdef CONFIG_SENDFILE 75 #include <sys/sendfile.h> 76 #endif 77 78 #define termios host_termios 79 #define winsize host_winsize 80 #define termio host_termio 81 #define sgttyb host_sgttyb /* same as target */ 82 #define tchars host_tchars /* same as target */ 83 #define ltchars host_ltchars /* same as target */ 84 85 #include <linux/termios.h> 86 #include <linux/unistd.h> 87 #include <linux/cdrom.h> 88 #include <linux/hdreg.h> 89 #include <linux/soundcard.h> 90 #include <linux/kd.h> 91 #include <linux/mtio.h> 92 #include <linux/fs.h> 93 #if defined(CONFIG_FIEMAP) 94 #include <linux/fiemap.h> 95 #endif 96 #include <linux/fb.h> 97 #include <linux/vt.h> 98 #include <linux/dm-ioctl.h> 99 #include <linux/reboot.h> 100 #include <linux/route.h> 101 #include <linux/filter.h> 102 #include <linux/blkpg.h> 103 #include <netpacket/packet.h> 104 #include <linux/netlink.h> 105 #ifdef CONFIG_RTNETLINK 106 #include <linux/rtnetlink.h> 107 #include <linux/if_bridge.h> 108 #endif 109 #include <linux/audit.h> 110 #include "linux_loop.h" 111 #include "uname.h" 112 113 #include "qemu.h" 114 115 #ifndef CLONE_IO 116 #define CLONE_IO 0x80000000 /* Clone io context */ 117 #endif 118 119 /* We can't directly call the host clone syscall, because this will 120 * badly confuse libc (breaking mutexes, for example). So we must 121 * divide clone flags into: 122 * * flag combinations that look like pthread_create() 123 * * flag combinations that look like fork() 124 * * flags we can implement within QEMU itself 125 * * flags we can't support and will return an error for 126 */ 127 /* For thread creation, all these flags must be present; for 128 * fork, none must be present. 129 */ 130 #define CLONE_THREAD_FLAGS \ 131 (CLONE_VM | CLONE_FS | CLONE_FILES | \ 132 CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM) 133 134 /* These flags are ignored: 135 * CLONE_DETACHED is now ignored by the kernel; 136 * CLONE_IO is just an optimisation hint to the I/O scheduler 137 */ 138 #define CLONE_IGNORED_FLAGS \ 139 (CLONE_DETACHED | CLONE_IO) 140 141 /* Flags for fork which we can implement within QEMU itself */ 142 #define CLONE_OPTIONAL_FORK_FLAGS \ 143 (CLONE_SETTLS | CLONE_PARENT_SETTID | \ 144 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID) 145 146 /* Flags for thread creation which we can implement within QEMU itself */ 147 #define CLONE_OPTIONAL_THREAD_FLAGS \ 148 (CLONE_SETTLS | CLONE_PARENT_SETTID | \ 149 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT) 150 151 #define CLONE_INVALID_FORK_FLAGS \ 152 (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS)) 153 154 #define CLONE_INVALID_THREAD_FLAGS \ 155 (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS | \ 156 CLONE_IGNORED_FLAGS)) 157 158 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits 159 * have almost all been allocated. We cannot support any of 160 * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC, 161 * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED. 162 * The checks against the invalid thread masks above will catch these. 163 * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.) 164 */ 165 166 //#define DEBUG 167 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted 168 * once. This exercises the codepaths for restart. 169 */ 170 //#define DEBUG_ERESTARTSYS 171 172 //#include <linux/msdos_fs.h> 173 #define VFAT_IOCTL_READDIR_BOTH _IOR('r', 1, struct linux_dirent [2]) 174 #define VFAT_IOCTL_READDIR_SHORT _IOR('r', 2, struct linux_dirent [2]) 175 176 #undef _syscall0 177 #undef _syscall1 178 #undef _syscall2 179 #undef _syscall3 180 #undef _syscall4 181 #undef _syscall5 182 #undef _syscall6 183 184 #define _syscall0(type,name) \ 185 static type name (void) \ 186 { \ 187 return syscall(__NR_##name); \ 188 } 189 190 #define _syscall1(type,name,type1,arg1) \ 191 static type name (type1 arg1) \ 192 { \ 193 return syscall(__NR_##name, arg1); \ 194 } 195 196 #define _syscall2(type,name,type1,arg1,type2,arg2) \ 197 static type name (type1 arg1,type2 arg2) \ 198 { \ 199 return syscall(__NR_##name, arg1, arg2); \ 200 } 201 202 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \ 203 static type name (type1 arg1,type2 arg2,type3 arg3) \ 204 { \ 205 return syscall(__NR_##name, arg1, arg2, arg3); \ 206 } 207 208 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \ 209 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4) \ 210 { \ 211 return syscall(__NR_##name, arg1, arg2, arg3, arg4); \ 212 } 213 214 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \ 215 type5,arg5) \ 216 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \ 217 { \ 218 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \ 219 } 220 221 222 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \ 223 type5,arg5,type6,arg6) \ 224 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5, \ 225 type6 arg6) \ 226 { \ 227 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \ 228 } 229 230 231 #define __NR_sys_uname __NR_uname 232 #define __NR_sys_getcwd1 __NR_getcwd 233 #define __NR_sys_getdents __NR_getdents 234 #define __NR_sys_getdents64 __NR_getdents64 235 #define __NR_sys_getpriority __NR_getpriority 236 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo 237 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo 238 #define __NR_sys_syslog __NR_syslog 239 #define __NR_sys_futex __NR_futex 240 #define __NR_sys_inotify_init __NR_inotify_init 241 #define __NR_sys_inotify_add_watch __NR_inotify_add_watch 242 #define __NR_sys_inotify_rm_watch __NR_inotify_rm_watch 243 244 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__) 245 #define __NR__llseek __NR_lseek 246 #endif 247 248 /* Newer kernel ports have llseek() instead of _llseek() */ 249 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek) 250 #define TARGET_NR__llseek TARGET_NR_llseek 251 #endif 252 253 #ifdef __NR_gettid 254 _syscall0(int, gettid) 255 #else 256 /* This is a replacement for the host gettid() and must return a host 257 errno. */ 258 static int gettid(void) { 259 return -ENOSYS; 260 } 261 #endif 262 #if defined(TARGET_NR_getdents) && defined(__NR_getdents) 263 _syscall3(int, sys_getdents, uint, fd, struct linux_dirent *, dirp, uint, count); 264 #endif 265 #if !defined(__NR_getdents) || \ 266 (defined(TARGET_NR_getdents64) && defined(__NR_getdents64)) 267 _syscall3(int, sys_getdents64, uint, fd, struct linux_dirent64 *, dirp, uint, count); 268 #endif 269 #if defined(TARGET_NR__llseek) && defined(__NR_llseek) 270 _syscall5(int, _llseek, uint, fd, ulong, hi, ulong, lo, 271 loff_t *, res, uint, wh); 272 #endif 273 _syscall3(int, sys_rt_sigqueueinfo, pid_t, pid, int, sig, siginfo_t *, uinfo) 274 _syscall4(int, sys_rt_tgsigqueueinfo, pid_t, pid, pid_t, tid, int, sig, 275 siginfo_t *, uinfo) 276 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len) 277 #ifdef __NR_exit_group 278 _syscall1(int,exit_group,int,error_code) 279 #endif 280 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address) 281 _syscall1(int,set_tid_address,int *,tidptr) 282 #endif 283 #if defined(TARGET_NR_futex) && defined(__NR_futex) 284 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val, 285 const struct timespec *,timeout,int *,uaddr2,int,val3) 286 #endif 287 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity 288 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len, 289 unsigned long *, user_mask_ptr); 290 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity 291 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len, 292 unsigned long *, user_mask_ptr); 293 #define __NR_sys_getcpu __NR_getcpu 294 _syscall3(int, sys_getcpu, unsigned *, cpu, unsigned *, node, void *, tcache); 295 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd, 296 void *, arg); 297 _syscall2(int, capget, struct __user_cap_header_struct *, header, 298 struct __user_cap_data_struct *, data); 299 _syscall2(int, capset, struct __user_cap_header_struct *, header, 300 struct __user_cap_data_struct *, data); 301 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get) 302 _syscall2(int, ioprio_get, int, which, int, who) 303 #endif 304 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set) 305 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio) 306 #endif 307 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom) 308 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags) 309 #endif 310 311 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp) 312 _syscall5(int, kcmp, pid_t, pid1, pid_t, pid2, int, type, 313 unsigned long, idx1, unsigned long, idx2) 314 #endif 315 316 static bitmask_transtbl fcntl_flags_tbl[] = { 317 { TARGET_O_ACCMODE, TARGET_O_WRONLY, O_ACCMODE, O_WRONLY, }, 318 { TARGET_O_ACCMODE, TARGET_O_RDWR, O_ACCMODE, O_RDWR, }, 319 { TARGET_O_CREAT, TARGET_O_CREAT, O_CREAT, O_CREAT, }, 320 { TARGET_O_EXCL, TARGET_O_EXCL, O_EXCL, O_EXCL, }, 321 { TARGET_O_NOCTTY, TARGET_O_NOCTTY, O_NOCTTY, O_NOCTTY, }, 322 { TARGET_O_TRUNC, TARGET_O_TRUNC, O_TRUNC, O_TRUNC, }, 323 { TARGET_O_APPEND, TARGET_O_APPEND, O_APPEND, O_APPEND, }, 324 { TARGET_O_NONBLOCK, TARGET_O_NONBLOCK, O_NONBLOCK, O_NONBLOCK, }, 325 { TARGET_O_SYNC, TARGET_O_DSYNC, O_SYNC, O_DSYNC, }, 326 { TARGET_O_SYNC, TARGET_O_SYNC, O_SYNC, O_SYNC, }, 327 { TARGET_FASYNC, TARGET_FASYNC, FASYNC, FASYNC, }, 328 { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, }, 329 { TARGET_O_NOFOLLOW, TARGET_O_NOFOLLOW, O_NOFOLLOW, O_NOFOLLOW, }, 330 #if defined(O_DIRECT) 331 { TARGET_O_DIRECT, TARGET_O_DIRECT, O_DIRECT, O_DIRECT, }, 332 #endif 333 #if defined(O_NOATIME) 334 { TARGET_O_NOATIME, TARGET_O_NOATIME, O_NOATIME, O_NOATIME }, 335 #endif 336 #if defined(O_CLOEXEC) 337 { TARGET_O_CLOEXEC, TARGET_O_CLOEXEC, O_CLOEXEC, O_CLOEXEC }, 338 #endif 339 #if defined(O_PATH) 340 { TARGET_O_PATH, TARGET_O_PATH, O_PATH, O_PATH }, 341 #endif 342 #if defined(O_TMPFILE) 343 { TARGET_O_TMPFILE, TARGET_O_TMPFILE, O_TMPFILE, O_TMPFILE }, 344 #endif 345 /* Don't terminate the list prematurely on 64-bit host+guest. */ 346 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0 347 { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, }, 348 #endif 349 { 0, 0, 0, 0 } 350 }; 351 352 enum { 353 QEMU_IFLA_BR_UNSPEC, 354 QEMU_IFLA_BR_FORWARD_DELAY, 355 QEMU_IFLA_BR_HELLO_TIME, 356 QEMU_IFLA_BR_MAX_AGE, 357 QEMU_IFLA_BR_AGEING_TIME, 358 QEMU_IFLA_BR_STP_STATE, 359 QEMU_IFLA_BR_PRIORITY, 360 QEMU_IFLA_BR_VLAN_FILTERING, 361 QEMU_IFLA_BR_VLAN_PROTOCOL, 362 QEMU_IFLA_BR_GROUP_FWD_MASK, 363 QEMU_IFLA_BR_ROOT_ID, 364 QEMU_IFLA_BR_BRIDGE_ID, 365 QEMU_IFLA_BR_ROOT_PORT, 366 QEMU_IFLA_BR_ROOT_PATH_COST, 367 QEMU_IFLA_BR_TOPOLOGY_CHANGE, 368 QEMU_IFLA_BR_TOPOLOGY_CHANGE_DETECTED, 369 QEMU_IFLA_BR_HELLO_TIMER, 370 QEMU_IFLA_BR_TCN_TIMER, 371 QEMU_IFLA_BR_TOPOLOGY_CHANGE_TIMER, 372 QEMU_IFLA_BR_GC_TIMER, 373 QEMU_IFLA_BR_GROUP_ADDR, 374 QEMU_IFLA_BR_FDB_FLUSH, 375 QEMU_IFLA_BR_MCAST_ROUTER, 376 QEMU_IFLA_BR_MCAST_SNOOPING, 377 QEMU_IFLA_BR_MCAST_QUERY_USE_IFADDR, 378 QEMU_IFLA_BR_MCAST_QUERIER, 379 QEMU_IFLA_BR_MCAST_HASH_ELASTICITY, 380 QEMU_IFLA_BR_MCAST_HASH_MAX, 381 QEMU_IFLA_BR_MCAST_LAST_MEMBER_CNT, 382 QEMU_IFLA_BR_MCAST_STARTUP_QUERY_CNT, 383 QEMU_IFLA_BR_MCAST_LAST_MEMBER_INTVL, 384 QEMU_IFLA_BR_MCAST_MEMBERSHIP_INTVL, 385 QEMU_IFLA_BR_MCAST_QUERIER_INTVL, 386 QEMU_IFLA_BR_MCAST_QUERY_INTVL, 387 QEMU_IFLA_BR_MCAST_QUERY_RESPONSE_INTVL, 388 QEMU_IFLA_BR_MCAST_STARTUP_QUERY_INTVL, 389 QEMU_IFLA_BR_NF_CALL_IPTABLES, 390 QEMU_IFLA_BR_NF_CALL_IP6TABLES, 391 QEMU_IFLA_BR_NF_CALL_ARPTABLES, 392 QEMU_IFLA_BR_VLAN_DEFAULT_PVID, 393 QEMU_IFLA_BR_PAD, 394 QEMU_IFLA_BR_VLAN_STATS_ENABLED, 395 QEMU_IFLA_BR_MCAST_STATS_ENABLED, 396 QEMU___IFLA_BR_MAX, 397 }; 398 399 enum { 400 QEMU_IFLA_UNSPEC, 401 QEMU_IFLA_ADDRESS, 402 QEMU_IFLA_BROADCAST, 403 QEMU_IFLA_IFNAME, 404 QEMU_IFLA_MTU, 405 QEMU_IFLA_LINK, 406 QEMU_IFLA_QDISC, 407 QEMU_IFLA_STATS, 408 QEMU_IFLA_COST, 409 QEMU_IFLA_PRIORITY, 410 QEMU_IFLA_MASTER, 411 QEMU_IFLA_WIRELESS, 412 QEMU_IFLA_PROTINFO, 413 QEMU_IFLA_TXQLEN, 414 QEMU_IFLA_MAP, 415 QEMU_IFLA_WEIGHT, 416 QEMU_IFLA_OPERSTATE, 417 QEMU_IFLA_LINKMODE, 418 QEMU_IFLA_LINKINFO, 419 QEMU_IFLA_NET_NS_PID, 420 QEMU_IFLA_IFALIAS, 421 QEMU_IFLA_NUM_VF, 422 QEMU_IFLA_VFINFO_LIST, 423 QEMU_IFLA_STATS64, 424 QEMU_IFLA_VF_PORTS, 425 QEMU_IFLA_PORT_SELF, 426 QEMU_IFLA_AF_SPEC, 427 QEMU_IFLA_GROUP, 428 QEMU_IFLA_NET_NS_FD, 429 QEMU_IFLA_EXT_MASK, 430 QEMU_IFLA_PROMISCUITY, 431 QEMU_IFLA_NUM_TX_QUEUES, 432 QEMU_IFLA_NUM_RX_QUEUES, 433 QEMU_IFLA_CARRIER, 434 QEMU_IFLA_PHYS_PORT_ID, 435 QEMU_IFLA_CARRIER_CHANGES, 436 QEMU_IFLA_PHYS_SWITCH_ID, 437 QEMU_IFLA_LINK_NETNSID, 438 QEMU_IFLA_PHYS_PORT_NAME, 439 QEMU_IFLA_PROTO_DOWN, 440 QEMU_IFLA_GSO_MAX_SEGS, 441 QEMU_IFLA_GSO_MAX_SIZE, 442 QEMU_IFLA_PAD, 443 QEMU_IFLA_XDP, 444 QEMU___IFLA_MAX 445 }; 446 447 enum { 448 QEMU_IFLA_BRPORT_UNSPEC, 449 QEMU_IFLA_BRPORT_STATE, 450 QEMU_IFLA_BRPORT_PRIORITY, 451 QEMU_IFLA_BRPORT_COST, 452 QEMU_IFLA_BRPORT_MODE, 453 QEMU_IFLA_BRPORT_GUARD, 454 QEMU_IFLA_BRPORT_PROTECT, 455 QEMU_IFLA_BRPORT_FAST_LEAVE, 456 QEMU_IFLA_BRPORT_LEARNING, 457 QEMU_IFLA_BRPORT_UNICAST_FLOOD, 458 QEMU_IFLA_BRPORT_PROXYARP, 459 QEMU_IFLA_BRPORT_LEARNING_SYNC, 460 QEMU_IFLA_BRPORT_PROXYARP_WIFI, 461 QEMU_IFLA_BRPORT_ROOT_ID, 462 QEMU_IFLA_BRPORT_BRIDGE_ID, 463 QEMU_IFLA_BRPORT_DESIGNATED_PORT, 464 QEMU_IFLA_BRPORT_DESIGNATED_COST, 465 QEMU_IFLA_BRPORT_ID, 466 QEMU_IFLA_BRPORT_NO, 467 QEMU_IFLA_BRPORT_TOPOLOGY_CHANGE_ACK, 468 QEMU_IFLA_BRPORT_CONFIG_PENDING, 469 QEMU_IFLA_BRPORT_MESSAGE_AGE_TIMER, 470 QEMU_IFLA_BRPORT_FORWARD_DELAY_TIMER, 471 QEMU_IFLA_BRPORT_HOLD_TIMER, 472 QEMU_IFLA_BRPORT_FLUSH, 473 QEMU_IFLA_BRPORT_MULTICAST_ROUTER, 474 QEMU_IFLA_BRPORT_PAD, 475 QEMU___IFLA_BRPORT_MAX 476 }; 477 478 enum { 479 QEMU_IFLA_INFO_UNSPEC, 480 QEMU_IFLA_INFO_KIND, 481 QEMU_IFLA_INFO_DATA, 482 QEMU_IFLA_INFO_XSTATS, 483 QEMU_IFLA_INFO_SLAVE_KIND, 484 QEMU_IFLA_INFO_SLAVE_DATA, 485 QEMU___IFLA_INFO_MAX, 486 }; 487 488 enum { 489 QEMU_IFLA_INET_UNSPEC, 490 QEMU_IFLA_INET_CONF, 491 QEMU___IFLA_INET_MAX, 492 }; 493 494 enum { 495 QEMU_IFLA_INET6_UNSPEC, 496 QEMU_IFLA_INET6_FLAGS, 497 QEMU_IFLA_INET6_CONF, 498 QEMU_IFLA_INET6_STATS, 499 QEMU_IFLA_INET6_MCAST, 500 QEMU_IFLA_INET6_CACHEINFO, 501 QEMU_IFLA_INET6_ICMP6STATS, 502 QEMU_IFLA_INET6_TOKEN, 503 QEMU_IFLA_INET6_ADDR_GEN_MODE, 504 QEMU___IFLA_INET6_MAX 505 }; 506 507 typedef abi_long (*TargetFdDataFunc)(void *, size_t); 508 typedef abi_long (*TargetFdAddrFunc)(void *, abi_ulong, socklen_t); 509 typedef struct TargetFdTrans { 510 TargetFdDataFunc host_to_target_data; 511 TargetFdDataFunc target_to_host_data; 512 TargetFdAddrFunc target_to_host_addr; 513 } TargetFdTrans; 514 515 static TargetFdTrans **target_fd_trans; 516 517 static unsigned int target_fd_max; 518 519 static TargetFdDataFunc fd_trans_target_to_host_data(int fd) 520 { 521 if (fd >= 0 && fd < target_fd_max && target_fd_trans[fd]) { 522 return target_fd_trans[fd]->target_to_host_data; 523 } 524 return NULL; 525 } 526 527 static TargetFdDataFunc fd_trans_host_to_target_data(int fd) 528 { 529 if (fd >= 0 && fd < target_fd_max && target_fd_trans[fd]) { 530 return target_fd_trans[fd]->host_to_target_data; 531 } 532 return NULL; 533 } 534 535 static TargetFdAddrFunc fd_trans_target_to_host_addr(int fd) 536 { 537 if (fd >= 0 && fd < target_fd_max && target_fd_trans[fd]) { 538 return target_fd_trans[fd]->target_to_host_addr; 539 } 540 return NULL; 541 } 542 543 static void fd_trans_register(int fd, TargetFdTrans *trans) 544 { 545 unsigned int oldmax; 546 547 if (fd >= target_fd_max) { 548 oldmax = target_fd_max; 549 target_fd_max = ((fd >> 6) + 1) << 6; /* by slice of 64 entries */ 550 target_fd_trans = g_renew(TargetFdTrans *, 551 target_fd_trans, target_fd_max); 552 memset((void *)(target_fd_trans + oldmax), 0, 553 (target_fd_max - oldmax) * sizeof(TargetFdTrans *)); 554 } 555 target_fd_trans[fd] = trans; 556 } 557 558 static void fd_trans_unregister(int fd) 559 { 560 if (fd >= 0 && fd < target_fd_max) { 561 target_fd_trans[fd] = NULL; 562 } 563 } 564 565 static void fd_trans_dup(int oldfd, int newfd) 566 { 567 fd_trans_unregister(newfd); 568 if (oldfd < target_fd_max && target_fd_trans[oldfd]) { 569 fd_trans_register(newfd, target_fd_trans[oldfd]); 570 } 571 } 572 573 static int sys_getcwd1(char *buf, size_t size) 574 { 575 if (getcwd(buf, size) == NULL) { 576 /* getcwd() sets errno */ 577 return (-1); 578 } 579 return strlen(buf)+1; 580 } 581 582 #ifdef TARGET_NR_utimensat 583 #if defined(__NR_utimensat) 584 #define __NR_sys_utimensat __NR_utimensat 585 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname, 586 const struct timespec *,tsp,int,flags) 587 #else 588 static int sys_utimensat(int dirfd, const char *pathname, 589 const struct timespec times[2], int flags) 590 { 591 errno = ENOSYS; 592 return -1; 593 } 594 #endif 595 #endif /* TARGET_NR_utimensat */ 596 597 #ifdef TARGET_NR_renameat2 598 #if defined(__NR_renameat2) 599 #define __NR_sys_renameat2 __NR_renameat2 600 _syscall5(int, sys_renameat2, int, oldfd, const char *, old, int, newfd, 601 const char *, new, unsigned int, flags) 602 #else 603 static int sys_renameat2(int oldfd, const char *old, 604 int newfd, const char *new, int flags) 605 { 606 if (flags == 0) { 607 return renameat(oldfd, old, newfd, new); 608 } 609 errno = ENOSYS; 610 return -1; 611 } 612 #endif 613 #endif /* TARGET_NR_renameat2 */ 614 615 #ifdef CONFIG_INOTIFY 616 #include <sys/inotify.h> 617 618 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init) 619 static int sys_inotify_init(void) 620 { 621 return (inotify_init()); 622 } 623 #endif 624 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch) 625 static int sys_inotify_add_watch(int fd,const char *pathname, int32_t mask) 626 { 627 return (inotify_add_watch(fd, pathname, mask)); 628 } 629 #endif 630 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch) 631 static int sys_inotify_rm_watch(int fd, int32_t wd) 632 { 633 return (inotify_rm_watch(fd, wd)); 634 } 635 #endif 636 #ifdef CONFIG_INOTIFY1 637 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1) 638 static int sys_inotify_init1(int flags) 639 { 640 return (inotify_init1(flags)); 641 } 642 #endif 643 #endif 644 #else 645 /* Userspace can usually survive runtime without inotify */ 646 #undef TARGET_NR_inotify_init 647 #undef TARGET_NR_inotify_init1 648 #undef TARGET_NR_inotify_add_watch 649 #undef TARGET_NR_inotify_rm_watch 650 #endif /* CONFIG_INOTIFY */ 651 652 #if defined(TARGET_NR_prlimit64) 653 #ifndef __NR_prlimit64 654 # define __NR_prlimit64 -1 655 #endif 656 #define __NR_sys_prlimit64 __NR_prlimit64 657 /* The glibc rlimit structure may not be that used by the underlying syscall */ 658 struct host_rlimit64 { 659 uint64_t rlim_cur; 660 uint64_t rlim_max; 661 }; 662 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource, 663 const struct host_rlimit64 *, new_limit, 664 struct host_rlimit64 *, old_limit) 665 #endif 666 667 668 #if defined(TARGET_NR_timer_create) 669 /* Maxiumum of 32 active POSIX timers allowed at any one time. */ 670 static timer_t g_posix_timers[32] = { 0, } ; 671 672 static inline int next_free_host_timer(void) 673 { 674 int k ; 675 /* FIXME: Does finding the next free slot require a lock? */ 676 for (k = 0; k < ARRAY_SIZE(g_posix_timers); k++) { 677 if (g_posix_timers[k] == 0) { 678 g_posix_timers[k] = (timer_t) 1; 679 return k; 680 } 681 } 682 return -1; 683 } 684 #endif 685 686 /* ARM EABI and MIPS expect 64bit types aligned even on pairs or registers */ 687 #ifdef TARGET_ARM 688 static inline int regpairs_aligned(void *cpu_env, int num) 689 { 690 return ((((CPUARMState *)cpu_env)->eabi) == 1) ; 691 } 692 #elif defined(TARGET_MIPS) && (TARGET_ABI_BITS == 32) 693 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; } 694 #elif defined(TARGET_PPC) && !defined(TARGET_PPC64) 695 /* SysV AVI for PPC32 expects 64bit parameters to be passed on odd/even pairs 696 * of registers which translates to the same as ARM/MIPS, because we start with 697 * r3 as arg1 */ 698 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; } 699 #elif defined(TARGET_SH4) 700 /* SH4 doesn't align register pairs, except for p{read,write}64 */ 701 static inline int regpairs_aligned(void *cpu_env, int num) 702 { 703 switch (num) { 704 case TARGET_NR_pread64: 705 case TARGET_NR_pwrite64: 706 return 1; 707 708 default: 709 return 0; 710 } 711 } 712 #elif defined(TARGET_XTENSA) 713 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; } 714 #else 715 static inline int regpairs_aligned(void *cpu_env, int num) { return 0; } 716 #endif 717 718 #define ERRNO_TABLE_SIZE 1200 719 720 /* target_to_host_errno_table[] is initialized from 721 * host_to_target_errno_table[] in syscall_init(). */ 722 static uint16_t target_to_host_errno_table[ERRNO_TABLE_SIZE] = { 723 }; 724 725 /* 726 * This list is the union of errno values overridden in asm-<arch>/errno.h 727 * minus the errnos that are not actually generic to all archs. 728 */ 729 static uint16_t host_to_target_errno_table[ERRNO_TABLE_SIZE] = { 730 [EAGAIN] = TARGET_EAGAIN, 731 [EIDRM] = TARGET_EIDRM, 732 [ECHRNG] = TARGET_ECHRNG, 733 [EL2NSYNC] = TARGET_EL2NSYNC, 734 [EL3HLT] = TARGET_EL3HLT, 735 [EL3RST] = TARGET_EL3RST, 736 [ELNRNG] = TARGET_ELNRNG, 737 [EUNATCH] = TARGET_EUNATCH, 738 [ENOCSI] = TARGET_ENOCSI, 739 [EL2HLT] = TARGET_EL2HLT, 740 [EDEADLK] = TARGET_EDEADLK, 741 [ENOLCK] = TARGET_ENOLCK, 742 [EBADE] = TARGET_EBADE, 743 [EBADR] = TARGET_EBADR, 744 [EXFULL] = TARGET_EXFULL, 745 [ENOANO] = TARGET_ENOANO, 746 [EBADRQC] = TARGET_EBADRQC, 747 [EBADSLT] = TARGET_EBADSLT, 748 [EBFONT] = TARGET_EBFONT, 749 [ENOSTR] = TARGET_ENOSTR, 750 [ENODATA] = TARGET_ENODATA, 751 [ETIME] = TARGET_ETIME, 752 [ENOSR] = TARGET_ENOSR, 753 [ENONET] = TARGET_ENONET, 754 [ENOPKG] = TARGET_ENOPKG, 755 [EREMOTE] = TARGET_EREMOTE, 756 [ENOLINK] = TARGET_ENOLINK, 757 [EADV] = TARGET_EADV, 758 [ESRMNT] = TARGET_ESRMNT, 759 [ECOMM] = TARGET_ECOMM, 760 [EPROTO] = TARGET_EPROTO, 761 [EDOTDOT] = TARGET_EDOTDOT, 762 [EMULTIHOP] = TARGET_EMULTIHOP, 763 [EBADMSG] = TARGET_EBADMSG, 764 [ENAMETOOLONG] = TARGET_ENAMETOOLONG, 765 [EOVERFLOW] = TARGET_EOVERFLOW, 766 [ENOTUNIQ] = TARGET_ENOTUNIQ, 767 [EBADFD] = TARGET_EBADFD, 768 [EREMCHG] = TARGET_EREMCHG, 769 [ELIBACC] = TARGET_ELIBACC, 770 [ELIBBAD] = TARGET_ELIBBAD, 771 [ELIBSCN] = TARGET_ELIBSCN, 772 [ELIBMAX] = TARGET_ELIBMAX, 773 [ELIBEXEC] = TARGET_ELIBEXEC, 774 [EILSEQ] = TARGET_EILSEQ, 775 [ENOSYS] = TARGET_ENOSYS, 776 [ELOOP] = TARGET_ELOOP, 777 [ERESTART] = TARGET_ERESTART, 778 [ESTRPIPE] = TARGET_ESTRPIPE, 779 [ENOTEMPTY] = TARGET_ENOTEMPTY, 780 [EUSERS] = TARGET_EUSERS, 781 [ENOTSOCK] = TARGET_ENOTSOCK, 782 [EDESTADDRREQ] = TARGET_EDESTADDRREQ, 783 [EMSGSIZE] = TARGET_EMSGSIZE, 784 [EPROTOTYPE] = TARGET_EPROTOTYPE, 785 [ENOPROTOOPT] = TARGET_ENOPROTOOPT, 786 [EPROTONOSUPPORT] = TARGET_EPROTONOSUPPORT, 787 [ESOCKTNOSUPPORT] = TARGET_ESOCKTNOSUPPORT, 788 [EOPNOTSUPP] = TARGET_EOPNOTSUPP, 789 [EPFNOSUPPORT] = TARGET_EPFNOSUPPORT, 790 [EAFNOSUPPORT] = TARGET_EAFNOSUPPORT, 791 [EADDRINUSE] = TARGET_EADDRINUSE, 792 [EADDRNOTAVAIL] = TARGET_EADDRNOTAVAIL, 793 [ENETDOWN] = TARGET_ENETDOWN, 794 [ENETUNREACH] = TARGET_ENETUNREACH, 795 [ENETRESET] = TARGET_ENETRESET, 796 [ECONNABORTED] = TARGET_ECONNABORTED, 797 [ECONNRESET] = TARGET_ECONNRESET, 798 [ENOBUFS] = TARGET_ENOBUFS, 799 [EISCONN] = TARGET_EISCONN, 800 [ENOTCONN] = TARGET_ENOTCONN, 801 [EUCLEAN] = TARGET_EUCLEAN, 802 [ENOTNAM] = TARGET_ENOTNAM, 803 [ENAVAIL] = TARGET_ENAVAIL, 804 [EISNAM] = TARGET_EISNAM, 805 [EREMOTEIO] = TARGET_EREMOTEIO, 806 [EDQUOT] = TARGET_EDQUOT, 807 [ESHUTDOWN] = TARGET_ESHUTDOWN, 808 [ETOOMANYREFS] = TARGET_ETOOMANYREFS, 809 [ETIMEDOUT] = TARGET_ETIMEDOUT, 810 [ECONNREFUSED] = TARGET_ECONNREFUSED, 811 [EHOSTDOWN] = TARGET_EHOSTDOWN, 812 [EHOSTUNREACH] = TARGET_EHOSTUNREACH, 813 [EALREADY] = TARGET_EALREADY, 814 [EINPROGRESS] = TARGET_EINPROGRESS, 815 [ESTALE] = TARGET_ESTALE, 816 [ECANCELED] = TARGET_ECANCELED, 817 [ENOMEDIUM] = TARGET_ENOMEDIUM, 818 [EMEDIUMTYPE] = TARGET_EMEDIUMTYPE, 819 #ifdef ENOKEY 820 [ENOKEY] = TARGET_ENOKEY, 821 #endif 822 #ifdef EKEYEXPIRED 823 [EKEYEXPIRED] = TARGET_EKEYEXPIRED, 824 #endif 825 #ifdef EKEYREVOKED 826 [EKEYREVOKED] = TARGET_EKEYREVOKED, 827 #endif 828 #ifdef EKEYREJECTED 829 [EKEYREJECTED] = TARGET_EKEYREJECTED, 830 #endif 831 #ifdef EOWNERDEAD 832 [EOWNERDEAD] = TARGET_EOWNERDEAD, 833 #endif 834 #ifdef ENOTRECOVERABLE 835 [ENOTRECOVERABLE] = TARGET_ENOTRECOVERABLE, 836 #endif 837 #ifdef ENOMSG 838 [ENOMSG] = TARGET_ENOMSG, 839 #endif 840 #ifdef ERKFILL 841 [ERFKILL] = TARGET_ERFKILL, 842 #endif 843 #ifdef EHWPOISON 844 [EHWPOISON] = TARGET_EHWPOISON, 845 #endif 846 }; 847 848 static inline int host_to_target_errno(int err) 849 { 850 if (err >= 0 && err < ERRNO_TABLE_SIZE && 851 host_to_target_errno_table[err]) { 852 return host_to_target_errno_table[err]; 853 } 854 return err; 855 } 856 857 static inline int target_to_host_errno(int err) 858 { 859 if (err >= 0 && err < ERRNO_TABLE_SIZE && 860 target_to_host_errno_table[err]) { 861 return target_to_host_errno_table[err]; 862 } 863 return err; 864 } 865 866 static inline abi_long get_errno(abi_long ret) 867 { 868 if (ret == -1) 869 return -host_to_target_errno(errno); 870 else 871 return ret; 872 } 873 874 static inline int is_error(abi_long ret) 875 { 876 return (abi_ulong)ret >= (abi_ulong)(-4096); 877 } 878 879 const char *target_strerror(int err) 880 { 881 if (err == TARGET_ERESTARTSYS) { 882 return "To be restarted"; 883 } 884 if (err == TARGET_QEMU_ESIGRETURN) { 885 return "Successful exit from sigreturn"; 886 } 887 888 if ((err >= ERRNO_TABLE_SIZE) || (err < 0)) { 889 return NULL; 890 } 891 return strerror(target_to_host_errno(err)); 892 } 893 894 #define safe_syscall0(type, name) \ 895 static type safe_##name(void) \ 896 { \ 897 return safe_syscall(__NR_##name); \ 898 } 899 900 #define safe_syscall1(type, name, type1, arg1) \ 901 static type safe_##name(type1 arg1) \ 902 { \ 903 return safe_syscall(__NR_##name, arg1); \ 904 } 905 906 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \ 907 static type safe_##name(type1 arg1, type2 arg2) \ 908 { \ 909 return safe_syscall(__NR_##name, arg1, arg2); \ 910 } 911 912 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \ 913 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \ 914 { \ 915 return safe_syscall(__NR_##name, arg1, arg2, arg3); \ 916 } 917 918 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \ 919 type4, arg4) \ 920 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \ 921 { \ 922 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \ 923 } 924 925 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \ 926 type4, arg4, type5, arg5) \ 927 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \ 928 type5 arg5) \ 929 { \ 930 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \ 931 } 932 933 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \ 934 type4, arg4, type5, arg5, type6, arg6) \ 935 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \ 936 type5 arg5, type6 arg6) \ 937 { \ 938 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \ 939 } 940 941 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count) 942 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count) 943 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \ 944 int, flags, mode_t, mode) 945 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \ 946 struct rusage *, rusage) 947 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \ 948 int, options, struct rusage *, rusage) 949 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp) 950 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \ 951 fd_set *, exceptfds, struct timespec *, timeout, void *, sig) 952 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds, 953 struct timespec *, tsp, const sigset_t *, sigmask, 954 size_t, sigsetsize) 955 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events, 956 int, maxevents, int, timeout, const sigset_t *, sigmask, 957 size_t, sigsetsize) 958 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \ 959 const struct timespec *,timeout,int *,uaddr2,int,val3) 960 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize) 961 safe_syscall2(int, kill, pid_t, pid, int, sig) 962 safe_syscall2(int, tkill, int, tid, int, sig) 963 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig) 964 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt) 965 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt) 966 safe_syscall5(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt, 967 unsigned long, pos_l, unsigned long, pos_h) 968 safe_syscall5(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt, 969 unsigned long, pos_l, unsigned long, pos_h) 970 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr, 971 socklen_t, addrlen) 972 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len, 973 int, flags, const struct sockaddr *, addr, socklen_t, addrlen) 974 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len, 975 int, flags, struct sockaddr *, addr, socklen_t *, addrlen) 976 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags) 977 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags) 978 safe_syscall2(int, flock, int, fd, int, operation) 979 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo, 980 const struct timespec *, uts, size_t, sigsetsize) 981 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len, 982 int, flags) 983 safe_syscall2(int, nanosleep, const struct timespec *, req, 984 struct timespec *, rem) 985 #ifdef TARGET_NR_clock_nanosleep 986 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags, 987 const struct timespec *, req, struct timespec *, rem) 988 #endif 989 #ifdef __NR_msgsnd 990 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz, 991 int, flags) 992 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz, 993 long, msgtype, int, flags) 994 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops, 995 unsigned, nsops, const struct timespec *, timeout) 996 #else 997 /* This host kernel architecture uses a single ipc syscall; fake up 998 * wrappers for the sub-operations to hide this implementation detail. 999 * Annoyingly we can't include linux/ipc.h to get the constant definitions 1000 * for the call parameter because some structs in there conflict with the 1001 * sys/ipc.h ones. So we just define them here, and rely on them being 1002 * the same for all host architectures. 1003 */ 1004 #define Q_SEMTIMEDOP 4 1005 #define Q_MSGSND 11 1006 #define Q_MSGRCV 12 1007 #define Q_IPCCALL(VERSION, OP) ((VERSION) << 16 | (OP)) 1008 1009 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third, 1010 void *, ptr, long, fifth) 1011 static int safe_msgsnd(int msgid, const void *msgp, size_t sz, int flags) 1012 { 1013 return safe_ipc(Q_IPCCALL(0, Q_MSGSND), msgid, sz, flags, (void *)msgp, 0); 1014 } 1015 static int safe_msgrcv(int msgid, void *msgp, size_t sz, long type, int flags) 1016 { 1017 return safe_ipc(Q_IPCCALL(1, Q_MSGRCV), msgid, sz, flags, msgp, type); 1018 } 1019 static int safe_semtimedop(int semid, struct sembuf *tsops, unsigned nsops, 1020 const struct timespec *timeout) 1021 { 1022 return safe_ipc(Q_IPCCALL(0, Q_SEMTIMEDOP), semid, nsops, 0, tsops, 1023 (long)timeout); 1024 } 1025 #endif 1026 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open) 1027 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr, 1028 size_t, len, unsigned, prio, const struct timespec *, timeout) 1029 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr, 1030 size_t, len, unsigned *, prio, const struct timespec *, timeout) 1031 #endif 1032 /* We do ioctl like this rather than via safe_syscall3 to preserve the 1033 * "third argument might be integer or pointer or not present" behaviour of 1034 * the libc function. 1035 */ 1036 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__) 1037 /* Similarly for fcntl. Note that callers must always: 1038 * pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK 1039 * use the flock64 struct rather than unsuffixed flock 1040 * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts. 1041 */ 1042 #ifdef __NR_fcntl64 1043 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__) 1044 #else 1045 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__) 1046 #endif 1047 1048 static inline int host_to_target_sock_type(int host_type) 1049 { 1050 int target_type; 1051 1052 switch (host_type & 0xf /* SOCK_TYPE_MASK */) { 1053 case SOCK_DGRAM: 1054 target_type = TARGET_SOCK_DGRAM; 1055 break; 1056 case SOCK_STREAM: 1057 target_type = TARGET_SOCK_STREAM; 1058 break; 1059 default: 1060 target_type = host_type & 0xf /* SOCK_TYPE_MASK */; 1061 break; 1062 } 1063 1064 #if defined(SOCK_CLOEXEC) 1065 if (host_type & SOCK_CLOEXEC) { 1066 target_type |= TARGET_SOCK_CLOEXEC; 1067 } 1068 #endif 1069 1070 #if defined(SOCK_NONBLOCK) 1071 if (host_type & SOCK_NONBLOCK) { 1072 target_type |= TARGET_SOCK_NONBLOCK; 1073 } 1074 #endif 1075 1076 return target_type; 1077 } 1078 1079 static abi_ulong target_brk; 1080 static abi_ulong target_original_brk; 1081 static abi_ulong brk_page; 1082 1083 void target_set_brk(abi_ulong new_brk) 1084 { 1085 target_original_brk = target_brk = HOST_PAGE_ALIGN(new_brk); 1086 brk_page = HOST_PAGE_ALIGN(target_brk); 1087 } 1088 1089 //#define DEBUGF_BRK(message, args...) do { fprintf(stderr, (message), ## args); } while (0) 1090 #define DEBUGF_BRK(message, args...) 1091 1092 /* do_brk() must return target values and target errnos. */ 1093 abi_long do_brk(abi_ulong new_brk) 1094 { 1095 abi_long mapped_addr; 1096 abi_ulong new_alloc_size; 1097 1098 DEBUGF_BRK("do_brk(" TARGET_ABI_FMT_lx ") -> ", new_brk); 1099 1100 if (!new_brk) { 1101 DEBUGF_BRK(TARGET_ABI_FMT_lx " (!new_brk)\n", target_brk); 1102 return target_brk; 1103 } 1104 if (new_brk < target_original_brk) { 1105 DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk < target_original_brk)\n", 1106 target_brk); 1107 return target_brk; 1108 } 1109 1110 /* If the new brk is less than the highest page reserved to the 1111 * target heap allocation, set it and we're almost done... */ 1112 if (new_brk <= brk_page) { 1113 /* Heap contents are initialized to zero, as for anonymous 1114 * mapped pages. */ 1115 if (new_brk > target_brk) { 1116 memset(g2h(target_brk), 0, new_brk - target_brk); 1117 } 1118 target_brk = new_brk; 1119 DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk <= brk_page)\n", target_brk); 1120 return target_brk; 1121 } 1122 1123 /* We need to allocate more memory after the brk... Note that 1124 * we don't use MAP_FIXED because that will map over the top of 1125 * any existing mapping (like the one with the host libc or qemu 1126 * itself); instead we treat "mapped but at wrong address" as 1127 * a failure and unmap again. 1128 */ 1129 new_alloc_size = HOST_PAGE_ALIGN(new_brk - brk_page); 1130 mapped_addr = get_errno(target_mmap(brk_page, new_alloc_size, 1131 PROT_READ|PROT_WRITE, 1132 MAP_ANON|MAP_PRIVATE, 0, 0)); 1133 1134 if (mapped_addr == brk_page) { 1135 /* Heap contents are initialized to zero, as for anonymous 1136 * mapped pages. Technically the new pages are already 1137 * initialized to zero since they *are* anonymous mapped 1138 * pages, however we have to take care with the contents that 1139 * come from the remaining part of the previous page: it may 1140 * contains garbage data due to a previous heap usage (grown 1141 * then shrunken). */ 1142 memset(g2h(target_brk), 0, brk_page - target_brk); 1143 1144 target_brk = new_brk; 1145 brk_page = HOST_PAGE_ALIGN(target_brk); 1146 DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr == brk_page)\n", 1147 target_brk); 1148 return target_brk; 1149 } else if (mapped_addr != -1) { 1150 /* Mapped but at wrong address, meaning there wasn't actually 1151 * enough space for this brk. 1152 */ 1153 target_munmap(mapped_addr, new_alloc_size); 1154 mapped_addr = -1; 1155 DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr != -1)\n", target_brk); 1156 } 1157 else { 1158 DEBUGF_BRK(TARGET_ABI_FMT_lx " (otherwise)\n", target_brk); 1159 } 1160 1161 #if defined(TARGET_ALPHA) 1162 /* We (partially) emulate OSF/1 on Alpha, which requires we 1163 return a proper errno, not an unchanged brk value. */ 1164 return -TARGET_ENOMEM; 1165 #endif 1166 /* For everything else, return the previous break. */ 1167 return target_brk; 1168 } 1169 1170 static inline abi_long copy_from_user_fdset(fd_set *fds, 1171 abi_ulong target_fds_addr, 1172 int n) 1173 { 1174 int i, nw, j, k; 1175 abi_ulong b, *target_fds; 1176 1177 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS); 1178 if (!(target_fds = lock_user(VERIFY_READ, 1179 target_fds_addr, 1180 sizeof(abi_ulong) * nw, 1181 1))) 1182 return -TARGET_EFAULT; 1183 1184 FD_ZERO(fds); 1185 k = 0; 1186 for (i = 0; i < nw; i++) { 1187 /* grab the abi_ulong */ 1188 __get_user(b, &target_fds[i]); 1189 for (j = 0; j < TARGET_ABI_BITS; j++) { 1190 /* check the bit inside the abi_ulong */ 1191 if ((b >> j) & 1) 1192 FD_SET(k, fds); 1193 k++; 1194 } 1195 } 1196 1197 unlock_user(target_fds, target_fds_addr, 0); 1198 1199 return 0; 1200 } 1201 1202 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr, 1203 abi_ulong target_fds_addr, 1204 int n) 1205 { 1206 if (target_fds_addr) { 1207 if (copy_from_user_fdset(fds, target_fds_addr, n)) 1208 return -TARGET_EFAULT; 1209 *fds_ptr = fds; 1210 } else { 1211 *fds_ptr = NULL; 1212 } 1213 return 0; 1214 } 1215 1216 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr, 1217 const fd_set *fds, 1218 int n) 1219 { 1220 int i, nw, j, k; 1221 abi_long v; 1222 abi_ulong *target_fds; 1223 1224 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS); 1225 if (!(target_fds = lock_user(VERIFY_WRITE, 1226 target_fds_addr, 1227 sizeof(abi_ulong) * nw, 1228 0))) 1229 return -TARGET_EFAULT; 1230 1231 k = 0; 1232 for (i = 0; i < nw; i++) { 1233 v = 0; 1234 for (j = 0; j < TARGET_ABI_BITS; j++) { 1235 v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j); 1236 k++; 1237 } 1238 __put_user(v, &target_fds[i]); 1239 } 1240 1241 unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw); 1242 1243 return 0; 1244 } 1245 1246 #if defined(__alpha__) 1247 #define HOST_HZ 1024 1248 #else 1249 #define HOST_HZ 100 1250 #endif 1251 1252 static inline abi_long host_to_target_clock_t(long ticks) 1253 { 1254 #if HOST_HZ == TARGET_HZ 1255 return ticks; 1256 #else 1257 return ((int64_t)ticks * TARGET_HZ) / HOST_HZ; 1258 #endif 1259 } 1260 1261 static inline abi_long host_to_target_rusage(abi_ulong target_addr, 1262 const struct rusage *rusage) 1263 { 1264 struct target_rusage *target_rusage; 1265 1266 if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0)) 1267 return -TARGET_EFAULT; 1268 target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec); 1269 target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec); 1270 target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec); 1271 target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec); 1272 target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss); 1273 target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss); 1274 target_rusage->ru_idrss = tswapal(rusage->ru_idrss); 1275 target_rusage->ru_isrss = tswapal(rusage->ru_isrss); 1276 target_rusage->ru_minflt = tswapal(rusage->ru_minflt); 1277 target_rusage->ru_majflt = tswapal(rusage->ru_majflt); 1278 target_rusage->ru_nswap = tswapal(rusage->ru_nswap); 1279 target_rusage->ru_inblock = tswapal(rusage->ru_inblock); 1280 target_rusage->ru_oublock = tswapal(rusage->ru_oublock); 1281 target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd); 1282 target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv); 1283 target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals); 1284 target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw); 1285 target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw); 1286 unlock_user_struct(target_rusage, target_addr, 1); 1287 1288 return 0; 1289 } 1290 1291 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim) 1292 { 1293 abi_ulong target_rlim_swap; 1294 rlim_t result; 1295 1296 target_rlim_swap = tswapal(target_rlim); 1297 if (target_rlim_swap == TARGET_RLIM_INFINITY) 1298 return RLIM_INFINITY; 1299 1300 result = target_rlim_swap; 1301 if (target_rlim_swap != (rlim_t)result) 1302 return RLIM_INFINITY; 1303 1304 return result; 1305 } 1306 1307 static inline abi_ulong host_to_target_rlim(rlim_t rlim) 1308 { 1309 abi_ulong target_rlim_swap; 1310 abi_ulong result; 1311 1312 if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim) 1313 target_rlim_swap = TARGET_RLIM_INFINITY; 1314 else 1315 target_rlim_swap = rlim; 1316 result = tswapal(target_rlim_swap); 1317 1318 return result; 1319 } 1320 1321 static inline int target_to_host_resource(int code) 1322 { 1323 switch (code) { 1324 case TARGET_RLIMIT_AS: 1325 return RLIMIT_AS; 1326 case TARGET_RLIMIT_CORE: 1327 return RLIMIT_CORE; 1328 case TARGET_RLIMIT_CPU: 1329 return RLIMIT_CPU; 1330 case TARGET_RLIMIT_DATA: 1331 return RLIMIT_DATA; 1332 case TARGET_RLIMIT_FSIZE: 1333 return RLIMIT_FSIZE; 1334 case TARGET_RLIMIT_LOCKS: 1335 return RLIMIT_LOCKS; 1336 case TARGET_RLIMIT_MEMLOCK: 1337 return RLIMIT_MEMLOCK; 1338 case TARGET_RLIMIT_MSGQUEUE: 1339 return RLIMIT_MSGQUEUE; 1340 case TARGET_RLIMIT_NICE: 1341 return RLIMIT_NICE; 1342 case TARGET_RLIMIT_NOFILE: 1343 return RLIMIT_NOFILE; 1344 case TARGET_RLIMIT_NPROC: 1345 return RLIMIT_NPROC; 1346 case TARGET_RLIMIT_RSS: 1347 return RLIMIT_RSS; 1348 case TARGET_RLIMIT_RTPRIO: 1349 return RLIMIT_RTPRIO; 1350 case TARGET_RLIMIT_SIGPENDING: 1351 return RLIMIT_SIGPENDING; 1352 case TARGET_RLIMIT_STACK: 1353 return RLIMIT_STACK; 1354 default: 1355 return code; 1356 } 1357 } 1358 1359 static inline abi_long copy_from_user_timeval(struct timeval *tv, 1360 abi_ulong target_tv_addr) 1361 { 1362 struct target_timeval *target_tv; 1363 1364 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) 1365 return -TARGET_EFAULT; 1366 1367 __get_user(tv->tv_sec, &target_tv->tv_sec); 1368 __get_user(tv->tv_usec, &target_tv->tv_usec); 1369 1370 unlock_user_struct(target_tv, target_tv_addr, 0); 1371 1372 return 0; 1373 } 1374 1375 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr, 1376 const struct timeval *tv) 1377 { 1378 struct target_timeval *target_tv; 1379 1380 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) 1381 return -TARGET_EFAULT; 1382 1383 __put_user(tv->tv_sec, &target_tv->tv_sec); 1384 __put_user(tv->tv_usec, &target_tv->tv_usec); 1385 1386 unlock_user_struct(target_tv, target_tv_addr, 1); 1387 1388 return 0; 1389 } 1390 1391 static inline abi_long copy_from_user_timezone(struct timezone *tz, 1392 abi_ulong target_tz_addr) 1393 { 1394 struct target_timezone *target_tz; 1395 1396 if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) { 1397 return -TARGET_EFAULT; 1398 } 1399 1400 __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest); 1401 __get_user(tz->tz_dsttime, &target_tz->tz_dsttime); 1402 1403 unlock_user_struct(target_tz, target_tz_addr, 0); 1404 1405 return 0; 1406 } 1407 1408 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open) 1409 #include <mqueue.h> 1410 1411 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr, 1412 abi_ulong target_mq_attr_addr) 1413 { 1414 struct target_mq_attr *target_mq_attr; 1415 1416 if (!lock_user_struct(VERIFY_READ, target_mq_attr, 1417 target_mq_attr_addr, 1)) 1418 return -TARGET_EFAULT; 1419 1420 __get_user(attr->mq_flags, &target_mq_attr->mq_flags); 1421 __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg); 1422 __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize); 1423 __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs); 1424 1425 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0); 1426 1427 return 0; 1428 } 1429 1430 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr, 1431 const struct mq_attr *attr) 1432 { 1433 struct target_mq_attr *target_mq_attr; 1434 1435 if (!lock_user_struct(VERIFY_WRITE, target_mq_attr, 1436 target_mq_attr_addr, 0)) 1437 return -TARGET_EFAULT; 1438 1439 __put_user(attr->mq_flags, &target_mq_attr->mq_flags); 1440 __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg); 1441 __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize); 1442 __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs); 1443 1444 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1); 1445 1446 return 0; 1447 } 1448 #endif 1449 1450 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) 1451 /* do_select() must return target values and target errnos. */ 1452 static abi_long do_select(int n, 1453 abi_ulong rfd_addr, abi_ulong wfd_addr, 1454 abi_ulong efd_addr, abi_ulong target_tv_addr) 1455 { 1456 fd_set rfds, wfds, efds; 1457 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr; 1458 struct timeval tv; 1459 struct timespec ts, *ts_ptr; 1460 abi_long ret; 1461 1462 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n); 1463 if (ret) { 1464 return ret; 1465 } 1466 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n); 1467 if (ret) { 1468 return ret; 1469 } 1470 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n); 1471 if (ret) { 1472 return ret; 1473 } 1474 1475 if (target_tv_addr) { 1476 if (copy_from_user_timeval(&tv, target_tv_addr)) 1477 return -TARGET_EFAULT; 1478 ts.tv_sec = tv.tv_sec; 1479 ts.tv_nsec = tv.tv_usec * 1000; 1480 ts_ptr = &ts; 1481 } else { 1482 ts_ptr = NULL; 1483 } 1484 1485 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr, 1486 ts_ptr, NULL)); 1487 1488 if (!is_error(ret)) { 1489 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) 1490 return -TARGET_EFAULT; 1491 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) 1492 return -TARGET_EFAULT; 1493 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) 1494 return -TARGET_EFAULT; 1495 1496 if (target_tv_addr) { 1497 tv.tv_sec = ts.tv_sec; 1498 tv.tv_usec = ts.tv_nsec / 1000; 1499 if (copy_to_user_timeval(target_tv_addr, &tv)) { 1500 return -TARGET_EFAULT; 1501 } 1502 } 1503 } 1504 1505 return ret; 1506 } 1507 1508 #if defined(TARGET_WANT_OLD_SYS_SELECT) 1509 static abi_long do_old_select(abi_ulong arg1) 1510 { 1511 struct target_sel_arg_struct *sel; 1512 abi_ulong inp, outp, exp, tvp; 1513 long nsel; 1514 1515 if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) { 1516 return -TARGET_EFAULT; 1517 } 1518 1519 nsel = tswapal(sel->n); 1520 inp = tswapal(sel->inp); 1521 outp = tswapal(sel->outp); 1522 exp = tswapal(sel->exp); 1523 tvp = tswapal(sel->tvp); 1524 1525 unlock_user_struct(sel, arg1, 0); 1526 1527 return do_select(nsel, inp, outp, exp, tvp); 1528 } 1529 #endif 1530 #endif 1531 1532 static abi_long do_pipe2(int host_pipe[], int flags) 1533 { 1534 #ifdef CONFIG_PIPE2 1535 return pipe2(host_pipe, flags); 1536 #else 1537 return -ENOSYS; 1538 #endif 1539 } 1540 1541 static abi_long do_pipe(void *cpu_env, abi_ulong pipedes, 1542 int flags, int is_pipe2) 1543 { 1544 int host_pipe[2]; 1545 abi_long ret; 1546 ret = flags ? do_pipe2(host_pipe, flags) : pipe(host_pipe); 1547 1548 if (is_error(ret)) 1549 return get_errno(ret); 1550 1551 /* Several targets have special calling conventions for the original 1552 pipe syscall, but didn't replicate this into the pipe2 syscall. */ 1553 if (!is_pipe2) { 1554 #if defined(TARGET_ALPHA) 1555 ((CPUAlphaState *)cpu_env)->ir[IR_A4] = host_pipe[1]; 1556 return host_pipe[0]; 1557 #elif defined(TARGET_MIPS) 1558 ((CPUMIPSState*)cpu_env)->active_tc.gpr[3] = host_pipe[1]; 1559 return host_pipe[0]; 1560 #elif defined(TARGET_SH4) 1561 ((CPUSH4State*)cpu_env)->gregs[1] = host_pipe[1]; 1562 return host_pipe[0]; 1563 #elif defined(TARGET_SPARC) 1564 ((CPUSPARCState*)cpu_env)->regwptr[1] = host_pipe[1]; 1565 return host_pipe[0]; 1566 #endif 1567 } 1568 1569 if (put_user_s32(host_pipe[0], pipedes) 1570 || put_user_s32(host_pipe[1], pipedes + sizeof(host_pipe[0]))) 1571 return -TARGET_EFAULT; 1572 return get_errno(ret); 1573 } 1574 1575 static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn, 1576 abi_ulong target_addr, 1577 socklen_t len) 1578 { 1579 struct target_ip_mreqn *target_smreqn; 1580 1581 target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1); 1582 if (!target_smreqn) 1583 return -TARGET_EFAULT; 1584 mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr; 1585 mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr; 1586 if (len == sizeof(struct target_ip_mreqn)) 1587 mreqn->imr_ifindex = tswapal(target_smreqn->imr_ifindex); 1588 unlock_user(target_smreqn, target_addr, 0); 1589 1590 return 0; 1591 } 1592 1593 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr, 1594 abi_ulong target_addr, 1595 socklen_t len) 1596 { 1597 const socklen_t unix_maxlen = sizeof (struct sockaddr_un); 1598 sa_family_t sa_family; 1599 struct target_sockaddr *target_saddr; 1600 1601 if (fd_trans_target_to_host_addr(fd)) { 1602 return fd_trans_target_to_host_addr(fd)(addr, target_addr, len); 1603 } 1604 1605 target_saddr = lock_user(VERIFY_READ, target_addr, len, 1); 1606 if (!target_saddr) 1607 return -TARGET_EFAULT; 1608 1609 sa_family = tswap16(target_saddr->sa_family); 1610 1611 /* Oops. The caller might send a incomplete sun_path; sun_path 1612 * must be terminated by \0 (see the manual page), but 1613 * unfortunately it is quite common to specify sockaddr_un 1614 * length as "strlen(x->sun_path)" while it should be 1615 * "strlen(...) + 1". We'll fix that here if needed. 1616 * Linux kernel has a similar feature. 1617 */ 1618 1619 if (sa_family == AF_UNIX) { 1620 if (len < unix_maxlen && len > 0) { 1621 char *cp = (char*)target_saddr; 1622 1623 if ( cp[len-1] && !cp[len] ) 1624 len++; 1625 } 1626 if (len > unix_maxlen) 1627 len = unix_maxlen; 1628 } 1629 1630 memcpy(addr, target_saddr, len); 1631 addr->sa_family = sa_family; 1632 if (sa_family == AF_NETLINK) { 1633 struct sockaddr_nl *nladdr; 1634 1635 nladdr = (struct sockaddr_nl *)addr; 1636 nladdr->nl_pid = tswap32(nladdr->nl_pid); 1637 nladdr->nl_groups = tswap32(nladdr->nl_groups); 1638 } else if (sa_family == AF_PACKET) { 1639 struct target_sockaddr_ll *lladdr; 1640 1641 lladdr = (struct target_sockaddr_ll *)addr; 1642 lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex); 1643 lladdr->sll_hatype = tswap16(lladdr->sll_hatype); 1644 } 1645 unlock_user(target_saddr, target_addr, 0); 1646 1647 return 0; 1648 } 1649 1650 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr, 1651 struct sockaddr *addr, 1652 socklen_t len) 1653 { 1654 struct target_sockaddr *target_saddr; 1655 1656 if (len == 0) { 1657 return 0; 1658 } 1659 assert(addr); 1660 1661 target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0); 1662 if (!target_saddr) 1663 return -TARGET_EFAULT; 1664 memcpy(target_saddr, addr, len); 1665 if (len >= offsetof(struct target_sockaddr, sa_family) + 1666 sizeof(target_saddr->sa_family)) { 1667 target_saddr->sa_family = tswap16(addr->sa_family); 1668 } 1669 if (addr->sa_family == AF_NETLINK && len >= sizeof(struct sockaddr_nl)) { 1670 struct sockaddr_nl *target_nl = (struct sockaddr_nl *)target_saddr; 1671 target_nl->nl_pid = tswap32(target_nl->nl_pid); 1672 target_nl->nl_groups = tswap32(target_nl->nl_groups); 1673 } else if (addr->sa_family == AF_PACKET) { 1674 struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr; 1675 target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex); 1676 target_ll->sll_hatype = tswap16(target_ll->sll_hatype); 1677 } else if (addr->sa_family == AF_INET6 && 1678 len >= sizeof(struct target_sockaddr_in6)) { 1679 struct target_sockaddr_in6 *target_in6 = 1680 (struct target_sockaddr_in6 *)target_saddr; 1681 target_in6->sin6_scope_id = tswap16(target_in6->sin6_scope_id); 1682 } 1683 unlock_user(target_saddr, target_addr, len); 1684 1685 return 0; 1686 } 1687 1688 static inline abi_long target_to_host_cmsg(struct msghdr *msgh, 1689 struct target_msghdr *target_msgh) 1690 { 1691 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh); 1692 abi_long msg_controllen; 1693 abi_ulong target_cmsg_addr; 1694 struct target_cmsghdr *target_cmsg, *target_cmsg_start; 1695 socklen_t space = 0; 1696 1697 msg_controllen = tswapal(target_msgh->msg_controllen); 1698 if (msg_controllen < sizeof (struct target_cmsghdr)) 1699 goto the_end; 1700 target_cmsg_addr = tswapal(target_msgh->msg_control); 1701 target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1); 1702 target_cmsg_start = target_cmsg; 1703 if (!target_cmsg) 1704 return -TARGET_EFAULT; 1705 1706 while (cmsg && target_cmsg) { 1707 void *data = CMSG_DATA(cmsg); 1708 void *target_data = TARGET_CMSG_DATA(target_cmsg); 1709 1710 int len = tswapal(target_cmsg->cmsg_len) 1711 - sizeof(struct target_cmsghdr); 1712 1713 space += CMSG_SPACE(len); 1714 if (space > msgh->msg_controllen) { 1715 space -= CMSG_SPACE(len); 1716 /* This is a QEMU bug, since we allocated the payload 1717 * area ourselves (unlike overflow in host-to-target 1718 * conversion, which is just the guest giving us a buffer 1719 * that's too small). It can't happen for the payload types 1720 * we currently support; if it becomes an issue in future 1721 * we would need to improve our allocation strategy to 1722 * something more intelligent than "twice the size of the 1723 * target buffer we're reading from". 1724 */ 1725 gemu_log("Host cmsg overflow\n"); 1726 break; 1727 } 1728 1729 if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) { 1730 cmsg->cmsg_level = SOL_SOCKET; 1731 } else { 1732 cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level); 1733 } 1734 cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type); 1735 cmsg->cmsg_len = CMSG_LEN(len); 1736 1737 if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) { 1738 int *fd = (int *)data; 1739 int *target_fd = (int *)target_data; 1740 int i, numfds = len / sizeof(int); 1741 1742 for (i = 0; i < numfds; i++) { 1743 __get_user(fd[i], target_fd + i); 1744 } 1745 } else if (cmsg->cmsg_level == SOL_SOCKET 1746 && cmsg->cmsg_type == SCM_CREDENTIALS) { 1747 struct ucred *cred = (struct ucred *)data; 1748 struct target_ucred *target_cred = 1749 (struct target_ucred *)target_data; 1750 1751 __get_user(cred->pid, &target_cred->pid); 1752 __get_user(cred->uid, &target_cred->uid); 1753 __get_user(cred->gid, &target_cred->gid); 1754 } else { 1755 gemu_log("Unsupported ancillary data: %d/%d\n", 1756 cmsg->cmsg_level, cmsg->cmsg_type); 1757 memcpy(data, target_data, len); 1758 } 1759 1760 cmsg = CMSG_NXTHDR(msgh, cmsg); 1761 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg, 1762 target_cmsg_start); 1763 } 1764 unlock_user(target_cmsg, target_cmsg_addr, 0); 1765 the_end: 1766 msgh->msg_controllen = space; 1767 return 0; 1768 } 1769 1770 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh, 1771 struct msghdr *msgh) 1772 { 1773 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh); 1774 abi_long msg_controllen; 1775 abi_ulong target_cmsg_addr; 1776 struct target_cmsghdr *target_cmsg, *target_cmsg_start; 1777 socklen_t space = 0; 1778 1779 msg_controllen = tswapal(target_msgh->msg_controllen); 1780 if (msg_controllen < sizeof (struct target_cmsghdr)) 1781 goto the_end; 1782 target_cmsg_addr = tswapal(target_msgh->msg_control); 1783 target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0); 1784 target_cmsg_start = target_cmsg; 1785 if (!target_cmsg) 1786 return -TARGET_EFAULT; 1787 1788 while (cmsg && target_cmsg) { 1789 void *data = CMSG_DATA(cmsg); 1790 void *target_data = TARGET_CMSG_DATA(target_cmsg); 1791 1792 int len = cmsg->cmsg_len - sizeof(struct cmsghdr); 1793 int tgt_len, tgt_space; 1794 1795 /* We never copy a half-header but may copy half-data; 1796 * this is Linux's behaviour in put_cmsg(). Note that 1797 * truncation here is a guest problem (which we report 1798 * to the guest via the CTRUNC bit), unlike truncation 1799 * in target_to_host_cmsg, which is a QEMU bug. 1800 */ 1801 if (msg_controllen < sizeof(struct target_cmsghdr)) { 1802 target_msgh->msg_flags |= tswap32(MSG_CTRUNC); 1803 break; 1804 } 1805 1806 if (cmsg->cmsg_level == SOL_SOCKET) { 1807 target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET); 1808 } else { 1809 target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level); 1810 } 1811 target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type); 1812 1813 /* Payload types which need a different size of payload on 1814 * the target must adjust tgt_len here. 1815 */ 1816 switch (cmsg->cmsg_level) { 1817 case SOL_SOCKET: 1818 switch (cmsg->cmsg_type) { 1819 case SO_TIMESTAMP: 1820 tgt_len = sizeof(struct target_timeval); 1821 break; 1822 default: 1823 break; 1824 } 1825 default: 1826 tgt_len = len; 1827 break; 1828 } 1829 1830 if (msg_controllen < TARGET_CMSG_LEN(tgt_len)) { 1831 target_msgh->msg_flags |= tswap32(MSG_CTRUNC); 1832 tgt_len = msg_controllen - sizeof(struct target_cmsghdr); 1833 } 1834 1835 /* We must now copy-and-convert len bytes of payload 1836 * into tgt_len bytes of destination space. Bear in mind 1837 * that in both source and destination we may be dealing 1838 * with a truncated value! 1839 */ 1840 switch (cmsg->cmsg_level) { 1841 case SOL_SOCKET: 1842 switch (cmsg->cmsg_type) { 1843 case SCM_RIGHTS: 1844 { 1845 int *fd = (int *)data; 1846 int *target_fd = (int *)target_data; 1847 int i, numfds = tgt_len / sizeof(int); 1848 1849 for (i = 0; i < numfds; i++) { 1850 __put_user(fd[i], target_fd + i); 1851 } 1852 break; 1853 } 1854 case SO_TIMESTAMP: 1855 { 1856 struct timeval *tv = (struct timeval *)data; 1857 struct target_timeval *target_tv = 1858 (struct target_timeval *)target_data; 1859 1860 if (len != sizeof(struct timeval) || 1861 tgt_len != sizeof(struct target_timeval)) { 1862 goto unimplemented; 1863 } 1864 1865 /* copy struct timeval to target */ 1866 __put_user(tv->tv_sec, &target_tv->tv_sec); 1867 __put_user(tv->tv_usec, &target_tv->tv_usec); 1868 break; 1869 } 1870 case SCM_CREDENTIALS: 1871 { 1872 struct ucred *cred = (struct ucred *)data; 1873 struct target_ucred *target_cred = 1874 (struct target_ucred *)target_data; 1875 1876 __put_user(cred->pid, &target_cred->pid); 1877 __put_user(cred->uid, &target_cred->uid); 1878 __put_user(cred->gid, &target_cred->gid); 1879 break; 1880 } 1881 default: 1882 goto unimplemented; 1883 } 1884 break; 1885 1886 case SOL_IP: 1887 switch (cmsg->cmsg_type) { 1888 case IP_TTL: 1889 { 1890 uint32_t *v = (uint32_t *)data; 1891 uint32_t *t_int = (uint32_t *)target_data; 1892 1893 if (len != sizeof(uint32_t) || 1894 tgt_len != sizeof(uint32_t)) { 1895 goto unimplemented; 1896 } 1897 __put_user(*v, t_int); 1898 break; 1899 } 1900 case IP_RECVERR: 1901 { 1902 struct errhdr_t { 1903 struct sock_extended_err ee; 1904 struct sockaddr_in offender; 1905 }; 1906 struct errhdr_t *errh = (struct errhdr_t *)data; 1907 struct errhdr_t *target_errh = 1908 (struct errhdr_t *)target_data; 1909 1910 if (len != sizeof(struct errhdr_t) || 1911 tgt_len != sizeof(struct errhdr_t)) { 1912 goto unimplemented; 1913 } 1914 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno); 1915 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin); 1916 __put_user(errh->ee.ee_type, &target_errh->ee.ee_type); 1917 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code); 1918 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad); 1919 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info); 1920 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data); 1921 host_to_target_sockaddr((unsigned long) &target_errh->offender, 1922 (void *) &errh->offender, sizeof(errh->offender)); 1923 break; 1924 } 1925 default: 1926 goto unimplemented; 1927 } 1928 break; 1929 1930 case SOL_IPV6: 1931 switch (cmsg->cmsg_type) { 1932 case IPV6_HOPLIMIT: 1933 { 1934 uint32_t *v = (uint32_t *)data; 1935 uint32_t *t_int = (uint32_t *)target_data; 1936 1937 if (len != sizeof(uint32_t) || 1938 tgt_len != sizeof(uint32_t)) { 1939 goto unimplemented; 1940 } 1941 __put_user(*v, t_int); 1942 break; 1943 } 1944 case IPV6_RECVERR: 1945 { 1946 struct errhdr6_t { 1947 struct sock_extended_err ee; 1948 struct sockaddr_in6 offender; 1949 }; 1950 struct errhdr6_t *errh = (struct errhdr6_t *)data; 1951 struct errhdr6_t *target_errh = 1952 (struct errhdr6_t *)target_data; 1953 1954 if (len != sizeof(struct errhdr6_t) || 1955 tgt_len != sizeof(struct errhdr6_t)) { 1956 goto unimplemented; 1957 } 1958 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno); 1959 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin); 1960 __put_user(errh->ee.ee_type, &target_errh->ee.ee_type); 1961 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code); 1962 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad); 1963 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info); 1964 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data); 1965 host_to_target_sockaddr((unsigned long) &target_errh->offender, 1966 (void *) &errh->offender, sizeof(errh->offender)); 1967 break; 1968 } 1969 default: 1970 goto unimplemented; 1971 } 1972 break; 1973 1974 default: 1975 unimplemented: 1976 gemu_log("Unsupported ancillary data: %d/%d\n", 1977 cmsg->cmsg_level, cmsg->cmsg_type); 1978 memcpy(target_data, data, MIN(len, tgt_len)); 1979 if (tgt_len > len) { 1980 memset(target_data + len, 0, tgt_len - len); 1981 } 1982 } 1983 1984 target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(tgt_len)); 1985 tgt_space = TARGET_CMSG_SPACE(tgt_len); 1986 if (msg_controllen < tgt_space) { 1987 tgt_space = msg_controllen; 1988 } 1989 msg_controllen -= tgt_space; 1990 space += tgt_space; 1991 cmsg = CMSG_NXTHDR(msgh, cmsg); 1992 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg, 1993 target_cmsg_start); 1994 } 1995 unlock_user(target_cmsg, target_cmsg_addr, space); 1996 the_end: 1997 target_msgh->msg_controllen = tswapal(space); 1998 return 0; 1999 } 2000 2001 static void tswap_nlmsghdr(struct nlmsghdr *nlh) 2002 { 2003 nlh->nlmsg_len = tswap32(nlh->nlmsg_len); 2004 nlh->nlmsg_type = tswap16(nlh->nlmsg_type); 2005 nlh->nlmsg_flags = tswap16(nlh->nlmsg_flags); 2006 nlh->nlmsg_seq = tswap32(nlh->nlmsg_seq); 2007 nlh->nlmsg_pid = tswap32(nlh->nlmsg_pid); 2008 } 2009 2010 static abi_long host_to_target_for_each_nlmsg(struct nlmsghdr *nlh, 2011 size_t len, 2012 abi_long (*host_to_target_nlmsg) 2013 (struct nlmsghdr *)) 2014 { 2015 uint32_t nlmsg_len; 2016 abi_long ret; 2017 2018 while (len > sizeof(struct nlmsghdr)) { 2019 2020 nlmsg_len = nlh->nlmsg_len; 2021 if (nlmsg_len < sizeof(struct nlmsghdr) || 2022 nlmsg_len > len) { 2023 break; 2024 } 2025 2026 switch (nlh->nlmsg_type) { 2027 case NLMSG_DONE: 2028 tswap_nlmsghdr(nlh); 2029 return 0; 2030 case NLMSG_NOOP: 2031 break; 2032 case NLMSG_ERROR: 2033 { 2034 struct nlmsgerr *e = NLMSG_DATA(nlh); 2035 e->error = tswap32(e->error); 2036 tswap_nlmsghdr(&e->msg); 2037 tswap_nlmsghdr(nlh); 2038 return 0; 2039 } 2040 default: 2041 ret = host_to_target_nlmsg(nlh); 2042 if (ret < 0) { 2043 tswap_nlmsghdr(nlh); 2044 return ret; 2045 } 2046 break; 2047 } 2048 tswap_nlmsghdr(nlh); 2049 len -= NLMSG_ALIGN(nlmsg_len); 2050 nlh = (struct nlmsghdr *)(((char*)nlh) + NLMSG_ALIGN(nlmsg_len)); 2051 } 2052 return 0; 2053 } 2054 2055 static abi_long target_to_host_for_each_nlmsg(struct nlmsghdr *nlh, 2056 size_t len, 2057 abi_long (*target_to_host_nlmsg) 2058 (struct nlmsghdr *)) 2059 { 2060 int ret; 2061 2062 while (len > sizeof(struct nlmsghdr)) { 2063 if (tswap32(nlh->nlmsg_len) < sizeof(struct nlmsghdr) || 2064 tswap32(nlh->nlmsg_len) > len) { 2065 break; 2066 } 2067 tswap_nlmsghdr(nlh); 2068 switch (nlh->nlmsg_type) { 2069 case NLMSG_DONE: 2070 return 0; 2071 case NLMSG_NOOP: 2072 break; 2073 case NLMSG_ERROR: 2074 { 2075 struct nlmsgerr *e = NLMSG_DATA(nlh); 2076 e->error = tswap32(e->error); 2077 tswap_nlmsghdr(&e->msg); 2078 return 0; 2079 } 2080 default: 2081 ret = target_to_host_nlmsg(nlh); 2082 if (ret < 0) { 2083 return ret; 2084 } 2085 } 2086 len -= NLMSG_ALIGN(nlh->nlmsg_len); 2087 nlh = (struct nlmsghdr *)(((char *)nlh) + NLMSG_ALIGN(nlh->nlmsg_len)); 2088 } 2089 return 0; 2090 } 2091 2092 #ifdef CONFIG_RTNETLINK 2093 static abi_long host_to_target_for_each_nlattr(struct nlattr *nlattr, 2094 size_t len, void *context, 2095 abi_long (*host_to_target_nlattr) 2096 (struct nlattr *, 2097 void *context)) 2098 { 2099 unsigned short nla_len; 2100 abi_long ret; 2101 2102 while (len > sizeof(struct nlattr)) { 2103 nla_len = nlattr->nla_len; 2104 if (nla_len < sizeof(struct nlattr) || 2105 nla_len > len) { 2106 break; 2107 } 2108 ret = host_to_target_nlattr(nlattr, context); 2109 nlattr->nla_len = tswap16(nlattr->nla_len); 2110 nlattr->nla_type = tswap16(nlattr->nla_type); 2111 if (ret < 0) { 2112 return ret; 2113 } 2114 len -= NLA_ALIGN(nla_len); 2115 nlattr = (struct nlattr *)(((char *)nlattr) + NLA_ALIGN(nla_len)); 2116 } 2117 return 0; 2118 } 2119 2120 static abi_long host_to_target_for_each_rtattr(struct rtattr *rtattr, 2121 size_t len, 2122 abi_long (*host_to_target_rtattr) 2123 (struct rtattr *)) 2124 { 2125 unsigned short rta_len; 2126 abi_long ret; 2127 2128 while (len > sizeof(struct rtattr)) { 2129 rta_len = rtattr->rta_len; 2130 if (rta_len < sizeof(struct rtattr) || 2131 rta_len > len) { 2132 break; 2133 } 2134 ret = host_to_target_rtattr(rtattr); 2135 rtattr->rta_len = tswap16(rtattr->rta_len); 2136 rtattr->rta_type = tswap16(rtattr->rta_type); 2137 if (ret < 0) { 2138 return ret; 2139 } 2140 len -= RTA_ALIGN(rta_len); 2141 rtattr = (struct rtattr *)(((char *)rtattr) + RTA_ALIGN(rta_len)); 2142 } 2143 return 0; 2144 } 2145 2146 #define NLA_DATA(nla) ((void *)((char *)(nla)) + NLA_HDRLEN) 2147 2148 static abi_long host_to_target_data_bridge_nlattr(struct nlattr *nlattr, 2149 void *context) 2150 { 2151 uint16_t *u16; 2152 uint32_t *u32; 2153 uint64_t *u64; 2154 2155 switch (nlattr->nla_type) { 2156 /* no data */ 2157 case QEMU_IFLA_BR_FDB_FLUSH: 2158 break; 2159 /* binary */ 2160 case QEMU_IFLA_BR_GROUP_ADDR: 2161 break; 2162 /* uint8_t */ 2163 case QEMU_IFLA_BR_VLAN_FILTERING: 2164 case QEMU_IFLA_BR_TOPOLOGY_CHANGE: 2165 case QEMU_IFLA_BR_TOPOLOGY_CHANGE_DETECTED: 2166 case QEMU_IFLA_BR_MCAST_ROUTER: 2167 case QEMU_IFLA_BR_MCAST_SNOOPING: 2168 case QEMU_IFLA_BR_MCAST_QUERY_USE_IFADDR: 2169 case QEMU_IFLA_BR_MCAST_QUERIER: 2170 case QEMU_IFLA_BR_NF_CALL_IPTABLES: 2171 case QEMU_IFLA_BR_NF_CALL_IP6TABLES: 2172 case QEMU_IFLA_BR_NF_CALL_ARPTABLES: 2173 break; 2174 /* uint16_t */ 2175 case QEMU_IFLA_BR_PRIORITY: 2176 case QEMU_IFLA_BR_VLAN_PROTOCOL: 2177 case QEMU_IFLA_BR_GROUP_FWD_MASK: 2178 case QEMU_IFLA_BR_ROOT_PORT: 2179 case QEMU_IFLA_BR_VLAN_DEFAULT_PVID: 2180 u16 = NLA_DATA(nlattr); 2181 *u16 = tswap16(*u16); 2182 break; 2183 /* uint32_t */ 2184 case QEMU_IFLA_BR_FORWARD_DELAY: 2185 case QEMU_IFLA_BR_HELLO_TIME: 2186 case QEMU_IFLA_BR_MAX_AGE: 2187 case QEMU_IFLA_BR_AGEING_TIME: 2188 case QEMU_IFLA_BR_STP_STATE: 2189 case QEMU_IFLA_BR_ROOT_PATH_COST: 2190 case QEMU_IFLA_BR_MCAST_HASH_ELASTICITY: 2191 case QEMU_IFLA_BR_MCAST_HASH_MAX: 2192 case QEMU_IFLA_BR_MCAST_LAST_MEMBER_CNT: 2193 case QEMU_IFLA_BR_MCAST_STARTUP_QUERY_CNT: 2194 u32 = NLA_DATA(nlattr); 2195 *u32 = tswap32(*u32); 2196 break; 2197 /* uint64_t */ 2198 case QEMU_IFLA_BR_HELLO_TIMER: 2199 case QEMU_IFLA_BR_TCN_TIMER: 2200 case QEMU_IFLA_BR_GC_TIMER: 2201 case QEMU_IFLA_BR_TOPOLOGY_CHANGE_TIMER: 2202 case QEMU_IFLA_BR_MCAST_LAST_MEMBER_INTVL: 2203 case QEMU_IFLA_BR_MCAST_MEMBERSHIP_INTVL: 2204 case QEMU_IFLA_BR_MCAST_QUERIER_INTVL: 2205 case QEMU_IFLA_BR_MCAST_QUERY_INTVL: 2206 case QEMU_IFLA_BR_MCAST_QUERY_RESPONSE_INTVL: 2207 case QEMU_IFLA_BR_MCAST_STARTUP_QUERY_INTVL: 2208 u64 = NLA_DATA(nlattr); 2209 *u64 = tswap64(*u64); 2210 break; 2211 /* ifla_bridge_id: uin8_t[] */ 2212 case QEMU_IFLA_BR_ROOT_ID: 2213 case QEMU_IFLA_BR_BRIDGE_ID: 2214 break; 2215 default: 2216 gemu_log("Unknown QEMU_IFLA_BR type %d\n", nlattr->nla_type); 2217 break; 2218 } 2219 return 0; 2220 } 2221 2222 static abi_long host_to_target_slave_data_bridge_nlattr(struct nlattr *nlattr, 2223 void *context) 2224 { 2225 uint16_t *u16; 2226 uint32_t *u32; 2227 uint64_t *u64; 2228 2229 switch (nlattr->nla_type) { 2230 /* uint8_t */ 2231 case QEMU_IFLA_BRPORT_STATE: 2232 case QEMU_IFLA_BRPORT_MODE: 2233 case QEMU_IFLA_BRPORT_GUARD: 2234 case QEMU_IFLA_BRPORT_PROTECT: 2235 case QEMU_IFLA_BRPORT_FAST_LEAVE: 2236 case QEMU_IFLA_BRPORT_LEARNING: 2237 case QEMU_IFLA_BRPORT_UNICAST_FLOOD: 2238 case QEMU_IFLA_BRPORT_PROXYARP: 2239 case QEMU_IFLA_BRPORT_LEARNING_SYNC: 2240 case QEMU_IFLA_BRPORT_PROXYARP_WIFI: 2241 case QEMU_IFLA_BRPORT_TOPOLOGY_CHANGE_ACK: 2242 case QEMU_IFLA_BRPORT_CONFIG_PENDING: 2243 case QEMU_IFLA_BRPORT_MULTICAST_ROUTER: 2244 break; 2245 /* uint16_t */ 2246 case QEMU_IFLA_BRPORT_PRIORITY: 2247 case QEMU_IFLA_BRPORT_DESIGNATED_PORT: 2248 case QEMU_IFLA_BRPORT_DESIGNATED_COST: 2249 case QEMU_IFLA_BRPORT_ID: 2250 case QEMU_IFLA_BRPORT_NO: 2251 u16 = NLA_DATA(nlattr); 2252 *u16 = tswap16(*u16); 2253 break; 2254 /* uin32_t */ 2255 case QEMU_IFLA_BRPORT_COST: 2256 u32 = NLA_DATA(nlattr); 2257 *u32 = tswap32(*u32); 2258 break; 2259 /* uint64_t */ 2260 case QEMU_IFLA_BRPORT_MESSAGE_AGE_TIMER: 2261 case QEMU_IFLA_BRPORT_FORWARD_DELAY_TIMER: 2262 case QEMU_IFLA_BRPORT_HOLD_TIMER: 2263 u64 = NLA_DATA(nlattr); 2264 *u64 = tswap64(*u64); 2265 break; 2266 /* ifla_bridge_id: uint8_t[] */ 2267 case QEMU_IFLA_BRPORT_ROOT_ID: 2268 case QEMU_IFLA_BRPORT_BRIDGE_ID: 2269 break; 2270 default: 2271 gemu_log("Unknown QEMU_IFLA_BRPORT type %d\n", nlattr->nla_type); 2272 break; 2273 } 2274 return 0; 2275 } 2276 2277 struct linkinfo_context { 2278 int len; 2279 char *name; 2280 int slave_len; 2281 char *slave_name; 2282 }; 2283 2284 static abi_long host_to_target_data_linkinfo_nlattr(struct nlattr *nlattr, 2285 void *context) 2286 { 2287 struct linkinfo_context *li_context = context; 2288 2289 switch (nlattr->nla_type) { 2290 /* string */ 2291 case QEMU_IFLA_INFO_KIND: 2292 li_context->name = NLA_DATA(nlattr); 2293 li_context->len = nlattr->nla_len - NLA_HDRLEN; 2294 break; 2295 case QEMU_IFLA_INFO_SLAVE_KIND: 2296 li_context->slave_name = NLA_DATA(nlattr); 2297 li_context->slave_len = nlattr->nla_len - NLA_HDRLEN; 2298 break; 2299 /* stats */ 2300 case QEMU_IFLA_INFO_XSTATS: 2301 /* FIXME: only used by CAN */ 2302 break; 2303 /* nested */ 2304 case QEMU_IFLA_INFO_DATA: 2305 if (strncmp(li_context->name, "bridge", 2306 li_context->len) == 0) { 2307 return host_to_target_for_each_nlattr(NLA_DATA(nlattr), 2308 nlattr->nla_len, 2309 NULL, 2310 host_to_target_data_bridge_nlattr); 2311 } else { 2312 gemu_log("Unknown QEMU_IFLA_INFO_KIND %s\n", li_context->name); 2313 } 2314 break; 2315 case QEMU_IFLA_INFO_SLAVE_DATA: 2316 if (strncmp(li_context->slave_name, "bridge", 2317 li_context->slave_len) == 0) { 2318 return host_to_target_for_each_nlattr(NLA_DATA(nlattr), 2319 nlattr->nla_len, 2320 NULL, 2321 host_to_target_slave_data_bridge_nlattr); 2322 } else { 2323 gemu_log("Unknown QEMU_IFLA_INFO_SLAVE_KIND %s\n", 2324 li_context->slave_name); 2325 } 2326 break; 2327 default: 2328 gemu_log("Unknown host QEMU_IFLA_INFO type: %d\n", nlattr->nla_type); 2329 break; 2330 } 2331 2332 return 0; 2333 } 2334 2335 static abi_long host_to_target_data_inet_nlattr(struct nlattr *nlattr, 2336 void *context) 2337 { 2338 uint32_t *u32; 2339 int i; 2340 2341 switch (nlattr->nla_type) { 2342 case QEMU_IFLA_INET_CONF: 2343 u32 = NLA_DATA(nlattr); 2344 for (i = 0; i < (nlattr->nla_len - NLA_HDRLEN) / sizeof(*u32); 2345 i++) { 2346 u32[i] = tswap32(u32[i]); 2347 } 2348 break; 2349 default: 2350 gemu_log("Unknown host AF_INET type: %d\n", nlattr->nla_type); 2351 } 2352 return 0; 2353 } 2354 2355 static abi_long host_to_target_data_inet6_nlattr(struct nlattr *nlattr, 2356 void *context) 2357 { 2358 uint32_t *u32; 2359 uint64_t *u64; 2360 struct ifla_cacheinfo *ci; 2361 int i; 2362 2363 switch (nlattr->nla_type) { 2364 /* binaries */ 2365 case QEMU_IFLA_INET6_TOKEN: 2366 break; 2367 /* uint8_t */ 2368 case QEMU_IFLA_INET6_ADDR_GEN_MODE: 2369 break; 2370 /* uint32_t */ 2371 case QEMU_IFLA_INET6_FLAGS: 2372 u32 = NLA_DATA(nlattr); 2373 *u32 = tswap32(*u32); 2374 break; 2375 /* uint32_t[] */ 2376 case QEMU_IFLA_INET6_CONF: 2377 u32 = NLA_DATA(nlattr); 2378 for (i = 0; i < (nlattr->nla_len - NLA_HDRLEN) / sizeof(*u32); 2379 i++) { 2380 u32[i] = tswap32(u32[i]); 2381 } 2382 break; 2383 /* ifla_cacheinfo */ 2384 case QEMU_IFLA_INET6_CACHEINFO: 2385 ci = NLA_DATA(nlattr); 2386 ci->max_reasm_len = tswap32(ci->max_reasm_len); 2387 ci->tstamp = tswap32(ci->tstamp); 2388 ci->reachable_time = tswap32(ci->reachable_time); 2389 ci->retrans_time = tswap32(ci->retrans_time); 2390 break; 2391 /* uint64_t[] */ 2392 case QEMU_IFLA_INET6_STATS: 2393 case QEMU_IFLA_INET6_ICMP6STATS: 2394 u64 = NLA_DATA(nlattr); 2395 for (i = 0; i < (nlattr->nla_len - NLA_HDRLEN) / sizeof(*u64); 2396 i++) { 2397 u64[i] = tswap64(u64[i]); 2398 } 2399 break; 2400 default: 2401 gemu_log("Unknown host AF_INET6 type: %d\n", nlattr->nla_type); 2402 } 2403 return 0; 2404 } 2405 2406 static abi_long host_to_target_data_spec_nlattr(struct nlattr *nlattr, 2407 void *context) 2408 { 2409 switch (nlattr->nla_type) { 2410 case AF_INET: 2411 return host_to_target_for_each_nlattr(NLA_DATA(nlattr), nlattr->nla_len, 2412 NULL, 2413 host_to_target_data_inet_nlattr); 2414 case AF_INET6: 2415 return host_to_target_for_each_nlattr(NLA_DATA(nlattr), nlattr->nla_len, 2416 NULL, 2417 host_to_target_data_inet6_nlattr); 2418 default: 2419 gemu_log("Unknown host AF_SPEC type: %d\n", nlattr->nla_type); 2420 break; 2421 } 2422 return 0; 2423 } 2424 2425 static abi_long host_to_target_data_link_rtattr(struct rtattr *rtattr) 2426 { 2427 uint32_t *u32; 2428 struct rtnl_link_stats *st; 2429 struct rtnl_link_stats64 *st64; 2430 struct rtnl_link_ifmap *map; 2431 struct linkinfo_context li_context; 2432 2433 switch (rtattr->rta_type) { 2434 /* binary stream */ 2435 case QEMU_IFLA_ADDRESS: 2436 case QEMU_IFLA_BROADCAST: 2437 /* string */ 2438 case QEMU_IFLA_IFNAME: 2439 case QEMU_IFLA_QDISC: 2440 break; 2441 /* uin8_t */ 2442 case QEMU_IFLA_OPERSTATE: 2443 case QEMU_IFLA_LINKMODE: 2444 case QEMU_IFLA_CARRIER: 2445 case QEMU_IFLA_PROTO_DOWN: 2446 break; 2447 /* uint32_t */ 2448 case QEMU_IFLA_MTU: 2449 case QEMU_IFLA_LINK: 2450 case QEMU_IFLA_WEIGHT: 2451 case QEMU_IFLA_TXQLEN: 2452 case QEMU_IFLA_CARRIER_CHANGES: 2453 case QEMU_IFLA_NUM_RX_QUEUES: 2454 case QEMU_IFLA_NUM_TX_QUEUES: 2455 case QEMU_IFLA_PROMISCUITY: 2456 case QEMU_IFLA_EXT_MASK: 2457 case QEMU_IFLA_LINK_NETNSID: 2458 case QEMU_IFLA_GROUP: 2459 case QEMU_IFLA_MASTER: 2460 case QEMU_IFLA_NUM_VF: 2461 case QEMU_IFLA_GSO_MAX_SEGS: 2462 case QEMU_IFLA_GSO_MAX_SIZE: 2463 u32 = RTA_DATA(rtattr); 2464 *u32 = tswap32(*u32); 2465 break; 2466 /* struct rtnl_link_stats */ 2467 case QEMU_IFLA_STATS: 2468 st = RTA_DATA(rtattr); 2469 st->rx_packets = tswap32(st->rx_packets); 2470 st->tx_packets = tswap32(st->tx_packets); 2471 st->rx_bytes = tswap32(st->rx_bytes); 2472 st->tx_bytes = tswap32(st->tx_bytes); 2473 st->rx_errors = tswap32(st->rx_errors); 2474 st->tx_errors = tswap32(st->tx_errors); 2475 st->rx_dropped = tswap32(st->rx_dropped); 2476 st->tx_dropped = tswap32(st->tx_dropped); 2477 st->multicast = tswap32(st->multicast); 2478 st->collisions = tswap32(st->collisions); 2479 2480 /* detailed rx_errors: */ 2481 st->rx_length_errors = tswap32(st->rx_length_errors); 2482 st->rx_over_errors = tswap32(st->rx_over_errors); 2483 st->rx_crc_errors = tswap32(st->rx_crc_errors); 2484 st->rx_frame_errors = tswap32(st->rx_frame_errors); 2485 st->rx_fifo_errors = tswap32(st->rx_fifo_errors); 2486 st->rx_missed_errors = tswap32(st->rx_missed_errors); 2487 2488 /* detailed tx_errors */ 2489 st->tx_aborted_errors = tswap32(st->tx_aborted_errors); 2490 st->tx_carrier_errors = tswap32(st->tx_carrier_errors); 2491 st->tx_fifo_errors = tswap32(st->tx_fifo_errors); 2492 st->tx_heartbeat_errors = tswap32(st->tx_heartbeat_errors); 2493 st->tx_window_errors = tswap32(st->tx_window_errors); 2494 2495 /* for cslip etc */ 2496 st->rx_compressed = tswap32(st->rx_compressed); 2497 st->tx_compressed = tswap32(st->tx_compressed); 2498 break; 2499 /* struct rtnl_link_stats64 */ 2500 case QEMU_IFLA_STATS64: 2501 st64 = RTA_DATA(rtattr); 2502 st64->rx_packets = tswap64(st64->rx_packets); 2503 st64->tx_packets = tswap64(st64->tx_packets); 2504 st64->rx_bytes = tswap64(st64->rx_bytes); 2505 st64->tx_bytes = tswap64(st64->tx_bytes); 2506 st64->rx_errors = tswap64(st64->rx_errors); 2507 st64->tx_errors = tswap64(st64->tx_errors); 2508 st64->rx_dropped = tswap64(st64->rx_dropped); 2509 st64->tx_dropped = tswap64(st64->tx_dropped); 2510 st64->multicast = tswap64(st64->multicast); 2511 st64->collisions = tswap64(st64->collisions); 2512 2513 /* detailed rx_errors: */ 2514 st64->rx_length_errors = tswap64(st64->rx_length_errors); 2515 st64->rx_over_errors = tswap64(st64->rx_over_errors); 2516 st64->rx_crc_errors = tswap64(st64->rx_crc_errors); 2517 st64->rx_frame_errors = tswap64(st64->rx_frame_errors); 2518 st64->rx_fifo_errors = tswap64(st64->rx_fifo_errors); 2519 st64->rx_missed_errors = tswap64(st64->rx_missed_errors); 2520 2521 /* detailed tx_errors */ 2522 st64->tx_aborted_errors = tswap64(st64->tx_aborted_errors); 2523 st64->tx_carrier_errors = tswap64(st64->tx_carrier_errors); 2524 st64->tx_fifo_errors = tswap64(st64->tx_fifo_errors); 2525 st64->tx_heartbeat_errors = tswap64(st64->tx_heartbeat_errors); 2526 st64->tx_window_errors = tswap64(st64->tx_window_errors); 2527 2528 /* for cslip etc */ 2529 st64->rx_compressed = tswap64(st64->rx_compressed); 2530 st64->tx_compressed = tswap64(st64->tx_compressed); 2531 break; 2532 /* struct rtnl_link_ifmap */ 2533 case QEMU_IFLA_MAP: 2534 map = RTA_DATA(rtattr); 2535 map->mem_start = tswap64(map->mem_start); 2536 map->mem_end = tswap64(map->mem_end); 2537 map->base_addr = tswap64(map->base_addr); 2538 map->irq = tswap16(map->irq); 2539 break; 2540 /* nested */ 2541 case QEMU_IFLA_LINKINFO: 2542 memset(&li_context, 0, sizeof(li_context)); 2543 return host_to_target_for_each_nlattr(RTA_DATA(rtattr), rtattr->rta_len, 2544 &li_context, 2545 host_to_target_data_linkinfo_nlattr); 2546 case QEMU_IFLA_AF_SPEC: 2547 return host_to_target_for_each_nlattr(RTA_DATA(rtattr), rtattr->rta_len, 2548 NULL, 2549 host_to_target_data_spec_nlattr); 2550 default: 2551 gemu_log("Unknown host QEMU_IFLA type: %d\n", rtattr->rta_type); 2552 break; 2553 } 2554 return 0; 2555 } 2556 2557 static abi_long host_to_target_data_addr_rtattr(struct rtattr *rtattr) 2558 { 2559 uint32_t *u32; 2560 struct ifa_cacheinfo *ci; 2561 2562 switch (rtattr->rta_type) { 2563 /* binary: depends on family type */ 2564 case IFA_ADDRESS: 2565 case IFA_LOCAL: 2566 break; 2567 /* string */ 2568 case IFA_LABEL: 2569 break; 2570 /* u32 */ 2571 case IFA_FLAGS: 2572 case IFA_BROADCAST: 2573 u32 = RTA_DATA(rtattr); 2574 *u32 = tswap32(*u32); 2575 break; 2576 /* struct ifa_cacheinfo */ 2577 case IFA_CACHEINFO: 2578 ci = RTA_DATA(rtattr); 2579 ci->ifa_prefered = tswap32(ci->ifa_prefered); 2580 ci->ifa_valid = tswap32(ci->ifa_valid); 2581 ci->cstamp = tswap32(ci->cstamp); 2582 ci->tstamp = tswap32(ci->tstamp); 2583 break; 2584 default: 2585 gemu_log("Unknown host IFA type: %d\n", rtattr->rta_type); 2586 break; 2587 } 2588 return 0; 2589 } 2590 2591 static abi_long host_to_target_data_route_rtattr(struct rtattr *rtattr) 2592 { 2593 uint32_t *u32; 2594 switch (rtattr->rta_type) { 2595 /* binary: depends on family type */ 2596 case RTA_GATEWAY: 2597 case RTA_DST: 2598 case RTA_PREFSRC: 2599 break; 2600 /* u32 */ 2601 case RTA_PRIORITY: 2602 case RTA_TABLE: 2603 case RTA_OIF: 2604 u32 = RTA_DATA(rtattr); 2605 *u32 = tswap32(*u32); 2606 break; 2607 default: 2608 gemu_log("Unknown host RTA type: %d\n", rtattr->rta_type); 2609 break; 2610 } 2611 return 0; 2612 } 2613 2614 static abi_long host_to_target_link_rtattr(struct rtattr *rtattr, 2615 uint32_t rtattr_len) 2616 { 2617 return host_to_target_for_each_rtattr(rtattr, rtattr_len, 2618 host_to_target_data_link_rtattr); 2619 } 2620 2621 static abi_long host_to_target_addr_rtattr(struct rtattr *rtattr, 2622 uint32_t rtattr_len) 2623 { 2624 return host_to_target_for_each_rtattr(rtattr, rtattr_len, 2625 host_to_target_data_addr_rtattr); 2626 } 2627 2628 static abi_long host_to_target_route_rtattr(struct rtattr *rtattr, 2629 uint32_t rtattr_len) 2630 { 2631 return host_to_target_for_each_rtattr(rtattr, rtattr_len, 2632 host_to_target_data_route_rtattr); 2633 } 2634 2635 static abi_long host_to_target_data_route(struct nlmsghdr *nlh) 2636 { 2637 uint32_t nlmsg_len; 2638 struct ifinfomsg *ifi; 2639 struct ifaddrmsg *ifa; 2640 struct rtmsg *rtm; 2641 2642 nlmsg_len = nlh->nlmsg_len; 2643 switch (nlh->nlmsg_type) { 2644 case RTM_NEWLINK: 2645 case RTM_DELLINK: 2646 case RTM_GETLINK: 2647 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*ifi))) { 2648 ifi = NLMSG_DATA(nlh); 2649 ifi->ifi_type = tswap16(ifi->ifi_type); 2650 ifi->ifi_index = tswap32(ifi->ifi_index); 2651 ifi->ifi_flags = tswap32(ifi->ifi_flags); 2652 ifi->ifi_change = tswap32(ifi->ifi_change); 2653 host_to_target_link_rtattr(IFLA_RTA(ifi), 2654 nlmsg_len - NLMSG_LENGTH(sizeof(*ifi))); 2655 } 2656 break; 2657 case RTM_NEWADDR: 2658 case RTM_DELADDR: 2659 case RTM_GETADDR: 2660 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*ifa))) { 2661 ifa = NLMSG_DATA(nlh); 2662 ifa->ifa_index = tswap32(ifa->ifa_index); 2663 host_to_target_addr_rtattr(IFA_RTA(ifa), 2664 nlmsg_len - NLMSG_LENGTH(sizeof(*ifa))); 2665 } 2666 break; 2667 case RTM_NEWROUTE: 2668 case RTM_DELROUTE: 2669 case RTM_GETROUTE: 2670 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*rtm))) { 2671 rtm = NLMSG_DATA(nlh); 2672 rtm->rtm_flags = tswap32(rtm->rtm_flags); 2673 host_to_target_route_rtattr(RTM_RTA(rtm), 2674 nlmsg_len - NLMSG_LENGTH(sizeof(*rtm))); 2675 } 2676 break; 2677 default: 2678 return -TARGET_EINVAL; 2679 } 2680 return 0; 2681 } 2682 2683 static inline abi_long host_to_target_nlmsg_route(struct nlmsghdr *nlh, 2684 size_t len) 2685 { 2686 return host_to_target_for_each_nlmsg(nlh, len, host_to_target_data_route); 2687 } 2688 2689 static abi_long target_to_host_for_each_rtattr(struct rtattr *rtattr, 2690 size_t len, 2691 abi_long (*target_to_host_rtattr) 2692 (struct rtattr *)) 2693 { 2694 abi_long ret; 2695 2696 while (len >= sizeof(struct rtattr)) { 2697 if (tswap16(rtattr->rta_len) < sizeof(struct rtattr) || 2698 tswap16(rtattr->rta_len) > len) { 2699 break; 2700 } 2701 rtattr->rta_len = tswap16(rtattr->rta_len); 2702 rtattr->rta_type = tswap16(rtattr->rta_type); 2703 ret = target_to_host_rtattr(rtattr); 2704 if (ret < 0) { 2705 return ret; 2706 } 2707 len -= RTA_ALIGN(rtattr->rta_len); 2708 rtattr = (struct rtattr *)(((char *)rtattr) + 2709 RTA_ALIGN(rtattr->rta_len)); 2710 } 2711 return 0; 2712 } 2713 2714 static abi_long target_to_host_data_link_rtattr(struct rtattr *rtattr) 2715 { 2716 switch (rtattr->rta_type) { 2717 default: 2718 gemu_log("Unknown target QEMU_IFLA type: %d\n", rtattr->rta_type); 2719 break; 2720 } 2721 return 0; 2722 } 2723 2724 static abi_long target_to_host_data_addr_rtattr(struct rtattr *rtattr) 2725 { 2726 switch (rtattr->rta_type) { 2727 /* binary: depends on family type */ 2728 case IFA_LOCAL: 2729 case IFA_ADDRESS: 2730 break; 2731 default: 2732 gemu_log("Unknown target IFA type: %d\n", rtattr->rta_type); 2733 break; 2734 } 2735 return 0; 2736 } 2737 2738 static abi_long target_to_host_data_route_rtattr(struct rtattr *rtattr) 2739 { 2740 uint32_t *u32; 2741 switch (rtattr->rta_type) { 2742 /* binary: depends on family type */ 2743 case RTA_DST: 2744 case RTA_SRC: 2745 case RTA_GATEWAY: 2746 break; 2747 /* u32 */ 2748 case RTA_PRIORITY: 2749 case RTA_OIF: 2750 u32 = RTA_DATA(rtattr); 2751 *u32 = tswap32(*u32); 2752 break; 2753 default: 2754 gemu_log("Unknown target RTA type: %d\n", rtattr->rta_type); 2755 break; 2756 } 2757 return 0; 2758 } 2759 2760 static void target_to_host_link_rtattr(struct rtattr *rtattr, 2761 uint32_t rtattr_len) 2762 { 2763 target_to_host_for_each_rtattr(rtattr, rtattr_len, 2764 target_to_host_data_link_rtattr); 2765 } 2766 2767 static void target_to_host_addr_rtattr(struct rtattr *rtattr, 2768 uint32_t rtattr_len) 2769 { 2770 target_to_host_for_each_rtattr(rtattr, rtattr_len, 2771 target_to_host_data_addr_rtattr); 2772 } 2773 2774 static void target_to_host_route_rtattr(struct rtattr *rtattr, 2775 uint32_t rtattr_len) 2776 { 2777 target_to_host_for_each_rtattr(rtattr, rtattr_len, 2778 target_to_host_data_route_rtattr); 2779 } 2780 2781 static abi_long target_to_host_data_route(struct nlmsghdr *nlh) 2782 { 2783 struct ifinfomsg *ifi; 2784 struct ifaddrmsg *ifa; 2785 struct rtmsg *rtm; 2786 2787 switch (nlh->nlmsg_type) { 2788 case RTM_GETLINK: 2789 break; 2790 case RTM_NEWLINK: 2791 case RTM_DELLINK: 2792 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*ifi))) { 2793 ifi = NLMSG_DATA(nlh); 2794 ifi->ifi_type = tswap16(ifi->ifi_type); 2795 ifi->ifi_index = tswap32(ifi->ifi_index); 2796 ifi->ifi_flags = tswap32(ifi->ifi_flags); 2797 ifi->ifi_change = tswap32(ifi->ifi_change); 2798 target_to_host_link_rtattr(IFLA_RTA(ifi), nlh->nlmsg_len - 2799 NLMSG_LENGTH(sizeof(*ifi))); 2800 } 2801 break; 2802 case RTM_GETADDR: 2803 case RTM_NEWADDR: 2804 case RTM_DELADDR: 2805 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*ifa))) { 2806 ifa = NLMSG_DATA(nlh); 2807 ifa->ifa_index = tswap32(ifa->ifa_index); 2808 target_to_host_addr_rtattr(IFA_RTA(ifa), nlh->nlmsg_len - 2809 NLMSG_LENGTH(sizeof(*ifa))); 2810 } 2811 break; 2812 case RTM_GETROUTE: 2813 break; 2814 case RTM_NEWROUTE: 2815 case RTM_DELROUTE: 2816 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*rtm))) { 2817 rtm = NLMSG_DATA(nlh); 2818 rtm->rtm_flags = tswap32(rtm->rtm_flags); 2819 target_to_host_route_rtattr(RTM_RTA(rtm), nlh->nlmsg_len - 2820 NLMSG_LENGTH(sizeof(*rtm))); 2821 } 2822 break; 2823 default: 2824 return -TARGET_EOPNOTSUPP; 2825 } 2826 return 0; 2827 } 2828 2829 static abi_long target_to_host_nlmsg_route(struct nlmsghdr *nlh, size_t len) 2830 { 2831 return target_to_host_for_each_nlmsg(nlh, len, target_to_host_data_route); 2832 } 2833 #endif /* CONFIG_RTNETLINK */ 2834 2835 static abi_long host_to_target_data_audit(struct nlmsghdr *nlh) 2836 { 2837 switch (nlh->nlmsg_type) { 2838 default: 2839 gemu_log("Unknown host audit message type %d\n", 2840 nlh->nlmsg_type); 2841 return -TARGET_EINVAL; 2842 } 2843 return 0; 2844 } 2845 2846 static inline abi_long host_to_target_nlmsg_audit(struct nlmsghdr *nlh, 2847 size_t len) 2848 { 2849 return host_to_target_for_each_nlmsg(nlh, len, host_to_target_data_audit); 2850 } 2851 2852 static abi_long target_to_host_data_audit(struct nlmsghdr *nlh) 2853 { 2854 switch (nlh->nlmsg_type) { 2855 case AUDIT_USER: 2856 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 2857 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 2858 break; 2859 default: 2860 gemu_log("Unknown target audit message type %d\n", 2861 nlh->nlmsg_type); 2862 return -TARGET_EINVAL; 2863 } 2864 2865 return 0; 2866 } 2867 2868 static abi_long target_to_host_nlmsg_audit(struct nlmsghdr *nlh, size_t len) 2869 { 2870 return target_to_host_for_each_nlmsg(nlh, len, target_to_host_data_audit); 2871 } 2872 2873 /* do_setsockopt() Must return target values and target errnos. */ 2874 static abi_long do_setsockopt(int sockfd, int level, int optname, 2875 abi_ulong optval_addr, socklen_t optlen) 2876 { 2877 abi_long ret; 2878 int val; 2879 struct ip_mreqn *ip_mreq; 2880 struct ip_mreq_source *ip_mreq_source; 2881 2882 switch(level) { 2883 case SOL_TCP: 2884 /* TCP options all take an 'int' value. */ 2885 if (optlen < sizeof(uint32_t)) 2886 return -TARGET_EINVAL; 2887 2888 if (get_user_u32(val, optval_addr)) 2889 return -TARGET_EFAULT; 2890 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val))); 2891 break; 2892 case SOL_IP: 2893 switch(optname) { 2894 case IP_TOS: 2895 case IP_TTL: 2896 case IP_HDRINCL: 2897 case IP_ROUTER_ALERT: 2898 case IP_RECVOPTS: 2899 case IP_RETOPTS: 2900 case IP_PKTINFO: 2901 case IP_MTU_DISCOVER: 2902 case IP_RECVERR: 2903 case IP_RECVTTL: 2904 case IP_RECVTOS: 2905 #ifdef IP_FREEBIND 2906 case IP_FREEBIND: 2907 #endif 2908 case IP_MULTICAST_TTL: 2909 case IP_MULTICAST_LOOP: 2910 val = 0; 2911 if (optlen >= sizeof(uint32_t)) { 2912 if (get_user_u32(val, optval_addr)) 2913 return -TARGET_EFAULT; 2914 } else if (optlen >= 1) { 2915 if (get_user_u8(val, optval_addr)) 2916 return -TARGET_EFAULT; 2917 } 2918 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val))); 2919 break; 2920 case IP_ADD_MEMBERSHIP: 2921 case IP_DROP_MEMBERSHIP: 2922 if (optlen < sizeof (struct target_ip_mreq) || 2923 optlen > sizeof (struct target_ip_mreqn)) 2924 return -TARGET_EINVAL; 2925 2926 ip_mreq = (struct ip_mreqn *) alloca(optlen); 2927 target_to_host_ip_mreq(ip_mreq, optval_addr, optlen); 2928 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen)); 2929 break; 2930 2931 case IP_BLOCK_SOURCE: 2932 case IP_UNBLOCK_SOURCE: 2933 case IP_ADD_SOURCE_MEMBERSHIP: 2934 case IP_DROP_SOURCE_MEMBERSHIP: 2935 if (optlen != sizeof (struct target_ip_mreq_source)) 2936 return -TARGET_EINVAL; 2937 2938 ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1); 2939 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen)); 2940 unlock_user (ip_mreq_source, optval_addr, 0); 2941 break; 2942 2943 default: 2944 goto unimplemented; 2945 } 2946 break; 2947 case SOL_IPV6: 2948 switch (optname) { 2949 case IPV6_MTU_DISCOVER: 2950 case IPV6_MTU: 2951 case IPV6_V6ONLY: 2952 case IPV6_RECVPKTINFO: 2953 case IPV6_UNICAST_HOPS: 2954 case IPV6_RECVERR: 2955 case IPV6_RECVHOPLIMIT: 2956 case IPV6_2292HOPLIMIT: 2957 case IPV6_CHECKSUM: 2958 val = 0; 2959 if (optlen < sizeof(uint32_t)) { 2960 return -TARGET_EINVAL; 2961 } 2962 if (get_user_u32(val, optval_addr)) { 2963 return -TARGET_EFAULT; 2964 } 2965 ret = get_errno(setsockopt(sockfd, level, optname, 2966 &val, sizeof(val))); 2967 break; 2968 case IPV6_PKTINFO: 2969 { 2970 struct in6_pktinfo pki; 2971 2972 if (optlen < sizeof(pki)) { 2973 return -TARGET_EINVAL; 2974 } 2975 2976 if (copy_from_user(&pki, optval_addr, sizeof(pki))) { 2977 return -TARGET_EFAULT; 2978 } 2979 2980 pki.ipi6_ifindex = tswap32(pki.ipi6_ifindex); 2981 2982 ret = get_errno(setsockopt(sockfd, level, optname, 2983 &pki, sizeof(pki))); 2984 break; 2985 } 2986 default: 2987 goto unimplemented; 2988 } 2989 break; 2990 case SOL_ICMPV6: 2991 switch (optname) { 2992 case ICMPV6_FILTER: 2993 { 2994 struct icmp6_filter icmp6f; 2995 2996 if (optlen > sizeof(icmp6f)) { 2997 optlen = sizeof(icmp6f); 2998 } 2999 3000 if (copy_from_user(&icmp6f, optval_addr, optlen)) { 3001 return -TARGET_EFAULT; 3002 } 3003 3004 for (val = 0; val < 8; val++) { 3005 icmp6f.data[val] = tswap32(icmp6f.data[val]); 3006 } 3007 3008 ret = get_errno(setsockopt(sockfd, level, optname, 3009 &icmp6f, optlen)); 3010 break; 3011 } 3012 default: 3013 goto unimplemented; 3014 } 3015 break; 3016 case SOL_RAW: 3017 switch (optname) { 3018 case ICMP_FILTER: 3019 case IPV6_CHECKSUM: 3020 /* those take an u32 value */ 3021 if (optlen < sizeof(uint32_t)) { 3022 return -TARGET_EINVAL; 3023 } 3024 3025 if (get_user_u32(val, optval_addr)) { 3026 return -TARGET_EFAULT; 3027 } 3028 ret = get_errno(setsockopt(sockfd, level, optname, 3029 &val, sizeof(val))); 3030 break; 3031 3032 default: 3033 goto unimplemented; 3034 } 3035 break; 3036 case TARGET_SOL_SOCKET: 3037 switch (optname) { 3038 case TARGET_SO_RCVTIMEO: 3039 { 3040 struct timeval tv; 3041 3042 optname = SO_RCVTIMEO; 3043 3044 set_timeout: 3045 if (optlen != sizeof(struct target_timeval)) { 3046 return -TARGET_EINVAL; 3047 } 3048 3049 if (copy_from_user_timeval(&tv, optval_addr)) { 3050 return -TARGET_EFAULT; 3051 } 3052 3053 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, 3054 &tv, sizeof(tv))); 3055 return ret; 3056 } 3057 case TARGET_SO_SNDTIMEO: 3058 optname = SO_SNDTIMEO; 3059 goto set_timeout; 3060 case TARGET_SO_ATTACH_FILTER: 3061 { 3062 struct target_sock_fprog *tfprog; 3063 struct target_sock_filter *tfilter; 3064 struct sock_fprog fprog; 3065 struct sock_filter *filter; 3066 int i; 3067 3068 if (optlen != sizeof(*tfprog)) { 3069 return -TARGET_EINVAL; 3070 } 3071 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) { 3072 return -TARGET_EFAULT; 3073 } 3074 if (!lock_user_struct(VERIFY_READ, tfilter, 3075 tswapal(tfprog->filter), 0)) { 3076 unlock_user_struct(tfprog, optval_addr, 1); 3077 return -TARGET_EFAULT; 3078 } 3079 3080 fprog.len = tswap16(tfprog->len); 3081 filter = g_try_new(struct sock_filter, fprog.len); 3082 if (filter == NULL) { 3083 unlock_user_struct(tfilter, tfprog->filter, 1); 3084 unlock_user_struct(tfprog, optval_addr, 1); 3085 return -TARGET_ENOMEM; 3086 } 3087 for (i = 0; i < fprog.len; i++) { 3088 filter[i].code = tswap16(tfilter[i].code); 3089 filter[i].jt = tfilter[i].jt; 3090 filter[i].jf = tfilter[i].jf; 3091 filter[i].k = tswap32(tfilter[i].k); 3092 } 3093 fprog.filter = filter; 3094 3095 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, 3096 SO_ATTACH_FILTER, &fprog, sizeof(fprog))); 3097 g_free(filter); 3098 3099 unlock_user_struct(tfilter, tfprog->filter, 1); 3100 unlock_user_struct(tfprog, optval_addr, 1); 3101 return ret; 3102 } 3103 case TARGET_SO_BINDTODEVICE: 3104 { 3105 char *dev_ifname, *addr_ifname; 3106 3107 if (optlen > IFNAMSIZ - 1) { 3108 optlen = IFNAMSIZ - 1; 3109 } 3110 dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1); 3111 if (!dev_ifname) { 3112 return -TARGET_EFAULT; 3113 } 3114 optname = SO_BINDTODEVICE; 3115 addr_ifname = alloca(IFNAMSIZ); 3116 memcpy(addr_ifname, dev_ifname, optlen); 3117 addr_ifname[optlen] = 0; 3118 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, 3119 addr_ifname, optlen)); 3120 unlock_user (dev_ifname, optval_addr, 0); 3121 return ret; 3122 } 3123 /* Options with 'int' argument. */ 3124 case TARGET_SO_DEBUG: 3125 optname = SO_DEBUG; 3126 break; 3127 case TARGET_SO_REUSEADDR: 3128 optname = SO_REUSEADDR; 3129 break; 3130 case TARGET_SO_TYPE: 3131 optname = SO_TYPE; 3132 break; 3133 case TARGET_SO_ERROR: 3134 optname = SO_ERROR; 3135 break; 3136 case TARGET_SO_DONTROUTE: 3137 optname = SO_DONTROUTE; 3138 break; 3139 case TARGET_SO_BROADCAST: 3140 optname = SO_BROADCAST; 3141 break; 3142 case TARGET_SO_SNDBUF: 3143 optname = SO_SNDBUF; 3144 break; 3145 case TARGET_SO_SNDBUFFORCE: 3146 optname = SO_SNDBUFFORCE; 3147 break; 3148 case TARGET_SO_RCVBUF: 3149 optname = SO_RCVBUF; 3150 break; 3151 case TARGET_SO_RCVBUFFORCE: 3152 optname = SO_RCVBUFFORCE; 3153 break; 3154 case TARGET_SO_KEEPALIVE: 3155 optname = SO_KEEPALIVE; 3156 break; 3157 case TARGET_SO_OOBINLINE: 3158 optname = SO_OOBINLINE; 3159 break; 3160 case TARGET_SO_NO_CHECK: 3161 optname = SO_NO_CHECK; 3162 break; 3163 case TARGET_SO_PRIORITY: 3164 optname = SO_PRIORITY; 3165 break; 3166 #ifdef SO_BSDCOMPAT 3167 case TARGET_SO_BSDCOMPAT: 3168 optname = SO_BSDCOMPAT; 3169 break; 3170 #endif 3171 case TARGET_SO_PASSCRED: 3172 optname = SO_PASSCRED; 3173 break; 3174 case TARGET_SO_PASSSEC: 3175 optname = SO_PASSSEC; 3176 break; 3177 case TARGET_SO_TIMESTAMP: 3178 optname = SO_TIMESTAMP; 3179 break; 3180 case TARGET_SO_RCVLOWAT: 3181 optname = SO_RCVLOWAT; 3182 break; 3183 default: 3184 goto unimplemented; 3185 } 3186 if (optlen < sizeof(uint32_t)) 3187 return -TARGET_EINVAL; 3188 3189 if (get_user_u32(val, optval_addr)) 3190 return -TARGET_EFAULT; 3191 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val))); 3192 break; 3193 default: 3194 unimplemented: 3195 gemu_log("Unsupported setsockopt level=%d optname=%d\n", level, optname); 3196 ret = -TARGET_ENOPROTOOPT; 3197 } 3198 return ret; 3199 } 3200 3201 /* do_getsockopt() Must return target values and target errnos. */ 3202 static abi_long do_getsockopt(int sockfd, int level, int optname, 3203 abi_ulong optval_addr, abi_ulong optlen) 3204 { 3205 abi_long ret; 3206 int len, val; 3207 socklen_t lv; 3208 3209 switch(level) { 3210 case TARGET_SOL_SOCKET: 3211 level = SOL_SOCKET; 3212 switch (optname) { 3213 /* These don't just return a single integer */ 3214 case TARGET_SO_LINGER: 3215 case TARGET_SO_RCVTIMEO: 3216 case TARGET_SO_SNDTIMEO: 3217 case TARGET_SO_PEERNAME: 3218 goto unimplemented; 3219 case TARGET_SO_PEERCRED: { 3220 struct ucred cr; 3221 socklen_t crlen; 3222 struct target_ucred *tcr; 3223 3224 if (get_user_u32(len, optlen)) { 3225 return -TARGET_EFAULT; 3226 } 3227 if (len < 0) { 3228 return -TARGET_EINVAL; 3229 } 3230 3231 crlen = sizeof(cr); 3232 ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED, 3233 &cr, &crlen)); 3234 if (ret < 0) { 3235 return ret; 3236 } 3237 if (len > crlen) { 3238 len = crlen; 3239 } 3240 if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) { 3241 return -TARGET_EFAULT; 3242 } 3243 __put_user(cr.pid, &tcr->pid); 3244 __put_user(cr.uid, &tcr->uid); 3245 __put_user(cr.gid, &tcr->gid); 3246 unlock_user_struct(tcr, optval_addr, 1); 3247 if (put_user_u32(len, optlen)) { 3248 return -TARGET_EFAULT; 3249 } 3250 break; 3251 } 3252 /* Options with 'int' argument. */ 3253 case TARGET_SO_DEBUG: 3254 optname = SO_DEBUG; 3255 goto int_case; 3256 case TARGET_SO_REUSEADDR: 3257 optname = SO_REUSEADDR; 3258 goto int_case; 3259 case TARGET_SO_TYPE: 3260 optname = SO_TYPE; 3261 goto int_case; 3262 case TARGET_SO_ERROR: 3263 optname = SO_ERROR; 3264 goto int_case; 3265 case TARGET_SO_DONTROUTE: 3266 optname = SO_DONTROUTE; 3267 goto int_case; 3268 case TARGET_SO_BROADCAST: 3269 optname = SO_BROADCAST; 3270 goto int_case; 3271 case TARGET_SO_SNDBUF: 3272 optname = SO_SNDBUF; 3273 goto int_case; 3274 case TARGET_SO_RCVBUF: 3275 optname = SO_RCVBUF; 3276 goto int_case; 3277 case TARGET_SO_KEEPALIVE: 3278 optname = SO_KEEPALIVE; 3279 goto int_case; 3280 case TARGET_SO_OOBINLINE: 3281 optname = SO_OOBINLINE; 3282 goto int_case; 3283 case TARGET_SO_NO_CHECK: 3284 optname = SO_NO_CHECK; 3285 goto int_case; 3286 case TARGET_SO_PRIORITY: 3287 optname = SO_PRIORITY; 3288 goto int_case; 3289 #ifdef SO_BSDCOMPAT 3290 case TARGET_SO_BSDCOMPAT: 3291 optname = SO_BSDCOMPAT; 3292 goto int_case; 3293 #endif 3294 case TARGET_SO_PASSCRED: 3295 optname = SO_PASSCRED; 3296 goto int_case; 3297 case TARGET_SO_TIMESTAMP: 3298 optname = SO_TIMESTAMP; 3299 goto int_case; 3300 case TARGET_SO_RCVLOWAT: 3301 optname = SO_RCVLOWAT; 3302 goto int_case; 3303 case TARGET_SO_ACCEPTCONN: 3304 optname = SO_ACCEPTCONN; 3305 goto int_case; 3306 default: 3307 goto int_case; 3308 } 3309 break; 3310 case SOL_TCP: 3311 /* TCP options all take an 'int' value. */ 3312 int_case: 3313 if (get_user_u32(len, optlen)) 3314 return -TARGET_EFAULT; 3315 if (len < 0) 3316 return -TARGET_EINVAL; 3317 lv = sizeof(lv); 3318 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 3319 if (ret < 0) 3320 return ret; 3321 if (optname == SO_TYPE) { 3322 val = host_to_target_sock_type(val); 3323 } 3324 if (len > lv) 3325 len = lv; 3326 if (len == 4) { 3327 if (put_user_u32(val, optval_addr)) 3328 return -TARGET_EFAULT; 3329 } else { 3330 if (put_user_u8(val, optval_addr)) 3331 return -TARGET_EFAULT; 3332 } 3333 if (put_user_u32(len, optlen)) 3334 return -TARGET_EFAULT; 3335 break; 3336 case SOL_IP: 3337 switch(optname) { 3338 case IP_TOS: 3339 case IP_TTL: 3340 case IP_HDRINCL: 3341 case IP_ROUTER_ALERT: 3342 case IP_RECVOPTS: 3343 case IP_RETOPTS: 3344 case IP_PKTINFO: 3345 case IP_MTU_DISCOVER: 3346 case IP_RECVERR: 3347 case IP_RECVTOS: 3348 #ifdef IP_FREEBIND 3349 case IP_FREEBIND: 3350 #endif 3351 case IP_MULTICAST_TTL: 3352 case IP_MULTICAST_LOOP: 3353 if (get_user_u32(len, optlen)) 3354 return -TARGET_EFAULT; 3355 if (len < 0) 3356 return -TARGET_EINVAL; 3357 lv = sizeof(lv); 3358 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 3359 if (ret < 0) 3360 return ret; 3361 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) { 3362 len = 1; 3363 if (put_user_u32(len, optlen) 3364 || put_user_u8(val, optval_addr)) 3365 return -TARGET_EFAULT; 3366 } else { 3367 if (len > sizeof(int)) 3368 len = sizeof(int); 3369 if (put_user_u32(len, optlen) 3370 || put_user_u32(val, optval_addr)) 3371 return -TARGET_EFAULT; 3372 } 3373 break; 3374 default: 3375 ret = -TARGET_ENOPROTOOPT; 3376 break; 3377 } 3378 break; 3379 default: 3380 unimplemented: 3381 gemu_log("getsockopt level=%d optname=%d not yet supported\n", 3382 level, optname); 3383 ret = -TARGET_EOPNOTSUPP; 3384 break; 3385 } 3386 return ret; 3387 } 3388 3389 static struct iovec *lock_iovec(int type, abi_ulong target_addr, 3390 abi_ulong count, int copy) 3391 { 3392 struct target_iovec *target_vec; 3393 struct iovec *vec; 3394 abi_ulong total_len, max_len; 3395 int i; 3396 int err = 0; 3397 bool bad_address = false; 3398 3399 if (count == 0) { 3400 errno = 0; 3401 return NULL; 3402 } 3403 if (count > IOV_MAX) { 3404 errno = EINVAL; 3405 return NULL; 3406 } 3407 3408 vec = g_try_new0(struct iovec, count); 3409 if (vec == NULL) { 3410 errno = ENOMEM; 3411 return NULL; 3412 } 3413 3414 target_vec = lock_user(VERIFY_READ, target_addr, 3415 count * sizeof(struct target_iovec), 1); 3416 if (target_vec == NULL) { 3417 err = EFAULT; 3418 goto fail2; 3419 } 3420 3421 /* ??? If host page size > target page size, this will result in a 3422 value larger than what we can actually support. */ 3423 max_len = 0x7fffffff & TARGET_PAGE_MASK; 3424 total_len = 0; 3425 3426 for (i = 0; i < count; i++) { 3427 abi_ulong base = tswapal(target_vec[i].iov_base); 3428 abi_long len = tswapal(target_vec[i].iov_len); 3429 3430 if (len < 0) { 3431 err = EINVAL; 3432 goto fail; 3433 } else if (len == 0) { 3434 /* Zero length pointer is ignored. */ 3435 vec[i].iov_base = 0; 3436 } else { 3437 vec[i].iov_base = lock_user(type, base, len, copy); 3438 /* If the first buffer pointer is bad, this is a fault. But 3439 * subsequent bad buffers will result in a partial write; this 3440 * is realized by filling the vector with null pointers and 3441 * zero lengths. */ 3442 if (!vec[i].iov_base) { 3443 if (i == 0) { 3444 err = EFAULT; 3445 goto fail; 3446 } else { 3447 bad_address = true; 3448 } 3449 } 3450 if (bad_address) { 3451 len = 0; 3452 } 3453 if (len > max_len - total_len) { 3454 len = max_len - total_len; 3455 } 3456 } 3457 vec[i].iov_len = len; 3458 total_len += len; 3459 } 3460 3461 unlock_user(target_vec, target_addr, 0); 3462 return vec; 3463 3464 fail: 3465 while (--i >= 0) { 3466 if (tswapal(target_vec[i].iov_len) > 0) { 3467 unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0); 3468 } 3469 } 3470 unlock_user(target_vec, target_addr, 0); 3471 fail2: 3472 g_free(vec); 3473 errno = err; 3474 return NULL; 3475 } 3476 3477 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr, 3478 abi_ulong count, int copy) 3479 { 3480 struct target_iovec *target_vec; 3481 int i; 3482 3483 target_vec = lock_user(VERIFY_READ, target_addr, 3484 count * sizeof(struct target_iovec), 1); 3485 if (target_vec) { 3486 for (i = 0; i < count; i++) { 3487 abi_ulong base = tswapal(target_vec[i].iov_base); 3488 abi_long len = tswapal(target_vec[i].iov_len); 3489 if (len < 0) { 3490 break; 3491 } 3492 unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0); 3493 } 3494 unlock_user(target_vec, target_addr, 0); 3495 } 3496 3497 g_free(vec); 3498 } 3499 3500 static inline int target_to_host_sock_type(int *type) 3501 { 3502 int host_type = 0; 3503 int target_type = *type; 3504 3505 switch (target_type & TARGET_SOCK_TYPE_MASK) { 3506 case TARGET_SOCK_DGRAM: 3507 host_type = SOCK_DGRAM; 3508 break; 3509 case TARGET_SOCK_STREAM: 3510 host_type = SOCK_STREAM; 3511 break; 3512 default: 3513 host_type = target_type & TARGET_SOCK_TYPE_MASK; 3514 break; 3515 } 3516 if (target_type & TARGET_SOCK_CLOEXEC) { 3517 #if defined(SOCK_CLOEXEC) 3518 host_type |= SOCK_CLOEXEC; 3519 #else 3520 return -TARGET_EINVAL; 3521 #endif 3522 } 3523 if (target_type & TARGET_SOCK_NONBLOCK) { 3524 #if defined(SOCK_NONBLOCK) 3525 host_type |= SOCK_NONBLOCK; 3526 #elif !defined(O_NONBLOCK) 3527 return -TARGET_EINVAL; 3528 #endif 3529 } 3530 *type = host_type; 3531 return 0; 3532 } 3533 3534 /* Try to emulate socket type flags after socket creation. */ 3535 static int sock_flags_fixup(int fd, int target_type) 3536 { 3537 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK) 3538 if (target_type & TARGET_SOCK_NONBLOCK) { 3539 int flags = fcntl(fd, F_GETFL); 3540 if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) { 3541 close(fd); 3542 return -TARGET_EINVAL; 3543 } 3544 } 3545 #endif 3546 return fd; 3547 } 3548 3549 static abi_long packet_target_to_host_sockaddr(void *host_addr, 3550 abi_ulong target_addr, 3551 socklen_t len) 3552 { 3553 struct sockaddr *addr = host_addr; 3554 struct target_sockaddr *target_saddr; 3555 3556 target_saddr = lock_user(VERIFY_READ, target_addr, len, 1); 3557 if (!target_saddr) { 3558 return -TARGET_EFAULT; 3559 } 3560 3561 memcpy(addr, target_saddr, len); 3562 addr->sa_family = tswap16(target_saddr->sa_family); 3563 /* spkt_protocol is big-endian */ 3564 3565 unlock_user(target_saddr, target_addr, 0); 3566 return 0; 3567 } 3568 3569 static TargetFdTrans target_packet_trans = { 3570 .target_to_host_addr = packet_target_to_host_sockaddr, 3571 }; 3572 3573 #ifdef CONFIG_RTNETLINK 3574 static abi_long netlink_route_target_to_host(void *buf, size_t len) 3575 { 3576 abi_long ret; 3577 3578 ret = target_to_host_nlmsg_route(buf, len); 3579 if (ret < 0) { 3580 return ret; 3581 } 3582 3583 return len; 3584 } 3585 3586 static abi_long netlink_route_host_to_target(void *buf, size_t len) 3587 { 3588 abi_long ret; 3589 3590 ret = host_to_target_nlmsg_route(buf, len); 3591 if (ret < 0) { 3592 return ret; 3593 } 3594 3595 return len; 3596 } 3597 3598 static TargetFdTrans target_netlink_route_trans = { 3599 .target_to_host_data = netlink_route_target_to_host, 3600 .host_to_target_data = netlink_route_host_to_target, 3601 }; 3602 #endif /* CONFIG_RTNETLINK */ 3603 3604 static abi_long netlink_audit_target_to_host(void *buf, size_t len) 3605 { 3606 abi_long ret; 3607 3608 ret = target_to_host_nlmsg_audit(buf, len); 3609 if (ret < 0) { 3610 return ret; 3611 } 3612 3613 return len; 3614 } 3615 3616 static abi_long netlink_audit_host_to_target(void *buf, size_t len) 3617 { 3618 abi_long ret; 3619 3620 ret = host_to_target_nlmsg_audit(buf, len); 3621 if (ret < 0) { 3622 return ret; 3623 } 3624 3625 return len; 3626 } 3627 3628 static TargetFdTrans target_netlink_audit_trans = { 3629 .target_to_host_data = netlink_audit_target_to_host, 3630 .host_to_target_data = netlink_audit_host_to_target, 3631 }; 3632 3633 /* do_socket() Must return target values and target errnos. */ 3634 static abi_long do_socket(int domain, int type, int protocol) 3635 { 3636 int target_type = type; 3637 int ret; 3638 3639 ret = target_to_host_sock_type(&type); 3640 if (ret) { 3641 return ret; 3642 } 3643 3644 if (domain == PF_NETLINK && !( 3645 #ifdef CONFIG_RTNETLINK 3646 protocol == NETLINK_ROUTE || 3647 #endif 3648 protocol == NETLINK_KOBJECT_UEVENT || 3649 protocol == NETLINK_AUDIT)) { 3650 return -EPFNOSUPPORT; 3651 } 3652 3653 if (domain == AF_PACKET || 3654 (domain == AF_INET && type == SOCK_PACKET)) { 3655 protocol = tswap16(protocol); 3656 } 3657 3658 ret = get_errno(socket(domain, type, protocol)); 3659 if (ret >= 0) { 3660 ret = sock_flags_fixup(ret, target_type); 3661 if (type == SOCK_PACKET) { 3662 /* Manage an obsolete case : 3663 * if socket type is SOCK_PACKET, bind by name 3664 */ 3665 fd_trans_register(ret, &target_packet_trans); 3666 } else if (domain == PF_NETLINK) { 3667 switch (protocol) { 3668 #ifdef CONFIG_RTNETLINK 3669 case NETLINK_ROUTE: 3670 fd_trans_register(ret, &target_netlink_route_trans); 3671 break; 3672 #endif 3673 case NETLINK_KOBJECT_UEVENT: 3674 /* nothing to do: messages are strings */ 3675 break; 3676 case NETLINK_AUDIT: 3677 fd_trans_register(ret, &target_netlink_audit_trans); 3678 break; 3679 default: 3680 g_assert_not_reached(); 3681 } 3682 } 3683 } 3684 return ret; 3685 } 3686 3687 /* do_bind() Must return target values and target errnos. */ 3688 static abi_long do_bind(int sockfd, abi_ulong target_addr, 3689 socklen_t addrlen) 3690 { 3691 void *addr; 3692 abi_long ret; 3693 3694 if ((int)addrlen < 0) { 3695 return -TARGET_EINVAL; 3696 } 3697 3698 addr = alloca(addrlen+1); 3699 3700 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen); 3701 if (ret) 3702 return ret; 3703 3704 return get_errno(bind(sockfd, addr, addrlen)); 3705 } 3706 3707 /* do_connect() Must return target values and target errnos. */ 3708 static abi_long do_connect(int sockfd, abi_ulong target_addr, 3709 socklen_t addrlen) 3710 { 3711 void *addr; 3712 abi_long ret; 3713 3714 if ((int)addrlen < 0) { 3715 return -TARGET_EINVAL; 3716 } 3717 3718 addr = alloca(addrlen+1); 3719 3720 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen); 3721 if (ret) 3722 return ret; 3723 3724 return get_errno(safe_connect(sockfd, addr, addrlen)); 3725 } 3726 3727 /* do_sendrecvmsg_locked() Must return target values and target errnos. */ 3728 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp, 3729 int flags, int send) 3730 { 3731 abi_long ret, len; 3732 struct msghdr msg; 3733 abi_ulong count; 3734 struct iovec *vec; 3735 abi_ulong target_vec; 3736 3737 if (msgp->msg_name) { 3738 msg.msg_namelen = tswap32(msgp->msg_namelen); 3739 msg.msg_name = alloca(msg.msg_namelen+1); 3740 ret = target_to_host_sockaddr(fd, msg.msg_name, 3741 tswapal(msgp->msg_name), 3742 msg.msg_namelen); 3743 if (ret == -TARGET_EFAULT) { 3744 /* For connected sockets msg_name and msg_namelen must 3745 * be ignored, so returning EFAULT immediately is wrong. 3746 * Instead, pass a bad msg_name to the host kernel, and 3747 * let it decide whether to return EFAULT or not. 3748 */ 3749 msg.msg_name = (void *)-1; 3750 } else if (ret) { 3751 goto out2; 3752 } 3753 } else { 3754 msg.msg_name = NULL; 3755 msg.msg_namelen = 0; 3756 } 3757 msg.msg_controllen = 2 * tswapal(msgp->msg_controllen); 3758 msg.msg_control = alloca(msg.msg_controllen); 3759 msg.msg_flags = tswap32(msgp->msg_flags); 3760 3761 count = tswapal(msgp->msg_iovlen); 3762 target_vec = tswapal(msgp->msg_iov); 3763 3764 if (count > IOV_MAX) { 3765 /* sendrcvmsg returns a different errno for this condition than 3766 * readv/writev, so we must catch it here before lock_iovec() does. 3767 */ 3768 ret = -TARGET_EMSGSIZE; 3769 goto out2; 3770 } 3771 3772 vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE, 3773 target_vec, count, send); 3774 if (vec == NULL) { 3775 ret = -host_to_target_errno(errno); 3776 goto out2; 3777 } 3778 msg.msg_iovlen = count; 3779 msg.msg_iov = vec; 3780 3781 if (send) { 3782 if (fd_trans_target_to_host_data(fd)) { 3783 void *host_msg; 3784 3785 host_msg = g_malloc(msg.msg_iov->iov_len); 3786 memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len); 3787 ret = fd_trans_target_to_host_data(fd)(host_msg, 3788 msg.msg_iov->iov_len); 3789 if (ret >= 0) { 3790 msg.msg_iov->iov_base = host_msg; 3791 ret = get_errno(safe_sendmsg(fd, &msg, flags)); 3792 } 3793 g_free(host_msg); 3794 } else { 3795 ret = target_to_host_cmsg(&msg, msgp); 3796 if (ret == 0) { 3797 ret = get_errno(safe_sendmsg(fd, &msg, flags)); 3798 } 3799 } 3800 } else { 3801 ret = get_errno(safe_recvmsg(fd, &msg, flags)); 3802 if (!is_error(ret)) { 3803 len = ret; 3804 if (fd_trans_host_to_target_data(fd)) { 3805 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base, 3806 len); 3807 } else { 3808 ret = host_to_target_cmsg(msgp, &msg); 3809 } 3810 if (!is_error(ret)) { 3811 msgp->msg_namelen = tswap32(msg.msg_namelen); 3812 if (msg.msg_name != NULL && msg.msg_name != (void *)-1) { 3813 ret = host_to_target_sockaddr(tswapal(msgp->msg_name), 3814 msg.msg_name, msg.msg_namelen); 3815 if (ret) { 3816 goto out; 3817 } 3818 } 3819 3820 ret = len; 3821 } 3822 } 3823 } 3824 3825 out: 3826 unlock_iovec(vec, target_vec, count, !send); 3827 out2: 3828 return ret; 3829 } 3830 3831 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg, 3832 int flags, int send) 3833 { 3834 abi_long ret; 3835 struct target_msghdr *msgp; 3836 3837 if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE, 3838 msgp, 3839 target_msg, 3840 send ? 1 : 0)) { 3841 return -TARGET_EFAULT; 3842 } 3843 ret = do_sendrecvmsg_locked(fd, msgp, flags, send); 3844 unlock_user_struct(msgp, target_msg, send ? 0 : 1); 3845 return ret; 3846 } 3847 3848 /* We don't rely on the C library to have sendmmsg/recvmmsg support, 3849 * so it might not have this *mmsg-specific flag either. 3850 */ 3851 #ifndef MSG_WAITFORONE 3852 #define MSG_WAITFORONE 0x10000 3853 #endif 3854 3855 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec, 3856 unsigned int vlen, unsigned int flags, 3857 int send) 3858 { 3859 struct target_mmsghdr *mmsgp; 3860 abi_long ret = 0; 3861 int i; 3862 3863 if (vlen > UIO_MAXIOV) { 3864 vlen = UIO_MAXIOV; 3865 } 3866 3867 mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1); 3868 if (!mmsgp) { 3869 return -TARGET_EFAULT; 3870 } 3871 3872 for (i = 0; i < vlen; i++) { 3873 ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send); 3874 if (is_error(ret)) { 3875 break; 3876 } 3877 mmsgp[i].msg_len = tswap32(ret); 3878 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 3879 if (flags & MSG_WAITFORONE) { 3880 flags |= MSG_DONTWAIT; 3881 } 3882 } 3883 3884 unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i); 3885 3886 /* Return number of datagrams sent if we sent any at all; 3887 * otherwise return the error. 3888 */ 3889 if (i) { 3890 return i; 3891 } 3892 return ret; 3893 } 3894 3895 /* do_accept4() Must return target values and target errnos. */ 3896 static abi_long do_accept4(int fd, abi_ulong target_addr, 3897 abi_ulong target_addrlen_addr, int flags) 3898 { 3899 socklen_t addrlen; 3900 void *addr; 3901 abi_long ret; 3902 int host_flags; 3903 3904 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl); 3905 3906 if (target_addr == 0) { 3907 return get_errno(safe_accept4(fd, NULL, NULL, host_flags)); 3908 } 3909 3910 /* linux returns EINVAL if addrlen pointer is invalid */ 3911 if (get_user_u32(addrlen, target_addrlen_addr)) 3912 return -TARGET_EINVAL; 3913 3914 if ((int)addrlen < 0) { 3915 return -TARGET_EINVAL; 3916 } 3917 3918 if (!access_ok(VERIFY_WRITE, target_addr, addrlen)) 3919 return -TARGET_EINVAL; 3920 3921 addr = alloca(addrlen); 3922 3923 ret = get_errno(safe_accept4(fd, addr, &addrlen, host_flags)); 3924 if (!is_error(ret)) { 3925 host_to_target_sockaddr(target_addr, addr, addrlen); 3926 if (put_user_u32(addrlen, target_addrlen_addr)) 3927 ret = -TARGET_EFAULT; 3928 } 3929 return ret; 3930 } 3931 3932 /* do_getpeername() Must return target values and target errnos. */ 3933 static abi_long do_getpeername(int fd, abi_ulong target_addr, 3934 abi_ulong target_addrlen_addr) 3935 { 3936 socklen_t addrlen; 3937 void *addr; 3938 abi_long ret; 3939 3940 if (get_user_u32(addrlen, target_addrlen_addr)) 3941 return -TARGET_EFAULT; 3942 3943 if ((int)addrlen < 0) { 3944 return -TARGET_EINVAL; 3945 } 3946 3947 if (!access_ok(VERIFY_WRITE, target_addr, addrlen)) 3948 return -TARGET_EFAULT; 3949 3950 addr = alloca(addrlen); 3951 3952 ret = get_errno(getpeername(fd, addr, &addrlen)); 3953 if (!is_error(ret)) { 3954 host_to_target_sockaddr(target_addr, addr, addrlen); 3955 if (put_user_u32(addrlen, target_addrlen_addr)) 3956 ret = -TARGET_EFAULT; 3957 } 3958 return ret; 3959 } 3960 3961 /* do_getsockname() Must return target values and target errnos. */ 3962 static abi_long do_getsockname(int fd, abi_ulong target_addr, 3963 abi_ulong target_addrlen_addr) 3964 { 3965 socklen_t addrlen; 3966 void *addr; 3967 abi_long ret; 3968 3969 if (get_user_u32(addrlen, target_addrlen_addr)) 3970 return -TARGET_EFAULT; 3971 3972 if ((int)addrlen < 0) { 3973 return -TARGET_EINVAL; 3974 } 3975 3976 if (!access_ok(VERIFY_WRITE, target_addr, addrlen)) 3977 return -TARGET_EFAULT; 3978 3979 addr = alloca(addrlen); 3980 3981 ret = get_errno(getsockname(fd, addr, &addrlen)); 3982 if (!is_error(ret)) { 3983 host_to_target_sockaddr(target_addr, addr, addrlen); 3984 if (put_user_u32(addrlen, target_addrlen_addr)) 3985 ret = -TARGET_EFAULT; 3986 } 3987 return ret; 3988 } 3989 3990 /* do_socketpair() Must return target values and target errnos. */ 3991 static abi_long do_socketpair(int domain, int type, int protocol, 3992 abi_ulong target_tab_addr) 3993 { 3994 int tab[2]; 3995 abi_long ret; 3996 3997 target_to_host_sock_type(&type); 3998 3999 ret = get_errno(socketpair(domain, type, protocol, tab)); 4000 if (!is_error(ret)) { 4001 if (put_user_s32(tab[0], target_tab_addr) 4002 || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0]))) 4003 ret = -TARGET_EFAULT; 4004 } 4005 return ret; 4006 } 4007 4008 /* do_sendto() Must return target values and target errnos. */ 4009 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags, 4010 abi_ulong target_addr, socklen_t addrlen) 4011 { 4012 void *addr; 4013 void *host_msg; 4014 void *copy_msg = NULL; 4015 abi_long ret; 4016 4017 if ((int)addrlen < 0) { 4018 return -TARGET_EINVAL; 4019 } 4020 4021 host_msg = lock_user(VERIFY_READ, msg, len, 1); 4022 if (!host_msg) 4023 return -TARGET_EFAULT; 4024 if (fd_trans_target_to_host_data(fd)) { 4025 copy_msg = host_msg; 4026 host_msg = g_malloc(len); 4027 memcpy(host_msg, copy_msg, len); 4028 ret = fd_trans_target_to_host_data(fd)(host_msg, len); 4029 if (ret < 0) { 4030 goto fail; 4031 } 4032 } 4033 if (target_addr) { 4034 addr = alloca(addrlen+1); 4035 ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen); 4036 if (ret) { 4037 goto fail; 4038 } 4039 ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen)); 4040 } else { 4041 ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0)); 4042 } 4043 fail: 4044 if (copy_msg) { 4045 g_free(host_msg); 4046 host_msg = copy_msg; 4047 } 4048 unlock_user(host_msg, msg, 0); 4049 return ret; 4050 } 4051 4052 /* do_recvfrom() Must return target values and target errnos. */ 4053 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags, 4054 abi_ulong target_addr, 4055 abi_ulong target_addrlen) 4056 { 4057 socklen_t addrlen; 4058 void *addr; 4059 void *host_msg; 4060 abi_long ret; 4061 4062 host_msg = lock_user(VERIFY_WRITE, msg, len, 0); 4063 if (!host_msg) 4064 return -TARGET_EFAULT; 4065 if (target_addr) { 4066 if (get_user_u32(addrlen, target_addrlen)) { 4067 ret = -TARGET_EFAULT; 4068 goto fail; 4069 } 4070 if ((int)addrlen < 0) { 4071 ret = -TARGET_EINVAL; 4072 goto fail; 4073 } 4074 addr = alloca(addrlen); 4075 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, 4076 addr, &addrlen)); 4077 } else { 4078 addr = NULL; /* To keep compiler quiet. */ 4079 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0)); 4080 } 4081 if (!is_error(ret)) { 4082 if (fd_trans_host_to_target_data(fd)) { 4083 ret = fd_trans_host_to_target_data(fd)(host_msg, ret); 4084 } 4085 if (target_addr) { 4086 host_to_target_sockaddr(target_addr, addr, addrlen); 4087 if (put_user_u32(addrlen, target_addrlen)) { 4088 ret = -TARGET_EFAULT; 4089 goto fail; 4090 } 4091 } 4092 unlock_user(host_msg, msg, len); 4093 } else { 4094 fail: 4095 unlock_user(host_msg, msg, 0); 4096 } 4097 return ret; 4098 } 4099 4100 #ifdef TARGET_NR_socketcall 4101 /* do_socketcall() must return target values and target errnos. */ 4102 static abi_long do_socketcall(int num, abi_ulong vptr) 4103 { 4104 static const unsigned nargs[] = { /* number of arguments per operation */ 4105 [TARGET_SYS_SOCKET] = 3, /* domain, type, protocol */ 4106 [TARGET_SYS_BIND] = 3, /* fd, addr, addrlen */ 4107 [TARGET_SYS_CONNECT] = 3, /* fd, addr, addrlen */ 4108 [TARGET_SYS_LISTEN] = 2, /* fd, backlog */ 4109 [TARGET_SYS_ACCEPT] = 3, /* fd, addr, addrlen */ 4110 [TARGET_SYS_GETSOCKNAME] = 3, /* fd, addr, addrlen */ 4111 [TARGET_SYS_GETPEERNAME] = 3, /* fd, addr, addrlen */ 4112 [TARGET_SYS_SOCKETPAIR] = 4, /* domain, type, protocol, tab */ 4113 [TARGET_SYS_SEND] = 4, /* fd, msg, len, flags */ 4114 [TARGET_SYS_RECV] = 4, /* fd, msg, len, flags */ 4115 [TARGET_SYS_SENDTO] = 6, /* fd, msg, len, flags, addr, addrlen */ 4116 [TARGET_SYS_RECVFROM] = 6, /* fd, msg, len, flags, addr, addrlen */ 4117 [TARGET_SYS_SHUTDOWN] = 2, /* fd, how */ 4118 [TARGET_SYS_SETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */ 4119 [TARGET_SYS_GETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */ 4120 [TARGET_SYS_SENDMSG] = 3, /* fd, msg, flags */ 4121 [TARGET_SYS_RECVMSG] = 3, /* fd, msg, flags */ 4122 [TARGET_SYS_ACCEPT4] = 4, /* fd, addr, addrlen, flags */ 4123 [TARGET_SYS_RECVMMSG] = 4, /* fd, msgvec, vlen, flags */ 4124 [TARGET_SYS_SENDMMSG] = 4, /* fd, msgvec, vlen, flags */ 4125 }; 4126 abi_long a[6]; /* max 6 args */ 4127 unsigned i; 4128 4129 /* check the range of the first argument num */ 4130 /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */ 4131 if (num < 1 || num > TARGET_SYS_SENDMMSG) { 4132 return -TARGET_EINVAL; 4133 } 4134 /* ensure we have space for args */ 4135 if (nargs[num] > ARRAY_SIZE(a)) { 4136 return -TARGET_EINVAL; 4137 } 4138 /* collect the arguments in a[] according to nargs[] */ 4139 for (i = 0; i < nargs[num]; ++i) { 4140 if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) { 4141 return -TARGET_EFAULT; 4142 } 4143 } 4144 /* now when we have the args, invoke the appropriate underlying function */ 4145 switch (num) { 4146 case TARGET_SYS_SOCKET: /* domain, type, protocol */ 4147 return do_socket(a[0], a[1], a[2]); 4148 case TARGET_SYS_BIND: /* sockfd, addr, addrlen */ 4149 return do_bind(a[0], a[1], a[2]); 4150 case TARGET_SYS_CONNECT: /* sockfd, addr, addrlen */ 4151 return do_connect(a[0], a[1], a[2]); 4152 case TARGET_SYS_LISTEN: /* sockfd, backlog */ 4153 return get_errno(listen(a[0], a[1])); 4154 case TARGET_SYS_ACCEPT: /* sockfd, addr, addrlen */ 4155 return do_accept4(a[0], a[1], a[2], 0); 4156 case TARGET_SYS_GETSOCKNAME: /* sockfd, addr, addrlen */ 4157 return do_getsockname(a[0], a[1], a[2]); 4158 case TARGET_SYS_GETPEERNAME: /* sockfd, addr, addrlen */ 4159 return do_getpeername(a[0], a[1], a[2]); 4160 case TARGET_SYS_SOCKETPAIR: /* domain, type, protocol, tab */ 4161 return do_socketpair(a[0], a[1], a[2], a[3]); 4162 case TARGET_SYS_SEND: /* sockfd, msg, len, flags */ 4163 return do_sendto(a[0], a[1], a[2], a[3], 0, 0); 4164 case TARGET_SYS_RECV: /* sockfd, msg, len, flags */ 4165 return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0); 4166 case TARGET_SYS_SENDTO: /* sockfd, msg, len, flags, addr, addrlen */ 4167 return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]); 4168 case TARGET_SYS_RECVFROM: /* sockfd, msg, len, flags, addr, addrlen */ 4169 return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]); 4170 case TARGET_SYS_SHUTDOWN: /* sockfd, how */ 4171 return get_errno(shutdown(a[0], a[1])); 4172 case TARGET_SYS_SETSOCKOPT: /* sockfd, level, optname, optval, optlen */ 4173 return do_setsockopt(a[0], a[1], a[2], a[3], a[4]); 4174 case TARGET_SYS_GETSOCKOPT: /* sockfd, level, optname, optval, optlen */ 4175 return do_getsockopt(a[0], a[1], a[2], a[3], a[4]); 4176 case TARGET_SYS_SENDMSG: /* sockfd, msg, flags */ 4177 return do_sendrecvmsg(a[0], a[1], a[2], 1); 4178 case TARGET_SYS_RECVMSG: /* sockfd, msg, flags */ 4179 return do_sendrecvmsg(a[0], a[1], a[2], 0); 4180 case TARGET_SYS_ACCEPT4: /* sockfd, addr, addrlen, flags */ 4181 return do_accept4(a[0], a[1], a[2], a[3]); 4182 case TARGET_SYS_RECVMMSG: /* sockfd, msgvec, vlen, flags */ 4183 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0); 4184 case TARGET_SYS_SENDMMSG: /* sockfd, msgvec, vlen, flags */ 4185 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1); 4186 default: 4187 gemu_log("Unsupported socketcall: %d\n", num); 4188 return -TARGET_EINVAL; 4189 } 4190 } 4191 #endif 4192 4193 #define N_SHM_REGIONS 32 4194 4195 static struct shm_region { 4196 abi_ulong start; 4197 abi_ulong size; 4198 bool in_use; 4199 } shm_regions[N_SHM_REGIONS]; 4200 4201 #ifndef TARGET_SEMID64_DS 4202 /* asm-generic version of this struct */ 4203 struct target_semid64_ds 4204 { 4205 struct target_ipc_perm sem_perm; 4206 abi_ulong sem_otime; 4207 #if TARGET_ABI_BITS == 32 4208 abi_ulong __unused1; 4209 #endif 4210 abi_ulong sem_ctime; 4211 #if TARGET_ABI_BITS == 32 4212 abi_ulong __unused2; 4213 #endif 4214 abi_ulong sem_nsems; 4215 abi_ulong __unused3; 4216 abi_ulong __unused4; 4217 }; 4218 #endif 4219 4220 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip, 4221 abi_ulong target_addr) 4222 { 4223 struct target_ipc_perm *target_ip; 4224 struct target_semid64_ds *target_sd; 4225 4226 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 4227 return -TARGET_EFAULT; 4228 target_ip = &(target_sd->sem_perm); 4229 host_ip->__key = tswap32(target_ip->__key); 4230 host_ip->uid = tswap32(target_ip->uid); 4231 host_ip->gid = tswap32(target_ip->gid); 4232 host_ip->cuid = tswap32(target_ip->cuid); 4233 host_ip->cgid = tswap32(target_ip->cgid); 4234 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC) 4235 host_ip->mode = tswap32(target_ip->mode); 4236 #else 4237 host_ip->mode = tswap16(target_ip->mode); 4238 #endif 4239 #if defined(TARGET_PPC) 4240 host_ip->__seq = tswap32(target_ip->__seq); 4241 #else 4242 host_ip->__seq = tswap16(target_ip->__seq); 4243 #endif 4244 unlock_user_struct(target_sd, target_addr, 0); 4245 return 0; 4246 } 4247 4248 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr, 4249 struct ipc_perm *host_ip) 4250 { 4251 struct target_ipc_perm *target_ip; 4252 struct target_semid64_ds *target_sd; 4253 4254 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 4255 return -TARGET_EFAULT; 4256 target_ip = &(target_sd->sem_perm); 4257 target_ip->__key = tswap32(host_ip->__key); 4258 target_ip->uid = tswap32(host_ip->uid); 4259 target_ip->gid = tswap32(host_ip->gid); 4260 target_ip->cuid = tswap32(host_ip->cuid); 4261 target_ip->cgid = tswap32(host_ip->cgid); 4262 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC) 4263 target_ip->mode = tswap32(host_ip->mode); 4264 #else 4265 target_ip->mode = tswap16(host_ip->mode); 4266 #endif 4267 #if defined(TARGET_PPC) 4268 target_ip->__seq = tswap32(host_ip->__seq); 4269 #else 4270 target_ip->__seq = tswap16(host_ip->__seq); 4271 #endif 4272 unlock_user_struct(target_sd, target_addr, 1); 4273 return 0; 4274 } 4275 4276 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd, 4277 abi_ulong target_addr) 4278 { 4279 struct target_semid64_ds *target_sd; 4280 4281 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 4282 return -TARGET_EFAULT; 4283 if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr)) 4284 return -TARGET_EFAULT; 4285 host_sd->sem_nsems = tswapal(target_sd->sem_nsems); 4286 host_sd->sem_otime = tswapal(target_sd->sem_otime); 4287 host_sd->sem_ctime = tswapal(target_sd->sem_ctime); 4288 unlock_user_struct(target_sd, target_addr, 0); 4289 return 0; 4290 } 4291 4292 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr, 4293 struct semid_ds *host_sd) 4294 { 4295 struct target_semid64_ds *target_sd; 4296 4297 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 4298 return -TARGET_EFAULT; 4299 if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm))) 4300 return -TARGET_EFAULT; 4301 target_sd->sem_nsems = tswapal(host_sd->sem_nsems); 4302 target_sd->sem_otime = tswapal(host_sd->sem_otime); 4303 target_sd->sem_ctime = tswapal(host_sd->sem_ctime); 4304 unlock_user_struct(target_sd, target_addr, 1); 4305 return 0; 4306 } 4307 4308 struct target_seminfo { 4309 int semmap; 4310 int semmni; 4311 int semmns; 4312 int semmnu; 4313 int semmsl; 4314 int semopm; 4315 int semume; 4316 int semusz; 4317 int semvmx; 4318 int semaem; 4319 }; 4320 4321 static inline abi_long host_to_target_seminfo(abi_ulong target_addr, 4322 struct seminfo *host_seminfo) 4323 { 4324 struct target_seminfo *target_seminfo; 4325 if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0)) 4326 return -TARGET_EFAULT; 4327 __put_user(host_seminfo->semmap, &target_seminfo->semmap); 4328 __put_user(host_seminfo->semmni, &target_seminfo->semmni); 4329 __put_user(host_seminfo->semmns, &target_seminfo->semmns); 4330 __put_user(host_seminfo->semmnu, &target_seminfo->semmnu); 4331 __put_user(host_seminfo->semmsl, &target_seminfo->semmsl); 4332 __put_user(host_seminfo->semopm, &target_seminfo->semopm); 4333 __put_user(host_seminfo->semume, &target_seminfo->semume); 4334 __put_user(host_seminfo->semusz, &target_seminfo->semusz); 4335 __put_user(host_seminfo->semvmx, &target_seminfo->semvmx); 4336 __put_user(host_seminfo->semaem, &target_seminfo->semaem); 4337 unlock_user_struct(target_seminfo, target_addr, 1); 4338 return 0; 4339 } 4340 4341 union semun { 4342 int val; 4343 struct semid_ds *buf; 4344 unsigned short *array; 4345 struct seminfo *__buf; 4346 }; 4347 4348 union target_semun { 4349 int val; 4350 abi_ulong buf; 4351 abi_ulong array; 4352 abi_ulong __buf; 4353 }; 4354 4355 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array, 4356 abi_ulong target_addr) 4357 { 4358 int nsems; 4359 unsigned short *array; 4360 union semun semun; 4361 struct semid_ds semid_ds; 4362 int i, ret; 4363 4364 semun.buf = &semid_ds; 4365 4366 ret = semctl(semid, 0, IPC_STAT, semun); 4367 if (ret == -1) 4368 return get_errno(ret); 4369 4370 nsems = semid_ds.sem_nsems; 4371 4372 *host_array = g_try_new(unsigned short, nsems); 4373 if (!*host_array) { 4374 return -TARGET_ENOMEM; 4375 } 4376 array = lock_user(VERIFY_READ, target_addr, 4377 nsems*sizeof(unsigned short), 1); 4378 if (!array) { 4379 g_free(*host_array); 4380 return -TARGET_EFAULT; 4381 } 4382 4383 for(i=0; i<nsems; i++) { 4384 __get_user((*host_array)[i], &array[i]); 4385 } 4386 unlock_user(array, target_addr, 0); 4387 4388 return 0; 4389 } 4390 4391 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr, 4392 unsigned short **host_array) 4393 { 4394 int nsems; 4395 unsigned short *array; 4396 union semun semun; 4397 struct semid_ds semid_ds; 4398 int i, ret; 4399 4400 semun.buf = &semid_ds; 4401 4402 ret = semctl(semid, 0, IPC_STAT, semun); 4403 if (ret == -1) 4404 return get_errno(ret); 4405 4406 nsems = semid_ds.sem_nsems; 4407 4408 array = lock_user(VERIFY_WRITE, target_addr, 4409 nsems*sizeof(unsigned short), 0); 4410 if (!array) 4411 return -TARGET_EFAULT; 4412 4413 for(i=0; i<nsems; i++) { 4414 __put_user((*host_array)[i], &array[i]); 4415 } 4416 g_free(*host_array); 4417 unlock_user(array, target_addr, 1); 4418 4419 return 0; 4420 } 4421 4422 static inline abi_long do_semctl(int semid, int semnum, int cmd, 4423 abi_ulong target_arg) 4424 { 4425 union target_semun target_su = { .buf = target_arg }; 4426 union semun arg; 4427 struct semid_ds dsarg; 4428 unsigned short *array = NULL; 4429 struct seminfo seminfo; 4430 abi_long ret = -TARGET_EINVAL; 4431 abi_long err; 4432 cmd &= 0xff; 4433 4434 switch( cmd ) { 4435 case GETVAL: 4436 case SETVAL: 4437 /* In 64 bit cross-endian situations, we will erroneously pick up 4438 * the wrong half of the union for the "val" element. To rectify 4439 * this, the entire 8-byte structure is byteswapped, followed by 4440 * a swap of the 4 byte val field. In other cases, the data is 4441 * already in proper host byte order. */ 4442 if (sizeof(target_su.val) != (sizeof(target_su.buf))) { 4443 target_su.buf = tswapal(target_su.buf); 4444 arg.val = tswap32(target_su.val); 4445 } else { 4446 arg.val = target_su.val; 4447 } 4448 ret = get_errno(semctl(semid, semnum, cmd, arg)); 4449 break; 4450 case GETALL: 4451 case SETALL: 4452 err = target_to_host_semarray(semid, &array, target_su.array); 4453 if (err) 4454 return err; 4455 arg.array = array; 4456 ret = get_errno(semctl(semid, semnum, cmd, arg)); 4457 err = host_to_target_semarray(semid, target_su.array, &array); 4458 if (err) 4459 return err; 4460 break; 4461 case IPC_STAT: 4462 case IPC_SET: 4463 case SEM_STAT: 4464 err = target_to_host_semid_ds(&dsarg, target_su.buf); 4465 if (err) 4466 return err; 4467 arg.buf = &dsarg; 4468 ret = get_errno(semctl(semid, semnum, cmd, arg)); 4469 err = host_to_target_semid_ds(target_su.buf, &dsarg); 4470 if (err) 4471 return err; 4472 break; 4473 case IPC_INFO: 4474 case SEM_INFO: 4475 arg.__buf = &seminfo; 4476 ret = get_errno(semctl(semid, semnum, cmd, arg)); 4477 err = host_to_target_seminfo(target_su.__buf, &seminfo); 4478 if (err) 4479 return err; 4480 break; 4481 case IPC_RMID: 4482 case GETPID: 4483 case GETNCNT: 4484 case GETZCNT: 4485 ret = get_errno(semctl(semid, semnum, cmd, NULL)); 4486 break; 4487 } 4488 4489 return ret; 4490 } 4491 4492 struct target_sembuf { 4493 unsigned short sem_num; 4494 short sem_op; 4495 short sem_flg; 4496 }; 4497 4498 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf, 4499 abi_ulong target_addr, 4500 unsigned nsops) 4501 { 4502 struct target_sembuf *target_sembuf; 4503 int i; 4504 4505 target_sembuf = lock_user(VERIFY_READ, target_addr, 4506 nsops*sizeof(struct target_sembuf), 1); 4507 if (!target_sembuf) 4508 return -TARGET_EFAULT; 4509 4510 for(i=0; i<nsops; i++) { 4511 __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num); 4512 __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op); 4513 __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg); 4514 } 4515 4516 unlock_user(target_sembuf, target_addr, 0); 4517 4518 return 0; 4519 } 4520 4521 static inline abi_long do_semop(int semid, abi_long ptr, unsigned nsops) 4522 { 4523 struct sembuf sops[nsops]; 4524 4525 if (target_to_host_sembuf(sops, ptr, nsops)) 4526 return -TARGET_EFAULT; 4527 4528 return get_errno(safe_semtimedop(semid, sops, nsops, NULL)); 4529 } 4530 4531 struct target_msqid_ds 4532 { 4533 struct target_ipc_perm msg_perm; 4534 abi_ulong msg_stime; 4535 #if TARGET_ABI_BITS == 32 4536 abi_ulong __unused1; 4537 #endif 4538 abi_ulong msg_rtime; 4539 #if TARGET_ABI_BITS == 32 4540 abi_ulong __unused2; 4541 #endif 4542 abi_ulong msg_ctime; 4543 #if TARGET_ABI_BITS == 32 4544 abi_ulong __unused3; 4545 #endif 4546 abi_ulong __msg_cbytes; 4547 abi_ulong msg_qnum; 4548 abi_ulong msg_qbytes; 4549 abi_ulong msg_lspid; 4550 abi_ulong msg_lrpid; 4551 abi_ulong __unused4; 4552 abi_ulong __unused5; 4553 }; 4554 4555 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md, 4556 abi_ulong target_addr) 4557 { 4558 struct target_msqid_ds *target_md; 4559 4560 if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1)) 4561 return -TARGET_EFAULT; 4562 if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr)) 4563 return -TARGET_EFAULT; 4564 host_md->msg_stime = tswapal(target_md->msg_stime); 4565 host_md->msg_rtime = tswapal(target_md->msg_rtime); 4566 host_md->msg_ctime = tswapal(target_md->msg_ctime); 4567 host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes); 4568 host_md->msg_qnum = tswapal(target_md->msg_qnum); 4569 host_md->msg_qbytes = tswapal(target_md->msg_qbytes); 4570 host_md->msg_lspid = tswapal(target_md->msg_lspid); 4571 host_md->msg_lrpid = tswapal(target_md->msg_lrpid); 4572 unlock_user_struct(target_md, target_addr, 0); 4573 return 0; 4574 } 4575 4576 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr, 4577 struct msqid_ds *host_md) 4578 { 4579 struct target_msqid_ds *target_md; 4580 4581 if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0)) 4582 return -TARGET_EFAULT; 4583 if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm))) 4584 return -TARGET_EFAULT; 4585 target_md->msg_stime = tswapal(host_md->msg_stime); 4586 target_md->msg_rtime = tswapal(host_md->msg_rtime); 4587 target_md->msg_ctime = tswapal(host_md->msg_ctime); 4588 target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes); 4589 target_md->msg_qnum = tswapal(host_md->msg_qnum); 4590 target_md->msg_qbytes = tswapal(host_md->msg_qbytes); 4591 target_md->msg_lspid = tswapal(host_md->msg_lspid); 4592 target_md->msg_lrpid = tswapal(host_md->msg_lrpid); 4593 unlock_user_struct(target_md, target_addr, 1); 4594 return 0; 4595 } 4596 4597 struct target_msginfo { 4598 int msgpool; 4599 int msgmap; 4600 int msgmax; 4601 int msgmnb; 4602 int msgmni; 4603 int msgssz; 4604 int msgtql; 4605 unsigned short int msgseg; 4606 }; 4607 4608 static inline abi_long host_to_target_msginfo(abi_ulong target_addr, 4609 struct msginfo *host_msginfo) 4610 { 4611 struct target_msginfo *target_msginfo; 4612 if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0)) 4613 return -TARGET_EFAULT; 4614 __put_user(host_msginfo->msgpool, &target_msginfo->msgpool); 4615 __put_user(host_msginfo->msgmap, &target_msginfo->msgmap); 4616 __put_user(host_msginfo->msgmax, &target_msginfo->msgmax); 4617 __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb); 4618 __put_user(host_msginfo->msgmni, &target_msginfo->msgmni); 4619 __put_user(host_msginfo->msgssz, &target_msginfo->msgssz); 4620 __put_user(host_msginfo->msgtql, &target_msginfo->msgtql); 4621 __put_user(host_msginfo->msgseg, &target_msginfo->msgseg); 4622 unlock_user_struct(target_msginfo, target_addr, 1); 4623 return 0; 4624 } 4625 4626 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr) 4627 { 4628 struct msqid_ds dsarg; 4629 struct msginfo msginfo; 4630 abi_long ret = -TARGET_EINVAL; 4631 4632 cmd &= 0xff; 4633 4634 switch (cmd) { 4635 case IPC_STAT: 4636 case IPC_SET: 4637 case MSG_STAT: 4638 if (target_to_host_msqid_ds(&dsarg,ptr)) 4639 return -TARGET_EFAULT; 4640 ret = get_errno(msgctl(msgid, cmd, &dsarg)); 4641 if (host_to_target_msqid_ds(ptr,&dsarg)) 4642 return -TARGET_EFAULT; 4643 break; 4644 case IPC_RMID: 4645 ret = get_errno(msgctl(msgid, cmd, NULL)); 4646 break; 4647 case IPC_INFO: 4648 case MSG_INFO: 4649 ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo)); 4650 if (host_to_target_msginfo(ptr, &msginfo)) 4651 return -TARGET_EFAULT; 4652 break; 4653 } 4654 4655 return ret; 4656 } 4657 4658 struct target_msgbuf { 4659 abi_long mtype; 4660 char mtext[1]; 4661 }; 4662 4663 static inline abi_long do_msgsnd(int msqid, abi_long msgp, 4664 ssize_t msgsz, int msgflg) 4665 { 4666 struct target_msgbuf *target_mb; 4667 struct msgbuf *host_mb; 4668 abi_long ret = 0; 4669 4670 if (msgsz < 0) { 4671 return -TARGET_EINVAL; 4672 } 4673 4674 if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0)) 4675 return -TARGET_EFAULT; 4676 host_mb = g_try_malloc(msgsz + sizeof(long)); 4677 if (!host_mb) { 4678 unlock_user_struct(target_mb, msgp, 0); 4679 return -TARGET_ENOMEM; 4680 } 4681 host_mb->mtype = (abi_long) tswapal(target_mb->mtype); 4682 memcpy(host_mb->mtext, target_mb->mtext, msgsz); 4683 ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg)); 4684 g_free(host_mb); 4685 unlock_user_struct(target_mb, msgp, 0); 4686 4687 return ret; 4688 } 4689 4690 static inline abi_long do_msgrcv(int msqid, abi_long msgp, 4691 ssize_t msgsz, abi_long msgtyp, 4692 int msgflg) 4693 { 4694 struct target_msgbuf *target_mb; 4695 char *target_mtext; 4696 struct msgbuf *host_mb; 4697 abi_long ret = 0; 4698 4699 if (msgsz < 0) { 4700 return -TARGET_EINVAL; 4701 } 4702 4703 if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0)) 4704 return -TARGET_EFAULT; 4705 4706 host_mb = g_try_malloc(msgsz + sizeof(long)); 4707 if (!host_mb) { 4708 ret = -TARGET_ENOMEM; 4709 goto end; 4710 } 4711 ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg)); 4712 4713 if (ret > 0) { 4714 abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong); 4715 target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0); 4716 if (!target_mtext) { 4717 ret = -TARGET_EFAULT; 4718 goto end; 4719 } 4720 memcpy(target_mb->mtext, host_mb->mtext, ret); 4721 unlock_user(target_mtext, target_mtext_addr, ret); 4722 } 4723 4724 target_mb->mtype = tswapal(host_mb->mtype); 4725 4726 end: 4727 if (target_mb) 4728 unlock_user_struct(target_mb, msgp, 1); 4729 g_free(host_mb); 4730 return ret; 4731 } 4732 4733 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd, 4734 abi_ulong target_addr) 4735 { 4736 struct target_shmid_ds *target_sd; 4737 4738 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 4739 return -TARGET_EFAULT; 4740 if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr)) 4741 return -TARGET_EFAULT; 4742 __get_user(host_sd->shm_segsz, &target_sd->shm_segsz); 4743 __get_user(host_sd->shm_atime, &target_sd->shm_atime); 4744 __get_user(host_sd->shm_dtime, &target_sd->shm_dtime); 4745 __get_user(host_sd->shm_ctime, &target_sd->shm_ctime); 4746 __get_user(host_sd->shm_cpid, &target_sd->shm_cpid); 4747 __get_user(host_sd->shm_lpid, &target_sd->shm_lpid); 4748 __get_user(host_sd->shm_nattch, &target_sd->shm_nattch); 4749 unlock_user_struct(target_sd, target_addr, 0); 4750 return 0; 4751 } 4752 4753 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr, 4754 struct shmid_ds *host_sd) 4755 { 4756 struct target_shmid_ds *target_sd; 4757 4758 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 4759 return -TARGET_EFAULT; 4760 if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm))) 4761 return -TARGET_EFAULT; 4762 __put_user(host_sd->shm_segsz, &target_sd->shm_segsz); 4763 __put_user(host_sd->shm_atime, &target_sd->shm_atime); 4764 __put_user(host_sd->shm_dtime, &target_sd->shm_dtime); 4765 __put_user(host_sd->shm_ctime, &target_sd->shm_ctime); 4766 __put_user(host_sd->shm_cpid, &target_sd->shm_cpid); 4767 __put_user(host_sd->shm_lpid, &target_sd->shm_lpid); 4768 __put_user(host_sd->shm_nattch, &target_sd->shm_nattch); 4769 unlock_user_struct(target_sd, target_addr, 1); 4770 return 0; 4771 } 4772 4773 struct target_shminfo { 4774 abi_ulong shmmax; 4775 abi_ulong shmmin; 4776 abi_ulong shmmni; 4777 abi_ulong shmseg; 4778 abi_ulong shmall; 4779 }; 4780 4781 static inline abi_long host_to_target_shminfo(abi_ulong target_addr, 4782 struct shminfo *host_shminfo) 4783 { 4784 struct target_shminfo *target_shminfo; 4785 if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0)) 4786 return -TARGET_EFAULT; 4787 __put_user(host_shminfo->shmmax, &target_shminfo->shmmax); 4788 __put_user(host_shminfo->shmmin, &target_shminfo->shmmin); 4789 __put_user(host_shminfo->shmmni, &target_shminfo->shmmni); 4790 __put_user(host_shminfo->shmseg, &target_shminfo->shmseg); 4791 __put_user(host_shminfo->shmall, &target_shminfo->shmall); 4792 unlock_user_struct(target_shminfo, target_addr, 1); 4793 return 0; 4794 } 4795 4796 struct target_shm_info { 4797 int used_ids; 4798 abi_ulong shm_tot; 4799 abi_ulong shm_rss; 4800 abi_ulong shm_swp; 4801 abi_ulong swap_attempts; 4802 abi_ulong swap_successes; 4803 }; 4804 4805 static inline abi_long host_to_target_shm_info(abi_ulong target_addr, 4806 struct shm_info *host_shm_info) 4807 { 4808 struct target_shm_info *target_shm_info; 4809 if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0)) 4810 return -TARGET_EFAULT; 4811 __put_user(host_shm_info->used_ids, &target_shm_info->used_ids); 4812 __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot); 4813 __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss); 4814 __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp); 4815 __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts); 4816 __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes); 4817 unlock_user_struct(target_shm_info, target_addr, 1); 4818 return 0; 4819 } 4820 4821 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf) 4822 { 4823 struct shmid_ds dsarg; 4824 struct shminfo shminfo; 4825 struct shm_info shm_info; 4826 abi_long ret = -TARGET_EINVAL; 4827 4828 cmd &= 0xff; 4829 4830 switch(cmd) { 4831 case IPC_STAT: 4832 case IPC_SET: 4833 case SHM_STAT: 4834 if (target_to_host_shmid_ds(&dsarg, buf)) 4835 return -TARGET_EFAULT; 4836 ret = get_errno(shmctl(shmid, cmd, &dsarg)); 4837 if (host_to_target_shmid_ds(buf, &dsarg)) 4838 return -TARGET_EFAULT; 4839 break; 4840 case IPC_INFO: 4841 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo)); 4842 if (host_to_target_shminfo(buf, &shminfo)) 4843 return -TARGET_EFAULT; 4844 break; 4845 case SHM_INFO: 4846 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info)); 4847 if (host_to_target_shm_info(buf, &shm_info)) 4848 return -TARGET_EFAULT; 4849 break; 4850 case IPC_RMID: 4851 case SHM_LOCK: 4852 case SHM_UNLOCK: 4853 ret = get_errno(shmctl(shmid, cmd, NULL)); 4854 break; 4855 } 4856 4857 return ret; 4858 } 4859 4860 #ifndef TARGET_FORCE_SHMLBA 4861 /* For most architectures, SHMLBA is the same as the page size; 4862 * some architectures have larger values, in which case they should 4863 * define TARGET_FORCE_SHMLBA and provide a target_shmlba() function. 4864 * This corresponds to the kernel arch code defining __ARCH_FORCE_SHMLBA 4865 * and defining its own value for SHMLBA. 4866 * 4867 * The kernel also permits SHMLBA to be set by the architecture to a 4868 * value larger than the page size without setting __ARCH_FORCE_SHMLBA; 4869 * this means that addresses are rounded to the large size if 4870 * SHM_RND is set but addresses not aligned to that size are not rejected 4871 * as long as they are at least page-aligned. Since the only architecture 4872 * which uses this is ia64 this code doesn't provide for that oddity. 4873 */ 4874 static inline abi_ulong target_shmlba(CPUArchState *cpu_env) 4875 { 4876 return TARGET_PAGE_SIZE; 4877 } 4878 #endif 4879 4880 static inline abi_ulong do_shmat(CPUArchState *cpu_env, 4881 int shmid, abi_ulong shmaddr, int shmflg) 4882 { 4883 abi_long raddr; 4884 void *host_raddr; 4885 struct shmid_ds shm_info; 4886 int i,ret; 4887 abi_ulong shmlba; 4888 4889 /* find out the length of the shared memory segment */ 4890 ret = get_errno(shmctl(shmid, IPC_STAT, &shm_info)); 4891 if (is_error(ret)) { 4892 /* can't get length, bail out */ 4893 return ret; 4894 } 4895 4896 shmlba = target_shmlba(cpu_env); 4897 4898 if (shmaddr & (shmlba - 1)) { 4899 if (shmflg & SHM_RND) { 4900 shmaddr &= ~(shmlba - 1); 4901 } else { 4902 return -TARGET_EINVAL; 4903 } 4904 } 4905 if (!guest_range_valid(shmaddr, shm_info.shm_segsz)) { 4906 return -TARGET_EINVAL; 4907 } 4908 4909 mmap_lock(); 4910 4911 if (shmaddr) 4912 host_raddr = shmat(shmid, (void *)g2h(shmaddr), shmflg); 4913 else { 4914 abi_ulong mmap_start; 4915 4916 mmap_start = mmap_find_vma(0, shm_info.shm_segsz); 4917 4918 if (mmap_start == -1) { 4919 errno = ENOMEM; 4920 host_raddr = (void *)-1; 4921 } else 4922 host_raddr = shmat(shmid, g2h(mmap_start), shmflg | SHM_REMAP); 4923 } 4924 4925 if (host_raddr == (void *)-1) { 4926 mmap_unlock(); 4927 return get_errno((long)host_raddr); 4928 } 4929 raddr=h2g((unsigned long)host_raddr); 4930 4931 page_set_flags(raddr, raddr + shm_info.shm_segsz, 4932 PAGE_VALID | PAGE_READ | 4933 ((shmflg & SHM_RDONLY)? 0 : PAGE_WRITE)); 4934 4935 for (i = 0; i < N_SHM_REGIONS; i++) { 4936 if (!shm_regions[i].in_use) { 4937 shm_regions[i].in_use = true; 4938 shm_regions[i].start = raddr; 4939 shm_regions[i].size = shm_info.shm_segsz; 4940 break; 4941 } 4942 } 4943 4944 mmap_unlock(); 4945 return raddr; 4946 4947 } 4948 4949 static inline abi_long do_shmdt(abi_ulong shmaddr) 4950 { 4951 int i; 4952 abi_long rv; 4953 4954 mmap_lock(); 4955 4956 for (i = 0; i < N_SHM_REGIONS; ++i) { 4957 if (shm_regions[i].in_use && shm_regions[i].start == shmaddr) { 4958 shm_regions[i].in_use = false; 4959 page_set_flags(shmaddr, shmaddr + shm_regions[i].size, 0); 4960 break; 4961 } 4962 } 4963 rv = get_errno(shmdt(g2h(shmaddr))); 4964 4965 mmap_unlock(); 4966 4967 return rv; 4968 } 4969 4970 #ifdef TARGET_NR_ipc 4971 /* ??? This only works with linear mappings. */ 4972 /* do_ipc() must return target values and target errnos. */ 4973 static abi_long do_ipc(CPUArchState *cpu_env, 4974 unsigned int call, abi_long first, 4975 abi_long second, abi_long third, 4976 abi_long ptr, abi_long fifth) 4977 { 4978 int version; 4979 abi_long ret = 0; 4980 4981 version = call >> 16; 4982 call &= 0xffff; 4983 4984 switch (call) { 4985 case IPCOP_semop: 4986 ret = do_semop(first, ptr, second); 4987 break; 4988 4989 case IPCOP_semget: 4990 ret = get_errno(semget(first, second, third)); 4991 break; 4992 4993 case IPCOP_semctl: { 4994 /* The semun argument to semctl is passed by value, so dereference the 4995 * ptr argument. */ 4996 abi_ulong atptr; 4997 get_user_ual(atptr, ptr); 4998 ret = do_semctl(first, second, third, atptr); 4999 break; 5000 } 5001 5002 case IPCOP_msgget: 5003 ret = get_errno(msgget(first, second)); 5004 break; 5005 5006 case IPCOP_msgsnd: 5007 ret = do_msgsnd(first, ptr, second, third); 5008 break; 5009 5010 case IPCOP_msgctl: 5011 ret = do_msgctl(first, second, ptr); 5012 break; 5013 5014 case IPCOP_msgrcv: 5015 switch (version) { 5016 case 0: 5017 { 5018 struct target_ipc_kludge { 5019 abi_long msgp; 5020 abi_long msgtyp; 5021 } *tmp; 5022 5023 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) { 5024 ret = -TARGET_EFAULT; 5025 break; 5026 } 5027 5028 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third); 5029 5030 unlock_user_struct(tmp, ptr, 0); 5031 break; 5032 } 5033 default: 5034 ret = do_msgrcv(first, ptr, second, fifth, third); 5035 } 5036 break; 5037 5038 case IPCOP_shmat: 5039 switch (version) { 5040 default: 5041 { 5042 abi_ulong raddr; 5043 raddr = do_shmat(cpu_env, first, ptr, second); 5044 if (is_error(raddr)) 5045 return get_errno(raddr); 5046 if (put_user_ual(raddr, third)) 5047 return -TARGET_EFAULT; 5048 break; 5049 } 5050 case 1: 5051 ret = -TARGET_EINVAL; 5052 break; 5053 } 5054 break; 5055 case IPCOP_shmdt: 5056 ret = do_shmdt(ptr); 5057 break; 5058 5059 case IPCOP_shmget: 5060 /* IPC_* flag values are the same on all linux platforms */ 5061 ret = get_errno(shmget(first, second, third)); 5062 break; 5063 5064 /* IPC_* and SHM_* command values are the same on all linux platforms */ 5065 case IPCOP_shmctl: 5066 ret = do_shmctl(first, second, ptr); 5067 break; 5068 default: 5069 gemu_log("Unsupported ipc call: %d (version %d)\n", call, version); 5070 ret = -TARGET_ENOSYS; 5071 break; 5072 } 5073 return ret; 5074 } 5075 #endif 5076 5077 /* kernel structure types definitions */ 5078 5079 #define STRUCT(name, ...) STRUCT_ ## name, 5080 #define STRUCT_SPECIAL(name) STRUCT_ ## name, 5081 enum { 5082 #include "syscall_types.h" 5083 STRUCT_MAX 5084 }; 5085 #undef STRUCT 5086 #undef STRUCT_SPECIAL 5087 5088 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = { __VA_ARGS__, TYPE_NULL }; 5089 #define STRUCT_SPECIAL(name) 5090 #include "syscall_types.h" 5091 #undef STRUCT 5092 #undef STRUCT_SPECIAL 5093 5094 typedef struct IOCTLEntry IOCTLEntry; 5095 5096 typedef abi_long do_ioctl_fn(const IOCTLEntry *ie, uint8_t *buf_temp, 5097 int fd, int cmd, abi_long arg); 5098 5099 struct IOCTLEntry { 5100 int target_cmd; 5101 unsigned int host_cmd; 5102 const char *name; 5103 int access; 5104 do_ioctl_fn *do_ioctl; 5105 const argtype arg_type[5]; 5106 }; 5107 5108 #define IOC_R 0x0001 5109 #define IOC_W 0x0002 5110 #define IOC_RW (IOC_R | IOC_W) 5111 5112 #define MAX_STRUCT_SIZE 4096 5113 5114 #ifdef CONFIG_FIEMAP 5115 /* So fiemap access checks don't overflow on 32 bit systems. 5116 * This is very slightly smaller than the limit imposed by 5117 * the underlying kernel. 5118 */ 5119 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap)) \ 5120 / sizeof(struct fiemap_extent)) 5121 5122 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp, 5123 int fd, int cmd, abi_long arg) 5124 { 5125 /* The parameter for this ioctl is a struct fiemap followed 5126 * by an array of struct fiemap_extent whose size is set 5127 * in fiemap->fm_extent_count. The array is filled in by the 5128 * ioctl. 5129 */ 5130 int target_size_in, target_size_out; 5131 struct fiemap *fm; 5132 const argtype *arg_type = ie->arg_type; 5133 const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) }; 5134 void *argptr, *p; 5135 abi_long ret; 5136 int i, extent_size = thunk_type_size(extent_arg_type, 0); 5137 uint32_t outbufsz; 5138 int free_fm = 0; 5139 5140 assert(arg_type[0] == TYPE_PTR); 5141 assert(ie->access == IOC_RW); 5142 arg_type++; 5143 target_size_in = thunk_type_size(arg_type, 0); 5144 argptr = lock_user(VERIFY_READ, arg, target_size_in, 1); 5145 if (!argptr) { 5146 return -TARGET_EFAULT; 5147 } 5148 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5149 unlock_user(argptr, arg, 0); 5150 fm = (struct fiemap *)buf_temp; 5151 if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) { 5152 return -TARGET_EINVAL; 5153 } 5154 5155 outbufsz = sizeof (*fm) + 5156 (sizeof(struct fiemap_extent) * fm->fm_extent_count); 5157 5158 if (outbufsz > MAX_STRUCT_SIZE) { 5159 /* We can't fit all the extents into the fixed size buffer. 5160 * Allocate one that is large enough and use it instead. 5161 */ 5162 fm = g_try_malloc(outbufsz); 5163 if (!fm) { 5164 return -TARGET_ENOMEM; 5165 } 5166 memcpy(fm, buf_temp, sizeof(struct fiemap)); 5167 free_fm = 1; 5168 } 5169 ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm)); 5170 if (!is_error(ret)) { 5171 target_size_out = target_size_in; 5172 /* An extent_count of 0 means we were only counting the extents 5173 * so there are no structs to copy 5174 */ 5175 if (fm->fm_extent_count != 0) { 5176 target_size_out += fm->fm_mapped_extents * extent_size; 5177 } 5178 argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0); 5179 if (!argptr) { 5180 ret = -TARGET_EFAULT; 5181 } else { 5182 /* Convert the struct fiemap */ 5183 thunk_convert(argptr, fm, arg_type, THUNK_TARGET); 5184 if (fm->fm_extent_count != 0) { 5185 p = argptr + target_size_in; 5186 /* ...and then all the struct fiemap_extents */ 5187 for (i = 0; i < fm->fm_mapped_extents; i++) { 5188 thunk_convert(p, &fm->fm_extents[i], extent_arg_type, 5189 THUNK_TARGET); 5190 p += extent_size; 5191 } 5192 } 5193 unlock_user(argptr, arg, target_size_out); 5194 } 5195 } 5196 if (free_fm) { 5197 g_free(fm); 5198 } 5199 return ret; 5200 } 5201 #endif 5202 5203 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp, 5204 int fd, int cmd, abi_long arg) 5205 { 5206 const argtype *arg_type = ie->arg_type; 5207 int target_size; 5208 void *argptr; 5209 int ret; 5210 struct ifconf *host_ifconf; 5211 uint32_t outbufsz; 5212 const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) }; 5213 int target_ifreq_size; 5214 int nb_ifreq; 5215 int free_buf = 0; 5216 int i; 5217 int target_ifc_len; 5218 abi_long target_ifc_buf; 5219 int host_ifc_len; 5220 char *host_ifc_buf; 5221 5222 assert(arg_type[0] == TYPE_PTR); 5223 assert(ie->access == IOC_RW); 5224 5225 arg_type++; 5226 target_size = thunk_type_size(arg_type, 0); 5227 5228 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5229 if (!argptr) 5230 return -TARGET_EFAULT; 5231 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5232 unlock_user(argptr, arg, 0); 5233 5234 host_ifconf = (struct ifconf *)(unsigned long)buf_temp; 5235 target_ifc_len = host_ifconf->ifc_len; 5236 target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf; 5237 5238 target_ifreq_size = thunk_type_size(ifreq_arg_type, 0); 5239 nb_ifreq = target_ifc_len / target_ifreq_size; 5240 host_ifc_len = nb_ifreq * sizeof(struct ifreq); 5241 5242 outbufsz = sizeof(*host_ifconf) + host_ifc_len; 5243 if (outbufsz > MAX_STRUCT_SIZE) { 5244 /* We can't fit all the extents into the fixed size buffer. 5245 * Allocate one that is large enough and use it instead. 5246 */ 5247 host_ifconf = malloc(outbufsz); 5248 if (!host_ifconf) { 5249 return -TARGET_ENOMEM; 5250 } 5251 memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf)); 5252 free_buf = 1; 5253 } 5254 host_ifc_buf = (char*)host_ifconf + sizeof(*host_ifconf); 5255 5256 host_ifconf->ifc_len = host_ifc_len; 5257 host_ifconf->ifc_buf = host_ifc_buf; 5258 5259 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf)); 5260 if (!is_error(ret)) { 5261 /* convert host ifc_len to target ifc_len */ 5262 5263 nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq); 5264 target_ifc_len = nb_ifreq * target_ifreq_size; 5265 host_ifconf->ifc_len = target_ifc_len; 5266 5267 /* restore target ifc_buf */ 5268 5269 host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf; 5270 5271 /* copy struct ifconf to target user */ 5272 5273 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5274 if (!argptr) 5275 return -TARGET_EFAULT; 5276 thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET); 5277 unlock_user(argptr, arg, target_size); 5278 5279 /* copy ifreq[] to target user */ 5280 5281 argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0); 5282 for (i = 0; i < nb_ifreq ; i++) { 5283 thunk_convert(argptr + i * target_ifreq_size, 5284 host_ifc_buf + i * sizeof(struct ifreq), 5285 ifreq_arg_type, THUNK_TARGET); 5286 } 5287 unlock_user(argptr, target_ifc_buf, target_ifc_len); 5288 } 5289 5290 if (free_buf) { 5291 free(host_ifconf); 5292 } 5293 5294 return ret; 5295 } 5296 5297 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd, 5298 int cmd, abi_long arg) 5299 { 5300 void *argptr; 5301 struct dm_ioctl *host_dm; 5302 abi_long guest_data; 5303 uint32_t guest_data_size; 5304 int target_size; 5305 const argtype *arg_type = ie->arg_type; 5306 abi_long ret; 5307 void *big_buf = NULL; 5308 char *host_data; 5309 5310 arg_type++; 5311 target_size = thunk_type_size(arg_type, 0); 5312 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5313 if (!argptr) { 5314 ret = -TARGET_EFAULT; 5315 goto out; 5316 } 5317 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5318 unlock_user(argptr, arg, 0); 5319 5320 /* buf_temp is too small, so fetch things into a bigger buffer */ 5321 big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2); 5322 memcpy(big_buf, buf_temp, target_size); 5323 buf_temp = big_buf; 5324 host_dm = big_buf; 5325 5326 guest_data = arg + host_dm->data_start; 5327 if ((guest_data - arg) < 0) { 5328 ret = -TARGET_EINVAL; 5329 goto out; 5330 } 5331 guest_data_size = host_dm->data_size - host_dm->data_start; 5332 host_data = (char*)host_dm + host_dm->data_start; 5333 5334 argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1); 5335 if (!argptr) { 5336 ret = -TARGET_EFAULT; 5337 goto out; 5338 } 5339 5340 switch (ie->host_cmd) { 5341 case DM_REMOVE_ALL: 5342 case DM_LIST_DEVICES: 5343 case DM_DEV_CREATE: 5344 case DM_DEV_REMOVE: 5345 case DM_DEV_SUSPEND: 5346 case DM_DEV_STATUS: 5347 case DM_DEV_WAIT: 5348 case DM_TABLE_STATUS: 5349 case DM_TABLE_CLEAR: 5350 case DM_TABLE_DEPS: 5351 case DM_LIST_VERSIONS: 5352 /* no input data */ 5353 break; 5354 case DM_DEV_RENAME: 5355 case DM_DEV_SET_GEOMETRY: 5356 /* data contains only strings */ 5357 memcpy(host_data, argptr, guest_data_size); 5358 break; 5359 case DM_TARGET_MSG: 5360 memcpy(host_data, argptr, guest_data_size); 5361 *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr); 5362 break; 5363 case DM_TABLE_LOAD: 5364 { 5365 void *gspec = argptr; 5366 void *cur_data = host_data; 5367 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) }; 5368 int spec_size = thunk_type_size(arg_type, 0); 5369 int i; 5370 5371 for (i = 0; i < host_dm->target_count; i++) { 5372 struct dm_target_spec *spec = cur_data; 5373 uint32_t next; 5374 int slen; 5375 5376 thunk_convert(spec, gspec, arg_type, THUNK_HOST); 5377 slen = strlen((char*)gspec + spec_size) + 1; 5378 next = spec->next; 5379 spec->next = sizeof(*spec) + slen; 5380 strcpy((char*)&spec[1], gspec + spec_size); 5381 gspec += next; 5382 cur_data += spec->next; 5383 } 5384 break; 5385 } 5386 default: 5387 ret = -TARGET_EINVAL; 5388 unlock_user(argptr, guest_data, 0); 5389 goto out; 5390 } 5391 unlock_user(argptr, guest_data, 0); 5392 5393 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5394 if (!is_error(ret)) { 5395 guest_data = arg + host_dm->data_start; 5396 guest_data_size = host_dm->data_size - host_dm->data_start; 5397 argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0); 5398 switch (ie->host_cmd) { 5399 case DM_REMOVE_ALL: 5400 case DM_DEV_CREATE: 5401 case DM_DEV_REMOVE: 5402 case DM_DEV_RENAME: 5403 case DM_DEV_SUSPEND: 5404 case DM_DEV_STATUS: 5405 case DM_TABLE_LOAD: 5406 case DM_TABLE_CLEAR: 5407 case DM_TARGET_MSG: 5408 case DM_DEV_SET_GEOMETRY: 5409 /* no return data */ 5410 break; 5411 case DM_LIST_DEVICES: 5412 { 5413 struct dm_name_list *nl = (void*)host_dm + host_dm->data_start; 5414 uint32_t remaining_data = guest_data_size; 5415 void *cur_data = argptr; 5416 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) }; 5417 int nl_size = 12; /* can't use thunk_size due to alignment */ 5418 5419 while (1) { 5420 uint32_t next = nl->next; 5421 if (next) { 5422 nl->next = nl_size + (strlen(nl->name) + 1); 5423 } 5424 if (remaining_data < nl->next) { 5425 host_dm->flags |= DM_BUFFER_FULL_FLAG; 5426 break; 5427 } 5428 thunk_convert(cur_data, nl, arg_type, THUNK_TARGET); 5429 strcpy(cur_data + nl_size, nl->name); 5430 cur_data += nl->next; 5431 remaining_data -= nl->next; 5432 if (!next) { 5433 break; 5434 } 5435 nl = (void*)nl + next; 5436 } 5437 break; 5438 } 5439 case DM_DEV_WAIT: 5440 case DM_TABLE_STATUS: 5441 { 5442 struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start; 5443 void *cur_data = argptr; 5444 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) }; 5445 int spec_size = thunk_type_size(arg_type, 0); 5446 int i; 5447 5448 for (i = 0; i < host_dm->target_count; i++) { 5449 uint32_t next = spec->next; 5450 int slen = strlen((char*)&spec[1]) + 1; 5451 spec->next = (cur_data - argptr) + spec_size + slen; 5452 if (guest_data_size < spec->next) { 5453 host_dm->flags |= DM_BUFFER_FULL_FLAG; 5454 break; 5455 } 5456 thunk_convert(cur_data, spec, arg_type, THUNK_TARGET); 5457 strcpy(cur_data + spec_size, (char*)&spec[1]); 5458 cur_data = argptr + spec->next; 5459 spec = (void*)host_dm + host_dm->data_start + next; 5460 } 5461 break; 5462 } 5463 case DM_TABLE_DEPS: 5464 { 5465 void *hdata = (void*)host_dm + host_dm->data_start; 5466 int count = *(uint32_t*)hdata; 5467 uint64_t *hdev = hdata + 8; 5468 uint64_t *gdev = argptr + 8; 5469 int i; 5470 5471 *(uint32_t*)argptr = tswap32(count); 5472 for (i = 0; i < count; i++) { 5473 *gdev = tswap64(*hdev); 5474 gdev++; 5475 hdev++; 5476 } 5477 break; 5478 } 5479 case DM_LIST_VERSIONS: 5480 { 5481 struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start; 5482 uint32_t remaining_data = guest_data_size; 5483 void *cur_data = argptr; 5484 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) }; 5485 int vers_size = thunk_type_size(arg_type, 0); 5486 5487 while (1) { 5488 uint32_t next = vers->next; 5489 if (next) { 5490 vers->next = vers_size + (strlen(vers->name) + 1); 5491 } 5492 if (remaining_data < vers->next) { 5493 host_dm->flags |= DM_BUFFER_FULL_FLAG; 5494 break; 5495 } 5496 thunk_convert(cur_data, vers, arg_type, THUNK_TARGET); 5497 strcpy(cur_data + vers_size, vers->name); 5498 cur_data += vers->next; 5499 remaining_data -= vers->next; 5500 if (!next) { 5501 break; 5502 } 5503 vers = (void*)vers + next; 5504 } 5505 break; 5506 } 5507 default: 5508 unlock_user(argptr, guest_data, 0); 5509 ret = -TARGET_EINVAL; 5510 goto out; 5511 } 5512 unlock_user(argptr, guest_data, guest_data_size); 5513 5514 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5515 if (!argptr) { 5516 ret = -TARGET_EFAULT; 5517 goto out; 5518 } 5519 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 5520 unlock_user(argptr, arg, target_size); 5521 } 5522 out: 5523 g_free(big_buf); 5524 return ret; 5525 } 5526 5527 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd, 5528 int cmd, abi_long arg) 5529 { 5530 void *argptr; 5531 int target_size; 5532 const argtype *arg_type = ie->arg_type; 5533 const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) }; 5534 abi_long ret; 5535 5536 struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp; 5537 struct blkpg_partition host_part; 5538 5539 /* Read and convert blkpg */ 5540 arg_type++; 5541 target_size = thunk_type_size(arg_type, 0); 5542 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5543 if (!argptr) { 5544 ret = -TARGET_EFAULT; 5545 goto out; 5546 } 5547 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5548 unlock_user(argptr, arg, 0); 5549 5550 switch (host_blkpg->op) { 5551 case BLKPG_ADD_PARTITION: 5552 case BLKPG_DEL_PARTITION: 5553 /* payload is struct blkpg_partition */ 5554 break; 5555 default: 5556 /* Unknown opcode */ 5557 ret = -TARGET_EINVAL; 5558 goto out; 5559 } 5560 5561 /* Read and convert blkpg->data */ 5562 arg = (abi_long)(uintptr_t)host_blkpg->data; 5563 target_size = thunk_type_size(part_arg_type, 0); 5564 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5565 if (!argptr) { 5566 ret = -TARGET_EFAULT; 5567 goto out; 5568 } 5569 thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST); 5570 unlock_user(argptr, arg, 0); 5571 5572 /* Swizzle the data pointer to our local copy and call! */ 5573 host_blkpg->data = &host_part; 5574 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg)); 5575 5576 out: 5577 return ret; 5578 } 5579 5580 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp, 5581 int fd, int cmd, abi_long arg) 5582 { 5583 const argtype *arg_type = ie->arg_type; 5584 const StructEntry *se; 5585 const argtype *field_types; 5586 const int *dst_offsets, *src_offsets; 5587 int target_size; 5588 void *argptr; 5589 abi_ulong *target_rt_dev_ptr; 5590 unsigned long *host_rt_dev_ptr; 5591 abi_long ret; 5592 int i; 5593 5594 assert(ie->access == IOC_W); 5595 assert(*arg_type == TYPE_PTR); 5596 arg_type++; 5597 assert(*arg_type == TYPE_STRUCT); 5598 target_size = thunk_type_size(arg_type, 0); 5599 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5600 if (!argptr) { 5601 return -TARGET_EFAULT; 5602 } 5603 arg_type++; 5604 assert(*arg_type == (int)STRUCT_rtentry); 5605 se = struct_entries + *arg_type++; 5606 assert(se->convert[0] == NULL); 5607 /* convert struct here to be able to catch rt_dev string */ 5608 field_types = se->field_types; 5609 dst_offsets = se->field_offsets[THUNK_HOST]; 5610 src_offsets = se->field_offsets[THUNK_TARGET]; 5611 for (i = 0; i < se->nb_fields; i++) { 5612 if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) { 5613 assert(*field_types == TYPE_PTRVOID); 5614 target_rt_dev_ptr = (abi_ulong *)(argptr + src_offsets[i]); 5615 host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]); 5616 if (*target_rt_dev_ptr != 0) { 5617 *host_rt_dev_ptr = (unsigned long)lock_user_string( 5618 tswapal(*target_rt_dev_ptr)); 5619 if (!*host_rt_dev_ptr) { 5620 unlock_user(argptr, arg, 0); 5621 return -TARGET_EFAULT; 5622 } 5623 } else { 5624 *host_rt_dev_ptr = 0; 5625 } 5626 field_types++; 5627 continue; 5628 } 5629 field_types = thunk_convert(buf_temp + dst_offsets[i], 5630 argptr + src_offsets[i], 5631 field_types, THUNK_HOST); 5632 } 5633 unlock_user(argptr, arg, 0); 5634 5635 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5636 if (*host_rt_dev_ptr != 0) { 5637 unlock_user((void *)*host_rt_dev_ptr, 5638 *target_rt_dev_ptr, 0); 5639 } 5640 return ret; 5641 } 5642 5643 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp, 5644 int fd, int cmd, abi_long arg) 5645 { 5646 int sig = target_to_host_signal(arg); 5647 return get_errno(safe_ioctl(fd, ie->host_cmd, sig)); 5648 } 5649 5650 #ifdef TIOCGPTPEER 5651 static abi_long do_ioctl_tiocgptpeer(const IOCTLEntry *ie, uint8_t *buf_temp, 5652 int fd, int cmd, abi_long arg) 5653 { 5654 int flags = target_to_host_bitmask(arg, fcntl_flags_tbl); 5655 return get_errno(safe_ioctl(fd, ie->host_cmd, flags)); 5656 } 5657 #endif 5658 5659 static IOCTLEntry ioctl_entries[] = { 5660 #define IOCTL(cmd, access, ...) \ 5661 { TARGET_ ## cmd, cmd, #cmd, access, 0, { __VA_ARGS__ } }, 5662 #define IOCTL_SPECIAL(cmd, access, dofn, ...) \ 5663 { TARGET_ ## cmd, cmd, #cmd, access, dofn, { __VA_ARGS__ } }, 5664 #define IOCTL_IGNORE(cmd) \ 5665 { TARGET_ ## cmd, 0, #cmd }, 5666 #include "ioctls.h" 5667 { 0, 0, }, 5668 }; 5669 5670 /* ??? Implement proper locking for ioctls. */ 5671 /* do_ioctl() Must return target values and target errnos. */ 5672 static abi_long do_ioctl(int fd, int cmd, abi_long arg) 5673 { 5674 const IOCTLEntry *ie; 5675 const argtype *arg_type; 5676 abi_long ret; 5677 uint8_t buf_temp[MAX_STRUCT_SIZE]; 5678 int target_size; 5679 void *argptr; 5680 5681 ie = ioctl_entries; 5682 for(;;) { 5683 if (ie->target_cmd == 0) { 5684 gemu_log("Unsupported ioctl: cmd=0x%04lx\n", (long)cmd); 5685 return -TARGET_ENOSYS; 5686 } 5687 if (ie->target_cmd == cmd) 5688 break; 5689 ie++; 5690 } 5691 arg_type = ie->arg_type; 5692 #if defined(DEBUG) 5693 gemu_log("ioctl: cmd=0x%04lx (%s)\n", (long)cmd, ie->name); 5694 #endif 5695 if (ie->do_ioctl) { 5696 return ie->do_ioctl(ie, buf_temp, fd, cmd, arg); 5697 } else if (!ie->host_cmd) { 5698 /* Some architectures define BSD ioctls in their headers 5699 that are not implemented in Linux. */ 5700 return -TARGET_ENOSYS; 5701 } 5702 5703 switch(arg_type[0]) { 5704 case TYPE_NULL: 5705 /* no argument */ 5706 ret = get_errno(safe_ioctl(fd, ie->host_cmd)); 5707 break; 5708 case TYPE_PTRVOID: 5709 case TYPE_INT: 5710 ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg)); 5711 break; 5712 case TYPE_PTR: 5713 arg_type++; 5714 target_size = thunk_type_size(arg_type, 0); 5715 switch(ie->access) { 5716 case IOC_R: 5717 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5718 if (!is_error(ret)) { 5719 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5720 if (!argptr) 5721 return -TARGET_EFAULT; 5722 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 5723 unlock_user(argptr, arg, target_size); 5724 } 5725 break; 5726 case IOC_W: 5727 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5728 if (!argptr) 5729 return -TARGET_EFAULT; 5730 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5731 unlock_user(argptr, arg, 0); 5732 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5733 break; 5734 default: 5735 case IOC_RW: 5736 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5737 if (!argptr) 5738 return -TARGET_EFAULT; 5739 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5740 unlock_user(argptr, arg, 0); 5741 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5742 if (!is_error(ret)) { 5743 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5744 if (!argptr) 5745 return -TARGET_EFAULT; 5746 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 5747 unlock_user(argptr, arg, target_size); 5748 } 5749 break; 5750 } 5751 break; 5752 default: 5753 gemu_log("Unsupported ioctl type: cmd=0x%04lx type=%d\n", 5754 (long)cmd, arg_type[0]); 5755 ret = -TARGET_ENOSYS; 5756 break; 5757 } 5758 return ret; 5759 } 5760 5761 static const bitmask_transtbl iflag_tbl[] = { 5762 { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK }, 5763 { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT }, 5764 { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR }, 5765 { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK }, 5766 { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK }, 5767 { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP }, 5768 { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR }, 5769 { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR }, 5770 { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL }, 5771 { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC }, 5772 { TARGET_IXON, TARGET_IXON, IXON, IXON }, 5773 { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY }, 5774 { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF }, 5775 { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL }, 5776 { 0, 0, 0, 0 } 5777 }; 5778 5779 static const bitmask_transtbl oflag_tbl[] = { 5780 { TARGET_OPOST, TARGET_OPOST, OPOST, OPOST }, 5781 { TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC }, 5782 { TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR }, 5783 { TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL }, 5784 { TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR }, 5785 { TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET }, 5786 { TARGET_OFILL, TARGET_OFILL, OFILL, OFILL }, 5787 { TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL }, 5788 { TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 }, 5789 { TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 }, 5790 { TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 }, 5791 { TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 }, 5792 { TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 }, 5793 { TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 }, 5794 { TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 }, 5795 { TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 }, 5796 { TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 }, 5797 { TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 }, 5798 { TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 }, 5799 { TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 }, 5800 { TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 }, 5801 { TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 }, 5802 { TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 }, 5803 { TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 }, 5804 { 0, 0, 0, 0 } 5805 }; 5806 5807 static const bitmask_transtbl cflag_tbl[] = { 5808 { TARGET_CBAUD, TARGET_B0, CBAUD, B0 }, 5809 { TARGET_CBAUD, TARGET_B50, CBAUD, B50 }, 5810 { TARGET_CBAUD, TARGET_B75, CBAUD, B75 }, 5811 { TARGET_CBAUD, TARGET_B110, CBAUD, B110 }, 5812 { TARGET_CBAUD, TARGET_B134, CBAUD, B134 }, 5813 { TARGET_CBAUD, TARGET_B150, CBAUD, B150 }, 5814 { TARGET_CBAUD, TARGET_B200, CBAUD, B200 }, 5815 { TARGET_CBAUD, TARGET_B300, CBAUD, B300 }, 5816 { TARGET_CBAUD, TARGET_B600, CBAUD, B600 }, 5817 { TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 }, 5818 { TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 }, 5819 { TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 }, 5820 { TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 }, 5821 { TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 }, 5822 { TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 }, 5823 { TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 }, 5824 { TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 }, 5825 { TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 }, 5826 { TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 }, 5827 { TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 }, 5828 { TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 }, 5829 { TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 }, 5830 { TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 }, 5831 { TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 }, 5832 { TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB }, 5833 { TARGET_CREAD, TARGET_CREAD, CREAD, CREAD }, 5834 { TARGET_PARENB, TARGET_PARENB, PARENB, PARENB }, 5835 { TARGET_PARODD, TARGET_PARODD, PARODD, PARODD }, 5836 { TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL }, 5837 { TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL }, 5838 { TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS }, 5839 { 0, 0, 0, 0 } 5840 }; 5841 5842 static const bitmask_transtbl lflag_tbl[] = { 5843 { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG }, 5844 { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON }, 5845 { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE }, 5846 { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO }, 5847 { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE }, 5848 { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK }, 5849 { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL }, 5850 { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH }, 5851 { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP }, 5852 { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL }, 5853 { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT }, 5854 { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE }, 5855 { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO }, 5856 { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN }, 5857 { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN }, 5858 { 0, 0, 0, 0 } 5859 }; 5860 5861 static void target_to_host_termios (void *dst, const void *src) 5862 { 5863 struct host_termios *host = dst; 5864 const struct target_termios *target = src; 5865 5866 host->c_iflag = 5867 target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl); 5868 host->c_oflag = 5869 target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl); 5870 host->c_cflag = 5871 target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl); 5872 host->c_lflag = 5873 target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl); 5874 host->c_line = target->c_line; 5875 5876 memset(host->c_cc, 0, sizeof(host->c_cc)); 5877 host->c_cc[VINTR] = target->c_cc[TARGET_VINTR]; 5878 host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT]; 5879 host->c_cc[VERASE] = target->c_cc[TARGET_VERASE]; 5880 host->c_cc[VKILL] = target->c_cc[TARGET_VKILL]; 5881 host->c_cc[VEOF] = target->c_cc[TARGET_VEOF]; 5882 host->c_cc[VTIME] = target->c_cc[TARGET_VTIME]; 5883 host->c_cc[VMIN] = target->c_cc[TARGET_VMIN]; 5884 host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC]; 5885 host->c_cc[VSTART] = target->c_cc[TARGET_VSTART]; 5886 host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP]; 5887 host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP]; 5888 host->c_cc[VEOL] = target->c_cc[TARGET_VEOL]; 5889 host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT]; 5890 host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD]; 5891 host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE]; 5892 host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT]; 5893 host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2]; 5894 } 5895 5896 static void host_to_target_termios (void *dst, const void *src) 5897 { 5898 struct target_termios *target = dst; 5899 const struct host_termios *host = src; 5900 5901 target->c_iflag = 5902 tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl)); 5903 target->c_oflag = 5904 tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl)); 5905 target->c_cflag = 5906 tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl)); 5907 target->c_lflag = 5908 tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl)); 5909 target->c_line = host->c_line; 5910 5911 memset(target->c_cc, 0, sizeof(target->c_cc)); 5912 target->c_cc[TARGET_VINTR] = host->c_cc[VINTR]; 5913 target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT]; 5914 target->c_cc[TARGET_VERASE] = host->c_cc[VERASE]; 5915 target->c_cc[TARGET_VKILL] = host->c_cc[VKILL]; 5916 target->c_cc[TARGET_VEOF] = host->c_cc[VEOF]; 5917 target->c_cc[TARGET_VTIME] = host->c_cc[VTIME]; 5918 target->c_cc[TARGET_VMIN] = host->c_cc[VMIN]; 5919 target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC]; 5920 target->c_cc[TARGET_VSTART] = host->c_cc[VSTART]; 5921 target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP]; 5922 target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP]; 5923 target->c_cc[TARGET_VEOL] = host->c_cc[VEOL]; 5924 target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT]; 5925 target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD]; 5926 target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE]; 5927 target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT]; 5928 target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2]; 5929 } 5930 5931 static const StructEntry struct_termios_def = { 5932 .convert = { host_to_target_termios, target_to_host_termios }, 5933 .size = { sizeof(struct target_termios), sizeof(struct host_termios) }, 5934 .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) }, 5935 }; 5936 5937 static bitmask_transtbl mmap_flags_tbl[] = { 5938 { TARGET_MAP_SHARED, TARGET_MAP_SHARED, MAP_SHARED, MAP_SHARED }, 5939 { TARGET_MAP_PRIVATE, TARGET_MAP_PRIVATE, MAP_PRIVATE, MAP_PRIVATE }, 5940 { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED }, 5941 { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS, 5942 MAP_ANONYMOUS, MAP_ANONYMOUS }, 5943 { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN, 5944 MAP_GROWSDOWN, MAP_GROWSDOWN }, 5945 { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE, 5946 MAP_DENYWRITE, MAP_DENYWRITE }, 5947 { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE, 5948 MAP_EXECUTABLE, MAP_EXECUTABLE }, 5949 { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED }, 5950 { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE, 5951 MAP_NORESERVE, MAP_NORESERVE }, 5952 { TARGET_MAP_HUGETLB, TARGET_MAP_HUGETLB, MAP_HUGETLB, MAP_HUGETLB }, 5953 /* MAP_STACK had been ignored by the kernel for quite some time. 5954 Recognize it for the target insofar as we do not want to pass 5955 it through to the host. */ 5956 { TARGET_MAP_STACK, TARGET_MAP_STACK, 0, 0 }, 5957 { 0, 0, 0, 0 } 5958 }; 5959 5960 #if defined(TARGET_I386) 5961 5962 /* NOTE: there is really one LDT for all the threads */ 5963 static uint8_t *ldt_table; 5964 5965 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount) 5966 { 5967 int size; 5968 void *p; 5969 5970 if (!ldt_table) 5971 return 0; 5972 size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE; 5973 if (size > bytecount) 5974 size = bytecount; 5975 p = lock_user(VERIFY_WRITE, ptr, size, 0); 5976 if (!p) 5977 return -TARGET_EFAULT; 5978 /* ??? Should this by byteswapped? */ 5979 memcpy(p, ldt_table, size); 5980 unlock_user(p, ptr, size); 5981 return size; 5982 } 5983 5984 /* XXX: add locking support */ 5985 static abi_long write_ldt(CPUX86State *env, 5986 abi_ulong ptr, unsigned long bytecount, int oldmode) 5987 { 5988 struct target_modify_ldt_ldt_s ldt_info; 5989 struct target_modify_ldt_ldt_s *target_ldt_info; 5990 int seg_32bit, contents, read_exec_only, limit_in_pages; 5991 int seg_not_present, useable, lm; 5992 uint32_t *lp, entry_1, entry_2; 5993 5994 if (bytecount != sizeof(ldt_info)) 5995 return -TARGET_EINVAL; 5996 if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1)) 5997 return -TARGET_EFAULT; 5998 ldt_info.entry_number = tswap32(target_ldt_info->entry_number); 5999 ldt_info.base_addr = tswapal(target_ldt_info->base_addr); 6000 ldt_info.limit = tswap32(target_ldt_info->limit); 6001 ldt_info.flags = tswap32(target_ldt_info->flags); 6002 unlock_user_struct(target_ldt_info, ptr, 0); 6003 6004 if (ldt_info.entry_number >= TARGET_LDT_ENTRIES) 6005 return -TARGET_EINVAL; 6006 seg_32bit = ldt_info.flags & 1; 6007 contents = (ldt_info.flags >> 1) & 3; 6008 read_exec_only = (ldt_info.flags >> 3) & 1; 6009 limit_in_pages = (ldt_info.flags >> 4) & 1; 6010 seg_not_present = (ldt_info.flags >> 5) & 1; 6011 useable = (ldt_info.flags >> 6) & 1; 6012 #ifdef TARGET_ABI32 6013 lm = 0; 6014 #else 6015 lm = (ldt_info.flags >> 7) & 1; 6016 #endif 6017 if (contents == 3) { 6018 if (oldmode) 6019 return -TARGET_EINVAL; 6020 if (seg_not_present == 0) 6021 return -TARGET_EINVAL; 6022 } 6023 /* allocate the LDT */ 6024 if (!ldt_table) { 6025 env->ldt.base = target_mmap(0, 6026 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE, 6027 PROT_READ|PROT_WRITE, 6028 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 6029 if (env->ldt.base == -1) 6030 return -TARGET_ENOMEM; 6031 memset(g2h(env->ldt.base), 0, 6032 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE); 6033 env->ldt.limit = 0xffff; 6034 ldt_table = g2h(env->ldt.base); 6035 } 6036 6037 /* NOTE: same code as Linux kernel */ 6038 /* Allow LDTs to be cleared by the user. */ 6039 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) { 6040 if (oldmode || 6041 (contents == 0 && 6042 read_exec_only == 1 && 6043 seg_32bit == 0 && 6044 limit_in_pages == 0 && 6045 seg_not_present == 1 && 6046 useable == 0 )) { 6047 entry_1 = 0; 6048 entry_2 = 0; 6049 goto install; 6050 } 6051 } 6052 6053 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) | 6054 (ldt_info.limit & 0x0ffff); 6055 entry_2 = (ldt_info.base_addr & 0xff000000) | 6056 ((ldt_info.base_addr & 0x00ff0000) >> 16) | 6057 (ldt_info.limit & 0xf0000) | 6058 ((read_exec_only ^ 1) << 9) | 6059 (contents << 10) | 6060 ((seg_not_present ^ 1) << 15) | 6061 (seg_32bit << 22) | 6062 (limit_in_pages << 23) | 6063 (lm << 21) | 6064 0x7000; 6065 if (!oldmode) 6066 entry_2 |= (useable << 20); 6067 6068 /* Install the new entry ... */ 6069 install: 6070 lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3)); 6071 lp[0] = tswap32(entry_1); 6072 lp[1] = tswap32(entry_2); 6073 return 0; 6074 } 6075 6076 /* specific and weird i386 syscalls */ 6077 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr, 6078 unsigned long bytecount) 6079 { 6080 abi_long ret; 6081 6082 switch (func) { 6083 case 0: 6084 ret = read_ldt(ptr, bytecount); 6085 break; 6086 case 1: 6087 ret = write_ldt(env, ptr, bytecount, 1); 6088 break; 6089 case 0x11: 6090 ret = write_ldt(env, ptr, bytecount, 0); 6091 break; 6092 default: 6093 ret = -TARGET_ENOSYS; 6094 break; 6095 } 6096 return ret; 6097 } 6098 6099 #if defined(TARGET_I386) && defined(TARGET_ABI32) 6100 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr) 6101 { 6102 uint64_t *gdt_table = g2h(env->gdt.base); 6103 struct target_modify_ldt_ldt_s ldt_info; 6104 struct target_modify_ldt_ldt_s *target_ldt_info; 6105 int seg_32bit, contents, read_exec_only, limit_in_pages; 6106 int seg_not_present, useable, lm; 6107 uint32_t *lp, entry_1, entry_2; 6108 int i; 6109 6110 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1); 6111 if (!target_ldt_info) 6112 return -TARGET_EFAULT; 6113 ldt_info.entry_number = tswap32(target_ldt_info->entry_number); 6114 ldt_info.base_addr = tswapal(target_ldt_info->base_addr); 6115 ldt_info.limit = tswap32(target_ldt_info->limit); 6116 ldt_info.flags = tswap32(target_ldt_info->flags); 6117 if (ldt_info.entry_number == -1) { 6118 for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) { 6119 if (gdt_table[i] == 0) { 6120 ldt_info.entry_number = i; 6121 target_ldt_info->entry_number = tswap32(i); 6122 break; 6123 } 6124 } 6125 } 6126 unlock_user_struct(target_ldt_info, ptr, 1); 6127 6128 if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN || 6129 ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX) 6130 return -TARGET_EINVAL; 6131 seg_32bit = ldt_info.flags & 1; 6132 contents = (ldt_info.flags >> 1) & 3; 6133 read_exec_only = (ldt_info.flags >> 3) & 1; 6134 limit_in_pages = (ldt_info.flags >> 4) & 1; 6135 seg_not_present = (ldt_info.flags >> 5) & 1; 6136 useable = (ldt_info.flags >> 6) & 1; 6137 #ifdef TARGET_ABI32 6138 lm = 0; 6139 #else 6140 lm = (ldt_info.flags >> 7) & 1; 6141 #endif 6142 6143 if (contents == 3) { 6144 if (seg_not_present == 0) 6145 return -TARGET_EINVAL; 6146 } 6147 6148 /* NOTE: same code as Linux kernel */ 6149 /* Allow LDTs to be cleared by the user. */ 6150 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) { 6151 if ((contents == 0 && 6152 read_exec_only == 1 && 6153 seg_32bit == 0 && 6154 limit_in_pages == 0 && 6155 seg_not_present == 1 && 6156 useable == 0 )) { 6157 entry_1 = 0; 6158 entry_2 = 0; 6159 goto install; 6160 } 6161 } 6162 6163 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) | 6164 (ldt_info.limit & 0x0ffff); 6165 entry_2 = (ldt_info.base_addr & 0xff000000) | 6166 ((ldt_info.base_addr & 0x00ff0000) >> 16) | 6167 (ldt_info.limit & 0xf0000) | 6168 ((read_exec_only ^ 1) << 9) | 6169 (contents << 10) | 6170 ((seg_not_present ^ 1) << 15) | 6171 (seg_32bit << 22) | 6172 (limit_in_pages << 23) | 6173 (useable << 20) | 6174 (lm << 21) | 6175 0x7000; 6176 6177 /* Install the new entry ... */ 6178 install: 6179 lp = (uint32_t *)(gdt_table + ldt_info.entry_number); 6180 lp[0] = tswap32(entry_1); 6181 lp[1] = tswap32(entry_2); 6182 return 0; 6183 } 6184 6185 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr) 6186 { 6187 struct target_modify_ldt_ldt_s *target_ldt_info; 6188 uint64_t *gdt_table = g2h(env->gdt.base); 6189 uint32_t base_addr, limit, flags; 6190 int seg_32bit, contents, read_exec_only, limit_in_pages, idx; 6191 int seg_not_present, useable, lm; 6192 uint32_t *lp, entry_1, entry_2; 6193 6194 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1); 6195 if (!target_ldt_info) 6196 return -TARGET_EFAULT; 6197 idx = tswap32(target_ldt_info->entry_number); 6198 if (idx < TARGET_GDT_ENTRY_TLS_MIN || 6199 idx > TARGET_GDT_ENTRY_TLS_MAX) { 6200 unlock_user_struct(target_ldt_info, ptr, 1); 6201 return -TARGET_EINVAL; 6202 } 6203 lp = (uint32_t *)(gdt_table + idx); 6204 entry_1 = tswap32(lp[0]); 6205 entry_2 = tswap32(lp[1]); 6206 6207 read_exec_only = ((entry_2 >> 9) & 1) ^ 1; 6208 contents = (entry_2 >> 10) & 3; 6209 seg_not_present = ((entry_2 >> 15) & 1) ^ 1; 6210 seg_32bit = (entry_2 >> 22) & 1; 6211 limit_in_pages = (entry_2 >> 23) & 1; 6212 useable = (entry_2 >> 20) & 1; 6213 #ifdef TARGET_ABI32 6214 lm = 0; 6215 #else 6216 lm = (entry_2 >> 21) & 1; 6217 #endif 6218 flags = (seg_32bit << 0) | (contents << 1) | 6219 (read_exec_only << 3) | (limit_in_pages << 4) | 6220 (seg_not_present << 5) | (useable << 6) | (lm << 7); 6221 limit = (entry_1 & 0xffff) | (entry_2 & 0xf0000); 6222 base_addr = (entry_1 >> 16) | 6223 (entry_2 & 0xff000000) | 6224 ((entry_2 & 0xff) << 16); 6225 target_ldt_info->base_addr = tswapal(base_addr); 6226 target_ldt_info->limit = tswap32(limit); 6227 target_ldt_info->flags = tswap32(flags); 6228 unlock_user_struct(target_ldt_info, ptr, 1); 6229 return 0; 6230 } 6231 #endif /* TARGET_I386 && TARGET_ABI32 */ 6232 6233 #ifndef TARGET_ABI32 6234 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr) 6235 { 6236 abi_long ret = 0; 6237 abi_ulong val; 6238 int idx; 6239 6240 switch(code) { 6241 case TARGET_ARCH_SET_GS: 6242 case TARGET_ARCH_SET_FS: 6243 if (code == TARGET_ARCH_SET_GS) 6244 idx = R_GS; 6245 else 6246 idx = R_FS; 6247 cpu_x86_load_seg(env, idx, 0); 6248 env->segs[idx].base = addr; 6249 break; 6250 case TARGET_ARCH_GET_GS: 6251 case TARGET_ARCH_GET_FS: 6252 if (code == TARGET_ARCH_GET_GS) 6253 idx = R_GS; 6254 else 6255 idx = R_FS; 6256 val = env->segs[idx].base; 6257 if (put_user(val, addr, abi_ulong)) 6258 ret = -TARGET_EFAULT; 6259 break; 6260 default: 6261 ret = -TARGET_EINVAL; 6262 break; 6263 } 6264 return ret; 6265 } 6266 #endif 6267 6268 #endif /* defined(TARGET_I386) */ 6269 6270 #define NEW_STACK_SIZE 0x40000 6271 6272 6273 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER; 6274 typedef struct { 6275 CPUArchState *env; 6276 pthread_mutex_t mutex; 6277 pthread_cond_t cond; 6278 pthread_t thread; 6279 uint32_t tid; 6280 abi_ulong child_tidptr; 6281 abi_ulong parent_tidptr; 6282 sigset_t sigmask; 6283 } new_thread_info; 6284 6285 static void *clone_func(void *arg) 6286 { 6287 new_thread_info *info = arg; 6288 CPUArchState *env; 6289 CPUState *cpu; 6290 TaskState *ts; 6291 6292 rcu_register_thread(); 6293 tcg_register_thread(); 6294 env = info->env; 6295 cpu = ENV_GET_CPU(env); 6296 thread_cpu = cpu; 6297 ts = (TaskState *)cpu->opaque; 6298 info->tid = gettid(); 6299 task_settid(ts); 6300 if (info->child_tidptr) 6301 put_user_u32(info->tid, info->child_tidptr); 6302 if (info->parent_tidptr) 6303 put_user_u32(info->tid, info->parent_tidptr); 6304 /* Enable signals. */ 6305 sigprocmask(SIG_SETMASK, &info->sigmask, NULL); 6306 /* Signal to the parent that we're ready. */ 6307 pthread_mutex_lock(&info->mutex); 6308 pthread_cond_broadcast(&info->cond); 6309 pthread_mutex_unlock(&info->mutex); 6310 /* Wait until the parent has finished initializing the tls state. */ 6311 pthread_mutex_lock(&clone_lock); 6312 pthread_mutex_unlock(&clone_lock); 6313 cpu_loop(env); 6314 /* never exits */ 6315 return NULL; 6316 } 6317 6318 /* do_fork() Must return host values and target errnos (unlike most 6319 do_*() functions). */ 6320 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp, 6321 abi_ulong parent_tidptr, target_ulong newtls, 6322 abi_ulong child_tidptr) 6323 { 6324 CPUState *cpu = ENV_GET_CPU(env); 6325 int ret; 6326 TaskState *ts; 6327 CPUState *new_cpu; 6328 CPUArchState *new_env; 6329 sigset_t sigmask; 6330 6331 flags &= ~CLONE_IGNORED_FLAGS; 6332 6333 /* Emulate vfork() with fork() */ 6334 if (flags & CLONE_VFORK) 6335 flags &= ~(CLONE_VFORK | CLONE_VM); 6336 6337 if (flags & CLONE_VM) { 6338 TaskState *parent_ts = (TaskState *)cpu->opaque; 6339 new_thread_info info; 6340 pthread_attr_t attr; 6341 6342 if (((flags & CLONE_THREAD_FLAGS) != CLONE_THREAD_FLAGS) || 6343 (flags & CLONE_INVALID_THREAD_FLAGS)) { 6344 return -TARGET_EINVAL; 6345 } 6346 6347 ts = g_new0(TaskState, 1); 6348 init_task_state(ts); 6349 /* we create a new CPU instance. */ 6350 new_env = cpu_copy(env); 6351 /* Init regs that differ from the parent. */ 6352 cpu_clone_regs(new_env, newsp); 6353 new_cpu = ENV_GET_CPU(new_env); 6354 new_cpu->opaque = ts; 6355 ts->bprm = parent_ts->bprm; 6356 ts->info = parent_ts->info; 6357 ts->signal_mask = parent_ts->signal_mask; 6358 6359 if (flags & CLONE_CHILD_CLEARTID) { 6360 ts->child_tidptr = child_tidptr; 6361 } 6362 6363 if (flags & CLONE_SETTLS) { 6364 cpu_set_tls (new_env, newtls); 6365 } 6366 6367 /* Grab a mutex so that thread setup appears atomic. */ 6368 pthread_mutex_lock(&clone_lock); 6369 6370 memset(&info, 0, sizeof(info)); 6371 pthread_mutex_init(&info.mutex, NULL); 6372 pthread_mutex_lock(&info.mutex); 6373 pthread_cond_init(&info.cond, NULL); 6374 info.env = new_env; 6375 if (flags & CLONE_CHILD_SETTID) { 6376 info.child_tidptr = child_tidptr; 6377 } 6378 if (flags & CLONE_PARENT_SETTID) { 6379 info.parent_tidptr = parent_tidptr; 6380 } 6381 6382 ret = pthread_attr_init(&attr); 6383 ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE); 6384 ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); 6385 /* It is not safe to deliver signals until the child has finished 6386 initializing, so temporarily block all signals. */ 6387 sigfillset(&sigmask); 6388 sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask); 6389 6390 /* If this is our first additional thread, we need to ensure we 6391 * generate code for parallel execution and flush old translations. 6392 */ 6393 if (!parallel_cpus) { 6394 parallel_cpus = true; 6395 tb_flush(cpu); 6396 } 6397 6398 ret = pthread_create(&info.thread, &attr, clone_func, &info); 6399 /* TODO: Free new CPU state if thread creation failed. */ 6400 6401 sigprocmask(SIG_SETMASK, &info.sigmask, NULL); 6402 pthread_attr_destroy(&attr); 6403 if (ret == 0) { 6404 /* Wait for the child to initialize. */ 6405 pthread_cond_wait(&info.cond, &info.mutex); 6406 ret = info.tid; 6407 } else { 6408 ret = -1; 6409 } 6410 pthread_mutex_unlock(&info.mutex); 6411 pthread_cond_destroy(&info.cond); 6412 pthread_mutex_destroy(&info.mutex); 6413 pthread_mutex_unlock(&clone_lock); 6414 } else { 6415 /* if no CLONE_VM, we consider it is a fork */ 6416 if (flags & CLONE_INVALID_FORK_FLAGS) { 6417 return -TARGET_EINVAL; 6418 } 6419 6420 /* We can't support custom termination signals */ 6421 if ((flags & CSIGNAL) != TARGET_SIGCHLD) { 6422 return -TARGET_EINVAL; 6423 } 6424 6425 if (block_signals()) { 6426 return -TARGET_ERESTARTSYS; 6427 } 6428 6429 fork_start(); 6430 ret = fork(); 6431 if (ret == 0) { 6432 /* Child Process. */ 6433 cpu_clone_regs(env, newsp); 6434 fork_end(1); 6435 /* There is a race condition here. The parent process could 6436 theoretically read the TID in the child process before the child 6437 tid is set. This would require using either ptrace 6438 (not implemented) or having *_tidptr to point at a shared memory 6439 mapping. We can't repeat the spinlock hack used above because 6440 the child process gets its own copy of the lock. */ 6441 if (flags & CLONE_CHILD_SETTID) 6442 put_user_u32(gettid(), child_tidptr); 6443 if (flags & CLONE_PARENT_SETTID) 6444 put_user_u32(gettid(), parent_tidptr); 6445 ts = (TaskState *)cpu->opaque; 6446 if (flags & CLONE_SETTLS) 6447 cpu_set_tls (env, newtls); 6448 if (flags & CLONE_CHILD_CLEARTID) 6449 ts->child_tidptr = child_tidptr; 6450 } else { 6451 fork_end(0); 6452 } 6453 } 6454 return ret; 6455 } 6456 6457 /* warning : doesn't handle linux specific flags... */ 6458 static int target_to_host_fcntl_cmd(int cmd) 6459 { 6460 switch(cmd) { 6461 case TARGET_F_DUPFD: 6462 case TARGET_F_GETFD: 6463 case TARGET_F_SETFD: 6464 case TARGET_F_GETFL: 6465 case TARGET_F_SETFL: 6466 return cmd; 6467 case TARGET_F_GETLK: 6468 return F_GETLK64; 6469 case TARGET_F_SETLK: 6470 return F_SETLK64; 6471 case TARGET_F_SETLKW: 6472 return F_SETLKW64; 6473 case TARGET_F_GETOWN: 6474 return F_GETOWN; 6475 case TARGET_F_SETOWN: 6476 return F_SETOWN; 6477 case TARGET_F_GETSIG: 6478 return F_GETSIG; 6479 case TARGET_F_SETSIG: 6480 return F_SETSIG; 6481 #if TARGET_ABI_BITS == 32 6482 case TARGET_F_GETLK64: 6483 return F_GETLK64; 6484 case TARGET_F_SETLK64: 6485 return F_SETLK64; 6486 case TARGET_F_SETLKW64: 6487 return F_SETLKW64; 6488 #endif 6489 case TARGET_F_SETLEASE: 6490 return F_SETLEASE; 6491 case TARGET_F_GETLEASE: 6492 return F_GETLEASE; 6493 #ifdef F_DUPFD_CLOEXEC 6494 case TARGET_F_DUPFD_CLOEXEC: 6495 return F_DUPFD_CLOEXEC; 6496 #endif 6497 case TARGET_F_NOTIFY: 6498 return F_NOTIFY; 6499 #ifdef F_GETOWN_EX 6500 case TARGET_F_GETOWN_EX: 6501 return F_GETOWN_EX; 6502 #endif 6503 #ifdef F_SETOWN_EX 6504 case TARGET_F_SETOWN_EX: 6505 return F_SETOWN_EX; 6506 #endif 6507 #ifdef F_SETPIPE_SZ 6508 case TARGET_F_SETPIPE_SZ: 6509 return F_SETPIPE_SZ; 6510 case TARGET_F_GETPIPE_SZ: 6511 return F_GETPIPE_SZ; 6512 #endif 6513 default: 6514 return -TARGET_EINVAL; 6515 } 6516 return -TARGET_EINVAL; 6517 } 6518 6519 #define TRANSTBL_CONVERT(a) { -1, TARGET_##a, -1, a } 6520 static const bitmask_transtbl flock_tbl[] = { 6521 TRANSTBL_CONVERT(F_RDLCK), 6522 TRANSTBL_CONVERT(F_WRLCK), 6523 TRANSTBL_CONVERT(F_UNLCK), 6524 TRANSTBL_CONVERT(F_EXLCK), 6525 TRANSTBL_CONVERT(F_SHLCK), 6526 { 0, 0, 0, 0 } 6527 }; 6528 6529 static inline abi_long copy_from_user_flock(struct flock64 *fl, 6530 abi_ulong target_flock_addr) 6531 { 6532 struct target_flock *target_fl; 6533 short l_type; 6534 6535 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) { 6536 return -TARGET_EFAULT; 6537 } 6538 6539 __get_user(l_type, &target_fl->l_type); 6540 fl->l_type = target_to_host_bitmask(l_type, flock_tbl); 6541 __get_user(fl->l_whence, &target_fl->l_whence); 6542 __get_user(fl->l_start, &target_fl->l_start); 6543 __get_user(fl->l_len, &target_fl->l_len); 6544 __get_user(fl->l_pid, &target_fl->l_pid); 6545 unlock_user_struct(target_fl, target_flock_addr, 0); 6546 return 0; 6547 } 6548 6549 static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr, 6550 const struct flock64 *fl) 6551 { 6552 struct target_flock *target_fl; 6553 short l_type; 6554 6555 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) { 6556 return -TARGET_EFAULT; 6557 } 6558 6559 l_type = host_to_target_bitmask(fl->l_type, flock_tbl); 6560 __put_user(l_type, &target_fl->l_type); 6561 __put_user(fl->l_whence, &target_fl->l_whence); 6562 __put_user(fl->l_start, &target_fl->l_start); 6563 __put_user(fl->l_len, &target_fl->l_len); 6564 __put_user(fl->l_pid, &target_fl->l_pid); 6565 unlock_user_struct(target_fl, target_flock_addr, 1); 6566 return 0; 6567 } 6568 6569 typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr); 6570 typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl); 6571 6572 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32 6573 static inline abi_long copy_from_user_eabi_flock64(struct flock64 *fl, 6574 abi_ulong target_flock_addr) 6575 { 6576 struct target_eabi_flock64 *target_fl; 6577 short l_type; 6578 6579 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) { 6580 return -TARGET_EFAULT; 6581 } 6582 6583 __get_user(l_type, &target_fl->l_type); 6584 fl->l_type = target_to_host_bitmask(l_type, flock_tbl); 6585 __get_user(fl->l_whence, &target_fl->l_whence); 6586 __get_user(fl->l_start, &target_fl->l_start); 6587 __get_user(fl->l_len, &target_fl->l_len); 6588 __get_user(fl->l_pid, &target_fl->l_pid); 6589 unlock_user_struct(target_fl, target_flock_addr, 0); 6590 return 0; 6591 } 6592 6593 static inline abi_long copy_to_user_eabi_flock64(abi_ulong target_flock_addr, 6594 const struct flock64 *fl) 6595 { 6596 struct target_eabi_flock64 *target_fl; 6597 short l_type; 6598 6599 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) { 6600 return -TARGET_EFAULT; 6601 } 6602 6603 l_type = host_to_target_bitmask(fl->l_type, flock_tbl); 6604 __put_user(l_type, &target_fl->l_type); 6605 __put_user(fl->l_whence, &target_fl->l_whence); 6606 __put_user(fl->l_start, &target_fl->l_start); 6607 __put_user(fl->l_len, &target_fl->l_len); 6608 __put_user(fl->l_pid, &target_fl->l_pid); 6609 unlock_user_struct(target_fl, target_flock_addr, 1); 6610 return 0; 6611 } 6612 #endif 6613 6614 static inline abi_long copy_from_user_flock64(struct flock64 *fl, 6615 abi_ulong target_flock_addr) 6616 { 6617 struct target_flock64 *target_fl; 6618 short l_type; 6619 6620 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) { 6621 return -TARGET_EFAULT; 6622 } 6623 6624 __get_user(l_type, &target_fl->l_type); 6625 fl->l_type = target_to_host_bitmask(l_type, flock_tbl); 6626 __get_user(fl->l_whence, &target_fl->l_whence); 6627 __get_user(fl->l_start, &target_fl->l_start); 6628 __get_user(fl->l_len, &target_fl->l_len); 6629 __get_user(fl->l_pid, &target_fl->l_pid); 6630 unlock_user_struct(target_fl, target_flock_addr, 0); 6631 return 0; 6632 } 6633 6634 static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr, 6635 const struct flock64 *fl) 6636 { 6637 struct target_flock64 *target_fl; 6638 short l_type; 6639 6640 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) { 6641 return -TARGET_EFAULT; 6642 } 6643 6644 l_type = host_to_target_bitmask(fl->l_type, flock_tbl); 6645 __put_user(l_type, &target_fl->l_type); 6646 __put_user(fl->l_whence, &target_fl->l_whence); 6647 __put_user(fl->l_start, &target_fl->l_start); 6648 __put_user(fl->l_len, &target_fl->l_len); 6649 __put_user(fl->l_pid, &target_fl->l_pid); 6650 unlock_user_struct(target_fl, target_flock_addr, 1); 6651 return 0; 6652 } 6653 6654 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg) 6655 { 6656 struct flock64 fl64; 6657 #ifdef F_GETOWN_EX 6658 struct f_owner_ex fox; 6659 struct target_f_owner_ex *target_fox; 6660 #endif 6661 abi_long ret; 6662 int host_cmd = target_to_host_fcntl_cmd(cmd); 6663 6664 if (host_cmd == -TARGET_EINVAL) 6665 return host_cmd; 6666 6667 switch(cmd) { 6668 case TARGET_F_GETLK: 6669 ret = copy_from_user_flock(&fl64, arg); 6670 if (ret) { 6671 return ret; 6672 } 6673 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 6674 if (ret == 0) { 6675 ret = copy_to_user_flock(arg, &fl64); 6676 } 6677 break; 6678 6679 case TARGET_F_SETLK: 6680 case TARGET_F_SETLKW: 6681 ret = copy_from_user_flock(&fl64, arg); 6682 if (ret) { 6683 return ret; 6684 } 6685 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 6686 break; 6687 6688 case TARGET_F_GETLK64: 6689 ret = copy_from_user_flock64(&fl64, arg); 6690 if (ret) { 6691 return ret; 6692 } 6693 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 6694 if (ret == 0) { 6695 ret = copy_to_user_flock64(arg, &fl64); 6696 } 6697 break; 6698 case TARGET_F_SETLK64: 6699 case TARGET_F_SETLKW64: 6700 ret = copy_from_user_flock64(&fl64, arg); 6701 if (ret) { 6702 return ret; 6703 } 6704 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 6705 break; 6706 6707 case TARGET_F_GETFL: 6708 ret = get_errno(safe_fcntl(fd, host_cmd, arg)); 6709 if (ret >= 0) { 6710 ret = host_to_target_bitmask(ret, fcntl_flags_tbl); 6711 } 6712 break; 6713 6714 case TARGET_F_SETFL: 6715 ret = get_errno(safe_fcntl(fd, host_cmd, 6716 target_to_host_bitmask(arg, 6717 fcntl_flags_tbl))); 6718 break; 6719 6720 #ifdef F_GETOWN_EX 6721 case TARGET_F_GETOWN_EX: 6722 ret = get_errno(safe_fcntl(fd, host_cmd, &fox)); 6723 if (ret >= 0) { 6724 if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0)) 6725 return -TARGET_EFAULT; 6726 target_fox->type = tswap32(fox.type); 6727 target_fox->pid = tswap32(fox.pid); 6728 unlock_user_struct(target_fox, arg, 1); 6729 } 6730 break; 6731 #endif 6732 6733 #ifdef F_SETOWN_EX 6734 case TARGET_F_SETOWN_EX: 6735 if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1)) 6736 return -TARGET_EFAULT; 6737 fox.type = tswap32(target_fox->type); 6738 fox.pid = tswap32(target_fox->pid); 6739 unlock_user_struct(target_fox, arg, 0); 6740 ret = get_errno(safe_fcntl(fd, host_cmd, &fox)); 6741 break; 6742 #endif 6743 6744 case TARGET_F_SETOWN: 6745 case TARGET_F_GETOWN: 6746 case TARGET_F_SETSIG: 6747 case TARGET_F_GETSIG: 6748 case TARGET_F_SETLEASE: 6749 case TARGET_F_GETLEASE: 6750 case TARGET_F_SETPIPE_SZ: 6751 case TARGET_F_GETPIPE_SZ: 6752 ret = get_errno(safe_fcntl(fd, host_cmd, arg)); 6753 break; 6754 6755 default: 6756 ret = get_errno(safe_fcntl(fd, cmd, arg)); 6757 break; 6758 } 6759 return ret; 6760 } 6761 6762 #ifdef USE_UID16 6763 6764 static inline int high2lowuid(int uid) 6765 { 6766 if (uid > 65535) 6767 return 65534; 6768 else 6769 return uid; 6770 } 6771 6772 static inline int high2lowgid(int gid) 6773 { 6774 if (gid > 65535) 6775 return 65534; 6776 else 6777 return gid; 6778 } 6779 6780 static inline int low2highuid(int uid) 6781 { 6782 if ((int16_t)uid == -1) 6783 return -1; 6784 else 6785 return uid; 6786 } 6787 6788 static inline int low2highgid(int gid) 6789 { 6790 if ((int16_t)gid == -1) 6791 return -1; 6792 else 6793 return gid; 6794 } 6795 static inline int tswapid(int id) 6796 { 6797 return tswap16(id); 6798 } 6799 6800 #define put_user_id(x, gaddr) put_user_u16(x, gaddr) 6801 6802 #else /* !USE_UID16 */ 6803 static inline int high2lowuid(int uid) 6804 { 6805 return uid; 6806 } 6807 static inline int high2lowgid(int gid) 6808 { 6809 return gid; 6810 } 6811 static inline int low2highuid(int uid) 6812 { 6813 return uid; 6814 } 6815 static inline int low2highgid(int gid) 6816 { 6817 return gid; 6818 } 6819 static inline int tswapid(int id) 6820 { 6821 return tswap32(id); 6822 } 6823 6824 #define put_user_id(x, gaddr) put_user_u32(x, gaddr) 6825 6826 #endif /* USE_UID16 */ 6827 6828 /* We must do direct syscalls for setting UID/GID, because we want to 6829 * implement the Linux system call semantics of "change only for this thread", 6830 * not the libc/POSIX semantics of "change for all threads in process". 6831 * (See http://ewontfix.com/17/ for more details.) 6832 * We use the 32-bit version of the syscalls if present; if it is not 6833 * then either the host architecture supports 32-bit UIDs natively with 6834 * the standard syscall, or the 16-bit UID is the best we can do. 6835 */ 6836 #ifdef __NR_setuid32 6837 #define __NR_sys_setuid __NR_setuid32 6838 #else 6839 #define __NR_sys_setuid __NR_setuid 6840 #endif 6841 #ifdef __NR_setgid32 6842 #define __NR_sys_setgid __NR_setgid32 6843 #else 6844 #define __NR_sys_setgid __NR_setgid 6845 #endif 6846 #ifdef __NR_setresuid32 6847 #define __NR_sys_setresuid __NR_setresuid32 6848 #else 6849 #define __NR_sys_setresuid __NR_setresuid 6850 #endif 6851 #ifdef __NR_setresgid32 6852 #define __NR_sys_setresgid __NR_setresgid32 6853 #else 6854 #define __NR_sys_setresgid __NR_setresgid 6855 #endif 6856 6857 _syscall1(int, sys_setuid, uid_t, uid) 6858 _syscall1(int, sys_setgid, gid_t, gid) 6859 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid) 6860 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid) 6861 6862 void syscall_init(void) 6863 { 6864 IOCTLEntry *ie; 6865 const argtype *arg_type; 6866 int size; 6867 int i; 6868 6869 thunk_init(STRUCT_MAX); 6870 6871 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def); 6872 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def); 6873 #include "syscall_types.h" 6874 #undef STRUCT 6875 #undef STRUCT_SPECIAL 6876 6877 /* Build target_to_host_errno_table[] table from 6878 * host_to_target_errno_table[]. */ 6879 for (i = 0; i < ERRNO_TABLE_SIZE; i++) { 6880 target_to_host_errno_table[host_to_target_errno_table[i]] = i; 6881 } 6882 6883 /* we patch the ioctl size if necessary. We rely on the fact that 6884 no ioctl has all the bits at '1' in the size field */ 6885 ie = ioctl_entries; 6886 while (ie->target_cmd != 0) { 6887 if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) == 6888 TARGET_IOC_SIZEMASK) { 6889 arg_type = ie->arg_type; 6890 if (arg_type[0] != TYPE_PTR) { 6891 fprintf(stderr, "cannot patch size for ioctl 0x%x\n", 6892 ie->target_cmd); 6893 exit(1); 6894 } 6895 arg_type++; 6896 size = thunk_type_size(arg_type, 0); 6897 ie->target_cmd = (ie->target_cmd & 6898 ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) | 6899 (size << TARGET_IOC_SIZESHIFT); 6900 } 6901 6902 /* automatic consistency check if same arch */ 6903 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \ 6904 (defined(__x86_64__) && defined(TARGET_X86_64)) 6905 if (unlikely(ie->target_cmd != ie->host_cmd)) { 6906 fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n", 6907 ie->name, ie->target_cmd, ie->host_cmd); 6908 } 6909 #endif 6910 ie++; 6911 } 6912 } 6913 6914 #if TARGET_ABI_BITS == 32 6915 static inline uint64_t target_offset64(uint32_t word0, uint32_t word1) 6916 { 6917 #ifdef TARGET_WORDS_BIGENDIAN 6918 return ((uint64_t)word0 << 32) | word1; 6919 #else 6920 return ((uint64_t)word1 << 32) | word0; 6921 #endif 6922 } 6923 #else /* TARGET_ABI_BITS == 32 */ 6924 static inline uint64_t target_offset64(uint64_t word0, uint64_t word1) 6925 { 6926 return word0; 6927 } 6928 #endif /* TARGET_ABI_BITS != 32 */ 6929 6930 #ifdef TARGET_NR_truncate64 6931 static inline abi_long target_truncate64(void *cpu_env, const char *arg1, 6932 abi_long arg2, 6933 abi_long arg3, 6934 abi_long arg4) 6935 { 6936 if (regpairs_aligned(cpu_env, TARGET_NR_truncate64)) { 6937 arg2 = arg3; 6938 arg3 = arg4; 6939 } 6940 return get_errno(truncate64(arg1, target_offset64(arg2, arg3))); 6941 } 6942 #endif 6943 6944 #ifdef TARGET_NR_ftruncate64 6945 static inline abi_long target_ftruncate64(void *cpu_env, abi_long arg1, 6946 abi_long arg2, 6947 abi_long arg3, 6948 abi_long arg4) 6949 { 6950 if (regpairs_aligned(cpu_env, TARGET_NR_ftruncate64)) { 6951 arg2 = arg3; 6952 arg3 = arg4; 6953 } 6954 return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3))); 6955 } 6956 #endif 6957 6958 static inline abi_long target_to_host_timespec(struct timespec *host_ts, 6959 abi_ulong target_addr) 6960 { 6961 struct target_timespec *target_ts; 6962 6963 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) 6964 return -TARGET_EFAULT; 6965 __get_user(host_ts->tv_sec, &target_ts->tv_sec); 6966 __get_user(host_ts->tv_nsec, &target_ts->tv_nsec); 6967 unlock_user_struct(target_ts, target_addr, 0); 6968 return 0; 6969 } 6970 6971 static inline abi_long host_to_target_timespec(abi_ulong target_addr, 6972 struct timespec *host_ts) 6973 { 6974 struct target_timespec *target_ts; 6975 6976 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) 6977 return -TARGET_EFAULT; 6978 __put_user(host_ts->tv_sec, &target_ts->tv_sec); 6979 __put_user(host_ts->tv_nsec, &target_ts->tv_nsec); 6980 unlock_user_struct(target_ts, target_addr, 1); 6981 return 0; 6982 } 6983 6984 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_itspec, 6985 abi_ulong target_addr) 6986 { 6987 struct target_itimerspec *target_itspec; 6988 6989 if (!lock_user_struct(VERIFY_READ, target_itspec, target_addr, 1)) { 6990 return -TARGET_EFAULT; 6991 } 6992 6993 host_itspec->it_interval.tv_sec = 6994 tswapal(target_itspec->it_interval.tv_sec); 6995 host_itspec->it_interval.tv_nsec = 6996 tswapal(target_itspec->it_interval.tv_nsec); 6997 host_itspec->it_value.tv_sec = tswapal(target_itspec->it_value.tv_sec); 6998 host_itspec->it_value.tv_nsec = tswapal(target_itspec->it_value.tv_nsec); 6999 7000 unlock_user_struct(target_itspec, target_addr, 1); 7001 return 0; 7002 } 7003 7004 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr, 7005 struct itimerspec *host_its) 7006 { 7007 struct target_itimerspec *target_itspec; 7008 7009 if (!lock_user_struct(VERIFY_WRITE, target_itspec, target_addr, 0)) { 7010 return -TARGET_EFAULT; 7011 } 7012 7013 target_itspec->it_interval.tv_sec = tswapal(host_its->it_interval.tv_sec); 7014 target_itspec->it_interval.tv_nsec = tswapal(host_its->it_interval.tv_nsec); 7015 7016 target_itspec->it_value.tv_sec = tswapal(host_its->it_value.tv_sec); 7017 target_itspec->it_value.tv_nsec = tswapal(host_its->it_value.tv_nsec); 7018 7019 unlock_user_struct(target_itspec, target_addr, 0); 7020 return 0; 7021 } 7022 7023 static inline abi_long target_to_host_timex(struct timex *host_tx, 7024 abi_long target_addr) 7025 { 7026 struct target_timex *target_tx; 7027 7028 if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) { 7029 return -TARGET_EFAULT; 7030 } 7031 7032 __get_user(host_tx->modes, &target_tx->modes); 7033 __get_user(host_tx->offset, &target_tx->offset); 7034 __get_user(host_tx->freq, &target_tx->freq); 7035 __get_user(host_tx->maxerror, &target_tx->maxerror); 7036 __get_user(host_tx->esterror, &target_tx->esterror); 7037 __get_user(host_tx->status, &target_tx->status); 7038 __get_user(host_tx->constant, &target_tx->constant); 7039 __get_user(host_tx->precision, &target_tx->precision); 7040 __get_user(host_tx->tolerance, &target_tx->tolerance); 7041 __get_user(host_tx->time.tv_sec, &target_tx->time.tv_sec); 7042 __get_user(host_tx->time.tv_usec, &target_tx->time.tv_usec); 7043 __get_user(host_tx->tick, &target_tx->tick); 7044 __get_user(host_tx->ppsfreq, &target_tx->ppsfreq); 7045 __get_user(host_tx->jitter, &target_tx->jitter); 7046 __get_user(host_tx->shift, &target_tx->shift); 7047 __get_user(host_tx->stabil, &target_tx->stabil); 7048 __get_user(host_tx->jitcnt, &target_tx->jitcnt); 7049 __get_user(host_tx->calcnt, &target_tx->calcnt); 7050 __get_user(host_tx->errcnt, &target_tx->errcnt); 7051 __get_user(host_tx->stbcnt, &target_tx->stbcnt); 7052 __get_user(host_tx->tai, &target_tx->tai); 7053 7054 unlock_user_struct(target_tx, target_addr, 0); 7055 return 0; 7056 } 7057 7058 static inline abi_long host_to_target_timex(abi_long target_addr, 7059 struct timex *host_tx) 7060 { 7061 struct target_timex *target_tx; 7062 7063 if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) { 7064 return -TARGET_EFAULT; 7065 } 7066 7067 __put_user(host_tx->modes, &target_tx->modes); 7068 __put_user(host_tx->offset, &target_tx->offset); 7069 __put_user(host_tx->freq, &target_tx->freq); 7070 __put_user(host_tx->maxerror, &target_tx->maxerror); 7071 __put_user(host_tx->esterror, &target_tx->esterror); 7072 __put_user(host_tx->status, &target_tx->status); 7073 __put_user(host_tx->constant, &target_tx->constant); 7074 __put_user(host_tx->precision, &target_tx->precision); 7075 __put_user(host_tx->tolerance, &target_tx->tolerance); 7076 __put_user(host_tx->time.tv_sec, &target_tx->time.tv_sec); 7077 __put_user(host_tx->time.tv_usec, &target_tx->time.tv_usec); 7078 __put_user(host_tx->tick, &target_tx->tick); 7079 __put_user(host_tx->ppsfreq, &target_tx->ppsfreq); 7080 __put_user(host_tx->jitter, &target_tx->jitter); 7081 __put_user(host_tx->shift, &target_tx->shift); 7082 __put_user(host_tx->stabil, &target_tx->stabil); 7083 __put_user(host_tx->jitcnt, &target_tx->jitcnt); 7084 __put_user(host_tx->calcnt, &target_tx->calcnt); 7085 __put_user(host_tx->errcnt, &target_tx->errcnt); 7086 __put_user(host_tx->stbcnt, &target_tx->stbcnt); 7087 __put_user(host_tx->tai, &target_tx->tai); 7088 7089 unlock_user_struct(target_tx, target_addr, 1); 7090 return 0; 7091 } 7092 7093 7094 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp, 7095 abi_ulong target_addr) 7096 { 7097 struct target_sigevent *target_sevp; 7098 7099 if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) { 7100 return -TARGET_EFAULT; 7101 } 7102 7103 /* This union is awkward on 64 bit systems because it has a 32 bit 7104 * integer and a pointer in it; we follow the conversion approach 7105 * used for handling sigval types in signal.c so the guest should get 7106 * the correct value back even if we did a 64 bit byteswap and it's 7107 * using the 32 bit integer. 7108 */ 7109 host_sevp->sigev_value.sival_ptr = 7110 (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr); 7111 host_sevp->sigev_signo = 7112 target_to_host_signal(tswap32(target_sevp->sigev_signo)); 7113 host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify); 7114 host_sevp->_sigev_un._tid = tswap32(target_sevp->_sigev_un._tid); 7115 7116 unlock_user_struct(target_sevp, target_addr, 1); 7117 return 0; 7118 } 7119 7120 #if defined(TARGET_NR_mlockall) 7121 static inline int target_to_host_mlockall_arg(int arg) 7122 { 7123 int result = 0; 7124 7125 if (arg & TARGET_MLOCKALL_MCL_CURRENT) { 7126 result |= MCL_CURRENT; 7127 } 7128 if (arg & TARGET_MLOCKALL_MCL_FUTURE) { 7129 result |= MCL_FUTURE; 7130 } 7131 return result; 7132 } 7133 #endif 7134 7135 static inline abi_long host_to_target_stat64(void *cpu_env, 7136 abi_ulong target_addr, 7137 struct stat *host_st) 7138 { 7139 #if defined(TARGET_ARM) && defined(TARGET_ABI32) 7140 if (((CPUARMState *)cpu_env)->eabi) { 7141 struct target_eabi_stat64 *target_st; 7142 7143 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0)) 7144 return -TARGET_EFAULT; 7145 memset(target_st, 0, sizeof(struct target_eabi_stat64)); 7146 __put_user(host_st->st_dev, &target_st->st_dev); 7147 __put_user(host_st->st_ino, &target_st->st_ino); 7148 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO 7149 __put_user(host_st->st_ino, &target_st->__st_ino); 7150 #endif 7151 __put_user(host_st->st_mode, &target_st->st_mode); 7152 __put_user(host_st->st_nlink, &target_st->st_nlink); 7153 __put_user(host_st->st_uid, &target_st->st_uid); 7154 __put_user(host_st->st_gid, &target_st->st_gid); 7155 __put_user(host_st->st_rdev, &target_st->st_rdev); 7156 __put_user(host_st->st_size, &target_st->st_size); 7157 __put_user(host_st->st_blksize, &target_st->st_blksize); 7158 __put_user(host_st->st_blocks, &target_st->st_blocks); 7159 __put_user(host_st->st_atime, &target_st->target_st_atime); 7160 __put_user(host_st->st_mtime, &target_st->target_st_mtime); 7161 __put_user(host_st->st_ctime, &target_st->target_st_ctime); 7162 unlock_user_struct(target_st, target_addr, 1); 7163 } else 7164 #endif 7165 { 7166 #if defined(TARGET_HAS_STRUCT_STAT64) 7167 struct target_stat64 *target_st; 7168 #else 7169 struct target_stat *target_st; 7170 #endif 7171 7172 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0)) 7173 return -TARGET_EFAULT; 7174 memset(target_st, 0, sizeof(*target_st)); 7175 __put_user(host_st->st_dev, &target_st->st_dev); 7176 __put_user(host_st->st_ino, &target_st->st_ino); 7177 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO 7178 __put_user(host_st->st_ino, &target_st->__st_ino); 7179 #endif 7180 __put_user(host_st->st_mode, &target_st->st_mode); 7181 __put_user(host_st->st_nlink, &target_st->st_nlink); 7182 __put_user(host_st->st_uid, &target_st->st_uid); 7183 __put_user(host_st->st_gid, &target_st->st_gid); 7184 __put_user(host_st->st_rdev, &target_st->st_rdev); 7185 /* XXX: better use of kernel struct */ 7186 __put_user(host_st->st_size, &target_st->st_size); 7187 __put_user(host_st->st_blksize, &target_st->st_blksize); 7188 __put_user(host_st->st_blocks, &target_st->st_blocks); 7189 __put_user(host_st->st_atime, &target_st->target_st_atime); 7190 __put_user(host_st->st_mtime, &target_st->target_st_mtime); 7191 __put_user(host_st->st_ctime, &target_st->target_st_ctime); 7192 unlock_user_struct(target_st, target_addr, 1); 7193 } 7194 7195 return 0; 7196 } 7197 7198 /* ??? Using host futex calls even when target atomic operations 7199 are not really atomic probably breaks things. However implementing 7200 futexes locally would make futexes shared between multiple processes 7201 tricky. However they're probably useless because guest atomic 7202 operations won't work either. */ 7203 static int do_futex(target_ulong uaddr, int op, int val, target_ulong timeout, 7204 target_ulong uaddr2, int val3) 7205 { 7206 struct timespec ts, *pts; 7207 int base_op; 7208 7209 /* ??? We assume FUTEX_* constants are the same on both host 7210 and target. */ 7211 #ifdef FUTEX_CMD_MASK 7212 base_op = op & FUTEX_CMD_MASK; 7213 #else 7214 base_op = op; 7215 #endif 7216 switch (base_op) { 7217 case FUTEX_WAIT: 7218 case FUTEX_WAIT_BITSET: 7219 if (timeout) { 7220 pts = &ts; 7221 target_to_host_timespec(pts, timeout); 7222 } else { 7223 pts = NULL; 7224 } 7225 return get_errno(safe_futex(g2h(uaddr), op, tswap32(val), 7226 pts, NULL, val3)); 7227 case FUTEX_WAKE: 7228 return get_errno(safe_futex(g2h(uaddr), op, val, NULL, NULL, 0)); 7229 case FUTEX_FD: 7230 return get_errno(safe_futex(g2h(uaddr), op, val, NULL, NULL, 0)); 7231 case FUTEX_REQUEUE: 7232 case FUTEX_CMP_REQUEUE: 7233 case FUTEX_WAKE_OP: 7234 /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the 7235 TIMEOUT parameter is interpreted as a uint32_t by the kernel. 7236 But the prototype takes a `struct timespec *'; insert casts 7237 to satisfy the compiler. We do not need to tswap TIMEOUT 7238 since it's not compared to guest memory. */ 7239 pts = (struct timespec *)(uintptr_t) timeout; 7240 return get_errno(safe_futex(g2h(uaddr), op, val, pts, 7241 g2h(uaddr2), 7242 (base_op == FUTEX_CMP_REQUEUE 7243 ? tswap32(val3) 7244 : val3))); 7245 default: 7246 return -TARGET_ENOSYS; 7247 } 7248 } 7249 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 7250 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname, 7251 abi_long handle, abi_long mount_id, 7252 abi_long flags) 7253 { 7254 struct file_handle *target_fh; 7255 struct file_handle *fh; 7256 int mid = 0; 7257 abi_long ret; 7258 char *name; 7259 unsigned int size, total_size; 7260 7261 if (get_user_s32(size, handle)) { 7262 return -TARGET_EFAULT; 7263 } 7264 7265 name = lock_user_string(pathname); 7266 if (!name) { 7267 return -TARGET_EFAULT; 7268 } 7269 7270 total_size = sizeof(struct file_handle) + size; 7271 target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0); 7272 if (!target_fh) { 7273 unlock_user(name, pathname, 0); 7274 return -TARGET_EFAULT; 7275 } 7276 7277 fh = g_malloc0(total_size); 7278 fh->handle_bytes = size; 7279 7280 ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags)); 7281 unlock_user(name, pathname, 0); 7282 7283 /* man name_to_handle_at(2): 7284 * Other than the use of the handle_bytes field, the caller should treat 7285 * the file_handle structure as an opaque data type 7286 */ 7287 7288 memcpy(target_fh, fh, total_size); 7289 target_fh->handle_bytes = tswap32(fh->handle_bytes); 7290 target_fh->handle_type = tswap32(fh->handle_type); 7291 g_free(fh); 7292 unlock_user(target_fh, handle, total_size); 7293 7294 if (put_user_s32(mid, mount_id)) { 7295 return -TARGET_EFAULT; 7296 } 7297 7298 return ret; 7299 7300 } 7301 #endif 7302 7303 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 7304 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle, 7305 abi_long flags) 7306 { 7307 struct file_handle *target_fh; 7308 struct file_handle *fh; 7309 unsigned int size, total_size; 7310 abi_long ret; 7311 7312 if (get_user_s32(size, handle)) { 7313 return -TARGET_EFAULT; 7314 } 7315 7316 total_size = sizeof(struct file_handle) + size; 7317 target_fh = lock_user(VERIFY_READ, handle, total_size, 1); 7318 if (!target_fh) { 7319 return -TARGET_EFAULT; 7320 } 7321 7322 fh = g_memdup(target_fh, total_size); 7323 fh->handle_bytes = size; 7324 fh->handle_type = tswap32(target_fh->handle_type); 7325 7326 ret = get_errno(open_by_handle_at(mount_fd, fh, 7327 target_to_host_bitmask(flags, fcntl_flags_tbl))); 7328 7329 g_free(fh); 7330 7331 unlock_user(target_fh, handle, total_size); 7332 7333 return ret; 7334 } 7335 #endif 7336 7337 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4) 7338 7339 /* signalfd siginfo conversion */ 7340 7341 static void 7342 host_to_target_signalfd_siginfo(struct signalfd_siginfo *tinfo, 7343 const struct signalfd_siginfo *info) 7344 { 7345 int sig = host_to_target_signal(info->ssi_signo); 7346 7347 /* linux/signalfd.h defines a ssi_addr_lsb 7348 * not defined in sys/signalfd.h but used by some kernels 7349 */ 7350 7351 #ifdef BUS_MCEERR_AO 7352 if (tinfo->ssi_signo == SIGBUS && 7353 (tinfo->ssi_code == BUS_MCEERR_AR || 7354 tinfo->ssi_code == BUS_MCEERR_AO)) { 7355 uint16_t *ssi_addr_lsb = (uint16_t *)(&info->ssi_addr + 1); 7356 uint16_t *tssi_addr_lsb = (uint16_t *)(&tinfo->ssi_addr + 1); 7357 *tssi_addr_lsb = tswap16(*ssi_addr_lsb); 7358 } 7359 #endif 7360 7361 tinfo->ssi_signo = tswap32(sig); 7362 tinfo->ssi_errno = tswap32(tinfo->ssi_errno); 7363 tinfo->ssi_code = tswap32(info->ssi_code); 7364 tinfo->ssi_pid = tswap32(info->ssi_pid); 7365 tinfo->ssi_uid = tswap32(info->ssi_uid); 7366 tinfo->ssi_fd = tswap32(info->ssi_fd); 7367 tinfo->ssi_tid = tswap32(info->ssi_tid); 7368 tinfo->ssi_band = tswap32(info->ssi_band); 7369 tinfo->ssi_overrun = tswap32(info->ssi_overrun); 7370 tinfo->ssi_trapno = tswap32(info->ssi_trapno); 7371 tinfo->ssi_status = tswap32(info->ssi_status); 7372 tinfo->ssi_int = tswap32(info->ssi_int); 7373 tinfo->ssi_ptr = tswap64(info->ssi_ptr); 7374 tinfo->ssi_utime = tswap64(info->ssi_utime); 7375 tinfo->ssi_stime = tswap64(info->ssi_stime); 7376 tinfo->ssi_addr = tswap64(info->ssi_addr); 7377 } 7378 7379 static abi_long host_to_target_data_signalfd(void *buf, size_t len) 7380 { 7381 int i; 7382 7383 for (i = 0; i < len; i += sizeof(struct signalfd_siginfo)) { 7384 host_to_target_signalfd_siginfo(buf + i, buf + i); 7385 } 7386 7387 return len; 7388 } 7389 7390 static TargetFdTrans target_signalfd_trans = { 7391 .host_to_target_data = host_to_target_data_signalfd, 7392 }; 7393 7394 static abi_long do_signalfd4(int fd, abi_long mask, int flags) 7395 { 7396 int host_flags; 7397 target_sigset_t *target_mask; 7398 sigset_t host_mask; 7399 abi_long ret; 7400 7401 if (flags & ~(TARGET_O_NONBLOCK | TARGET_O_CLOEXEC)) { 7402 return -TARGET_EINVAL; 7403 } 7404 if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) { 7405 return -TARGET_EFAULT; 7406 } 7407 7408 target_to_host_sigset(&host_mask, target_mask); 7409 7410 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl); 7411 7412 ret = get_errno(signalfd(fd, &host_mask, host_flags)); 7413 if (ret >= 0) { 7414 fd_trans_register(ret, &target_signalfd_trans); 7415 } 7416 7417 unlock_user_struct(target_mask, mask, 0); 7418 7419 return ret; 7420 } 7421 #endif 7422 7423 /* Map host to target signal numbers for the wait family of syscalls. 7424 Assume all other status bits are the same. */ 7425 int host_to_target_waitstatus(int status) 7426 { 7427 if (WIFSIGNALED(status)) { 7428 return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f); 7429 } 7430 if (WIFSTOPPED(status)) { 7431 return (host_to_target_signal(WSTOPSIG(status)) << 8) 7432 | (status & 0xff); 7433 } 7434 return status; 7435 } 7436 7437 static int open_self_cmdline(void *cpu_env, int fd) 7438 { 7439 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env); 7440 struct linux_binprm *bprm = ((TaskState *)cpu->opaque)->bprm; 7441 int i; 7442 7443 for (i = 0; i < bprm->argc; i++) { 7444 size_t len = strlen(bprm->argv[i]) + 1; 7445 7446 if (write(fd, bprm->argv[i], len) != len) { 7447 return -1; 7448 } 7449 } 7450 7451 return 0; 7452 } 7453 7454 static int open_self_maps(void *cpu_env, int fd) 7455 { 7456 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env); 7457 TaskState *ts = cpu->opaque; 7458 FILE *fp; 7459 char *line = NULL; 7460 size_t len = 0; 7461 ssize_t read; 7462 7463 fp = fopen("/proc/self/maps", "r"); 7464 if (fp == NULL) { 7465 return -1; 7466 } 7467 7468 while ((read = getline(&line, &len, fp)) != -1) { 7469 int fields, dev_maj, dev_min, inode; 7470 uint64_t min, max, offset; 7471 char flag_r, flag_w, flag_x, flag_p; 7472 char path[512] = ""; 7473 fields = sscanf(line, "%"PRIx64"-%"PRIx64" %c%c%c%c %"PRIx64" %x:%x %d" 7474 " %512s", &min, &max, &flag_r, &flag_w, &flag_x, 7475 &flag_p, &offset, &dev_maj, &dev_min, &inode, path); 7476 7477 if ((fields < 10) || (fields > 11)) { 7478 continue; 7479 } 7480 if (h2g_valid(min)) { 7481 int flags = page_get_flags(h2g(min)); 7482 max = h2g_valid(max - 1) ? max : (uintptr_t)g2h(GUEST_ADDR_MAX) + 1; 7483 if (page_check_range(h2g(min), max - min, flags) == -1) { 7484 continue; 7485 } 7486 if (h2g(min) == ts->info->stack_limit) { 7487 pstrcpy(path, sizeof(path), " [stack]"); 7488 } 7489 dprintf(fd, TARGET_ABI_FMT_lx "-" TARGET_ABI_FMT_lx 7490 " %c%c%c%c %08" PRIx64 " %02x:%02x %d %s%s\n", 7491 h2g(min), h2g(max - 1) + 1, flag_r, flag_w, 7492 flag_x, flag_p, offset, dev_maj, dev_min, inode, 7493 path[0] ? " " : "", path); 7494 } 7495 } 7496 7497 free(line); 7498 fclose(fp); 7499 7500 return 0; 7501 } 7502 7503 static int open_self_stat(void *cpu_env, int fd) 7504 { 7505 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env); 7506 TaskState *ts = cpu->opaque; 7507 abi_ulong start_stack = ts->info->start_stack; 7508 int i; 7509 7510 for (i = 0; i < 44; i++) { 7511 char buf[128]; 7512 int len; 7513 uint64_t val = 0; 7514 7515 if (i == 0) { 7516 /* pid */ 7517 val = getpid(); 7518 snprintf(buf, sizeof(buf), "%"PRId64 " ", val); 7519 } else if (i == 1) { 7520 /* app name */ 7521 snprintf(buf, sizeof(buf), "(%s) ", ts->bprm->argv[0]); 7522 } else if (i == 27) { 7523 /* stack bottom */ 7524 val = start_stack; 7525 snprintf(buf, sizeof(buf), "%"PRId64 " ", val); 7526 } else { 7527 /* for the rest, there is MasterCard */ 7528 snprintf(buf, sizeof(buf), "0%c", i == 43 ? '\n' : ' '); 7529 } 7530 7531 len = strlen(buf); 7532 if (write(fd, buf, len) != len) { 7533 return -1; 7534 } 7535 } 7536 7537 return 0; 7538 } 7539 7540 static int open_self_auxv(void *cpu_env, int fd) 7541 { 7542 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env); 7543 TaskState *ts = cpu->opaque; 7544 abi_ulong auxv = ts->info->saved_auxv; 7545 abi_ulong len = ts->info->auxv_len; 7546 char *ptr; 7547 7548 /* 7549 * Auxiliary vector is stored in target process stack. 7550 * read in whole auxv vector and copy it to file 7551 */ 7552 ptr = lock_user(VERIFY_READ, auxv, len, 0); 7553 if (ptr != NULL) { 7554 while (len > 0) { 7555 ssize_t r; 7556 r = write(fd, ptr, len); 7557 if (r <= 0) { 7558 break; 7559 } 7560 len -= r; 7561 ptr += r; 7562 } 7563 lseek(fd, 0, SEEK_SET); 7564 unlock_user(ptr, auxv, len); 7565 } 7566 7567 return 0; 7568 } 7569 7570 static int is_proc_myself(const char *filename, const char *entry) 7571 { 7572 if (!strncmp(filename, "/proc/", strlen("/proc/"))) { 7573 filename += strlen("/proc/"); 7574 if (!strncmp(filename, "self/", strlen("self/"))) { 7575 filename += strlen("self/"); 7576 } else if (*filename >= '1' && *filename <= '9') { 7577 char myself[80]; 7578 snprintf(myself, sizeof(myself), "%d/", getpid()); 7579 if (!strncmp(filename, myself, strlen(myself))) { 7580 filename += strlen(myself); 7581 } else { 7582 return 0; 7583 } 7584 } else { 7585 return 0; 7586 } 7587 if (!strcmp(filename, entry)) { 7588 return 1; 7589 } 7590 } 7591 return 0; 7592 } 7593 7594 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 7595 static int is_proc(const char *filename, const char *entry) 7596 { 7597 return strcmp(filename, entry) == 0; 7598 } 7599 7600 static int open_net_route(void *cpu_env, int fd) 7601 { 7602 FILE *fp; 7603 char *line = NULL; 7604 size_t len = 0; 7605 ssize_t read; 7606 7607 fp = fopen("/proc/net/route", "r"); 7608 if (fp == NULL) { 7609 return -1; 7610 } 7611 7612 /* read header */ 7613 7614 read = getline(&line, &len, fp); 7615 dprintf(fd, "%s", line); 7616 7617 /* read routes */ 7618 7619 while ((read = getline(&line, &len, fp)) != -1) { 7620 char iface[16]; 7621 uint32_t dest, gw, mask; 7622 unsigned int flags, refcnt, use, metric, mtu, window, irtt; 7623 sscanf(line, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n", 7624 iface, &dest, &gw, &flags, &refcnt, &use, &metric, 7625 &mask, &mtu, &window, &irtt); 7626 dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n", 7627 iface, tswap32(dest), tswap32(gw), flags, refcnt, use, 7628 metric, tswap32(mask), mtu, window, irtt); 7629 } 7630 7631 free(line); 7632 fclose(fp); 7633 7634 return 0; 7635 } 7636 #endif 7637 7638 static int do_openat(void *cpu_env, int dirfd, const char *pathname, int flags, mode_t mode) 7639 { 7640 struct fake_open { 7641 const char *filename; 7642 int (*fill)(void *cpu_env, int fd); 7643 int (*cmp)(const char *s1, const char *s2); 7644 }; 7645 const struct fake_open *fake_open; 7646 static const struct fake_open fakes[] = { 7647 { "maps", open_self_maps, is_proc_myself }, 7648 { "stat", open_self_stat, is_proc_myself }, 7649 { "auxv", open_self_auxv, is_proc_myself }, 7650 { "cmdline", open_self_cmdline, is_proc_myself }, 7651 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 7652 { "/proc/net/route", open_net_route, is_proc }, 7653 #endif 7654 { NULL, NULL, NULL } 7655 }; 7656 7657 if (is_proc_myself(pathname, "exe")) { 7658 int execfd = qemu_getauxval(AT_EXECFD); 7659 return execfd ? execfd : safe_openat(dirfd, exec_path, flags, mode); 7660 } 7661 7662 for (fake_open = fakes; fake_open->filename; fake_open++) { 7663 if (fake_open->cmp(pathname, fake_open->filename)) { 7664 break; 7665 } 7666 } 7667 7668 if (fake_open->filename) { 7669 const char *tmpdir; 7670 char filename[PATH_MAX]; 7671 int fd, r; 7672 7673 /* create temporary file to map stat to */ 7674 tmpdir = getenv("TMPDIR"); 7675 if (!tmpdir) 7676 tmpdir = "/tmp"; 7677 snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir); 7678 fd = mkstemp(filename); 7679 if (fd < 0) { 7680 return fd; 7681 } 7682 unlink(filename); 7683 7684 if ((r = fake_open->fill(cpu_env, fd))) { 7685 int e = errno; 7686 close(fd); 7687 errno = e; 7688 return r; 7689 } 7690 lseek(fd, 0, SEEK_SET); 7691 7692 return fd; 7693 } 7694 7695 return safe_openat(dirfd, path(pathname), flags, mode); 7696 } 7697 7698 #define TIMER_MAGIC 0x0caf0000 7699 #define TIMER_MAGIC_MASK 0xffff0000 7700 7701 /* Convert QEMU provided timer ID back to internal 16bit index format */ 7702 static target_timer_t get_timer_id(abi_long arg) 7703 { 7704 target_timer_t timerid = arg; 7705 7706 if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) { 7707 return -TARGET_EINVAL; 7708 } 7709 7710 timerid &= 0xffff; 7711 7712 if (timerid >= ARRAY_SIZE(g_posix_timers)) { 7713 return -TARGET_EINVAL; 7714 } 7715 7716 return timerid; 7717 } 7718 7719 static abi_long swap_data_eventfd(void *buf, size_t len) 7720 { 7721 uint64_t *counter = buf; 7722 int i; 7723 7724 if (len < sizeof(uint64_t)) { 7725 return -EINVAL; 7726 } 7727 7728 for (i = 0; i < len; i += sizeof(uint64_t)) { 7729 *counter = tswap64(*counter); 7730 counter++; 7731 } 7732 7733 return len; 7734 } 7735 7736 static TargetFdTrans target_eventfd_trans = { 7737 .host_to_target_data = swap_data_eventfd, 7738 .target_to_host_data = swap_data_eventfd, 7739 }; 7740 7741 #if (defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)) || \ 7742 (defined(CONFIG_INOTIFY1) && defined(TARGET_NR_inotify_init1) && \ 7743 defined(__NR_inotify_init1)) 7744 static abi_long host_to_target_data_inotify(void *buf, size_t len) 7745 { 7746 struct inotify_event *ev; 7747 int i; 7748 uint32_t name_len; 7749 7750 for (i = 0; i < len; i += sizeof(struct inotify_event) + name_len) { 7751 ev = (struct inotify_event *)((char *)buf + i); 7752 name_len = ev->len; 7753 7754 ev->wd = tswap32(ev->wd); 7755 ev->mask = tswap32(ev->mask); 7756 ev->cookie = tswap32(ev->cookie); 7757 ev->len = tswap32(name_len); 7758 } 7759 7760 return len; 7761 } 7762 7763 static TargetFdTrans target_inotify_trans = { 7764 .host_to_target_data = host_to_target_data_inotify, 7765 }; 7766 #endif 7767 7768 static int target_to_host_cpu_mask(unsigned long *host_mask, 7769 size_t host_size, 7770 abi_ulong target_addr, 7771 size_t target_size) 7772 { 7773 unsigned target_bits = sizeof(abi_ulong) * 8; 7774 unsigned host_bits = sizeof(*host_mask) * 8; 7775 abi_ulong *target_mask; 7776 unsigned i, j; 7777 7778 assert(host_size >= target_size); 7779 7780 target_mask = lock_user(VERIFY_READ, target_addr, target_size, 1); 7781 if (!target_mask) { 7782 return -TARGET_EFAULT; 7783 } 7784 memset(host_mask, 0, host_size); 7785 7786 for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) { 7787 unsigned bit = i * target_bits; 7788 abi_ulong val; 7789 7790 __get_user(val, &target_mask[i]); 7791 for (j = 0; j < target_bits; j++, bit++) { 7792 if (val & (1UL << j)) { 7793 host_mask[bit / host_bits] |= 1UL << (bit % host_bits); 7794 } 7795 } 7796 } 7797 7798 unlock_user(target_mask, target_addr, 0); 7799 return 0; 7800 } 7801 7802 static int host_to_target_cpu_mask(const unsigned long *host_mask, 7803 size_t host_size, 7804 abi_ulong target_addr, 7805 size_t target_size) 7806 { 7807 unsigned target_bits = sizeof(abi_ulong) * 8; 7808 unsigned host_bits = sizeof(*host_mask) * 8; 7809 abi_ulong *target_mask; 7810 unsigned i, j; 7811 7812 assert(host_size >= target_size); 7813 7814 target_mask = lock_user(VERIFY_WRITE, target_addr, target_size, 0); 7815 if (!target_mask) { 7816 return -TARGET_EFAULT; 7817 } 7818 7819 for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) { 7820 unsigned bit = i * target_bits; 7821 abi_ulong val = 0; 7822 7823 for (j = 0; j < target_bits; j++, bit++) { 7824 if (host_mask[bit / host_bits] & (1UL << (bit % host_bits))) { 7825 val |= 1UL << j; 7826 } 7827 } 7828 __put_user(val, &target_mask[i]); 7829 } 7830 7831 unlock_user(target_mask, target_addr, target_size); 7832 return 0; 7833 } 7834 7835 /* do_syscall() should always have a single exit point at the end so 7836 that actions, such as logging of syscall results, can be performed. 7837 All errnos that do_syscall() returns must be -TARGET_<errcode>. */ 7838 abi_long do_syscall(void *cpu_env, int num, abi_long arg1, 7839 abi_long arg2, abi_long arg3, abi_long arg4, 7840 abi_long arg5, abi_long arg6, abi_long arg7, 7841 abi_long arg8) 7842 { 7843 CPUState *cpu = ENV_GET_CPU(cpu_env); 7844 abi_long ret; 7845 struct stat st; 7846 struct statfs stfs; 7847 void *p; 7848 7849 #if defined(DEBUG_ERESTARTSYS) 7850 /* Debug-only code for exercising the syscall-restart code paths 7851 * in the per-architecture cpu main loops: restart every syscall 7852 * the guest makes once before letting it through. 7853 */ 7854 { 7855 static int flag; 7856 7857 flag = !flag; 7858 if (flag) { 7859 return -TARGET_ERESTARTSYS; 7860 } 7861 } 7862 #endif 7863 7864 #ifdef DEBUG 7865 gemu_log("syscall %d", num); 7866 #endif 7867 trace_guest_user_syscall(cpu, num, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8); 7868 if(do_strace) 7869 print_syscall(num, arg1, arg2, arg3, arg4, arg5, arg6); 7870 7871 switch(num) { 7872 case TARGET_NR_exit: 7873 /* In old applications this may be used to implement _exit(2). 7874 However in threaded applictions it is used for thread termination, 7875 and _exit_group is used for application termination. 7876 Do thread termination if we have more then one thread. */ 7877 7878 if (block_signals()) { 7879 ret = -TARGET_ERESTARTSYS; 7880 break; 7881 } 7882 7883 cpu_list_lock(); 7884 7885 if (CPU_NEXT(first_cpu)) { 7886 TaskState *ts; 7887 7888 /* Remove the CPU from the list. */ 7889 QTAILQ_REMOVE(&cpus, cpu, node); 7890 7891 cpu_list_unlock(); 7892 7893 ts = cpu->opaque; 7894 if (ts->child_tidptr) { 7895 put_user_u32(0, ts->child_tidptr); 7896 sys_futex(g2h(ts->child_tidptr), FUTEX_WAKE, INT_MAX, 7897 NULL, NULL, 0); 7898 } 7899 thread_cpu = NULL; 7900 object_unref(OBJECT(cpu)); 7901 g_free(ts); 7902 rcu_unregister_thread(); 7903 pthread_exit(NULL); 7904 } 7905 7906 cpu_list_unlock(); 7907 #ifdef TARGET_GPROF 7908 _mcleanup(); 7909 #endif 7910 gdb_exit(cpu_env, arg1); 7911 _exit(arg1); 7912 ret = 0; /* avoid warning */ 7913 break; 7914 case TARGET_NR_read: 7915 if (arg3 == 0) 7916 ret = 0; 7917 else { 7918 if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0))) 7919 goto efault; 7920 ret = get_errno(safe_read(arg1, p, arg3)); 7921 if (ret >= 0 && 7922 fd_trans_host_to_target_data(arg1)) { 7923 ret = fd_trans_host_to_target_data(arg1)(p, ret); 7924 } 7925 unlock_user(p, arg2, ret); 7926 } 7927 break; 7928 case TARGET_NR_write: 7929 if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1))) 7930 goto efault; 7931 if (fd_trans_target_to_host_data(arg1)) { 7932 void *copy = g_malloc(arg3); 7933 memcpy(copy, p, arg3); 7934 ret = fd_trans_target_to_host_data(arg1)(copy, arg3); 7935 if (ret >= 0) { 7936 ret = get_errno(safe_write(arg1, copy, ret)); 7937 } 7938 g_free(copy); 7939 } else { 7940 ret = get_errno(safe_write(arg1, p, arg3)); 7941 } 7942 unlock_user(p, arg2, 0); 7943 break; 7944 #ifdef TARGET_NR_open 7945 case TARGET_NR_open: 7946 if (!(p = lock_user_string(arg1))) 7947 goto efault; 7948 ret = get_errno(do_openat(cpu_env, AT_FDCWD, p, 7949 target_to_host_bitmask(arg2, fcntl_flags_tbl), 7950 arg3)); 7951 fd_trans_unregister(ret); 7952 unlock_user(p, arg1, 0); 7953 break; 7954 #endif 7955 case TARGET_NR_openat: 7956 if (!(p = lock_user_string(arg2))) 7957 goto efault; 7958 ret = get_errno(do_openat(cpu_env, arg1, p, 7959 target_to_host_bitmask(arg3, fcntl_flags_tbl), 7960 arg4)); 7961 fd_trans_unregister(ret); 7962 unlock_user(p, arg2, 0); 7963 break; 7964 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 7965 case TARGET_NR_name_to_handle_at: 7966 ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5); 7967 break; 7968 #endif 7969 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 7970 case TARGET_NR_open_by_handle_at: 7971 ret = do_open_by_handle_at(arg1, arg2, arg3); 7972 fd_trans_unregister(ret); 7973 break; 7974 #endif 7975 case TARGET_NR_close: 7976 fd_trans_unregister(arg1); 7977 ret = get_errno(close(arg1)); 7978 break; 7979 case TARGET_NR_brk: 7980 ret = do_brk(arg1); 7981 break; 7982 #ifdef TARGET_NR_fork 7983 case TARGET_NR_fork: 7984 ret = get_errno(do_fork(cpu_env, TARGET_SIGCHLD, 0, 0, 0, 0)); 7985 break; 7986 #endif 7987 #ifdef TARGET_NR_waitpid 7988 case TARGET_NR_waitpid: 7989 { 7990 int status; 7991 ret = get_errno(safe_wait4(arg1, &status, arg3, 0)); 7992 if (!is_error(ret) && arg2 && ret 7993 && put_user_s32(host_to_target_waitstatus(status), arg2)) 7994 goto efault; 7995 } 7996 break; 7997 #endif 7998 #ifdef TARGET_NR_waitid 7999 case TARGET_NR_waitid: 8000 { 8001 siginfo_t info; 8002 info.si_pid = 0; 8003 ret = get_errno(safe_waitid(arg1, arg2, &info, arg4, NULL)); 8004 if (!is_error(ret) && arg3 && info.si_pid != 0) { 8005 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_siginfo_t), 0))) 8006 goto efault; 8007 host_to_target_siginfo(p, &info); 8008 unlock_user(p, arg3, sizeof(target_siginfo_t)); 8009 } 8010 } 8011 break; 8012 #endif 8013 #ifdef TARGET_NR_creat /* not on alpha */ 8014 case TARGET_NR_creat: 8015 if (!(p = lock_user_string(arg1))) 8016 goto efault; 8017 ret = get_errno(creat(p, arg2)); 8018 fd_trans_unregister(ret); 8019 unlock_user(p, arg1, 0); 8020 break; 8021 #endif 8022 #ifdef TARGET_NR_link 8023 case TARGET_NR_link: 8024 { 8025 void * p2; 8026 p = lock_user_string(arg1); 8027 p2 = lock_user_string(arg2); 8028 if (!p || !p2) 8029 ret = -TARGET_EFAULT; 8030 else 8031 ret = get_errno(link(p, p2)); 8032 unlock_user(p2, arg2, 0); 8033 unlock_user(p, arg1, 0); 8034 } 8035 break; 8036 #endif 8037 #if defined(TARGET_NR_linkat) 8038 case TARGET_NR_linkat: 8039 { 8040 void * p2 = NULL; 8041 if (!arg2 || !arg4) 8042 goto efault; 8043 p = lock_user_string(arg2); 8044 p2 = lock_user_string(arg4); 8045 if (!p || !p2) 8046 ret = -TARGET_EFAULT; 8047 else 8048 ret = get_errno(linkat(arg1, p, arg3, p2, arg5)); 8049 unlock_user(p, arg2, 0); 8050 unlock_user(p2, arg4, 0); 8051 } 8052 break; 8053 #endif 8054 #ifdef TARGET_NR_unlink 8055 case TARGET_NR_unlink: 8056 if (!(p = lock_user_string(arg1))) 8057 goto efault; 8058 ret = get_errno(unlink(p)); 8059 unlock_user(p, arg1, 0); 8060 break; 8061 #endif 8062 #if defined(TARGET_NR_unlinkat) 8063 case TARGET_NR_unlinkat: 8064 if (!(p = lock_user_string(arg2))) 8065 goto efault; 8066 ret = get_errno(unlinkat(arg1, p, arg3)); 8067 unlock_user(p, arg2, 0); 8068 break; 8069 #endif 8070 case TARGET_NR_execve: 8071 { 8072 char **argp, **envp; 8073 int argc, envc; 8074 abi_ulong gp; 8075 abi_ulong guest_argp; 8076 abi_ulong guest_envp; 8077 abi_ulong addr; 8078 char **q; 8079 int total_size = 0; 8080 8081 argc = 0; 8082 guest_argp = arg2; 8083 for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) { 8084 if (get_user_ual(addr, gp)) 8085 goto efault; 8086 if (!addr) 8087 break; 8088 argc++; 8089 } 8090 envc = 0; 8091 guest_envp = arg3; 8092 for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) { 8093 if (get_user_ual(addr, gp)) 8094 goto efault; 8095 if (!addr) 8096 break; 8097 envc++; 8098 } 8099 8100 argp = g_new0(char *, argc + 1); 8101 envp = g_new0(char *, envc + 1); 8102 8103 for (gp = guest_argp, q = argp; gp; 8104 gp += sizeof(abi_ulong), q++) { 8105 if (get_user_ual(addr, gp)) 8106 goto execve_efault; 8107 if (!addr) 8108 break; 8109 if (!(*q = lock_user_string(addr))) 8110 goto execve_efault; 8111 total_size += strlen(*q) + 1; 8112 } 8113 *q = NULL; 8114 8115 for (gp = guest_envp, q = envp; gp; 8116 gp += sizeof(abi_ulong), q++) { 8117 if (get_user_ual(addr, gp)) 8118 goto execve_efault; 8119 if (!addr) 8120 break; 8121 if (!(*q = lock_user_string(addr))) 8122 goto execve_efault; 8123 total_size += strlen(*q) + 1; 8124 } 8125 *q = NULL; 8126 8127 if (!(p = lock_user_string(arg1))) 8128 goto execve_efault; 8129 /* Although execve() is not an interruptible syscall it is 8130 * a special case where we must use the safe_syscall wrapper: 8131 * if we allow a signal to happen before we make the host 8132 * syscall then we will 'lose' it, because at the point of 8133 * execve the process leaves QEMU's control. So we use the 8134 * safe syscall wrapper to ensure that we either take the 8135 * signal as a guest signal, or else it does not happen 8136 * before the execve completes and makes it the other 8137 * program's problem. 8138 */ 8139 ret = get_errno(safe_execve(p, argp, envp)); 8140 unlock_user(p, arg1, 0); 8141 8142 goto execve_end; 8143 8144 execve_efault: 8145 ret = -TARGET_EFAULT; 8146 8147 execve_end: 8148 for (gp = guest_argp, q = argp; *q; 8149 gp += sizeof(abi_ulong), q++) { 8150 if (get_user_ual(addr, gp) 8151 || !addr) 8152 break; 8153 unlock_user(*q, addr, 0); 8154 } 8155 for (gp = guest_envp, q = envp; *q; 8156 gp += sizeof(abi_ulong), q++) { 8157 if (get_user_ual(addr, gp) 8158 || !addr) 8159 break; 8160 unlock_user(*q, addr, 0); 8161 } 8162 8163 g_free(argp); 8164 g_free(envp); 8165 } 8166 break; 8167 case TARGET_NR_chdir: 8168 if (!(p = lock_user_string(arg1))) 8169 goto efault; 8170 ret = get_errno(chdir(p)); 8171 unlock_user(p, arg1, 0); 8172 break; 8173 #ifdef TARGET_NR_time 8174 case TARGET_NR_time: 8175 { 8176 time_t host_time; 8177 ret = get_errno(time(&host_time)); 8178 if (!is_error(ret) 8179 && arg1 8180 && put_user_sal(host_time, arg1)) 8181 goto efault; 8182 } 8183 break; 8184 #endif 8185 #ifdef TARGET_NR_mknod 8186 case TARGET_NR_mknod: 8187 if (!(p = lock_user_string(arg1))) 8188 goto efault; 8189 ret = get_errno(mknod(p, arg2, arg3)); 8190 unlock_user(p, arg1, 0); 8191 break; 8192 #endif 8193 #if defined(TARGET_NR_mknodat) 8194 case TARGET_NR_mknodat: 8195 if (!(p = lock_user_string(arg2))) 8196 goto efault; 8197 ret = get_errno(mknodat(arg1, p, arg3, arg4)); 8198 unlock_user(p, arg2, 0); 8199 break; 8200 #endif 8201 #ifdef TARGET_NR_chmod 8202 case TARGET_NR_chmod: 8203 if (!(p = lock_user_string(arg1))) 8204 goto efault; 8205 ret = get_errno(chmod(p, arg2)); 8206 unlock_user(p, arg1, 0); 8207 break; 8208 #endif 8209 #ifdef TARGET_NR_break 8210 case TARGET_NR_break: 8211 goto unimplemented; 8212 #endif 8213 #ifdef TARGET_NR_oldstat 8214 case TARGET_NR_oldstat: 8215 goto unimplemented; 8216 #endif 8217 case TARGET_NR_lseek: 8218 ret = get_errno(lseek(arg1, arg2, arg3)); 8219 break; 8220 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA) 8221 /* Alpha specific */ 8222 case TARGET_NR_getxpid: 8223 ((CPUAlphaState *)cpu_env)->ir[IR_A4] = getppid(); 8224 ret = get_errno(getpid()); 8225 break; 8226 #endif 8227 #ifdef TARGET_NR_getpid 8228 case TARGET_NR_getpid: 8229 ret = get_errno(getpid()); 8230 break; 8231 #endif 8232 case TARGET_NR_mount: 8233 { 8234 /* need to look at the data field */ 8235 void *p2, *p3; 8236 8237 if (arg1) { 8238 p = lock_user_string(arg1); 8239 if (!p) { 8240 goto efault; 8241 } 8242 } else { 8243 p = NULL; 8244 } 8245 8246 p2 = lock_user_string(arg2); 8247 if (!p2) { 8248 if (arg1) { 8249 unlock_user(p, arg1, 0); 8250 } 8251 goto efault; 8252 } 8253 8254 if (arg3) { 8255 p3 = lock_user_string(arg3); 8256 if (!p3) { 8257 if (arg1) { 8258 unlock_user(p, arg1, 0); 8259 } 8260 unlock_user(p2, arg2, 0); 8261 goto efault; 8262 } 8263 } else { 8264 p3 = NULL; 8265 } 8266 8267 /* FIXME - arg5 should be locked, but it isn't clear how to 8268 * do that since it's not guaranteed to be a NULL-terminated 8269 * string. 8270 */ 8271 if (!arg5) { 8272 ret = mount(p, p2, p3, (unsigned long)arg4, NULL); 8273 } else { 8274 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(arg5)); 8275 } 8276 ret = get_errno(ret); 8277 8278 if (arg1) { 8279 unlock_user(p, arg1, 0); 8280 } 8281 unlock_user(p2, arg2, 0); 8282 if (arg3) { 8283 unlock_user(p3, arg3, 0); 8284 } 8285 } 8286 break; 8287 #ifdef TARGET_NR_umount 8288 case TARGET_NR_umount: 8289 if (!(p = lock_user_string(arg1))) 8290 goto efault; 8291 ret = get_errno(umount(p)); 8292 unlock_user(p, arg1, 0); 8293 break; 8294 #endif 8295 #ifdef TARGET_NR_stime /* not on alpha */ 8296 case TARGET_NR_stime: 8297 { 8298 time_t host_time; 8299 if (get_user_sal(host_time, arg1)) 8300 goto efault; 8301 ret = get_errno(stime(&host_time)); 8302 } 8303 break; 8304 #endif 8305 case TARGET_NR_ptrace: 8306 goto unimplemented; 8307 #ifdef TARGET_NR_alarm /* not on alpha */ 8308 case TARGET_NR_alarm: 8309 ret = alarm(arg1); 8310 break; 8311 #endif 8312 #ifdef TARGET_NR_oldfstat 8313 case TARGET_NR_oldfstat: 8314 goto unimplemented; 8315 #endif 8316 #ifdef TARGET_NR_pause /* not on alpha */ 8317 case TARGET_NR_pause: 8318 if (!block_signals()) { 8319 sigsuspend(&((TaskState *)cpu->opaque)->signal_mask); 8320 } 8321 ret = -TARGET_EINTR; 8322 break; 8323 #endif 8324 #ifdef TARGET_NR_utime 8325 case TARGET_NR_utime: 8326 { 8327 struct utimbuf tbuf, *host_tbuf; 8328 struct target_utimbuf *target_tbuf; 8329 if (arg2) { 8330 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1)) 8331 goto efault; 8332 tbuf.actime = tswapal(target_tbuf->actime); 8333 tbuf.modtime = tswapal(target_tbuf->modtime); 8334 unlock_user_struct(target_tbuf, arg2, 0); 8335 host_tbuf = &tbuf; 8336 } else { 8337 host_tbuf = NULL; 8338 } 8339 if (!(p = lock_user_string(arg1))) 8340 goto efault; 8341 ret = get_errno(utime(p, host_tbuf)); 8342 unlock_user(p, arg1, 0); 8343 } 8344 break; 8345 #endif 8346 #ifdef TARGET_NR_utimes 8347 case TARGET_NR_utimes: 8348 { 8349 struct timeval *tvp, tv[2]; 8350 if (arg2) { 8351 if (copy_from_user_timeval(&tv[0], arg2) 8352 || copy_from_user_timeval(&tv[1], 8353 arg2 + sizeof(struct target_timeval))) 8354 goto efault; 8355 tvp = tv; 8356 } else { 8357 tvp = NULL; 8358 } 8359 if (!(p = lock_user_string(arg1))) 8360 goto efault; 8361 ret = get_errno(utimes(p, tvp)); 8362 unlock_user(p, arg1, 0); 8363 } 8364 break; 8365 #endif 8366 #if defined(TARGET_NR_futimesat) 8367 case TARGET_NR_futimesat: 8368 { 8369 struct timeval *tvp, tv[2]; 8370 if (arg3) { 8371 if (copy_from_user_timeval(&tv[0], arg3) 8372 || copy_from_user_timeval(&tv[1], 8373 arg3 + sizeof(struct target_timeval))) 8374 goto efault; 8375 tvp = tv; 8376 } else { 8377 tvp = NULL; 8378 } 8379 if (!(p = lock_user_string(arg2))) 8380 goto efault; 8381 ret = get_errno(futimesat(arg1, path(p), tvp)); 8382 unlock_user(p, arg2, 0); 8383 } 8384 break; 8385 #endif 8386 #ifdef TARGET_NR_stty 8387 case TARGET_NR_stty: 8388 goto unimplemented; 8389 #endif 8390 #ifdef TARGET_NR_gtty 8391 case TARGET_NR_gtty: 8392 goto unimplemented; 8393 #endif 8394 #ifdef TARGET_NR_access 8395 case TARGET_NR_access: 8396 if (!(p = lock_user_string(arg1))) 8397 goto efault; 8398 ret = get_errno(access(path(p), arg2)); 8399 unlock_user(p, arg1, 0); 8400 break; 8401 #endif 8402 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat) 8403 case TARGET_NR_faccessat: 8404 if (!(p = lock_user_string(arg2))) 8405 goto efault; 8406 ret = get_errno(faccessat(arg1, p, arg3, 0)); 8407 unlock_user(p, arg2, 0); 8408 break; 8409 #endif 8410 #ifdef TARGET_NR_nice /* not on alpha */ 8411 case TARGET_NR_nice: 8412 ret = get_errno(nice(arg1)); 8413 break; 8414 #endif 8415 #ifdef TARGET_NR_ftime 8416 case TARGET_NR_ftime: 8417 goto unimplemented; 8418 #endif 8419 case TARGET_NR_sync: 8420 sync(); 8421 ret = 0; 8422 break; 8423 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS) 8424 case TARGET_NR_syncfs: 8425 ret = get_errno(syncfs(arg1)); 8426 break; 8427 #endif 8428 case TARGET_NR_kill: 8429 ret = get_errno(safe_kill(arg1, target_to_host_signal(arg2))); 8430 break; 8431 #ifdef TARGET_NR_rename 8432 case TARGET_NR_rename: 8433 { 8434 void *p2; 8435 p = lock_user_string(arg1); 8436 p2 = lock_user_string(arg2); 8437 if (!p || !p2) 8438 ret = -TARGET_EFAULT; 8439 else 8440 ret = get_errno(rename(p, p2)); 8441 unlock_user(p2, arg2, 0); 8442 unlock_user(p, arg1, 0); 8443 } 8444 break; 8445 #endif 8446 #if defined(TARGET_NR_renameat) 8447 case TARGET_NR_renameat: 8448 { 8449 void *p2; 8450 p = lock_user_string(arg2); 8451 p2 = lock_user_string(arg4); 8452 if (!p || !p2) 8453 ret = -TARGET_EFAULT; 8454 else 8455 ret = get_errno(renameat(arg1, p, arg3, p2)); 8456 unlock_user(p2, arg4, 0); 8457 unlock_user(p, arg2, 0); 8458 } 8459 break; 8460 #endif 8461 #if defined(TARGET_NR_renameat2) 8462 case TARGET_NR_renameat2: 8463 { 8464 void *p2; 8465 p = lock_user_string(arg2); 8466 p2 = lock_user_string(arg4); 8467 if (!p || !p2) { 8468 ret = -TARGET_EFAULT; 8469 } else { 8470 ret = get_errno(sys_renameat2(arg1, p, arg3, p2, arg5)); 8471 } 8472 unlock_user(p2, arg4, 0); 8473 unlock_user(p, arg2, 0); 8474 } 8475 break; 8476 #endif 8477 #ifdef TARGET_NR_mkdir 8478 case TARGET_NR_mkdir: 8479 if (!(p = lock_user_string(arg1))) 8480 goto efault; 8481 ret = get_errno(mkdir(p, arg2)); 8482 unlock_user(p, arg1, 0); 8483 break; 8484 #endif 8485 #if defined(TARGET_NR_mkdirat) 8486 case TARGET_NR_mkdirat: 8487 if (!(p = lock_user_string(arg2))) 8488 goto efault; 8489 ret = get_errno(mkdirat(arg1, p, arg3)); 8490 unlock_user(p, arg2, 0); 8491 break; 8492 #endif 8493 #ifdef TARGET_NR_rmdir 8494 case TARGET_NR_rmdir: 8495 if (!(p = lock_user_string(arg1))) 8496 goto efault; 8497 ret = get_errno(rmdir(p)); 8498 unlock_user(p, arg1, 0); 8499 break; 8500 #endif 8501 case TARGET_NR_dup: 8502 ret = get_errno(dup(arg1)); 8503 if (ret >= 0) { 8504 fd_trans_dup(arg1, ret); 8505 } 8506 break; 8507 #ifdef TARGET_NR_pipe 8508 case TARGET_NR_pipe: 8509 ret = do_pipe(cpu_env, arg1, 0, 0); 8510 break; 8511 #endif 8512 #ifdef TARGET_NR_pipe2 8513 case TARGET_NR_pipe2: 8514 ret = do_pipe(cpu_env, arg1, 8515 target_to_host_bitmask(arg2, fcntl_flags_tbl), 1); 8516 break; 8517 #endif 8518 case TARGET_NR_times: 8519 { 8520 struct target_tms *tmsp; 8521 struct tms tms; 8522 ret = get_errno(times(&tms)); 8523 if (arg1) { 8524 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0); 8525 if (!tmsp) 8526 goto efault; 8527 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime)); 8528 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime)); 8529 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime)); 8530 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime)); 8531 } 8532 if (!is_error(ret)) 8533 ret = host_to_target_clock_t(ret); 8534 } 8535 break; 8536 #ifdef TARGET_NR_prof 8537 case TARGET_NR_prof: 8538 goto unimplemented; 8539 #endif 8540 #ifdef TARGET_NR_signal 8541 case TARGET_NR_signal: 8542 goto unimplemented; 8543 #endif 8544 case TARGET_NR_acct: 8545 if (arg1 == 0) { 8546 ret = get_errno(acct(NULL)); 8547 } else { 8548 if (!(p = lock_user_string(arg1))) 8549 goto efault; 8550 ret = get_errno(acct(path(p))); 8551 unlock_user(p, arg1, 0); 8552 } 8553 break; 8554 #ifdef TARGET_NR_umount2 8555 case TARGET_NR_umount2: 8556 if (!(p = lock_user_string(arg1))) 8557 goto efault; 8558 ret = get_errno(umount2(p, arg2)); 8559 unlock_user(p, arg1, 0); 8560 break; 8561 #endif 8562 #ifdef TARGET_NR_lock 8563 case TARGET_NR_lock: 8564 goto unimplemented; 8565 #endif 8566 case TARGET_NR_ioctl: 8567 ret = do_ioctl(arg1, arg2, arg3); 8568 break; 8569 #ifdef TARGET_NR_fcntl 8570 case TARGET_NR_fcntl: 8571 ret = do_fcntl(arg1, arg2, arg3); 8572 break; 8573 #endif 8574 #ifdef TARGET_NR_mpx 8575 case TARGET_NR_mpx: 8576 goto unimplemented; 8577 #endif 8578 case TARGET_NR_setpgid: 8579 ret = get_errno(setpgid(arg1, arg2)); 8580 break; 8581 #ifdef TARGET_NR_ulimit 8582 case TARGET_NR_ulimit: 8583 goto unimplemented; 8584 #endif 8585 #ifdef TARGET_NR_oldolduname 8586 case TARGET_NR_oldolduname: 8587 goto unimplemented; 8588 #endif 8589 case TARGET_NR_umask: 8590 ret = get_errno(umask(arg1)); 8591 break; 8592 case TARGET_NR_chroot: 8593 if (!(p = lock_user_string(arg1))) 8594 goto efault; 8595 ret = get_errno(chroot(p)); 8596 unlock_user(p, arg1, 0); 8597 break; 8598 #ifdef TARGET_NR_ustat 8599 case TARGET_NR_ustat: 8600 goto unimplemented; 8601 #endif 8602 #ifdef TARGET_NR_dup2 8603 case TARGET_NR_dup2: 8604 ret = get_errno(dup2(arg1, arg2)); 8605 if (ret >= 0) { 8606 fd_trans_dup(arg1, arg2); 8607 } 8608 break; 8609 #endif 8610 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3) 8611 case TARGET_NR_dup3: 8612 { 8613 int host_flags; 8614 8615 if ((arg3 & ~TARGET_O_CLOEXEC) != 0) { 8616 return -EINVAL; 8617 } 8618 host_flags = target_to_host_bitmask(arg3, fcntl_flags_tbl); 8619 ret = get_errno(dup3(arg1, arg2, host_flags)); 8620 if (ret >= 0) { 8621 fd_trans_dup(arg1, arg2); 8622 } 8623 break; 8624 } 8625 #endif 8626 #ifdef TARGET_NR_getppid /* not on alpha */ 8627 case TARGET_NR_getppid: 8628 ret = get_errno(getppid()); 8629 break; 8630 #endif 8631 #ifdef TARGET_NR_getpgrp 8632 case TARGET_NR_getpgrp: 8633 ret = get_errno(getpgrp()); 8634 break; 8635 #endif 8636 case TARGET_NR_setsid: 8637 ret = get_errno(setsid()); 8638 break; 8639 #ifdef TARGET_NR_sigaction 8640 case TARGET_NR_sigaction: 8641 { 8642 #if defined(TARGET_ALPHA) 8643 struct target_sigaction act, oact, *pact = 0; 8644 struct target_old_sigaction *old_act; 8645 if (arg2) { 8646 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1)) 8647 goto efault; 8648 act._sa_handler = old_act->_sa_handler; 8649 target_siginitset(&act.sa_mask, old_act->sa_mask); 8650 act.sa_flags = old_act->sa_flags; 8651 act.sa_restorer = 0; 8652 unlock_user_struct(old_act, arg2, 0); 8653 pact = &act; 8654 } 8655 ret = get_errno(do_sigaction(arg1, pact, &oact)); 8656 if (!is_error(ret) && arg3) { 8657 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0)) 8658 goto efault; 8659 old_act->_sa_handler = oact._sa_handler; 8660 old_act->sa_mask = oact.sa_mask.sig[0]; 8661 old_act->sa_flags = oact.sa_flags; 8662 unlock_user_struct(old_act, arg3, 1); 8663 } 8664 #elif defined(TARGET_MIPS) 8665 struct target_sigaction act, oact, *pact, *old_act; 8666 8667 if (arg2) { 8668 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1)) 8669 goto efault; 8670 act._sa_handler = old_act->_sa_handler; 8671 target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]); 8672 act.sa_flags = old_act->sa_flags; 8673 unlock_user_struct(old_act, arg2, 0); 8674 pact = &act; 8675 } else { 8676 pact = NULL; 8677 } 8678 8679 ret = get_errno(do_sigaction(arg1, pact, &oact)); 8680 8681 if (!is_error(ret) && arg3) { 8682 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0)) 8683 goto efault; 8684 old_act->_sa_handler = oact._sa_handler; 8685 old_act->sa_flags = oact.sa_flags; 8686 old_act->sa_mask.sig[0] = oact.sa_mask.sig[0]; 8687 old_act->sa_mask.sig[1] = 0; 8688 old_act->sa_mask.sig[2] = 0; 8689 old_act->sa_mask.sig[3] = 0; 8690 unlock_user_struct(old_act, arg3, 1); 8691 } 8692 #else 8693 struct target_old_sigaction *old_act; 8694 struct target_sigaction act, oact, *pact; 8695 if (arg2) { 8696 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1)) 8697 goto efault; 8698 act._sa_handler = old_act->_sa_handler; 8699 target_siginitset(&act.sa_mask, old_act->sa_mask); 8700 act.sa_flags = old_act->sa_flags; 8701 act.sa_restorer = old_act->sa_restorer; 8702 #ifdef TARGET_ARCH_HAS_KA_RESTORER 8703 act.ka_restorer = 0; 8704 #endif 8705 unlock_user_struct(old_act, arg2, 0); 8706 pact = &act; 8707 } else { 8708 pact = NULL; 8709 } 8710 ret = get_errno(do_sigaction(arg1, pact, &oact)); 8711 if (!is_error(ret) && arg3) { 8712 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0)) 8713 goto efault; 8714 old_act->_sa_handler = oact._sa_handler; 8715 old_act->sa_mask = oact.sa_mask.sig[0]; 8716 old_act->sa_flags = oact.sa_flags; 8717 old_act->sa_restorer = oact.sa_restorer; 8718 unlock_user_struct(old_act, arg3, 1); 8719 } 8720 #endif 8721 } 8722 break; 8723 #endif 8724 case TARGET_NR_rt_sigaction: 8725 { 8726 #if defined(TARGET_ALPHA) 8727 /* For Alpha and SPARC this is a 5 argument syscall, with 8728 * a 'restorer' parameter which must be copied into the 8729 * sa_restorer field of the sigaction struct. 8730 * For Alpha that 'restorer' is arg5; for SPARC it is arg4, 8731 * and arg5 is the sigsetsize. 8732 * Alpha also has a separate rt_sigaction struct that it uses 8733 * here; SPARC uses the usual sigaction struct. 8734 */ 8735 struct target_rt_sigaction *rt_act; 8736 struct target_sigaction act, oact, *pact = 0; 8737 8738 if (arg4 != sizeof(target_sigset_t)) { 8739 ret = -TARGET_EINVAL; 8740 break; 8741 } 8742 if (arg2) { 8743 if (!lock_user_struct(VERIFY_READ, rt_act, arg2, 1)) 8744 goto efault; 8745 act._sa_handler = rt_act->_sa_handler; 8746 act.sa_mask = rt_act->sa_mask; 8747 act.sa_flags = rt_act->sa_flags; 8748 act.sa_restorer = arg5; 8749 unlock_user_struct(rt_act, arg2, 0); 8750 pact = &act; 8751 } 8752 ret = get_errno(do_sigaction(arg1, pact, &oact)); 8753 if (!is_error(ret) && arg3) { 8754 if (!lock_user_struct(VERIFY_WRITE, rt_act, arg3, 0)) 8755 goto efault; 8756 rt_act->_sa_handler = oact._sa_handler; 8757 rt_act->sa_mask = oact.sa_mask; 8758 rt_act->sa_flags = oact.sa_flags; 8759 unlock_user_struct(rt_act, arg3, 1); 8760 } 8761 #else 8762 #ifdef TARGET_SPARC 8763 target_ulong restorer = arg4; 8764 target_ulong sigsetsize = arg5; 8765 #else 8766 target_ulong sigsetsize = arg4; 8767 #endif 8768 struct target_sigaction *act; 8769 struct target_sigaction *oact; 8770 8771 if (sigsetsize != sizeof(target_sigset_t)) { 8772 ret = -TARGET_EINVAL; 8773 break; 8774 } 8775 if (arg2) { 8776 if (!lock_user_struct(VERIFY_READ, act, arg2, 1)) { 8777 goto efault; 8778 } 8779 #ifdef TARGET_ARCH_HAS_KA_RESTORER 8780 act->ka_restorer = restorer; 8781 #endif 8782 } else { 8783 act = NULL; 8784 } 8785 if (arg3) { 8786 if (!lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) { 8787 ret = -TARGET_EFAULT; 8788 goto rt_sigaction_fail; 8789 } 8790 } else 8791 oact = NULL; 8792 ret = get_errno(do_sigaction(arg1, act, oact)); 8793 rt_sigaction_fail: 8794 if (act) 8795 unlock_user_struct(act, arg2, 0); 8796 if (oact) 8797 unlock_user_struct(oact, arg3, 1); 8798 #endif 8799 } 8800 break; 8801 #ifdef TARGET_NR_sgetmask /* not on alpha */ 8802 case TARGET_NR_sgetmask: 8803 { 8804 sigset_t cur_set; 8805 abi_ulong target_set; 8806 ret = do_sigprocmask(0, NULL, &cur_set); 8807 if (!ret) { 8808 host_to_target_old_sigset(&target_set, &cur_set); 8809 ret = target_set; 8810 } 8811 } 8812 break; 8813 #endif 8814 #ifdef TARGET_NR_ssetmask /* not on alpha */ 8815 case TARGET_NR_ssetmask: 8816 { 8817 sigset_t set, oset; 8818 abi_ulong target_set = arg1; 8819 target_to_host_old_sigset(&set, &target_set); 8820 ret = do_sigprocmask(SIG_SETMASK, &set, &oset); 8821 if (!ret) { 8822 host_to_target_old_sigset(&target_set, &oset); 8823 ret = target_set; 8824 } 8825 } 8826 break; 8827 #endif 8828 #ifdef TARGET_NR_sigprocmask 8829 case TARGET_NR_sigprocmask: 8830 { 8831 #if defined(TARGET_ALPHA) 8832 sigset_t set, oldset; 8833 abi_ulong mask; 8834 int how; 8835 8836 switch (arg1) { 8837 case TARGET_SIG_BLOCK: 8838 how = SIG_BLOCK; 8839 break; 8840 case TARGET_SIG_UNBLOCK: 8841 how = SIG_UNBLOCK; 8842 break; 8843 case TARGET_SIG_SETMASK: 8844 how = SIG_SETMASK; 8845 break; 8846 default: 8847 ret = -TARGET_EINVAL; 8848 goto fail; 8849 } 8850 mask = arg2; 8851 target_to_host_old_sigset(&set, &mask); 8852 8853 ret = do_sigprocmask(how, &set, &oldset); 8854 if (!is_error(ret)) { 8855 host_to_target_old_sigset(&mask, &oldset); 8856 ret = mask; 8857 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0; /* force no error */ 8858 } 8859 #else 8860 sigset_t set, oldset, *set_ptr; 8861 int how; 8862 8863 if (arg2) { 8864 switch (arg1) { 8865 case TARGET_SIG_BLOCK: 8866 how = SIG_BLOCK; 8867 break; 8868 case TARGET_SIG_UNBLOCK: 8869 how = SIG_UNBLOCK; 8870 break; 8871 case TARGET_SIG_SETMASK: 8872 how = SIG_SETMASK; 8873 break; 8874 default: 8875 ret = -TARGET_EINVAL; 8876 goto fail; 8877 } 8878 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1))) 8879 goto efault; 8880 target_to_host_old_sigset(&set, p); 8881 unlock_user(p, arg2, 0); 8882 set_ptr = &set; 8883 } else { 8884 how = 0; 8885 set_ptr = NULL; 8886 } 8887 ret = do_sigprocmask(how, set_ptr, &oldset); 8888 if (!is_error(ret) && arg3) { 8889 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0))) 8890 goto efault; 8891 host_to_target_old_sigset(p, &oldset); 8892 unlock_user(p, arg3, sizeof(target_sigset_t)); 8893 } 8894 #endif 8895 } 8896 break; 8897 #endif 8898 case TARGET_NR_rt_sigprocmask: 8899 { 8900 int how = arg1; 8901 sigset_t set, oldset, *set_ptr; 8902 8903 if (arg4 != sizeof(target_sigset_t)) { 8904 ret = -TARGET_EINVAL; 8905 break; 8906 } 8907 8908 if (arg2) { 8909 switch(how) { 8910 case TARGET_SIG_BLOCK: 8911 how = SIG_BLOCK; 8912 break; 8913 case TARGET_SIG_UNBLOCK: 8914 how = SIG_UNBLOCK; 8915 break; 8916 case TARGET_SIG_SETMASK: 8917 how = SIG_SETMASK; 8918 break; 8919 default: 8920 ret = -TARGET_EINVAL; 8921 goto fail; 8922 } 8923 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1))) 8924 goto efault; 8925 target_to_host_sigset(&set, p); 8926 unlock_user(p, arg2, 0); 8927 set_ptr = &set; 8928 } else { 8929 how = 0; 8930 set_ptr = NULL; 8931 } 8932 ret = do_sigprocmask(how, set_ptr, &oldset); 8933 if (!is_error(ret) && arg3) { 8934 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0))) 8935 goto efault; 8936 host_to_target_sigset(p, &oldset); 8937 unlock_user(p, arg3, sizeof(target_sigset_t)); 8938 } 8939 } 8940 break; 8941 #ifdef TARGET_NR_sigpending 8942 case TARGET_NR_sigpending: 8943 { 8944 sigset_t set; 8945 ret = get_errno(sigpending(&set)); 8946 if (!is_error(ret)) { 8947 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0))) 8948 goto efault; 8949 host_to_target_old_sigset(p, &set); 8950 unlock_user(p, arg1, sizeof(target_sigset_t)); 8951 } 8952 } 8953 break; 8954 #endif 8955 case TARGET_NR_rt_sigpending: 8956 { 8957 sigset_t set; 8958 8959 /* Yes, this check is >, not != like most. We follow the kernel's 8960 * logic and it does it like this because it implements 8961 * NR_sigpending through the same code path, and in that case 8962 * the old_sigset_t is smaller in size. 8963 */ 8964 if (arg2 > sizeof(target_sigset_t)) { 8965 ret = -TARGET_EINVAL; 8966 break; 8967 } 8968 8969 ret = get_errno(sigpending(&set)); 8970 if (!is_error(ret)) { 8971 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0))) 8972 goto efault; 8973 host_to_target_sigset(p, &set); 8974 unlock_user(p, arg1, sizeof(target_sigset_t)); 8975 } 8976 } 8977 break; 8978 #ifdef TARGET_NR_sigsuspend 8979 case TARGET_NR_sigsuspend: 8980 { 8981 TaskState *ts = cpu->opaque; 8982 #if defined(TARGET_ALPHA) 8983 abi_ulong mask = arg1; 8984 target_to_host_old_sigset(&ts->sigsuspend_mask, &mask); 8985 #else 8986 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1))) 8987 goto efault; 8988 target_to_host_old_sigset(&ts->sigsuspend_mask, p); 8989 unlock_user(p, arg1, 0); 8990 #endif 8991 ret = get_errno(safe_rt_sigsuspend(&ts->sigsuspend_mask, 8992 SIGSET_T_SIZE)); 8993 if (ret != -TARGET_ERESTARTSYS) { 8994 ts->in_sigsuspend = 1; 8995 } 8996 } 8997 break; 8998 #endif 8999 case TARGET_NR_rt_sigsuspend: 9000 { 9001 TaskState *ts = cpu->opaque; 9002 9003 if (arg2 != sizeof(target_sigset_t)) { 9004 ret = -TARGET_EINVAL; 9005 break; 9006 } 9007 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1))) 9008 goto efault; 9009 target_to_host_sigset(&ts->sigsuspend_mask, p); 9010 unlock_user(p, arg1, 0); 9011 ret = get_errno(safe_rt_sigsuspend(&ts->sigsuspend_mask, 9012 SIGSET_T_SIZE)); 9013 if (ret != -TARGET_ERESTARTSYS) { 9014 ts->in_sigsuspend = 1; 9015 } 9016 } 9017 break; 9018 case TARGET_NR_rt_sigtimedwait: 9019 { 9020 sigset_t set; 9021 struct timespec uts, *puts; 9022 siginfo_t uinfo; 9023 9024 if (arg4 != sizeof(target_sigset_t)) { 9025 ret = -TARGET_EINVAL; 9026 break; 9027 } 9028 9029 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1))) 9030 goto efault; 9031 target_to_host_sigset(&set, p); 9032 unlock_user(p, arg1, 0); 9033 if (arg3) { 9034 puts = &uts; 9035 target_to_host_timespec(puts, arg3); 9036 } else { 9037 puts = NULL; 9038 } 9039 ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts, 9040 SIGSET_T_SIZE)); 9041 if (!is_error(ret)) { 9042 if (arg2) { 9043 p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t), 9044 0); 9045 if (!p) { 9046 goto efault; 9047 } 9048 host_to_target_siginfo(p, &uinfo); 9049 unlock_user(p, arg2, sizeof(target_siginfo_t)); 9050 } 9051 ret = host_to_target_signal(ret); 9052 } 9053 } 9054 break; 9055 case TARGET_NR_rt_sigqueueinfo: 9056 { 9057 siginfo_t uinfo; 9058 9059 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1); 9060 if (!p) { 9061 goto efault; 9062 } 9063 target_to_host_siginfo(&uinfo, p); 9064 unlock_user(p, arg3, 0); 9065 ret = get_errno(sys_rt_sigqueueinfo(arg1, arg2, &uinfo)); 9066 } 9067 break; 9068 case TARGET_NR_rt_tgsigqueueinfo: 9069 { 9070 siginfo_t uinfo; 9071 9072 p = lock_user(VERIFY_READ, arg4, sizeof(target_siginfo_t), 1); 9073 if (!p) { 9074 goto efault; 9075 } 9076 target_to_host_siginfo(&uinfo, p); 9077 unlock_user(p, arg4, 0); 9078 ret = get_errno(sys_rt_tgsigqueueinfo(arg1, arg2, arg3, &uinfo)); 9079 } 9080 break; 9081 #ifdef TARGET_NR_sigreturn 9082 case TARGET_NR_sigreturn: 9083 if (block_signals()) { 9084 ret = -TARGET_ERESTARTSYS; 9085 } else { 9086 ret = do_sigreturn(cpu_env); 9087 } 9088 break; 9089 #endif 9090 case TARGET_NR_rt_sigreturn: 9091 if (block_signals()) { 9092 ret = -TARGET_ERESTARTSYS; 9093 } else { 9094 ret = do_rt_sigreturn(cpu_env); 9095 } 9096 break; 9097 case TARGET_NR_sethostname: 9098 if (!(p = lock_user_string(arg1))) 9099 goto efault; 9100 ret = get_errno(sethostname(p, arg2)); 9101 unlock_user(p, arg1, 0); 9102 break; 9103 case TARGET_NR_setrlimit: 9104 { 9105 int resource = target_to_host_resource(arg1); 9106 struct target_rlimit *target_rlim; 9107 struct rlimit rlim; 9108 if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1)) 9109 goto efault; 9110 rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur); 9111 rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max); 9112 unlock_user_struct(target_rlim, arg2, 0); 9113 ret = get_errno(setrlimit(resource, &rlim)); 9114 } 9115 break; 9116 case TARGET_NR_getrlimit: 9117 { 9118 int resource = target_to_host_resource(arg1); 9119 struct target_rlimit *target_rlim; 9120 struct rlimit rlim; 9121 9122 ret = get_errno(getrlimit(resource, &rlim)); 9123 if (!is_error(ret)) { 9124 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0)) 9125 goto efault; 9126 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur); 9127 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max); 9128 unlock_user_struct(target_rlim, arg2, 1); 9129 } 9130 } 9131 break; 9132 case TARGET_NR_getrusage: 9133 { 9134 struct rusage rusage; 9135 ret = get_errno(getrusage(arg1, &rusage)); 9136 if (!is_error(ret)) { 9137 ret = host_to_target_rusage(arg2, &rusage); 9138 } 9139 } 9140 break; 9141 case TARGET_NR_gettimeofday: 9142 { 9143 struct timeval tv; 9144 ret = get_errno(gettimeofday(&tv, NULL)); 9145 if (!is_error(ret)) { 9146 if (copy_to_user_timeval(arg1, &tv)) 9147 goto efault; 9148 } 9149 } 9150 break; 9151 case TARGET_NR_settimeofday: 9152 { 9153 struct timeval tv, *ptv = NULL; 9154 struct timezone tz, *ptz = NULL; 9155 9156 if (arg1) { 9157 if (copy_from_user_timeval(&tv, arg1)) { 9158 goto efault; 9159 } 9160 ptv = &tv; 9161 } 9162 9163 if (arg2) { 9164 if (copy_from_user_timezone(&tz, arg2)) { 9165 goto efault; 9166 } 9167 ptz = &tz; 9168 } 9169 9170 ret = get_errno(settimeofday(ptv, ptz)); 9171 } 9172 break; 9173 #if defined(TARGET_NR_select) 9174 case TARGET_NR_select: 9175 #if defined(TARGET_WANT_NI_OLD_SELECT) 9176 /* some architectures used to have old_select here 9177 * but now ENOSYS it. 9178 */ 9179 ret = -TARGET_ENOSYS; 9180 #elif defined(TARGET_WANT_OLD_SYS_SELECT) 9181 ret = do_old_select(arg1); 9182 #else 9183 ret = do_select(arg1, arg2, arg3, arg4, arg5); 9184 #endif 9185 break; 9186 #endif 9187 #ifdef TARGET_NR_pselect6 9188 case TARGET_NR_pselect6: 9189 { 9190 abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr; 9191 fd_set rfds, wfds, efds; 9192 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr; 9193 struct timespec ts, *ts_ptr; 9194 9195 /* 9196 * The 6th arg is actually two args smashed together, 9197 * so we cannot use the C library. 9198 */ 9199 sigset_t set; 9200 struct { 9201 sigset_t *set; 9202 size_t size; 9203 } sig, *sig_ptr; 9204 9205 abi_ulong arg_sigset, arg_sigsize, *arg7; 9206 target_sigset_t *target_sigset; 9207 9208 n = arg1; 9209 rfd_addr = arg2; 9210 wfd_addr = arg3; 9211 efd_addr = arg4; 9212 ts_addr = arg5; 9213 9214 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n); 9215 if (ret) { 9216 goto fail; 9217 } 9218 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n); 9219 if (ret) { 9220 goto fail; 9221 } 9222 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n); 9223 if (ret) { 9224 goto fail; 9225 } 9226 9227 /* 9228 * This takes a timespec, and not a timeval, so we cannot 9229 * use the do_select() helper ... 9230 */ 9231 if (ts_addr) { 9232 if (target_to_host_timespec(&ts, ts_addr)) { 9233 goto efault; 9234 } 9235 ts_ptr = &ts; 9236 } else { 9237 ts_ptr = NULL; 9238 } 9239 9240 /* Extract the two packed args for the sigset */ 9241 if (arg6) { 9242 sig_ptr = &sig; 9243 sig.size = SIGSET_T_SIZE; 9244 9245 arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1); 9246 if (!arg7) { 9247 goto efault; 9248 } 9249 arg_sigset = tswapal(arg7[0]); 9250 arg_sigsize = tswapal(arg7[1]); 9251 unlock_user(arg7, arg6, 0); 9252 9253 if (arg_sigset) { 9254 sig.set = &set; 9255 if (arg_sigsize != sizeof(*target_sigset)) { 9256 /* Like the kernel, we enforce correct size sigsets */ 9257 ret = -TARGET_EINVAL; 9258 goto fail; 9259 } 9260 target_sigset = lock_user(VERIFY_READ, arg_sigset, 9261 sizeof(*target_sigset), 1); 9262 if (!target_sigset) { 9263 goto efault; 9264 } 9265 target_to_host_sigset(&set, target_sigset); 9266 unlock_user(target_sigset, arg_sigset, 0); 9267 } else { 9268 sig.set = NULL; 9269 } 9270 } else { 9271 sig_ptr = NULL; 9272 } 9273 9274 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr, 9275 ts_ptr, sig_ptr)); 9276 9277 if (!is_error(ret)) { 9278 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) 9279 goto efault; 9280 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) 9281 goto efault; 9282 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) 9283 goto efault; 9284 9285 if (ts_addr && host_to_target_timespec(ts_addr, &ts)) 9286 goto efault; 9287 } 9288 } 9289 break; 9290 #endif 9291 #ifdef TARGET_NR_symlink 9292 case TARGET_NR_symlink: 9293 { 9294 void *p2; 9295 p = lock_user_string(arg1); 9296 p2 = lock_user_string(arg2); 9297 if (!p || !p2) 9298 ret = -TARGET_EFAULT; 9299 else 9300 ret = get_errno(symlink(p, p2)); 9301 unlock_user(p2, arg2, 0); 9302 unlock_user(p, arg1, 0); 9303 } 9304 break; 9305 #endif 9306 #if defined(TARGET_NR_symlinkat) 9307 case TARGET_NR_symlinkat: 9308 { 9309 void *p2; 9310 p = lock_user_string(arg1); 9311 p2 = lock_user_string(arg3); 9312 if (!p || !p2) 9313 ret = -TARGET_EFAULT; 9314 else 9315 ret = get_errno(symlinkat(p, arg2, p2)); 9316 unlock_user(p2, arg3, 0); 9317 unlock_user(p, arg1, 0); 9318 } 9319 break; 9320 #endif 9321 #ifdef TARGET_NR_oldlstat 9322 case TARGET_NR_oldlstat: 9323 goto unimplemented; 9324 #endif 9325 #ifdef TARGET_NR_readlink 9326 case TARGET_NR_readlink: 9327 { 9328 void *p2; 9329 p = lock_user_string(arg1); 9330 p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0); 9331 if (!p || !p2) { 9332 ret = -TARGET_EFAULT; 9333 } else if (!arg3) { 9334 /* Short circuit this for the magic exe check. */ 9335 ret = -TARGET_EINVAL; 9336 } else if (is_proc_myself((const char *)p, "exe")) { 9337 char real[PATH_MAX], *temp; 9338 temp = realpath(exec_path, real); 9339 /* Return value is # of bytes that we wrote to the buffer. */ 9340 if (temp == NULL) { 9341 ret = get_errno(-1); 9342 } else { 9343 /* Don't worry about sign mismatch as earlier mapping 9344 * logic would have thrown a bad address error. */ 9345 ret = MIN(strlen(real), arg3); 9346 /* We cannot NUL terminate the string. */ 9347 memcpy(p2, real, ret); 9348 } 9349 } else { 9350 ret = get_errno(readlink(path(p), p2, arg3)); 9351 } 9352 unlock_user(p2, arg2, ret); 9353 unlock_user(p, arg1, 0); 9354 } 9355 break; 9356 #endif 9357 #if defined(TARGET_NR_readlinkat) 9358 case TARGET_NR_readlinkat: 9359 { 9360 void *p2; 9361 p = lock_user_string(arg2); 9362 p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0); 9363 if (!p || !p2) { 9364 ret = -TARGET_EFAULT; 9365 } else if (is_proc_myself((const char *)p, "exe")) { 9366 char real[PATH_MAX], *temp; 9367 temp = realpath(exec_path, real); 9368 ret = temp == NULL ? get_errno(-1) : strlen(real) ; 9369 snprintf((char *)p2, arg4, "%s", real); 9370 } else { 9371 ret = get_errno(readlinkat(arg1, path(p), p2, arg4)); 9372 } 9373 unlock_user(p2, arg3, ret); 9374 unlock_user(p, arg2, 0); 9375 } 9376 break; 9377 #endif 9378 #ifdef TARGET_NR_uselib 9379 case TARGET_NR_uselib: 9380 goto unimplemented; 9381 #endif 9382 #ifdef TARGET_NR_swapon 9383 case TARGET_NR_swapon: 9384 if (!(p = lock_user_string(arg1))) 9385 goto efault; 9386 ret = get_errno(swapon(p, arg2)); 9387 unlock_user(p, arg1, 0); 9388 break; 9389 #endif 9390 case TARGET_NR_reboot: 9391 if (arg3 == LINUX_REBOOT_CMD_RESTART2) { 9392 /* arg4 must be ignored in all other cases */ 9393 p = lock_user_string(arg4); 9394 if (!p) { 9395 goto efault; 9396 } 9397 ret = get_errno(reboot(arg1, arg2, arg3, p)); 9398 unlock_user(p, arg4, 0); 9399 } else { 9400 ret = get_errno(reboot(arg1, arg2, arg3, NULL)); 9401 } 9402 break; 9403 #ifdef TARGET_NR_readdir 9404 case TARGET_NR_readdir: 9405 goto unimplemented; 9406 #endif 9407 #ifdef TARGET_NR_mmap 9408 case TARGET_NR_mmap: 9409 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \ 9410 (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \ 9411 defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \ 9412 || defined(TARGET_S390X) 9413 { 9414 abi_ulong *v; 9415 abi_ulong v1, v2, v3, v4, v5, v6; 9416 if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1))) 9417 goto efault; 9418 v1 = tswapal(v[0]); 9419 v2 = tswapal(v[1]); 9420 v3 = tswapal(v[2]); 9421 v4 = tswapal(v[3]); 9422 v5 = tswapal(v[4]); 9423 v6 = tswapal(v[5]); 9424 unlock_user(v, arg1, 0); 9425 ret = get_errno(target_mmap(v1, v2, v3, 9426 target_to_host_bitmask(v4, mmap_flags_tbl), 9427 v5, v6)); 9428 } 9429 #else 9430 ret = get_errno(target_mmap(arg1, arg2, arg3, 9431 target_to_host_bitmask(arg4, mmap_flags_tbl), 9432 arg5, 9433 arg6)); 9434 #endif 9435 break; 9436 #endif 9437 #ifdef TARGET_NR_mmap2 9438 case TARGET_NR_mmap2: 9439 #ifndef MMAP_SHIFT 9440 #define MMAP_SHIFT 12 9441 #endif 9442 ret = get_errno(target_mmap(arg1, arg2, arg3, 9443 target_to_host_bitmask(arg4, mmap_flags_tbl), 9444 arg5, 9445 arg6 << MMAP_SHIFT)); 9446 break; 9447 #endif 9448 case TARGET_NR_munmap: 9449 ret = get_errno(target_munmap(arg1, arg2)); 9450 break; 9451 case TARGET_NR_mprotect: 9452 { 9453 TaskState *ts = cpu->opaque; 9454 /* Special hack to detect libc making the stack executable. */ 9455 if ((arg3 & PROT_GROWSDOWN) 9456 && arg1 >= ts->info->stack_limit 9457 && arg1 <= ts->info->start_stack) { 9458 arg3 &= ~PROT_GROWSDOWN; 9459 arg2 = arg2 + arg1 - ts->info->stack_limit; 9460 arg1 = ts->info->stack_limit; 9461 } 9462 } 9463 ret = get_errno(target_mprotect(arg1, arg2, arg3)); 9464 break; 9465 #ifdef TARGET_NR_mremap 9466 case TARGET_NR_mremap: 9467 ret = get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5)); 9468 break; 9469 #endif 9470 /* ??? msync/mlock/munlock are broken for softmmu. */ 9471 #ifdef TARGET_NR_msync 9472 case TARGET_NR_msync: 9473 ret = get_errno(msync(g2h(arg1), arg2, arg3)); 9474 break; 9475 #endif 9476 #ifdef TARGET_NR_mlock 9477 case TARGET_NR_mlock: 9478 ret = get_errno(mlock(g2h(arg1), arg2)); 9479 break; 9480 #endif 9481 #ifdef TARGET_NR_munlock 9482 case TARGET_NR_munlock: 9483 ret = get_errno(munlock(g2h(arg1), arg2)); 9484 break; 9485 #endif 9486 #ifdef TARGET_NR_mlockall 9487 case TARGET_NR_mlockall: 9488 ret = get_errno(mlockall(target_to_host_mlockall_arg(arg1))); 9489 break; 9490 #endif 9491 #ifdef TARGET_NR_munlockall 9492 case TARGET_NR_munlockall: 9493 ret = get_errno(munlockall()); 9494 break; 9495 #endif 9496 case TARGET_NR_truncate: 9497 if (!(p = lock_user_string(arg1))) 9498 goto efault; 9499 ret = get_errno(truncate(p, arg2)); 9500 unlock_user(p, arg1, 0); 9501 break; 9502 case TARGET_NR_ftruncate: 9503 ret = get_errno(ftruncate(arg1, arg2)); 9504 break; 9505 case TARGET_NR_fchmod: 9506 ret = get_errno(fchmod(arg1, arg2)); 9507 break; 9508 #if defined(TARGET_NR_fchmodat) 9509 case TARGET_NR_fchmodat: 9510 if (!(p = lock_user_string(arg2))) 9511 goto efault; 9512 ret = get_errno(fchmodat(arg1, p, arg3, 0)); 9513 unlock_user(p, arg2, 0); 9514 break; 9515 #endif 9516 case TARGET_NR_getpriority: 9517 /* Note that negative values are valid for getpriority, so we must 9518 differentiate based on errno settings. */ 9519 errno = 0; 9520 ret = getpriority(arg1, arg2); 9521 if (ret == -1 && errno != 0) { 9522 ret = -host_to_target_errno(errno); 9523 break; 9524 } 9525 #ifdef TARGET_ALPHA 9526 /* Return value is the unbiased priority. Signal no error. */ 9527 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0; 9528 #else 9529 /* Return value is a biased priority to avoid negative numbers. */ 9530 ret = 20 - ret; 9531 #endif 9532 break; 9533 case TARGET_NR_setpriority: 9534 ret = get_errno(setpriority(arg1, arg2, arg3)); 9535 break; 9536 #ifdef TARGET_NR_profil 9537 case TARGET_NR_profil: 9538 goto unimplemented; 9539 #endif 9540 case TARGET_NR_statfs: 9541 if (!(p = lock_user_string(arg1))) 9542 goto efault; 9543 ret = get_errno(statfs(path(p), &stfs)); 9544 unlock_user(p, arg1, 0); 9545 convert_statfs: 9546 if (!is_error(ret)) { 9547 struct target_statfs *target_stfs; 9548 9549 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0)) 9550 goto efault; 9551 __put_user(stfs.f_type, &target_stfs->f_type); 9552 __put_user(stfs.f_bsize, &target_stfs->f_bsize); 9553 __put_user(stfs.f_blocks, &target_stfs->f_blocks); 9554 __put_user(stfs.f_bfree, &target_stfs->f_bfree); 9555 __put_user(stfs.f_bavail, &target_stfs->f_bavail); 9556 __put_user(stfs.f_files, &target_stfs->f_files); 9557 __put_user(stfs.f_ffree, &target_stfs->f_ffree); 9558 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]); 9559 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]); 9560 __put_user(stfs.f_namelen, &target_stfs->f_namelen); 9561 __put_user(stfs.f_frsize, &target_stfs->f_frsize); 9562 #ifdef _STATFS_F_FLAGS 9563 __put_user(stfs.f_flags, &target_stfs->f_flags); 9564 #else 9565 __put_user(0, &target_stfs->f_flags); 9566 #endif 9567 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare)); 9568 unlock_user_struct(target_stfs, arg2, 1); 9569 } 9570 break; 9571 case TARGET_NR_fstatfs: 9572 ret = get_errno(fstatfs(arg1, &stfs)); 9573 goto convert_statfs; 9574 #ifdef TARGET_NR_statfs64 9575 case TARGET_NR_statfs64: 9576 if (!(p = lock_user_string(arg1))) 9577 goto efault; 9578 ret = get_errno(statfs(path(p), &stfs)); 9579 unlock_user(p, arg1, 0); 9580 convert_statfs64: 9581 if (!is_error(ret)) { 9582 struct target_statfs64 *target_stfs; 9583 9584 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0)) 9585 goto efault; 9586 __put_user(stfs.f_type, &target_stfs->f_type); 9587 __put_user(stfs.f_bsize, &target_stfs->f_bsize); 9588 __put_user(stfs.f_blocks, &target_stfs->f_blocks); 9589 __put_user(stfs.f_bfree, &target_stfs->f_bfree); 9590 __put_user(stfs.f_bavail, &target_stfs->f_bavail); 9591 __put_user(stfs.f_files, &target_stfs->f_files); 9592 __put_user(stfs.f_ffree, &target_stfs->f_ffree); 9593 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]); 9594 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]); 9595 __put_user(stfs.f_namelen, &target_stfs->f_namelen); 9596 __put_user(stfs.f_frsize, &target_stfs->f_frsize); 9597 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare)); 9598 unlock_user_struct(target_stfs, arg3, 1); 9599 } 9600 break; 9601 case TARGET_NR_fstatfs64: 9602 ret = get_errno(fstatfs(arg1, &stfs)); 9603 goto convert_statfs64; 9604 #endif 9605 #ifdef TARGET_NR_ioperm 9606 case TARGET_NR_ioperm: 9607 goto unimplemented; 9608 #endif 9609 #ifdef TARGET_NR_socketcall 9610 case TARGET_NR_socketcall: 9611 ret = do_socketcall(arg1, arg2); 9612 break; 9613 #endif 9614 #ifdef TARGET_NR_accept 9615 case TARGET_NR_accept: 9616 ret = do_accept4(arg1, arg2, arg3, 0); 9617 break; 9618 #endif 9619 #ifdef TARGET_NR_accept4 9620 case TARGET_NR_accept4: 9621 ret = do_accept4(arg1, arg2, arg3, arg4); 9622 break; 9623 #endif 9624 #ifdef TARGET_NR_bind 9625 case TARGET_NR_bind: 9626 ret = do_bind(arg1, arg2, arg3); 9627 break; 9628 #endif 9629 #ifdef TARGET_NR_connect 9630 case TARGET_NR_connect: 9631 ret = do_connect(arg1, arg2, arg3); 9632 break; 9633 #endif 9634 #ifdef TARGET_NR_getpeername 9635 case TARGET_NR_getpeername: 9636 ret = do_getpeername(arg1, arg2, arg3); 9637 break; 9638 #endif 9639 #ifdef TARGET_NR_getsockname 9640 case TARGET_NR_getsockname: 9641 ret = do_getsockname(arg1, arg2, arg3); 9642 break; 9643 #endif 9644 #ifdef TARGET_NR_getsockopt 9645 case TARGET_NR_getsockopt: 9646 ret = do_getsockopt(arg1, arg2, arg3, arg4, arg5); 9647 break; 9648 #endif 9649 #ifdef TARGET_NR_listen 9650 case TARGET_NR_listen: 9651 ret = get_errno(listen(arg1, arg2)); 9652 break; 9653 #endif 9654 #ifdef TARGET_NR_recv 9655 case TARGET_NR_recv: 9656 ret = do_recvfrom(arg1, arg2, arg3, arg4, 0, 0); 9657 break; 9658 #endif 9659 #ifdef TARGET_NR_recvfrom 9660 case TARGET_NR_recvfrom: 9661 ret = do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6); 9662 break; 9663 #endif 9664 #ifdef TARGET_NR_recvmsg 9665 case TARGET_NR_recvmsg: 9666 ret = do_sendrecvmsg(arg1, arg2, arg3, 0); 9667 break; 9668 #endif 9669 #ifdef TARGET_NR_send 9670 case TARGET_NR_send: 9671 ret = do_sendto(arg1, arg2, arg3, arg4, 0, 0); 9672 break; 9673 #endif 9674 #ifdef TARGET_NR_sendmsg 9675 case TARGET_NR_sendmsg: 9676 ret = do_sendrecvmsg(arg1, arg2, arg3, 1); 9677 break; 9678 #endif 9679 #ifdef TARGET_NR_sendmmsg 9680 case TARGET_NR_sendmmsg: 9681 ret = do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1); 9682 break; 9683 case TARGET_NR_recvmmsg: 9684 ret = do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0); 9685 break; 9686 #endif 9687 #ifdef TARGET_NR_sendto 9688 case TARGET_NR_sendto: 9689 ret = do_sendto(arg1, arg2, arg3, arg4, arg5, arg6); 9690 break; 9691 #endif 9692 #ifdef TARGET_NR_shutdown 9693 case TARGET_NR_shutdown: 9694 ret = get_errno(shutdown(arg1, arg2)); 9695 break; 9696 #endif 9697 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom) 9698 case TARGET_NR_getrandom: 9699 p = lock_user(VERIFY_WRITE, arg1, arg2, 0); 9700 if (!p) { 9701 goto efault; 9702 } 9703 ret = get_errno(getrandom(p, arg2, arg3)); 9704 unlock_user(p, arg1, ret); 9705 break; 9706 #endif 9707 #ifdef TARGET_NR_socket 9708 case TARGET_NR_socket: 9709 ret = do_socket(arg1, arg2, arg3); 9710 break; 9711 #endif 9712 #ifdef TARGET_NR_socketpair 9713 case TARGET_NR_socketpair: 9714 ret = do_socketpair(arg1, arg2, arg3, arg4); 9715 break; 9716 #endif 9717 #ifdef TARGET_NR_setsockopt 9718 case TARGET_NR_setsockopt: 9719 ret = do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5); 9720 break; 9721 #endif 9722 #if defined(TARGET_NR_syslog) 9723 case TARGET_NR_syslog: 9724 { 9725 int len = arg2; 9726 9727 switch (arg1) { 9728 case TARGET_SYSLOG_ACTION_CLOSE: /* Close log */ 9729 case TARGET_SYSLOG_ACTION_OPEN: /* Open log */ 9730 case TARGET_SYSLOG_ACTION_CLEAR: /* Clear ring buffer */ 9731 case TARGET_SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging */ 9732 case TARGET_SYSLOG_ACTION_CONSOLE_ON: /* Enable logging */ 9733 case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL: /* Set messages level */ 9734 case TARGET_SYSLOG_ACTION_SIZE_UNREAD: /* Number of chars */ 9735 case TARGET_SYSLOG_ACTION_SIZE_BUFFER: /* Size of the buffer */ 9736 { 9737 ret = get_errno(sys_syslog((int)arg1, NULL, (int)arg3)); 9738 } 9739 break; 9740 case TARGET_SYSLOG_ACTION_READ: /* Read from log */ 9741 case TARGET_SYSLOG_ACTION_READ_CLEAR: /* Read/clear msgs */ 9742 case TARGET_SYSLOG_ACTION_READ_ALL: /* Read last messages */ 9743 { 9744 ret = -TARGET_EINVAL; 9745 if (len < 0) { 9746 goto fail; 9747 } 9748 ret = 0; 9749 if (len == 0) { 9750 break; 9751 } 9752 p = lock_user(VERIFY_WRITE, arg2, arg3, 0); 9753 if (!p) { 9754 ret = -TARGET_EFAULT; 9755 goto fail; 9756 } 9757 ret = get_errno(sys_syslog((int)arg1, p, (int)arg3)); 9758 unlock_user(p, arg2, arg3); 9759 } 9760 break; 9761 default: 9762 ret = -EINVAL; 9763 break; 9764 } 9765 } 9766 break; 9767 #endif 9768 case TARGET_NR_setitimer: 9769 { 9770 struct itimerval value, ovalue, *pvalue; 9771 9772 if (arg2) { 9773 pvalue = &value; 9774 if (copy_from_user_timeval(&pvalue->it_interval, arg2) 9775 || copy_from_user_timeval(&pvalue->it_value, 9776 arg2 + sizeof(struct target_timeval))) 9777 goto efault; 9778 } else { 9779 pvalue = NULL; 9780 } 9781 ret = get_errno(setitimer(arg1, pvalue, &ovalue)); 9782 if (!is_error(ret) && arg3) { 9783 if (copy_to_user_timeval(arg3, 9784 &ovalue.it_interval) 9785 || copy_to_user_timeval(arg3 + sizeof(struct target_timeval), 9786 &ovalue.it_value)) 9787 goto efault; 9788 } 9789 } 9790 break; 9791 case TARGET_NR_getitimer: 9792 { 9793 struct itimerval value; 9794 9795 ret = get_errno(getitimer(arg1, &value)); 9796 if (!is_error(ret) && arg2) { 9797 if (copy_to_user_timeval(arg2, 9798 &value.it_interval) 9799 || copy_to_user_timeval(arg2 + sizeof(struct target_timeval), 9800 &value.it_value)) 9801 goto efault; 9802 } 9803 } 9804 break; 9805 #ifdef TARGET_NR_stat 9806 case TARGET_NR_stat: 9807 if (!(p = lock_user_string(arg1))) 9808 goto efault; 9809 ret = get_errno(stat(path(p), &st)); 9810 unlock_user(p, arg1, 0); 9811 goto do_stat; 9812 #endif 9813 #ifdef TARGET_NR_lstat 9814 case TARGET_NR_lstat: 9815 if (!(p = lock_user_string(arg1))) 9816 goto efault; 9817 ret = get_errno(lstat(path(p), &st)); 9818 unlock_user(p, arg1, 0); 9819 goto do_stat; 9820 #endif 9821 case TARGET_NR_fstat: 9822 { 9823 ret = get_errno(fstat(arg1, &st)); 9824 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat) 9825 do_stat: 9826 #endif 9827 if (!is_error(ret)) { 9828 struct target_stat *target_st; 9829 9830 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0)) 9831 goto efault; 9832 memset(target_st, 0, sizeof(*target_st)); 9833 __put_user(st.st_dev, &target_st->st_dev); 9834 __put_user(st.st_ino, &target_st->st_ino); 9835 __put_user(st.st_mode, &target_st->st_mode); 9836 __put_user(st.st_uid, &target_st->st_uid); 9837 __put_user(st.st_gid, &target_st->st_gid); 9838 __put_user(st.st_nlink, &target_st->st_nlink); 9839 __put_user(st.st_rdev, &target_st->st_rdev); 9840 __put_user(st.st_size, &target_st->st_size); 9841 __put_user(st.st_blksize, &target_st->st_blksize); 9842 __put_user(st.st_blocks, &target_st->st_blocks); 9843 __put_user(st.st_atime, &target_st->target_st_atime); 9844 __put_user(st.st_mtime, &target_st->target_st_mtime); 9845 __put_user(st.st_ctime, &target_st->target_st_ctime); 9846 unlock_user_struct(target_st, arg2, 1); 9847 } 9848 } 9849 break; 9850 #ifdef TARGET_NR_olduname 9851 case TARGET_NR_olduname: 9852 goto unimplemented; 9853 #endif 9854 #ifdef TARGET_NR_iopl 9855 case TARGET_NR_iopl: 9856 goto unimplemented; 9857 #endif 9858 case TARGET_NR_vhangup: 9859 ret = get_errno(vhangup()); 9860 break; 9861 #ifdef TARGET_NR_idle 9862 case TARGET_NR_idle: 9863 goto unimplemented; 9864 #endif 9865 #ifdef TARGET_NR_syscall 9866 case TARGET_NR_syscall: 9867 ret = do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5, 9868 arg6, arg7, arg8, 0); 9869 break; 9870 #endif 9871 case TARGET_NR_wait4: 9872 { 9873 int status; 9874 abi_long status_ptr = arg2; 9875 struct rusage rusage, *rusage_ptr; 9876 abi_ulong target_rusage = arg4; 9877 abi_long rusage_err; 9878 if (target_rusage) 9879 rusage_ptr = &rusage; 9880 else 9881 rusage_ptr = NULL; 9882 ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr)); 9883 if (!is_error(ret)) { 9884 if (status_ptr && ret) { 9885 status = host_to_target_waitstatus(status); 9886 if (put_user_s32(status, status_ptr)) 9887 goto efault; 9888 } 9889 if (target_rusage) { 9890 rusage_err = host_to_target_rusage(target_rusage, &rusage); 9891 if (rusage_err) { 9892 ret = rusage_err; 9893 } 9894 } 9895 } 9896 } 9897 break; 9898 #ifdef TARGET_NR_swapoff 9899 case TARGET_NR_swapoff: 9900 if (!(p = lock_user_string(arg1))) 9901 goto efault; 9902 ret = get_errno(swapoff(p)); 9903 unlock_user(p, arg1, 0); 9904 break; 9905 #endif 9906 case TARGET_NR_sysinfo: 9907 { 9908 struct target_sysinfo *target_value; 9909 struct sysinfo value; 9910 ret = get_errno(sysinfo(&value)); 9911 if (!is_error(ret) && arg1) 9912 { 9913 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0)) 9914 goto efault; 9915 __put_user(value.uptime, &target_value->uptime); 9916 __put_user(value.loads[0], &target_value->loads[0]); 9917 __put_user(value.loads[1], &target_value->loads[1]); 9918 __put_user(value.loads[2], &target_value->loads[2]); 9919 __put_user(value.totalram, &target_value->totalram); 9920 __put_user(value.freeram, &target_value->freeram); 9921 __put_user(value.sharedram, &target_value->sharedram); 9922 __put_user(value.bufferram, &target_value->bufferram); 9923 __put_user(value.totalswap, &target_value->totalswap); 9924 __put_user(value.freeswap, &target_value->freeswap); 9925 __put_user(value.procs, &target_value->procs); 9926 __put_user(value.totalhigh, &target_value->totalhigh); 9927 __put_user(value.freehigh, &target_value->freehigh); 9928 __put_user(value.mem_unit, &target_value->mem_unit); 9929 unlock_user_struct(target_value, arg1, 1); 9930 } 9931 } 9932 break; 9933 #ifdef TARGET_NR_ipc 9934 case TARGET_NR_ipc: 9935 ret = do_ipc(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6); 9936 break; 9937 #endif 9938 #ifdef TARGET_NR_semget 9939 case TARGET_NR_semget: 9940 ret = get_errno(semget(arg1, arg2, arg3)); 9941 break; 9942 #endif 9943 #ifdef TARGET_NR_semop 9944 case TARGET_NR_semop: 9945 ret = do_semop(arg1, arg2, arg3); 9946 break; 9947 #endif 9948 #ifdef TARGET_NR_semctl 9949 case TARGET_NR_semctl: 9950 ret = do_semctl(arg1, arg2, arg3, arg4); 9951 break; 9952 #endif 9953 #ifdef TARGET_NR_msgctl 9954 case TARGET_NR_msgctl: 9955 ret = do_msgctl(arg1, arg2, arg3); 9956 break; 9957 #endif 9958 #ifdef TARGET_NR_msgget 9959 case TARGET_NR_msgget: 9960 ret = get_errno(msgget(arg1, arg2)); 9961 break; 9962 #endif 9963 #ifdef TARGET_NR_msgrcv 9964 case TARGET_NR_msgrcv: 9965 ret = do_msgrcv(arg1, arg2, arg3, arg4, arg5); 9966 break; 9967 #endif 9968 #ifdef TARGET_NR_msgsnd 9969 case TARGET_NR_msgsnd: 9970 ret = do_msgsnd(arg1, arg2, arg3, arg4); 9971 break; 9972 #endif 9973 #ifdef TARGET_NR_shmget 9974 case TARGET_NR_shmget: 9975 ret = get_errno(shmget(arg1, arg2, arg3)); 9976 break; 9977 #endif 9978 #ifdef TARGET_NR_shmctl 9979 case TARGET_NR_shmctl: 9980 ret = do_shmctl(arg1, arg2, arg3); 9981 break; 9982 #endif 9983 #ifdef TARGET_NR_shmat 9984 case TARGET_NR_shmat: 9985 ret = do_shmat(cpu_env, arg1, arg2, arg3); 9986 break; 9987 #endif 9988 #ifdef TARGET_NR_shmdt 9989 case TARGET_NR_shmdt: 9990 ret = do_shmdt(arg1); 9991 break; 9992 #endif 9993 case TARGET_NR_fsync: 9994 ret = get_errno(fsync(arg1)); 9995 break; 9996 case TARGET_NR_clone: 9997 /* Linux manages to have three different orderings for its 9998 * arguments to clone(); the BACKWARDS and BACKWARDS2 defines 9999 * match the kernel's CONFIG_CLONE_* settings. 10000 * Microblaze is further special in that it uses a sixth 10001 * implicit argument to clone for the TLS pointer. 10002 */ 10003 #if defined(TARGET_MICROBLAZE) 10004 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5)); 10005 #elif defined(TARGET_CLONE_BACKWARDS) 10006 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5)); 10007 #elif defined(TARGET_CLONE_BACKWARDS2) 10008 ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4)); 10009 #else 10010 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4)); 10011 #endif 10012 break; 10013 #ifdef __NR_exit_group 10014 /* new thread calls */ 10015 case TARGET_NR_exit_group: 10016 #ifdef TARGET_GPROF 10017 _mcleanup(); 10018 #endif 10019 gdb_exit(cpu_env, arg1); 10020 ret = get_errno(exit_group(arg1)); 10021 break; 10022 #endif 10023 case TARGET_NR_setdomainname: 10024 if (!(p = lock_user_string(arg1))) 10025 goto efault; 10026 ret = get_errno(setdomainname(p, arg2)); 10027 unlock_user(p, arg1, 0); 10028 break; 10029 case TARGET_NR_uname: 10030 /* no need to transcode because we use the linux syscall */ 10031 { 10032 struct new_utsname * buf; 10033 10034 if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0)) 10035 goto efault; 10036 ret = get_errno(sys_uname(buf)); 10037 if (!is_error(ret)) { 10038 /* Overwrite the native machine name with whatever is being 10039 emulated. */ 10040 strcpy (buf->machine, cpu_to_uname_machine(cpu_env)); 10041 /* Allow the user to override the reported release. */ 10042 if (qemu_uname_release && *qemu_uname_release) { 10043 g_strlcpy(buf->release, qemu_uname_release, 10044 sizeof(buf->release)); 10045 } 10046 } 10047 unlock_user_struct(buf, arg1, 1); 10048 } 10049 break; 10050 #ifdef TARGET_I386 10051 case TARGET_NR_modify_ldt: 10052 ret = do_modify_ldt(cpu_env, arg1, arg2, arg3); 10053 break; 10054 #if !defined(TARGET_X86_64) 10055 case TARGET_NR_vm86old: 10056 goto unimplemented; 10057 case TARGET_NR_vm86: 10058 ret = do_vm86(cpu_env, arg1, arg2); 10059 break; 10060 #endif 10061 #endif 10062 case TARGET_NR_adjtimex: 10063 { 10064 struct timex host_buf; 10065 10066 if (target_to_host_timex(&host_buf, arg1) != 0) { 10067 goto efault; 10068 } 10069 ret = get_errno(adjtimex(&host_buf)); 10070 if (!is_error(ret)) { 10071 if (host_to_target_timex(arg1, &host_buf) != 0) { 10072 goto efault; 10073 } 10074 } 10075 } 10076 break; 10077 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME) 10078 case TARGET_NR_clock_adjtime: 10079 { 10080 struct timex htx, *phtx = &htx; 10081 10082 if (target_to_host_timex(phtx, arg2) != 0) { 10083 goto efault; 10084 } 10085 ret = get_errno(clock_adjtime(arg1, phtx)); 10086 if (!is_error(ret) && phtx) { 10087 if (host_to_target_timex(arg2, phtx) != 0) { 10088 goto efault; 10089 } 10090 } 10091 } 10092 break; 10093 #endif 10094 #ifdef TARGET_NR_create_module 10095 case TARGET_NR_create_module: 10096 #endif 10097 case TARGET_NR_init_module: 10098 case TARGET_NR_delete_module: 10099 #ifdef TARGET_NR_get_kernel_syms 10100 case TARGET_NR_get_kernel_syms: 10101 #endif 10102 goto unimplemented; 10103 case TARGET_NR_quotactl: 10104 goto unimplemented; 10105 case TARGET_NR_getpgid: 10106 ret = get_errno(getpgid(arg1)); 10107 break; 10108 case TARGET_NR_fchdir: 10109 ret = get_errno(fchdir(arg1)); 10110 break; 10111 #ifdef TARGET_NR_bdflush /* not on x86_64 */ 10112 case TARGET_NR_bdflush: 10113 goto unimplemented; 10114 #endif 10115 #ifdef TARGET_NR_sysfs 10116 case TARGET_NR_sysfs: 10117 goto unimplemented; 10118 #endif 10119 case TARGET_NR_personality: 10120 ret = get_errno(personality(arg1)); 10121 break; 10122 #ifdef TARGET_NR_afs_syscall 10123 case TARGET_NR_afs_syscall: 10124 goto unimplemented; 10125 #endif 10126 #ifdef TARGET_NR__llseek /* Not on alpha */ 10127 case TARGET_NR__llseek: 10128 { 10129 int64_t res; 10130 #if !defined(__NR_llseek) 10131 res = lseek(arg1, ((uint64_t)arg2 << 32) | (abi_ulong)arg3, arg5); 10132 if (res == -1) { 10133 ret = get_errno(res); 10134 } else { 10135 ret = 0; 10136 } 10137 #else 10138 ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5)); 10139 #endif 10140 if ((ret == 0) && put_user_s64(res, arg4)) { 10141 goto efault; 10142 } 10143 } 10144 break; 10145 #endif 10146 #ifdef TARGET_NR_getdents 10147 case TARGET_NR_getdents: 10148 #ifdef __NR_getdents 10149 #if TARGET_ABI_BITS == 32 && HOST_LONG_BITS == 64 10150 { 10151 struct target_dirent *target_dirp; 10152 struct linux_dirent *dirp; 10153 abi_long count = arg3; 10154 10155 dirp = g_try_malloc(count); 10156 if (!dirp) { 10157 ret = -TARGET_ENOMEM; 10158 goto fail; 10159 } 10160 10161 ret = get_errno(sys_getdents(arg1, dirp, count)); 10162 if (!is_error(ret)) { 10163 struct linux_dirent *de; 10164 struct target_dirent *tde; 10165 int len = ret; 10166 int reclen, treclen; 10167 int count1, tnamelen; 10168 10169 count1 = 0; 10170 de = dirp; 10171 if (!(target_dirp = lock_user(VERIFY_WRITE, arg2, count, 0))) 10172 goto efault; 10173 tde = target_dirp; 10174 while (len > 0) { 10175 reclen = de->d_reclen; 10176 tnamelen = reclen - offsetof(struct linux_dirent, d_name); 10177 assert(tnamelen >= 0); 10178 treclen = tnamelen + offsetof(struct target_dirent, d_name); 10179 assert(count1 + treclen <= count); 10180 tde->d_reclen = tswap16(treclen); 10181 tde->d_ino = tswapal(de->d_ino); 10182 tde->d_off = tswapal(de->d_off); 10183 memcpy(tde->d_name, de->d_name, tnamelen); 10184 de = (struct linux_dirent *)((char *)de + reclen); 10185 len -= reclen; 10186 tde = (struct target_dirent *)((char *)tde + treclen); 10187 count1 += treclen; 10188 } 10189 ret = count1; 10190 unlock_user(target_dirp, arg2, ret); 10191 } 10192 g_free(dirp); 10193 } 10194 #else 10195 { 10196 struct linux_dirent *dirp; 10197 abi_long count = arg3; 10198 10199 if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0))) 10200 goto efault; 10201 ret = get_errno(sys_getdents(arg1, dirp, count)); 10202 if (!is_error(ret)) { 10203 struct linux_dirent *de; 10204 int len = ret; 10205 int reclen; 10206 de = dirp; 10207 while (len > 0) { 10208 reclen = de->d_reclen; 10209 if (reclen > len) 10210 break; 10211 de->d_reclen = tswap16(reclen); 10212 tswapls(&de->d_ino); 10213 tswapls(&de->d_off); 10214 de = (struct linux_dirent *)((char *)de + reclen); 10215 len -= reclen; 10216 } 10217 } 10218 unlock_user(dirp, arg2, ret); 10219 } 10220 #endif 10221 #else 10222 /* Implement getdents in terms of getdents64 */ 10223 { 10224 struct linux_dirent64 *dirp; 10225 abi_long count = arg3; 10226 10227 dirp = lock_user(VERIFY_WRITE, arg2, count, 0); 10228 if (!dirp) { 10229 goto efault; 10230 } 10231 ret = get_errno(sys_getdents64(arg1, dirp, count)); 10232 if (!is_error(ret)) { 10233 /* Convert the dirent64 structs to target dirent. We do this 10234 * in-place, since we can guarantee that a target_dirent is no 10235 * larger than a dirent64; however this means we have to be 10236 * careful to read everything before writing in the new format. 10237 */ 10238 struct linux_dirent64 *de; 10239 struct target_dirent *tde; 10240 int len = ret; 10241 int tlen = 0; 10242 10243 de = dirp; 10244 tde = (struct target_dirent *)dirp; 10245 while (len > 0) { 10246 int namelen, treclen; 10247 int reclen = de->d_reclen; 10248 uint64_t ino = de->d_ino; 10249 int64_t off = de->d_off; 10250 uint8_t type = de->d_type; 10251 10252 namelen = strlen(de->d_name); 10253 treclen = offsetof(struct target_dirent, d_name) 10254 + namelen + 2; 10255 treclen = QEMU_ALIGN_UP(treclen, sizeof(abi_long)); 10256 10257 memmove(tde->d_name, de->d_name, namelen + 1); 10258 tde->d_ino = tswapal(ino); 10259 tde->d_off = tswapal(off); 10260 tde->d_reclen = tswap16(treclen); 10261 /* The target_dirent type is in what was formerly a padding 10262 * byte at the end of the structure: 10263 */ 10264 *(((char *)tde) + treclen - 1) = type; 10265 10266 de = (struct linux_dirent64 *)((char *)de + reclen); 10267 tde = (struct target_dirent *)((char *)tde + treclen); 10268 len -= reclen; 10269 tlen += treclen; 10270 } 10271 ret = tlen; 10272 } 10273 unlock_user(dirp, arg2, ret); 10274 } 10275 #endif 10276 break; 10277 #endif /* TARGET_NR_getdents */ 10278 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64) 10279 case TARGET_NR_getdents64: 10280 { 10281 struct linux_dirent64 *dirp; 10282 abi_long count = arg3; 10283 if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0))) 10284 goto efault; 10285 ret = get_errno(sys_getdents64(arg1, dirp, count)); 10286 if (!is_error(ret)) { 10287 struct linux_dirent64 *de; 10288 int len = ret; 10289 int reclen; 10290 de = dirp; 10291 while (len > 0) { 10292 reclen = de->d_reclen; 10293 if (reclen > len) 10294 break; 10295 de->d_reclen = tswap16(reclen); 10296 tswap64s((uint64_t *)&de->d_ino); 10297 tswap64s((uint64_t *)&de->d_off); 10298 de = (struct linux_dirent64 *)((char *)de + reclen); 10299 len -= reclen; 10300 } 10301 } 10302 unlock_user(dirp, arg2, ret); 10303 } 10304 break; 10305 #endif /* TARGET_NR_getdents64 */ 10306 #if defined(TARGET_NR__newselect) 10307 case TARGET_NR__newselect: 10308 ret = do_select(arg1, arg2, arg3, arg4, arg5); 10309 break; 10310 #endif 10311 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll) 10312 # ifdef TARGET_NR_poll 10313 case TARGET_NR_poll: 10314 # endif 10315 # ifdef TARGET_NR_ppoll 10316 case TARGET_NR_ppoll: 10317 # endif 10318 { 10319 struct target_pollfd *target_pfd; 10320 unsigned int nfds = arg2; 10321 struct pollfd *pfd; 10322 unsigned int i; 10323 10324 pfd = NULL; 10325 target_pfd = NULL; 10326 if (nfds) { 10327 if (nfds > (INT_MAX / sizeof(struct target_pollfd))) { 10328 ret = -TARGET_EINVAL; 10329 break; 10330 } 10331 10332 target_pfd = lock_user(VERIFY_WRITE, arg1, 10333 sizeof(struct target_pollfd) * nfds, 1); 10334 if (!target_pfd) { 10335 goto efault; 10336 } 10337 10338 pfd = alloca(sizeof(struct pollfd) * nfds); 10339 for (i = 0; i < nfds; i++) { 10340 pfd[i].fd = tswap32(target_pfd[i].fd); 10341 pfd[i].events = tswap16(target_pfd[i].events); 10342 } 10343 } 10344 10345 switch (num) { 10346 # ifdef TARGET_NR_ppoll 10347 case TARGET_NR_ppoll: 10348 { 10349 struct timespec _timeout_ts, *timeout_ts = &_timeout_ts; 10350 target_sigset_t *target_set; 10351 sigset_t _set, *set = &_set; 10352 10353 if (arg3) { 10354 if (target_to_host_timespec(timeout_ts, arg3)) { 10355 unlock_user(target_pfd, arg1, 0); 10356 goto efault; 10357 } 10358 } else { 10359 timeout_ts = NULL; 10360 } 10361 10362 if (arg4) { 10363 if (arg5 != sizeof(target_sigset_t)) { 10364 unlock_user(target_pfd, arg1, 0); 10365 ret = -TARGET_EINVAL; 10366 break; 10367 } 10368 10369 target_set = lock_user(VERIFY_READ, arg4, sizeof(target_sigset_t), 1); 10370 if (!target_set) { 10371 unlock_user(target_pfd, arg1, 0); 10372 goto efault; 10373 } 10374 target_to_host_sigset(set, target_set); 10375 } else { 10376 set = NULL; 10377 } 10378 10379 ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts, 10380 set, SIGSET_T_SIZE)); 10381 10382 if (!is_error(ret) && arg3) { 10383 host_to_target_timespec(arg3, timeout_ts); 10384 } 10385 if (arg4) { 10386 unlock_user(target_set, arg4, 0); 10387 } 10388 break; 10389 } 10390 # endif 10391 # ifdef TARGET_NR_poll 10392 case TARGET_NR_poll: 10393 { 10394 struct timespec ts, *pts; 10395 10396 if (arg3 >= 0) { 10397 /* Convert ms to secs, ns */ 10398 ts.tv_sec = arg3 / 1000; 10399 ts.tv_nsec = (arg3 % 1000) * 1000000LL; 10400 pts = &ts; 10401 } else { 10402 /* -ve poll() timeout means "infinite" */ 10403 pts = NULL; 10404 } 10405 ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0)); 10406 break; 10407 } 10408 # endif 10409 default: 10410 g_assert_not_reached(); 10411 } 10412 10413 if (!is_error(ret)) { 10414 for(i = 0; i < nfds; i++) { 10415 target_pfd[i].revents = tswap16(pfd[i].revents); 10416 } 10417 } 10418 unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds); 10419 } 10420 break; 10421 #endif 10422 case TARGET_NR_flock: 10423 /* NOTE: the flock constant seems to be the same for every 10424 Linux platform */ 10425 ret = get_errno(safe_flock(arg1, arg2)); 10426 break; 10427 case TARGET_NR_readv: 10428 { 10429 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0); 10430 if (vec != NULL) { 10431 ret = get_errno(safe_readv(arg1, vec, arg3)); 10432 unlock_iovec(vec, arg2, arg3, 1); 10433 } else { 10434 ret = -host_to_target_errno(errno); 10435 } 10436 } 10437 break; 10438 case TARGET_NR_writev: 10439 { 10440 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 10441 if (vec != NULL) { 10442 ret = get_errno(safe_writev(arg1, vec, arg3)); 10443 unlock_iovec(vec, arg2, arg3, 0); 10444 } else { 10445 ret = -host_to_target_errno(errno); 10446 } 10447 } 10448 break; 10449 #if defined(TARGET_NR_preadv) 10450 case TARGET_NR_preadv: 10451 { 10452 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0); 10453 if (vec != NULL) { 10454 ret = get_errno(safe_preadv(arg1, vec, arg3, arg4, arg5)); 10455 unlock_iovec(vec, arg2, arg3, 1); 10456 } else { 10457 ret = -host_to_target_errno(errno); 10458 } 10459 } 10460 break; 10461 #endif 10462 #if defined(TARGET_NR_pwritev) 10463 case TARGET_NR_pwritev: 10464 { 10465 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 10466 if (vec != NULL) { 10467 ret = get_errno(safe_pwritev(arg1, vec, arg3, arg4, arg5)); 10468 unlock_iovec(vec, arg2, arg3, 0); 10469 } else { 10470 ret = -host_to_target_errno(errno); 10471 } 10472 } 10473 break; 10474 #endif 10475 case TARGET_NR_getsid: 10476 ret = get_errno(getsid(arg1)); 10477 break; 10478 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */ 10479 case TARGET_NR_fdatasync: 10480 ret = get_errno(fdatasync(arg1)); 10481 break; 10482 #endif 10483 #ifdef TARGET_NR__sysctl 10484 case TARGET_NR__sysctl: 10485 /* We don't implement this, but ENOTDIR is always a safe 10486 return value. */ 10487 ret = -TARGET_ENOTDIR; 10488 break; 10489 #endif 10490 case TARGET_NR_sched_getaffinity: 10491 { 10492 unsigned int mask_size; 10493 unsigned long *mask; 10494 10495 /* 10496 * sched_getaffinity needs multiples of ulong, so need to take 10497 * care of mismatches between target ulong and host ulong sizes. 10498 */ 10499 if (arg2 & (sizeof(abi_ulong) - 1)) { 10500 ret = -TARGET_EINVAL; 10501 break; 10502 } 10503 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1); 10504 10505 mask = alloca(mask_size); 10506 memset(mask, 0, mask_size); 10507 ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask)); 10508 10509 if (!is_error(ret)) { 10510 if (ret > arg2) { 10511 /* More data returned than the caller's buffer will fit. 10512 * This only happens if sizeof(abi_long) < sizeof(long) 10513 * and the caller passed us a buffer holding an odd number 10514 * of abi_longs. If the host kernel is actually using the 10515 * extra 4 bytes then fail EINVAL; otherwise we can just 10516 * ignore them and only copy the interesting part. 10517 */ 10518 int numcpus = sysconf(_SC_NPROCESSORS_CONF); 10519 if (numcpus > arg2 * 8) { 10520 ret = -TARGET_EINVAL; 10521 break; 10522 } 10523 ret = arg2; 10524 } 10525 10526 if (host_to_target_cpu_mask(mask, mask_size, arg3, ret)) { 10527 goto efault; 10528 } 10529 } 10530 } 10531 break; 10532 case TARGET_NR_sched_setaffinity: 10533 { 10534 unsigned int mask_size; 10535 unsigned long *mask; 10536 10537 /* 10538 * sched_setaffinity needs multiples of ulong, so need to take 10539 * care of mismatches between target ulong and host ulong sizes. 10540 */ 10541 if (arg2 & (sizeof(abi_ulong) - 1)) { 10542 ret = -TARGET_EINVAL; 10543 break; 10544 } 10545 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1); 10546 mask = alloca(mask_size); 10547 10548 ret = target_to_host_cpu_mask(mask, mask_size, arg3, arg2); 10549 if (ret) { 10550 break; 10551 } 10552 10553 ret = get_errno(sys_sched_setaffinity(arg1, mask_size, mask)); 10554 } 10555 break; 10556 case TARGET_NR_getcpu: 10557 { 10558 unsigned cpu, node; 10559 ret = get_errno(sys_getcpu(arg1 ? &cpu : NULL, 10560 arg2 ? &node : NULL, 10561 NULL)); 10562 if (is_error(ret)) { 10563 goto fail; 10564 } 10565 if (arg1 && put_user_u32(cpu, arg1)) { 10566 goto efault; 10567 } 10568 if (arg2 && put_user_u32(node, arg2)) { 10569 goto efault; 10570 } 10571 } 10572 break; 10573 case TARGET_NR_sched_setparam: 10574 { 10575 struct sched_param *target_schp; 10576 struct sched_param schp; 10577 10578 if (arg2 == 0) { 10579 return -TARGET_EINVAL; 10580 } 10581 if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1)) 10582 goto efault; 10583 schp.sched_priority = tswap32(target_schp->sched_priority); 10584 unlock_user_struct(target_schp, arg2, 0); 10585 ret = get_errno(sched_setparam(arg1, &schp)); 10586 } 10587 break; 10588 case TARGET_NR_sched_getparam: 10589 { 10590 struct sched_param *target_schp; 10591 struct sched_param schp; 10592 10593 if (arg2 == 0) { 10594 return -TARGET_EINVAL; 10595 } 10596 ret = get_errno(sched_getparam(arg1, &schp)); 10597 if (!is_error(ret)) { 10598 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0)) 10599 goto efault; 10600 target_schp->sched_priority = tswap32(schp.sched_priority); 10601 unlock_user_struct(target_schp, arg2, 1); 10602 } 10603 } 10604 break; 10605 case TARGET_NR_sched_setscheduler: 10606 { 10607 struct sched_param *target_schp; 10608 struct sched_param schp; 10609 if (arg3 == 0) { 10610 return -TARGET_EINVAL; 10611 } 10612 if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1)) 10613 goto efault; 10614 schp.sched_priority = tswap32(target_schp->sched_priority); 10615 unlock_user_struct(target_schp, arg3, 0); 10616 ret = get_errno(sched_setscheduler(arg1, arg2, &schp)); 10617 } 10618 break; 10619 case TARGET_NR_sched_getscheduler: 10620 ret = get_errno(sched_getscheduler(arg1)); 10621 break; 10622 case TARGET_NR_sched_yield: 10623 ret = get_errno(sched_yield()); 10624 break; 10625 case TARGET_NR_sched_get_priority_max: 10626 ret = get_errno(sched_get_priority_max(arg1)); 10627 break; 10628 case TARGET_NR_sched_get_priority_min: 10629 ret = get_errno(sched_get_priority_min(arg1)); 10630 break; 10631 case TARGET_NR_sched_rr_get_interval: 10632 { 10633 struct timespec ts; 10634 ret = get_errno(sched_rr_get_interval(arg1, &ts)); 10635 if (!is_error(ret)) { 10636 ret = host_to_target_timespec(arg2, &ts); 10637 } 10638 } 10639 break; 10640 case TARGET_NR_nanosleep: 10641 { 10642 struct timespec req, rem; 10643 target_to_host_timespec(&req, arg1); 10644 ret = get_errno(safe_nanosleep(&req, &rem)); 10645 if (is_error(ret) && arg2) { 10646 host_to_target_timespec(arg2, &rem); 10647 } 10648 } 10649 break; 10650 #ifdef TARGET_NR_query_module 10651 case TARGET_NR_query_module: 10652 goto unimplemented; 10653 #endif 10654 #ifdef TARGET_NR_nfsservctl 10655 case TARGET_NR_nfsservctl: 10656 goto unimplemented; 10657 #endif 10658 case TARGET_NR_prctl: 10659 switch (arg1) { 10660 case PR_GET_PDEATHSIG: 10661 { 10662 int deathsig; 10663 ret = get_errno(prctl(arg1, &deathsig, arg3, arg4, arg5)); 10664 if (!is_error(ret) && arg2 10665 && put_user_ual(deathsig, arg2)) { 10666 goto efault; 10667 } 10668 break; 10669 } 10670 #ifdef PR_GET_NAME 10671 case PR_GET_NAME: 10672 { 10673 void *name = lock_user(VERIFY_WRITE, arg2, 16, 1); 10674 if (!name) { 10675 goto efault; 10676 } 10677 ret = get_errno(prctl(arg1, (unsigned long)name, 10678 arg3, arg4, arg5)); 10679 unlock_user(name, arg2, 16); 10680 break; 10681 } 10682 case PR_SET_NAME: 10683 { 10684 void *name = lock_user(VERIFY_READ, arg2, 16, 1); 10685 if (!name) { 10686 goto efault; 10687 } 10688 ret = get_errno(prctl(arg1, (unsigned long)name, 10689 arg3, arg4, arg5)); 10690 unlock_user(name, arg2, 0); 10691 break; 10692 } 10693 #endif 10694 #ifdef TARGET_AARCH64 10695 case TARGET_PR_SVE_SET_VL: 10696 /* We cannot support either PR_SVE_SET_VL_ONEXEC 10697 or PR_SVE_VL_INHERIT. Therefore, anything above 10698 ARM_MAX_VQ results in EINVAL. */ 10699 ret = -TARGET_EINVAL; 10700 if (arm_feature(cpu_env, ARM_FEATURE_SVE) 10701 && arg2 >= 0 && arg2 <= ARM_MAX_VQ * 16 && !(arg2 & 15)) { 10702 CPUARMState *env = cpu_env; 10703 int old_vq = (env->vfp.zcr_el[1] & 0xf) + 1; 10704 int vq = MAX(arg2 / 16, 1); 10705 10706 if (vq < old_vq) { 10707 aarch64_sve_narrow_vq(env, vq); 10708 } 10709 env->vfp.zcr_el[1] = vq - 1; 10710 ret = vq * 16; 10711 } 10712 break; 10713 case TARGET_PR_SVE_GET_VL: 10714 ret = -TARGET_EINVAL; 10715 if (arm_feature(cpu_env, ARM_FEATURE_SVE)) { 10716 CPUARMState *env = cpu_env; 10717 ret = ((env->vfp.zcr_el[1] & 0xf) + 1) * 16; 10718 } 10719 break; 10720 #endif /* AARCH64 */ 10721 case PR_GET_SECCOMP: 10722 case PR_SET_SECCOMP: 10723 /* Disable seccomp to prevent the target disabling syscalls we 10724 * need. */ 10725 ret = -TARGET_EINVAL; 10726 break; 10727 default: 10728 /* Most prctl options have no pointer arguments */ 10729 ret = get_errno(prctl(arg1, arg2, arg3, arg4, arg5)); 10730 break; 10731 } 10732 break; 10733 #ifdef TARGET_NR_arch_prctl 10734 case TARGET_NR_arch_prctl: 10735 #if defined(TARGET_I386) && !defined(TARGET_ABI32) 10736 ret = do_arch_prctl(cpu_env, arg1, arg2); 10737 break; 10738 #else 10739 goto unimplemented; 10740 #endif 10741 #endif 10742 #ifdef TARGET_NR_pread64 10743 case TARGET_NR_pread64: 10744 if (regpairs_aligned(cpu_env, num)) { 10745 arg4 = arg5; 10746 arg5 = arg6; 10747 } 10748 if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0))) 10749 goto efault; 10750 ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5))); 10751 unlock_user(p, arg2, ret); 10752 break; 10753 case TARGET_NR_pwrite64: 10754 if (regpairs_aligned(cpu_env, num)) { 10755 arg4 = arg5; 10756 arg5 = arg6; 10757 } 10758 if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1))) 10759 goto efault; 10760 ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5))); 10761 unlock_user(p, arg2, 0); 10762 break; 10763 #endif 10764 case TARGET_NR_getcwd: 10765 if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0))) 10766 goto efault; 10767 ret = get_errno(sys_getcwd1(p, arg2)); 10768 unlock_user(p, arg1, ret); 10769 break; 10770 case TARGET_NR_capget: 10771 case TARGET_NR_capset: 10772 { 10773 struct target_user_cap_header *target_header; 10774 struct target_user_cap_data *target_data = NULL; 10775 struct __user_cap_header_struct header; 10776 struct __user_cap_data_struct data[2]; 10777 struct __user_cap_data_struct *dataptr = NULL; 10778 int i, target_datalen; 10779 int data_items = 1; 10780 10781 if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) { 10782 goto efault; 10783 } 10784 header.version = tswap32(target_header->version); 10785 header.pid = tswap32(target_header->pid); 10786 10787 if (header.version != _LINUX_CAPABILITY_VERSION) { 10788 /* Version 2 and up takes pointer to two user_data structs */ 10789 data_items = 2; 10790 } 10791 10792 target_datalen = sizeof(*target_data) * data_items; 10793 10794 if (arg2) { 10795 if (num == TARGET_NR_capget) { 10796 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0); 10797 } else { 10798 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1); 10799 } 10800 if (!target_data) { 10801 unlock_user_struct(target_header, arg1, 0); 10802 goto efault; 10803 } 10804 10805 if (num == TARGET_NR_capset) { 10806 for (i = 0; i < data_items; i++) { 10807 data[i].effective = tswap32(target_data[i].effective); 10808 data[i].permitted = tswap32(target_data[i].permitted); 10809 data[i].inheritable = tswap32(target_data[i].inheritable); 10810 } 10811 } 10812 10813 dataptr = data; 10814 } 10815 10816 if (num == TARGET_NR_capget) { 10817 ret = get_errno(capget(&header, dataptr)); 10818 } else { 10819 ret = get_errno(capset(&header, dataptr)); 10820 } 10821 10822 /* The kernel always updates version for both capget and capset */ 10823 target_header->version = tswap32(header.version); 10824 unlock_user_struct(target_header, arg1, 1); 10825 10826 if (arg2) { 10827 if (num == TARGET_NR_capget) { 10828 for (i = 0; i < data_items; i++) { 10829 target_data[i].effective = tswap32(data[i].effective); 10830 target_data[i].permitted = tswap32(data[i].permitted); 10831 target_data[i].inheritable = tswap32(data[i].inheritable); 10832 } 10833 unlock_user(target_data, arg2, target_datalen); 10834 } else { 10835 unlock_user(target_data, arg2, 0); 10836 } 10837 } 10838 break; 10839 } 10840 case TARGET_NR_sigaltstack: 10841 ret = do_sigaltstack(arg1, arg2, get_sp_from_cpustate((CPUArchState *)cpu_env)); 10842 break; 10843 10844 #ifdef CONFIG_SENDFILE 10845 case TARGET_NR_sendfile: 10846 { 10847 off_t *offp = NULL; 10848 off_t off; 10849 if (arg3) { 10850 ret = get_user_sal(off, arg3); 10851 if (is_error(ret)) { 10852 break; 10853 } 10854 offp = &off; 10855 } 10856 ret = get_errno(sendfile(arg1, arg2, offp, arg4)); 10857 if (!is_error(ret) && arg3) { 10858 abi_long ret2 = put_user_sal(off, arg3); 10859 if (is_error(ret2)) { 10860 ret = ret2; 10861 } 10862 } 10863 break; 10864 } 10865 #ifdef TARGET_NR_sendfile64 10866 case TARGET_NR_sendfile64: 10867 { 10868 off_t *offp = NULL; 10869 off_t off; 10870 if (arg3) { 10871 ret = get_user_s64(off, arg3); 10872 if (is_error(ret)) { 10873 break; 10874 } 10875 offp = &off; 10876 } 10877 ret = get_errno(sendfile(arg1, arg2, offp, arg4)); 10878 if (!is_error(ret) && arg3) { 10879 abi_long ret2 = put_user_s64(off, arg3); 10880 if (is_error(ret2)) { 10881 ret = ret2; 10882 } 10883 } 10884 break; 10885 } 10886 #endif 10887 #else 10888 case TARGET_NR_sendfile: 10889 #ifdef TARGET_NR_sendfile64 10890 case TARGET_NR_sendfile64: 10891 #endif 10892 goto unimplemented; 10893 #endif 10894 10895 #ifdef TARGET_NR_getpmsg 10896 case TARGET_NR_getpmsg: 10897 goto unimplemented; 10898 #endif 10899 #ifdef TARGET_NR_putpmsg 10900 case TARGET_NR_putpmsg: 10901 goto unimplemented; 10902 #endif 10903 #ifdef TARGET_NR_vfork 10904 case TARGET_NR_vfork: 10905 ret = get_errno(do_fork(cpu_env, 10906 CLONE_VFORK | CLONE_VM | TARGET_SIGCHLD, 10907 0, 0, 0, 0)); 10908 break; 10909 #endif 10910 #ifdef TARGET_NR_ugetrlimit 10911 case TARGET_NR_ugetrlimit: 10912 { 10913 struct rlimit rlim; 10914 int resource = target_to_host_resource(arg1); 10915 ret = get_errno(getrlimit(resource, &rlim)); 10916 if (!is_error(ret)) { 10917 struct target_rlimit *target_rlim; 10918 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0)) 10919 goto efault; 10920 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur); 10921 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max); 10922 unlock_user_struct(target_rlim, arg2, 1); 10923 } 10924 break; 10925 } 10926 #endif 10927 #ifdef TARGET_NR_truncate64 10928 case TARGET_NR_truncate64: 10929 if (!(p = lock_user_string(arg1))) 10930 goto efault; 10931 ret = target_truncate64(cpu_env, p, arg2, arg3, arg4); 10932 unlock_user(p, arg1, 0); 10933 break; 10934 #endif 10935 #ifdef TARGET_NR_ftruncate64 10936 case TARGET_NR_ftruncate64: 10937 ret = target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4); 10938 break; 10939 #endif 10940 #ifdef TARGET_NR_stat64 10941 case TARGET_NR_stat64: 10942 if (!(p = lock_user_string(arg1))) 10943 goto efault; 10944 ret = get_errno(stat(path(p), &st)); 10945 unlock_user(p, arg1, 0); 10946 if (!is_error(ret)) 10947 ret = host_to_target_stat64(cpu_env, arg2, &st); 10948 break; 10949 #endif 10950 #ifdef TARGET_NR_lstat64 10951 case TARGET_NR_lstat64: 10952 if (!(p = lock_user_string(arg1))) 10953 goto efault; 10954 ret = get_errno(lstat(path(p), &st)); 10955 unlock_user(p, arg1, 0); 10956 if (!is_error(ret)) 10957 ret = host_to_target_stat64(cpu_env, arg2, &st); 10958 break; 10959 #endif 10960 #ifdef TARGET_NR_fstat64 10961 case TARGET_NR_fstat64: 10962 ret = get_errno(fstat(arg1, &st)); 10963 if (!is_error(ret)) 10964 ret = host_to_target_stat64(cpu_env, arg2, &st); 10965 break; 10966 #endif 10967 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat)) 10968 #ifdef TARGET_NR_fstatat64 10969 case TARGET_NR_fstatat64: 10970 #endif 10971 #ifdef TARGET_NR_newfstatat 10972 case TARGET_NR_newfstatat: 10973 #endif 10974 if (!(p = lock_user_string(arg2))) 10975 goto efault; 10976 ret = get_errno(fstatat(arg1, path(p), &st, arg4)); 10977 if (!is_error(ret)) 10978 ret = host_to_target_stat64(cpu_env, arg3, &st); 10979 break; 10980 #endif 10981 #ifdef TARGET_NR_lchown 10982 case TARGET_NR_lchown: 10983 if (!(p = lock_user_string(arg1))) 10984 goto efault; 10985 ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3))); 10986 unlock_user(p, arg1, 0); 10987 break; 10988 #endif 10989 #ifdef TARGET_NR_getuid 10990 case TARGET_NR_getuid: 10991 ret = get_errno(high2lowuid(getuid())); 10992 break; 10993 #endif 10994 #ifdef TARGET_NR_getgid 10995 case TARGET_NR_getgid: 10996 ret = get_errno(high2lowgid(getgid())); 10997 break; 10998 #endif 10999 #ifdef TARGET_NR_geteuid 11000 case TARGET_NR_geteuid: 11001 ret = get_errno(high2lowuid(geteuid())); 11002 break; 11003 #endif 11004 #ifdef TARGET_NR_getegid 11005 case TARGET_NR_getegid: 11006 ret = get_errno(high2lowgid(getegid())); 11007 break; 11008 #endif 11009 case TARGET_NR_setreuid: 11010 ret = get_errno(setreuid(low2highuid(arg1), low2highuid(arg2))); 11011 break; 11012 case TARGET_NR_setregid: 11013 ret = get_errno(setregid(low2highgid(arg1), low2highgid(arg2))); 11014 break; 11015 case TARGET_NR_getgroups: 11016 { 11017 int gidsetsize = arg1; 11018 target_id *target_grouplist; 11019 gid_t *grouplist; 11020 int i; 11021 11022 grouplist = alloca(gidsetsize * sizeof(gid_t)); 11023 ret = get_errno(getgroups(gidsetsize, grouplist)); 11024 if (gidsetsize == 0) 11025 break; 11026 if (!is_error(ret)) { 11027 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * sizeof(target_id), 0); 11028 if (!target_grouplist) 11029 goto efault; 11030 for(i = 0;i < ret; i++) 11031 target_grouplist[i] = tswapid(high2lowgid(grouplist[i])); 11032 unlock_user(target_grouplist, arg2, gidsetsize * sizeof(target_id)); 11033 } 11034 } 11035 break; 11036 case TARGET_NR_setgroups: 11037 { 11038 int gidsetsize = arg1; 11039 target_id *target_grouplist; 11040 gid_t *grouplist = NULL; 11041 int i; 11042 if (gidsetsize) { 11043 grouplist = alloca(gidsetsize * sizeof(gid_t)); 11044 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * sizeof(target_id), 1); 11045 if (!target_grouplist) { 11046 ret = -TARGET_EFAULT; 11047 goto fail; 11048 } 11049 for (i = 0; i < gidsetsize; i++) { 11050 grouplist[i] = low2highgid(tswapid(target_grouplist[i])); 11051 } 11052 unlock_user(target_grouplist, arg2, 0); 11053 } 11054 ret = get_errno(setgroups(gidsetsize, grouplist)); 11055 } 11056 break; 11057 case TARGET_NR_fchown: 11058 ret = get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3))); 11059 break; 11060 #if defined(TARGET_NR_fchownat) 11061 case TARGET_NR_fchownat: 11062 if (!(p = lock_user_string(arg2))) 11063 goto efault; 11064 ret = get_errno(fchownat(arg1, p, low2highuid(arg3), 11065 low2highgid(arg4), arg5)); 11066 unlock_user(p, arg2, 0); 11067 break; 11068 #endif 11069 #ifdef TARGET_NR_setresuid 11070 case TARGET_NR_setresuid: 11071 ret = get_errno(sys_setresuid(low2highuid(arg1), 11072 low2highuid(arg2), 11073 low2highuid(arg3))); 11074 break; 11075 #endif 11076 #ifdef TARGET_NR_getresuid 11077 case TARGET_NR_getresuid: 11078 { 11079 uid_t ruid, euid, suid; 11080 ret = get_errno(getresuid(&ruid, &euid, &suid)); 11081 if (!is_error(ret)) { 11082 if (put_user_id(high2lowuid(ruid), arg1) 11083 || put_user_id(high2lowuid(euid), arg2) 11084 || put_user_id(high2lowuid(suid), arg3)) 11085 goto efault; 11086 } 11087 } 11088 break; 11089 #endif 11090 #ifdef TARGET_NR_getresgid 11091 case TARGET_NR_setresgid: 11092 ret = get_errno(sys_setresgid(low2highgid(arg1), 11093 low2highgid(arg2), 11094 low2highgid(arg3))); 11095 break; 11096 #endif 11097 #ifdef TARGET_NR_getresgid 11098 case TARGET_NR_getresgid: 11099 { 11100 gid_t rgid, egid, sgid; 11101 ret = get_errno(getresgid(&rgid, &egid, &sgid)); 11102 if (!is_error(ret)) { 11103 if (put_user_id(high2lowgid(rgid), arg1) 11104 || put_user_id(high2lowgid(egid), arg2) 11105 || put_user_id(high2lowgid(sgid), arg3)) 11106 goto efault; 11107 } 11108 } 11109 break; 11110 #endif 11111 #ifdef TARGET_NR_chown 11112 case TARGET_NR_chown: 11113 if (!(p = lock_user_string(arg1))) 11114 goto efault; 11115 ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3))); 11116 unlock_user(p, arg1, 0); 11117 break; 11118 #endif 11119 case TARGET_NR_setuid: 11120 ret = get_errno(sys_setuid(low2highuid(arg1))); 11121 break; 11122 case TARGET_NR_setgid: 11123 ret = get_errno(sys_setgid(low2highgid(arg1))); 11124 break; 11125 case TARGET_NR_setfsuid: 11126 ret = get_errno(setfsuid(arg1)); 11127 break; 11128 case TARGET_NR_setfsgid: 11129 ret = get_errno(setfsgid(arg1)); 11130 break; 11131 11132 #ifdef TARGET_NR_lchown32 11133 case TARGET_NR_lchown32: 11134 if (!(p = lock_user_string(arg1))) 11135 goto efault; 11136 ret = get_errno(lchown(p, arg2, arg3)); 11137 unlock_user(p, arg1, 0); 11138 break; 11139 #endif 11140 #ifdef TARGET_NR_getuid32 11141 case TARGET_NR_getuid32: 11142 ret = get_errno(getuid()); 11143 break; 11144 #endif 11145 11146 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA) 11147 /* Alpha specific */ 11148 case TARGET_NR_getxuid: 11149 { 11150 uid_t euid; 11151 euid=geteuid(); 11152 ((CPUAlphaState *)cpu_env)->ir[IR_A4]=euid; 11153 } 11154 ret = get_errno(getuid()); 11155 break; 11156 #endif 11157 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA) 11158 /* Alpha specific */ 11159 case TARGET_NR_getxgid: 11160 { 11161 uid_t egid; 11162 egid=getegid(); 11163 ((CPUAlphaState *)cpu_env)->ir[IR_A4]=egid; 11164 } 11165 ret = get_errno(getgid()); 11166 break; 11167 #endif 11168 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA) 11169 /* Alpha specific */ 11170 case TARGET_NR_osf_getsysinfo: 11171 ret = -TARGET_EOPNOTSUPP; 11172 switch (arg1) { 11173 case TARGET_GSI_IEEE_FP_CONTROL: 11174 { 11175 uint64_t swcr, fpcr = cpu_alpha_load_fpcr (cpu_env); 11176 11177 /* Copied from linux ieee_fpcr_to_swcr. */ 11178 swcr = (fpcr >> 35) & SWCR_STATUS_MASK; 11179 swcr |= (fpcr >> 36) & SWCR_MAP_DMZ; 11180 swcr |= (~fpcr >> 48) & (SWCR_TRAP_ENABLE_INV 11181 | SWCR_TRAP_ENABLE_DZE 11182 | SWCR_TRAP_ENABLE_OVF); 11183 swcr |= (~fpcr >> 57) & (SWCR_TRAP_ENABLE_UNF 11184 | SWCR_TRAP_ENABLE_INE); 11185 swcr |= (fpcr >> 47) & SWCR_MAP_UMZ; 11186 swcr |= (~fpcr >> 41) & SWCR_TRAP_ENABLE_DNO; 11187 11188 if (put_user_u64 (swcr, arg2)) 11189 goto efault; 11190 ret = 0; 11191 } 11192 break; 11193 11194 /* case GSI_IEEE_STATE_AT_SIGNAL: 11195 -- Not implemented in linux kernel. 11196 case GSI_UACPROC: 11197 -- Retrieves current unaligned access state; not much used. 11198 case GSI_PROC_TYPE: 11199 -- Retrieves implver information; surely not used. 11200 case GSI_GET_HWRPB: 11201 -- Grabs a copy of the HWRPB; surely not used. 11202 */ 11203 } 11204 break; 11205 #endif 11206 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA) 11207 /* Alpha specific */ 11208 case TARGET_NR_osf_setsysinfo: 11209 ret = -TARGET_EOPNOTSUPP; 11210 switch (arg1) { 11211 case TARGET_SSI_IEEE_FP_CONTROL: 11212 { 11213 uint64_t swcr, fpcr, orig_fpcr; 11214 11215 if (get_user_u64 (swcr, arg2)) { 11216 goto efault; 11217 } 11218 orig_fpcr = cpu_alpha_load_fpcr(cpu_env); 11219 fpcr = orig_fpcr & FPCR_DYN_MASK; 11220 11221 /* Copied from linux ieee_swcr_to_fpcr. */ 11222 fpcr |= (swcr & SWCR_STATUS_MASK) << 35; 11223 fpcr |= (swcr & SWCR_MAP_DMZ) << 36; 11224 fpcr |= (~swcr & (SWCR_TRAP_ENABLE_INV 11225 | SWCR_TRAP_ENABLE_DZE 11226 | SWCR_TRAP_ENABLE_OVF)) << 48; 11227 fpcr |= (~swcr & (SWCR_TRAP_ENABLE_UNF 11228 | SWCR_TRAP_ENABLE_INE)) << 57; 11229 fpcr |= (swcr & SWCR_MAP_UMZ ? FPCR_UNDZ | FPCR_UNFD : 0); 11230 fpcr |= (~swcr & SWCR_TRAP_ENABLE_DNO) << 41; 11231 11232 cpu_alpha_store_fpcr(cpu_env, fpcr); 11233 ret = 0; 11234 } 11235 break; 11236 11237 case TARGET_SSI_IEEE_RAISE_EXCEPTION: 11238 { 11239 uint64_t exc, fpcr, orig_fpcr; 11240 int si_code; 11241 11242 if (get_user_u64(exc, arg2)) { 11243 goto efault; 11244 } 11245 11246 orig_fpcr = cpu_alpha_load_fpcr(cpu_env); 11247 11248 /* We only add to the exception status here. */ 11249 fpcr = orig_fpcr | ((exc & SWCR_STATUS_MASK) << 35); 11250 11251 cpu_alpha_store_fpcr(cpu_env, fpcr); 11252 ret = 0; 11253 11254 /* Old exceptions are not signaled. */ 11255 fpcr &= ~(orig_fpcr & FPCR_STATUS_MASK); 11256 11257 /* If any exceptions set by this call, 11258 and are unmasked, send a signal. */ 11259 si_code = 0; 11260 if ((fpcr & (FPCR_INE | FPCR_INED)) == FPCR_INE) { 11261 si_code = TARGET_FPE_FLTRES; 11262 } 11263 if ((fpcr & (FPCR_UNF | FPCR_UNFD)) == FPCR_UNF) { 11264 si_code = TARGET_FPE_FLTUND; 11265 } 11266 if ((fpcr & (FPCR_OVF | FPCR_OVFD)) == FPCR_OVF) { 11267 si_code = TARGET_FPE_FLTOVF; 11268 } 11269 if ((fpcr & (FPCR_DZE | FPCR_DZED)) == FPCR_DZE) { 11270 si_code = TARGET_FPE_FLTDIV; 11271 } 11272 if ((fpcr & (FPCR_INV | FPCR_INVD)) == FPCR_INV) { 11273 si_code = TARGET_FPE_FLTINV; 11274 } 11275 if (si_code != 0) { 11276 target_siginfo_t info; 11277 info.si_signo = SIGFPE; 11278 info.si_errno = 0; 11279 info.si_code = si_code; 11280 info._sifields._sigfault._addr 11281 = ((CPUArchState *)cpu_env)->pc; 11282 queue_signal((CPUArchState *)cpu_env, info.si_signo, 11283 QEMU_SI_FAULT, &info); 11284 } 11285 } 11286 break; 11287 11288 /* case SSI_NVPAIRS: 11289 -- Used with SSIN_UACPROC to enable unaligned accesses. 11290 case SSI_IEEE_STATE_AT_SIGNAL: 11291 case SSI_IEEE_IGNORE_STATE_AT_SIGNAL: 11292 -- Not implemented in linux kernel 11293 */ 11294 } 11295 break; 11296 #endif 11297 #ifdef TARGET_NR_osf_sigprocmask 11298 /* Alpha specific. */ 11299 case TARGET_NR_osf_sigprocmask: 11300 { 11301 abi_ulong mask; 11302 int how; 11303 sigset_t set, oldset; 11304 11305 switch(arg1) { 11306 case TARGET_SIG_BLOCK: 11307 how = SIG_BLOCK; 11308 break; 11309 case TARGET_SIG_UNBLOCK: 11310 how = SIG_UNBLOCK; 11311 break; 11312 case TARGET_SIG_SETMASK: 11313 how = SIG_SETMASK; 11314 break; 11315 default: 11316 ret = -TARGET_EINVAL; 11317 goto fail; 11318 } 11319 mask = arg2; 11320 target_to_host_old_sigset(&set, &mask); 11321 ret = do_sigprocmask(how, &set, &oldset); 11322 if (!ret) { 11323 host_to_target_old_sigset(&mask, &oldset); 11324 ret = mask; 11325 } 11326 } 11327 break; 11328 #endif 11329 11330 #ifdef TARGET_NR_getgid32 11331 case TARGET_NR_getgid32: 11332 ret = get_errno(getgid()); 11333 break; 11334 #endif 11335 #ifdef TARGET_NR_geteuid32 11336 case TARGET_NR_geteuid32: 11337 ret = get_errno(geteuid()); 11338 break; 11339 #endif 11340 #ifdef TARGET_NR_getegid32 11341 case TARGET_NR_getegid32: 11342 ret = get_errno(getegid()); 11343 break; 11344 #endif 11345 #ifdef TARGET_NR_setreuid32 11346 case TARGET_NR_setreuid32: 11347 ret = get_errno(setreuid(arg1, arg2)); 11348 break; 11349 #endif 11350 #ifdef TARGET_NR_setregid32 11351 case TARGET_NR_setregid32: 11352 ret = get_errno(setregid(arg1, arg2)); 11353 break; 11354 #endif 11355 #ifdef TARGET_NR_getgroups32 11356 case TARGET_NR_getgroups32: 11357 { 11358 int gidsetsize = arg1; 11359 uint32_t *target_grouplist; 11360 gid_t *grouplist; 11361 int i; 11362 11363 grouplist = alloca(gidsetsize * sizeof(gid_t)); 11364 ret = get_errno(getgroups(gidsetsize, grouplist)); 11365 if (gidsetsize == 0) 11366 break; 11367 if (!is_error(ret)) { 11368 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * 4, 0); 11369 if (!target_grouplist) { 11370 ret = -TARGET_EFAULT; 11371 goto fail; 11372 } 11373 for(i = 0;i < ret; i++) 11374 target_grouplist[i] = tswap32(grouplist[i]); 11375 unlock_user(target_grouplist, arg2, gidsetsize * 4); 11376 } 11377 } 11378 break; 11379 #endif 11380 #ifdef TARGET_NR_setgroups32 11381 case TARGET_NR_setgroups32: 11382 { 11383 int gidsetsize = arg1; 11384 uint32_t *target_grouplist; 11385 gid_t *grouplist; 11386 int i; 11387 11388 grouplist = alloca(gidsetsize * sizeof(gid_t)); 11389 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * 4, 1); 11390 if (!target_grouplist) { 11391 ret = -TARGET_EFAULT; 11392 goto fail; 11393 } 11394 for(i = 0;i < gidsetsize; i++) 11395 grouplist[i] = tswap32(target_grouplist[i]); 11396 unlock_user(target_grouplist, arg2, 0); 11397 ret = get_errno(setgroups(gidsetsize, grouplist)); 11398 } 11399 break; 11400 #endif 11401 #ifdef TARGET_NR_fchown32 11402 case TARGET_NR_fchown32: 11403 ret = get_errno(fchown(arg1, arg2, arg3)); 11404 break; 11405 #endif 11406 #ifdef TARGET_NR_setresuid32 11407 case TARGET_NR_setresuid32: 11408 ret = get_errno(sys_setresuid(arg1, arg2, arg3)); 11409 break; 11410 #endif 11411 #ifdef TARGET_NR_getresuid32 11412 case TARGET_NR_getresuid32: 11413 { 11414 uid_t ruid, euid, suid; 11415 ret = get_errno(getresuid(&ruid, &euid, &suid)); 11416 if (!is_error(ret)) { 11417 if (put_user_u32(ruid, arg1) 11418 || put_user_u32(euid, arg2) 11419 || put_user_u32(suid, arg3)) 11420 goto efault; 11421 } 11422 } 11423 break; 11424 #endif 11425 #ifdef TARGET_NR_setresgid32 11426 case TARGET_NR_setresgid32: 11427 ret = get_errno(sys_setresgid(arg1, arg2, arg3)); 11428 break; 11429 #endif 11430 #ifdef TARGET_NR_getresgid32 11431 case TARGET_NR_getresgid32: 11432 { 11433 gid_t rgid, egid, sgid; 11434 ret = get_errno(getresgid(&rgid, &egid, &sgid)); 11435 if (!is_error(ret)) { 11436 if (put_user_u32(rgid, arg1) 11437 || put_user_u32(egid, arg2) 11438 || put_user_u32(sgid, arg3)) 11439 goto efault; 11440 } 11441 } 11442 break; 11443 #endif 11444 #ifdef TARGET_NR_chown32 11445 case TARGET_NR_chown32: 11446 if (!(p = lock_user_string(arg1))) 11447 goto efault; 11448 ret = get_errno(chown(p, arg2, arg3)); 11449 unlock_user(p, arg1, 0); 11450 break; 11451 #endif 11452 #ifdef TARGET_NR_setuid32 11453 case TARGET_NR_setuid32: 11454 ret = get_errno(sys_setuid(arg1)); 11455 break; 11456 #endif 11457 #ifdef TARGET_NR_setgid32 11458 case TARGET_NR_setgid32: 11459 ret = get_errno(sys_setgid(arg1)); 11460 break; 11461 #endif 11462 #ifdef TARGET_NR_setfsuid32 11463 case TARGET_NR_setfsuid32: 11464 ret = get_errno(setfsuid(arg1)); 11465 break; 11466 #endif 11467 #ifdef TARGET_NR_setfsgid32 11468 case TARGET_NR_setfsgid32: 11469 ret = get_errno(setfsgid(arg1)); 11470 break; 11471 #endif 11472 11473 case TARGET_NR_pivot_root: 11474 goto unimplemented; 11475 #ifdef TARGET_NR_mincore 11476 case TARGET_NR_mincore: 11477 { 11478 void *a; 11479 ret = -TARGET_ENOMEM; 11480 a = lock_user(VERIFY_READ, arg1, arg2, 0); 11481 if (!a) { 11482 goto fail; 11483 } 11484 ret = -TARGET_EFAULT; 11485 p = lock_user_string(arg3); 11486 if (!p) { 11487 goto mincore_fail; 11488 } 11489 ret = get_errno(mincore(a, arg2, p)); 11490 unlock_user(p, arg3, ret); 11491 mincore_fail: 11492 unlock_user(a, arg1, 0); 11493 } 11494 break; 11495 #endif 11496 #ifdef TARGET_NR_arm_fadvise64_64 11497 case TARGET_NR_arm_fadvise64_64: 11498 /* arm_fadvise64_64 looks like fadvise64_64 but 11499 * with different argument order: fd, advice, offset, len 11500 * rather than the usual fd, offset, len, advice. 11501 * Note that offset and len are both 64-bit so appear as 11502 * pairs of 32-bit registers. 11503 */ 11504 ret = posix_fadvise(arg1, target_offset64(arg3, arg4), 11505 target_offset64(arg5, arg6), arg2); 11506 ret = -host_to_target_errno(ret); 11507 break; 11508 #endif 11509 11510 #if TARGET_ABI_BITS == 32 11511 11512 #ifdef TARGET_NR_fadvise64_64 11513 case TARGET_NR_fadvise64_64: 11514 #if defined(TARGET_PPC) 11515 /* 6 args: fd, advice, offset (high, low), len (high, low) */ 11516 ret = arg2; 11517 arg2 = arg3; 11518 arg3 = arg4; 11519 arg4 = arg5; 11520 arg5 = arg6; 11521 arg6 = ret; 11522 #else 11523 /* 6 args: fd, offset (high, low), len (high, low), advice */ 11524 if (regpairs_aligned(cpu_env, num)) { 11525 /* offset is in (3,4), len in (5,6) and advice in 7 */ 11526 arg2 = arg3; 11527 arg3 = arg4; 11528 arg4 = arg5; 11529 arg5 = arg6; 11530 arg6 = arg7; 11531 } 11532 #endif 11533 ret = -host_to_target_errno(posix_fadvise(arg1, 11534 target_offset64(arg2, arg3), 11535 target_offset64(arg4, arg5), 11536 arg6)); 11537 break; 11538 #endif 11539 11540 #ifdef TARGET_NR_fadvise64 11541 case TARGET_NR_fadvise64: 11542 /* 5 args: fd, offset (high, low), len, advice */ 11543 if (regpairs_aligned(cpu_env, num)) { 11544 /* offset is in (3,4), len in 5 and advice in 6 */ 11545 arg2 = arg3; 11546 arg3 = arg4; 11547 arg4 = arg5; 11548 arg5 = arg6; 11549 } 11550 ret = -host_to_target_errno(posix_fadvise(arg1, 11551 target_offset64(arg2, arg3), 11552 arg4, arg5)); 11553 break; 11554 #endif 11555 11556 #else /* not a 32-bit ABI */ 11557 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64) 11558 #ifdef TARGET_NR_fadvise64_64 11559 case TARGET_NR_fadvise64_64: 11560 #endif 11561 #ifdef TARGET_NR_fadvise64 11562 case TARGET_NR_fadvise64: 11563 #endif 11564 #ifdef TARGET_S390X 11565 switch (arg4) { 11566 case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */ 11567 case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */ 11568 case 6: arg4 = POSIX_FADV_DONTNEED; break; 11569 case 7: arg4 = POSIX_FADV_NOREUSE; break; 11570 default: break; 11571 } 11572 #endif 11573 ret = -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4)); 11574 break; 11575 #endif 11576 #endif /* end of 64-bit ABI fadvise handling */ 11577 11578 #ifdef TARGET_NR_madvise 11579 case TARGET_NR_madvise: 11580 /* A straight passthrough may not be safe because qemu sometimes 11581 turns private file-backed mappings into anonymous mappings. 11582 This will break MADV_DONTNEED. 11583 This is a hint, so ignoring and returning success is ok. */ 11584 ret = get_errno(0); 11585 break; 11586 #endif 11587 #if TARGET_ABI_BITS == 32 11588 case TARGET_NR_fcntl64: 11589 { 11590 int cmd; 11591 struct flock64 fl; 11592 from_flock64_fn *copyfrom = copy_from_user_flock64; 11593 to_flock64_fn *copyto = copy_to_user_flock64; 11594 11595 #ifdef TARGET_ARM 11596 if (((CPUARMState *)cpu_env)->eabi) { 11597 copyfrom = copy_from_user_eabi_flock64; 11598 copyto = copy_to_user_eabi_flock64; 11599 } 11600 #endif 11601 11602 cmd = target_to_host_fcntl_cmd(arg2); 11603 if (cmd == -TARGET_EINVAL) { 11604 ret = cmd; 11605 break; 11606 } 11607 11608 switch(arg2) { 11609 case TARGET_F_GETLK64: 11610 ret = copyfrom(&fl, arg3); 11611 if (ret) { 11612 break; 11613 } 11614 ret = get_errno(fcntl(arg1, cmd, &fl)); 11615 if (ret == 0) { 11616 ret = copyto(arg3, &fl); 11617 } 11618 break; 11619 11620 case TARGET_F_SETLK64: 11621 case TARGET_F_SETLKW64: 11622 ret = copyfrom(&fl, arg3); 11623 if (ret) { 11624 break; 11625 } 11626 ret = get_errno(safe_fcntl(arg1, cmd, &fl)); 11627 break; 11628 default: 11629 ret = do_fcntl(arg1, arg2, arg3); 11630 break; 11631 } 11632 break; 11633 } 11634 #endif 11635 #ifdef TARGET_NR_cacheflush 11636 case TARGET_NR_cacheflush: 11637 /* self-modifying code is handled automatically, so nothing needed */ 11638 ret = 0; 11639 break; 11640 #endif 11641 #ifdef TARGET_NR_security 11642 case TARGET_NR_security: 11643 goto unimplemented; 11644 #endif 11645 #ifdef TARGET_NR_getpagesize 11646 case TARGET_NR_getpagesize: 11647 ret = TARGET_PAGE_SIZE; 11648 break; 11649 #endif 11650 case TARGET_NR_gettid: 11651 ret = get_errno(gettid()); 11652 break; 11653 #ifdef TARGET_NR_readahead 11654 case TARGET_NR_readahead: 11655 #if TARGET_ABI_BITS == 32 11656 if (regpairs_aligned(cpu_env, num)) { 11657 arg2 = arg3; 11658 arg3 = arg4; 11659 arg4 = arg5; 11660 } 11661 ret = get_errno(readahead(arg1, target_offset64(arg2, arg3) , arg4)); 11662 #else 11663 ret = get_errno(readahead(arg1, arg2, arg3)); 11664 #endif 11665 break; 11666 #endif 11667 #ifdef CONFIG_ATTR 11668 #ifdef TARGET_NR_setxattr 11669 case TARGET_NR_listxattr: 11670 case TARGET_NR_llistxattr: 11671 { 11672 void *p, *b = 0; 11673 if (arg2) { 11674 b = lock_user(VERIFY_WRITE, arg2, arg3, 0); 11675 if (!b) { 11676 ret = -TARGET_EFAULT; 11677 break; 11678 } 11679 } 11680 p = lock_user_string(arg1); 11681 if (p) { 11682 if (num == TARGET_NR_listxattr) { 11683 ret = get_errno(listxattr(p, b, arg3)); 11684 } else { 11685 ret = get_errno(llistxattr(p, b, arg3)); 11686 } 11687 } else { 11688 ret = -TARGET_EFAULT; 11689 } 11690 unlock_user(p, arg1, 0); 11691 unlock_user(b, arg2, arg3); 11692 break; 11693 } 11694 case TARGET_NR_flistxattr: 11695 { 11696 void *b = 0; 11697 if (arg2) { 11698 b = lock_user(VERIFY_WRITE, arg2, arg3, 0); 11699 if (!b) { 11700 ret = -TARGET_EFAULT; 11701 break; 11702 } 11703 } 11704 ret = get_errno(flistxattr(arg1, b, arg3)); 11705 unlock_user(b, arg2, arg3); 11706 break; 11707 } 11708 case TARGET_NR_setxattr: 11709 case TARGET_NR_lsetxattr: 11710 { 11711 void *p, *n, *v = 0; 11712 if (arg3) { 11713 v = lock_user(VERIFY_READ, arg3, arg4, 1); 11714 if (!v) { 11715 ret = -TARGET_EFAULT; 11716 break; 11717 } 11718 } 11719 p = lock_user_string(arg1); 11720 n = lock_user_string(arg2); 11721 if (p && n) { 11722 if (num == TARGET_NR_setxattr) { 11723 ret = get_errno(setxattr(p, n, v, arg4, arg5)); 11724 } else { 11725 ret = get_errno(lsetxattr(p, n, v, arg4, arg5)); 11726 } 11727 } else { 11728 ret = -TARGET_EFAULT; 11729 } 11730 unlock_user(p, arg1, 0); 11731 unlock_user(n, arg2, 0); 11732 unlock_user(v, arg3, 0); 11733 } 11734 break; 11735 case TARGET_NR_fsetxattr: 11736 { 11737 void *n, *v = 0; 11738 if (arg3) { 11739 v = lock_user(VERIFY_READ, arg3, arg4, 1); 11740 if (!v) { 11741 ret = -TARGET_EFAULT; 11742 break; 11743 } 11744 } 11745 n = lock_user_string(arg2); 11746 if (n) { 11747 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5)); 11748 } else { 11749 ret = -TARGET_EFAULT; 11750 } 11751 unlock_user(n, arg2, 0); 11752 unlock_user(v, arg3, 0); 11753 } 11754 break; 11755 case TARGET_NR_getxattr: 11756 case TARGET_NR_lgetxattr: 11757 { 11758 void *p, *n, *v = 0; 11759 if (arg3) { 11760 v = lock_user(VERIFY_WRITE, arg3, arg4, 0); 11761 if (!v) { 11762 ret = -TARGET_EFAULT; 11763 break; 11764 } 11765 } 11766 p = lock_user_string(arg1); 11767 n = lock_user_string(arg2); 11768 if (p && n) { 11769 if (num == TARGET_NR_getxattr) { 11770 ret = get_errno(getxattr(p, n, v, arg4)); 11771 } else { 11772 ret = get_errno(lgetxattr(p, n, v, arg4)); 11773 } 11774 } else { 11775 ret = -TARGET_EFAULT; 11776 } 11777 unlock_user(p, arg1, 0); 11778 unlock_user(n, arg2, 0); 11779 unlock_user(v, arg3, arg4); 11780 } 11781 break; 11782 case TARGET_NR_fgetxattr: 11783 { 11784 void *n, *v = 0; 11785 if (arg3) { 11786 v = lock_user(VERIFY_WRITE, arg3, arg4, 0); 11787 if (!v) { 11788 ret = -TARGET_EFAULT; 11789 break; 11790 } 11791 } 11792 n = lock_user_string(arg2); 11793 if (n) { 11794 ret = get_errno(fgetxattr(arg1, n, v, arg4)); 11795 } else { 11796 ret = -TARGET_EFAULT; 11797 } 11798 unlock_user(n, arg2, 0); 11799 unlock_user(v, arg3, arg4); 11800 } 11801 break; 11802 case TARGET_NR_removexattr: 11803 case TARGET_NR_lremovexattr: 11804 { 11805 void *p, *n; 11806 p = lock_user_string(arg1); 11807 n = lock_user_string(arg2); 11808 if (p && n) { 11809 if (num == TARGET_NR_removexattr) { 11810 ret = get_errno(removexattr(p, n)); 11811 } else { 11812 ret = get_errno(lremovexattr(p, n)); 11813 } 11814 } else { 11815 ret = -TARGET_EFAULT; 11816 } 11817 unlock_user(p, arg1, 0); 11818 unlock_user(n, arg2, 0); 11819 } 11820 break; 11821 case TARGET_NR_fremovexattr: 11822 { 11823 void *n; 11824 n = lock_user_string(arg2); 11825 if (n) { 11826 ret = get_errno(fremovexattr(arg1, n)); 11827 } else { 11828 ret = -TARGET_EFAULT; 11829 } 11830 unlock_user(n, arg2, 0); 11831 } 11832 break; 11833 #endif 11834 #endif /* CONFIG_ATTR */ 11835 #ifdef TARGET_NR_set_thread_area 11836 case TARGET_NR_set_thread_area: 11837 #if defined(TARGET_MIPS) 11838 ((CPUMIPSState *) cpu_env)->active_tc.CP0_UserLocal = arg1; 11839 ret = 0; 11840 break; 11841 #elif defined(TARGET_CRIS) 11842 if (arg1 & 0xff) 11843 ret = -TARGET_EINVAL; 11844 else { 11845 ((CPUCRISState *) cpu_env)->pregs[PR_PID] = arg1; 11846 ret = 0; 11847 } 11848 break; 11849 #elif defined(TARGET_I386) && defined(TARGET_ABI32) 11850 ret = do_set_thread_area(cpu_env, arg1); 11851 break; 11852 #elif defined(TARGET_M68K) 11853 { 11854 TaskState *ts = cpu->opaque; 11855 ts->tp_value = arg1; 11856 ret = 0; 11857 break; 11858 } 11859 #else 11860 goto unimplemented_nowarn; 11861 #endif 11862 #endif 11863 #ifdef TARGET_NR_get_thread_area 11864 case TARGET_NR_get_thread_area: 11865 #if defined(TARGET_I386) && defined(TARGET_ABI32) 11866 ret = do_get_thread_area(cpu_env, arg1); 11867 break; 11868 #elif defined(TARGET_M68K) 11869 { 11870 TaskState *ts = cpu->opaque; 11871 ret = ts->tp_value; 11872 break; 11873 } 11874 #else 11875 goto unimplemented_nowarn; 11876 #endif 11877 #endif 11878 #ifdef TARGET_NR_getdomainname 11879 case TARGET_NR_getdomainname: 11880 goto unimplemented_nowarn; 11881 #endif 11882 11883 #ifdef TARGET_NR_clock_gettime 11884 case TARGET_NR_clock_gettime: 11885 { 11886 struct timespec ts; 11887 ret = get_errno(clock_gettime(arg1, &ts)); 11888 if (!is_error(ret)) { 11889 host_to_target_timespec(arg2, &ts); 11890 } 11891 break; 11892 } 11893 #endif 11894 #ifdef TARGET_NR_clock_getres 11895 case TARGET_NR_clock_getres: 11896 { 11897 struct timespec ts; 11898 ret = get_errno(clock_getres(arg1, &ts)); 11899 if (!is_error(ret)) { 11900 host_to_target_timespec(arg2, &ts); 11901 } 11902 break; 11903 } 11904 #endif 11905 #ifdef TARGET_NR_clock_nanosleep 11906 case TARGET_NR_clock_nanosleep: 11907 { 11908 struct timespec ts; 11909 target_to_host_timespec(&ts, arg3); 11910 ret = get_errno(safe_clock_nanosleep(arg1, arg2, 11911 &ts, arg4 ? &ts : NULL)); 11912 if (arg4) 11913 host_to_target_timespec(arg4, &ts); 11914 11915 #if defined(TARGET_PPC) 11916 /* clock_nanosleep is odd in that it returns positive errno values. 11917 * On PPC, CR0 bit 3 should be set in such a situation. */ 11918 if (ret && ret != -TARGET_ERESTARTSYS) { 11919 ((CPUPPCState *)cpu_env)->crf[0] |= 1; 11920 } 11921 #endif 11922 break; 11923 } 11924 #endif 11925 11926 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address) 11927 case TARGET_NR_set_tid_address: 11928 ret = get_errno(set_tid_address((int *)g2h(arg1))); 11929 break; 11930 #endif 11931 11932 case TARGET_NR_tkill: 11933 ret = get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2))); 11934 break; 11935 11936 case TARGET_NR_tgkill: 11937 ret = get_errno(safe_tgkill((int)arg1, (int)arg2, 11938 target_to_host_signal(arg3))); 11939 break; 11940 11941 #ifdef TARGET_NR_set_robust_list 11942 case TARGET_NR_set_robust_list: 11943 case TARGET_NR_get_robust_list: 11944 /* The ABI for supporting robust futexes has userspace pass 11945 * the kernel a pointer to a linked list which is updated by 11946 * userspace after the syscall; the list is walked by the kernel 11947 * when the thread exits. Since the linked list in QEMU guest 11948 * memory isn't a valid linked list for the host and we have 11949 * no way to reliably intercept the thread-death event, we can't 11950 * support these. Silently return ENOSYS so that guest userspace 11951 * falls back to a non-robust futex implementation (which should 11952 * be OK except in the corner case of the guest crashing while 11953 * holding a mutex that is shared with another process via 11954 * shared memory). 11955 */ 11956 goto unimplemented_nowarn; 11957 #endif 11958 11959 #if defined(TARGET_NR_utimensat) 11960 case TARGET_NR_utimensat: 11961 { 11962 struct timespec *tsp, ts[2]; 11963 if (!arg3) { 11964 tsp = NULL; 11965 } else { 11966 target_to_host_timespec(ts, arg3); 11967 target_to_host_timespec(ts+1, arg3+sizeof(struct target_timespec)); 11968 tsp = ts; 11969 } 11970 if (!arg2) 11971 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4)); 11972 else { 11973 if (!(p = lock_user_string(arg2))) { 11974 ret = -TARGET_EFAULT; 11975 goto fail; 11976 } 11977 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4)); 11978 unlock_user(p, arg2, 0); 11979 } 11980 } 11981 break; 11982 #endif 11983 case TARGET_NR_futex: 11984 ret = do_futex(arg1, arg2, arg3, arg4, arg5, arg6); 11985 break; 11986 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init) 11987 case TARGET_NR_inotify_init: 11988 ret = get_errno(sys_inotify_init()); 11989 if (ret >= 0) { 11990 fd_trans_register(ret, &target_inotify_trans); 11991 } 11992 break; 11993 #endif 11994 #ifdef CONFIG_INOTIFY1 11995 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1) 11996 case TARGET_NR_inotify_init1: 11997 ret = get_errno(sys_inotify_init1(target_to_host_bitmask(arg1, 11998 fcntl_flags_tbl))); 11999 if (ret >= 0) { 12000 fd_trans_register(ret, &target_inotify_trans); 12001 } 12002 break; 12003 #endif 12004 #endif 12005 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch) 12006 case TARGET_NR_inotify_add_watch: 12007 p = lock_user_string(arg2); 12008 ret = get_errno(sys_inotify_add_watch(arg1, path(p), arg3)); 12009 unlock_user(p, arg2, 0); 12010 break; 12011 #endif 12012 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch) 12013 case TARGET_NR_inotify_rm_watch: 12014 ret = get_errno(sys_inotify_rm_watch(arg1, arg2)); 12015 break; 12016 #endif 12017 12018 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open) 12019 case TARGET_NR_mq_open: 12020 { 12021 struct mq_attr posix_mq_attr; 12022 struct mq_attr *pposix_mq_attr; 12023 int host_flags; 12024 12025 host_flags = target_to_host_bitmask(arg2, fcntl_flags_tbl); 12026 pposix_mq_attr = NULL; 12027 if (arg4) { 12028 if (copy_from_user_mq_attr(&posix_mq_attr, arg4) != 0) { 12029 goto efault; 12030 } 12031 pposix_mq_attr = &posix_mq_attr; 12032 } 12033 p = lock_user_string(arg1 - 1); 12034 if (!p) { 12035 goto efault; 12036 } 12037 ret = get_errno(mq_open(p, host_flags, arg3, pposix_mq_attr)); 12038 unlock_user (p, arg1, 0); 12039 } 12040 break; 12041 12042 case TARGET_NR_mq_unlink: 12043 p = lock_user_string(arg1 - 1); 12044 if (!p) { 12045 ret = -TARGET_EFAULT; 12046 break; 12047 } 12048 ret = get_errno(mq_unlink(p)); 12049 unlock_user (p, arg1, 0); 12050 break; 12051 12052 case TARGET_NR_mq_timedsend: 12053 { 12054 struct timespec ts; 12055 12056 p = lock_user (VERIFY_READ, arg2, arg3, 1); 12057 if (arg5 != 0) { 12058 target_to_host_timespec(&ts, arg5); 12059 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts)); 12060 host_to_target_timespec(arg5, &ts); 12061 } else { 12062 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL)); 12063 } 12064 unlock_user (p, arg2, arg3); 12065 } 12066 break; 12067 12068 case TARGET_NR_mq_timedreceive: 12069 { 12070 struct timespec ts; 12071 unsigned int prio; 12072 12073 p = lock_user (VERIFY_READ, arg2, arg3, 1); 12074 if (arg5 != 0) { 12075 target_to_host_timespec(&ts, arg5); 12076 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3, 12077 &prio, &ts)); 12078 host_to_target_timespec(arg5, &ts); 12079 } else { 12080 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3, 12081 &prio, NULL)); 12082 } 12083 unlock_user (p, arg2, arg3); 12084 if (arg4 != 0) 12085 put_user_u32(prio, arg4); 12086 } 12087 break; 12088 12089 /* Not implemented for now... */ 12090 /* case TARGET_NR_mq_notify: */ 12091 /* break; */ 12092 12093 case TARGET_NR_mq_getsetattr: 12094 { 12095 struct mq_attr posix_mq_attr_in, posix_mq_attr_out; 12096 ret = 0; 12097 if (arg3 != 0) { 12098 ret = mq_getattr(arg1, &posix_mq_attr_out); 12099 copy_to_user_mq_attr(arg3, &posix_mq_attr_out); 12100 } 12101 if (arg2 != 0) { 12102 copy_from_user_mq_attr(&posix_mq_attr_in, arg2); 12103 ret |= mq_setattr(arg1, &posix_mq_attr_in, &posix_mq_attr_out); 12104 } 12105 12106 } 12107 break; 12108 #endif 12109 12110 #ifdef CONFIG_SPLICE 12111 #ifdef TARGET_NR_tee 12112 case TARGET_NR_tee: 12113 { 12114 ret = get_errno(tee(arg1,arg2,arg3,arg4)); 12115 } 12116 break; 12117 #endif 12118 #ifdef TARGET_NR_splice 12119 case TARGET_NR_splice: 12120 { 12121 loff_t loff_in, loff_out; 12122 loff_t *ploff_in = NULL, *ploff_out = NULL; 12123 if (arg2) { 12124 if (get_user_u64(loff_in, arg2)) { 12125 goto efault; 12126 } 12127 ploff_in = &loff_in; 12128 } 12129 if (arg4) { 12130 if (get_user_u64(loff_out, arg4)) { 12131 goto efault; 12132 } 12133 ploff_out = &loff_out; 12134 } 12135 ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6)); 12136 if (arg2) { 12137 if (put_user_u64(loff_in, arg2)) { 12138 goto efault; 12139 } 12140 } 12141 if (arg4) { 12142 if (put_user_u64(loff_out, arg4)) { 12143 goto efault; 12144 } 12145 } 12146 } 12147 break; 12148 #endif 12149 #ifdef TARGET_NR_vmsplice 12150 case TARGET_NR_vmsplice: 12151 { 12152 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 12153 if (vec != NULL) { 12154 ret = get_errno(vmsplice(arg1, vec, arg3, arg4)); 12155 unlock_iovec(vec, arg2, arg3, 0); 12156 } else { 12157 ret = -host_to_target_errno(errno); 12158 } 12159 } 12160 break; 12161 #endif 12162 #endif /* CONFIG_SPLICE */ 12163 #ifdef CONFIG_EVENTFD 12164 #if defined(TARGET_NR_eventfd) 12165 case TARGET_NR_eventfd: 12166 ret = get_errno(eventfd(arg1, 0)); 12167 if (ret >= 0) { 12168 fd_trans_register(ret, &target_eventfd_trans); 12169 } 12170 break; 12171 #endif 12172 #if defined(TARGET_NR_eventfd2) 12173 case TARGET_NR_eventfd2: 12174 { 12175 int host_flags = arg2 & (~(TARGET_O_NONBLOCK | TARGET_O_CLOEXEC)); 12176 if (arg2 & TARGET_O_NONBLOCK) { 12177 host_flags |= O_NONBLOCK; 12178 } 12179 if (arg2 & TARGET_O_CLOEXEC) { 12180 host_flags |= O_CLOEXEC; 12181 } 12182 ret = get_errno(eventfd(arg1, host_flags)); 12183 if (ret >= 0) { 12184 fd_trans_register(ret, &target_eventfd_trans); 12185 } 12186 break; 12187 } 12188 #endif 12189 #endif /* CONFIG_EVENTFD */ 12190 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate) 12191 case TARGET_NR_fallocate: 12192 #if TARGET_ABI_BITS == 32 12193 ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4), 12194 target_offset64(arg5, arg6))); 12195 #else 12196 ret = get_errno(fallocate(arg1, arg2, arg3, arg4)); 12197 #endif 12198 break; 12199 #endif 12200 #if defined(CONFIG_SYNC_FILE_RANGE) 12201 #if defined(TARGET_NR_sync_file_range) 12202 case TARGET_NR_sync_file_range: 12203 #if TARGET_ABI_BITS == 32 12204 #if defined(TARGET_MIPS) 12205 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4), 12206 target_offset64(arg5, arg6), arg7)); 12207 #else 12208 ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3), 12209 target_offset64(arg4, arg5), arg6)); 12210 #endif /* !TARGET_MIPS */ 12211 #else 12212 ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4)); 12213 #endif 12214 break; 12215 #endif 12216 #if defined(TARGET_NR_sync_file_range2) 12217 case TARGET_NR_sync_file_range2: 12218 /* This is like sync_file_range but the arguments are reordered */ 12219 #if TARGET_ABI_BITS == 32 12220 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4), 12221 target_offset64(arg5, arg6), arg2)); 12222 #else 12223 ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2)); 12224 #endif 12225 break; 12226 #endif 12227 #endif 12228 #if defined(TARGET_NR_signalfd4) 12229 case TARGET_NR_signalfd4: 12230 ret = do_signalfd4(arg1, arg2, arg4); 12231 break; 12232 #endif 12233 #if defined(TARGET_NR_signalfd) 12234 case TARGET_NR_signalfd: 12235 ret = do_signalfd4(arg1, arg2, 0); 12236 break; 12237 #endif 12238 #if defined(CONFIG_EPOLL) 12239 #if defined(TARGET_NR_epoll_create) 12240 case TARGET_NR_epoll_create: 12241 ret = get_errno(epoll_create(arg1)); 12242 break; 12243 #endif 12244 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1) 12245 case TARGET_NR_epoll_create1: 12246 ret = get_errno(epoll_create1(arg1)); 12247 break; 12248 #endif 12249 #if defined(TARGET_NR_epoll_ctl) 12250 case TARGET_NR_epoll_ctl: 12251 { 12252 struct epoll_event ep; 12253 struct epoll_event *epp = 0; 12254 if (arg4) { 12255 struct target_epoll_event *target_ep; 12256 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) { 12257 goto efault; 12258 } 12259 ep.events = tswap32(target_ep->events); 12260 /* The epoll_data_t union is just opaque data to the kernel, 12261 * so we transfer all 64 bits across and need not worry what 12262 * actual data type it is. 12263 */ 12264 ep.data.u64 = tswap64(target_ep->data.u64); 12265 unlock_user_struct(target_ep, arg4, 0); 12266 epp = &ep; 12267 } 12268 ret = get_errno(epoll_ctl(arg1, arg2, arg3, epp)); 12269 break; 12270 } 12271 #endif 12272 12273 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait) 12274 #if defined(TARGET_NR_epoll_wait) 12275 case TARGET_NR_epoll_wait: 12276 #endif 12277 #if defined(TARGET_NR_epoll_pwait) 12278 case TARGET_NR_epoll_pwait: 12279 #endif 12280 { 12281 struct target_epoll_event *target_ep; 12282 struct epoll_event *ep; 12283 int epfd = arg1; 12284 int maxevents = arg3; 12285 int timeout = arg4; 12286 12287 if (maxevents <= 0 || maxevents > TARGET_EP_MAX_EVENTS) { 12288 ret = -TARGET_EINVAL; 12289 break; 12290 } 12291 12292 target_ep = lock_user(VERIFY_WRITE, arg2, 12293 maxevents * sizeof(struct target_epoll_event), 1); 12294 if (!target_ep) { 12295 goto efault; 12296 } 12297 12298 ep = g_try_new(struct epoll_event, maxevents); 12299 if (!ep) { 12300 unlock_user(target_ep, arg2, 0); 12301 ret = -TARGET_ENOMEM; 12302 break; 12303 } 12304 12305 switch (num) { 12306 #if defined(TARGET_NR_epoll_pwait) 12307 case TARGET_NR_epoll_pwait: 12308 { 12309 target_sigset_t *target_set; 12310 sigset_t _set, *set = &_set; 12311 12312 if (arg5) { 12313 if (arg6 != sizeof(target_sigset_t)) { 12314 ret = -TARGET_EINVAL; 12315 break; 12316 } 12317 12318 target_set = lock_user(VERIFY_READ, arg5, 12319 sizeof(target_sigset_t), 1); 12320 if (!target_set) { 12321 ret = -TARGET_EFAULT; 12322 break; 12323 } 12324 target_to_host_sigset(set, target_set); 12325 unlock_user(target_set, arg5, 0); 12326 } else { 12327 set = NULL; 12328 } 12329 12330 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout, 12331 set, SIGSET_T_SIZE)); 12332 break; 12333 } 12334 #endif 12335 #if defined(TARGET_NR_epoll_wait) 12336 case TARGET_NR_epoll_wait: 12337 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout, 12338 NULL, 0)); 12339 break; 12340 #endif 12341 default: 12342 ret = -TARGET_ENOSYS; 12343 } 12344 if (!is_error(ret)) { 12345 int i; 12346 for (i = 0; i < ret; i++) { 12347 target_ep[i].events = tswap32(ep[i].events); 12348 target_ep[i].data.u64 = tswap64(ep[i].data.u64); 12349 } 12350 unlock_user(target_ep, arg2, 12351 ret * sizeof(struct target_epoll_event)); 12352 } else { 12353 unlock_user(target_ep, arg2, 0); 12354 } 12355 g_free(ep); 12356 break; 12357 } 12358 #endif 12359 #endif 12360 #ifdef TARGET_NR_prlimit64 12361 case TARGET_NR_prlimit64: 12362 { 12363 /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */ 12364 struct target_rlimit64 *target_rnew, *target_rold; 12365 struct host_rlimit64 rnew, rold, *rnewp = 0; 12366 int resource = target_to_host_resource(arg2); 12367 if (arg3) { 12368 if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) { 12369 goto efault; 12370 } 12371 rnew.rlim_cur = tswap64(target_rnew->rlim_cur); 12372 rnew.rlim_max = tswap64(target_rnew->rlim_max); 12373 unlock_user_struct(target_rnew, arg3, 0); 12374 rnewp = &rnew; 12375 } 12376 12377 ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0)); 12378 if (!is_error(ret) && arg4) { 12379 if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) { 12380 goto efault; 12381 } 12382 target_rold->rlim_cur = tswap64(rold.rlim_cur); 12383 target_rold->rlim_max = tswap64(rold.rlim_max); 12384 unlock_user_struct(target_rold, arg4, 1); 12385 } 12386 break; 12387 } 12388 #endif 12389 #ifdef TARGET_NR_gethostname 12390 case TARGET_NR_gethostname: 12391 { 12392 char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0); 12393 if (name) { 12394 ret = get_errno(gethostname(name, arg2)); 12395 unlock_user(name, arg1, arg2); 12396 } else { 12397 ret = -TARGET_EFAULT; 12398 } 12399 break; 12400 } 12401 #endif 12402 #ifdef TARGET_NR_atomic_cmpxchg_32 12403 case TARGET_NR_atomic_cmpxchg_32: 12404 { 12405 /* should use start_exclusive from main.c */ 12406 abi_ulong mem_value; 12407 if (get_user_u32(mem_value, arg6)) { 12408 target_siginfo_t info; 12409 info.si_signo = SIGSEGV; 12410 info.si_errno = 0; 12411 info.si_code = TARGET_SEGV_MAPERR; 12412 info._sifields._sigfault._addr = arg6; 12413 queue_signal((CPUArchState *)cpu_env, info.si_signo, 12414 QEMU_SI_FAULT, &info); 12415 ret = 0xdeadbeef; 12416 12417 } 12418 if (mem_value == arg2) 12419 put_user_u32(arg1, arg6); 12420 ret = mem_value; 12421 break; 12422 } 12423 #endif 12424 #ifdef TARGET_NR_atomic_barrier 12425 case TARGET_NR_atomic_barrier: 12426 { 12427 /* Like the kernel implementation and the qemu arm barrier, no-op this? */ 12428 ret = 0; 12429 break; 12430 } 12431 #endif 12432 12433 #ifdef TARGET_NR_timer_create 12434 case TARGET_NR_timer_create: 12435 { 12436 /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */ 12437 12438 struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL; 12439 12440 int clkid = arg1; 12441 int timer_index = next_free_host_timer(); 12442 12443 if (timer_index < 0) { 12444 ret = -TARGET_EAGAIN; 12445 } else { 12446 timer_t *phtimer = g_posix_timers + timer_index; 12447 12448 if (arg2) { 12449 phost_sevp = &host_sevp; 12450 ret = target_to_host_sigevent(phost_sevp, arg2); 12451 if (ret != 0) { 12452 break; 12453 } 12454 } 12455 12456 ret = get_errno(timer_create(clkid, phost_sevp, phtimer)); 12457 if (ret) { 12458 phtimer = NULL; 12459 } else { 12460 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) { 12461 goto efault; 12462 } 12463 } 12464 } 12465 break; 12466 } 12467 #endif 12468 12469 #ifdef TARGET_NR_timer_settime 12470 case TARGET_NR_timer_settime: 12471 { 12472 /* args: timer_t timerid, int flags, const struct itimerspec *new_value, 12473 * struct itimerspec * old_value */ 12474 target_timer_t timerid = get_timer_id(arg1); 12475 12476 if (timerid < 0) { 12477 ret = timerid; 12478 } else if (arg3 == 0) { 12479 ret = -TARGET_EINVAL; 12480 } else { 12481 timer_t htimer = g_posix_timers[timerid]; 12482 struct itimerspec hspec_new = {{0},}, hspec_old = {{0},}; 12483 12484 if (target_to_host_itimerspec(&hspec_new, arg3)) { 12485 goto efault; 12486 } 12487 ret = get_errno( 12488 timer_settime(htimer, arg2, &hspec_new, &hspec_old)); 12489 if (arg4 && host_to_target_itimerspec(arg4, &hspec_old)) { 12490 goto efault; 12491 } 12492 } 12493 break; 12494 } 12495 #endif 12496 12497 #ifdef TARGET_NR_timer_gettime 12498 case TARGET_NR_timer_gettime: 12499 { 12500 /* args: timer_t timerid, struct itimerspec *curr_value */ 12501 target_timer_t timerid = get_timer_id(arg1); 12502 12503 if (timerid < 0) { 12504 ret = timerid; 12505 } else if (!arg2) { 12506 ret = -TARGET_EFAULT; 12507 } else { 12508 timer_t htimer = g_posix_timers[timerid]; 12509 struct itimerspec hspec; 12510 ret = get_errno(timer_gettime(htimer, &hspec)); 12511 12512 if (host_to_target_itimerspec(arg2, &hspec)) { 12513 ret = -TARGET_EFAULT; 12514 } 12515 } 12516 break; 12517 } 12518 #endif 12519 12520 #ifdef TARGET_NR_timer_getoverrun 12521 case TARGET_NR_timer_getoverrun: 12522 { 12523 /* args: timer_t timerid */ 12524 target_timer_t timerid = get_timer_id(arg1); 12525 12526 if (timerid < 0) { 12527 ret = timerid; 12528 } else { 12529 timer_t htimer = g_posix_timers[timerid]; 12530 ret = get_errno(timer_getoverrun(htimer)); 12531 } 12532 fd_trans_unregister(ret); 12533 break; 12534 } 12535 #endif 12536 12537 #ifdef TARGET_NR_timer_delete 12538 case TARGET_NR_timer_delete: 12539 { 12540 /* args: timer_t timerid */ 12541 target_timer_t timerid = get_timer_id(arg1); 12542 12543 if (timerid < 0) { 12544 ret = timerid; 12545 } else { 12546 timer_t htimer = g_posix_timers[timerid]; 12547 ret = get_errno(timer_delete(htimer)); 12548 g_posix_timers[timerid] = 0; 12549 } 12550 break; 12551 } 12552 #endif 12553 12554 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD) 12555 case TARGET_NR_timerfd_create: 12556 ret = get_errno(timerfd_create(arg1, 12557 target_to_host_bitmask(arg2, fcntl_flags_tbl))); 12558 break; 12559 #endif 12560 12561 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD) 12562 case TARGET_NR_timerfd_gettime: 12563 { 12564 struct itimerspec its_curr; 12565 12566 ret = get_errno(timerfd_gettime(arg1, &its_curr)); 12567 12568 if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) { 12569 goto efault; 12570 } 12571 } 12572 break; 12573 #endif 12574 12575 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD) 12576 case TARGET_NR_timerfd_settime: 12577 { 12578 struct itimerspec its_new, its_old, *p_new; 12579 12580 if (arg3) { 12581 if (target_to_host_itimerspec(&its_new, arg3)) { 12582 goto efault; 12583 } 12584 p_new = &its_new; 12585 } else { 12586 p_new = NULL; 12587 } 12588 12589 ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old)); 12590 12591 if (arg4 && host_to_target_itimerspec(arg4, &its_old)) { 12592 goto efault; 12593 } 12594 } 12595 break; 12596 #endif 12597 12598 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get) 12599 case TARGET_NR_ioprio_get: 12600 ret = get_errno(ioprio_get(arg1, arg2)); 12601 break; 12602 #endif 12603 12604 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set) 12605 case TARGET_NR_ioprio_set: 12606 ret = get_errno(ioprio_set(arg1, arg2, arg3)); 12607 break; 12608 #endif 12609 12610 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS) 12611 case TARGET_NR_setns: 12612 ret = get_errno(setns(arg1, arg2)); 12613 break; 12614 #endif 12615 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS) 12616 case TARGET_NR_unshare: 12617 ret = get_errno(unshare(arg1)); 12618 break; 12619 #endif 12620 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp) 12621 case TARGET_NR_kcmp: 12622 ret = get_errno(kcmp(arg1, arg2, arg3, arg4, arg5)); 12623 break; 12624 #endif 12625 12626 default: 12627 unimplemented: 12628 gemu_log("qemu: Unsupported syscall: %d\n", num); 12629 #if defined(TARGET_NR_setxattr) || defined(TARGET_NR_get_thread_area) || defined(TARGET_NR_getdomainname) || defined(TARGET_NR_set_robust_list) 12630 unimplemented_nowarn: 12631 #endif 12632 ret = -TARGET_ENOSYS; 12633 break; 12634 } 12635 fail: 12636 #ifdef DEBUG 12637 gemu_log(" = " TARGET_ABI_FMT_ld "\n", ret); 12638 #endif 12639 if(do_strace) 12640 print_syscall_ret(num, ret); 12641 trace_guest_user_syscall_ret(cpu, num, ret); 12642 return ret; 12643 efault: 12644 ret = -TARGET_EFAULT; 12645 goto fail; 12646 } 12647