xref: /openbmc/qemu/linux-user/syscall.c (revision 0885f1221e0add5529dada1e7948d2c00189cb8b)
1 /*
2  *  Linux syscalls
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #define _ATFILE_SOURCE
20 #include "qemu/osdep.h"
21 #include "qemu/cutils.h"
22 #include "qemu/path.h"
23 #include "qemu/memfd.h"
24 #include "qemu/queue.h"
25 #include "qemu/plugin.h"
26 #include "tcg/startup.h"
27 #include "target_mman.h"
28 #include <elf.h>
29 #include <endian.h>
30 #include <grp.h>
31 #include <sys/ipc.h>
32 #include <sys/msg.h>
33 #include <sys/wait.h>
34 #include <sys/mount.h>
35 #include <sys/file.h>
36 #include <sys/fsuid.h>
37 #include <sys/personality.h>
38 #include <sys/prctl.h>
39 #include <sys/resource.h>
40 #include <sys/swap.h>
41 #include <linux/capability.h>
42 #include <sched.h>
43 #include <sys/timex.h>
44 #include <sys/socket.h>
45 #include <linux/sockios.h>
46 #include <sys/un.h>
47 #include <sys/uio.h>
48 #include <poll.h>
49 #include <sys/times.h>
50 #include <sys/shm.h>
51 #include <sys/sem.h>
52 #include <sys/statfs.h>
53 #include <utime.h>
54 #include <sys/sysinfo.h>
55 #include <sys/signalfd.h>
56 //#include <sys/user.h>
57 #include <netinet/in.h>
58 #include <netinet/ip.h>
59 #include <netinet/tcp.h>
60 #include <netinet/udp.h>
61 #include <linux/wireless.h>
62 #include <linux/icmp.h>
63 #include <linux/icmpv6.h>
64 #include <linux/if_tun.h>
65 #include <linux/in6.h>
66 #include <linux/errqueue.h>
67 #include <linux/random.h>
68 #ifdef CONFIG_TIMERFD
69 #include <sys/timerfd.h>
70 #endif
71 #ifdef CONFIG_EVENTFD
72 #include <sys/eventfd.h>
73 #endif
74 #ifdef CONFIG_EPOLL
75 #include <sys/epoll.h>
76 #endif
77 #ifdef CONFIG_ATTR
78 #include "qemu/xattr.h"
79 #endif
80 #ifdef CONFIG_SENDFILE
81 #include <sys/sendfile.h>
82 #endif
83 #ifdef HAVE_SYS_KCOV_H
84 #include <sys/kcov.h>
85 #endif
86 
87 #define termios host_termios
88 #define winsize host_winsize
89 #define termio host_termio
90 #define sgttyb host_sgttyb /* same as target */
91 #define tchars host_tchars /* same as target */
92 #define ltchars host_ltchars /* same as target */
93 
94 #include <linux/termios.h>
95 #include <linux/unistd.h>
96 #include <linux/cdrom.h>
97 #include <linux/hdreg.h>
98 #include <linux/soundcard.h>
99 #include <linux/kd.h>
100 #include <linux/mtio.h>
101 #include <linux/fs.h>
102 #include <linux/fd.h>
103 #if defined(CONFIG_FIEMAP)
104 #include <linux/fiemap.h>
105 #endif
106 #include <linux/fb.h>
107 #if defined(CONFIG_USBFS)
108 #include <linux/usbdevice_fs.h>
109 #include <linux/usb/ch9.h>
110 #endif
111 #include <linux/vt.h>
112 #include <linux/dm-ioctl.h>
113 #include <linux/reboot.h>
114 #include <linux/route.h>
115 #include <linux/filter.h>
116 #include <linux/blkpg.h>
117 #include <netpacket/packet.h>
118 #include <linux/netlink.h>
119 #include <linux/if_alg.h>
120 #include <linux/rtc.h>
121 #include <sound/asound.h>
122 #ifdef HAVE_BTRFS_H
123 #include <linux/btrfs.h>
124 #endif
125 #ifdef HAVE_DRM_H
126 #include <libdrm/drm.h>
127 #include <libdrm/i915_drm.h>
128 #endif
129 #include "linux_loop.h"
130 #include "uname.h"
131 
132 #include "qemu.h"
133 #include "user-internals.h"
134 #include "strace.h"
135 #include "signal-common.h"
136 #include "loader.h"
137 #include "user-mmap.h"
138 #include "user/safe-syscall.h"
139 #include "qemu/guest-random.h"
140 #include "qemu/selfmap.h"
141 #include "user/syscall-trace.h"
142 #include "special-errno.h"
143 #include "qapi/error.h"
144 #include "fd-trans.h"
145 #include "cpu_loop-common.h"
146 
147 #ifndef CLONE_IO
148 #define CLONE_IO                0x80000000      /* Clone io context */
149 #endif
150 
151 /* We can't directly call the host clone syscall, because this will
152  * badly confuse libc (breaking mutexes, for example). So we must
153  * divide clone flags into:
154  *  * flag combinations that look like pthread_create()
155  *  * flag combinations that look like fork()
156  *  * flags we can implement within QEMU itself
157  *  * flags we can't support and will return an error for
158  */
159 /* For thread creation, all these flags must be present; for
160  * fork, none must be present.
161  */
162 #define CLONE_THREAD_FLAGS                              \
163     (CLONE_VM | CLONE_FS | CLONE_FILES |                \
164      CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM)
165 
166 /* These flags are ignored:
167  * CLONE_DETACHED is now ignored by the kernel;
168  * CLONE_IO is just an optimisation hint to the I/O scheduler
169  */
170 #define CLONE_IGNORED_FLAGS                     \
171     (CLONE_DETACHED | CLONE_IO)
172 
173 #ifndef CLONE_PIDFD
174 # define CLONE_PIDFD 0x00001000
175 #endif
176 
177 /* Flags for fork which we can implement within QEMU itself */
178 #define CLONE_OPTIONAL_FORK_FLAGS               \
179     (CLONE_SETTLS | CLONE_PARENT_SETTID | CLONE_PIDFD | \
180      CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID)
181 
182 /* Flags for thread creation which we can implement within QEMU itself */
183 #define CLONE_OPTIONAL_THREAD_FLAGS                             \
184     (CLONE_SETTLS | CLONE_PARENT_SETTID |                       \
185      CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT)
186 
187 #define CLONE_INVALID_FORK_FLAGS                                        \
188     (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS))
189 
190 #define CLONE_INVALID_THREAD_FLAGS                                      \
191     (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS |     \
192        CLONE_IGNORED_FLAGS))
193 
194 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits
195  * have almost all been allocated. We cannot support any of
196  * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC,
197  * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED.
198  * The checks against the invalid thread masks above will catch these.
199  * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.)
200  */
201 
202 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted
203  * once. This exercises the codepaths for restart.
204  */
205 //#define DEBUG_ERESTARTSYS
206 
207 //#include <linux/msdos_fs.h>
208 #define VFAT_IOCTL_READDIR_BOTH \
209     _IOC(_IOC_READ, 'r', 1, (sizeof(struct linux_dirent) + 256) * 2)
210 #define VFAT_IOCTL_READDIR_SHORT \
211     _IOC(_IOC_READ, 'r', 2, (sizeof(struct linux_dirent) + 256) * 2)
212 
213 #undef _syscall0
214 #undef _syscall1
215 #undef _syscall2
216 #undef _syscall3
217 #undef _syscall4
218 #undef _syscall5
219 #undef _syscall6
220 
221 #define _syscall0(type,name)		\
222 static type name (void)			\
223 {					\
224 	return syscall(__NR_##name);	\
225 }
226 
227 #define _syscall1(type,name,type1,arg1)		\
228 static type name (type1 arg1)			\
229 {						\
230 	return syscall(__NR_##name, arg1);	\
231 }
232 
233 #define _syscall2(type,name,type1,arg1,type2,arg2)	\
234 static type name (type1 arg1,type2 arg2)		\
235 {							\
236 	return syscall(__NR_##name, arg1, arg2);	\
237 }
238 
239 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3)	\
240 static type name (type1 arg1,type2 arg2,type3 arg3)		\
241 {								\
242 	return syscall(__NR_##name, arg1, arg2, arg3);		\
243 }
244 
245 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4)	\
246 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4)			\
247 {										\
248 	return syscall(__NR_##name, arg1, arg2, arg3, arg4);			\
249 }
250 
251 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,	\
252 		  type5,arg5)							\
253 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5)	\
254 {										\
255 	return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5);		\
256 }
257 
258 
259 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,	\
260 		  type5,arg5,type6,arg6)					\
261 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5,	\
262                   type6 arg6)							\
263 {										\
264 	return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6);	\
265 }
266 
267 
268 #define __NR_sys_uname __NR_uname
269 #define __NR_sys_getcwd1 __NR_getcwd
270 #define __NR_sys_getdents __NR_getdents
271 #define __NR_sys_getdents64 __NR_getdents64
272 #define __NR_sys_getpriority __NR_getpriority
273 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
274 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo
275 #define __NR_sys_syslog __NR_syslog
276 #if defined(__NR_futex)
277 # define __NR_sys_futex __NR_futex
278 #endif
279 #if defined(__NR_futex_time64)
280 # define __NR_sys_futex_time64 __NR_futex_time64
281 #endif
282 #define __NR_sys_statx __NR_statx
283 
284 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__)
285 #define __NR__llseek __NR_lseek
286 #endif
287 
288 /* Newer kernel ports have llseek() instead of _llseek() */
289 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek)
290 #define TARGET_NR__llseek TARGET_NR_llseek
291 #endif
292 
293 /* some platforms need to mask more bits than just TARGET_O_NONBLOCK */
294 #ifndef TARGET_O_NONBLOCK_MASK
295 #define TARGET_O_NONBLOCK_MASK TARGET_O_NONBLOCK
296 #endif
297 
298 #define __NR_sys_gettid __NR_gettid
299 _syscall0(int, sys_gettid)
300 
301 /* For the 64-bit guest on 32-bit host case we must emulate
302  * getdents using getdents64, because otherwise the host
303  * might hand us back more dirent records than we can fit
304  * into the guest buffer after structure format conversion.
305  * Otherwise we emulate getdents with getdents if the host has it.
306  */
307 #if defined(__NR_getdents) && HOST_LONG_BITS >= TARGET_ABI_BITS
308 #define EMULATE_GETDENTS_WITH_GETDENTS
309 #endif
310 
311 #if defined(TARGET_NR_getdents) && defined(EMULATE_GETDENTS_WITH_GETDENTS)
312 _syscall3(int, sys_getdents, unsigned int, fd, struct linux_dirent *, dirp, unsigned int, count);
313 #endif
314 #if (defined(TARGET_NR_getdents) && \
315       !defined(EMULATE_GETDENTS_WITH_GETDENTS)) || \
316     (defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
317 _syscall3(int, sys_getdents64, unsigned int, fd, struct linux_dirent64 *, dirp, unsigned int, count);
318 #endif
319 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
320 _syscall5(int, _llseek,  unsigned int,  fd, unsigned long, hi, unsigned long, lo,
321           loff_t *, res, unsigned int, wh);
322 #endif
323 _syscall3(int, sys_rt_sigqueueinfo, pid_t, pid, int, sig, siginfo_t *, uinfo)
324 _syscall4(int, sys_rt_tgsigqueueinfo, pid_t, pid, pid_t, tid, int, sig,
325           siginfo_t *, uinfo)
326 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len)
327 #ifdef __NR_exit_group
328 _syscall1(int,exit_group,int,error_code)
329 #endif
330 #if defined(__NR_close_range) && defined(TARGET_NR_close_range)
331 #define __NR_sys_close_range __NR_close_range
332 _syscall3(int,sys_close_range,int,first,int,last,int,flags)
333 #ifndef CLOSE_RANGE_CLOEXEC
334 #define CLOSE_RANGE_CLOEXEC     (1U << 2)
335 #endif
336 #endif
337 #if defined(__NR_futex)
338 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val,
339           const struct timespec *,timeout,int *,uaddr2,int,val3)
340 #endif
341 #if defined(__NR_futex_time64)
342 _syscall6(int,sys_futex_time64,int *,uaddr,int,op,int,val,
343           const struct timespec *,timeout,int *,uaddr2,int,val3)
344 #endif
345 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
346 _syscall2(int, pidfd_open, pid_t, pid, unsigned int, flags);
347 #endif
348 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal)
349 _syscall4(int, pidfd_send_signal, int, pidfd, int, sig, siginfo_t *, info,
350                              unsigned int, flags);
351 #endif
352 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd)
353 _syscall3(int, pidfd_getfd, int, pidfd, int, targetfd, unsigned int, flags);
354 #endif
355 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
356 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len,
357           unsigned long *, user_mask_ptr);
358 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
359 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len,
360           unsigned long *, user_mask_ptr);
361 /* sched_attr is not defined in glibc */
362 struct sched_attr {
363     uint32_t size;
364     uint32_t sched_policy;
365     uint64_t sched_flags;
366     int32_t sched_nice;
367     uint32_t sched_priority;
368     uint64_t sched_runtime;
369     uint64_t sched_deadline;
370     uint64_t sched_period;
371     uint32_t sched_util_min;
372     uint32_t sched_util_max;
373 };
374 #define __NR_sys_sched_getattr __NR_sched_getattr
375 _syscall4(int, sys_sched_getattr, pid_t, pid, struct sched_attr *, attr,
376           unsigned int, size, unsigned int, flags);
377 #define __NR_sys_sched_setattr __NR_sched_setattr
378 _syscall3(int, sys_sched_setattr, pid_t, pid, struct sched_attr *, attr,
379           unsigned int, flags);
380 #define __NR_sys_sched_getscheduler __NR_sched_getscheduler
381 _syscall1(int, sys_sched_getscheduler, pid_t, pid);
382 #define __NR_sys_sched_setscheduler __NR_sched_setscheduler
383 _syscall3(int, sys_sched_setscheduler, pid_t, pid, int, policy,
384           const struct sched_param *, param);
385 #define __NR_sys_sched_getparam __NR_sched_getparam
386 _syscall2(int, sys_sched_getparam, pid_t, pid,
387           struct sched_param *, param);
388 #define __NR_sys_sched_setparam __NR_sched_setparam
389 _syscall2(int, sys_sched_setparam, pid_t, pid,
390           const struct sched_param *, param);
391 #define __NR_sys_getcpu __NR_getcpu
392 _syscall3(int, sys_getcpu, unsigned *, cpu, unsigned *, node, void *, tcache);
393 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd,
394           void *, arg);
395 _syscall2(int, capget, struct __user_cap_header_struct *, header,
396           struct __user_cap_data_struct *, data);
397 _syscall2(int, capset, struct __user_cap_header_struct *, header,
398           struct __user_cap_data_struct *, data);
399 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
400 _syscall2(int, ioprio_get, int, which, int, who)
401 #endif
402 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
403 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio)
404 #endif
405 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
406 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags)
407 #endif
408 
409 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
410 _syscall5(int, kcmp, pid_t, pid1, pid_t, pid2, int, type,
411           unsigned long, idx1, unsigned long, idx2)
412 #endif
413 
414 /*
415  * It is assumed that struct statx is architecture independent.
416  */
417 #if defined(TARGET_NR_statx) && defined(__NR_statx)
418 _syscall5(int, sys_statx, int, dirfd, const char *, pathname, int, flags,
419           unsigned int, mask, struct target_statx *, statxbuf)
420 #endif
421 #if defined(TARGET_NR_membarrier) && defined(__NR_membarrier)
422 _syscall2(int, membarrier, int, cmd, int, flags)
423 #endif
424 
425 static const bitmask_transtbl fcntl_flags_tbl[] = {
426   { TARGET_O_ACCMODE,   TARGET_O_WRONLY,    O_ACCMODE,   O_WRONLY,    },
427   { TARGET_O_ACCMODE,   TARGET_O_RDWR,      O_ACCMODE,   O_RDWR,      },
428   { TARGET_O_CREAT,     TARGET_O_CREAT,     O_CREAT,     O_CREAT,     },
429   { TARGET_O_EXCL,      TARGET_O_EXCL,      O_EXCL,      O_EXCL,      },
430   { TARGET_O_NOCTTY,    TARGET_O_NOCTTY,    O_NOCTTY,    O_NOCTTY,    },
431   { TARGET_O_TRUNC,     TARGET_O_TRUNC,     O_TRUNC,     O_TRUNC,     },
432   { TARGET_O_APPEND,    TARGET_O_APPEND,    O_APPEND,    O_APPEND,    },
433   { TARGET_O_NONBLOCK,  TARGET_O_NONBLOCK,  O_NONBLOCK,  O_NONBLOCK,  },
434   { TARGET_O_SYNC,      TARGET_O_DSYNC,     O_SYNC,      O_DSYNC,     },
435   { TARGET_O_SYNC,      TARGET_O_SYNC,      O_SYNC,      O_SYNC,      },
436   { TARGET_FASYNC,      TARGET_FASYNC,      FASYNC,      FASYNC,      },
437   { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, },
438   { TARGET_O_NOFOLLOW,  TARGET_O_NOFOLLOW,  O_NOFOLLOW,  O_NOFOLLOW,  },
439 #if defined(O_DIRECT)
440   { TARGET_O_DIRECT,    TARGET_O_DIRECT,    O_DIRECT,    O_DIRECT,    },
441 #endif
442 #if defined(O_NOATIME)
443   { TARGET_O_NOATIME,   TARGET_O_NOATIME,   O_NOATIME,   O_NOATIME    },
444 #endif
445 #if defined(O_CLOEXEC)
446   { TARGET_O_CLOEXEC,   TARGET_O_CLOEXEC,   O_CLOEXEC,   O_CLOEXEC    },
447 #endif
448 #if defined(O_PATH)
449   { TARGET_O_PATH,      TARGET_O_PATH,      O_PATH,      O_PATH       },
450 #endif
451 #if defined(O_TMPFILE)
452   { TARGET_O_TMPFILE,   TARGET_O_TMPFILE,   O_TMPFILE,   O_TMPFILE    },
453 #endif
454   /* Don't terminate the list prematurely on 64-bit host+guest.  */
455 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
456   { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, },
457 #endif
458 };
459 
460 _syscall2(int, sys_getcwd1, char *, buf, size_t, size)
461 
462 #if defined(TARGET_NR_utimensat) || defined(TARGET_NR_utimensat_time64)
463 #if defined(__NR_utimensat)
464 #define __NR_sys_utimensat __NR_utimensat
465 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname,
466           const struct timespec *,tsp,int,flags)
467 #else
468 static int sys_utimensat(int dirfd, const char *pathname,
469                          const struct timespec times[2], int flags)
470 {
471     errno = ENOSYS;
472     return -1;
473 }
474 #endif
475 #endif /* TARGET_NR_utimensat */
476 
477 #ifdef TARGET_NR_renameat2
478 #if defined(__NR_renameat2)
479 #define __NR_sys_renameat2 __NR_renameat2
480 _syscall5(int, sys_renameat2, int, oldfd, const char *, old, int, newfd,
481           const char *, new, unsigned int, flags)
482 #else
483 static int sys_renameat2(int oldfd, const char *old,
484                          int newfd, const char *new, int flags)
485 {
486     if (flags == 0) {
487         return renameat(oldfd, old, newfd, new);
488     }
489     errno = ENOSYS;
490     return -1;
491 }
492 #endif
493 #endif /* TARGET_NR_renameat2 */
494 
495 #ifdef CONFIG_INOTIFY
496 #include <sys/inotify.h>
497 #else
498 /* Userspace can usually survive runtime without inotify */
499 #undef TARGET_NR_inotify_init
500 #undef TARGET_NR_inotify_init1
501 #undef TARGET_NR_inotify_add_watch
502 #undef TARGET_NR_inotify_rm_watch
503 #endif /* CONFIG_INOTIFY  */
504 
505 #if defined(TARGET_NR_prlimit64)
506 #ifndef __NR_prlimit64
507 # define __NR_prlimit64 -1
508 #endif
509 #define __NR_sys_prlimit64 __NR_prlimit64
510 /* The glibc rlimit structure may not be that used by the underlying syscall */
511 struct host_rlimit64 {
512     uint64_t rlim_cur;
513     uint64_t rlim_max;
514 };
515 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource,
516           const struct host_rlimit64 *, new_limit,
517           struct host_rlimit64 *, old_limit)
518 #endif
519 
520 
521 #if defined(TARGET_NR_timer_create)
522 /* Maximum of 32 active POSIX timers allowed at any one time. */
523 #define GUEST_TIMER_MAX 32
524 static timer_t g_posix_timers[GUEST_TIMER_MAX];
525 static int g_posix_timer_allocated[GUEST_TIMER_MAX];
526 
527 static inline int next_free_host_timer(void)
528 {
529     int k;
530     for (k = 0; k < ARRAY_SIZE(g_posix_timer_allocated); k++) {
531         if (qatomic_xchg(g_posix_timer_allocated + k, 1) == 0) {
532             return k;
533         }
534     }
535     return -1;
536 }
537 
538 static inline void free_host_timer_slot(int id)
539 {
540     qatomic_store_release(g_posix_timer_allocated + id, 0);
541 }
542 #endif
543 
544 static inline int host_to_target_errno(int host_errno)
545 {
546     switch (host_errno) {
547 #define E(X)  case X: return TARGET_##X;
548 #include "errnos.c.inc"
549 #undef E
550     default:
551         return host_errno;
552     }
553 }
554 
555 static inline int target_to_host_errno(int target_errno)
556 {
557     switch (target_errno) {
558 #define E(X)  case TARGET_##X: return X;
559 #include "errnos.c.inc"
560 #undef E
561     default:
562         return target_errno;
563     }
564 }
565 
566 abi_long get_errno(abi_long ret)
567 {
568     if (ret == -1)
569         return -host_to_target_errno(errno);
570     else
571         return ret;
572 }
573 
574 const char *target_strerror(int err)
575 {
576     if (err == QEMU_ERESTARTSYS) {
577         return "To be restarted";
578     }
579     if (err == QEMU_ESIGRETURN) {
580         return "Successful exit from sigreturn";
581     }
582 
583     return strerror(target_to_host_errno(err));
584 }
585 
586 static int check_zeroed_user(abi_long addr, size_t ksize, size_t usize)
587 {
588     int i;
589     uint8_t b;
590     if (usize <= ksize) {
591         return 1;
592     }
593     for (i = ksize; i < usize; i++) {
594         if (get_user_u8(b, addr + i)) {
595             return -TARGET_EFAULT;
596         }
597         if (b != 0) {
598             return 0;
599         }
600     }
601     return 1;
602 }
603 
604 #define safe_syscall0(type, name) \
605 static type safe_##name(void) \
606 { \
607     return safe_syscall(__NR_##name); \
608 }
609 
610 #define safe_syscall1(type, name, type1, arg1) \
611 static type safe_##name(type1 arg1) \
612 { \
613     return safe_syscall(__NR_##name, arg1); \
614 }
615 
616 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \
617 static type safe_##name(type1 arg1, type2 arg2) \
618 { \
619     return safe_syscall(__NR_##name, arg1, arg2); \
620 }
621 
622 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \
623 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \
624 { \
625     return safe_syscall(__NR_##name, arg1, arg2, arg3); \
626 }
627 
628 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \
629     type4, arg4) \
630 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \
631 { \
632     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \
633 }
634 
635 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \
636     type4, arg4, type5, arg5) \
637 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
638     type5 arg5) \
639 { \
640     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
641 }
642 
643 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \
644     type4, arg4, type5, arg5, type6, arg6) \
645 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
646     type5 arg5, type6 arg6) \
647 { \
648     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
649 }
650 
651 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count)
652 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count)
653 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \
654               int, flags, mode_t, mode)
655 #if defined(TARGET_NR_wait4) || defined(TARGET_NR_waitpid)
656 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \
657               struct rusage *, rusage)
658 #endif
659 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \
660               int, options, struct rusage *, rusage)
661 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp)
662 safe_syscall5(int, execveat, int, dirfd, const char *, filename,
663               char **, argv, char **, envp, int, flags)
664 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
665     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
666 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \
667               fd_set *, exceptfds, struct timespec *, timeout, void *, sig)
668 #endif
669 #if defined(TARGET_NR_ppoll) || defined(TARGET_NR_ppoll_time64)
670 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds,
671               struct timespec *, tsp, const sigset_t *, sigmask,
672               size_t, sigsetsize)
673 #endif
674 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events,
675               int, maxevents, int, timeout, const sigset_t *, sigmask,
676               size_t, sigsetsize)
677 #if defined(__NR_futex)
678 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \
679               const struct timespec *,timeout,int *,uaddr2,int,val3)
680 #endif
681 #if defined(__NR_futex_time64)
682 safe_syscall6(int,futex_time64,int *,uaddr,int,op,int,val, \
683               const struct timespec *,timeout,int *,uaddr2,int,val3)
684 #endif
685 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize)
686 safe_syscall2(int, kill, pid_t, pid, int, sig)
687 safe_syscall2(int, tkill, int, tid, int, sig)
688 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig)
689 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt)
690 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt)
691 safe_syscall5(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt,
692               unsigned long, pos_l, unsigned long, pos_h)
693 safe_syscall5(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt,
694               unsigned long, pos_l, unsigned long, pos_h)
695 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr,
696               socklen_t, addrlen)
697 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len,
698               int, flags, const struct sockaddr *, addr, socklen_t, addrlen)
699 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len,
700               int, flags, struct sockaddr *, addr, socklen_t *, addrlen)
701 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags)
702 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags)
703 safe_syscall2(int, flock, int, fd, int, operation)
704 #if defined(TARGET_NR_rt_sigtimedwait) || defined(TARGET_NR_rt_sigtimedwait_time64)
705 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo,
706               const struct timespec *, uts, size_t, sigsetsize)
707 #endif
708 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len,
709               int, flags)
710 #if defined(TARGET_NR_nanosleep)
711 safe_syscall2(int, nanosleep, const struct timespec *, req,
712               struct timespec *, rem)
713 #endif
714 #if defined(TARGET_NR_clock_nanosleep) || \
715     defined(TARGET_NR_clock_nanosleep_time64)
716 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags,
717               const struct timespec *, req, struct timespec *, rem)
718 #endif
719 #ifdef __NR_ipc
720 #ifdef __s390x__
721 safe_syscall5(int, ipc, int, call, long, first, long, second, long, third,
722               void *, ptr)
723 #else
724 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third,
725               void *, ptr, long, fifth)
726 #endif
727 #endif
728 #ifdef __NR_msgsnd
729 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz,
730               int, flags)
731 #endif
732 #ifdef __NR_msgrcv
733 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz,
734               long, msgtype, int, flags)
735 #endif
736 #ifdef __NR_semtimedop
737 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops,
738               unsigned, nsops, const struct timespec *, timeout)
739 #endif
740 #if defined(TARGET_NR_mq_timedsend) || \
741     defined(TARGET_NR_mq_timedsend_time64)
742 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr,
743               size_t, len, unsigned, prio, const struct timespec *, timeout)
744 #endif
745 #if defined(TARGET_NR_mq_timedreceive) || \
746     defined(TARGET_NR_mq_timedreceive_time64)
747 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr,
748               size_t, len, unsigned *, prio, const struct timespec *, timeout)
749 #endif
750 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
751 safe_syscall6(ssize_t, copy_file_range, int, infd, loff_t *, pinoff,
752               int, outfd, loff_t *, poutoff, size_t, length,
753               unsigned int, flags)
754 #endif
755 
756 /* We do ioctl like this rather than via safe_syscall3 to preserve the
757  * "third argument might be integer or pointer or not present" behaviour of
758  * the libc function.
759  */
760 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__)
761 /* Similarly for fcntl. Note that callers must always:
762  *  pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK
763  *  use the flock64 struct rather than unsuffixed flock
764  * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts.
765  */
766 #ifdef __NR_fcntl64
767 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__)
768 #else
769 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__)
770 #endif
771 
772 static inline int host_to_target_sock_type(int host_type)
773 {
774     int target_type;
775 
776     switch (host_type & 0xf /* SOCK_TYPE_MASK */) {
777     case SOCK_DGRAM:
778         target_type = TARGET_SOCK_DGRAM;
779         break;
780     case SOCK_STREAM:
781         target_type = TARGET_SOCK_STREAM;
782         break;
783     default:
784         target_type = host_type & 0xf /* SOCK_TYPE_MASK */;
785         break;
786     }
787 
788 #if defined(SOCK_CLOEXEC)
789     if (host_type & SOCK_CLOEXEC) {
790         target_type |= TARGET_SOCK_CLOEXEC;
791     }
792 #endif
793 
794 #if defined(SOCK_NONBLOCK)
795     if (host_type & SOCK_NONBLOCK) {
796         target_type |= TARGET_SOCK_NONBLOCK;
797     }
798 #endif
799 
800     return target_type;
801 }
802 
803 static abi_ulong target_brk, initial_target_brk;
804 
805 void target_set_brk(abi_ulong new_brk)
806 {
807     target_brk = TARGET_PAGE_ALIGN(new_brk);
808     initial_target_brk = target_brk;
809 }
810 
811 /* do_brk() must return target values and target errnos. */
812 abi_long do_brk(abi_ulong brk_val)
813 {
814     abi_long mapped_addr;
815     abi_ulong new_brk;
816     abi_ulong old_brk;
817 
818     /* brk pointers are always untagged */
819 
820     /* do not allow to shrink below initial brk value */
821     if (brk_val < initial_target_brk) {
822         return target_brk;
823     }
824 
825     new_brk = TARGET_PAGE_ALIGN(brk_val);
826     old_brk = TARGET_PAGE_ALIGN(target_brk);
827 
828     /* new and old target_brk might be on the same page */
829     if (new_brk == old_brk) {
830         target_brk = brk_val;
831         return target_brk;
832     }
833 
834     /* Release heap if necesary */
835     if (new_brk < old_brk) {
836         target_munmap(new_brk, old_brk - new_brk);
837 
838         target_brk = brk_val;
839         return target_brk;
840     }
841 
842     mapped_addr = target_mmap(old_brk, new_brk - old_brk,
843                               PROT_READ | PROT_WRITE,
844                               MAP_FIXED_NOREPLACE | MAP_ANON | MAP_PRIVATE,
845                               -1, 0);
846 
847     if (mapped_addr == old_brk) {
848         target_brk = brk_val;
849         return target_brk;
850     }
851 
852 #if defined(TARGET_ALPHA)
853     /* We (partially) emulate OSF/1 on Alpha, which requires we
854        return a proper errno, not an unchanged brk value.  */
855     return -TARGET_ENOMEM;
856 #endif
857     /* For everything else, return the previous break. */
858     return target_brk;
859 }
860 
861 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
862     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
863 static inline abi_long copy_from_user_fdset(fd_set *fds,
864                                             abi_ulong target_fds_addr,
865                                             int n)
866 {
867     int i, nw, j, k;
868     abi_ulong b, *target_fds;
869 
870     nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
871     if (!(target_fds = lock_user(VERIFY_READ,
872                                  target_fds_addr,
873                                  sizeof(abi_ulong) * nw,
874                                  1)))
875         return -TARGET_EFAULT;
876 
877     FD_ZERO(fds);
878     k = 0;
879     for (i = 0; i < nw; i++) {
880         /* grab the abi_ulong */
881         __get_user(b, &target_fds[i]);
882         for (j = 0; j < TARGET_ABI_BITS; j++) {
883             /* check the bit inside the abi_ulong */
884             if ((b >> j) & 1)
885                 FD_SET(k, fds);
886             k++;
887         }
888     }
889 
890     unlock_user(target_fds, target_fds_addr, 0);
891 
892     return 0;
893 }
894 
895 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr,
896                                                  abi_ulong target_fds_addr,
897                                                  int n)
898 {
899     if (target_fds_addr) {
900         if (copy_from_user_fdset(fds, target_fds_addr, n))
901             return -TARGET_EFAULT;
902         *fds_ptr = fds;
903     } else {
904         *fds_ptr = NULL;
905     }
906     return 0;
907 }
908 
909 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr,
910                                           const fd_set *fds,
911                                           int n)
912 {
913     int i, nw, j, k;
914     abi_long v;
915     abi_ulong *target_fds;
916 
917     nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
918     if (!(target_fds = lock_user(VERIFY_WRITE,
919                                  target_fds_addr,
920                                  sizeof(abi_ulong) * nw,
921                                  0)))
922         return -TARGET_EFAULT;
923 
924     k = 0;
925     for (i = 0; i < nw; i++) {
926         v = 0;
927         for (j = 0; j < TARGET_ABI_BITS; j++) {
928             v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j);
929             k++;
930         }
931         __put_user(v, &target_fds[i]);
932     }
933 
934     unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw);
935 
936     return 0;
937 }
938 #endif
939 
940 #if defined(__alpha__)
941 #define HOST_HZ 1024
942 #else
943 #define HOST_HZ 100
944 #endif
945 
946 static inline abi_long host_to_target_clock_t(long ticks)
947 {
948 #if HOST_HZ == TARGET_HZ
949     return ticks;
950 #else
951     return ((int64_t)ticks * TARGET_HZ) / HOST_HZ;
952 #endif
953 }
954 
955 static inline abi_long host_to_target_rusage(abi_ulong target_addr,
956                                              const struct rusage *rusage)
957 {
958     struct target_rusage *target_rusage;
959 
960     if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0))
961         return -TARGET_EFAULT;
962     target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec);
963     target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec);
964     target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec);
965     target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec);
966     target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss);
967     target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss);
968     target_rusage->ru_idrss = tswapal(rusage->ru_idrss);
969     target_rusage->ru_isrss = tswapal(rusage->ru_isrss);
970     target_rusage->ru_minflt = tswapal(rusage->ru_minflt);
971     target_rusage->ru_majflt = tswapal(rusage->ru_majflt);
972     target_rusage->ru_nswap = tswapal(rusage->ru_nswap);
973     target_rusage->ru_inblock = tswapal(rusage->ru_inblock);
974     target_rusage->ru_oublock = tswapal(rusage->ru_oublock);
975     target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd);
976     target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv);
977     target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals);
978     target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw);
979     target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw);
980     unlock_user_struct(target_rusage, target_addr, 1);
981 
982     return 0;
983 }
984 
985 #ifdef TARGET_NR_setrlimit
986 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim)
987 {
988     abi_ulong target_rlim_swap;
989     rlim_t result;
990 
991     target_rlim_swap = tswapal(target_rlim);
992     if (target_rlim_swap == TARGET_RLIM_INFINITY)
993         return RLIM_INFINITY;
994 
995     result = target_rlim_swap;
996     if (target_rlim_swap != (rlim_t)result)
997         return RLIM_INFINITY;
998 
999     return result;
1000 }
1001 #endif
1002 
1003 #if defined(TARGET_NR_getrlimit) || defined(TARGET_NR_ugetrlimit)
1004 static inline abi_ulong host_to_target_rlim(rlim_t rlim)
1005 {
1006     abi_ulong target_rlim_swap;
1007     abi_ulong result;
1008 
1009     if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim)
1010         target_rlim_swap = TARGET_RLIM_INFINITY;
1011     else
1012         target_rlim_swap = rlim;
1013     result = tswapal(target_rlim_swap);
1014 
1015     return result;
1016 }
1017 #endif
1018 
1019 static inline int target_to_host_resource(int code)
1020 {
1021     switch (code) {
1022     case TARGET_RLIMIT_AS:
1023         return RLIMIT_AS;
1024     case TARGET_RLIMIT_CORE:
1025         return RLIMIT_CORE;
1026     case TARGET_RLIMIT_CPU:
1027         return RLIMIT_CPU;
1028     case TARGET_RLIMIT_DATA:
1029         return RLIMIT_DATA;
1030     case TARGET_RLIMIT_FSIZE:
1031         return RLIMIT_FSIZE;
1032     case TARGET_RLIMIT_LOCKS:
1033         return RLIMIT_LOCKS;
1034     case TARGET_RLIMIT_MEMLOCK:
1035         return RLIMIT_MEMLOCK;
1036     case TARGET_RLIMIT_MSGQUEUE:
1037         return RLIMIT_MSGQUEUE;
1038     case TARGET_RLIMIT_NICE:
1039         return RLIMIT_NICE;
1040     case TARGET_RLIMIT_NOFILE:
1041         return RLIMIT_NOFILE;
1042     case TARGET_RLIMIT_NPROC:
1043         return RLIMIT_NPROC;
1044     case TARGET_RLIMIT_RSS:
1045         return RLIMIT_RSS;
1046     case TARGET_RLIMIT_RTPRIO:
1047         return RLIMIT_RTPRIO;
1048 #ifdef RLIMIT_RTTIME
1049     case TARGET_RLIMIT_RTTIME:
1050         return RLIMIT_RTTIME;
1051 #endif
1052     case TARGET_RLIMIT_SIGPENDING:
1053         return RLIMIT_SIGPENDING;
1054     case TARGET_RLIMIT_STACK:
1055         return RLIMIT_STACK;
1056     default:
1057         return code;
1058     }
1059 }
1060 
1061 static inline abi_long copy_from_user_timeval(struct timeval *tv,
1062                                               abi_ulong target_tv_addr)
1063 {
1064     struct target_timeval *target_tv;
1065 
1066     if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1067         return -TARGET_EFAULT;
1068     }
1069 
1070     __get_user(tv->tv_sec, &target_tv->tv_sec);
1071     __get_user(tv->tv_usec, &target_tv->tv_usec);
1072 
1073     unlock_user_struct(target_tv, target_tv_addr, 0);
1074 
1075     return 0;
1076 }
1077 
1078 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr,
1079                                             const struct timeval *tv)
1080 {
1081     struct target_timeval *target_tv;
1082 
1083     if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1084         return -TARGET_EFAULT;
1085     }
1086 
1087     __put_user(tv->tv_sec, &target_tv->tv_sec);
1088     __put_user(tv->tv_usec, &target_tv->tv_usec);
1089 
1090     unlock_user_struct(target_tv, target_tv_addr, 1);
1091 
1092     return 0;
1093 }
1094 
1095 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
1096 static inline abi_long copy_from_user_timeval64(struct timeval *tv,
1097                                                 abi_ulong target_tv_addr)
1098 {
1099     struct target__kernel_sock_timeval *target_tv;
1100 
1101     if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1102         return -TARGET_EFAULT;
1103     }
1104 
1105     __get_user(tv->tv_sec, &target_tv->tv_sec);
1106     __get_user(tv->tv_usec, &target_tv->tv_usec);
1107 
1108     unlock_user_struct(target_tv, target_tv_addr, 0);
1109 
1110     return 0;
1111 }
1112 #endif
1113 
1114 static inline abi_long copy_to_user_timeval64(abi_ulong target_tv_addr,
1115                                               const struct timeval *tv)
1116 {
1117     struct target__kernel_sock_timeval *target_tv;
1118 
1119     if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1120         return -TARGET_EFAULT;
1121     }
1122 
1123     __put_user(tv->tv_sec, &target_tv->tv_sec);
1124     __put_user(tv->tv_usec, &target_tv->tv_usec);
1125 
1126     unlock_user_struct(target_tv, target_tv_addr, 1);
1127 
1128     return 0;
1129 }
1130 
1131 #if defined(TARGET_NR_futex) || \
1132     defined(TARGET_NR_rt_sigtimedwait) || \
1133     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6) || \
1134     defined(TARGET_NR_nanosleep) || defined(TARGET_NR_clock_settime) || \
1135     defined(TARGET_NR_utimensat) || defined(TARGET_NR_mq_timedsend) || \
1136     defined(TARGET_NR_mq_timedreceive) || defined(TARGET_NR_ipc) || \
1137     defined(TARGET_NR_semop) || defined(TARGET_NR_semtimedop) || \
1138     defined(TARGET_NR_timer_settime) || \
1139     (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
1140 static inline abi_long target_to_host_timespec(struct timespec *host_ts,
1141                                                abi_ulong target_addr)
1142 {
1143     struct target_timespec *target_ts;
1144 
1145     if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1146         return -TARGET_EFAULT;
1147     }
1148     __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1149     __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1150     unlock_user_struct(target_ts, target_addr, 0);
1151     return 0;
1152 }
1153 #endif
1154 
1155 #if defined(TARGET_NR_clock_settime64) || defined(TARGET_NR_futex_time64) || \
1156     defined(TARGET_NR_timer_settime64) || \
1157     defined(TARGET_NR_mq_timedsend_time64) || \
1158     defined(TARGET_NR_mq_timedreceive_time64) || \
1159     (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)) || \
1160     defined(TARGET_NR_clock_nanosleep_time64) || \
1161     defined(TARGET_NR_rt_sigtimedwait_time64) || \
1162     defined(TARGET_NR_utimensat) || \
1163     defined(TARGET_NR_utimensat_time64) || \
1164     defined(TARGET_NR_semtimedop_time64) || \
1165     defined(TARGET_NR_pselect6_time64) || defined(TARGET_NR_ppoll_time64)
1166 static inline abi_long target_to_host_timespec64(struct timespec *host_ts,
1167                                                  abi_ulong target_addr)
1168 {
1169     struct target__kernel_timespec *target_ts;
1170 
1171     if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1172         return -TARGET_EFAULT;
1173     }
1174     __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1175     __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1176     /* in 32bit mode, this drops the padding */
1177     host_ts->tv_nsec = (long)(abi_long)host_ts->tv_nsec;
1178     unlock_user_struct(target_ts, target_addr, 0);
1179     return 0;
1180 }
1181 #endif
1182 
1183 static inline abi_long host_to_target_timespec(abi_ulong target_addr,
1184                                                struct timespec *host_ts)
1185 {
1186     struct target_timespec *target_ts;
1187 
1188     if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1189         return -TARGET_EFAULT;
1190     }
1191     __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1192     __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1193     unlock_user_struct(target_ts, target_addr, 1);
1194     return 0;
1195 }
1196 
1197 static inline abi_long host_to_target_timespec64(abi_ulong target_addr,
1198                                                  struct timespec *host_ts)
1199 {
1200     struct target__kernel_timespec *target_ts;
1201 
1202     if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1203         return -TARGET_EFAULT;
1204     }
1205     __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1206     __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1207     unlock_user_struct(target_ts, target_addr, 1);
1208     return 0;
1209 }
1210 
1211 #if defined(TARGET_NR_gettimeofday)
1212 static inline abi_long copy_to_user_timezone(abi_ulong target_tz_addr,
1213                                              struct timezone *tz)
1214 {
1215     struct target_timezone *target_tz;
1216 
1217     if (!lock_user_struct(VERIFY_WRITE, target_tz, target_tz_addr, 1)) {
1218         return -TARGET_EFAULT;
1219     }
1220 
1221     __put_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1222     __put_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1223 
1224     unlock_user_struct(target_tz, target_tz_addr, 1);
1225 
1226     return 0;
1227 }
1228 #endif
1229 
1230 #if defined(TARGET_NR_settimeofday)
1231 static inline abi_long copy_from_user_timezone(struct timezone *tz,
1232                                                abi_ulong target_tz_addr)
1233 {
1234     struct target_timezone *target_tz;
1235 
1236     if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) {
1237         return -TARGET_EFAULT;
1238     }
1239 
1240     __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1241     __get_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1242 
1243     unlock_user_struct(target_tz, target_tz_addr, 0);
1244 
1245     return 0;
1246 }
1247 #endif
1248 
1249 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
1250 #include <mqueue.h>
1251 
1252 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr,
1253                                               abi_ulong target_mq_attr_addr)
1254 {
1255     struct target_mq_attr *target_mq_attr;
1256 
1257     if (!lock_user_struct(VERIFY_READ, target_mq_attr,
1258                           target_mq_attr_addr, 1))
1259         return -TARGET_EFAULT;
1260 
1261     __get_user(attr->mq_flags, &target_mq_attr->mq_flags);
1262     __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1263     __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1264     __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1265 
1266     unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0);
1267 
1268     return 0;
1269 }
1270 
1271 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr,
1272                                             const struct mq_attr *attr)
1273 {
1274     struct target_mq_attr *target_mq_attr;
1275 
1276     if (!lock_user_struct(VERIFY_WRITE, target_mq_attr,
1277                           target_mq_attr_addr, 0))
1278         return -TARGET_EFAULT;
1279 
1280     __put_user(attr->mq_flags, &target_mq_attr->mq_flags);
1281     __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1282     __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1283     __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1284 
1285     unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1);
1286 
1287     return 0;
1288 }
1289 #endif
1290 
1291 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
1292 /* do_select() must return target values and target errnos. */
1293 static abi_long do_select(int n,
1294                           abi_ulong rfd_addr, abi_ulong wfd_addr,
1295                           abi_ulong efd_addr, abi_ulong target_tv_addr)
1296 {
1297     fd_set rfds, wfds, efds;
1298     fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1299     struct timeval tv;
1300     struct timespec ts, *ts_ptr;
1301     abi_long ret;
1302 
1303     ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1304     if (ret) {
1305         return ret;
1306     }
1307     ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1308     if (ret) {
1309         return ret;
1310     }
1311     ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1312     if (ret) {
1313         return ret;
1314     }
1315 
1316     if (target_tv_addr) {
1317         if (copy_from_user_timeval(&tv, target_tv_addr))
1318             return -TARGET_EFAULT;
1319         ts.tv_sec = tv.tv_sec;
1320         ts.tv_nsec = tv.tv_usec * 1000;
1321         ts_ptr = &ts;
1322     } else {
1323         ts_ptr = NULL;
1324     }
1325 
1326     ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1327                                   ts_ptr, NULL));
1328 
1329     if (!is_error(ret)) {
1330         if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
1331             return -TARGET_EFAULT;
1332         if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
1333             return -TARGET_EFAULT;
1334         if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
1335             return -TARGET_EFAULT;
1336 
1337         if (target_tv_addr) {
1338             tv.tv_sec = ts.tv_sec;
1339             tv.tv_usec = ts.tv_nsec / 1000;
1340             if (copy_to_user_timeval(target_tv_addr, &tv)) {
1341                 return -TARGET_EFAULT;
1342             }
1343         }
1344     }
1345 
1346     return ret;
1347 }
1348 
1349 #if defined(TARGET_WANT_OLD_SYS_SELECT)
1350 static abi_long do_old_select(abi_ulong arg1)
1351 {
1352     struct target_sel_arg_struct *sel;
1353     abi_ulong inp, outp, exp, tvp;
1354     long nsel;
1355 
1356     if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) {
1357         return -TARGET_EFAULT;
1358     }
1359 
1360     nsel = tswapal(sel->n);
1361     inp = tswapal(sel->inp);
1362     outp = tswapal(sel->outp);
1363     exp = tswapal(sel->exp);
1364     tvp = tswapal(sel->tvp);
1365 
1366     unlock_user_struct(sel, arg1, 0);
1367 
1368     return do_select(nsel, inp, outp, exp, tvp);
1369 }
1370 #endif
1371 #endif
1372 
1373 #if defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
1374 static abi_long do_pselect6(abi_long arg1, abi_long arg2, abi_long arg3,
1375                             abi_long arg4, abi_long arg5, abi_long arg6,
1376                             bool time64)
1377 {
1378     abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr;
1379     fd_set rfds, wfds, efds;
1380     fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1381     struct timespec ts, *ts_ptr;
1382     abi_long ret;
1383 
1384     /*
1385      * The 6th arg is actually two args smashed together,
1386      * so we cannot use the C library.
1387      */
1388     struct {
1389         sigset_t *set;
1390         size_t size;
1391     } sig, *sig_ptr;
1392 
1393     abi_ulong arg_sigset, arg_sigsize, *arg7;
1394 
1395     n = arg1;
1396     rfd_addr = arg2;
1397     wfd_addr = arg3;
1398     efd_addr = arg4;
1399     ts_addr = arg5;
1400 
1401     ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1402     if (ret) {
1403         return ret;
1404     }
1405     ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1406     if (ret) {
1407         return ret;
1408     }
1409     ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1410     if (ret) {
1411         return ret;
1412     }
1413 
1414     /*
1415      * This takes a timespec, and not a timeval, so we cannot
1416      * use the do_select() helper ...
1417      */
1418     if (ts_addr) {
1419         if (time64) {
1420             if (target_to_host_timespec64(&ts, ts_addr)) {
1421                 return -TARGET_EFAULT;
1422             }
1423         } else {
1424             if (target_to_host_timespec(&ts, ts_addr)) {
1425                 return -TARGET_EFAULT;
1426             }
1427         }
1428             ts_ptr = &ts;
1429     } else {
1430         ts_ptr = NULL;
1431     }
1432 
1433     /* Extract the two packed args for the sigset */
1434     sig_ptr = NULL;
1435     if (arg6) {
1436         arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1);
1437         if (!arg7) {
1438             return -TARGET_EFAULT;
1439         }
1440         arg_sigset = tswapal(arg7[0]);
1441         arg_sigsize = tswapal(arg7[1]);
1442         unlock_user(arg7, arg6, 0);
1443 
1444         if (arg_sigset) {
1445             ret = process_sigsuspend_mask(&sig.set, arg_sigset, arg_sigsize);
1446             if (ret != 0) {
1447                 return ret;
1448             }
1449             sig_ptr = &sig;
1450             sig.size = SIGSET_T_SIZE;
1451         }
1452     }
1453 
1454     ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1455                                   ts_ptr, sig_ptr));
1456 
1457     if (sig_ptr) {
1458         finish_sigsuspend_mask(ret);
1459     }
1460 
1461     if (!is_error(ret)) {
1462         if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) {
1463             return -TARGET_EFAULT;
1464         }
1465         if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) {
1466             return -TARGET_EFAULT;
1467         }
1468         if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) {
1469             return -TARGET_EFAULT;
1470         }
1471         if (time64) {
1472             if (ts_addr && host_to_target_timespec64(ts_addr, &ts)) {
1473                 return -TARGET_EFAULT;
1474             }
1475         } else {
1476             if (ts_addr && host_to_target_timespec(ts_addr, &ts)) {
1477                 return -TARGET_EFAULT;
1478             }
1479         }
1480     }
1481     return ret;
1482 }
1483 #endif
1484 
1485 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll) || \
1486     defined(TARGET_NR_ppoll_time64)
1487 static abi_long do_ppoll(abi_long arg1, abi_long arg2, abi_long arg3,
1488                          abi_long arg4, abi_long arg5, bool ppoll, bool time64)
1489 {
1490     struct target_pollfd *target_pfd;
1491     unsigned int nfds = arg2;
1492     struct pollfd *pfd;
1493     unsigned int i;
1494     abi_long ret;
1495 
1496     pfd = NULL;
1497     target_pfd = NULL;
1498     if (nfds) {
1499         if (nfds > (INT_MAX / sizeof(struct target_pollfd))) {
1500             return -TARGET_EINVAL;
1501         }
1502         target_pfd = lock_user(VERIFY_WRITE, arg1,
1503                                sizeof(struct target_pollfd) * nfds, 1);
1504         if (!target_pfd) {
1505             return -TARGET_EFAULT;
1506         }
1507 
1508         pfd = alloca(sizeof(struct pollfd) * nfds);
1509         for (i = 0; i < nfds; i++) {
1510             pfd[i].fd = tswap32(target_pfd[i].fd);
1511             pfd[i].events = tswap16(target_pfd[i].events);
1512         }
1513     }
1514     if (ppoll) {
1515         struct timespec _timeout_ts, *timeout_ts = &_timeout_ts;
1516         sigset_t *set = NULL;
1517 
1518         if (arg3) {
1519             if (time64) {
1520                 if (target_to_host_timespec64(timeout_ts, arg3)) {
1521                     unlock_user(target_pfd, arg1, 0);
1522                     return -TARGET_EFAULT;
1523                 }
1524             } else {
1525                 if (target_to_host_timespec(timeout_ts, arg3)) {
1526                     unlock_user(target_pfd, arg1, 0);
1527                     return -TARGET_EFAULT;
1528                 }
1529             }
1530         } else {
1531             timeout_ts = NULL;
1532         }
1533 
1534         if (arg4) {
1535             ret = process_sigsuspend_mask(&set, arg4, arg5);
1536             if (ret != 0) {
1537                 unlock_user(target_pfd, arg1, 0);
1538                 return ret;
1539             }
1540         }
1541 
1542         ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts,
1543                                    set, SIGSET_T_SIZE));
1544 
1545         if (set) {
1546             finish_sigsuspend_mask(ret);
1547         }
1548         if (!is_error(ret) && arg3) {
1549             if (time64) {
1550                 if (host_to_target_timespec64(arg3, timeout_ts)) {
1551                     return -TARGET_EFAULT;
1552                 }
1553             } else {
1554                 if (host_to_target_timespec(arg3, timeout_ts)) {
1555                     return -TARGET_EFAULT;
1556                 }
1557             }
1558         }
1559     } else {
1560           struct timespec ts, *pts;
1561 
1562           if (arg3 >= 0) {
1563               /* Convert ms to secs, ns */
1564               ts.tv_sec = arg3 / 1000;
1565               ts.tv_nsec = (arg3 % 1000) * 1000000LL;
1566               pts = &ts;
1567           } else {
1568               /* -ve poll() timeout means "infinite" */
1569               pts = NULL;
1570           }
1571           ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0));
1572     }
1573 
1574     if (!is_error(ret)) {
1575         for (i = 0; i < nfds; i++) {
1576             target_pfd[i].revents = tswap16(pfd[i].revents);
1577         }
1578     }
1579     unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds);
1580     return ret;
1581 }
1582 #endif
1583 
1584 static abi_long do_pipe(CPUArchState *cpu_env, abi_ulong pipedes,
1585                         int flags, int is_pipe2)
1586 {
1587     int host_pipe[2];
1588     abi_long ret;
1589     ret = pipe2(host_pipe, flags);
1590 
1591     if (is_error(ret))
1592         return get_errno(ret);
1593 
1594     /* Several targets have special calling conventions for the original
1595        pipe syscall, but didn't replicate this into the pipe2 syscall.  */
1596     if (!is_pipe2) {
1597 #if defined(TARGET_ALPHA)
1598         cpu_env->ir[IR_A4] = host_pipe[1];
1599         return host_pipe[0];
1600 #elif defined(TARGET_MIPS)
1601         cpu_env->active_tc.gpr[3] = host_pipe[1];
1602         return host_pipe[0];
1603 #elif defined(TARGET_SH4)
1604         cpu_env->gregs[1] = host_pipe[1];
1605         return host_pipe[0];
1606 #elif defined(TARGET_SPARC)
1607         cpu_env->regwptr[1] = host_pipe[1];
1608         return host_pipe[0];
1609 #endif
1610     }
1611 
1612     if (put_user_s32(host_pipe[0], pipedes)
1613         || put_user_s32(host_pipe[1], pipedes + sizeof(abi_int)))
1614         return -TARGET_EFAULT;
1615     return get_errno(ret);
1616 }
1617 
1618 static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn,
1619                                               abi_ulong target_addr,
1620                                               socklen_t len)
1621 {
1622     struct target_ip_mreqn *target_smreqn;
1623 
1624     target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1);
1625     if (!target_smreqn)
1626         return -TARGET_EFAULT;
1627     mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr;
1628     mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr;
1629     if (len == sizeof(struct target_ip_mreqn))
1630         mreqn->imr_ifindex = tswapal(target_smreqn->imr_ifindex);
1631     unlock_user(target_smreqn, target_addr, 0);
1632 
1633     return 0;
1634 }
1635 
1636 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr,
1637                                                abi_ulong target_addr,
1638                                                socklen_t len)
1639 {
1640     const socklen_t unix_maxlen = sizeof (struct sockaddr_un);
1641     sa_family_t sa_family;
1642     struct target_sockaddr *target_saddr;
1643 
1644     if (fd_trans_target_to_host_addr(fd)) {
1645         return fd_trans_target_to_host_addr(fd)(addr, target_addr, len);
1646     }
1647 
1648     target_saddr = lock_user(VERIFY_READ, target_addr, len, 1);
1649     if (!target_saddr)
1650         return -TARGET_EFAULT;
1651 
1652     sa_family = tswap16(target_saddr->sa_family);
1653 
1654     /* Oops. The caller might send a incomplete sun_path; sun_path
1655      * must be terminated by \0 (see the manual page), but
1656      * unfortunately it is quite common to specify sockaddr_un
1657      * length as "strlen(x->sun_path)" while it should be
1658      * "strlen(...) + 1". We'll fix that here if needed.
1659      * Linux kernel has a similar feature.
1660      */
1661 
1662     if (sa_family == AF_UNIX) {
1663         if (len < unix_maxlen && len > 0) {
1664             char *cp = (char*)target_saddr;
1665 
1666             if ( cp[len-1] && !cp[len] )
1667                 len++;
1668         }
1669         if (len > unix_maxlen)
1670             len = unix_maxlen;
1671     }
1672 
1673     memcpy(addr, target_saddr, len);
1674     addr->sa_family = sa_family;
1675     if (sa_family == AF_NETLINK) {
1676         struct sockaddr_nl *nladdr;
1677 
1678         nladdr = (struct sockaddr_nl *)addr;
1679         nladdr->nl_pid = tswap32(nladdr->nl_pid);
1680         nladdr->nl_groups = tswap32(nladdr->nl_groups);
1681     } else if (sa_family == AF_PACKET) {
1682 	struct target_sockaddr_ll *lladdr;
1683 
1684 	lladdr = (struct target_sockaddr_ll *)addr;
1685 	lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex);
1686 	lladdr->sll_hatype = tswap16(lladdr->sll_hatype);
1687     } else if (sa_family == AF_INET6) {
1688         struct sockaddr_in6 *in6addr;
1689 
1690         in6addr = (struct sockaddr_in6 *)addr;
1691         in6addr->sin6_scope_id = tswap32(in6addr->sin6_scope_id);
1692     }
1693     unlock_user(target_saddr, target_addr, 0);
1694 
1695     return 0;
1696 }
1697 
1698 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr,
1699                                                struct sockaddr *addr,
1700                                                socklen_t len)
1701 {
1702     struct target_sockaddr *target_saddr;
1703 
1704     if (len == 0) {
1705         return 0;
1706     }
1707     assert(addr);
1708 
1709     target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0);
1710     if (!target_saddr)
1711         return -TARGET_EFAULT;
1712     memcpy(target_saddr, addr, len);
1713     if (len >= offsetof(struct target_sockaddr, sa_family) +
1714         sizeof(target_saddr->sa_family)) {
1715         target_saddr->sa_family = tswap16(addr->sa_family);
1716     }
1717     if (addr->sa_family == AF_NETLINK &&
1718         len >= sizeof(struct target_sockaddr_nl)) {
1719         struct target_sockaddr_nl *target_nl =
1720                (struct target_sockaddr_nl *)target_saddr;
1721         target_nl->nl_pid = tswap32(target_nl->nl_pid);
1722         target_nl->nl_groups = tswap32(target_nl->nl_groups);
1723     } else if (addr->sa_family == AF_PACKET) {
1724         struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr;
1725         target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex);
1726         target_ll->sll_hatype = tswap16(target_ll->sll_hatype);
1727     } else if (addr->sa_family == AF_INET6 &&
1728                len >= sizeof(struct target_sockaddr_in6)) {
1729         struct target_sockaddr_in6 *target_in6 =
1730                (struct target_sockaddr_in6 *)target_saddr;
1731         target_in6->sin6_scope_id = tswap16(target_in6->sin6_scope_id);
1732     }
1733     unlock_user(target_saddr, target_addr, len);
1734 
1735     return 0;
1736 }
1737 
1738 static inline abi_long target_to_host_cmsg(struct msghdr *msgh,
1739                                            struct target_msghdr *target_msgh)
1740 {
1741     struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1742     abi_long msg_controllen;
1743     abi_ulong target_cmsg_addr;
1744     struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1745     socklen_t space = 0;
1746 
1747     msg_controllen = tswapal(target_msgh->msg_controllen);
1748     if (msg_controllen < sizeof (struct target_cmsghdr))
1749         goto the_end;
1750     target_cmsg_addr = tswapal(target_msgh->msg_control);
1751     target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1);
1752     target_cmsg_start = target_cmsg;
1753     if (!target_cmsg)
1754         return -TARGET_EFAULT;
1755 
1756     while (cmsg && target_cmsg) {
1757         void *data = CMSG_DATA(cmsg);
1758         void *target_data = TARGET_CMSG_DATA(target_cmsg);
1759 
1760         int len = tswapal(target_cmsg->cmsg_len)
1761             - sizeof(struct target_cmsghdr);
1762 
1763         space += CMSG_SPACE(len);
1764         if (space > msgh->msg_controllen) {
1765             space -= CMSG_SPACE(len);
1766             /* This is a QEMU bug, since we allocated the payload
1767              * area ourselves (unlike overflow in host-to-target
1768              * conversion, which is just the guest giving us a buffer
1769              * that's too small). It can't happen for the payload types
1770              * we currently support; if it becomes an issue in future
1771              * we would need to improve our allocation strategy to
1772              * something more intelligent than "twice the size of the
1773              * target buffer we're reading from".
1774              */
1775             qemu_log_mask(LOG_UNIMP,
1776                           ("Unsupported ancillary data %d/%d: "
1777                            "unhandled msg size\n"),
1778                           tswap32(target_cmsg->cmsg_level),
1779                           tswap32(target_cmsg->cmsg_type));
1780             break;
1781         }
1782 
1783         if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) {
1784             cmsg->cmsg_level = SOL_SOCKET;
1785         } else {
1786             cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level);
1787         }
1788         cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type);
1789         cmsg->cmsg_len = CMSG_LEN(len);
1790 
1791         if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
1792             int *fd = (int *)data;
1793             int *target_fd = (int *)target_data;
1794             int i, numfds = len / sizeof(int);
1795 
1796             for (i = 0; i < numfds; i++) {
1797                 __get_user(fd[i], target_fd + i);
1798             }
1799         } else if (cmsg->cmsg_level == SOL_SOCKET
1800                &&  cmsg->cmsg_type == SCM_CREDENTIALS) {
1801             struct ucred *cred = (struct ucred *)data;
1802             struct target_ucred *target_cred =
1803                 (struct target_ucred *)target_data;
1804 
1805             __get_user(cred->pid, &target_cred->pid);
1806             __get_user(cred->uid, &target_cred->uid);
1807             __get_user(cred->gid, &target_cred->gid);
1808         } else if (cmsg->cmsg_level == SOL_ALG) {
1809             uint32_t *dst = (uint32_t *)data;
1810 
1811             memcpy(dst, target_data, len);
1812             /* fix endianness of first 32-bit word */
1813             if (len >= sizeof(uint32_t)) {
1814                 *dst = tswap32(*dst);
1815             }
1816         } else {
1817             qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
1818                           cmsg->cmsg_level, cmsg->cmsg_type);
1819             memcpy(data, target_data, len);
1820         }
1821 
1822         cmsg = CMSG_NXTHDR(msgh, cmsg);
1823         target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
1824                                          target_cmsg_start);
1825     }
1826     unlock_user(target_cmsg, target_cmsg_addr, 0);
1827  the_end:
1828     msgh->msg_controllen = space;
1829     return 0;
1830 }
1831 
1832 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh,
1833                                            struct msghdr *msgh)
1834 {
1835     struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1836     abi_long msg_controllen;
1837     abi_ulong target_cmsg_addr;
1838     struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1839     socklen_t space = 0;
1840 
1841     msg_controllen = tswapal(target_msgh->msg_controllen);
1842     if (msg_controllen < sizeof (struct target_cmsghdr))
1843         goto the_end;
1844     target_cmsg_addr = tswapal(target_msgh->msg_control);
1845     target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0);
1846     target_cmsg_start = target_cmsg;
1847     if (!target_cmsg)
1848         return -TARGET_EFAULT;
1849 
1850     while (cmsg && target_cmsg) {
1851         void *data = CMSG_DATA(cmsg);
1852         void *target_data = TARGET_CMSG_DATA(target_cmsg);
1853 
1854         int len = cmsg->cmsg_len - sizeof(struct cmsghdr);
1855         int tgt_len, tgt_space;
1856 
1857         /* We never copy a half-header but may copy half-data;
1858          * this is Linux's behaviour in put_cmsg(). Note that
1859          * truncation here is a guest problem (which we report
1860          * to the guest via the CTRUNC bit), unlike truncation
1861          * in target_to_host_cmsg, which is a QEMU bug.
1862          */
1863         if (msg_controllen < sizeof(struct target_cmsghdr)) {
1864             target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1865             break;
1866         }
1867 
1868         if (cmsg->cmsg_level == SOL_SOCKET) {
1869             target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET);
1870         } else {
1871             target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level);
1872         }
1873         target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type);
1874 
1875         /* Payload types which need a different size of payload on
1876          * the target must adjust tgt_len here.
1877          */
1878         tgt_len = len;
1879         switch (cmsg->cmsg_level) {
1880         case SOL_SOCKET:
1881             switch (cmsg->cmsg_type) {
1882             case SO_TIMESTAMP:
1883                 tgt_len = sizeof(struct target_timeval);
1884                 break;
1885             default:
1886                 break;
1887             }
1888             break;
1889         default:
1890             break;
1891         }
1892 
1893         if (msg_controllen < TARGET_CMSG_LEN(tgt_len)) {
1894             target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1895             tgt_len = msg_controllen - sizeof(struct target_cmsghdr);
1896         }
1897 
1898         /* We must now copy-and-convert len bytes of payload
1899          * into tgt_len bytes of destination space. Bear in mind
1900          * that in both source and destination we may be dealing
1901          * with a truncated value!
1902          */
1903         switch (cmsg->cmsg_level) {
1904         case SOL_SOCKET:
1905             switch (cmsg->cmsg_type) {
1906             case SCM_RIGHTS:
1907             {
1908                 int *fd = (int *)data;
1909                 int *target_fd = (int *)target_data;
1910                 int i, numfds = tgt_len / sizeof(int);
1911 
1912                 for (i = 0; i < numfds; i++) {
1913                     __put_user(fd[i], target_fd + i);
1914                 }
1915                 break;
1916             }
1917             case SO_TIMESTAMP:
1918             {
1919                 struct timeval *tv = (struct timeval *)data;
1920                 struct target_timeval *target_tv =
1921                     (struct target_timeval *)target_data;
1922 
1923                 if (len != sizeof(struct timeval) ||
1924                     tgt_len != sizeof(struct target_timeval)) {
1925                     goto unimplemented;
1926                 }
1927 
1928                 /* copy struct timeval to target */
1929                 __put_user(tv->tv_sec, &target_tv->tv_sec);
1930                 __put_user(tv->tv_usec, &target_tv->tv_usec);
1931                 break;
1932             }
1933             case SCM_CREDENTIALS:
1934             {
1935                 struct ucred *cred = (struct ucred *)data;
1936                 struct target_ucred *target_cred =
1937                     (struct target_ucred *)target_data;
1938 
1939                 __put_user(cred->pid, &target_cred->pid);
1940                 __put_user(cred->uid, &target_cred->uid);
1941                 __put_user(cred->gid, &target_cred->gid);
1942                 break;
1943             }
1944             default:
1945                 goto unimplemented;
1946             }
1947             break;
1948 
1949         case SOL_IP:
1950             switch (cmsg->cmsg_type) {
1951             case IP_TTL:
1952             {
1953                 uint32_t *v = (uint32_t *)data;
1954                 uint32_t *t_int = (uint32_t *)target_data;
1955 
1956                 if (len != sizeof(uint32_t) ||
1957                     tgt_len != sizeof(uint32_t)) {
1958                     goto unimplemented;
1959                 }
1960                 __put_user(*v, t_int);
1961                 break;
1962             }
1963             case IP_RECVERR:
1964             {
1965                 struct errhdr_t {
1966                    struct sock_extended_err ee;
1967                    struct sockaddr_in offender;
1968                 };
1969                 struct errhdr_t *errh = (struct errhdr_t *)data;
1970                 struct errhdr_t *target_errh =
1971                     (struct errhdr_t *)target_data;
1972 
1973                 if (len != sizeof(struct errhdr_t) ||
1974                     tgt_len != sizeof(struct errhdr_t)) {
1975                     goto unimplemented;
1976                 }
1977                 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
1978                 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
1979                 __put_user(errh->ee.ee_type,  &target_errh->ee.ee_type);
1980                 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
1981                 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
1982                 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
1983                 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
1984                 host_to_target_sockaddr((unsigned long) &target_errh->offender,
1985                     (void *) &errh->offender, sizeof(errh->offender));
1986                 break;
1987             }
1988             default:
1989                 goto unimplemented;
1990             }
1991             break;
1992 
1993         case SOL_IPV6:
1994             switch (cmsg->cmsg_type) {
1995             case IPV6_HOPLIMIT:
1996             {
1997                 uint32_t *v = (uint32_t *)data;
1998                 uint32_t *t_int = (uint32_t *)target_data;
1999 
2000                 if (len != sizeof(uint32_t) ||
2001                     tgt_len != sizeof(uint32_t)) {
2002                     goto unimplemented;
2003                 }
2004                 __put_user(*v, t_int);
2005                 break;
2006             }
2007             case IPV6_RECVERR:
2008             {
2009                 struct errhdr6_t {
2010                    struct sock_extended_err ee;
2011                    struct sockaddr_in6 offender;
2012                 };
2013                 struct errhdr6_t *errh = (struct errhdr6_t *)data;
2014                 struct errhdr6_t *target_errh =
2015                     (struct errhdr6_t *)target_data;
2016 
2017                 if (len != sizeof(struct errhdr6_t) ||
2018                     tgt_len != sizeof(struct errhdr6_t)) {
2019                     goto unimplemented;
2020                 }
2021                 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
2022                 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
2023                 __put_user(errh->ee.ee_type,  &target_errh->ee.ee_type);
2024                 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
2025                 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
2026                 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
2027                 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
2028                 host_to_target_sockaddr((unsigned long) &target_errh->offender,
2029                     (void *) &errh->offender, sizeof(errh->offender));
2030                 break;
2031             }
2032             default:
2033                 goto unimplemented;
2034             }
2035             break;
2036 
2037         default:
2038         unimplemented:
2039             qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
2040                           cmsg->cmsg_level, cmsg->cmsg_type);
2041             memcpy(target_data, data, MIN(len, tgt_len));
2042             if (tgt_len > len) {
2043                 memset(target_data + len, 0, tgt_len - len);
2044             }
2045         }
2046 
2047         target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(tgt_len));
2048         tgt_space = TARGET_CMSG_SPACE(tgt_len);
2049         if (msg_controllen < tgt_space) {
2050             tgt_space = msg_controllen;
2051         }
2052         msg_controllen -= tgt_space;
2053         space += tgt_space;
2054         cmsg = CMSG_NXTHDR(msgh, cmsg);
2055         target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
2056                                          target_cmsg_start);
2057     }
2058     unlock_user(target_cmsg, target_cmsg_addr, space);
2059  the_end:
2060     target_msgh->msg_controllen = tswapal(space);
2061     return 0;
2062 }
2063 
2064 /* do_setsockopt() Must return target values and target errnos. */
2065 static abi_long do_setsockopt(int sockfd, int level, int optname,
2066                               abi_ulong optval_addr, socklen_t optlen)
2067 {
2068     abi_long ret;
2069     int val;
2070     struct ip_mreqn *ip_mreq;
2071     struct ip_mreq_source *ip_mreq_source;
2072 
2073     switch(level) {
2074     case SOL_TCP:
2075     case SOL_UDP:
2076         /* TCP and UDP options all take an 'int' value.  */
2077         if (optlen < sizeof(uint32_t))
2078             return -TARGET_EINVAL;
2079 
2080         if (get_user_u32(val, optval_addr))
2081             return -TARGET_EFAULT;
2082         ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2083         break;
2084     case SOL_IP:
2085         switch(optname) {
2086         case IP_TOS:
2087         case IP_TTL:
2088         case IP_HDRINCL:
2089         case IP_ROUTER_ALERT:
2090         case IP_RECVOPTS:
2091         case IP_RETOPTS:
2092         case IP_PKTINFO:
2093         case IP_MTU_DISCOVER:
2094         case IP_RECVERR:
2095         case IP_RECVTTL:
2096         case IP_RECVTOS:
2097 #ifdef IP_FREEBIND
2098         case IP_FREEBIND:
2099 #endif
2100         case IP_MULTICAST_TTL:
2101         case IP_MULTICAST_LOOP:
2102             val = 0;
2103             if (optlen >= sizeof(uint32_t)) {
2104                 if (get_user_u32(val, optval_addr))
2105                     return -TARGET_EFAULT;
2106             } else if (optlen >= 1) {
2107                 if (get_user_u8(val, optval_addr))
2108                     return -TARGET_EFAULT;
2109             }
2110             ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2111             break;
2112         case IP_ADD_MEMBERSHIP:
2113         case IP_DROP_MEMBERSHIP:
2114             if (optlen < sizeof (struct target_ip_mreq) ||
2115                 optlen > sizeof (struct target_ip_mreqn))
2116                 return -TARGET_EINVAL;
2117 
2118             ip_mreq = (struct ip_mreqn *) alloca(optlen);
2119             target_to_host_ip_mreq(ip_mreq, optval_addr, optlen);
2120             ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen));
2121             break;
2122 
2123         case IP_BLOCK_SOURCE:
2124         case IP_UNBLOCK_SOURCE:
2125         case IP_ADD_SOURCE_MEMBERSHIP:
2126         case IP_DROP_SOURCE_MEMBERSHIP:
2127             if (optlen != sizeof (struct target_ip_mreq_source))
2128                 return -TARGET_EINVAL;
2129 
2130             ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2131             if (!ip_mreq_source) {
2132                 return -TARGET_EFAULT;
2133             }
2134             ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen));
2135             unlock_user (ip_mreq_source, optval_addr, 0);
2136             break;
2137 
2138         default:
2139             goto unimplemented;
2140         }
2141         break;
2142     case SOL_IPV6:
2143         switch (optname) {
2144         case IPV6_MTU_DISCOVER:
2145         case IPV6_MTU:
2146         case IPV6_V6ONLY:
2147         case IPV6_RECVPKTINFO:
2148         case IPV6_UNICAST_HOPS:
2149         case IPV6_MULTICAST_HOPS:
2150         case IPV6_MULTICAST_LOOP:
2151         case IPV6_RECVERR:
2152         case IPV6_RECVHOPLIMIT:
2153         case IPV6_2292HOPLIMIT:
2154         case IPV6_CHECKSUM:
2155         case IPV6_ADDRFORM:
2156         case IPV6_2292PKTINFO:
2157         case IPV6_RECVTCLASS:
2158         case IPV6_RECVRTHDR:
2159         case IPV6_2292RTHDR:
2160         case IPV6_RECVHOPOPTS:
2161         case IPV6_2292HOPOPTS:
2162         case IPV6_RECVDSTOPTS:
2163         case IPV6_2292DSTOPTS:
2164         case IPV6_TCLASS:
2165         case IPV6_ADDR_PREFERENCES:
2166 #ifdef IPV6_RECVPATHMTU
2167         case IPV6_RECVPATHMTU:
2168 #endif
2169 #ifdef IPV6_TRANSPARENT
2170         case IPV6_TRANSPARENT:
2171 #endif
2172 #ifdef IPV6_FREEBIND
2173         case IPV6_FREEBIND:
2174 #endif
2175 #ifdef IPV6_RECVORIGDSTADDR
2176         case IPV6_RECVORIGDSTADDR:
2177 #endif
2178             val = 0;
2179             if (optlen < sizeof(uint32_t)) {
2180                 return -TARGET_EINVAL;
2181             }
2182             if (get_user_u32(val, optval_addr)) {
2183                 return -TARGET_EFAULT;
2184             }
2185             ret = get_errno(setsockopt(sockfd, level, optname,
2186                                        &val, sizeof(val)));
2187             break;
2188         case IPV6_PKTINFO:
2189         {
2190             struct in6_pktinfo pki;
2191 
2192             if (optlen < sizeof(pki)) {
2193                 return -TARGET_EINVAL;
2194             }
2195 
2196             if (copy_from_user(&pki, optval_addr, sizeof(pki))) {
2197                 return -TARGET_EFAULT;
2198             }
2199 
2200             pki.ipi6_ifindex = tswap32(pki.ipi6_ifindex);
2201 
2202             ret = get_errno(setsockopt(sockfd, level, optname,
2203                                        &pki, sizeof(pki)));
2204             break;
2205         }
2206         case IPV6_ADD_MEMBERSHIP:
2207         case IPV6_DROP_MEMBERSHIP:
2208         {
2209             struct ipv6_mreq ipv6mreq;
2210 
2211             if (optlen < sizeof(ipv6mreq)) {
2212                 return -TARGET_EINVAL;
2213             }
2214 
2215             if (copy_from_user(&ipv6mreq, optval_addr, sizeof(ipv6mreq))) {
2216                 return -TARGET_EFAULT;
2217             }
2218 
2219             ipv6mreq.ipv6mr_interface = tswap32(ipv6mreq.ipv6mr_interface);
2220 
2221             ret = get_errno(setsockopt(sockfd, level, optname,
2222                                        &ipv6mreq, sizeof(ipv6mreq)));
2223             break;
2224         }
2225         default:
2226             goto unimplemented;
2227         }
2228         break;
2229     case SOL_ICMPV6:
2230         switch (optname) {
2231         case ICMPV6_FILTER:
2232         {
2233             struct icmp6_filter icmp6f;
2234 
2235             if (optlen > sizeof(icmp6f)) {
2236                 optlen = sizeof(icmp6f);
2237             }
2238 
2239             if (copy_from_user(&icmp6f, optval_addr, optlen)) {
2240                 return -TARGET_EFAULT;
2241             }
2242 
2243             for (val = 0; val < 8; val++) {
2244                 icmp6f.data[val] = tswap32(icmp6f.data[val]);
2245             }
2246 
2247             ret = get_errno(setsockopt(sockfd, level, optname,
2248                                        &icmp6f, optlen));
2249             break;
2250         }
2251         default:
2252             goto unimplemented;
2253         }
2254         break;
2255     case SOL_RAW:
2256         switch (optname) {
2257         case ICMP_FILTER:
2258         case IPV6_CHECKSUM:
2259             /* those take an u32 value */
2260             if (optlen < sizeof(uint32_t)) {
2261                 return -TARGET_EINVAL;
2262             }
2263 
2264             if (get_user_u32(val, optval_addr)) {
2265                 return -TARGET_EFAULT;
2266             }
2267             ret = get_errno(setsockopt(sockfd, level, optname,
2268                                        &val, sizeof(val)));
2269             break;
2270 
2271         default:
2272             goto unimplemented;
2273         }
2274         break;
2275 #if defined(SOL_ALG) && defined(ALG_SET_KEY) && defined(ALG_SET_AEAD_AUTHSIZE)
2276     case SOL_ALG:
2277         switch (optname) {
2278         case ALG_SET_KEY:
2279         {
2280             char *alg_key = g_malloc(optlen);
2281 
2282             if (!alg_key) {
2283                 return -TARGET_ENOMEM;
2284             }
2285             if (copy_from_user(alg_key, optval_addr, optlen)) {
2286                 g_free(alg_key);
2287                 return -TARGET_EFAULT;
2288             }
2289             ret = get_errno(setsockopt(sockfd, level, optname,
2290                                        alg_key, optlen));
2291             g_free(alg_key);
2292             break;
2293         }
2294         case ALG_SET_AEAD_AUTHSIZE:
2295         {
2296             ret = get_errno(setsockopt(sockfd, level, optname,
2297                                        NULL, optlen));
2298             break;
2299         }
2300         default:
2301             goto unimplemented;
2302         }
2303         break;
2304 #endif
2305     case TARGET_SOL_SOCKET:
2306         switch (optname) {
2307         case TARGET_SO_RCVTIMEO:
2308         {
2309                 struct timeval tv;
2310 
2311                 optname = SO_RCVTIMEO;
2312 
2313 set_timeout:
2314                 if (optlen != sizeof(struct target_timeval)) {
2315                     return -TARGET_EINVAL;
2316                 }
2317 
2318                 if (copy_from_user_timeval(&tv, optval_addr)) {
2319                     return -TARGET_EFAULT;
2320                 }
2321 
2322                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2323                                 &tv, sizeof(tv)));
2324                 return ret;
2325         }
2326         case TARGET_SO_SNDTIMEO:
2327                 optname = SO_SNDTIMEO;
2328                 goto set_timeout;
2329         case TARGET_SO_ATTACH_FILTER:
2330         {
2331                 struct target_sock_fprog *tfprog;
2332                 struct target_sock_filter *tfilter;
2333                 struct sock_fprog fprog;
2334                 struct sock_filter *filter;
2335                 int i;
2336 
2337                 if (optlen != sizeof(*tfprog)) {
2338                     return -TARGET_EINVAL;
2339                 }
2340                 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) {
2341                     return -TARGET_EFAULT;
2342                 }
2343                 if (!lock_user_struct(VERIFY_READ, tfilter,
2344                                       tswapal(tfprog->filter), 0)) {
2345                     unlock_user_struct(tfprog, optval_addr, 1);
2346                     return -TARGET_EFAULT;
2347                 }
2348 
2349                 fprog.len = tswap16(tfprog->len);
2350                 filter = g_try_new(struct sock_filter, fprog.len);
2351                 if (filter == NULL) {
2352                     unlock_user_struct(tfilter, tfprog->filter, 1);
2353                     unlock_user_struct(tfprog, optval_addr, 1);
2354                     return -TARGET_ENOMEM;
2355                 }
2356                 for (i = 0; i < fprog.len; i++) {
2357                     filter[i].code = tswap16(tfilter[i].code);
2358                     filter[i].jt = tfilter[i].jt;
2359                     filter[i].jf = tfilter[i].jf;
2360                     filter[i].k = tswap32(tfilter[i].k);
2361                 }
2362                 fprog.filter = filter;
2363 
2364                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET,
2365                                 SO_ATTACH_FILTER, &fprog, sizeof(fprog)));
2366                 g_free(filter);
2367 
2368                 unlock_user_struct(tfilter, tfprog->filter, 1);
2369                 unlock_user_struct(tfprog, optval_addr, 1);
2370                 return ret;
2371         }
2372 	case TARGET_SO_BINDTODEVICE:
2373 	{
2374 		char *dev_ifname, *addr_ifname;
2375 
2376 		if (optlen > IFNAMSIZ - 1) {
2377 		    optlen = IFNAMSIZ - 1;
2378 		}
2379 		dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2380 		if (!dev_ifname) {
2381 		    return -TARGET_EFAULT;
2382 		}
2383 		optname = SO_BINDTODEVICE;
2384 		addr_ifname = alloca(IFNAMSIZ);
2385 		memcpy(addr_ifname, dev_ifname, optlen);
2386 		addr_ifname[optlen] = 0;
2387 		ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2388                                            addr_ifname, optlen));
2389 		unlock_user (dev_ifname, optval_addr, 0);
2390 		return ret;
2391 	}
2392         case TARGET_SO_LINGER:
2393         {
2394                 struct linger lg;
2395                 struct target_linger *tlg;
2396 
2397                 if (optlen != sizeof(struct target_linger)) {
2398                     return -TARGET_EINVAL;
2399                 }
2400                 if (!lock_user_struct(VERIFY_READ, tlg, optval_addr, 1)) {
2401                     return -TARGET_EFAULT;
2402                 }
2403                 __get_user(lg.l_onoff, &tlg->l_onoff);
2404                 __get_user(lg.l_linger, &tlg->l_linger);
2405                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, SO_LINGER,
2406                                 &lg, sizeof(lg)));
2407                 unlock_user_struct(tlg, optval_addr, 0);
2408                 return ret;
2409         }
2410             /* Options with 'int' argument.  */
2411         case TARGET_SO_DEBUG:
2412 		optname = SO_DEBUG;
2413 		break;
2414         case TARGET_SO_REUSEADDR:
2415 		optname = SO_REUSEADDR;
2416 		break;
2417 #ifdef SO_REUSEPORT
2418         case TARGET_SO_REUSEPORT:
2419                 optname = SO_REUSEPORT;
2420                 break;
2421 #endif
2422         case TARGET_SO_TYPE:
2423 		optname = SO_TYPE;
2424 		break;
2425         case TARGET_SO_ERROR:
2426 		optname = SO_ERROR;
2427 		break;
2428         case TARGET_SO_DONTROUTE:
2429 		optname = SO_DONTROUTE;
2430 		break;
2431         case TARGET_SO_BROADCAST:
2432 		optname = SO_BROADCAST;
2433 		break;
2434         case TARGET_SO_SNDBUF:
2435 		optname = SO_SNDBUF;
2436 		break;
2437         case TARGET_SO_SNDBUFFORCE:
2438                 optname = SO_SNDBUFFORCE;
2439                 break;
2440         case TARGET_SO_RCVBUF:
2441 		optname = SO_RCVBUF;
2442 		break;
2443         case TARGET_SO_RCVBUFFORCE:
2444                 optname = SO_RCVBUFFORCE;
2445                 break;
2446         case TARGET_SO_KEEPALIVE:
2447 		optname = SO_KEEPALIVE;
2448 		break;
2449         case TARGET_SO_OOBINLINE:
2450 		optname = SO_OOBINLINE;
2451 		break;
2452         case TARGET_SO_NO_CHECK:
2453 		optname = SO_NO_CHECK;
2454 		break;
2455         case TARGET_SO_PRIORITY:
2456 		optname = SO_PRIORITY;
2457 		break;
2458 #ifdef SO_BSDCOMPAT
2459         case TARGET_SO_BSDCOMPAT:
2460 		optname = SO_BSDCOMPAT;
2461 		break;
2462 #endif
2463         case TARGET_SO_PASSCRED:
2464 		optname = SO_PASSCRED;
2465 		break;
2466         case TARGET_SO_PASSSEC:
2467                 optname = SO_PASSSEC;
2468                 break;
2469         case TARGET_SO_TIMESTAMP:
2470 		optname = SO_TIMESTAMP;
2471 		break;
2472         case TARGET_SO_RCVLOWAT:
2473 		optname = SO_RCVLOWAT;
2474 		break;
2475         default:
2476             goto unimplemented;
2477         }
2478 	if (optlen < sizeof(uint32_t))
2479             return -TARGET_EINVAL;
2480 
2481 	if (get_user_u32(val, optval_addr))
2482             return -TARGET_EFAULT;
2483 	ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val)));
2484         break;
2485 #ifdef SOL_NETLINK
2486     case SOL_NETLINK:
2487         switch (optname) {
2488         case NETLINK_PKTINFO:
2489         case NETLINK_ADD_MEMBERSHIP:
2490         case NETLINK_DROP_MEMBERSHIP:
2491         case NETLINK_BROADCAST_ERROR:
2492         case NETLINK_NO_ENOBUFS:
2493 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2494         case NETLINK_LISTEN_ALL_NSID:
2495         case NETLINK_CAP_ACK:
2496 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2497 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2498         case NETLINK_EXT_ACK:
2499 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2500 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2501         case NETLINK_GET_STRICT_CHK:
2502 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2503             break;
2504         default:
2505             goto unimplemented;
2506         }
2507         val = 0;
2508         if (optlen < sizeof(uint32_t)) {
2509             return -TARGET_EINVAL;
2510         }
2511         if (get_user_u32(val, optval_addr)) {
2512             return -TARGET_EFAULT;
2513         }
2514         ret = get_errno(setsockopt(sockfd, SOL_NETLINK, optname, &val,
2515                                    sizeof(val)));
2516         break;
2517 #endif /* SOL_NETLINK */
2518     default:
2519     unimplemented:
2520         qemu_log_mask(LOG_UNIMP, "Unsupported setsockopt level=%d optname=%d\n",
2521                       level, optname);
2522         ret = -TARGET_ENOPROTOOPT;
2523     }
2524     return ret;
2525 }
2526 
2527 /* do_getsockopt() Must return target values and target errnos. */
2528 static abi_long do_getsockopt(int sockfd, int level, int optname,
2529                               abi_ulong optval_addr, abi_ulong optlen)
2530 {
2531     abi_long ret;
2532     int len, val;
2533     socklen_t lv;
2534 
2535     switch(level) {
2536     case TARGET_SOL_SOCKET:
2537         level = SOL_SOCKET;
2538         switch (optname) {
2539         /* These don't just return a single integer */
2540         case TARGET_SO_PEERNAME:
2541             goto unimplemented;
2542         case TARGET_SO_RCVTIMEO: {
2543             struct timeval tv;
2544             socklen_t tvlen;
2545 
2546             optname = SO_RCVTIMEO;
2547 
2548 get_timeout:
2549             if (get_user_u32(len, optlen)) {
2550                 return -TARGET_EFAULT;
2551             }
2552             if (len < 0) {
2553                 return -TARGET_EINVAL;
2554             }
2555 
2556             tvlen = sizeof(tv);
2557             ret = get_errno(getsockopt(sockfd, level, optname,
2558                                        &tv, &tvlen));
2559             if (ret < 0) {
2560                 return ret;
2561             }
2562             if (len > sizeof(struct target_timeval)) {
2563                 len = sizeof(struct target_timeval);
2564             }
2565             if (copy_to_user_timeval(optval_addr, &tv)) {
2566                 return -TARGET_EFAULT;
2567             }
2568             if (put_user_u32(len, optlen)) {
2569                 return -TARGET_EFAULT;
2570             }
2571             break;
2572         }
2573         case TARGET_SO_SNDTIMEO:
2574             optname = SO_SNDTIMEO;
2575             goto get_timeout;
2576         case TARGET_SO_PEERCRED: {
2577             struct ucred cr;
2578             socklen_t crlen;
2579             struct target_ucred *tcr;
2580 
2581             if (get_user_u32(len, optlen)) {
2582                 return -TARGET_EFAULT;
2583             }
2584             if (len < 0) {
2585                 return -TARGET_EINVAL;
2586             }
2587 
2588             crlen = sizeof(cr);
2589             ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED,
2590                                        &cr, &crlen));
2591             if (ret < 0) {
2592                 return ret;
2593             }
2594             if (len > crlen) {
2595                 len = crlen;
2596             }
2597             if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) {
2598                 return -TARGET_EFAULT;
2599             }
2600             __put_user(cr.pid, &tcr->pid);
2601             __put_user(cr.uid, &tcr->uid);
2602             __put_user(cr.gid, &tcr->gid);
2603             unlock_user_struct(tcr, optval_addr, 1);
2604             if (put_user_u32(len, optlen)) {
2605                 return -TARGET_EFAULT;
2606             }
2607             break;
2608         }
2609         case TARGET_SO_PEERSEC: {
2610             char *name;
2611 
2612             if (get_user_u32(len, optlen)) {
2613                 return -TARGET_EFAULT;
2614             }
2615             if (len < 0) {
2616                 return -TARGET_EINVAL;
2617             }
2618             name = lock_user(VERIFY_WRITE, optval_addr, len, 0);
2619             if (!name) {
2620                 return -TARGET_EFAULT;
2621             }
2622             lv = len;
2623             ret = get_errno(getsockopt(sockfd, level, SO_PEERSEC,
2624                                        name, &lv));
2625             if (put_user_u32(lv, optlen)) {
2626                 ret = -TARGET_EFAULT;
2627             }
2628             unlock_user(name, optval_addr, lv);
2629             break;
2630         }
2631         case TARGET_SO_LINGER:
2632         {
2633             struct linger lg;
2634             socklen_t lglen;
2635             struct target_linger *tlg;
2636 
2637             if (get_user_u32(len, optlen)) {
2638                 return -TARGET_EFAULT;
2639             }
2640             if (len < 0) {
2641                 return -TARGET_EINVAL;
2642             }
2643 
2644             lglen = sizeof(lg);
2645             ret = get_errno(getsockopt(sockfd, level, SO_LINGER,
2646                                        &lg, &lglen));
2647             if (ret < 0) {
2648                 return ret;
2649             }
2650             if (len > lglen) {
2651                 len = lglen;
2652             }
2653             if (!lock_user_struct(VERIFY_WRITE, tlg, optval_addr, 0)) {
2654                 return -TARGET_EFAULT;
2655             }
2656             __put_user(lg.l_onoff, &tlg->l_onoff);
2657             __put_user(lg.l_linger, &tlg->l_linger);
2658             unlock_user_struct(tlg, optval_addr, 1);
2659             if (put_user_u32(len, optlen)) {
2660                 return -TARGET_EFAULT;
2661             }
2662             break;
2663         }
2664         /* Options with 'int' argument.  */
2665         case TARGET_SO_DEBUG:
2666             optname = SO_DEBUG;
2667             goto int_case;
2668         case TARGET_SO_REUSEADDR:
2669             optname = SO_REUSEADDR;
2670             goto int_case;
2671 #ifdef SO_REUSEPORT
2672         case TARGET_SO_REUSEPORT:
2673             optname = SO_REUSEPORT;
2674             goto int_case;
2675 #endif
2676         case TARGET_SO_TYPE:
2677             optname = SO_TYPE;
2678             goto int_case;
2679         case TARGET_SO_ERROR:
2680             optname = SO_ERROR;
2681             goto int_case;
2682         case TARGET_SO_DONTROUTE:
2683             optname = SO_DONTROUTE;
2684             goto int_case;
2685         case TARGET_SO_BROADCAST:
2686             optname = SO_BROADCAST;
2687             goto int_case;
2688         case TARGET_SO_SNDBUF:
2689             optname = SO_SNDBUF;
2690             goto int_case;
2691         case TARGET_SO_RCVBUF:
2692             optname = SO_RCVBUF;
2693             goto int_case;
2694         case TARGET_SO_KEEPALIVE:
2695             optname = SO_KEEPALIVE;
2696             goto int_case;
2697         case TARGET_SO_OOBINLINE:
2698             optname = SO_OOBINLINE;
2699             goto int_case;
2700         case TARGET_SO_NO_CHECK:
2701             optname = SO_NO_CHECK;
2702             goto int_case;
2703         case TARGET_SO_PRIORITY:
2704             optname = SO_PRIORITY;
2705             goto int_case;
2706 #ifdef SO_BSDCOMPAT
2707         case TARGET_SO_BSDCOMPAT:
2708             optname = SO_BSDCOMPAT;
2709             goto int_case;
2710 #endif
2711         case TARGET_SO_PASSCRED:
2712             optname = SO_PASSCRED;
2713             goto int_case;
2714         case TARGET_SO_TIMESTAMP:
2715             optname = SO_TIMESTAMP;
2716             goto int_case;
2717         case TARGET_SO_RCVLOWAT:
2718             optname = SO_RCVLOWAT;
2719             goto int_case;
2720         case TARGET_SO_ACCEPTCONN:
2721             optname = SO_ACCEPTCONN;
2722             goto int_case;
2723         case TARGET_SO_PROTOCOL:
2724             optname = SO_PROTOCOL;
2725             goto int_case;
2726         case TARGET_SO_DOMAIN:
2727             optname = SO_DOMAIN;
2728             goto int_case;
2729         default:
2730             goto int_case;
2731         }
2732         break;
2733     case SOL_TCP:
2734     case SOL_UDP:
2735         /* TCP and UDP options all take an 'int' value.  */
2736     int_case:
2737         if (get_user_u32(len, optlen))
2738             return -TARGET_EFAULT;
2739         if (len < 0)
2740             return -TARGET_EINVAL;
2741         lv = sizeof(lv);
2742         ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2743         if (ret < 0)
2744             return ret;
2745         switch (optname) {
2746         case SO_TYPE:
2747             val = host_to_target_sock_type(val);
2748             break;
2749         case SO_ERROR:
2750             val = host_to_target_errno(val);
2751             break;
2752         }
2753         if (len > lv)
2754             len = lv;
2755         if (len == 4) {
2756             if (put_user_u32(val, optval_addr))
2757                 return -TARGET_EFAULT;
2758         } else {
2759             if (put_user_u8(val, optval_addr))
2760                 return -TARGET_EFAULT;
2761         }
2762         if (put_user_u32(len, optlen))
2763             return -TARGET_EFAULT;
2764         break;
2765     case SOL_IP:
2766         switch(optname) {
2767         case IP_TOS:
2768         case IP_TTL:
2769         case IP_HDRINCL:
2770         case IP_ROUTER_ALERT:
2771         case IP_RECVOPTS:
2772         case IP_RETOPTS:
2773         case IP_PKTINFO:
2774         case IP_MTU_DISCOVER:
2775         case IP_RECVERR:
2776         case IP_RECVTOS:
2777 #ifdef IP_FREEBIND
2778         case IP_FREEBIND:
2779 #endif
2780         case IP_MULTICAST_TTL:
2781         case IP_MULTICAST_LOOP:
2782             if (get_user_u32(len, optlen))
2783                 return -TARGET_EFAULT;
2784             if (len < 0)
2785                 return -TARGET_EINVAL;
2786             lv = sizeof(lv);
2787             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2788             if (ret < 0)
2789                 return ret;
2790             if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2791                 len = 1;
2792                 if (put_user_u32(len, optlen)
2793                     || put_user_u8(val, optval_addr))
2794                     return -TARGET_EFAULT;
2795             } else {
2796                 if (len > sizeof(int))
2797                     len = sizeof(int);
2798                 if (put_user_u32(len, optlen)
2799                     || put_user_u32(val, optval_addr))
2800                     return -TARGET_EFAULT;
2801             }
2802             break;
2803         default:
2804             ret = -TARGET_ENOPROTOOPT;
2805             break;
2806         }
2807         break;
2808     case SOL_IPV6:
2809         switch (optname) {
2810         case IPV6_MTU_DISCOVER:
2811         case IPV6_MTU:
2812         case IPV6_V6ONLY:
2813         case IPV6_RECVPKTINFO:
2814         case IPV6_UNICAST_HOPS:
2815         case IPV6_MULTICAST_HOPS:
2816         case IPV6_MULTICAST_LOOP:
2817         case IPV6_RECVERR:
2818         case IPV6_RECVHOPLIMIT:
2819         case IPV6_2292HOPLIMIT:
2820         case IPV6_CHECKSUM:
2821         case IPV6_ADDRFORM:
2822         case IPV6_2292PKTINFO:
2823         case IPV6_RECVTCLASS:
2824         case IPV6_RECVRTHDR:
2825         case IPV6_2292RTHDR:
2826         case IPV6_RECVHOPOPTS:
2827         case IPV6_2292HOPOPTS:
2828         case IPV6_RECVDSTOPTS:
2829         case IPV6_2292DSTOPTS:
2830         case IPV6_TCLASS:
2831         case IPV6_ADDR_PREFERENCES:
2832 #ifdef IPV6_RECVPATHMTU
2833         case IPV6_RECVPATHMTU:
2834 #endif
2835 #ifdef IPV6_TRANSPARENT
2836         case IPV6_TRANSPARENT:
2837 #endif
2838 #ifdef IPV6_FREEBIND
2839         case IPV6_FREEBIND:
2840 #endif
2841 #ifdef IPV6_RECVORIGDSTADDR
2842         case IPV6_RECVORIGDSTADDR:
2843 #endif
2844             if (get_user_u32(len, optlen))
2845                 return -TARGET_EFAULT;
2846             if (len < 0)
2847                 return -TARGET_EINVAL;
2848             lv = sizeof(lv);
2849             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2850             if (ret < 0)
2851                 return ret;
2852             if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2853                 len = 1;
2854                 if (put_user_u32(len, optlen)
2855                     || put_user_u8(val, optval_addr))
2856                     return -TARGET_EFAULT;
2857             } else {
2858                 if (len > sizeof(int))
2859                     len = sizeof(int);
2860                 if (put_user_u32(len, optlen)
2861                     || put_user_u32(val, optval_addr))
2862                     return -TARGET_EFAULT;
2863             }
2864             break;
2865         default:
2866             ret = -TARGET_ENOPROTOOPT;
2867             break;
2868         }
2869         break;
2870 #ifdef SOL_NETLINK
2871     case SOL_NETLINK:
2872         switch (optname) {
2873         case NETLINK_PKTINFO:
2874         case NETLINK_BROADCAST_ERROR:
2875         case NETLINK_NO_ENOBUFS:
2876 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2877         case NETLINK_LISTEN_ALL_NSID:
2878         case NETLINK_CAP_ACK:
2879 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2880 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2881         case NETLINK_EXT_ACK:
2882 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2883 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2884         case NETLINK_GET_STRICT_CHK:
2885 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2886             if (get_user_u32(len, optlen)) {
2887                 return -TARGET_EFAULT;
2888             }
2889             if (len != sizeof(val)) {
2890                 return -TARGET_EINVAL;
2891             }
2892             lv = len;
2893             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2894             if (ret < 0) {
2895                 return ret;
2896             }
2897             if (put_user_u32(lv, optlen)
2898                 || put_user_u32(val, optval_addr)) {
2899                 return -TARGET_EFAULT;
2900             }
2901             break;
2902 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2903         case NETLINK_LIST_MEMBERSHIPS:
2904         {
2905             uint32_t *results;
2906             int i;
2907             if (get_user_u32(len, optlen)) {
2908                 return -TARGET_EFAULT;
2909             }
2910             if (len < 0) {
2911                 return -TARGET_EINVAL;
2912             }
2913             results = lock_user(VERIFY_WRITE, optval_addr, len, 1);
2914             if (!results && len > 0) {
2915                 return -TARGET_EFAULT;
2916             }
2917             lv = len;
2918             ret = get_errno(getsockopt(sockfd, level, optname, results, &lv));
2919             if (ret < 0) {
2920                 unlock_user(results, optval_addr, 0);
2921                 return ret;
2922             }
2923             /* swap host endianness to target endianness. */
2924             for (i = 0; i < (len / sizeof(uint32_t)); i++) {
2925                 results[i] = tswap32(results[i]);
2926             }
2927             if (put_user_u32(lv, optlen)) {
2928                 return -TARGET_EFAULT;
2929             }
2930             unlock_user(results, optval_addr, 0);
2931             break;
2932         }
2933 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2934         default:
2935             goto unimplemented;
2936         }
2937         break;
2938 #endif /* SOL_NETLINK */
2939     default:
2940     unimplemented:
2941         qemu_log_mask(LOG_UNIMP,
2942                       "getsockopt level=%d optname=%d not yet supported\n",
2943                       level, optname);
2944         ret = -TARGET_EOPNOTSUPP;
2945         break;
2946     }
2947     return ret;
2948 }
2949 
2950 /* Convert target low/high pair representing file offset into the host
2951  * low/high pair. This function doesn't handle offsets bigger than 64 bits
2952  * as the kernel doesn't handle them either.
2953  */
2954 static void target_to_host_low_high(abi_ulong tlow,
2955                                     abi_ulong thigh,
2956                                     unsigned long *hlow,
2957                                     unsigned long *hhigh)
2958 {
2959     uint64_t off = tlow |
2960         ((unsigned long long)thigh << TARGET_LONG_BITS / 2) <<
2961         TARGET_LONG_BITS / 2;
2962 
2963     *hlow = off;
2964     *hhigh = (off >> HOST_LONG_BITS / 2) >> HOST_LONG_BITS / 2;
2965 }
2966 
2967 static struct iovec *lock_iovec(int type, abi_ulong target_addr,
2968                                 abi_ulong count, int copy)
2969 {
2970     struct target_iovec *target_vec;
2971     struct iovec *vec;
2972     abi_ulong total_len, max_len;
2973     int i;
2974     int err = 0;
2975     bool bad_address = false;
2976 
2977     if (count == 0) {
2978         errno = 0;
2979         return NULL;
2980     }
2981     if (count > IOV_MAX) {
2982         errno = EINVAL;
2983         return NULL;
2984     }
2985 
2986     vec = g_try_new0(struct iovec, count);
2987     if (vec == NULL) {
2988         errno = ENOMEM;
2989         return NULL;
2990     }
2991 
2992     target_vec = lock_user(VERIFY_READ, target_addr,
2993                            count * sizeof(struct target_iovec), 1);
2994     if (target_vec == NULL) {
2995         err = EFAULT;
2996         goto fail2;
2997     }
2998 
2999     /* ??? If host page size > target page size, this will result in a
3000        value larger than what we can actually support.  */
3001     max_len = 0x7fffffff & TARGET_PAGE_MASK;
3002     total_len = 0;
3003 
3004     for (i = 0; i < count; i++) {
3005         abi_ulong base = tswapal(target_vec[i].iov_base);
3006         abi_long len = tswapal(target_vec[i].iov_len);
3007 
3008         if (len < 0) {
3009             err = EINVAL;
3010             goto fail;
3011         } else if (len == 0) {
3012             /* Zero length pointer is ignored.  */
3013             vec[i].iov_base = 0;
3014         } else {
3015             vec[i].iov_base = lock_user(type, base, len, copy);
3016             /* If the first buffer pointer is bad, this is a fault.  But
3017              * subsequent bad buffers will result in a partial write; this
3018              * is realized by filling the vector with null pointers and
3019              * zero lengths. */
3020             if (!vec[i].iov_base) {
3021                 if (i == 0) {
3022                     err = EFAULT;
3023                     goto fail;
3024                 } else {
3025                     bad_address = true;
3026                 }
3027             }
3028             if (bad_address) {
3029                 len = 0;
3030             }
3031             if (len > max_len - total_len) {
3032                 len = max_len - total_len;
3033             }
3034         }
3035         vec[i].iov_len = len;
3036         total_len += len;
3037     }
3038 
3039     unlock_user(target_vec, target_addr, 0);
3040     return vec;
3041 
3042  fail:
3043     while (--i >= 0) {
3044         if (tswapal(target_vec[i].iov_len) > 0) {
3045             unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0);
3046         }
3047     }
3048     unlock_user(target_vec, target_addr, 0);
3049  fail2:
3050     g_free(vec);
3051     errno = err;
3052     return NULL;
3053 }
3054 
3055 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr,
3056                          abi_ulong count, int copy)
3057 {
3058     struct target_iovec *target_vec;
3059     int i;
3060 
3061     target_vec = lock_user(VERIFY_READ, target_addr,
3062                            count * sizeof(struct target_iovec), 1);
3063     if (target_vec) {
3064         for (i = 0; i < count; i++) {
3065             abi_ulong base = tswapal(target_vec[i].iov_base);
3066             abi_long len = tswapal(target_vec[i].iov_len);
3067             if (len < 0) {
3068                 break;
3069             }
3070             unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0);
3071         }
3072         unlock_user(target_vec, target_addr, 0);
3073     }
3074 
3075     g_free(vec);
3076 }
3077 
3078 static inline int target_to_host_sock_type(int *type)
3079 {
3080     int host_type = 0;
3081     int target_type = *type;
3082 
3083     switch (target_type & TARGET_SOCK_TYPE_MASK) {
3084     case TARGET_SOCK_DGRAM:
3085         host_type = SOCK_DGRAM;
3086         break;
3087     case TARGET_SOCK_STREAM:
3088         host_type = SOCK_STREAM;
3089         break;
3090     default:
3091         host_type = target_type & TARGET_SOCK_TYPE_MASK;
3092         break;
3093     }
3094     if (target_type & TARGET_SOCK_CLOEXEC) {
3095 #if defined(SOCK_CLOEXEC)
3096         host_type |= SOCK_CLOEXEC;
3097 #else
3098         return -TARGET_EINVAL;
3099 #endif
3100     }
3101     if (target_type & TARGET_SOCK_NONBLOCK) {
3102 #if defined(SOCK_NONBLOCK)
3103         host_type |= SOCK_NONBLOCK;
3104 #elif !defined(O_NONBLOCK)
3105         return -TARGET_EINVAL;
3106 #endif
3107     }
3108     *type = host_type;
3109     return 0;
3110 }
3111 
3112 /* Try to emulate socket type flags after socket creation.  */
3113 static int sock_flags_fixup(int fd, int target_type)
3114 {
3115 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK)
3116     if (target_type & TARGET_SOCK_NONBLOCK) {
3117         int flags = fcntl(fd, F_GETFL);
3118         if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) {
3119             close(fd);
3120             return -TARGET_EINVAL;
3121         }
3122     }
3123 #endif
3124     return fd;
3125 }
3126 
3127 /* do_socket() Must return target values and target errnos. */
3128 static abi_long do_socket(int domain, int type, int protocol)
3129 {
3130     int target_type = type;
3131     int ret;
3132 
3133     ret = target_to_host_sock_type(&type);
3134     if (ret) {
3135         return ret;
3136     }
3137 
3138     if (domain == PF_NETLINK && !(
3139 #ifdef CONFIG_RTNETLINK
3140          protocol == NETLINK_ROUTE ||
3141 #endif
3142          protocol == NETLINK_KOBJECT_UEVENT ||
3143          protocol == NETLINK_AUDIT)) {
3144         return -TARGET_EPROTONOSUPPORT;
3145     }
3146 
3147     if (domain == AF_PACKET ||
3148         (domain == AF_INET && type == SOCK_PACKET)) {
3149         protocol = tswap16(protocol);
3150     }
3151 
3152     ret = get_errno(socket(domain, type, protocol));
3153     if (ret >= 0) {
3154         ret = sock_flags_fixup(ret, target_type);
3155         if (type == SOCK_PACKET) {
3156             /* Manage an obsolete case :
3157              * if socket type is SOCK_PACKET, bind by name
3158              */
3159             fd_trans_register(ret, &target_packet_trans);
3160         } else if (domain == PF_NETLINK) {
3161             switch (protocol) {
3162 #ifdef CONFIG_RTNETLINK
3163             case NETLINK_ROUTE:
3164                 fd_trans_register(ret, &target_netlink_route_trans);
3165                 break;
3166 #endif
3167             case NETLINK_KOBJECT_UEVENT:
3168                 /* nothing to do: messages are strings */
3169                 break;
3170             case NETLINK_AUDIT:
3171                 fd_trans_register(ret, &target_netlink_audit_trans);
3172                 break;
3173             default:
3174                 g_assert_not_reached();
3175             }
3176         }
3177     }
3178     return ret;
3179 }
3180 
3181 /* do_bind() Must return target values and target errnos. */
3182 static abi_long do_bind(int sockfd, abi_ulong target_addr,
3183                         socklen_t addrlen)
3184 {
3185     void *addr;
3186     abi_long ret;
3187 
3188     if ((int)addrlen < 0) {
3189         return -TARGET_EINVAL;
3190     }
3191 
3192     addr = alloca(addrlen+1);
3193 
3194     ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3195     if (ret)
3196         return ret;
3197 
3198     return get_errno(bind(sockfd, addr, addrlen));
3199 }
3200 
3201 /* do_connect() Must return target values and target errnos. */
3202 static abi_long do_connect(int sockfd, abi_ulong target_addr,
3203                            socklen_t addrlen)
3204 {
3205     void *addr;
3206     abi_long ret;
3207 
3208     if ((int)addrlen < 0) {
3209         return -TARGET_EINVAL;
3210     }
3211 
3212     addr = alloca(addrlen+1);
3213 
3214     ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3215     if (ret)
3216         return ret;
3217 
3218     return get_errno(safe_connect(sockfd, addr, addrlen));
3219 }
3220 
3221 /* do_sendrecvmsg_locked() Must return target values and target errnos. */
3222 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp,
3223                                       int flags, int send)
3224 {
3225     abi_long ret, len;
3226     struct msghdr msg;
3227     abi_ulong count;
3228     struct iovec *vec;
3229     abi_ulong target_vec;
3230 
3231     if (msgp->msg_name) {
3232         msg.msg_namelen = tswap32(msgp->msg_namelen);
3233         msg.msg_name = alloca(msg.msg_namelen+1);
3234         ret = target_to_host_sockaddr(fd, msg.msg_name,
3235                                       tswapal(msgp->msg_name),
3236                                       msg.msg_namelen);
3237         if (ret == -TARGET_EFAULT) {
3238             /* For connected sockets msg_name and msg_namelen must
3239              * be ignored, so returning EFAULT immediately is wrong.
3240              * Instead, pass a bad msg_name to the host kernel, and
3241              * let it decide whether to return EFAULT or not.
3242              */
3243             msg.msg_name = (void *)-1;
3244         } else if (ret) {
3245             goto out2;
3246         }
3247     } else {
3248         msg.msg_name = NULL;
3249         msg.msg_namelen = 0;
3250     }
3251     msg.msg_controllen = 2 * tswapal(msgp->msg_controllen);
3252     msg.msg_control = alloca(msg.msg_controllen);
3253     memset(msg.msg_control, 0, msg.msg_controllen);
3254 
3255     msg.msg_flags = tswap32(msgp->msg_flags);
3256 
3257     count = tswapal(msgp->msg_iovlen);
3258     target_vec = tswapal(msgp->msg_iov);
3259 
3260     if (count > IOV_MAX) {
3261         /* sendrcvmsg returns a different errno for this condition than
3262          * readv/writev, so we must catch it here before lock_iovec() does.
3263          */
3264         ret = -TARGET_EMSGSIZE;
3265         goto out2;
3266     }
3267 
3268     vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE,
3269                      target_vec, count, send);
3270     if (vec == NULL) {
3271         ret = -host_to_target_errno(errno);
3272         /* allow sending packet without any iov, e.g. with MSG_MORE flag */
3273         if (!send || ret) {
3274             goto out2;
3275         }
3276     }
3277     msg.msg_iovlen = count;
3278     msg.msg_iov = vec;
3279 
3280     if (send) {
3281         if (fd_trans_target_to_host_data(fd)) {
3282             void *host_msg;
3283 
3284             host_msg = g_malloc(msg.msg_iov->iov_len);
3285             memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len);
3286             ret = fd_trans_target_to_host_data(fd)(host_msg,
3287                                                    msg.msg_iov->iov_len);
3288             if (ret >= 0) {
3289                 msg.msg_iov->iov_base = host_msg;
3290                 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3291             }
3292             g_free(host_msg);
3293         } else {
3294             ret = target_to_host_cmsg(&msg, msgp);
3295             if (ret == 0) {
3296                 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3297             }
3298         }
3299     } else {
3300         ret = get_errno(safe_recvmsg(fd, &msg, flags));
3301         if (!is_error(ret)) {
3302             len = ret;
3303             if (fd_trans_host_to_target_data(fd)) {
3304                 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base,
3305                                                MIN(msg.msg_iov->iov_len, len));
3306             }
3307             if (!is_error(ret)) {
3308                 ret = host_to_target_cmsg(msgp, &msg);
3309             }
3310             if (!is_error(ret)) {
3311                 msgp->msg_namelen = tswap32(msg.msg_namelen);
3312                 msgp->msg_flags = tswap32(msg.msg_flags);
3313                 if (msg.msg_name != NULL && msg.msg_name != (void *)-1) {
3314                     ret = host_to_target_sockaddr(tswapal(msgp->msg_name),
3315                                     msg.msg_name, msg.msg_namelen);
3316                     if (ret) {
3317                         goto out;
3318                     }
3319                 }
3320 
3321                 ret = len;
3322             }
3323         }
3324     }
3325 
3326 out:
3327     if (vec) {
3328         unlock_iovec(vec, target_vec, count, !send);
3329     }
3330 out2:
3331     return ret;
3332 }
3333 
3334 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg,
3335                                int flags, int send)
3336 {
3337     abi_long ret;
3338     struct target_msghdr *msgp;
3339 
3340     if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE,
3341                           msgp,
3342                           target_msg,
3343                           send ? 1 : 0)) {
3344         return -TARGET_EFAULT;
3345     }
3346     ret = do_sendrecvmsg_locked(fd, msgp, flags, send);
3347     unlock_user_struct(msgp, target_msg, send ? 0 : 1);
3348     return ret;
3349 }
3350 
3351 /* We don't rely on the C library to have sendmmsg/recvmmsg support,
3352  * so it might not have this *mmsg-specific flag either.
3353  */
3354 #ifndef MSG_WAITFORONE
3355 #define MSG_WAITFORONE 0x10000
3356 #endif
3357 
3358 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec,
3359                                 unsigned int vlen, unsigned int flags,
3360                                 int send)
3361 {
3362     struct target_mmsghdr *mmsgp;
3363     abi_long ret = 0;
3364     int i;
3365 
3366     if (vlen > UIO_MAXIOV) {
3367         vlen = UIO_MAXIOV;
3368     }
3369 
3370     mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1);
3371     if (!mmsgp) {
3372         return -TARGET_EFAULT;
3373     }
3374 
3375     for (i = 0; i < vlen; i++) {
3376         ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send);
3377         if (is_error(ret)) {
3378             break;
3379         }
3380         mmsgp[i].msg_len = tswap32(ret);
3381         /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
3382         if (flags & MSG_WAITFORONE) {
3383             flags |= MSG_DONTWAIT;
3384         }
3385     }
3386 
3387     unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i);
3388 
3389     /* Return number of datagrams sent if we sent any at all;
3390      * otherwise return the error.
3391      */
3392     if (i) {
3393         return i;
3394     }
3395     return ret;
3396 }
3397 
3398 /* do_accept4() Must return target values and target errnos. */
3399 static abi_long do_accept4(int fd, abi_ulong target_addr,
3400                            abi_ulong target_addrlen_addr, int flags)
3401 {
3402     socklen_t addrlen, ret_addrlen;
3403     void *addr;
3404     abi_long ret;
3405     int host_flags;
3406 
3407     if (flags & ~(TARGET_SOCK_CLOEXEC | TARGET_SOCK_NONBLOCK)) {
3408         return -TARGET_EINVAL;
3409     }
3410 
3411     host_flags = 0;
3412     if (flags & TARGET_SOCK_NONBLOCK) {
3413         host_flags |= SOCK_NONBLOCK;
3414     }
3415     if (flags & TARGET_SOCK_CLOEXEC) {
3416         host_flags |= SOCK_CLOEXEC;
3417     }
3418 
3419     if (target_addr == 0) {
3420         return get_errno(safe_accept4(fd, NULL, NULL, host_flags));
3421     }
3422 
3423     /* linux returns EFAULT if addrlen pointer is invalid */
3424     if (get_user_u32(addrlen, target_addrlen_addr))
3425         return -TARGET_EFAULT;
3426 
3427     if ((int)addrlen < 0) {
3428         return -TARGET_EINVAL;
3429     }
3430 
3431     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3432         return -TARGET_EFAULT;
3433     }
3434 
3435     addr = alloca(addrlen);
3436 
3437     ret_addrlen = addrlen;
3438     ret = get_errno(safe_accept4(fd, addr, &ret_addrlen, host_flags));
3439     if (!is_error(ret)) {
3440         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3441         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3442             ret = -TARGET_EFAULT;
3443         }
3444     }
3445     return ret;
3446 }
3447 
3448 /* do_getpeername() Must return target values and target errnos. */
3449 static abi_long do_getpeername(int fd, abi_ulong target_addr,
3450                                abi_ulong target_addrlen_addr)
3451 {
3452     socklen_t addrlen, ret_addrlen;
3453     void *addr;
3454     abi_long ret;
3455 
3456     if (get_user_u32(addrlen, target_addrlen_addr))
3457         return -TARGET_EFAULT;
3458 
3459     if ((int)addrlen < 0) {
3460         return -TARGET_EINVAL;
3461     }
3462 
3463     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3464         return -TARGET_EFAULT;
3465     }
3466 
3467     addr = alloca(addrlen);
3468 
3469     ret_addrlen = addrlen;
3470     ret = get_errno(getpeername(fd, addr, &ret_addrlen));
3471     if (!is_error(ret)) {
3472         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3473         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3474             ret = -TARGET_EFAULT;
3475         }
3476     }
3477     return ret;
3478 }
3479 
3480 /* do_getsockname() Must return target values and target errnos. */
3481 static abi_long do_getsockname(int fd, abi_ulong target_addr,
3482                                abi_ulong target_addrlen_addr)
3483 {
3484     socklen_t addrlen, ret_addrlen;
3485     void *addr;
3486     abi_long ret;
3487 
3488     if (get_user_u32(addrlen, target_addrlen_addr))
3489         return -TARGET_EFAULT;
3490 
3491     if ((int)addrlen < 0) {
3492         return -TARGET_EINVAL;
3493     }
3494 
3495     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3496         return -TARGET_EFAULT;
3497     }
3498 
3499     addr = alloca(addrlen);
3500 
3501     ret_addrlen = addrlen;
3502     ret = get_errno(getsockname(fd, addr, &ret_addrlen));
3503     if (!is_error(ret)) {
3504         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3505         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3506             ret = -TARGET_EFAULT;
3507         }
3508     }
3509     return ret;
3510 }
3511 
3512 /* do_socketpair() Must return target values and target errnos. */
3513 static abi_long do_socketpair(int domain, int type, int protocol,
3514                               abi_ulong target_tab_addr)
3515 {
3516     int tab[2];
3517     abi_long ret;
3518 
3519     target_to_host_sock_type(&type);
3520 
3521     ret = get_errno(socketpair(domain, type, protocol, tab));
3522     if (!is_error(ret)) {
3523         if (put_user_s32(tab[0], target_tab_addr)
3524             || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0])))
3525             ret = -TARGET_EFAULT;
3526     }
3527     return ret;
3528 }
3529 
3530 /* do_sendto() Must return target values and target errnos. */
3531 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags,
3532                           abi_ulong target_addr, socklen_t addrlen)
3533 {
3534     void *addr;
3535     void *host_msg;
3536     void *copy_msg = NULL;
3537     abi_long ret;
3538 
3539     if ((int)addrlen < 0) {
3540         return -TARGET_EINVAL;
3541     }
3542 
3543     host_msg = lock_user(VERIFY_READ, msg, len, 1);
3544     if (!host_msg)
3545         return -TARGET_EFAULT;
3546     if (fd_trans_target_to_host_data(fd)) {
3547         copy_msg = host_msg;
3548         host_msg = g_malloc(len);
3549         memcpy(host_msg, copy_msg, len);
3550         ret = fd_trans_target_to_host_data(fd)(host_msg, len);
3551         if (ret < 0) {
3552             goto fail;
3553         }
3554     }
3555     if (target_addr) {
3556         addr = alloca(addrlen+1);
3557         ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen);
3558         if (ret) {
3559             goto fail;
3560         }
3561         ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen));
3562     } else {
3563         ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0));
3564     }
3565 fail:
3566     if (copy_msg) {
3567         g_free(host_msg);
3568         host_msg = copy_msg;
3569     }
3570     unlock_user(host_msg, msg, 0);
3571     return ret;
3572 }
3573 
3574 /* do_recvfrom() Must return target values and target errnos. */
3575 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags,
3576                             abi_ulong target_addr,
3577                             abi_ulong target_addrlen)
3578 {
3579     socklen_t addrlen, ret_addrlen;
3580     void *addr;
3581     void *host_msg;
3582     abi_long ret;
3583 
3584     if (!msg) {
3585         host_msg = NULL;
3586     } else {
3587         host_msg = lock_user(VERIFY_WRITE, msg, len, 0);
3588         if (!host_msg) {
3589             return -TARGET_EFAULT;
3590         }
3591     }
3592     if (target_addr) {
3593         if (get_user_u32(addrlen, target_addrlen)) {
3594             ret = -TARGET_EFAULT;
3595             goto fail;
3596         }
3597         if ((int)addrlen < 0) {
3598             ret = -TARGET_EINVAL;
3599             goto fail;
3600         }
3601         addr = alloca(addrlen);
3602         ret_addrlen = addrlen;
3603         ret = get_errno(safe_recvfrom(fd, host_msg, len, flags,
3604                                       addr, &ret_addrlen));
3605     } else {
3606         addr = NULL; /* To keep compiler quiet.  */
3607         addrlen = 0; /* To keep compiler quiet.  */
3608         ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0));
3609     }
3610     if (!is_error(ret)) {
3611         if (fd_trans_host_to_target_data(fd)) {
3612             abi_long trans;
3613             trans = fd_trans_host_to_target_data(fd)(host_msg, MIN(ret, len));
3614             if (is_error(trans)) {
3615                 ret = trans;
3616                 goto fail;
3617             }
3618         }
3619         if (target_addr) {
3620             host_to_target_sockaddr(target_addr, addr,
3621                                     MIN(addrlen, ret_addrlen));
3622             if (put_user_u32(ret_addrlen, target_addrlen)) {
3623                 ret = -TARGET_EFAULT;
3624                 goto fail;
3625             }
3626         }
3627         unlock_user(host_msg, msg, len);
3628     } else {
3629 fail:
3630         unlock_user(host_msg, msg, 0);
3631     }
3632     return ret;
3633 }
3634 
3635 #ifdef TARGET_NR_socketcall
3636 /* do_socketcall() must return target values and target errnos. */
3637 static abi_long do_socketcall(int num, abi_ulong vptr)
3638 {
3639     static const unsigned nargs[] = { /* number of arguments per operation */
3640         [TARGET_SYS_SOCKET] = 3,      /* domain, type, protocol */
3641         [TARGET_SYS_BIND] = 3,        /* fd, addr, addrlen */
3642         [TARGET_SYS_CONNECT] = 3,     /* fd, addr, addrlen */
3643         [TARGET_SYS_LISTEN] = 2,      /* fd, backlog */
3644         [TARGET_SYS_ACCEPT] = 3,      /* fd, addr, addrlen */
3645         [TARGET_SYS_GETSOCKNAME] = 3, /* fd, addr, addrlen */
3646         [TARGET_SYS_GETPEERNAME] = 3, /* fd, addr, addrlen */
3647         [TARGET_SYS_SOCKETPAIR] = 4,  /* domain, type, protocol, tab */
3648         [TARGET_SYS_SEND] = 4,        /* fd, msg, len, flags */
3649         [TARGET_SYS_RECV] = 4,        /* fd, msg, len, flags */
3650         [TARGET_SYS_SENDTO] = 6,      /* fd, msg, len, flags, addr, addrlen */
3651         [TARGET_SYS_RECVFROM] = 6,    /* fd, msg, len, flags, addr, addrlen */
3652         [TARGET_SYS_SHUTDOWN] = 2,    /* fd, how */
3653         [TARGET_SYS_SETSOCKOPT] = 5,  /* fd, level, optname, optval, optlen */
3654         [TARGET_SYS_GETSOCKOPT] = 5,  /* fd, level, optname, optval, optlen */
3655         [TARGET_SYS_SENDMSG] = 3,     /* fd, msg, flags */
3656         [TARGET_SYS_RECVMSG] = 3,     /* fd, msg, flags */
3657         [TARGET_SYS_ACCEPT4] = 4,     /* fd, addr, addrlen, flags */
3658         [TARGET_SYS_RECVMMSG] = 4,    /* fd, msgvec, vlen, flags */
3659         [TARGET_SYS_SENDMMSG] = 4,    /* fd, msgvec, vlen, flags */
3660     };
3661     abi_long a[6]; /* max 6 args */
3662     unsigned i;
3663 
3664     /* check the range of the first argument num */
3665     /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */
3666     if (num < 1 || num > TARGET_SYS_SENDMMSG) {
3667         return -TARGET_EINVAL;
3668     }
3669     /* ensure we have space for args */
3670     if (nargs[num] > ARRAY_SIZE(a)) {
3671         return -TARGET_EINVAL;
3672     }
3673     /* collect the arguments in a[] according to nargs[] */
3674     for (i = 0; i < nargs[num]; ++i) {
3675         if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) {
3676             return -TARGET_EFAULT;
3677         }
3678     }
3679     /* now when we have the args, invoke the appropriate underlying function */
3680     switch (num) {
3681     case TARGET_SYS_SOCKET: /* domain, type, protocol */
3682         return do_socket(a[0], a[1], a[2]);
3683     case TARGET_SYS_BIND: /* sockfd, addr, addrlen */
3684         return do_bind(a[0], a[1], a[2]);
3685     case TARGET_SYS_CONNECT: /* sockfd, addr, addrlen */
3686         return do_connect(a[0], a[1], a[2]);
3687     case TARGET_SYS_LISTEN: /* sockfd, backlog */
3688         return get_errno(listen(a[0], a[1]));
3689     case TARGET_SYS_ACCEPT: /* sockfd, addr, addrlen */
3690         return do_accept4(a[0], a[1], a[2], 0);
3691     case TARGET_SYS_GETSOCKNAME: /* sockfd, addr, addrlen */
3692         return do_getsockname(a[0], a[1], a[2]);
3693     case TARGET_SYS_GETPEERNAME: /* sockfd, addr, addrlen */
3694         return do_getpeername(a[0], a[1], a[2]);
3695     case TARGET_SYS_SOCKETPAIR: /* domain, type, protocol, tab */
3696         return do_socketpair(a[0], a[1], a[2], a[3]);
3697     case TARGET_SYS_SEND: /* sockfd, msg, len, flags */
3698         return do_sendto(a[0], a[1], a[2], a[3], 0, 0);
3699     case TARGET_SYS_RECV: /* sockfd, msg, len, flags */
3700         return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0);
3701     case TARGET_SYS_SENDTO: /* sockfd, msg, len, flags, addr, addrlen */
3702         return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]);
3703     case TARGET_SYS_RECVFROM: /* sockfd, msg, len, flags, addr, addrlen */
3704         return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]);
3705     case TARGET_SYS_SHUTDOWN: /* sockfd, how */
3706         return get_errno(shutdown(a[0], a[1]));
3707     case TARGET_SYS_SETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3708         return do_setsockopt(a[0], a[1], a[2], a[3], a[4]);
3709     case TARGET_SYS_GETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3710         return do_getsockopt(a[0], a[1], a[2], a[3], a[4]);
3711     case TARGET_SYS_SENDMSG: /* sockfd, msg, flags */
3712         return do_sendrecvmsg(a[0], a[1], a[2], 1);
3713     case TARGET_SYS_RECVMSG: /* sockfd, msg, flags */
3714         return do_sendrecvmsg(a[0], a[1], a[2], 0);
3715     case TARGET_SYS_ACCEPT4: /* sockfd, addr, addrlen, flags */
3716         return do_accept4(a[0], a[1], a[2], a[3]);
3717     case TARGET_SYS_RECVMMSG: /* sockfd, msgvec, vlen, flags */
3718         return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0);
3719     case TARGET_SYS_SENDMMSG: /* sockfd, msgvec, vlen, flags */
3720         return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1);
3721     default:
3722         qemu_log_mask(LOG_UNIMP, "Unsupported socketcall: %d\n", num);
3723         return -TARGET_EINVAL;
3724     }
3725 }
3726 #endif
3727 
3728 #ifndef TARGET_SEMID64_DS
3729 /* asm-generic version of this struct */
3730 struct target_semid64_ds
3731 {
3732   struct target_ipc_perm sem_perm;
3733   abi_ulong sem_otime;
3734 #if TARGET_ABI_BITS == 32
3735   abi_ulong __unused1;
3736 #endif
3737   abi_ulong sem_ctime;
3738 #if TARGET_ABI_BITS == 32
3739   abi_ulong __unused2;
3740 #endif
3741   abi_ulong sem_nsems;
3742   abi_ulong __unused3;
3743   abi_ulong __unused4;
3744 };
3745 #endif
3746 
3747 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip,
3748                                                abi_ulong target_addr)
3749 {
3750     struct target_ipc_perm *target_ip;
3751     struct target_semid64_ds *target_sd;
3752 
3753     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3754         return -TARGET_EFAULT;
3755     target_ip = &(target_sd->sem_perm);
3756     host_ip->__key = tswap32(target_ip->__key);
3757     host_ip->uid = tswap32(target_ip->uid);
3758     host_ip->gid = tswap32(target_ip->gid);
3759     host_ip->cuid = tswap32(target_ip->cuid);
3760     host_ip->cgid = tswap32(target_ip->cgid);
3761 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3762     host_ip->mode = tswap32(target_ip->mode);
3763 #else
3764     host_ip->mode = tswap16(target_ip->mode);
3765 #endif
3766 #if defined(TARGET_PPC)
3767     host_ip->__seq = tswap32(target_ip->__seq);
3768 #else
3769     host_ip->__seq = tswap16(target_ip->__seq);
3770 #endif
3771     unlock_user_struct(target_sd, target_addr, 0);
3772     return 0;
3773 }
3774 
3775 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr,
3776                                                struct ipc_perm *host_ip)
3777 {
3778     struct target_ipc_perm *target_ip;
3779     struct target_semid64_ds *target_sd;
3780 
3781     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3782         return -TARGET_EFAULT;
3783     target_ip = &(target_sd->sem_perm);
3784     target_ip->__key = tswap32(host_ip->__key);
3785     target_ip->uid = tswap32(host_ip->uid);
3786     target_ip->gid = tswap32(host_ip->gid);
3787     target_ip->cuid = tswap32(host_ip->cuid);
3788     target_ip->cgid = tswap32(host_ip->cgid);
3789 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3790     target_ip->mode = tswap32(host_ip->mode);
3791 #else
3792     target_ip->mode = tswap16(host_ip->mode);
3793 #endif
3794 #if defined(TARGET_PPC)
3795     target_ip->__seq = tswap32(host_ip->__seq);
3796 #else
3797     target_ip->__seq = tswap16(host_ip->__seq);
3798 #endif
3799     unlock_user_struct(target_sd, target_addr, 1);
3800     return 0;
3801 }
3802 
3803 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd,
3804                                                abi_ulong target_addr)
3805 {
3806     struct target_semid64_ds *target_sd;
3807 
3808     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3809         return -TARGET_EFAULT;
3810     if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr))
3811         return -TARGET_EFAULT;
3812     host_sd->sem_nsems = tswapal(target_sd->sem_nsems);
3813     host_sd->sem_otime = tswapal(target_sd->sem_otime);
3814     host_sd->sem_ctime = tswapal(target_sd->sem_ctime);
3815     unlock_user_struct(target_sd, target_addr, 0);
3816     return 0;
3817 }
3818 
3819 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr,
3820                                                struct semid_ds *host_sd)
3821 {
3822     struct target_semid64_ds *target_sd;
3823 
3824     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3825         return -TARGET_EFAULT;
3826     if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm)))
3827         return -TARGET_EFAULT;
3828     target_sd->sem_nsems = tswapal(host_sd->sem_nsems);
3829     target_sd->sem_otime = tswapal(host_sd->sem_otime);
3830     target_sd->sem_ctime = tswapal(host_sd->sem_ctime);
3831     unlock_user_struct(target_sd, target_addr, 1);
3832     return 0;
3833 }
3834 
3835 struct target_seminfo {
3836     int semmap;
3837     int semmni;
3838     int semmns;
3839     int semmnu;
3840     int semmsl;
3841     int semopm;
3842     int semume;
3843     int semusz;
3844     int semvmx;
3845     int semaem;
3846 };
3847 
3848 static inline abi_long host_to_target_seminfo(abi_ulong target_addr,
3849                                               struct seminfo *host_seminfo)
3850 {
3851     struct target_seminfo *target_seminfo;
3852     if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0))
3853         return -TARGET_EFAULT;
3854     __put_user(host_seminfo->semmap, &target_seminfo->semmap);
3855     __put_user(host_seminfo->semmni, &target_seminfo->semmni);
3856     __put_user(host_seminfo->semmns, &target_seminfo->semmns);
3857     __put_user(host_seminfo->semmnu, &target_seminfo->semmnu);
3858     __put_user(host_seminfo->semmsl, &target_seminfo->semmsl);
3859     __put_user(host_seminfo->semopm, &target_seminfo->semopm);
3860     __put_user(host_seminfo->semume, &target_seminfo->semume);
3861     __put_user(host_seminfo->semusz, &target_seminfo->semusz);
3862     __put_user(host_seminfo->semvmx, &target_seminfo->semvmx);
3863     __put_user(host_seminfo->semaem, &target_seminfo->semaem);
3864     unlock_user_struct(target_seminfo, target_addr, 1);
3865     return 0;
3866 }
3867 
3868 union semun {
3869 	int val;
3870 	struct semid_ds *buf;
3871 	unsigned short *array;
3872 	struct seminfo *__buf;
3873 };
3874 
3875 union target_semun {
3876 	int val;
3877 	abi_ulong buf;
3878 	abi_ulong array;
3879 	abi_ulong __buf;
3880 };
3881 
3882 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array,
3883                                                abi_ulong target_addr)
3884 {
3885     int nsems;
3886     unsigned short *array;
3887     union semun semun;
3888     struct semid_ds semid_ds;
3889     int i, ret;
3890 
3891     semun.buf = &semid_ds;
3892 
3893     ret = semctl(semid, 0, IPC_STAT, semun);
3894     if (ret == -1)
3895         return get_errno(ret);
3896 
3897     nsems = semid_ds.sem_nsems;
3898 
3899     *host_array = g_try_new(unsigned short, nsems);
3900     if (!*host_array) {
3901         return -TARGET_ENOMEM;
3902     }
3903     array = lock_user(VERIFY_READ, target_addr,
3904                       nsems*sizeof(unsigned short), 1);
3905     if (!array) {
3906         g_free(*host_array);
3907         return -TARGET_EFAULT;
3908     }
3909 
3910     for(i=0; i<nsems; i++) {
3911         __get_user((*host_array)[i], &array[i]);
3912     }
3913     unlock_user(array, target_addr, 0);
3914 
3915     return 0;
3916 }
3917 
3918 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr,
3919                                                unsigned short **host_array)
3920 {
3921     int nsems;
3922     unsigned short *array;
3923     union semun semun;
3924     struct semid_ds semid_ds;
3925     int i, ret;
3926 
3927     semun.buf = &semid_ds;
3928 
3929     ret = semctl(semid, 0, IPC_STAT, semun);
3930     if (ret == -1)
3931         return get_errno(ret);
3932 
3933     nsems = semid_ds.sem_nsems;
3934 
3935     array = lock_user(VERIFY_WRITE, target_addr,
3936                       nsems*sizeof(unsigned short), 0);
3937     if (!array)
3938         return -TARGET_EFAULT;
3939 
3940     for(i=0; i<nsems; i++) {
3941         __put_user((*host_array)[i], &array[i]);
3942     }
3943     g_free(*host_array);
3944     unlock_user(array, target_addr, 1);
3945 
3946     return 0;
3947 }
3948 
3949 static inline abi_long do_semctl(int semid, int semnum, int cmd,
3950                                  abi_ulong target_arg)
3951 {
3952     union target_semun target_su = { .buf = target_arg };
3953     union semun arg;
3954     struct semid_ds dsarg;
3955     unsigned short *array = NULL;
3956     struct seminfo seminfo;
3957     abi_long ret = -TARGET_EINVAL;
3958     abi_long err;
3959     cmd &= 0xff;
3960 
3961     switch( cmd ) {
3962 	case GETVAL:
3963 	case SETVAL:
3964             /* In 64 bit cross-endian situations, we will erroneously pick up
3965              * the wrong half of the union for the "val" element.  To rectify
3966              * this, the entire 8-byte structure is byteswapped, followed by
3967 	     * a swap of the 4 byte val field. In other cases, the data is
3968 	     * already in proper host byte order. */
3969 	    if (sizeof(target_su.val) != (sizeof(target_su.buf))) {
3970 		target_su.buf = tswapal(target_su.buf);
3971 		arg.val = tswap32(target_su.val);
3972 	    } else {
3973 		arg.val = target_su.val;
3974 	    }
3975             ret = get_errno(semctl(semid, semnum, cmd, arg));
3976             break;
3977 	case GETALL:
3978 	case SETALL:
3979             err = target_to_host_semarray(semid, &array, target_su.array);
3980             if (err)
3981                 return err;
3982             arg.array = array;
3983             ret = get_errno(semctl(semid, semnum, cmd, arg));
3984             err = host_to_target_semarray(semid, target_su.array, &array);
3985             if (err)
3986                 return err;
3987             break;
3988 	case IPC_STAT:
3989 	case IPC_SET:
3990 	case SEM_STAT:
3991             err = target_to_host_semid_ds(&dsarg, target_su.buf);
3992             if (err)
3993                 return err;
3994             arg.buf = &dsarg;
3995             ret = get_errno(semctl(semid, semnum, cmd, arg));
3996             err = host_to_target_semid_ds(target_su.buf, &dsarg);
3997             if (err)
3998                 return err;
3999             break;
4000 	case IPC_INFO:
4001 	case SEM_INFO:
4002             arg.__buf = &seminfo;
4003             ret = get_errno(semctl(semid, semnum, cmd, arg));
4004             err = host_to_target_seminfo(target_su.__buf, &seminfo);
4005             if (err)
4006                 return err;
4007             break;
4008 	case IPC_RMID:
4009 	case GETPID:
4010 	case GETNCNT:
4011 	case GETZCNT:
4012             ret = get_errno(semctl(semid, semnum, cmd, NULL));
4013             break;
4014     }
4015 
4016     return ret;
4017 }
4018 
4019 struct target_sembuf {
4020     unsigned short sem_num;
4021     short sem_op;
4022     short sem_flg;
4023 };
4024 
4025 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf,
4026                                              abi_ulong target_addr,
4027                                              unsigned nsops)
4028 {
4029     struct target_sembuf *target_sembuf;
4030     int i;
4031 
4032     target_sembuf = lock_user(VERIFY_READ, target_addr,
4033                               nsops*sizeof(struct target_sembuf), 1);
4034     if (!target_sembuf)
4035         return -TARGET_EFAULT;
4036 
4037     for(i=0; i<nsops; i++) {
4038         __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num);
4039         __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op);
4040         __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg);
4041     }
4042 
4043     unlock_user(target_sembuf, target_addr, 0);
4044 
4045     return 0;
4046 }
4047 
4048 #if defined(TARGET_NR_ipc) || defined(TARGET_NR_semop) || \
4049     defined(TARGET_NR_semtimedop) || defined(TARGET_NR_semtimedop_time64)
4050 
4051 /*
4052  * This macro is required to handle the s390 variants, which passes the
4053  * arguments in a different order than default.
4054  */
4055 #ifdef __s390x__
4056 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4057   (__nsops), (__timeout), (__sops)
4058 #else
4059 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4060   (__nsops), 0, (__sops), (__timeout)
4061 #endif
4062 
4063 static inline abi_long do_semtimedop(int semid,
4064                                      abi_long ptr,
4065                                      unsigned nsops,
4066                                      abi_long timeout, bool time64)
4067 {
4068     struct sembuf *sops;
4069     struct timespec ts, *pts = NULL;
4070     abi_long ret;
4071 
4072     if (timeout) {
4073         pts = &ts;
4074         if (time64) {
4075             if (target_to_host_timespec64(pts, timeout)) {
4076                 return -TARGET_EFAULT;
4077             }
4078         } else {
4079             if (target_to_host_timespec(pts, timeout)) {
4080                 return -TARGET_EFAULT;
4081             }
4082         }
4083     }
4084 
4085     if (nsops > TARGET_SEMOPM) {
4086         return -TARGET_E2BIG;
4087     }
4088 
4089     sops = g_new(struct sembuf, nsops);
4090 
4091     if (target_to_host_sembuf(sops, ptr, nsops)) {
4092         g_free(sops);
4093         return -TARGET_EFAULT;
4094     }
4095 
4096     ret = -TARGET_ENOSYS;
4097 #ifdef __NR_semtimedop
4098     ret = get_errno(safe_semtimedop(semid, sops, nsops, pts));
4099 #endif
4100 #ifdef __NR_ipc
4101     if (ret == -TARGET_ENOSYS) {
4102         ret = get_errno(safe_ipc(IPCOP_semtimedop, semid,
4103                                  SEMTIMEDOP_IPC_ARGS(nsops, sops, (long)pts)));
4104     }
4105 #endif
4106     g_free(sops);
4107     return ret;
4108 }
4109 #endif
4110 
4111 struct target_msqid_ds
4112 {
4113     struct target_ipc_perm msg_perm;
4114     abi_ulong msg_stime;
4115 #if TARGET_ABI_BITS == 32
4116     abi_ulong __unused1;
4117 #endif
4118     abi_ulong msg_rtime;
4119 #if TARGET_ABI_BITS == 32
4120     abi_ulong __unused2;
4121 #endif
4122     abi_ulong msg_ctime;
4123 #if TARGET_ABI_BITS == 32
4124     abi_ulong __unused3;
4125 #endif
4126     abi_ulong __msg_cbytes;
4127     abi_ulong msg_qnum;
4128     abi_ulong msg_qbytes;
4129     abi_ulong msg_lspid;
4130     abi_ulong msg_lrpid;
4131     abi_ulong __unused4;
4132     abi_ulong __unused5;
4133 };
4134 
4135 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md,
4136                                                abi_ulong target_addr)
4137 {
4138     struct target_msqid_ds *target_md;
4139 
4140     if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1))
4141         return -TARGET_EFAULT;
4142     if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr))
4143         return -TARGET_EFAULT;
4144     host_md->msg_stime = tswapal(target_md->msg_stime);
4145     host_md->msg_rtime = tswapal(target_md->msg_rtime);
4146     host_md->msg_ctime = tswapal(target_md->msg_ctime);
4147     host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes);
4148     host_md->msg_qnum = tswapal(target_md->msg_qnum);
4149     host_md->msg_qbytes = tswapal(target_md->msg_qbytes);
4150     host_md->msg_lspid = tswapal(target_md->msg_lspid);
4151     host_md->msg_lrpid = tswapal(target_md->msg_lrpid);
4152     unlock_user_struct(target_md, target_addr, 0);
4153     return 0;
4154 }
4155 
4156 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr,
4157                                                struct msqid_ds *host_md)
4158 {
4159     struct target_msqid_ds *target_md;
4160 
4161     if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0))
4162         return -TARGET_EFAULT;
4163     if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm)))
4164         return -TARGET_EFAULT;
4165     target_md->msg_stime = tswapal(host_md->msg_stime);
4166     target_md->msg_rtime = tswapal(host_md->msg_rtime);
4167     target_md->msg_ctime = tswapal(host_md->msg_ctime);
4168     target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes);
4169     target_md->msg_qnum = tswapal(host_md->msg_qnum);
4170     target_md->msg_qbytes = tswapal(host_md->msg_qbytes);
4171     target_md->msg_lspid = tswapal(host_md->msg_lspid);
4172     target_md->msg_lrpid = tswapal(host_md->msg_lrpid);
4173     unlock_user_struct(target_md, target_addr, 1);
4174     return 0;
4175 }
4176 
4177 struct target_msginfo {
4178     int msgpool;
4179     int msgmap;
4180     int msgmax;
4181     int msgmnb;
4182     int msgmni;
4183     int msgssz;
4184     int msgtql;
4185     unsigned short int msgseg;
4186 };
4187 
4188 static inline abi_long host_to_target_msginfo(abi_ulong target_addr,
4189                                               struct msginfo *host_msginfo)
4190 {
4191     struct target_msginfo *target_msginfo;
4192     if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0))
4193         return -TARGET_EFAULT;
4194     __put_user(host_msginfo->msgpool, &target_msginfo->msgpool);
4195     __put_user(host_msginfo->msgmap, &target_msginfo->msgmap);
4196     __put_user(host_msginfo->msgmax, &target_msginfo->msgmax);
4197     __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb);
4198     __put_user(host_msginfo->msgmni, &target_msginfo->msgmni);
4199     __put_user(host_msginfo->msgssz, &target_msginfo->msgssz);
4200     __put_user(host_msginfo->msgtql, &target_msginfo->msgtql);
4201     __put_user(host_msginfo->msgseg, &target_msginfo->msgseg);
4202     unlock_user_struct(target_msginfo, target_addr, 1);
4203     return 0;
4204 }
4205 
4206 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr)
4207 {
4208     struct msqid_ds dsarg;
4209     struct msginfo msginfo;
4210     abi_long ret = -TARGET_EINVAL;
4211 
4212     cmd &= 0xff;
4213 
4214     switch (cmd) {
4215     case IPC_STAT:
4216     case IPC_SET:
4217     case MSG_STAT:
4218         if (target_to_host_msqid_ds(&dsarg,ptr))
4219             return -TARGET_EFAULT;
4220         ret = get_errno(msgctl(msgid, cmd, &dsarg));
4221         if (host_to_target_msqid_ds(ptr,&dsarg))
4222             return -TARGET_EFAULT;
4223         break;
4224     case IPC_RMID:
4225         ret = get_errno(msgctl(msgid, cmd, NULL));
4226         break;
4227     case IPC_INFO:
4228     case MSG_INFO:
4229         ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo));
4230         if (host_to_target_msginfo(ptr, &msginfo))
4231             return -TARGET_EFAULT;
4232         break;
4233     }
4234 
4235     return ret;
4236 }
4237 
4238 struct target_msgbuf {
4239     abi_long mtype;
4240     char	mtext[1];
4241 };
4242 
4243 static inline abi_long do_msgsnd(int msqid, abi_long msgp,
4244                                  ssize_t msgsz, int msgflg)
4245 {
4246     struct target_msgbuf *target_mb;
4247     struct msgbuf *host_mb;
4248     abi_long ret = 0;
4249 
4250     if (msgsz < 0) {
4251         return -TARGET_EINVAL;
4252     }
4253 
4254     if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0))
4255         return -TARGET_EFAULT;
4256     host_mb = g_try_malloc(msgsz + sizeof(long));
4257     if (!host_mb) {
4258         unlock_user_struct(target_mb, msgp, 0);
4259         return -TARGET_ENOMEM;
4260     }
4261     host_mb->mtype = (abi_long) tswapal(target_mb->mtype);
4262     memcpy(host_mb->mtext, target_mb->mtext, msgsz);
4263     ret = -TARGET_ENOSYS;
4264 #ifdef __NR_msgsnd
4265     ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg));
4266 #endif
4267 #ifdef __NR_ipc
4268     if (ret == -TARGET_ENOSYS) {
4269 #ifdef __s390x__
4270         ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4271                                  host_mb));
4272 #else
4273         ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4274                                  host_mb, 0));
4275 #endif
4276     }
4277 #endif
4278     g_free(host_mb);
4279     unlock_user_struct(target_mb, msgp, 0);
4280 
4281     return ret;
4282 }
4283 
4284 #ifdef __NR_ipc
4285 #if defined(__sparc__)
4286 /* SPARC for msgrcv it does not use the kludge on final 2 arguments.  */
4287 #define MSGRCV_ARGS(__msgp, __msgtyp) __msgp, __msgtyp
4288 #elif defined(__s390x__)
4289 /* The s390 sys_ipc variant has only five parameters.  */
4290 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4291     ((long int[]){(long int)__msgp, __msgtyp})
4292 #else
4293 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4294     ((long int[]){(long int)__msgp, __msgtyp}), 0
4295 #endif
4296 #endif
4297 
4298 static inline abi_long do_msgrcv(int msqid, abi_long msgp,
4299                                  ssize_t msgsz, abi_long msgtyp,
4300                                  int msgflg)
4301 {
4302     struct target_msgbuf *target_mb;
4303     char *target_mtext;
4304     struct msgbuf *host_mb;
4305     abi_long ret = 0;
4306 
4307     if (msgsz < 0) {
4308         return -TARGET_EINVAL;
4309     }
4310 
4311     if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0))
4312         return -TARGET_EFAULT;
4313 
4314     host_mb = g_try_malloc(msgsz + sizeof(long));
4315     if (!host_mb) {
4316         ret = -TARGET_ENOMEM;
4317         goto end;
4318     }
4319     ret = -TARGET_ENOSYS;
4320 #ifdef __NR_msgrcv
4321     ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg));
4322 #endif
4323 #ifdef __NR_ipc
4324     if (ret == -TARGET_ENOSYS) {
4325         ret = get_errno(safe_ipc(IPCOP_CALL(1, IPCOP_msgrcv), msqid, msgsz,
4326                         msgflg, MSGRCV_ARGS(host_mb, msgtyp)));
4327     }
4328 #endif
4329 
4330     if (ret > 0) {
4331         abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong);
4332         target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0);
4333         if (!target_mtext) {
4334             ret = -TARGET_EFAULT;
4335             goto end;
4336         }
4337         memcpy(target_mb->mtext, host_mb->mtext, ret);
4338         unlock_user(target_mtext, target_mtext_addr, ret);
4339     }
4340 
4341     target_mb->mtype = tswapal(host_mb->mtype);
4342 
4343 end:
4344     if (target_mb)
4345         unlock_user_struct(target_mb, msgp, 1);
4346     g_free(host_mb);
4347     return ret;
4348 }
4349 
4350 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd,
4351                                                abi_ulong target_addr)
4352 {
4353     struct target_shmid_ds *target_sd;
4354 
4355     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
4356         return -TARGET_EFAULT;
4357     if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr))
4358         return -TARGET_EFAULT;
4359     __get_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4360     __get_user(host_sd->shm_atime, &target_sd->shm_atime);
4361     __get_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4362     __get_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4363     __get_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4364     __get_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4365     __get_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4366     unlock_user_struct(target_sd, target_addr, 0);
4367     return 0;
4368 }
4369 
4370 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr,
4371                                                struct shmid_ds *host_sd)
4372 {
4373     struct target_shmid_ds *target_sd;
4374 
4375     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
4376         return -TARGET_EFAULT;
4377     if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm)))
4378         return -TARGET_EFAULT;
4379     __put_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4380     __put_user(host_sd->shm_atime, &target_sd->shm_atime);
4381     __put_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4382     __put_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4383     __put_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4384     __put_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4385     __put_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4386     unlock_user_struct(target_sd, target_addr, 1);
4387     return 0;
4388 }
4389 
4390 struct  target_shminfo {
4391     abi_ulong shmmax;
4392     abi_ulong shmmin;
4393     abi_ulong shmmni;
4394     abi_ulong shmseg;
4395     abi_ulong shmall;
4396 };
4397 
4398 static inline abi_long host_to_target_shminfo(abi_ulong target_addr,
4399                                               struct shminfo *host_shminfo)
4400 {
4401     struct target_shminfo *target_shminfo;
4402     if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0))
4403         return -TARGET_EFAULT;
4404     __put_user(host_shminfo->shmmax, &target_shminfo->shmmax);
4405     __put_user(host_shminfo->shmmin, &target_shminfo->shmmin);
4406     __put_user(host_shminfo->shmmni, &target_shminfo->shmmni);
4407     __put_user(host_shminfo->shmseg, &target_shminfo->shmseg);
4408     __put_user(host_shminfo->shmall, &target_shminfo->shmall);
4409     unlock_user_struct(target_shminfo, target_addr, 1);
4410     return 0;
4411 }
4412 
4413 struct target_shm_info {
4414     int used_ids;
4415     abi_ulong shm_tot;
4416     abi_ulong shm_rss;
4417     abi_ulong shm_swp;
4418     abi_ulong swap_attempts;
4419     abi_ulong swap_successes;
4420 };
4421 
4422 static inline abi_long host_to_target_shm_info(abi_ulong target_addr,
4423                                                struct shm_info *host_shm_info)
4424 {
4425     struct target_shm_info *target_shm_info;
4426     if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0))
4427         return -TARGET_EFAULT;
4428     __put_user(host_shm_info->used_ids, &target_shm_info->used_ids);
4429     __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot);
4430     __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss);
4431     __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp);
4432     __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts);
4433     __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes);
4434     unlock_user_struct(target_shm_info, target_addr, 1);
4435     return 0;
4436 }
4437 
4438 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf)
4439 {
4440     struct shmid_ds dsarg;
4441     struct shminfo shminfo;
4442     struct shm_info shm_info;
4443     abi_long ret = -TARGET_EINVAL;
4444 
4445     cmd &= 0xff;
4446 
4447     switch(cmd) {
4448     case IPC_STAT:
4449     case IPC_SET:
4450     case SHM_STAT:
4451         if (target_to_host_shmid_ds(&dsarg, buf))
4452             return -TARGET_EFAULT;
4453         ret = get_errno(shmctl(shmid, cmd, &dsarg));
4454         if (host_to_target_shmid_ds(buf, &dsarg))
4455             return -TARGET_EFAULT;
4456         break;
4457     case IPC_INFO:
4458         ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo));
4459         if (host_to_target_shminfo(buf, &shminfo))
4460             return -TARGET_EFAULT;
4461         break;
4462     case SHM_INFO:
4463         ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info));
4464         if (host_to_target_shm_info(buf, &shm_info))
4465             return -TARGET_EFAULT;
4466         break;
4467     case IPC_RMID:
4468     case SHM_LOCK:
4469     case SHM_UNLOCK:
4470         ret = get_errno(shmctl(shmid, cmd, NULL));
4471         break;
4472     }
4473 
4474     return ret;
4475 }
4476 
4477 #ifdef TARGET_NR_ipc
4478 /* ??? This only works with linear mappings.  */
4479 /* do_ipc() must return target values and target errnos. */
4480 static abi_long do_ipc(CPUArchState *cpu_env,
4481                        unsigned int call, abi_long first,
4482                        abi_long second, abi_long third,
4483                        abi_long ptr, abi_long fifth)
4484 {
4485     int version;
4486     abi_long ret = 0;
4487 
4488     version = call >> 16;
4489     call &= 0xffff;
4490 
4491     switch (call) {
4492     case IPCOP_semop:
4493         ret = do_semtimedop(first, ptr, second, 0, false);
4494         break;
4495     case IPCOP_semtimedop:
4496     /*
4497      * The s390 sys_ipc variant has only five parameters instead of six
4498      * (as for default variant) and the only difference is the handling of
4499      * SEMTIMEDOP where on s390 the third parameter is used as a pointer
4500      * to a struct timespec where the generic variant uses fifth parameter.
4501      */
4502 #if defined(TARGET_S390X)
4503         ret = do_semtimedop(first, ptr, second, third, TARGET_ABI_BITS == 64);
4504 #else
4505         ret = do_semtimedop(first, ptr, second, fifth, TARGET_ABI_BITS == 64);
4506 #endif
4507         break;
4508 
4509     case IPCOP_semget:
4510         ret = get_errno(semget(first, second, third));
4511         break;
4512 
4513     case IPCOP_semctl: {
4514         /* The semun argument to semctl is passed by value, so dereference the
4515          * ptr argument. */
4516         abi_ulong atptr;
4517         get_user_ual(atptr, ptr);
4518         ret = do_semctl(first, second, third, atptr);
4519         break;
4520     }
4521 
4522     case IPCOP_msgget:
4523         ret = get_errno(msgget(first, second));
4524         break;
4525 
4526     case IPCOP_msgsnd:
4527         ret = do_msgsnd(first, ptr, second, third);
4528         break;
4529 
4530     case IPCOP_msgctl:
4531         ret = do_msgctl(first, second, ptr);
4532         break;
4533 
4534     case IPCOP_msgrcv:
4535         switch (version) {
4536         case 0:
4537             {
4538                 struct target_ipc_kludge {
4539                     abi_long msgp;
4540                     abi_long msgtyp;
4541                 } *tmp;
4542 
4543                 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) {
4544                     ret = -TARGET_EFAULT;
4545                     break;
4546                 }
4547 
4548                 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third);
4549 
4550                 unlock_user_struct(tmp, ptr, 0);
4551                 break;
4552             }
4553         default:
4554             ret = do_msgrcv(first, ptr, second, fifth, third);
4555         }
4556         break;
4557 
4558     case IPCOP_shmat:
4559         switch (version) {
4560         default:
4561         {
4562             abi_ulong raddr;
4563             raddr = target_shmat(cpu_env, first, ptr, second);
4564             if (is_error(raddr))
4565                 return get_errno(raddr);
4566             if (put_user_ual(raddr, third))
4567                 return -TARGET_EFAULT;
4568             break;
4569         }
4570         case 1:
4571             ret = -TARGET_EINVAL;
4572             break;
4573         }
4574 	break;
4575     case IPCOP_shmdt:
4576         ret = target_shmdt(ptr);
4577 	break;
4578 
4579     case IPCOP_shmget:
4580 	/* IPC_* flag values are the same on all linux platforms */
4581 	ret = get_errno(shmget(first, second, third));
4582 	break;
4583 
4584 	/* IPC_* and SHM_* command values are the same on all linux platforms */
4585     case IPCOP_shmctl:
4586         ret = do_shmctl(first, second, ptr);
4587         break;
4588     default:
4589         qemu_log_mask(LOG_UNIMP, "Unsupported ipc call: %d (version %d)\n",
4590                       call, version);
4591 	ret = -TARGET_ENOSYS;
4592 	break;
4593     }
4594     return ret;
4595 }
4596 #endif
4597 
4598 /* kernel structure types definitions */
4599 
4600 #define STRUCT(name, ...) STRUCT_ ## name,
4601 #define STRUCT_SPECIAL(name) STRUCT_ ## name,
4602 enum {
4603 #include "syscall_types.h"
4604 STRUCT_MAX
4605 };
4606 #undef STRUCT
4607 #undef STRUCT_SPECIAL
4608 
4609 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = {  __VA_ARGS__, TYPE_NULL };
4610 #define STRUCT_SPECIAL(name)
4611 #include "syscall_types.h"
4612 #undef STRUCT
4613 #undef STRUCT_SPECIAL
4614 
4615 #define MAX_STRUCT_SIZE 4096
4616 
4617 #ifdef CONFIG_FIEMAP
4618 /* So fiemap access checks don't overflow on 32 bit systems.
4619  * This is very slightly smaller than the limit imposed by
4620  * the underlying kernel.
4621  */
4622 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap))  \
4623                             / sizeof(struct fiemap_extent))
4624 
4625 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp,
4626                                        int fd, int cmd, abi_long arg)
4627 {
4628     /* The parameter for this ioctl is a struct fiemap followed
4629      * by an array of struct fiemap_extent whose size is set
4630      * in fiemap->fm_extent_count. The array is filled in by the
4631      * ioctl.
4632      */
4633     int target_size_in, target_size_out;
4634     struct fiemap *fm;
4635     const argtype *arg_type = ie->arg_type;
4636     const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) };
4637     void *argptr, *p;
4638     abi_long ret;
4639     int i, extent_size = thunk_type_size(extent_arg_type, 0);
4640     uint32_t outbufsz;
4641     int free_fm = 0;
4642 
4643     assert(arg_type[0] == TYPE_PTR);
4644     assert(ie->access == IOC_RW);
4645     arg_type++;
4646     target_size_in = thunk_type_size(arg_type, 0);
4647     argptr = lock_user(VERIFY_READ, arg, target_size_in, 1);
4648     if (!argptr) {
4649         return -TARGET_EFAULT;
4650     }
4651     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4652     unlock_user(argptr, arg, 0);
4653     fm = (struct fiemap *)buf_temp;
4654     if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) {
4655         return -TARGET_EINVAL;
4656     }
4657 
4658     outbufsz = sizeof (*fm) +
4659         (sizeof(struct fiemap_extent) * fm->fm_extent_count);
4660 
4661     if (outbufsz > MAX_STRUCT_SIZE) {
4662         /* We can't fit all the extents into the fixed size buffer.
4663          * Allocate one that is large enough and use it instead.
4664          */
4665         fm = g_try_malloc(outbufsz);
4666         if (!fm) {
4667             return -TARGET_ENOMEM;
4668         }
4669         memcpy(fm, buf_temp, sizeof(struct fiemap));
4670         free_fm = 1;
4671     }
4672     ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm));
4673     if (!is_error(ret)) {
4674         target_size_out = target_size_in;
4675         /* An extent_count of 0 means we were only counting the extents
4676          * so there are no structs to copy
4677          */
4678         if (fm->fm_extent_count != 0) {
4679             target_size_out += fm->fm_mapped_extents * extent_size;
4680         }
4681         argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0);
4682         if (!argptr) {
4683             ret = -TARGET_EFAULT;
4684         } else {
4685             /* Convert the struct fiemap */
4686             thunk_convert(argptr, fm, arg_type, THUNK_TARGET);
4687             if (fm->fm_extent_count != 0) {
4688                 p = argptr + target_size_in;
4689                 /* ...and then all the struct fiemap_extents */
4690                 for (i = 0; i < fm->fm_mapped_extents; i++) {
4691                     thunk_convert(p, &fm->fm_extents[i], extent_arg_type,
4692                                   THUNK_TARGET);
4693                     p += extent_size;
4694                 }
4695             }
4696             unlock_user(argptr, arg, target_size_out);
4697         }
4698     }
4699     if (free_fm) {
4700         g_free(fm);
4701     }
4702     return ret;
4703 }
4704 #endif
4705 
4706 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp,
4707                                 int fd, int cmd, abi_long arg)
4708 {
4709     const argtype *arg_type = ie->arg_type;
4710     int target_size;
4711     void *argptr;
4712     int ret;
4713     struct ifconf *host_ifconf;
4714     uint32_t outbufsz;
4715     const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) };
4716     const argtype ifreq_max_type[] = { MK_STRUCT(STRUCT_ifmap_ifreq) };
4717     int target_ifreq_size;
4718     int nb_ifreq;
4719     int free_buf = 0;
4720     int i;
4721     int target_ifc_len;
4722     abi_long target_ifc_buf;
4723     int host_ifc_len;
4724     char *host_ifc_buf;
4725 
4726     assert(arg_type[0] == TYPE_PTR);
4727     assert(ie->access == IOC_RW);
4728 
4729     arg_type++;
4730     target_size = thunk_type_size(arg_type, 0);
4731 
4732     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4733     if (!argptr)
4734         return -TARGET_EFAULT;
4735     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4736     unlock_user(argptr, arg, 0);
4737 
4738     host_ifconf = (struct ifconf *)(unsigned long)buf_temp;
4739     target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf;
4740     target_ifreq_size = thunk_type_size(ifreq_max_type, 0);
4741 
4742     if (target_ifc_buf != 0) {
4743         target_ifc_len = host_ifconf->ifc_len;
4744         nb_ifreq = target_ifc_len / target_ifreq_size;
4745         host_ifc_len = nb_ifreq * sizeof(struct ifreq);
4746 
4747         outbufsz = sizeof(*host_ifconf) + host_ifc_len;
4748         if (outbufsz > MAX_STRUCT_SIZE) {
4749             /*
4750              * We can't fit all the extents into the fixed size buffer.
4751              * Allocate one that is large enough and use it instead.
4752              */
4753             host_ifconf = g_try_malloc(outbufsz);
4754             if (!host_ifconf) {
4755                 return -TARGET_ENOMEM;
4756             }
4757             memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf));
4758             free_buf = 1;
4759         }
4760         host_ifc_buf = (char *)host_ifconf + sizeof(*host_ifconf);
4761 
4762         host_ifconf->ifc_len = host_ifc_len;
4763     } else {
4764       host_ifc_buf = NULL;
4765     }
4766     host_ifconf->ifc_buf = host_ifc_buf;
4767 
4768     ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf));
4769     if (!is_error(ret)) {
4770 	/* convert host ifc_len to target ifc_len */
4771 
4772         nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq);
4773         target_ifc_len = nb_ifreq * target_ifreq_size;
4774         host_ifconf->ifc_len = target_ifc_len;
4775 
4776 	/* restore target ifc_buf */
4777 
4778         host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf;
4779 
4780 	/* copy struct ifconf to target user */
4781 
4782         argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4783         if (!argptr)
4784             return -TARGET_EFAULT;
4785         thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET);
4786         unlock_user(argptr, arg, target_size);
4787 
4788         if (target_ifc_buf != 0) {
4789             /* copy ifreq[] to target user */
4790             argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0);
4791             for (i = 0; i < nb_ifreq ; i++) {
4792                 thunk_convert(argptr + i * target_ifreq_size,
4793                               host_ifc_buf + i * sizeof(struct ifreq),
4794                               ifreq_arg_type, THUNK_TARGET);
4795             }
4796             unlock_user(argptr, target_ifc_buf, target_ifc_len);
4797         }
4798     }
4799 
4800     if (free_buf) {
4801         g_free(host_ifconf);
4802     }
4803 
4804     return ret;
4805 }
4806 
4807 #if defined(CONFIG_USBFS)
4808 #if HOST_LONG_BITS > 64
4809 #error USBDEVFS thunks do not support >64 bit hosts yet.
4810 #endif
4811 struct live_urb {
4812     uint64_t target_urb_adr;
4813     uint64_t target_buf_adr;
4814     char *target_buf_ptr;
4815     struct usbdevfs_urb host_urb;
4816 };
4817 
4818 static GHashTable *usbdevfs_urb_hashtable(void)
4819 {
4820     static GHashTable *urb_hashtable;
4821 
4822     if (!urb_hashtable) {
4823         urb_hashtable = g_hash_table_new(g_int64_hash, g_int64_equal);
4824     }
4825     return urb_hashtable;
4826 }
4827 
4828 static void urb_hashtable_insert(struct live_urb *urb)
4829 {
4830     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4831     g_hash_table_insert(urb_hashtable, urb, urb);
4832 }
4833 
4834 static struct live_urb *urb_hashtable_lookup(uint64_t target_urb_adr)
4835 {
4836     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4837     return g_hash_table_lookup(urb_hashtable, &target_urb_adr);
4838 }
4839 
4840 static void urb_hashtable_remove(struct live_urb *urb)
4841 {
4842     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4843     g_hash_table_remove(urb_hashtable, urb);
4844 }
4845 
4846 static abi_long
4847 do_ioctl_usbdevfs_reapurb(const IOCTLEntry *ie, uint8_t *buf_temp,
4848                           int fd, int cmd, abi_long arg)
4849 {
4850     const argtype usbfsurb_arg_type[] = { MK_STRUCT(STRUCT_usbdevfs_urb) };
4851     const argtype ptrvoid_arg_type[] = { TYPE_PTRVOID, 0, 0 };
4852     struct live_urb *lurb;
4853     void *argptr;
4854     uint64_t hurb;
4855     int target_size;
4856     uintptr_t target_urb_adr;
4857     abi_long ret;
4858 
4859     target_size = thunk_type_size(usbfsurb_arg_type, THUNK_TARGET);
4860 
4861     memset(buf_temp, 0, sizeof(uint64_t));
4862     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
4863     if (is_error(ret)) {
4864         return ret;
4865     }
4866 
4867     memcpy(&hurb, buf_temp, sizeof(uint64_t));
4868     lurb = (void *)((uintptr_t)hurb - offsetof(struct live_urb, host_urb));
4869     if (!lurb->target_urb_adr) {
4870         return -TARGET_EFAULT;
4871     }
4872     urb_hashtable_remove(lurb);
4873     unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr,
4874         lurb->host_urb.buffer_length);
4875     lurb->target_buf_ptr = NULL;
4876 
4877     /* restore the guest buffer pointer */
4878     lurb->host_urb.buffer = (void *)(uintptr_t)lurb->target_buf_adr;
4879 
4880     /* update the guest urb struct */
4881     argptr = lock_user(VERIFY_WRITE, lurb->target_urb_adr, target_size, 0);
4882     if (!argptr) {
4883         g_free(lurb);
4884         return -TARGET_EFAULT;
4885     }
4886     thunk_convert(argptr, &lurb->host_urb, usbfsurb_arg_type, THUNK_TARGET);
4887     unlock_user(argptr, lurb->target_urb_adr, target_size);
4888 
4889     target_size = thunk_type_size(ptrvoid_arg_type, THUNK_TARGET);
4890     /* write back the urb handle */
4891     argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4892     if (!argptr) {
4893         g_free(lurb);
4894         return -TARGET_EFAULT;
4895     }
4896 
4897     /* GHashTable uses 64-bit keys but thunk_convert expects uintptr_t */
4898     target_urb_adr = lurb->target_urb_adr;
4899     thunk_convert(argptr, &target_urb_adr, ptrvoid_arg_type, THUNK_TARGET);
4900     unlock_user(argptr, arg, target_size);
4901 
4902     g_free(lurb);
4903     return ret;
4904 }
4905 
4906 static abi_long
4907 do_ioctl_usbdevfs_discardurb(const IOCTLEntry *ie,
4908                              uint8_t *buf_temp __attribute__((unused)),
4909                              int fd, int cmd, abi_long arg)
4910 {
4911     struct live_urb *lurb;
4912 
4913     /* map target address back to host URB with metadata. */
4914     lurb = urb_hashtable_lookup(arg);
4915     if (!lurb) {
4916         return -TARGET_EFAULT;
4917     }
4918     return get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
4919 }
4920 
4921 static abi_long
4922 do_ioctl_usbdevfs_submiturb(const IOCTLEntry *ie, uint8_t *buf_temp,
4923                             int fd, int cmd, abi_long arg)
4924 {
4925     const argtype *arg_type = ie->arg_type;
4926     int target_size;
4927     abi_long ret;
4928     void *argptr;
4929     int rw_dir;
4930     struct live_urb *lurb;
4931 
4932     /*
4933      * each submitted URB needs to map to a unique ID for the
4934      * kernel, and that unique ID needs to be a pointer to
4935      * host memory.  hence, we need to malloc for each URB.
4936      * isochronous transfers have a variable length struct.
4937      */
4938     arg_type++;
4939     target_size = thunk_type_size(arg_type, THUNK_TARGET);
4940 
4941     /* construct host copy of urb and metadata */
4942     lurb = g_try_new0(struct live_urb, 1);
4943     if (!lurb) {
4944         return -TARGET_ENOMEM;
4945     }
4946 
4947     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4948     if (!argptr) {
4949         g_free(lurb);
4950         return -TARGET_EFAULT;
4951     }
4952     thunk_convert(&lurb->host_urb, argptr, arg_type, THUNK_HOST);
4953     unlock_user(argptr, arg, 0);
4954 
4955     lurb->target_urb_adr = arg;
4956     lurb->target_buf_adr = (uintptr_t)lurb->host_urb.buffer;
4957 
4958     /* buffer space used depends on endpoint type so lock the entire buffer */
4959     /* control type urbs should check the buffer contents for true direction */
4960     rw_dir = lurb->host_urb.endpoint & USB_DIR_IN ? VERIFY_WRITE : VERIFY_READ;
4961     lurb->target_buf_ptr = lock_user(rw_dir, lurb->target_buf_adr,
4962         lurb->host_urb.buffer_length, 1);
4963     if (lurb->target_buf_ptr == NULL) {
4964         g_free(lurb);
4965         return -TARGET_EFAULT;
4966     }
4967 
4968     /* update buffer pointer in host copy */
4969     lurb->host_urb.buffer = lurb->target_buf_ptr;
4970 
4971     ret = get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
4972     if (is_error(ret)) {
4973         unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr, 0);
4974         g_free(lurb);
4975     } else {
4976         urb_hashtable_insert(lurb);
4977     }
4978 
4979     return ret;
4980 }
4981 #endif /* CONFIG_USBFS */
4982 
4983 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
4984                             int cmd, abi_long arg)
4985 {
4986     void *argptr;
4987     struct dm_ioctl *host_dm;
4988     abi_long guest_data;
4989     uint32_t guest_data_size;
4990     int target_size;
4991     const argtype *arg_type = ie->arg_type;
4992     abi_long ret;
4993     void *big_buf = NULL;
4994     char *host_data;
4995 
4996     arg_type++;
4997     target_size = thunk_type_size(arg_type, 0);
4998     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4999     if (!argptr) {
5000         ret = -TARGET_EFAULT;
5001         goto out;
5002     }
5003     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5004     unlock_user(argptr, arg, 0);
5005 
5006     /* buf_temp is too small, so fetch things into a bigger buffer */
5007     big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2);
5008     memcpy(big_buf, buf_temp, target_size);
5009     buf_temp = big_buf;
5010     host_dm = big_buf;
5011 
5012     guest_data = arg + host_dm->data_start;
5013     if ((guest_data - arg) < 0) {
5014         ret = -TARGET_EINVAL;
5015         goto out;
5016     }
5017     guest_data_size = host_dm->data_size - host_dm->data_start;
5018     host_data = (char*)host_dm + host_dm->data_start;
5019 
5020     argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1);
5021     if (!argptr) {
5022         ret = -TARGET_EFAULT;
5023         goto out;
5024     }
5025 
5026     switch (ie->host_cmd) {
5027     case DM_REMOVE_ALL:
5028     case DM_LIST_DEVICES:
5029     case DM_DEV_CREATE:
5030     case DM_DEV_REMOVE:
5031     case DM_DEV_SUSPEND:
5032     case DM_DEV_STATUS:
5033     case DM_DEV_WAIT:
5034     case DM_TABLE_STATUS:
5035     case DM_TABLE_CLEAR:
5036     case DM_TABLE_DEPS:
5037     case DM_LIST_VERSIONS:
5038         /* no input data */
5039         break;
5040     case DM_DEV_RENAME:
5041     case DM_DEV_SET_GEOMETRY:
5042         /* data contains only strings */
5043         memcpy(host_data, argptr, guest_data_size);
5044         break;
5045     case DM_TARGET_MSG:
5046         memcpy(host_data, argptr, guest_data_size);
5047         *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr);
5048         break;
5049     case DM_TABLE_LOAD:
5050     {
5051         void *gspec = argptr;
5052         void *cur_data = host_data;
5053         const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5054         int spec_size = thunk_type_size(dm_arg_type, 0);
5055         int i;
5056 
5057         for (i = 0; i < host_dm->target_count; i++) {
5058             struct dm_target_spec *spec = cur_data;
5059             uint32_t next;
5060             int slen;
5061 
5062             thunk_convert(spec, gspec, dm_arg_type, THUNK_HOST);
5063             slen = strlen((char*)gspec + spec_size) + 1;
5064             next = spec->next;
5065             spec->next = sizeof(*spec) + slen;
5066             strcpy((char*)&spec[1], gspec + spec_size);
5067             gspec += next;
5068             cur_data += spec->next;
5069         }
5070         break;
5071     }
5072     default:
5073         ret = -TARGET_EINVAL;
5074         unlock_user(argptr, guest_data, 0);
5075         goto out;
5076     }
5077     unlock_user(argptr, guest_data, 0);
5078 
5079     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5080     if (!is_error(ret)) {
5081         guest_data = arg + host_dm->data_start;
5082         guest_data_size = host_dm->data_size - host_dm->data_start;
5083         argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0);
5084         switch (ie->host_cmd) {
5085         case DM_REMOVE_ALL:
5086         case DM_DEV_CREATE:
5087         case DM_DEV_REMOVE:
5088         case DM_DEV_RENAME:
5089         case DM_DEV_SUSPEND:
5090         case DM_DEV_STATUS:
5091         case DM_TABLE_LOAD:
5092         case DM_TABLE_CLEAR:
5093         case DM_TARGET_MSG:
5094         case DM_DEV_SET_GEOMETRY:
5095             /* no return data */
5096             break;
5097         case DM_LIST_DEVICES:
5098         {
5099             struct dm_name_list *nl = (void*)host_dm + host_dm->data_start;
5100             uint32_t remaining_data = guest_data_size;
5101             void *cur_data = argptr;
5102             const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) };
5103             int nl_size = 12; /* can't use thunk_size due to alignment */
5104 
5105             while (1) {
5106                 uint32_t next = nl->next;
5107                 if (next) {
5108                     nl->next = nl_size + (strlen(nl->name) + 1);
5109                 }
5110                 if (remaining_data < nl->next) {
5111                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5112                     break;
5113                 }
5114                 thunk_convert(cur_data, nl, dm_arg_type, THUNK_TARGET);
5115                 strcpy(cur_data + nl_size, nl->name);
5116                 cur_data += nl->next;
5117                 remaining_data -= nl->next;
5118                 if (!next) {
5119                     break;
5120                 }
5121                 nl = (void*)nl + next;
5122             }
5123             break;
5124         }
5125         case DM_DEV_WAIT:
5126         case DM_TABLE_STATUS:
5127         {
5128             struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start;
5129             void *cur_data = argptr;
5130             const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5131             int spec_size = thunk_type_size(dm_arg_type, 0);
5132             int i;
5133 
5134             for (i = 0; i < host_dm->target_count; i++) {
5135                 uint32_t next = spec->next;
5136                 int slen = strlen((char*)&spec[1]) + 1;
5137                 spec->next = (cur_data - argptr) + spec_size + slen;
5138                 if (guest_data_size < spec->next) {
5139                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5140                     break;
5141                 }
5142                 thunk_convert(cur_data, spec, dm_arg_type, THUNK_TARGET);
5143                 strcpy(cur_data + spec_size, (char*)&spec[1]);
5144                 cur_data = argptr + spec->next;
5145                 spec = (void*)host_dm + host_dm->data_start + next;
5146             }
5147             break;
5148         }
5149         case DM_TABLE_DEPS:
5150         {
5151             void *hdata = (void*)host_dm + host_dm->data_start;
5152             int count = *(uint32_t*)hdata;
5153             uint64_t *hdev = hdata + 8;
5154             uint64_t *gdev = argptr + 8;
5155             int i;
5156 
5157             *(uint32_t*)argptr = tswap32(count);
5158             for (i = 0; i < count; i++) {
5159                 *gdev = tswap64(*hdev);
5160                 gdev++;
5161                 hdev++;
5162             }
5163             break;
5164         }
5165         case DM_LIST_VERSIONS:
5166         {
5167             struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start;
5168             uint32_t remaining_data = guest_data_size;
5169             void *cur_data = argptr;
5170             const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) };
5171             int vers_size = thunk_type_size(dm_arg_type, 0);
5172 
5173             while (1) {
5174                 uint32_t next = vers->next;
5175                 if (next) {
5176                     vers->next = vers_size + (strlen(vers->name) + 1);
5177                 }
5178                 if (remaining_data < vers->next) {
5179                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5180                     break;
5181                 }
5182                 thunk_convert(cur_data, vers, dm_arg_type, THUNK_TARGET);
5183                 strcpy(cur_data + vers_size, vers->name);
5184                 cur_data += vers->next;
5185                 remaining_data -= vers->next;
5186                 if (!next) {
5187                     break;
5188                 }
5189                 vers = (void*)vers + next;
5190             }
5191             break;
5192         }
5193         default:
5194             unlock_user(argptr, guest_data, 0);
5195             ret = -TARGET_EINVAL;
5196             goto out;
5197         }
5198         unlock_user(argptr, guest_data, guest_data_size);
5199 
5200         argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5201         if (!argptr) {
5202             ret = -TARGET_EFAULT;
5203             goto out;
5204         }
5205         thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5206         unlock_user(argptr, arg, target_size);
5207     }
5208 out:
5209     g_free(big_buf);
5210     return ret;
5211 }
5212 
5213 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
5214                                int cmd, abi_long arg)
5215 {
5216     void *argptr;
5217     int target_size;
5218     const argtype *arg_type = ie->arg_type;
5219     const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) };
5220     abi_long ret;
5221 
5222     struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp;
5223     struct blkpg_partition host_part;
5224 
5225     /* Read and convert blkpg */
5226     arg_type++;
5227     target_size = thunk_type_size(arg_type, 0);
5228     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5229     if (!argptr) {
5230         ret = -TARGET_EFAULT;
5231         goto out;
5232     }
5233     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5234     unlock_user(argptr, arg, 0);
5235 
5236     switch (host_blkpg->op) {
5237     case BLKPG_ADD_PARTITION:
5238     case BLKPG_DEL_PARTITION:
5239         /* payload is struct blkpg_partition */
5240         break;
5241     default:
5242         /* Unknown opcode */
5243         ret = -TARGET_EINVAL;
5244         goto out;
5245     }
5246 
5247     /* Read and convert blkpg->data */
5248     arg = (abi_long)(uintptr_t)host_blkpg->data;
5249     target_size = thunk_type_size(part_arg_type, 0);
5250     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5251     if (!argptr) {
5252         ret = -TARGET_EFAULT;
5253         goto out;
5254     }
5255     thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST);
5256     unlock_user(argptr, arg, 0);
5257 
5258     /* Swizzle the data pointer to our local copy and call! */
5259     host_blkpg->data = &host_part;
5260     ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg));
5261 
5262 out:
5263     return ret;
5264 }
5265 
5266 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp,
5267                                 int fd, int cmd, abi_long arg)
5268 {
5269     const argtype *arg_type = ie->arg_type;
5270     const StructEntry *se;
5271     const argtype *field_types;
5272     const int *dst_offsets, *src_offsets;
5273     int target_size;
5274     void *argptr;
5275     abi_ulong *target_rt_dev_ptr = NULL;
5276     unsigned long *host_rt_dev_ptr = NULL;
5277     abi_long ret;
5278     int i;
5279 
5280     assert(ie->access == IOC_W);
5281     assert(*arg_type == TYPE_PTR);
5282     arg_type++;
5283     assert(*arg_type == TYPE_STRUCT);
5284     target_size = thunk_type_size(arg_type, 0);
5285     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5286     if (!argptr) {
5287         return -TARGET_EFAULT;
5288     }
5289     arg_type++;
5290     assert(*arg_type == (int)STRUCT_rtentry);
5291     se = struct_entries + *arg_type++;
5292     assert(se->convert[0] == NULL);
5293     /* convert struct here to be able to catch rt_dev string */
5294     field_types = se->field_types;
5295     dst_offsets = se->field_offsets[THUNK_HOST];
5296     src_offsets = se->field_offsets[THUNK_TARGET];
5297     for (i = 0; i < se->nb_fields; i++) {
5298         if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) {
5299             assert(*field_types == TYPE_PTRVOID);
5300             target_rt_dev_ptr = argptr + src_offsets[i];
5301             host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]);
5302             if (*target_rt_dev_ptr != 0) {
5303                 *host_rt_dev_ptr = (unsigned long)lock_user_string(
5304                                                   tswapal(*target_rt_dev_ptr));
5305                 if (!*host_rt_dev_ptr) {
5306                     unlock_user(argptr, arg, 0);
5307                     return -TARGET_EFAULT;
5308                 }
5309             } else {
5310                 *host_rt_dev_ptr = 0;
5311             }
5312             field_types++;
5313             continue;
5314         }
5315         field_types = thunk_convert(buf_temp + dst_offsets[i],
5316                                     argptr + src_offsets[i],
5317                                     field_types, THUNK_HOST);
5318     }
5319     unlock_user(argptr, arg, 0);
5320 
5321     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5322 
5323     assert(host_rt_dev_ptr != NULL);
5324     assert(target_rt_dev_ptr != NULL);
5325     if (*host_rt_dev_ptr != 0) {
5326         unlock_user((void *)*host_rt_dev_ptr,
5327                     *target_rt_dev_ptr, 0);
5328     }
5329     return ret;
5330 }
5331 
5332 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp,
5333                                      int fd, int cmd, abi_long arg)
5334 {
5335     int sig = target_to_host_signal(arg);
5336     return get_errno(safe_ioctl(fd, ie->host_cmd, sig));
5337 }
5338 
5339 static abi_long do_ioctl_SIOCGSTAMP(const IOCTLEntry *ie, uint8_t *buf_temp,
5340                                     int fd, int cmd, abi_long arg)
5341 {
5342     struct timeval tv;
5343     abi_long ret;
5344 
5345     ret = get_errno(safe_ioctl(fd, SIOCGSTAMP, &tv));
5346     if (is_error(ret)) {
5347         return ret;
5348     }
5349 
5350     if (cmd == (int)TARGET_SIOCGSTAMP_OLD) {
5351         if (copy_to_user_timeval(arg, &tv)) {
5352             return -TARGET_EFAULT;
5353         }
5354     } else {
5355         if (copy_to_user_timeval64(arg, &tv)) {
5356             return -TARGET_EFAULT;
5357         }
5358     }
5359 
5360     return ret;
5361 }
5362 
5363 static abi_long do_ioctl_SIOCGSTAMPNS(const IOCTLEntry *ie, uint8_t *buf_temp,
5364                                       int fd, int cmd, abi_long arg)
5365 {
5366     struct timespec ts;
5367     abi_long ret;
5368 
5369     ret = get_errno(safe_ioctl(fd, SIOCGSTAMPNS, &ts));
5370     if (is_error(ret)) {
5371         return ret;
5372     }
5373 
5374     if (cmd == (int)TARGET_SIOCGSTAMPNS_OLD) {
5375         if (host_to_target_timespec(arg, &ts)) {
5376             return -TARGET_EFAULT;
5377         }
5378     } else{
5379         if (host_to_target_timespec64(arg, &ts)) {
5380             return -TARGET_EFAULT;
5381         }
5382     }
5383 
5384     return ret;
5385 }
5386 
5387 #ifdef TIOCGPTPEER
5388 static abi_long do_ioctl_tiocgptpeer(const IOCTLEntry *ie, uint8_t *buf_temp,
5389                                      int fd, int cmd, abi_long arg)
5390 {
5391     int flags = target_to_host_bitmask(arg, fcntl_flags_tbl);
5392     return get_errno(safe_ioctl(fd, ie->host_cmd, flags));
5393 }
5394 #endif
5395 
5396 #ifdef HAVE_DRM_H
5397 
5398 static void unlock_drm_version(struct drm_version *host_ver,
5399                                struct target_drm_version *target_ver,
5400                                bool copy)
5401 {
5402     unlock_user(host_ver->name, target_ver->name,
5403                                 copy ? host_ver->name_len : 0);
5404     unlock_user(host_ver->date, target_ver->date,
5405                                 copy ? host_ver->date_len : 0);
5406     unlock_user(host_ver->desc, target_ver->desc,
5407                                 copy ? host_ver->desc_len : 0);
5408 }
5409 
5410 static inline abi_long target_to_host_drmversion(struct drm_version *host_ver,
5411                                           struct target_drm_version *target_ver)
5412 {
5413     memset(host_ver, 0, sizeof(*host_ver));
5414 
5415     __get_user(host_ver->name_len, &target_ver->name_len);
5416     if (host_ver->name_len) {
5417         host_ver->name = lock_user(VERIFY_WRITE, target_ver->name,
5418                                    target_ver->name_len, 0);
5419         if (!host_ver->name) {
5420             return -EFAULT;
5421         }
5422     }
5423 
5424     __get_user(host_ver->date_len, &target_ver->date_len);
5425     if (host_ver->date_len) {
5426         host_ver->date = lock_user(VERIFY_WRITE, target_ver->date,
5427                                    target_ver->date_len, 0);
5428         if (!host_ver->date) {
5429             goto err;
5430         }
5431     }
5432 
5433     __get_user(host_ver->desc_len, &target_ver->desc_len);
5434     if (host_ver->desc_len) {
5435         host_ver->desc = lock_user(VERIFY_WRITE, target_ver->desc,
5436                                    target_ver->desc_len, 0);
5437         if (!host_ver->desc) {
5438             goto err;
5439         }
5440     }
5441 
5442     return 0;
5443 err:
5444     unlock_drm_version(host_ver, target_ver, false);
5445     return -EFAULT;
5446 }
5447 
5448 static inline void host_to_target_drmversion(
5449                                           struct target_drm_version *target_ver,
5450                                           struct drm_version *host_ver)
5451 {
5452     __put_user(host_ver->version_major, &target_ver->version_major);
5453     __put_user(host_ver->version_minor, &target_ver->version_minor);
5454     __put_user(host_ver->version_patchlevel, &target_ver->version_patchlevel);
5455     __put_user(host_ver->name_len, &target_ver->name_len);
5456     __put_user(host_ver->date_len, &target_ver->date_len);
5457     __put_user(host_ver->desc_len, &target_ver->desc_len);
5458     unlock_drm_version(host_ver, target_ver, true);
5459 }
5460 
5461 static abi_long do_ioctl_drm(const IOCTLEntry *ie, uint8_t *buf_temp,
5462                              int fd, int cmd, abi_long arg)
5463 {
5464     struct drm_version *ver;
5465     struct target_drm_version *target_ver;
5466     abi_long ret;
5467 
5468     switch (ie->host_cmd) {
5469     case DRM_IOCTL_VERSION:
5470         if (!lock_user_struct(VERIFY_WRITE, target_ver, arg, 0)) {
5471             return -TARGET_EFAULT;
5472         }
5473         ver = (struct drm_version *)buf_temp;
5474         ret = target_to_host_drmversion(ver, target_ver);
5475         if (!is_error(ret)) {
5476             ret = get_errno(safe_ioctl(fd, ie->host_cmd, ver));
5477             if (is_error(ret)) {
5478                 unlock_drm_version(ver, target_ver, false);
5479             } else {
5480                 host_to_target_drmversion(target_ver, ver);
5481             }
5482         }
5483         unlock_user_struct(target_ver, arg, 0);
5484         return ret;
5485     }
5486     return -TARGET_ENOSYS;
5487 }
5488 
5489 static abi_long do_ioctl_drm_i915_getparam(const IOCTLEntry *ie,
5490                                            struct drm_i915_getparam *gparam,
5491                                            int fd, abi_long arg)
5492 {
5493     abi_long ret;
5494     int value;
5495     struct target_drm_i915_getparam *target_gparam;
5496 
5497     if (!lock_user_struct(VERIFY_READ, target_gparam, arg, 0)) {
5498         return -TARGET_EFAULT;
5499     }
5500 
5501     __get_user(gparam->param, &target_gparam->param);
5502     gparam->value = &value;
5503     ret = get_errno(safe_ioctl(fd, ie->host_cmd, gparam));
5504     put_user_s32(value, target_gparam->value);
5505 
5506     unlock_user_struct(target_gparam, arg, 0);
5507     return ret;
5508 }
5509 
5510 static abi_long do_ioctl_drm_i915(const IOCTLEntry *ie, uint8_t *buf_temp,
5511                                   int fd, int cmd, abi_long arg)
5512 {
5513     switch (ie->host_cmd) {
5514     case DRM_IOCTL_I915_GETPARAM:
5515         return do_ioctl_drm_i915_getparam(ie,
5516                                           (struct drm_i915_getparam *)buf_temp,
5517                                           fd, arg);
5518     default:
5519         return -TARGET_ENOSYS;
5520     }
5521 }
5522 
5523 #endif
5524 
5525 static abi_long do_ioctl_TUNSETTXFILTER(const IOCTLEntry *ie, uint8_t *buf_temp,
5526                                         int fd, int cmd, abi_long arg)
5527 {
5528     struct tun_filter *filter = (struct tun_filter *)buf_temp;
5529     struct tun_filter *target_filter;
5530     char *target_addr;
5531 
5532     assert(ie->access == IOC_W);
5533 
5534     target_filter = lock_user(VERIFY_READ, arg, sizeof(*target_filter), 1);
5535     if (!target_filter) {
5536         return -TARGET_EFAULT;
5537     }
5538     filter->flags = tswap16(target_filter->flags);
5539     filter->count = tswap16(target_filter->count);
5540     unlock_user(target_filter, arg, 0);
5541 
5542     if (filter->count) {
5543         if (offsetof(struct tun_filter, addr) + filter->count * ETH_ALEN >
5544             MAX_STRUCT_SIZE) {
5545             return -TARGET_EFAULT;
5546         }
5547 
5548         target_addr = lock_user(VERIFY_READ,
5549                                 arg + offsetof(struct tun_filter, addr),
5550                                 filter->count * ETH_ALEN, 1);
5551         if (!target_addr) {
5552             return -TARGET_EFAULT;
5553         }
5554         memcpy(filter->addr, target_addr, filter->count * ETH_ALEN);
5555         unlock_user(target_addr, arg + offsetof(struct tun_filter, addr), 0);
5556     }
5557 
5558     return get_errno(safe_ioctl(fd, ie->host_cmd, filter));
5559 }
5560 
5561 IOCTLEntry ioctl_entries[] = {
5562 #define IOCTL(cmd, access, ...) \
5563     { TARGET_ ## cmd, cmd, #cmd, access, 0, {  __VA_ARGS__ } },
5564 #define IOCTL_SPECIAL(cmd, access, dofn, ...)                      \
5565     { TARGET_ ## cmd, cmd, #cmd, access, dofn, {  __VA_ARGS__ } },
5566 #define IOCTL_IGNORE(cmd) \
5567     { TARGET_ ## cmd, 0, #cmd },
5568 #include "ioctls.h"
5569     { 0, 0, },
5570 };
5571 
5572 /* ??? Implement proper locking for ioctls.  */
5573 /* do_ioctl() Must return target values and target errnos. */
5574 static abi_long do_ioctl(int fd, int cmd, abi_long arg)
5575 {
5576     const IOCTLEntry *ie;
5577     const argtype *arg_type;
5578     abi_long ret;
5579     uint8_t buf_temp[MAX_STRUCT_SIZE];
5580     int target_size;
5581     void *argptr;
5582 
5583     ie = ioctl_entries;
5584     for(;;) {
5585         if (ie->target_cmd == 0) {
5586             qemu_log_mask(
5587                 LOG_UNIMP, "Unsupported ioctl: cmd=0x%04lx\n", (long)cmd);
5588             return -TARGET_ENOTTY;
5589         }
5590         if (ie->target_cmd == cmd)
5591             break;
5592         ie++;
5593     }
5594     arg_type = ie->arg_type;
5595     if (ie->do_ioctl) {
5596         return ie->do_ioctl(ie, buf_temp, fd, cmd, arg);
5597     } else if (!ie->host_cmd) {
5598         /* Some architectures define BSD ioctls in their headers
5599            that are not implemented in Linux.  */
5600         return -TARGET_ENOTTY;
5601     }
5602 
5603     switch(arg_type[0]) {
5604     case TYPE_NULL:
5605         /* no argument */
5606         ret = get_errno(safe_ioctl(fd, ie->host_cmd));
5607         break;
5608     case TYPE_PTRVOID:
5609     case TYPE_INT:
5610     case TYPE_LONG:
5611     case TYPE_ULONG:
5612         ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg));
5613         break;
5614     case TYPE_PTR:
5615         arg_type++;
5616         target_size = thunk_type_size(arg_type, 0);
5617         switch(ie->access) {
5618         case IOC_R:
5619             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5620             if (!is_error(ret)) {
5621                 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5622                 if (!argptr)
5623                     return -TARGET_EFAULT;
5624                 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5625                 unlock_user(argptr, arg, target_size);
5626             }
5627             break;
5628         case IOC_W:
5629             argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5630             if (!argptr)
5631                 return -TARGET_EFAULT;
5632             thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5633             unlock_user(argptr, arg, 0);
5634             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5635             break;
5636         default:
5637         case IOC_RW:
5638             argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5639             if (!argptr)
5640                 return -TARGET_EFAULT;
5641             thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5642             unlock_user(argptr, arg, 0);
5643             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5644             if (!is_error(ret)) {
5645                 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5646                 if (!argptr)
5647                     return -TARGET_EFAULT;
5648                 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5649                 unlock_user(argptr, arg, target_size);
5650             }
5651             break;
5652         }
5653         break;
5654     default:
5655         qemu_log_mask(LOG_UNIMP,
5656                       "Unsupported ioctl type: cmd=0x%04lx type=%d\n",
5657                       (long)cmd, arg_type[0]);
5658         ret = -TARGET_ENOTTY;
5659         break;
5660     }
5661     return ret;
5662 }
5663 
5664 static const bitmask_transtbl iflag_tbl[] = {
5665         { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK },
5666         { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT },
5667         { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR },
5668         { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK },
5669         { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK },
5670         { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP },
5671         { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR },
5672         { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR },
5673         { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL },
5674         { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC },
5675         { TARGET_IXON, TARGET_IXON, IXON, IXON },
5676         { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY },
5677         { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF },
5678         { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL },
5679         { TARGET_IUTF8, TARGET_IUTF8, IUTF8, IUTF8},
5680 };
5681 
5682 static const bitmask_transtbl oflag_tbl[] = {
5683 	{ TARGET_OPOST, TARGET_OPOST, OPOST, OPOST },
5684 	{ TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC },
5685 	{ TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR },
5686 	{ TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL },
5687 	{ TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR },
5688 	{ TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET },
5689 	{ TARGET_OFILL, TARGET_OFILL, OFILL, OFILL },
5690 	{ TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL },
5691 	{ TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 },
5692 	{ TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 },
5693 	{ TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 },
5694 	{ TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 },
5695 	{ TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 },
5696 	{ TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 },
5697 	{ TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 },
5698 	{ TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 },
5699 	{ TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 },
5700 	{ TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 },
5701 	{ TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 },
5702 	{ TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 },
5703 	{ TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 },
5704 	{ TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 },
5705 	{ TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 },
5706 	{ TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 },
5707 };
5708 
5709 static const bitmask_transtbl cflag_tbl[] = {
5710 	{ TARGET_CBAUD, TARGET_B0, CBAUD, B0 },
5711 	{ TARGET_CBAUD, TARGET_B50, CBAUD, B50 },
5712 	{ TARGET_CBAUD, TARGET_B75, CBAUD, B75 },
5713 	{ TARGET_CBAUD, TARGET_B110, CBAUD, B110 },
5714 	{ TARGET_CBAUD, TARGET_B134, CBAUD, B134 },
5715 	{ TARGET_CBAUD, TARGET_B150, CBAUD, B150 },
5716 	{ TARGET_CBAUD, TARGET_B200, CBAUD, B200 },
5717 	{ TARGET_CBAUD, TARGET_B300, CBAUD, B300 },
5718 	{ TARGET_CBAUD, TARGET_B600, CBAUD, B600 },
5719 	{ TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 },
5720 	{ TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 },
5721 	{ TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 },
5722 	{ TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 },
5723 	{ TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 },
5724 	{ TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 },
5725 	{ TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 },
5726 	{ TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 },
5727 	{ TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 },
5728 	{ TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 },
5729 	{ TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 },
5730 	{ TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 },
5731 	{ TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 },
5732 	{ TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 },
5733 	{ TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 },
5734 	{ TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB },
5735 	{ TARGET_CREAD, TARGET_CREAD, CREAD, CREAD },
5736 	{ TARGET_PARENB, TARGET_PARENB, PARENB, PARENB },
5737 	{ TARGET_PARODD, TARGET_PARODD, PARODD, PARODD },
5738 	{ TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL },
5739 	{ TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL },
5740 	{ TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS },
5741 };
5742 
5743 static const bitmask_transtbl lflag_tbl[] = {
5744   { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG },
5745   { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON },
5746   { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE },
5747   { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO },
5748   { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE },
5749   { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK },
5750   { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL },
5751   { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH },
5752   { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP },
5753   { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL },
5754   { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT },
5755   { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE },
5756   { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO },
5757   { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN },
5758   { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN },
5759   { TARGET_EXTPROC, TARGET_EXTPROC, EXTPROC, EXTPROC},
5760 };
5761 
5762 static void target_to_host_termios (void *dst, const void *src)
5763 {
5764     struct host_termios *host = dst;
5765     const struct target_termios *target = src;
5766 
5767     host->c_iflag =
5768         target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl);
5769     host->c_oflag =
5770         target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl);
5771     host->c_cflag =
5772         target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl);
5773     host->c_lflag =
5774         target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl);
5775     host->c_line = target->c_line;
5776 
5777     memset(host->c_cc, 0, sizeof(host->c_cc));
5778     host->c_cc[VINTR] = target->c_cc[TARGET_VINTR];
5779     host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT];
5780     host->c_cc[VERASE] = target->c_cc[TARGET_VERASE];
5781     host->c_cc[VKILL] = target->c_cc[TARGET_VKILL];
5782     host->c_cc[VEOF] = target->c_cc[TARGET_VEOF];
5783     host->c_cc[VTIME] = target->c_cc[TARGET_VTIME];
5784     host->c_cc[VMIN] = target->c_cc[TARGET_VMIN];
5785     host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC];
5786     host->c_cc[VSTART] = target->c_cc[TARGET_VSTART];
5787     host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP];
5788     host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP];
5789     host->c_cc[VEOL] = target->c_cc[TARGET_VEOL];
5790     host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT];
5791     host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD];
5792     host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE];
5793     host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT];
5794     host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2];
5795 }
5796 
5797 static void host_to_target_termios (void *dst, const void *src)
5798 {
5799     struct target_termios *target = dst;
5800     const struct host_termios *host = src;
5801 
5802     target->c_iflag =
5803         tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl));
5804     target->c_oflag =
5805         tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl));
5806     target->c_cflag =
5807         tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl));
5808     target->c_lflag =
5809         tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl));
5810     target->c_line = host->c_line;
5811 
5812     memset(target->c_cc, 0, sizeof(target->c_cc));
5813     target->c_cc[TARGET_VINTR] = host->c_cc[VINTR];
5814     target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT];
5815     target->c_cc[TARGET_VERASE] = host->c_cc[VERASE];
5816     target->c_cc[TARGET_VKILL] = host->c_cc[VKILL];
5817     target->c_cc[TARGET_VEOF] = host->c_cc[VEOF];
5818     target->c_cc[TARGET_VTIME] = host->c_cc[VTIME];
5819     target->c_cc[TARGET_VMIN] = host->c_cc[VMIN];
5820     target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC];
5821     target->c_cc[TARGET_VSTART] = host->c_cc[VSTART];
5822     target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP];
5823     target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP];
5824     target->c_cc[TARGET_VEOL] = host->c_cc[VEOL];
5825     target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT];
5826     target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD];
5827     target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE];
5828     target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT];
5829     target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2];
5830 }
5831 
5832 static const StructEntry struct_termios_def = {
5833     .convert = { host_to_target_termios, target_to_host_termios },
5834     .size = { sizeof(struct target_termios), sizeof(struct host_termios) },
5835     .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) },
5836     .print = print_termios,
5837 };
5838 
5839 /* If the host does not provide these bits, they may be safely discarded. */
5840 #ifndef MAP_SYNC
5841 #define MAP_SYNC 0
5842 #endif
5843 #ifndef MAP_UNINITIALIZED
5844 #define MAP_UNINITIALIZED 0
5845 #endif
5846 
5847 static const bitmask_transtbl mmap_flags_tbl[] = {
5848     { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED },
5849     { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS,
5850       MAP_ANONYMOUS, MAP_ANONYMOUS },
5851     { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN,
5852       MAP_GROWSDOWN, MAP_GROWSDOWN },
5853     { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE,
5854       MAP_DENYWRITE, MAP_DENYWRITE },
5855     { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE,
5856       MAP_EXECUTABLE, MAP_EXECUTABLE },
5857     { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED },
5858     { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE,
5859       MAP_NORESERVE, MAP_NORESERVE },
5860     { TARGET_MAP_HUGETLB, TARGET_MAP_HUGETLB, MAP_HUGETLB, MAP_HUGETLB },
5861     /* MAP_STACK had been ignored by the kernel for quite some time.
5862        Recognize it for the target insofar as we do not want to pass
5863        it through to the host.  */
5864     { TARGET_MAP_STACK, TARGET_MAP_STACK, 0, 0 },
5865     { TARGET_MAP_NONBLOCK, TARGET_MAP_NONBLOCK, MAP_NONBLOCK, MAP_NONBLOCK },
5866     { TARGET_MAP_POPULATE, TARGET_MAP_POPULATE, MAP_POPULATE, MAP_POPULATE },
5867     { TARGET_MAP_FIXED_NOREPLACE, TARGET_MAP_FIXED_NOREPLACE,
5868       MAP_FIXED_NOREPLACE, MAP_FIXED_NOREPLACE },
5869     { TARGET_MAP_UNINITIALIZED, TARGET_MAP_UNINITIALIZED,
5870       MAP_UNINITIALIZED, MAP_UNINITIALIZED },
5871 };
5872 
5873 /*
5874  * Arrange for legacy / undefined architecture specific flags to be
5875  * ignored by mmap handling code.
5876  */
5877 #ifndef TARGET_MAP_32BIT
5878 #define TARGET_MAP_32BIT 0
5879 #endif
5880 #ifndef TARGET_MAP_HUGE_2MB
5881 #define TARGET_MAP_HUGE_2MB 0
5882 #endif
5883 #ifndef TARGET_MAP_HUGE_1GB
5884 #define TARGET_MAP_HUGE_1GB 0
5885 #endif
5886 
5887 static abi_long do_mmap(abi_ulong addr, abi_ulong len, int prot,
5888                         int target_flags, int fd, off_t offset)
5889 {
5890     /*
5891      * The historical set of flags that all mmap types implicitly support.
5892      */
5893     enum {
5894         TARGET_LEGACY_MAP_MASK = TARGET_MAP_SHARED
5895                                | TARGET_MAP_PRIVATE
5896                                | TARGET_MAP_FIXED
5897                                | TARGET_MAP_ANONYMOUS
5898                                | TARGET_MAP_DENYWRITE
5899                                | TARGET_MAP_EXECUTABLE
5900                                | TARGET_MAP_UNINITIALIZED
5901                                | TARGET_MAP_GROWSDOWN
5902                                | TARGET_MAP_LOCKED
5903                                | TARGET_MAP_NORESERVE
5904                                | TARGET_MAP_POPULATE
5905                                | TARGET_MAP_NONBLOCK
5906                                | TARGET_MAP_STACK
5907                                | TARGET_MAP_HUGETLB
5908                                | TARGET_MAP_32BIT
5909                                | TARGET_MAP_HUGE_2MB
5910                                | TARGET_MAP_HUGE_1GB
5911     };
5912     int host_flags;
5913 
5914     switch (target_flags & TARGET_MAP_TYPE) {
5915     case TARGET_MAP_PRIVATE:
5916         host_flags = MAP_PRIVATE;
5917         break;
5918     case TARGET_MAP_SHARED:
5919         host_flags = MAP_SHARED;
5920         break;
5921     case TARGET_MAP_SHARED_VALIDATE:
5922         /*
5923          * MAP_SYNC is only supported for MAP_SHARED_VALIDATE, and is
5924          * therefore omitted from mmap_flags_tbl and TARGET_LEGACY_MAP_MASK.
5925          */
5926         if (target_flags & ~(TARGET_LEGACY_MAP_MASK | TARGET_MAP_SYNC)) {
5927             return -TARGET_EOPNOTSUPP;
5928         }
5929         host_flags = MAP_SHARED_VALIDATE;
5930         if (target_flags & TARGET_MAP_SYNC) {
5931             host_flags |= MAP_SYNC;
5932         }
5933         break;
5934     default:
5935         return -TARGET_EINVAL;
5936     }
5937     host_flags |= target_to_host_bitmask(target_flags, mmap_flags_tbl);
5938 
5939     return get_errno(target_mmap(addr, len, prot, host_flags, fd, offset));
5940 }
5941 
5942 /*
5943  * NOTE: TARGET_ABI32 is defined for TARGET_I386 (but not for TARGET_X86_64)
5944  *       TARGET_I386 is defined if TARGET_X86_64 is defined
5945  */
5946 #if defined(TARGET_I386)
5947 
5948 /* NOTE: there is really one LDT for all the threads */
5949 static uint8_t *ldt_table;
5950 
5951 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount)
5952 {
5953     int size;
5954     void *p;
5955 
5956     if (!ldt_table)
5957         return 0;
5958     size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE;
5959     if (size > bytecount)
5960         size = bytecount;
5961     p = lock_user(VERIFY_WRITE, ptr, size, 0);
5962     if (!p)
5963         return -TARGET_EFAULT;
5964     /* ??? Should this by byteswapped?  */
5965     memcpy(p, ldt_table, size);
5966     unlock_user(p, ptr, size);
5967     return size;
5968 }
5969 
5970 /* XXX: add locking support */
5971 static abi_long write_ldt(CPUX86State *env,
5972                           abi_ulong ptr, unsigned long bytecount, int oldmode)
5973 {
5974     struct target_modify_ldt_ldt_s ldt_info;
5975     struct target_modify_ldt_ldt_s *target_ldt_info;
5976     int seg_32bit, contents, read_exec_only, limit_in_pages;
5977     int seg_not_present, useable, lm;
5978     uint32_t *lp, entry_1, entry_2;
5979 
5980     if (bytecount != sizeof(ldt_info))
5981         return -TARGET_EINVAL;
5982     if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1))
5983         return -TARGET_EFAULT;
5984     ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
5985     ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
5986     ldt_info.limit = tswap32(target_ldt_info->limit);
5987     ldt_info.flags = tswap32(target_ldt_info->flags);
5988     unlock_user_struct(target_ldt_info, ptr, 0);
5989 
5990     if (ldt_info.entry_number >= TARGET_LDT_ENTRIES)
5991         return -TARGET_EINVAL;
5992     seg_32bit = ldt_info.flags & 1;
5993     contents = (ldt_info.flags >> 1) & 3;
5994     read_exec_only = (ldt_info.flags >> 3) & 1;
5995     limit_in_pages = (ldt_info.flags >> 4) & 1;
5996     seg_not_present = (ldt_info.flags >> 5) & 1;
5997     useable = (ldt_info.flags >> 6) & 1;
5998 #ifdef TARGET_ABI32
5999     lm = 0;
6000 #else
6001     lm = (ldt_info.flags >> 7) & 1;
6002 #endif
6003     if (contents == 3) {
6004         if (oldmode)
6005             return -TARGET_EINVAL;
6006         if (seg_not_present == 0)
6007             return -TARGET_EINVAL;
6008     }
6009     /* allocate the LDT */
6010     if (!ldt_table) {
6011         env->ldt.base = target_mmap(0,
6012                                     TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE,
6013                                     PROT_READ|PROT_WRITE,
6014                                     MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
6015         if (env->ldt.base == -1)
6016             return -TARGET_ENOMEM;
6017         memset(g2h_untagged(env->ldt.base), 0,
6018                TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE);
6019         env->ldt.limit = 0xffff;
6020         ldt_table = g2h_untagged(env->ldt.base);
6021     }
6022 
6023     /* NOTE: same code as Linux kernel */
6024     /* Allow LDTs to be cleared by the user. */
6025     if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6026         if (oldmode ||
6027             (contents == 0		&&
6028              read_exec_only == 1	&&
6029              seg_32bit == 0		&&
6030              limit_in_pages == 0	&&
6031              seg_not_present == 1	&&
6032              useable == 0 )) {
6033             entry_1 = 0;
6034             entry_2 = 0;
6035             goto install;
6036         }
6037     }
6038 
6039     entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6040         (ldt_info.limit & 0x0ffff);
6041     entry_2 = (ldt_info.base_addr & 0xff000000) |
6042         ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6043         (ldt_info.limit & 0xf0000) |
6044         ((read_exec_only ^ 1) << 9) |
6045         (contents << 10) |
6046         ((seg_not_present ^ 1) << 15) |
6047         (seg_32bit << 22) |
6048         (limit_in_pages << 23) |
6049         (lm << 21) |
6050         0x7000;
6051     if (!oldmode)
6052         entry_2 |= (useable << 20);
6053 
6054     /* Install the new entry ...  */
6055 install:
6056     lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3));
6057     lp[0] = tswap32(entry_1);
6058     lp[1] = tswap32(entry_2);
6059     return 0;
6060 }
6061 
6062 /* specific and weird i386 syscalls */
6063 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr,
6064                               unsigned long bytecount)
6065 {
6066     abi_long ret;
6067 
6068     switch (func) {
6069     case 0:
6070         ret = read_ldt(ptr, bytecount);
6071         break;
6072     case 1:
6073         ret = write_ldt(env, ptr, bytecount, 1);
6074         break;
6075     case 0x11:
6076         ret = write_ldt(env, ptr, bytecount, 0);
6077         break;
6078     default:
6079         ret = -TARGET_ENOSYS;
6080         break;
6081     }
6082     return ret;
6083 }
6084 
6085 #if defined(TARGET_ABI32)
6086 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr)
6087 {
6088     uint64_t *gdt_table = g2h_untagged(env->gdt.base);
6089     struct target_modify_ldt_ldt_s ldt_info;
6090     struct target_modify_ldt_ldt_s *target_ldt_info;
6091     int seg_32bit, contents, read_exec_only, limit_in_pages;
6092     int seg_not_present, useable, lm;
6093     uint32_t *lp, entry_1, entry_2;
6094     int i;
6095 
6096     lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6097     if (!target_ldt_info)
6098         return -TARGET_EFAULT;
6099     ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
6100     ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
6101     ldt_info.limit = tswap32(target_ldt_info->limit);
6102     ldt_info.flags = tswap32(target_ldt_info->flags);
6103     if (ldt_info.entry_number == -1) {
6104         for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) {
6105             if (gdt_table[i] == 0) {
6106                 ldt_info.entry_number = i;
6107                 target_ldt_info->entry_number = tswap32(i);
6108                 break;
6109             }
6110         }
6111     }
6112     unlock_user_struct(target_ldt_info, ptr, 1);
6113 
6114     if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN ||
6115         ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX)
6116            return -TARGET_EINVAL;
6117     seg_32bit = ldt_info.flags & 1;
6118     contents = (ldt_info.flags >> 1) & 3;
6119     read_exec_only = (ldt_info.flags >> 3) & 1;
6120     limit_in_pages = (ldt_info.flags >> 4) & 1;
6121     seg_not_present = (ldt_info.flags >> 5) & 1;
6122     useable = (ldt_info.flags >> 6) & 1;
6123 #ifdef TARGET_ABI32
6124     lm = 0;
6125 #else
6126     lm = (ldt_info.flags >> 7) & 1;
6127 #endif
6128 
6129     if (contents == 3) {
6130         if (seg_not_present == 0)
6131             return -TARGET_EINVAL;
6132     }
6133 
6134     /* NOTE: same code as Linux kernel */
6135     /* Allow LDTs to be cleared by the user. */
6136     if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6137         if ((contents == 0             &&
6138              read_exec_only == 1       &&
6139              seg_32bit == 0            &&
6140              limit_in_pages == 0       &&
6141              seg_not_present == 1      &&
6142              useable == 0 )) {
6143             entry_1 = 0;
6144             entry_2 = 0;
6145             goto install;
6146         }
6147     }
6148 
6149     entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6150         (ldt_info.limit & 0x0ffff);
6151     entry_2 = (ldt_info.base_addr & 0xff000000) |
6152         ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6153         (ldt_info.limit & 0xf0000) |
6154         ((read_exec_only ^ 1) << 9) |
6155         (contents << 10) |
6156         ((seg_not_present ^ 1) << 15) |
6157         (seg_32bit << 22) |
6158         (limit_in_pages << 23) |
6159         (useable << 20) |
6160         (lm << 21) |
6161         0x7000;
6162 
6163     /* Install the new entry ...  */
6164 install:
6165     lp = (uint32_t *)(gdt_table + ldt_info.entry_number);
6166     lp[0] = tswap32(entry_1);
6167     lp[1] = tswap32(entry_2);
6168     return 0;
6169 }
6170 
6171 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr)
6172 {
6173     struct target_modify_ldt_ldt_s *target_ldt_info;
6174     uint64_t *gdt_table = g2h_untagged(env->gdt.base);
6175     uint32_t base_addr, limit, flags;
6176     int seg_32bit, contents, read_exec_only, limit_in_pages, idx;
6177     int seg_not_present, useable, lm;
6178     uint32_t *lp, entry_1, entry_2;
6179 
6180     lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6181     if (!target_ldt_info)
6182         return -TARGET_EFAULT;
6183     idx = tswap32(target_ldt_info->entry_number);
6184     if (idx < TARGET_GDT_ENTRY_TLS_MIN ||
6185         idx > TARGET_GDT_ENTRY_TLS_MAX) {
6186         unlock_user_struct(target_ldt_info, ptr, 1);
6187         return -TARGET_EINVAL;
6188     }
6189     lp = (uint32_t *)(gdt_table + idx);
6190     entry_1 = tswap32(lp[0]);
6191     entry_2 = tswap32(lp[1]);
6192 
6193     read_exec_only = ((entry_2 >> 9) & 1) ^ 1;
6194     contents = (entry_2 >> 10) & 3;
6195     seg_not_present = ((entry_2 >> 15) & 1) ^ 1;
6196     seg_32bit = (entry_2 >> 22) & 1;
6197     limit_in_pages = (entry_2 >> 23) & 1;
6198     useable = (entry_2 >> 20) & 1;
6199 #ifdef TARGET_ABI32
6200     lm = 0;
6201 #else
6202     lm = (entry_2 >> 21) & 1;
6203 #endif
6204     flags = (seg_32bit << 0) | (contents << 1) |
6205         (read_exec_only << 3) | (limit_in_pages << 4) |
6206         (seg_not_present << 5) | (useable << 6) | (lm << 7);
6207     limit = (entry_1 & 0xffff) | (entry_2  & 0xf0000);
6208     base_addr = (entry_1 >> 16) |
6209         (entry_2 & 0xff000000) |
6210         ((entry_2 & 0xff) << 16);
6211     target_ldt_info->base_addr = tswapal(base_addr);
6212     target_ldt_info->limit = tswap32(limit);
6213     target_ldt_info->flags = tswap32(flags);
6214     unlock_user_struct(target_ldt_info, ptr, 1);
6215     return 0;
6216 }
6217 
6218 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6219 {
6220     return -TARGET_ENOSYS;
6221 }
6222 #else
6223 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6224 {
6225     abi_long ret = 0;
6226     abi_ulong val;
6227     int idx;
6228 
6229     switch(code) {
6230     case TARGET_ARCH_SET_GS:
6231     case TARGET_ARCH_SET_FS:
6232         if (code == TARGET_ARCH_SET_GS)
6233             idx = R_GS;
6234         else
6235             idx = R_FS;
6236         cpu_x86_load_seg(env, idx, 0);
6237         env->segs[idx].base = addr;
6238         break;
6239     case TARGET_ARCH_GET_GS:
6240     case TARGET_ARCH_GET_FS:
6241         if (code == TARGET_ARCH_GET_GS)
6242             idx = R_GS;
6243         else
6244             idx = R_FS;
6245         val = env->segs[idx].base;
6246         if (put_user(val, addr, abi_ulong))
6247             ret = -TARGET_EFAULT;
6248         break;
6249     default:
6250         ret = -TARGET_EINVAL;
6251         break;
6252     }
6253     return ret;
6254 }
6255 #endif /* defined(TARGET_ABI32 */
6256 #endif /* defined(TARGET_I386) */
6257 
6258 /*
6259  * These constants are generic.  Supply any that are missing from the host.
6260  */
6261 #ifndef PR_SET_NAME
6262 # define PR_SET_NAME    15
6263 # define PR_GET_NAME    16
6264 #endif
6265 #ifndef PR_SET_FP_MODE
6266 # define PR_SET_FP_MODE 45
6267 # define PR_GET_FP_MODE 46
6268 # define PR_FP_MODE_FR   (1 << 0)
6269 # define PR_FP_MODE_FRE  (1 << 1)
6270 #endif
6271 #ifndef PR_SVE_SET_VL
6272 # define PR_SVE_SET_VL  50
6273 # define PR_SVE_GET_VL  51
6274 # define PR_SVE_VL_LEN_MASK  0xffff
6275 # define PR_SVE_VL_INHERIT   (1 << 17)
6276 #endif
6277 #ifndef PR_PAC_RESET_KEYS
6278 # define PR_PAC_RESET_KEYS  54
6279 # define PR_PAC_APIAKEY   (1 << 0)
6280 # define PR_PAC_APIBKEY   (1 << 1)
6281 # define PR_PAC_APDAKEY   (1 << 2)
6282 # define PR_PAC_APDBKEY   (1 << 3)
6283 # define PR_PAC_APGAKEY   (1 << 4)
6284 #endif
6285 #ifndef PR_SET_TAGGED_ADDR_CTRL
6286 # define PR_SET_TAGGED_ADDR_CTRL 55
6287 # define PR_GET_TAGGED_ADDR_CTRL 56
6288 # define PR_TAGGED_ADDR_ENABLE  (1UL << 0)
6289 #endif
6290 #ifndef PR_MTE_TCF_SHIFT
6291 # define PR_MTE_TCF_SHIFT       1
6292 # define PR_MTE_TCF_NONE        (0UL << PR_MTE_TCF_SHIFT)
6293 # define PR_MTE_TCF_SYNC        (1UL << PR_MTE_TCF_SHIFT)
6294 # define PR_MTE_TCF_ASYNC       (2UL << PR_MTE_TCF_SHIFT)
6295 # define PR_MTE_TCF_MASK        (3UL << PR_MTE_TCF_SHIFT)
6296 # define PR_MTE_TAG_SHIFT       3
6297 # define PR_MTE_TAG_MASK        (0xffffUL << PR_MTE_TAG_SHIFT)
6298 #endif
6299 #ifndef PR_SET_IO_FLUSHER
6300 # define PR_SET_IO_FLUSHER 57
6301 # define PR_GET_IO_FLUSHER 58
6302 #endif
6303 #ifndef PR_SET_SYSCALL_USER_DISPATCH
6304 # define PR_SET_SYSCALL_USER_DISPATCH 59
6305 #endif
6306 #ifndef PR_SME_SET_VL
6307 # define PR_SME_SET_VL  63
6308 # define PR_SME_GET_VL  64
6309 # define PR_SME_VL_LEN_MASK  0xffff
6310 # define PR_SME_VL_INHERIT   (1 << 17)
6311 #endif
6312 
6313 #include "target_prctl.h"
6314 
6315 static abi_long do_prctl_inval0(CPUArchState *env)
6316 {
6317     return -TARGET_EINVAL;
6318 }
6319 
6320 static abi_long do_prctl_inval1(CPUArchState *env, abi_long arg2)
6321 {
6322     return -TARGET_EINVAL;
6323 }
6324 
6325 #ifndef do_prctl_get_fp_mode
6326 #define do_prctl_get_fp_mode do_prctl_inval0
6327 #endif
6328 #ifndef do_prctl_set_fp_mode
6329 #define do_prctl_set_fp_mode do_prctl_inval1
6330 #endif
6331 #ifndef do_prctl_sve_get_vl
6332 #define do_prctl_sve_get_vl do_prctl_inval0
6333 #endif
6334 #ifndef do_prctl_sve_set_vl
6335 #define do_prctl_sve_set_vl do_prctl_inval1
6336 #endif
6337 #ifndef do_prctl_reset_keys
6338 #define do_prctl_reset_keys do_prctl_inval1
6339 #endif
6340 #ifndef do_prctl_set_tagged_addr_ctrl
6341 #define do_prctl_set_tagged_addr_ctrl do_prctl_inval1
6342 #endif
6343 #ifndef do_prctl_get_tagged_addr_ctrl
6344 #define do_prctl_get_tagged_addr_ctrl do_prctl_inval0
6345 #endif
6346 #ifndef do_prctl_get_unalign
6347 #define do_prctl_get_unalign do_prctl_inval1
6348 #endif
6349 #ifndef do_prctl_set_unalign
6350 #define do_prctl_set_unalign do_prctl_inval1
6351 #endif
6352 #ifndef do_prctl_sme_get_vl
6353 #define do_prctl_sme_get_vl do_prctl_inval0
6354 #endif
6355 #ifndef do_prctl_sme_set_vl
6356 #define do_prctl_sme_set_vl do_prctl_inval1
6357 #endif
6358 
6359 static abi_long do_prctl(CPUArchState *env, abi_long option, abi_long arg2,
6360                          abi_long arg3, abi_long arg4, abi_long arg5)
6361 {
6362     abi_long ret;
6363 
6364     switch (option) {
6365     case PR_GET_PDEATHSIG:
6366         {
6367             int deathsig;
6368             ret = get_errno(prctl(PR_GET_PDEATHSIG, &deathsig,
6369                                   arg3, arg4, arg5));
6370             if (!is_error(ret) &&
6371                 put_user_s32(host_to_target_signal(deathsig), arg2)) {
6372                 return -TARGET_EFAULT;
6373             }
6374             return ret;
6375         }
6376     case PR_SET_PDEATHSIG:
6377         return get_errno(prctl(PR_SET_PDEATHSIG, target_to_host_signal(arg2),
6378                                arg3, arg4, arg5));
6379     case PR_GET_NAME:
6380         {
6381             void *name = lock_user(VERIFY_WRITE, arg2, 16, 1);
6382             if (!name) {
6383                 return -TARGET_EFAULT;
6384             }
6385             ret = get_errno(prctl(PR_GET_NAME, (uintptr_t)name,
6386                                   arg3, arg4, arg5));
6387             unlock_user(name, arg2, 16);
6388             return ret;
6389         }
6390     case PR_SET_NAME:
6391         {
6392             void *name = lock_user(VERIFY_READ, arg2, 16, 1);
6393             if (!name) {
6394                 return -TARGET_EFAULT;
6395             }
6396             ret = get_errno(prctl(PR_SET_NAME, (uintptr_t)name,
6397                                   arg3, arg4, arg5));
6398             unlock_user(name, arg2, 0);
6399             return ret;
6400         }
6401     case PR_GET_FP_MODE:
6402         return do_prctl_get_fp_mode(env);
6403     case PR_SET_FP_MODE:
6404         return do_prctl_set_fp_mode(env, arg2);
6405     case PR_SVE_GET_VL:
6406         return do_prctl_sve_get_vl(env);
6407     case PR_SVE_SET_VL:
6408         return do_prctl_sve_set_vl(env, arg2);
6409     case PR_SME_GET_VL:
6410         return do_prctl_sme_get_vl(env);
6411     case PR_SME_SET_VL:
6412         return do_prctl_sme_set_vl(env, arg2);
6413     case PR_PAC_RESET_KEYS:
6414         if (arg3 || arg4 || arg5) {
6415             return -TARGET_EINVAL;
6416         }
6417         return do_prctl_reset_keys(env, arg2);
6418     case PR_SET_TAGGED_ADDR_CTRL:
6419         if (arg3 || arg4 || arg5) {
6420             return -TARGET_EINVAL;
6421         }
6422         return do_prctl_set_tagged_addr_ctrl(env, arg2);
6423     case PR_GET_TAGGED_ADDR_CTRL:
6424         if (arg2 || arg3 || arg4 || arg5) {
6425             return -TARGET_EINVAL;
6426         }
6427         return do_prctl_get_tagged_addr_ctrl(env);
6428 
6429     case PR_GET_UNALIGN:
6430         return do_prctl_get_unalign(env, arg2);
6431     case PR_SET_UNALIGN:
6432         return do_prctl_set_unalign(env, arg2);
6433 
6434     case PR_CAP_AMBIENT:
6435     case PR_CAPBSET_READ:
6436     case PR_CAPBSET_DROP:
6437     case PR_GET_DUMPABLE:
6438     case PR_SET_DUMPABLE:
6439     case PR_GET_KEEPCAPS:
6440     case PR_SET_KEEPCAPS:
6441     case PR_GET_SECUREBITS:
6442     case PR_SET_SECUREBITS:
6443     case PR_GET_TIMING:
6444     case PR_SET_TIMING:
6445     case PR_GET_TIMERSLACK:
6446     case PR_SET_TIMERSLACK:
6447     case PR_MCE_KILL:
6448     case PR_MCE_KILL_GET:
6449     case PR_GET_NO_NEW_PRIVS:
6450     case PR_SET_NO_NEW_PRIVS:
6451     case PR_GET_IO_FLUSHER:
6452     case PR_SET_IO_FLUSHER:
6453         /* Some prctl options have no pointer arguments and we can pass on. */
6454         return get_errno(prctl(option, arg2, arg3, arg4, arg5));
6455 
6456     case PR_GET_CHILD_SUBREAPER:
6457     case PR_SET_CHILD_SUBREAPER:
6458     case PR_GET_SPECULATION_CTRL:
6459     case PR_SET_SPECULATION_CTRL:
6460     case PR_GET_TID_ADDRESS:
6461         /* TODO */
6462         return -TARGET_EINVAL;
6463 
6464     case PR_GET_FPEXC:
6465     case PR_SET_FPEXC:
6466         /* Was used for SPE on PowerPC. */
6467         return -TARGET_EINVAL;
6468 
6469     case PR_GET_ENDIAN:
6470     case PR_SET_ENDIAN:
6471     case PR_GET_FPEMU:
6472     case PR_SET_FPEMU:
6473     case PR_SET_MM:
6474     case PR_GET_SECCOMP:
6475     case PR_SET_SECCOMP:
6476     case PR_SET_SYSCALL_USER_DISPATCH:
6477     case PR_GET_THP_DISABLE:
6478     case PR_SET_THP_DISABLE:
6479     case PR_GET_TSC:
6480     case PR_SET_TSC:
6481         /* Disable to prevent the target disabling stuff we need. */
6482         return -TARGET_EINVAL;
6483 
6484     default:
6485         qemu_log_mask(LOG_UNIMP, "Unsupported prctl: " TARGET_ABI_FMT_ld "\n",
6486                       option);
6487         return -TARGET_EINVAL;
6488     }
6489 }
6490 
6491 #define NEW_STACK_SIZE 0x40000
6492 
6493 
6494 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER;
6495 typedef struct {
6496     CPUArchState *env;
6497     pthread_mutex_t mutex;
6498     pthread_cond_t cond;
6499     pthread_t thread;
6500     uint32_t tid;
6501     abi_ulong child_tidptr;
6502     abi_ulong parent_tidptr;
6503     sigset_t sigmask;
6504 } new_thread_info;
6505 
6506 static void *clone_func(void *arg)
6507 {
6508     new_thread_info *info = arg;
6509     CPUArchState *env;
6510     CPUState *cpu;
6511     TaskState *ts;
6512 
6513     rcu_register_thread();
6514     tcg_register_thread();
6515     env = info->env;
6516     cpu = env_cpu(env);
6517     thread_cpu = cpu;
6518     ts = (TaskState *)cpu->opaque;
6519     info->tid = sys_gettid();
6520     task_settid(ts);
6521     if (info->child_tidptr)
6522         put_user_u32(info->tid, info->child_tidptr);
6523     if (info->parent_tidptr)
6524         put_user_u32(info->tid, info->parent_tidptr);
6525     qemu_guest_random_seed_thread_part2(cpu->random_seed);
6526     /* Enable signals.  */
6527     sigprocmask(SIG_SETMASK, &info->sigmask, NULL);
6528     /* Signal to the parent that we're ready.  */
6529     pthread_mutex_lock(&info->mutex);
6530     pthread_cond_broadcast(&info->cond);
6531     pthread_mutex_unlock(&info->mutex);
6532     /* Wait until the parent has finished initializing the tls state.  */
6533     pthread_mutex_lock(&clone_lock);
6534     pthread_mutex_unlock(&clone_lock);
6535     cpu_loop(env);
6536     /* never exits */
6537     return NULL;
6538 }
6539 
6540 /* do_fork() Must return host values and target errnos (unlike most
6541    do_*() functions). */
6542 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp,
6543                    abi_ulong parent_tidptr, target_ulong newtls,
6544                    abi_ulong child_tidptr)
6545 {
6546     CPUState *cpu = env_cpu(env);
6547     int ret;
6548     TaskState *ts;
6549     CPUState *new_cpu;
6550     CPUArchState *new_env;
6551     sigset_t sigmask;
6552 
6553     flags &= ~CLONE_IGNORED_FLAGS;
6554 
6555     /* Emulate vfork() with fork() */
6556     if (flags & CLONE_VFORK)
6557         flags &= ~(CLONE_VFORK | CLONE_VM);
6558 
6559     if (flags & CLONE_VM) {
6560         TaskState *parent_ts = (TaskState *)cpu->opaque;
6561         new_thread_info info;
6562         pthread_attr_t attr;
6563 
6564         if (((flags & CLONE_THREAD_FLAGS) != CLONE_THREAD_FLAGS) ||
6565             (flags & CLONE_INVALID_THREAD_FLAGS)) {
6566             return -TARGET_EINVAL;
6567         }
6568 
6569         ts = g_new0(TaskState, 1);
6570         init_task_state(ts);
6571 
6572         /* Grab a mutex so that thread setup appears atomic.  */
6573         pthread_mutex_lock(&clone_lock);
6574 
6575         /*
6576          * If this is our first additional thread, we need to ensure we
6577          * generate code for parallel execution and flush old translations.
6578          * Do this now so that the copy gets CF_PARALLEL too.
6579          */
6580         if (!(cpu->tcg_cflags & CF_PARALLEL)) {
6581             cpu->tcg_cflags |= CF_PARALLEL;
6582             tb_flush(cpu);
6583         }
6584 
6585         /* we create a new CPU instance. */
6586         new_env = cpu_copy(env);
6587         /* Init regs that differ from the parent.  */
6588         cpu_clone_regs_child(new_env, newsp, flags);
6589         cpu_clone_regs_parent(env, flags);
6590         new_cpu = env_cpu(new_env);
6591         new_cpu->opaque = ts;
6592         ts->bprm = parent_ts->bprm;
6593         ts->info = parent_ts->info;
6594         ts->signal_mask = parent_ts->signal_mask;
6595 
6596         if (flags & CLONE_CHILD_CLEARTID) {
6597             ts->child_tidptr = child_tidptr;
6598         }
6599 
6600         if (flags & CLONE_SETTLS) {
6601             cpu_set_tls (new_env, newtls);
6602         }
6603 
6604         memset(&info, 0, sizeof(info));
6605         pthread_mutex_init(&info.mutex, NULL);
6606         pthread_mutex_lock(&info.mutex);
6607         pthread_cond_init(&info.cond, NULL);
6608         info.env = new_env;
6609         if (flags & CLONE_CHILD_SETTID) {
6610             info.child_tidptr = child_tidptr;
6611         }
6612         if (flags & CLONE_PARENT_SETTID) {
6613             info.parent_tidptr = parent_tidptr;
6614         }
6615 
6616         ret = pthread_attr_init(&attr);
6617         ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE);
6618         ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
6619         /* It is not safe to deliver signals until the child has finished
6620            initializing, so temporarily block all signals.  */
6621         sigfillset(&sigmask);
6622         sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask);
6623         cpu->random_seed = qemu_guest_random_seed_thread_part1();
6624 
6625         ret = pthread_create(&info.thread, &attr, clone_func, &info);
6626         /* TODO: Free new CPU state if thread creation failed.  */
6627 
6628         sigprocmask(SIG_SETMASK, &info.sigmask, NULL);
6629         pthread_attr_destroy(&attr);
6630         if (ret == 0) {
6631             /* Wait for the child to initialize.  */
6632             pthread_cond_wait(&info.cond, &info.mutex);
6633             ret = info.tid;
6634         } else {
6635             ret = -1;
6636         }
6637         pthread_mutex_unlock(&info.mutex);
6638         pthread_cond_destroy(&info.cond);
6639         pthread_mutex_destroy(&info.mutex);
6640         pthread_mutex_unlock(&clone_lock);
6641     } else {
6642         /* if no CLONE_VM, we consider it is a fork */
6643         if (flags & CLONE_INVALID_FORK_FLAGS) {
6644             return -TARGET_EINVAL;
6645         }
6646 
6647         /* We can't support custom termination signals */
6648         if ((flags & CSIGNAL) != TARGET_SIGCHLD) {
6649             return -TARGET_EINVAL;
6650         }
6651 
6652 #if !defined(__NR_pidfd_open) || !defined(TARGET_NR_pidfd_open)
6653         if (flags & CLONE_PIDFD) {
6654             return -TARGET_EINVAL;
6655         }
6656 #endif
6657 
6658         /* Can not allow CLONE_PIDFD with CLONE_PARENT_SETTID */
6659         if ((flags & CLONE_PIDFD) && (flags & CLONE_PARENT_SETTID)) {
6660             return -TARGET_EINVAL;
6661         }
6662 
6663         if (block_signals()) {
6664             return -QEMU_ERESTARTSYS;
6665         }
6666 
6667         fork_start();
6668         ret = fork();
6669         if (ret == 0) {
6670             /* Child Process.  */
6671             cpu_clone_regs_child(env, newsp, flags);
6672             fork_end(1);
6673             /* There is a race condition here.  The parent process could
6674                theoretically read the TID in the child process before the child
6675                tid is set.  This would require using either ptrace
6676                (not implemented) or having *_tidptr to point at a shared memory
6677                mapping.  We can't repeat the spinlock hack used above because
6678                the child process gets its own copy of the lock.  */
6679             if (flags & CLONE_CHILD_SETTID)
6680                 put_user_u32(sys_gettid(), child_tidptr);
6681             if (flags & CLONE_PARENT_SETTID)
6682                 put_user_u32(sys_gettid(), parent_tidptr);
6683             ts = (TaskState *)cpu->opaque;
6684             if (flags & CLONE_SETTLS)
6685                 cpu_set_tls (env, newtls);
6686             if (flags & CLONE_CHILD_CLEARTID)
6687                 ts->child_tidptr = child_tidptr;
6688         } else {
6689             cpu_clone_regs_parent(env, flags);
6690             if (flags & CLONE_PIDFD) {
6691                 int pid_fd = 0;
6692 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
6693                 int pid_child = ret;
6694                 pid_fd = pidfd_open(pid_child, 0);
6695                 if (pid_fd >= 0) {
6696                         fcntl(pid_fd, F_SETFD, fcntl(pid_fd, F_GETFL)
6697                                                | FD_CLOEXEC);
6698                 } else {
6699                         pid_fd = 0;
6700                 }
6701 #endif
6702                 put_user_u32(pid_fd, parent_tidptr);
6703                 }
6704             fork_end(0);
6705         }
6706         g_assert(!cpu_in_exclusive_context(cpu));
6707     }
6708     return ret;
6709 }
6710 
6711 /* warning : doesn't handle linux specific flags... */
6712 static int target_to_host_fcntl_cmd(int cmd)
6713 {
6714     int ret;
6715 
6716     switch(cmd) {
6717     case TARGET_F_DUPFD:
6718     case TARGET_F_GETFD:
6719     case TARGET_F_SETFD:
6720     case TARGET_F_GETFL:
6721     case TARGET_F_SETFL:
6722     case TARGET_F_OFD_GETLK:
6723     case TARGET_F_OFD_SETLK:
6724     case TARGET_F_OFD_SETLKW:
6725         ret = cmd;
6726         break;
6727     case TARGET_F_GETLK:
6728         ret = F_GETLK64;
6729         break;
6730     case TARGET_F_SETLK:
6731         ret = F_SETLK64;
6732         break;
6733     case TARGET_F_SETLKW:
6734         ret = F_SETLKW64;
6735         break;
6736     case TARGET_F_GETOWN:
6737         ret = F_GETOWN;
6738         break;
6739     case TARGET_F_SETOWN:
6740         ret = F_SETOWN;
6741         break;
6742     case TARGET_F_GETSIG:
6743         ret = F_GETSIG;
6744         break;
6745     case TARGET_F_SETSIG:
6746         ret = F_SETSIG;
6747         break;
6748 #if TARGET_ABI_BITS == 32
6749     case TARGET_F_GETLK64:
6750         ret = F_GETLK64;
6751         break;
6752     case TARGET_F_SETLK64:
6753         ret = F_SETLK64;
6754         break;
6755     case TARGET_F_SETLKW64:
6756         ret = F_SETLKW64;
6757         break;
6758 #endif
6759     case TARGET_F_SETLEASE:
6760         ret = F_SETLEASE;
6761         break;
6762     case TARGET_F_GETLEASE:
6763         ret = F_GETLEASE;
6764         break;
6765 #ifdef F_DUPFD_CLOEXEC
6766     case TARGET_F_DUPFD_CLOEXEC:
6767         ret = F_DUPFD_CLOEXEC;
6768         break;
6769 #endif
6770     case TARGET_F_NOTIFY:
6771         ret = F_NOTIFY;
6772         break;
6773 #ifdef F_GETOWN_EX
6774     case TARGET_F_GETOWN_EX:
6775         ret = F_GETOWN_EX;
6776         break;
6777 #endif
6778 #ifdef F_SETOWN_EX
6779     case TARGET_F_SETOWN_EX:
6780         ret = F_SETOWN_EX;
6781         break;
6782 #endif
6783 #ifdef F_SETPIPE_SZ
6784     case TARGET_F_SETPIPE_SZ:
6785         ret = F_SETPIPE_SZ;
6786         break;
6787     case TARGET_F_GETPIPE_SZ:
6788         ret = F_GETPIPE_SZ;
6789         break;
6790 #endif
6791 #ifdef F_ADD_SEALS
6792     case TARGET_F_ADD_SEALS:
6793         ret = F_ADD_SEALS;
6794         break;
6795     case TARGET_F_GET_SEALS:
6796         ret = F_GET_SEALS;
6797         break;
6798 #endif
6799     default:
6800         ret = -TARGET_EINVAL;
6801         break;
6802     }
6803 
6804 #if defined(__powerpc64__)
6805     /* On PPC64, glibc headers has the F_*LK* defined to 12, 13 and 14 and
6806      * is not supported by kernel. The glibc fcntl call actually adjusts
6807      * them to 5, 6 and 7 before making the syscall(). Since we make the
6808      * syscall directly, adjust to what is supported by the kernel.
6809      */
6810     if (ret >= F_GETLK64 && ret <= F_SETLKW64) {
6811         ret -= F_GETLK64 - 5;
6812     }
6813 #endif
6814 
6815     return ret;
6816 }
6817 
6818 #define FLOCK_TRANSTBL \
6819     switch (type) { \
6820     TRANSTBL_CONVERT(F_RDLCK); \
6821     TRANSTBL_CONVERT(F_WRLCK); \
6822     TRANSTBL_CONVERT(F_UNLCK); \
6823     }
6824 
6825 static int target_to_host_flock(int type)
6826 {
6827 #define TRANSTBL_CONVERT(a) case TARGET_##a: return a
6828     FLOCK_TRANSTBL
6829 #undef  TRANSTBL_CONVERT
6830     return -TARGET_EINVAL;
6831 }
6832 
6833 static int host_to_target_flock(int type)
6834 {
6835 #define TRANSTBL_CONVERT(a) case a: return TARGET_##a
6836     FLOCK_TRANSTBL
6837 #undef  TRANSTBL_CONVERT
6838     /* if we don't know how to convert the value coming
6839      * from the host we copy to the target field as-is
6840      */
6841     return type;
6842 }
6843 
6844 static inline abi_long copy_from_user_flock(struct flock64 *fl,
6845                                             abi_ulong target_flock_addr)
6846 {
6847     struct target_flock *target_fl;
6848     int l_type;
6849 
6850     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6851         return -TARGET_EFAULT;
6852     }
6853 
6854     __get_user(l_type, &target_fl->l_type);
6855     l_type = target_to_host_flock(l_type);
6856     if (l_type < 0) {
6857         return l_type;
6858     }
6859     fl->l_type = l_type;
6860     __get_user(fl->l_whence, &target_fl->l_whence);
6861     __get_user(fl->l_start, &target_fl->l_start);
6862     __get_user(fl->l_len, &target_fl->l_len);
6863     __get_user(fl->l_pid, &target_fl->l_pid);
6864     unlock_user_struct(target_fl, target_flock_addr, 0);
6865     return 0;
6866 }
6867 
6868 static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr,
6869                                           const struct flock64 *fl)
6870 {
6871     struct target_flock *target_fl;
6872     short l_type;
6873 
6874     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6875         return -TARGET_EFAULT;
6876     }
6877 
6878     l_type = host_to_target_flock(fl->l_type);
6879     __put_user(l_type, &target_fl->l_type);
6880     __put_user(fl->l_whence, &target_fl->l_whence);
6881     __put_user(fl->l_start, &target_fl->l_start);
6882     __put_user(fl->l_len, &target_fl->l_len);
6883     __put_user(fl->l_pid, &target_fl->l_pid);
6884     unlock_user_struct(target_fl, target_flock_addr, 1);
6885     return 0;
6886 }
6887 
6888 typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr);
6889 typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl);
6890 
6891 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32
6892 struct target_oabi_flock64 {
6893     abi_short l_type;
6894     abi_short l_whence;
6895     abi_llong l_start;
6896     abi_llong l_len;
6897     abi_int   l_pid;
6898 } QEMU_PACKED;
6899 
6900 static inline abi_long copy_from_user_oabi_flock64(struct flock64 *fl,
6901                                                    abi_ulong target_flock_addr)
6902 {
6903     struct target_oabi_flock64 *target_fl;
6904     int l_type;
6905 
6906     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6907         return -TARGET_EFAULT;
6908     }
6909 
6910     __get_user(l_type, &target_fl->l_type);
6911     l_type = target_to_host_flock(l_type);
6912     if (l_type < 0) {
6913         return l_type;
6914     }
6915     fl->l_type = l_type;
6916     __get_user(fl->l_whence, &target_fl->l_whence);
6917     __get_user(fl->l_start, &target_fl->l_start);
6918     __get_user(fl->l_len, &target_fl->l_len);
6919     __get_user(fl->l_pid, &target_fl->l_pid);
6920     unlock_user_struct(target_fl, target_flock_addr, 0);
6921     return 0;
6922 }
6923 
6924 static inline abi_long copy_to_user_oabi_flock64(abi_ulong target_flock_addr,
6925                                                  const struct flock64 *fl)
6926 {
6927     struct target_oabi_flock64 *target_fl;
6928     short l_type;
6929 
6930     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6931         return -TARGET_EFAULT;
6932     }
6933 
6934     l_type = host_to_target_flock(fl->l_type);
6935     __put_user(l_type, &target_fl->l_type);
6936     __put_user(fl->l_whence, &target_fl->l_whence);
6937     __put_user(fl->l_start, &target_fl->l_start);
6938     __put_user(fl->l_len, &target_fl->l_len);
6939     __put_user(fl->l_pid, &target_fl->l_pid);
6940     unlock_user_struct(target_fl, target_flock_addr, 1);
6941     return 0;
6942 }
6943 #endif
6944 
6945 static inline abi_long copy_from_user_flock64(struct flock64 *fl,
6946                                               abi_ulong target_flock_addr)
6947 {
6948     struct target_flock64 *target_fl;
6949     int l_type;
6950 
6951     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6952         return -TARGET_EFAULT;
6953     }
6954 
6955     __get_user(l_type, &target_fl->l_type);
6956     l_type = target_to_host_flock(l_type);
6957     if (l_type < 0) {
6958         return l_type;
6959     }
6960     fl->l_type = l_type;
6961     __get_user(fl->l_whence, &target_fl->l_whence);
6962     __get_user(fl->l_start, &target_fl->l_start);
6963     __get_user(fl->l_len, &target_fl->l_len);
6964     __get_user(fl->l_pid, &target_fl->l_pid);
6965     unlock_user_struct(target_fl, target_flock_addr, 0);
6966     return 0;
6967 }
6968 
6969 static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr,
6970                                             const struct flock64 *fl)
6971 {
6972     struct target_flock64 *target_fl;
6973     short l_type;
6974 
6975     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6976         return -TARGET_EFAULT;
6977     }
6978 
6979     l_type = host_to_target_flock(fl->l_type);
6980     __put_user(l_type, &target_fl->l_type);
6981     __put_user(fl->l_whence, &target_fl->l_whence);
6982     __put_user(fl->l_start, &target_fl->l_start);
6983     __put_user(fl->l_len, &target_fl->l_len);
6984     __put_user(fl->l_pid, &target_fl->l_pid);
6985     unlock_user_struct(target_fl, target_flock_addr, 1);
6986     return 0;
6987 }
6988 
6989 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg)
6990 {
6991     struct flock64 fl64;
6992 #ifdef F_GETOWN_EX
6993     struct f_owner_ex fox;
6994     struct target_f_owner_ex *target_fox;
6995 #endif
6996     abi_long ret;
6997     int host_cmd = target_to_host_fcntl_cmd(cmd);
6998 
6999     if (host_cmd == -TARGET_EINVAL)
7000 	    return host_cmd;
7001 
7002     switch(cmd) {
7003     case TARGET_F_GETLK:
7004         ret = copy_from_user_flock(&fl64, arg);
7005         if (ret) {
7006             return ret;
7007         }
7008         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7009         if (ret == 0) {
7010             ret = copy_to_user_flock(arg, &fl64);
7011         }
7012         break;
7013 
7014     case TARGET_F_SETLK:
7015     case TARGET_F_SETLKW:
7016         ret = copy_from_user_flock(&fl64, arg);
7017         if (ret) {
7018             return ret;
7019         }
7020         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7021         break;
7022 
7023     case TARGET_F_GETLK64:
7024     case TARGET_F_OFD_GETLK:
7025         ret = copy_from_user_flock64(&fl64, arg);
7026         if (ret) {
7027             return ret;
7028         }
7029         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7030         if (ret == 0) {
7031             ret = copy_to_user_flock64(arg, &fl64);
7032         }
7033         break;
7034     case TARGET_F_SETLK64:
7035     case TARGET_F_SETLKW64:
7036     case TARGET_F_OFD_SETLK:
7037     case TARGET_F_OFD_SETLKW:
7038         ret = copy_from_user_flock64(&fl64, arg);
7039         if (ret) {
7040             return ret;
7041         }
7042         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7043         break;
7044 
7045     case TARGET_F_GETFL:
7046         ret = get_errno(safe_fcntl(fd, host_cmd, arg));
7047         if (ret >= 0) {
7048             ret = host_to_target_bitmask(ret, fcntl_flags_tbl);
7049             /* tell 32-bit guests it uses largefile on 64-bit hosts: */
7050             if (O_LARGEFILE == 0 && HOST_LONG_BITS == 64) {
7051                 ret |= TARGET_O_LARGEFILE;
7052             }
7053         }
7054         break;
7055 
7056     case TARGET_F_SETFL:
7057         ret = get_errno(safe_fcntl(fd, host_cmd,
7058                                    target_to_host_bitmask(arg,
7059                                                           fcntl_flags_tbl)));
7060         break;
7061 
7062 #ifdef F_GETOWN_EX
7063     case TARGET_F_GETOWN_EX:
7064         ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
7065         if (ret >= 0) {
7066             if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0))
7067                 return -TARGET_EFAULT;
7068             target_fox->type = tswap32(fox.type);
7069             target_fox->pid = tswap32(fox.pid);
7070             unlock_user_struct(target_fox, arg, 1);
7071         }
7072         break;
7073 #endif
7074 
7075 #ifdef F_SETOWN_EX
7076     case TARGET_F_SETOWN_EX:
7077         if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1))
7078             return -TARGET_EFAULT;
7079         fox.type = tswap32(target_fox->type);
7080         fox.pid = tswap32(target_fox->pid);
7081         unlock_user_struct(target_fox, arg, 0);
7082         ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
7083         break;
7084 #endif
7085 
7086     case TARGET_F_SETSIG:
7087         ret = get_errno(safe_fcntl(fd, host_cmd, target_to_host_signal(arg)));
7088         break;
7089 
7090     case TARGET_F_GETSIG:
7091         ret = host_to_target_signal(get_errno(safe_fcntl(fd, host_cmd, arg)));
7092         break;
7093 
7094     case TARGET_F_SETOWN:
7095     case TARGET_F_GETOWN:
7096     case TARGET_F_SETLEASE:
7097     case TARGET_F_GETLEASE:
7098     case TARGET_F_SETPIPE_SZ:
7099     case TARGET_F_GETPIPE_SZ:
7100     case TARGET_F_ADD_SEALS:
7101     case TARGET_F_GET_SEALS:
7102         ret = get_errno(safe_fcntl(fd, host_cmd, arg));
7103         break;
7104 
7105     default:
7106         ret = get_errno(safe_fcntl(fd, cmd, arg));
7107         break;
7108     }
7109     return ret;
7110 }
7111 
7112 #ifdef USE_UID16
7113 
7114 static inline int high2lowuid(int uid)
7115 {
7116     if (uid > 65535)
7117         return 65534;
7118     else
7119         return uid;
7120 }
7121 
7122 static inline int high2lowgid(int gid)
7123 {
7124     if (gid > 65535)
7125         return 65534;
7126     else
7127         return gid;
7128 }
7129 
7130 static inline int low2highuid(int uid)
7131 {
7132     if ((int16_t)uid == -1)
7133         return -1;
7134     else
7135         return uid;
7136 }
7137 
7138 static inline int low2highgid(int gid)
7139 {
7140     if ((int16_t)gid == -1)
7141         return -1;
7142     else
7143         return gid;
7144 }
7145 static inline int tswapid(int id)
7146 {
7147     return tswap16(id);
7148 }
7149 
7150 #define put_user_id(x, gaddr) put_user_u16(x, gaddr)
7151 
7152 #else /* !USE_UID16 */
7153 static inline int high2lowuid(int uid)
7154 {
7155     return uid;
7156 }
7157 static inline int high2lowgid(int gid)
7158 {
7159     return gid;
7160 }
7161 static inline int low2highuid(int uid)
7162 {
7163     return uid;
7164 }
7165 static inline int low2highgid(int gid)
7166 {
7167     return gid;
7168 }
7169 static inline int tswapid(int id)
7170 {
7171     return tswap32(id);
7172 }
7173 
7174 #define put_user_id(x, gaddr) put_user_u32(x, gaddr)
7175 
7176 #endif /* USE_UID16 */
7177 
7178 /* We must do direct syscalls for setting UID/GID, because we want to
7179  * implement the Linux system call semantics of "change only for this thread",
7180  * not the libc/POSIX semantics of "change for all threads in process".
7181  * (See http://ewontfix.com/17/ for more details.)
7182  * We use the 32-bit version of the syscalls if present; if it is not
7183  * then either the host architecture supports 32-bit UIDs natively with
7184  * the standard syscall, or the 16-bit UID is the best we can do.
7185  */
7186 #ifdef __NR_setuid32
7187 #define __NR_sys_setuid __NR_setuid32
7188 #else
7189 #define __NR_sys_setuid __NR_setuid
7190 #endif
7191 #ifdef __NR_setgid32
7192 #define __NR_sys_setgid __NR_setgid32
7193 #else
7194 #define __NR_sys_setgid __NR_setgid
7195 #endif
7196 #ifdef __NR_setresuid32
7197 #define __NR_sys_setresuid __NR_setresuid32
7198 #else
7199 #define __NR_sys_setresuid __NR_setresuid
7200 #endif
7201 #ifdef __NR_setresgid32
7202 #define __NR_sys_setresgid __NR_setresgid32
7203 #else
7204 #define __NR_sys_setresgid __NR_setresgid
7205 #endif
7206 
7207 _syscall1(int, sys_setuid, uid_t, uid)
7208 _syscall1(int, sys_setgid, gid_t, gid)
7209 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
7210 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
7211 
7212 void syscall_init(void)
7213 {
7214     IOCTLEntry *ie;
7215     const argtype *arg_type;
7216     int size;
7217 
7218     thunk_init(STRUCT_MAX);
7219 
7220 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
7221 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
7222 #include "syscall_types.h"
7223 #undef STRUCT
7224 #undef STRUCT_SPECIAL
7225 
7226     /* we patch the ioctl size if necessary. We rely on the fact that
7227        no ioctl has all the bits at '1' in the size field */
7228     ie = ioctl_entries;
7229     while (ie->target_cmd != 0) {
7230         if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) ==
7231             TARGET_IOC_SIZEMASK) {
7232             arg_type = ie->arg_type;
7233             if (arg_type[0] != TYPE_PTR) {
7234                 fprintf(stderr, "cannot patch size for ioctl 0x%x\n",
7235                         ie->target_cmd);
7236                 exit(1);
7237             }
7238             arg_type++;
7239             size = thunk_type_size(arg_type, 0);
7240             ie->target_cmd = (ie->target_cmd &
7241                               ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) |
7242                 (size << TARGET_IOC_SIZESHIFT);
7243         }
7244 
7245         /* automatic consistency check if same arch */
7246 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
7247     (defined(__x86_64__) && defined(TARGET_X86_64))
7248         if (unlikely(ie->target_cmd != ie->host_cmd)) {
7249             fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
7250                     ie->name, ie->target_cmd, ie->host_cmd);
7251         }
7252 #endif
7253         ie++;
7254     }
7255 }
7256 
7257 #ifdef TARGET_NR_truncate64
7258 static inline abi_long target_truncate64(CPUArchState *cpu_env, const char *arg1,
7259                                          abi_long arg2,
7260                                          abi_long arg3,
7261                                          abi_long arg4)
7262 {
7263     if (regpairs_aligned(cpu_env, TARGET_NR_truncate64)) {
7264         arg2 = arg3;
7265         arg3 = arg4;
7266     }
7267     return get_errno(truncate64(arg1, target_offset64(arg2, arg3)));
7268 }
7269 #endif
7270 
7271 #ifdef TARGET_NR_ftruncate64
7272 static inline abi_long target_ftruncate64(CPUArchState *cpu_env, abi_long arg1,
7273                                           abi_long arg2,
7274                                           abi_long arg3,
7275                                           abi_long arg4)
7276 {
7277     if (regpairs_aligned(cpu_env, TARGET_NR_ftruncate64)) {
7278         arg2 = arg3;
7279         arg3 = arg4;
7280     }
7281     return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3)));
7282 }
7283 #endif
7284 
7285 #if defined(TARGET_NR_timer_settime) || \
7286     (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
7287 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_its,
7288                                                  abi_ulong target_addr)
7289 {
7290     if (target_to_host_timespec(&host_its->it_interval, target_addr +
7291                                 offsetof(struct target_itimerspec,
7292                                          it_interval)) ||
7293         target_to_host_timespec(&host_its->it_value, target_addr +
7294                                 offsetof(struct target_itimerspec,
7295                                          it_value))) {
7296         return -TARGET_EFAULT;
7297     }
7298 
7299     return 0;
7300 }
7301 #endif
7302 
7303 #if defined(TARGET_NR_timer_settime64) || \
7304     (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD))
7305 static inline abi_long target_to_host_itimerspec64(struct itimerspec *host_its,
7306                                                    abi_ulong target_addr)
7307 {
7308     if (target_to_host_timespec64(&host_its->it_interval, target_addr +
7309                                   offsetof(struct target__kernel_itimerspec,
7310                                            it_interval)) ||
7311         target_to_host_timespec64(&host_its->it_value, target_addr +
7312                                   offsetof(struct target__kernel_itimerspec,
7313                                            it_value))) {
7314         return -TARGET_EFAULT;
7315     }
7316 
7317     return 0;
7318 }
7319 #endif
7320 
7321 #if ((defined(TARGET_NR_timerfd_gettime) || \
7322       defined(TARGET_NR_timerfd_settime)) && defined(CONFIG_TIMERFD)) || \
7323       defined(TARGET_NR_timer_gettime) || defined(TARGET_NR_timer_settime)
7324 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr,
7325                                                  struct itimerspec *host_its)
7326 {
7327     if (host_to_target_timespec(target_addr + offsetof(struct target_itimerspec,
7328                                                        it_interval),
7329                                 &host_its->it_interval) ||
7330         host_to_target_timespec(target_addr + offsetof(struct target_itimerspec,
7331                                                        it_value),
7332                                 &host_its->it_value)) {
7333         return -TARGET_EFAULT;
7334     }
7335     return 0;
7336 }
7337 #endif
7338 
7339 #if ((defined(TARGET_NR_timerfd_gettime64) || \
7340       defined(TARGET_NR_timerfd_settime64)) && defined(CONFIG_TIMERFD)) || \
7341       defined(TARGET_NR_timer_gettime64) || defined(TARGET_NR_timer_settime64)
7342 static inline abi_long host_to_target_itimerspec64(abi_ulong target_addr,
7343                                                    struct itimerspec *host_its)
7344 {
7345     if (host_to_target_timespec64(target_addr +
7346                                   offsetof(struct target__kernel_itimerspec,
7347                                            it_interval),
7348                                   &host_its->it_interval) ||
7349         host_to_target_timespec64(target_addr +
7350                                   offsetof(struct target__kernel_itimerspec,
7351                                            it_value),
7352                                   &host_its->it_value)) {
7353         return -TARGET_EFAULT;
7354     }
7355     return 0;
7356 }
7357 #endif
7358 
7359 #if defined(TARGET_NR_adjtimex) || \
7360     (defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME))
7361 static inline abi_long target_to_host_timex(struct timex *host_tx,
7362                                             abi_long target_addr)
7363 {
7364     struct target_timex *target_tx;
7365 
7366     if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7367         return -TARGET_EFAULT;
7368     }
7369 
7370     __get_user(host_tx->modes, &target_tx->modes);
7371     __get_user(host_tx->offset, &target_tx->offset);
7372     __get_user(host_tx->freq, &target_tx->freq);
7373     __get_user(host_tx->maxerror, &target_tx->maxerror);
7374     __get_user(host_tx->esterror, &target_tx->esterror);
7375     __get_user(host_tx->status, &target_tx->status);
7376     __get_user(host_tx->constant, &target_tx->constant);
7377     __get_user(host_tx->precision, &target_tx->precision);
7378     __get_user(host_tx->tolerance, &target_tx->tolerance);
7379     __get_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7380     __get_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7381     __get_user(host_tx->tick, &target_tx->tick);
7382     __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7383     __get_user(host_tx->jitter, &target_tx->jitter);
7384     __get_user(host_tx->shift, &target_tx->shift);
7385     __get_user(host_tx->stabil, &target_tx->stabil);
7386     __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7387     __get_user(host_tx->calcnt, &target_tx->calcnt);
7388     __get_user(host_tx->errcnt, &target_tx->errcnt);
7389     __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7390     __get_user(host_tx->tai, &target_tx->tai);
7391 
7392     unlock_user_struct(target_tx, target_addr, 0);
7393     return 0;
7394 }
7395 
7396 static inline abi_long host_to_target_timex(abi_long target_addr,
7397                                             struct timex *host_tx)
7398 {
7399     struct target_timex *target_tx;
7400 
7401     if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7402         return -TARGET_EFAULT;
7403     }
7404 
7405     __put_user(host_tx->modes, &target_tx->modes);
7406     __put_user(host_tx->offset, &target_tx->offset);
7407     __put_user(host_tx->freq, &target_tx->freq);
7408     __put_user(host_tx->maxerror, &target_tx->maxerror);
7409     __put_user(host_tx->esterror, &target_tx->esterror);
7410     __put_user(host_tx->status, &target_tx->status);
7411     __put_user(host_tx->constant, &target_tx->constant);
7412     __put_user(host_tx->precision, &target_tx->precision);
7413     __put_user(host_tx->tolerance, &target_tx->tolerance);
7414     __put_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7415     __put_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7416     __put_user(host_tx->tick, &target_tx->tick);
7417     __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7418     __put_user(host_tx->jitter, &target_tx->jitter);
7419     __put_user(host_tx->shift, &target_tx->shift);
7420     __put_user(host_tx->stabil, &target_tx->stabil);
7421     __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7422     __put_user(host_tx->calcnt, &target_tx->calcnt);
7423     __put_user(host_tx->errcnt, &target_tx->errcnt);
7424     __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7425     __put_user(host_tx->tai, &target_tx->tai);
7426 
7427     unlock_user_struct(target_tx, target_addr, 1);
7428     return 0;
7429 }
7430 #endif
7431 
7432 
7433 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
7434 static inline abi_long target_to_host_timex64(struct timex *host_tx,
7435                                               abi_long target_addr)
7436 {
7437     struct target__kernel_timex *target_tx;
7438 
7439     if (copy_from_user_timeval64(&host_tx->time, target_addr +
7440                                  offsetof(struct target__kernel_timex,
7441                                           time))) {
7442         return -TARGET_EFAULT;
7443     }
7444 
7445     if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7446         return -TARGET_EFAULT;
7447     }
7448 
7449     __get_user(host_tx->modes, &target_tx->modes);
7450     __get_user(host_tx->offset, &target_tx->offset);
7451     __get_user(host_tx->freq, &target_tx->freq);
7452     __get_user(host_tx->maxerror, &target_tx->maxerror);
7453     __get_user(host_tx->esterror, &target_tx->esterror);
7454     __get_user(host_tx->status, &target_tx->status);
7455     __get_user(host_tx->constant, &target_tx->constant);
7456     __get_user(host_tx->precision, &target_tx->precision);
7457     __get_user(host_tx->tolerance, &target_tx->tolerance);
7458     __get_user(host_tx->tick, &target_tx->tick);
7459     __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7460     __get_user(host_tx->jitter, &target_tx->jitter);
7461     __get_user(host_tx->shift, &target_tx->shift);
7462     __get_user(host_tx->stabil, &target_tx->stabil);
7463     __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7464     __get_user(host_tx->calcnt, &target_tx->calcnt);
7465     __get_user(host_tx->errcnt, &target_tx->errcnt);
7466     __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7467     __get_user(host_tx->tai, &target_tx->tai);
7468 
7469     unlock_user_struct(target_tx, target_addr, 0);
7470     return 0;
7471 }
7472 
7473 static inline abi_long host_to_target_timex64(abi_long target_addr,
7474                                               struct timex *host_tx)
7475 {
7476     struct target__kernel_timex *target_tx;
7477 
7478    if (copy_to_user_timeval64(target_addr +
7479                               offsetof(struct target__kernel_timex, time),
7480                               &host_tx->time)) {
7481         return -TARGET_EFAULT;
7482     }
7483 
7484     if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7485         return -TARGET_EFAULT;
7486     }
7487 
7488     __put_user(host_tx->modes, &target_tx->modes);
7489     __put_user(host_tx->offset, &target_tx->offset);
7490     __put_user(host_tx->freq, &target_tx->freq);
7491     __put_user(host_tx->maxerror, &target_tx->maxerror);
7492     __put_user(host_tx->esterror, &target_tx->esterror);
7493     __put_user(host_tx->status, &target_tx->status);
7494     __put_user(host_tx->constant, &target_tx->constant);
7495     __put_user(host_tx->precision, &target_tx->precision);
7496     __put_user(host_tx->tolerance, &target_tx->tolerance);
7497     __put_user(host_tx->tick, &target_tx->tick);
7498     __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7499     __put_user(host_tx->jitter, &target_tx->jitter);
7500     __put_user(host_tx->shift, &target_tx->shift);
7501     __put_user(host_tx->stabil, &target_tx->stabil);
7502     __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7503     __put_user(host_tx->calcnt, &target_tx->calcnt);
7504     __put_user(host_tx->errcnt, &target_tx->errcnt);
7505     __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7506     __put_user(host_tx->tai, &target_tx->tai);
7507 
7508     unlock_user_struct(target_tx, target_addr, 1);
7509     return 0;
7510 }
7511 #endif
7512 
7513 #ifndef HAVE_SIGEV_NOTIFY_THREAD_ID
7514 #define sigev_notify_thread_id _sigev_un._tid
7515 #endif
7516 
7517 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp,
7518                                                abi_ulong target_addr)
7519 {
7520     struct target_sigevent *target_sevp;
7521 
7522     if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) {
7523         return -TARGET_EFAULT;
7524     }
7525 
7526     /* This union is awkward on 64 bit systems because it has a 32 bit
7527      * integer and a pointer in it; we follow the conversion approach
7528      * used for handling sigval types in signal.c so the guest should get
7529      * the correct value back even if we did a 64 bit byteswap and it's
7530      * using the 32 bit integer.
7531      */
7532     host_sevp->sigev_value.sival_ptr =
7533         (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr);
7534     host_sevp->sigev_signo =
7535         target_to_host_signal(tswap32(target_sevp->sigev_signo));
7536     host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify);
7537     host_sevp->sigev_notify_thread_id = tswap32(target_sevp->_sigev_un._tid);
7538 
7539     unlock_user_struct(target_sevp, target_addr, 1);
7540     return 0;
7541 }
7542 
7543 #if defined(TARGET_NR_mlockall)
7544 static inline int target_to_host_mlockall_arg(int arg)
7545 {
7546     int result = 0;
7547 
7548     if (arg & TARGET_MCL_CURRENT) {
7549         result |= MCL_CURRENT;
7550     }
7551     if (arg & TARGET_MCL_FUTURE) {
7552         result |= MCL_FUTURE;
7553     }
7554 #ifdef MCL_ONFAULT
7555     if (arg & TARGET_MCL_ONFAULT) {
7556         result |= MCL_ONFAULT;
7557     }
7558 #endif
7559 
7560     return result;
7561 }
7562 #endif
7563 
7564 static inline int target_to_host_msync_arg(abi_long arg)
7565 {
7566     return ((arg & TARGET_MS_ASYNC) ? MS_ASYNC : 0) |
7567            ((arg & TARGET_MS_INVALIDATE) ? MS_INVALIDATE : 0) |
7568            ((arg & TARGET_MS_SYNC) ? MS_SYNC : 0) |
7569            (arg & ~(TARGET_MS_ASYNC | TARGET_MS_INVALIDATE | TARGET_MS_SYNC));
7570 }
7571 
7572 #if (defined(TARGET_NR_stat64) || defined(TARGET_NR_lstat64) ||     \
7573      defined(TARGET_NR_fstat64) || defined(TARGET_NR_fstatat64) ||  \
7574      defined(TARGET_NR_newfstatat))
7575 static inline abi_long host_to_target_stat64(CPUArchState *cpu_env,
7576                                              abi_ulong target_addr,
7577                                              struct stat *host_st)
7578 {
7579 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
7580     if (cpu_env->eabi) {
7581         struct target_eabi_stat64 *target_st;
7582 
7583         if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7584             return -TARGET_EFAULT;
7585         memset(target_st, 0, sizeof(struct target_eabi_stat64));
7586         __put_user(host_st->st_dev, &target_st->st_dev);
7587         __put_user(host_st->st_ino, &target_st->st_ino);
7588 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7589         __put_user(host_st->st_ino, &target_st->__st_ino);
7590 #endif
7591         __put_user(host_st->st_mode, &target_st->st_mode);
7592         __put_user(host_st->st_nlink, &target_st->st_nlink);
7593         __put_user(host_st->st_uid, &target_st->st_uid);
7594         __put_user(host_st->st_gid, &target_st->st_gid);
7595         __put_user(host_st->st_rdev, &target_st->st_rdev);
7596         __put_user(host_st->st_size, &target_st->st_size);
7597         __put_user(host_st->st_blksize, &target_st->st_blksize);
7598         __put_user(host_st->st_blocks, &target_st->st_blocks);
7599         __put_user(host_st->st_atime, &target_st->target_st_atime);
7600         __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7601         __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7602 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7603         __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
7604         __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
7605         __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
7606 #endif
7607         unlock_user_struct(target_st, target_addr, 1);
7608     } else
7609 #endif
7610     {
7611 #if defined(TARGET_HAS_STRUCT_STAT64)
7612         struct target_stat64 *target_st;
7613 #else
7614         struct target_stat *target_st;
7615 #endif
7616 
7617         if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7618             return -TARGET_EFAULT;
7619         memset(target_st, 0, sizeof(*target_st));
7620         __put_user(host_st->st_dev, &target_st->st_dev);
7621         __put_user(host_st->st_ino, &target_st->st_ino);
7622 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7623         __put_user(host_st->st_ino, &target_st->__st_ino);
7624 #endif
7625         __put_user(host_st->st_mode, &target_st->st_mode);
7626         __put_user(host_st->st_nlink, &target_st->st_nlink);
7627         __put_user(host_st->st_uid, &target_st->st_uid);
7628         __put_user(host_st->st_gid, &target_st->st_gid);
7629         __put_user(host_st->st_rdev, &target_st->st_rdev);
7630         /* XXX: better use of kernel struct */
7631         __put_user(host_st->st_size, &target_st->st_size);
7632         __put_user(host_st->st_blksize, &target_st->st_blksize);
7633         __put_user(host_st->st_blocks, &target_st->st_blocks);
7634         __put_user(host_st->st_atime, &target_st->target_st_atime);
7635         __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7636         __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7637 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7638         __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
7639         __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
7640         __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
7641 #endif
7642         unlock_user_struct(target_st, target_addr, 1);
7643     }
7644 
7645     return 0;
7646 }
7647 #endif
7648 
7649 #if defined(TARGET_NR_statx) && defined(__NR_statx)
7650 static inline abi_long host_to_target_statx(struct target_statx *host_stx,
7651                                             abi_ulong target_addr)
7652 {
7653     struct target_statx *target_stx;
7654 
7655     if (!lock_user_struct(VERIFY_WRITE, target_stx, target_addr,  0)) {
7656         return -TARGET_EFAULT;
7657     }
7658     memset(target_stx, 0, sizeof(*target_stx));
7659 
7660     __put_user(host_stx->stx_mask, &target_stx->stx_mask);
7661     __put_user(host_stx->stx_blksize, &target_stx->stx_blksize);
7662     __put_user(host_stx->stx_attributes, &target_stx->stx_attributes);
7663     __put_user(host_stx->stx_nlink, &target_stx->stx_nlink);
7664     __put_user(host_stx->stx_uid, &target_stx->stx_uid);
7665     __put_user(host_stx->stx_gid, &target_stx->stx_gid);
7666     __put_user(host_stx->stx_mode, &target_stx->stx_mode);
7667     __put_user(host_stx->stx_ino, &target_stx->stx_ino);
7668     __put_user(host_stx->stx_size, &target_stx->stx_size);
7669     __put_user(host_stx->stx_blocks, &target_stx->stx_blocks);
7670     __put_user(host_stx->stx_attributes_mask, &target_stx->stx_attributes_mask);
7671     __put_user(host_stx->stx_atime.tv_sec, &target_stx->stx_atime.tv_sec);
7672     __put_user(host_stx->stx_atime.tv_nsec, &target_stx->stx_atime.tv_nsec);
7673     __put_user(host_stx->stx_btime.tv_sec, &target_stx->stx_btime.tv_sec);
7674     __put_user(host_stx->stx_btime.tv_nsec, &target_stx->stx_btime.tv_nsec);
7675     __put_user(host_stx->stx_ctime.tv_sec, &target_stx->stx_ctime.tv_sec);
7676     __put_user(host_stx->stx_ctime.tv_nsec, &target_stx->stx_ctime.tv_nsec);
7677     __put_user(host_stx->stx_mtime.tv_sec, &target_stx->stx_mtime.tv_sec);
7678     __put_user(host_stx->stx_mtime.tv_nsec, &target_stx->stx_mtime.tv_nsec);
7679     __put_user(host_stx->stx_rdev_major, &target_stx->stx_rdev_major);
7680     __put_user(host_stx->stx_rdev_minor, &target_stx->stx_rdev_minor);
7681     __put_user(host_stx->stx_dev_major, &target_stx->stx_dev_major);
7682     __put_user(host_stx->stx_dev_minor, &target_stx->stx_dev_minor);
7683 
7684     unlock_user_struct(target_stx, target_addr, 1);
7685 
7686     return 0;
7687 }
7688 #endif
7689 
7690 static int do_sys_futex(int *uaddr, int op, int val,
7691                          const struct timespec *timeout, int *uaddr2,
7692                          int val3)
7693 {
7694 #if HOST_LONG_BITS == 64
7695 #if defined(__NR_futex)
7696     /* always a 64-bit time_t, it doesn't define _time64 version  */
7697     return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
7698 
7699 #endif
7700 #else /* HOST_LONG_BITS == 64 */
7701 #if defined(__NR_futex_time64)
7702     if (sizeof(timeout->tv_sec) == 8) {
7703         /* _time64 function on 32bit arch */
7704         return sys_futex_time64(uaddr, op, val, timeout, uaddr2, val3);
7705     }
7706 #endif
7707 #if defined(__NR_futex)
7708     /* old function on 32bit arch */
7709     return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
7710 #endif
7711 #endif /* HOST_LONG_BITS == 64 */
7712     g_assert_not_reached();
7713 }
7714 
7715 static int do_safe_futex(int *uaddr, int op, int val,
7716                          const struct timespec *timeout, int *uaddr2,
7717                          int val3)
7718 {
7719 #if HOST_LONG_BITS == 64
7720 #if defined(__NR_futex)
7721     /* always a 64-bit time_t, it doesn't define _time64 version  */
7722     return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
7723 #endif
7724 #else /* HOST_LONG_BITS == 64 */
7725 #if defined(__NR_futex_time64)
7726     if (sizeof(timeout->tv_sec) == 8) {
7727         /* _time64 function on 32bit arch */
7728         return get_errno(safe_futex_time64(uaddr, op, val, timeout, uaddr2,
7729                                            val3));
7730     }
7731 #endif
7732 #if defined(__NR_futex)
7733     /* old function on 32bit arch */
7734     return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
7735 #endif
7736 #endif /* HOST_LONG_BITS == 64 */
7737     return -TARGET_ENOSYS;
7738 }
7739 
7740 /* ??? Using host futex calls even when target atomic operations
7741    are not really atomic probably breaks things.  However implementing
7742    futexes locally would make futexes shared between multiple processes
7743    tricky.  However they're probably useless because guest atomic
7744    operations won't work either.  */
7745 #if defined(TARGET_NR_futex) || defined(TARGET_NR_futex_time64)
7746 static int do_futex(CPUState *cpu, bool time64, target_ulong uaddr,
7747                     int op, int val, target_ulong timeout,
7748                     target_ulong uaddr2, int val3)
7749 {
7750     struct timespec ts, *pts = NULL;
7751     void *haddr2 = NULL;
7752     int base_op;
7753 
7754     /* We assume FUTEX_* constants are the same on both host and target. */
7755 #ifdef FUTEX_CMD_MASK
7756     base_op = op & FUTEX_CMD_MASK;
7757 #else
7758     base_op = op;
7759 #endif
7760     switch (base_op) {
7761     case FUTEX_WAIT:
7762     case FUTEX_WAIT_BITSET:
7763         val = tswap32(val);
7764         break;
7765     case FUTEX_WAIT_REQUEUE_PI:
7766         val = tswap32(val);
7767         haddr2 = g2h(cpu, uaddr2);
7768         break;
7769     case FUTEX_LOCK_PI:
7770     case FUTEX_LOCK_PI2:
7771         break;
7772     case FUTEX_WAKE:
7773     case FUTEX_WAKE_BITSET:
7774     case FUTEX_TRYLOCK_PI:
7775     case FUTEX_UNLOCK_PI:
7776         timeout = 0;
7777         break;
7778     case FUTEX_FD:
7779         val = target_to_host_signal(val);
7780         timeout = 0;
7781         break;
7782     case FUTEX_CMP_REQUEUE:
7783     case FUTEX_CMP_REQUEUE_PI:
7784         val3 = tswap32(val3);
7785         /* fall through */
7786     case FUTEX_REQUEUE:
7787     case FUTEX_WAKE_OP:
7788         /*
7789          * For these, the 4th argument is not TIMEOUT, but VAL2.
7790          * But the prototype of do_safe_futex takes a pointer, so
7791          * insert casts to satisfy the compiler.  We do not need
7792          * to tswap VAL2 since it's not compared to guest memory.
7793           */
7794         pts = (struct timespec *)(uintptr_t)timeout;
7795         timeout = 0;
7796         haddr2 = g2h(cpu, uaddr2);
7797         break;
7798     default:
7799         return -TARGET_ENOSYS;
7800     }
7801     if (timeout) {
7802         pts = &ts;
7803         if (time64
7804             ? target_to_host_timespec64(pts, timeout)
7805             : target_to_host_timespec(pts, timeout)) {
7806             return -TARGET_EFAULT;
7807         }
7808     }
7809     return do_safe_futex(g2h(cpu, uaddr), op, val, pts, haddr2, val3);
7810 }
7811 #endif
7812 
7813 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7814 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname,
7815                                      abi_long handle, abi_long mount_id,
7816                                      abi_long flags)
7817 {
7818     struct file_handle *target_fh;
7819     struct file_handle *fh;
7820     int mid = 0;
7821     abi_long ret;
7822     char *name;
7823     unsigned int size, total_size;
7824 
7825     if (get_user_s32(size, handle)) {
7826         return -TARGET_EFAULT;
7827     }
7828 
7829     name = lock_user_string(pathname);
7830     if (!name) {
7831         return -TARGET_EFAULT;
7832     }
7833 
7834     total_size = sizeof(struct file_handle) + size;
7835     target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0);
7836     if (!target_fh) {
7837         unlock_user(name, pathname, 0);
7838         return -TARGET_EFAULT;
7839     }
7840 
7841     fh = g_malloc0(total_size);
7842     fh->handle_bytes = size;
7843 
7844     ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags));
7845     unlock_user(name, pathname, 0);
7846 
7847     /* man name_to_handle_at(2):
7848      * Other than the use of the handle_bytes field, the caller should treat
7849      * the file_handle structure as an opaque data type
7850      */
7851 
7852     memcpy(target_fh, fh, total_size);
7853     target_fh->handle_bytes = tswap32(fh->handle_bytes);
7854     target_fh->handle_type = tswap32(fh->handle_type);
7855     g_free(fh);
7856     unlock_user(target_fh, handle, total_size);
7857 
7858     if (put_user_s32(mid, mount_id)) {
7859         return -TARGET_EFAULT;
7860     }
7861 
7862     return ret;
7863 
7864 }
7865 #endif
7866 
7867 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7868 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle,
7869                                      abi_long flags)
7870 {
7871     struct file_handle *target_fh;
7872     struct file_handle *fh;
7873     unsigned int size, total_size;
7874     abi_long ret;
7875 
7876     if (get_user_s32(size, handle)) {
7877         return -TARGET_EFAULT;
7878     }
7879 
7880     total_size = sizeof(struct file_handle) + size;
7881     target_fh = lock_user(VERIFY_READ, handle, total_size, 1);
7882     if (!target_fh) {
7883         return -TARGET_EFAULT;
7884     }
7885 
7886     fh = g_memdup(target_fh, total_size);
7887     fh->handle_bytes = size;
7888     fh->handle_type = tswap32(target_fh->handle_type);
7889 
7890     ret = get_errno(open_by_handle_at(mount_fd, fh,
7891                     target_to_host_bitmask(flags, fcntl_flags_tbl)));
7892 
7893     g_free(fh);
7894 
7895     unlock_user(target_fh, handle, total_size);
7896 
7897     return ret;
7898 }
7899 #endif
7900 
7901 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4)
7902 
7903 static abi_long do_signalfd4(int fd, abi_long mask, int flags)
7904 {
7905     int host_flags;
7906     target_sigset_t *target_mask;
7907     sigset_t host_mask;
7908     abi_long ret;
7909 
7910     if (flags & ~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC)) {
7911         return -TARGET_EINVAL;
7912     }
7913     if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) {
7914         return -TARGET_EFAULT;
7915     }
7916 
7917     target_to_host_sigset(&host_mask, target_mask);
7918 
7919     host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
7920 
7921     ret = get_errno(signalfd(fd, &host_mask, host_flags));
7922     if (ret >= 0) {
7923         fd_trans_register(ret, &target_signalfd_trans);
7924     }
7925 
7926     unlock_user_struct(target_mask, mask, 0);
7927 
7928     return ret;
7929 }
7930 #endif
7931 
7932 /* Map host to target signal numbers for the wait family of syscalls.
7933    Assume all other status bits are the same.  */
7934 int host_to_target_waitstatus(int status)
7935 {
7936     if (WIFSIGNALED(status)) {
7937         return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f);
7938     }
7939     if (WIFSTOPPED(status)) {
7940         return (host_to_target_signal(WSTOPSIG(status)) << 8)
7941                | (status & 0xff);
7942     }
7943     return status;
7944 }
7945 
7946 static int open_self_cmdline(CPUArchState *cpu_env, int fd)
7947 {
7948     CPUState *cpu = env_cpu(cpu_env);
7949     struct linux_binprm *bprm = ((TaskState *)cpu->opaque)->bprm;
7950     int i;
7951 
7952     for (i = 0; i < bprm->argc; i++) {
7953         size_t len = strlen(bprm->argv[i]) + 1;
7954 
7955         if (write(fd, bprm->argv[i], len) != len) {
7956             return -1;
7957         }
7958     }
7959 
7960     return 0;
7961 }
7962 
7963 struct open_self_maps_data {
7964     TaskState *ts;
7965     IntervalTreeRoot *host_maps;
7966     int fd;
7967     bool smaps;
7968 };
7969 
7970 /*
7971  * Subroutine to output one line of /proc/self/maps,
7972  * or one region of /proc/self/smaps.
7973  */
7974 
7975 #ifdef TARGET_HPPA
7976 # define test_stack(S, E, L)  (E == L)
7977 #else
7978 # define test_stack(S, E, L)  (S == L)
7979 #endif
7980 
7981 static void open_self_maps_4(const struct open_self_maps_data *d,
7982                              const MapInfo *mi, abi_ptr start,
7983                              abi_ptr end, unsigned flags)
7984 {
7985     const struct image_info *info = d->ts->info;
7986     const char *path = mi->path;
7987     uint64_t offset;
7988     int fd = d->fd;
7989     int count;
7990 
7991     if (test_stack(start, end, info->stack_limit)) {
7992         path = "[stack]";
7993     } else if (start == info->brk) {
7994         path = "[heap]";
7995     } else if (start == info->vdso) {
7996         path = "[vdso]";
7997     }
7998 
7999     /* Except null device (MAP_ANON), adjust offset for this fragment. */
8000     offset = mi->offset;
8001     if (mi->dev) {
8002         uintptr_t hstart = (uintptr_t)g2h_untagged(start);
8003         offset += hstart - mi->itree.start;
8004     }
8005 
8006     count = dprintf(fd, TARGET_ABI_FMT_ptr "-" TARGET_ABI_FMT_ptr
8007                     " %c%c%c%c %08" PRIx64 " %02x:%02x %"PRId64,
8008                     start, end,
8009                     (flags & PAGE_READ) ? 'r' : '-',
8010                     (flags & PAGE_WRITE_ORG) ? 'w' : '-',
8011                     (flags & PAGE_EXEC) ? 'x' : '-',
8012                     mi->is_priv ? 'p' : 's',
8013                     offset, major(mi->dev), minor(mi->dev),
8014                     (uint64_t)mi->inode);
8015     if (path) {
8016         dprintf(fd, "%*s%s\n", 73 - count, "", path);
8017     } else {
8018         dprintf(fd, "\n");
8019     }
8020 
8021     if (d->smaps) {
8022         unsigned long size = end - start;
8023         unsigned long page_size_kb = TARGET_PAGE_SIZE >> 10;
8024         unsigned long size_kb = size >> 10;
8025 
8026         dprintf(fd, "Size:                  %lu kB\n"
8027                 "KernelPageSize:        %lu kB\n"
8028                 "MMUPageSize:           %lu kB\n"
8029                 "Rss:                   0 kB\n"
8030                 "Pss:                   0 kB\n"
8031                 "Pss_Dirty:             0 kB\n"
8032                 "Shared_Clean:          0 kB\n"
8033                 "Shared_Dirty:          0 kB\n"
8034                 "Private_Clean:         0 kB\n"
8035                 "Private_Dirty:         0 kB\n"
8036                 "Referenced:            0 kB\n"
8037                 "Anonymous:             %lu kB\n"
8038                 "LazyFree:              0 kB\n"
8039                 "AnonHugePages:         0 kB\n"
8040                 "ShmemPmdMapped:        0 kB\n"
8041                 "FilePmdMapped:         0 kB\n"
8042                 "Shared_Hugetlb:        0 kB\n"
8043                 "Private_Hugetlb:       0 kB\n"
8044                 "Swap:                  0 kB\n"
8045                 "SwapPss:               0 kB\n"
8046                 "Locked:                0 kB\n"
8047                 "THPeligible:    0\n"
8048                 "VmFlags:%s%s%s%s%s%s%s%s\n",
8049                 size_kb, page_size_kb, page_size_kb,
8050                 (flags & PAGE_ANON ? size_kb : 0),
8051                 (flags & PAGE_READ) ? " rd" : "",
8052                 (flags & PAGE_WRITE_ORG) ? " wr" : "",
8053                 (flags & PAGE_EXEC) ? " ex" : "",
8054                 mi->is_priv ? "" : " sh",
8055                 (flags & PAGE_READ) ? " mr" : "",
8056                 (flags & PAGE_WRITE_ORG) ? " mw" : "",
8057                 (flags & PAGE_EXEC) ? " me" : "",
8058                 mi->is_priv ? "" : " ms");
8059     }
8060 }
8061 
8062 /*
8063  * Callback for walk_memory_regions, when read_self_maps() fails.
8064  * Proceed without the benefit of host /proc/self/maps cross-check.
8065  */
8066 static int open_self_maps_3(void *opaque, target_ulong guest_start,
8067                             target_ulong guest_end, unsigned long flags)
8068 {
8069     static const MapInfo mi = { .is_priv = true };
8070 
8071     open_self_maps_4(opaque, &mi, guest_start, guest_end, flags);
8072     return 0;
8073 }
8074 
8075 /*
8076  * Callback for walk_memory_regions, when read_self_maps() succeeds.
8077  */
8078 static int open_self_maps_2(void *opaque, target_ulong guest_start,
8079                             target_ulong guest_end, unsigned long flags)
8080 {
8081     const struct open_self_maps_data *d = opaque;
8082     uintptr_t host_start = (uintptr_t)g2h_untagged(guest_start);
8083     uintptr_t host_last = (uintptr_t)g2h_untagged(guest_end - 1);
8084 
8085     while (1) {
8086         IntervalTreeNode *n =
8087             interval_tree_iter_first(d->host_maps, host_start, host_start);
8088         MapInfo *mi = container_of(n, MapInfo, itree);
8089         uintptr_t this_hlast = MIN(host_last, n->last);
8090         target_ulong this_gend = h2g(this_hlast) + 1;
8091 
8092         open_self_maps_4(d, mi, guest_start, this_gend, flags);
8093 
8094         if (this_hlast == host_last) {
8095             return 0;
8096         }
8097         host_start = this_hlast + 1;
8098         guest_start = h2g(host_start);
8099     }
8100 }
8101 
8102 static int open_self_maps_1(CPUArchState *env, int fd, bool smaps)
8103 {
8104     struct open_self_maps_data d = {
8105         .ts = env_cpu(env)->opaque,
8106         .host_maps = read_self_maps(),
8107         .fd = fd,
8108         .smaps = smaps
8109     };
8110 
8111     if (d.host_maps) {
8112         walk_memory_regions(&d, open_self_maps_2);
8113         free_self_maps(d.host_maps);
8114     } else {
8115         walk_memory_regions(&d, open_self_maps_3);
8116     }
8117     return 0;
8118 }
8119 
8120 static int open_self_maps(CPUArchState *cpu_env, int fd)
8121 {
8122     return open_self_maps_1(cpu_env, fd, false);
8123 }
8124 
8125 static int open_self_smaps(CPUArchState *cpu_env, int fd)
8126 {
8127     return open_self_maps_1(cpu_env, fd, true);
8128 }
8129 
8130 static int open_self_stat(CPUArchState *cpu_env, int fd)
8131 {
8132     CPUState *cpu = env_cpu(cpu_env);
8133     TaskState *ts = cpu->opaque;
8134     g_autoptr(GString) buf = g_string_new(NULL);
8135     int i;
8136 
8137     for (i = 0; i < 44; i++) {
8138         if (i == 0) {
8139             /* pid */
8140             g_string_printf(buf, FMT_pid " ", getpid());
8141         } else if (i == 1) {
8142             /* app name */
8143             gchar *bin = g_strrstr(ts->bprm->argv[0], "/");
8144             bin = bin ? bin + 1 : ts->bprm->argv[0];
8145             g_string_printf(buf, "(%.15s) ", bin);
8146         } else if (i == 2) {
8147             /* task state */
8148             g_string_assign(buf, "R "); /* we are running right now */
8149         } else if (i == 3) {
8150             /* ppid */
8151             g_string_printf(buf, FMT_pid " ", getppid());
8152         } else if (i == 21) {
8153             /* starttime */
8154             g_string_printf(buf, "%" PRIu64 " ", ts->start_boottime);
8155         } else if (i == 27) {
8156             /* stack bottom */
8157             g_string_printf(buf, TARGET_ABI_FMT_ld " ", ts->info->start_stack);
8158         } else {
8159             /* for the rest, there is MasterCard */
8160             g_string_printf(buf, "0%c", i == 43 ? '\n' : ' ');
8161         }
8162 
8163         if (write(fd, buf->str, buf->len) != buf->len) {
8164             return -1;
8165         }
8166     }
8167 
8168     return 0;
8169 }
8170 
8171 static int open_self_auxv(CPUArchState *cpu_env, int fd)
8172 {
8173     CPUState *cpu = env_cpu(cpu_env);
8174     TaskState *ts = cpu->opaque;
8175     abi_ulong auxv = ts->info->saved_auxv;
8176     abi_ulong len = ts->info->auxv_len;
8177     char *ptr;
8178 
8179     /*
8180      * Auxiliary vector is stored in target process stack.
8181      * read in whole auxv vector and copy it to file
8182      */
8183     ptr = lock_user(VERIFY_READ, auxv, len, 0);
8184     if (ptr != NULL) {
8185         while (len > 0) {
8186             ssize_t r;
8187             r = write(fd, ptr, len);
8188             if (r <= 0) {
8189                 break;
8190             }
8191             len -= r;
8192             ptr += r;
8193         }
8194         lseek(fd, 0, SEEK_SET);
8195         unlock_user(ptr, auxv, len);
8196     }
8197 
8198     return 0;
8199 }
8200 
8201 static int is_proc_myself(const char *filename, const char *entry)
8202 {
8203     if (!strncmp(filename, "/proc/", strlen("/proc/"))) {
8204         filename += strlen("/proc/");
8205         if (!strncmp(filename, "self/", strlen("self/"))) {
8206             filename += strlen("self/");
8207         } else if (*filename >= '1' && *filename <= '9') {
8208             char myself[80];
8209             snprintf(myself, sizeof(myself), "%d/", getpid());
8210             if (!strncmp(filename, myself, strlen(myself))) {
8211                 filename += strlen(myself);
8212             } else {
8213                 return 0;
8214             }
8215         } else {
8216             return 0;
8217         }
8218         if (!strcmp(filename, entry)) {
8219             return 1;
8220         }
8221     }
8222     return 0;
8223 }
8224 
8225 static void excp_dump_file(FILE *logfile, CPUArchState *env,
8226                       const char *fmt, int code)
8227 {
8228     if (logfile) {
8229         CPUState *cs = env_cpu(env);
8230 
8231         fprintf(logfile, fmt, code);
8232         fprintf(logfile, "Failing executable: %s\n", exec_path);
8233         cpu_dump_state(cs, logfile, 0);
8234         open_self_maps(env, fileno(logfile));
8235     }
8236 }
8237 
8238 void target_exception_dump(CPUArchState *env, const char *fmt, int code)
8239 {
8240     /* dump to console */
8241     excp_dump_file(stderr, env, fmt, code);
8242 
8243     /* dump to log file */
8244     if (qemu_log_separate()) {
8245         FILE *logfile = qemu_log_trylock();
8246 
8247         excp_dump_file(logfile, env, fmt, code);
8248         qemu_log_unlock(logfile);
8249     }
8250 }
8251 
8252 #include "target_proc.h"
8253 
8254 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN || \
8255     defined(HAVE_ARCH_PROC_CPUINFO) || \
8256     defined(HAVE_ARCH_PROC_HARDWARE)
8257 static int is_proc(const char *filename, const char *entry)
8258 {
8259     return strcmp(filename, entry) == 0;
8260 }
8261 #endif
8262 
8263 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
8264 static int open_net_route(CPUArchState *cpu_env, int fd)
8265 {
8266     FILE *fp;
8267     char *line = NULL;
8268     size_t len = 0;
8269     ssize_t read;
8270 
8271     fp = fopen("/proc/net/route", "r");
8272     if (fp == NULL) {
8273         return -1;
8274     }
8275 
8276     /* read header */
8277 
8278     read = getline(&line, &len, fp);
8279     dprintf(fd, "%s", line);
8280 
8281     /* read routes */
8282 
8283     while ((read = getline(&line, &len, fp)) != -1) {
8284         char iface[16];
8285         uint32_t dest, gw, mask;
8286         unsigned int flags, refcnt, use, metric, mtu, window, irtt;
8287         int fields;
8288 
8289         fields = sscanf(line,
8290                         "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8291                         iface, &dest, &gw, &flags, &refcnt, &use, &metric,
8292                         &mask, &mtu, &window, &irtt);
8293         if (fields != 11) {
8294             continue;
8295         }
8296         dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8297                 iface, tswap32(dest), tswap32(gw), flags, refcnt, use,
8298                 metric, tswap32(mask), mtu, window, irtt);
8299     }
8300 
8301     free(line);
8302     fclose(fp);
8303 
8304     return 0;
8305 }
8306 #endif
8307 
8308 int do_guest_openat(CPUArchState *cpu_env, int dirfd, const char *fname,
8309                     int flags, mode_t mode, bool safe)
8310 {
8311     g_autofree char *proc_name = NULL;
8312     const char *pathname;
8313     struct fake_open {
8314         const char *filename;
8315         int (*fill)(CPUArchState *cpu_env, int fd);
8316         int (*cmp)(const char *s1, const char *s2);
8317     };
8318     const struct fake_open *fake_open;
8319     static const struct fake_open fakes[] = {
8320         { "maps", open_self_maps, is_proc_myself },
8321         { "smaps", open_self_smaps, is_proc_myself },
8322         { "stat", open_self_stat, is_proc_myself },
8323         { "auxv", open_self_auxv, is_proc_myself },
8324         { "cmdline", open_self_cmdline, is_proc_myself },
8325 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
8326         { "/proc/net/route", open_net_route, is_proc },
8327 #endif
8328 #if defined(HAVE_ARCH_PROC_CPUINFO)
8329         { "/proc/cpuinfo", open_cpuinfo, is_proc },
8330 #endif
8331 #if defined(HAVE_ARCH_PROC_HARDWARE)
8332         { "/proc/hardware", open_hardware, is_proc },
8333 #endif
8334         { NULL, NULL, NULL }
8335     };
8336 
8337     /* if this is a file from /proc/ filesystem, expand full name */
8338     proc_name = realpath(fname, NULL);
8339     if (proc_name && strncmp(proc_name, "/proc/", 6) == 0) {
8340         pathname = proc_name;
8341     } else {
8342         pathname = fname;
8343     }
8344 
8345     if (is_proc_myself(pathname, "exe")) {
8346         if (safe) {
8347             return safe_openat(dirfd, exec_path, flags, mode);
8348         } else {
8349             return openat(dirfd, exec_path, flags, mode);
8350         }
8351     }
8352 
8353     for (fake_open = fakes; fake_open->filename; fake_open++) {
8354         if (fake_open->cmp(pathname, fake_open->filename)) {
8355             break;
8356         }
8357     }
8358 
8359     if (fake_open->filename) {
8360         const char *tmpdir;
8361         char filename[PATH_MAX];
8362         int fd, r;
8363 
8364         fd = memfd_create("qemu-open", 0);
8365         if (fd < 0) {
8366             if (errno != ENOSYS) {
8367                 return fd;
8368             }
8369             /* create temporary file to map stat to */
8370             tmpdir = getenv("TMPDIR");
8371             if (!tmpdir)
8372                 tmpdir = "/tmp";
8373             snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir);
8374             fd = mkstemp(filename);
8375             if (fd < 0) {
8376                 return fd;
8377             }
8378             unlink(filename);
8379         }
8380 
8381         if ((r = fake_open->fill(cpu_env, fd))) {
8382             int e = errno;
8383             close(fd);
8384             errno = e;
8385             return r;
8386         }
8387         lseek(fd, 0, SEEK_SET);
8388 
8389         return fd;
8390     }
8391 
8392     if (safe) {
8393         return safe_openat(dirfd, path(pathname), flags, mode);
8394     } else {
8395         return openat(dirfd, path(pathname), flags, mode);
8396     }
8397 }
8398 
8399 ssize_t do_guest_readlink(const char *pathname, char *buf, size_t bufsiz)
8400 {
8401     ssize_t ret;
8402 
8403     if (!pathname || !buf) {
8404         errno = EFAULT;
8405         return -1;
8406     }
8407 
8408     if (!bufsiz) {
8409         /* Short circuit this for the magic exe check. */
8410         errno = EINVAL;
8411         return -1;
8412     }
8413 
8414     if (is_proc_myself((const char *)pathname, "exe")) {
8415         /*
8416          * Don't worry about sign mismatch as earlier mapping
8417          * logic would have thrown a bad address error.
8418          */
8419         ret = MIN(strlen(exec_path), bufsiz);
8420         /* We cannot NUL terminate the string. */
8421         memcpy(buf, exec_path, ret);
8422     } else {
8423         ret = readlink(path(pathname), buf, bufsiz);
8424     }
8425 
8426     return ret;
8427 }
8428 
8429 static int do_execv(CPUArchState *cpu_env, int dirfd,
8430                     abi_long pathname, abi_long guest_argp,
8431                     abi_long guest_envp, int flags, bool is_execveat)
8432 {
8433     int ret;
8434     char **argp, **envp;
8435     int argc, envc;
8436     abi_ulong gp;
8437     abi_ulong addr;
8438     char **q;
8439     void *p;
8440 
8441     argc = 0;
8442 
8443     for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) {
8444         if (get_user_ual(addr, gp)) {
8445             return -TARGET_EFAULT;
8446         }
8447         if (!addr) {
8448             break;
8449         }
8450         argc++;
8451     }
8452     envc = 0;
8453     for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) {
8454         if (get_user_ual(addr, gp)) {
8455             return -TARGET_EFAULT;
8456         }
8457         if (!addr) {
8458             break;
8459         }
8460         envc++;
8461     }
8462 
8463     argp = g_new0(char *, argc + 1);
8464     envp = g_new0(char *, envc + 1);
8465 
8466     for (gp = guest_argp, q = argp; gp; gp += sizeof(abi_ulong), q++) {
8467         if (get_user_ual(addr, gp)) {
8468             goto execve_efault;
8469         }
8470         if (!addr) {
8471             break;
8472         }
8473         *q = lock_user_string(addr);
8474         if (!*q) {
8475             goto execve_efault;
8476         }
8477     }
8478     *q = NULL;
8479 
8480     for (gp = guest_envp, q = envp; gp; gp += sizeof(abi_ulong), q++) {
8481         if (get_user_ual(addr, gp)) {
8482             goto execve_efault;
8483         }
8484         if (!addr) {
8485             break;
8486         }
8487         *q = lock_user_string(addr);
8488         if (!*q) {
8489             goto execve_efault;
8490         }
8491     }
8492     *q = NULL;
8493 
8494     /*
8495      * Although execve() is not an interruptible syscall it is
8496      * a special case where we must use the safe_syscall wrapper:
8497      * if we allow a signal to happen before we make the host
8498      * syscall then we will 'lose' it, because at the point of
8499      * execve the process leaves QEMU's control. So we use the
8500      * safe syscall wrapper to ensure that we either take the
8501      * signal as a guest signal, or else it does not happen
8502      * before the execve completes and makes it the other
8503      * program's problem.
8504      */
8505     p = lock_user_string(pathname);
8506     if (!p) {
8507         goto execve_efault;
8508     }
8509 
8510     const char *exe = p;
8511     if (is_proc_myself(p, "exe")) {
8512         exe = exec_path;
8513     }
8514     ret = is_execveat
8515         ? safe_execveat(dirfd, exe, argp, envp, flags)
8516         : safe_execve(exe, argp, envp);
8517     ret = get_errno(ret);
8518 
8519     unlock_user(p, pathname, 0);
8520 
8521     goto execve_end;
8522 
8523 execve_efault:
8524     ret = -TARGET_EFAULT;
8525 
8526 execve_end:
8527     for (gp = guest_argp, q = argp; *q; gp += sizeof(abi_ulong), q++) {
8528         if (get_user_ual(addr, gp) || !addr) {
8529             break;
8530         }
8531         unlock_user(*q, addr, 0);
8532     }
8533     for (gp = guest_envp, q = envp; *q; gp += sizeof(abi_ulong), q++) {
8534         if (get_user_ual(addr, gp) || !addr) {
8535             break;
8536         }
8537         unlock_user(*q, addr, 0);
8538     }
8539 
8540     g_free(argp);
8541     g_free(envp);
8542     return ret;
8543 }
8544 
8545 #define TIMER_MAGIC 0x0caf0000
8546 #define TIMER_MAGIC_MASK 0xffff0000
8547 
8548 /* Convert QEMU provided timer ID back to internal 16bit index format */
8549 static target_timer_t get_timer_id(abi_long arg)
8550 {
8551     target_timer_t timerid = arg;
8552 
8553     if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) {
8554         return -TARGET_EINVAL;
8555     }
8556 
8557     timerid &= 0xffff;
8558 
8559     if (timerid >= ARRAY_SIZE(g_posix_timers)) {
8560         return -TARGET_EINVAL;
8561     }
8562 
8563     return timerid;
8564 }
8565 
8566 static int target_to_host_cpu_mask(unsigned long *host_mask,
8567                                    size_t host_size,
8568                                    abi_ulong target_addr,
8569                                    size_t target_size)
8570 {
8571     unsigned target_bits = sizeof(abi_ulong) * 8;
8572     unsigned host_bits = sizeof(*host_mask) * 8;
8573     abi_ulong *target_mask;
8574     unsigned i, j;
8575 
8576     assert(host_size >= target_size);
8577 
8578     target_mask = lock_user(VERIFY_READ, target_addr, target_size, 1);
8579     if (!target_mask) {
8580         return -TARGET_EFAULT;
8581     }
8582     memset(host_mask, 0, host_size);
8583 
8584     for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
8585         unsigned bit = i * target_bits;
8586         abi_ulong val;
8587 
8588         __get_user(val, &target_mask[i]);
8589         for (j = 0; j < target_bits; j++, bit++) {
8590             if (val & (1UL << j)) {
8591                 host_mask[bit / host_bits] |= 1UL << (bit % host_bits);
8592             }
8593         }
8594     }
8595 
8596     unlock_user(target_mask, target_addr, 0);
8597     return 0;
8598 }
8599 
8600 static int host_to_target_cpu_mask(const unsigned long *host_mask,
8601                                    size_t host_size,
8602                                    abi_ulong target_addr,
8603                                    size_t target_size)
8604 {
8605     unsigned target_bits = sizeof(abi_ulong) * 8;
8606     unsigned host_bits = sizeof(*host_mask) * 8;
8607     abi_ulong *target_mask;
8608     unsigned i, j;
8609 
8610     assert(host_size >= target_size);
8611 
8612     target_mask = lock_user(VERIFY_WRITE, target_addr, target_size, 0);
8613     if (!target_mask) {
8614         return -TARGET_EFAULT;
8615     }
8616 
8617     for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
8618         unsigned bit = i * target_bits;
8619         abi_ulong val = 0;
8620 
8621         for (j = 0; j < target_bits; j++, bit++) {
8622             if (host_mask[bit / host_bits] & (1UL << (bit % host_bits))) {
8623                 val |= 1UL << j;
8624             }
8625         }
8626         __put_user(val, &target_mask[i]);
8627     }
8628 
8629     unlock_user(target_mask, target_addr, target_size);
8630     return 0;
8631 }
8632 
8633 #ifdef TARGET_NR_getdents
8634 static int do_getdents(abi_long dirfd, abi_long arg2, abi_long count)
8635 {
8636     g_autofree void *hdirp = NULL;
8637     void *tdirp;
8638     int hlen, hoff, toff;
8639     int hreclen, treclen;
8640     off64_t prev_diroff = 0;
8641 
8642     hdirp = g_try_malloc(count);
8643     if (!hdirp) {
8644         return -TARGET_ENOMEM;
8645     }
8646 
8647 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8648     hlen = sys_getdents(dirfd, hdirp, count);
8649 #else
8650     hlen = sys_getdents64(dirfd, hdirp, count);
8651 #endif
8652 
8653     hlen = get_errno(hlen);
8654     if (is_error(hlen)) {
8655         return hlen;
8656     }
8657 
8658     tdirp = lock_user(VERIFY_WRITE, arg2, count, 0);
8659     if (!tdirp) {
8660         return -TARGET_EFAULT;
8661     }
8662 
8663     for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) {
8664 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8665         struct linux_dirent *hde = hdirp + hoff;
8666 #else
8667         struct linux_dirent64 *hde = hdirp + hoff;
8668 #endif
8669         struct target_dirent *tde = tdirp + toff;
8670         int namelen;
8671         uint8_t type;
8672 
8673         namelen = strlen(hde->d_name);
8674         hreclen = hde->d_reclen;
8675         treclen = offsetof(struct target_dirent, d_name) + namelen + 2;
8676         treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent));
8677 
8678         if (toff + treclen > count) {
8679             /*
8680              * If the host struct is smaller than the target struct, or
8681              * requires less alignment and thus packs into less space,
8682              * then the host can return more entries than we can pass
8683              * on to the guest.
8684              */
8685             if (toff == 0) {
8686                 toff = -TARGET_EINVAL; /* result buffer is too small */
8687                 break;
8688             }
8689             /*
8690              * Return what we have, resetting the file pointer to the
8691              * location of the first record not returned.
8692              */
8693             lseek64(dirfd, prev_diroff, SEEK_SET);
8694             break;
8695         }
8696 
8697         prev_diroff = hde->d_off;
8698         tde->d_ino = tswapal(hde->d_ino);
8699         tde->d_off = tswapal(hde->d_off);
8700         tde->d_reclen = tswap16(treclen);
8701         memcpy(tde->d_name, hde->d_name, namelen + 1);
8702 
8703         /*
8704          * The getdents type is in what was formerly a padding byte at the
8705          * end of the structure.
8706          */
8707 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8708         type = *((uint8_t *)hde + hreclen - 1);
8709 #else
8710         type = hde->d_type;
8711 #endif
8712         *((uint8_t *)tde + treclen - 1) = type;
8713     }
8714 
8715     unlock_user(tdirp, arg2, toff);
8716     return toff;
8717 }
8718 #endif /* TARGET_NR_getdents */
8719 
8720 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
8721 static int do_getdents64(abi_long dirfd, abi_long arg2, abi_long count)
8722 {
8723     g_autofree void *hdirp = NULL;
8724     void *tdirp;
8725     int hlen, hoff, toff;
8726     int hreclen, treclen;
8727     off64_t prev_diroff = 0;
8728 
8729     hdirp = g_try_malloc(count);
8730     if (!hdirp) {
8731         return -TARGET_ENOMEM;
8732     }
8733 
8734     hlen = get_errno(sys_getdents64(dirfd, hdirp, count));
8735     if (is_error(hlen)) {
8736         return hlen;
8737     }
8738 
8739     tdirp = lock_user(VERIFY_WRITE, arg2, count, 0);
8740     if (!tdirp) {
8741         return -TARGET_EFAULT;
8742     }
8743 
8744     for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) {
8745         struct linux_dirent64 *hde = hdirp + hoff;
8746         struct target_dirent64 *tde = tdirp + toff;
8747         int namelen;
8748 
8749         namelen = strlen(hde->d_name) + 1;
8750         hreclen = hde->d_reclen;
8751         treclen = offsetof(struct target_dirent64, d_name) + namelen;
8752         treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent64));
8753 
8754         if (toff + treclen > count) {
8755             /*
8756              * If the host struct is smaller than the target struct, or
8757              * requires less alignment and thus packs into less space,
8758              * then the host can return more entries than we can pass
8759              * on to the guest.
8760              */
8761             if (toff == 0) {
8762                 toff = -TARGET_EINVAL; /* result buffer is too small */
8763                 break;
8764             }
8765             /*
8766              * Return what we have, resetting the file pointer to the
8767              * location of the first record not returned.
8768              */
8769             lseek64(dirfd, prev_diroff, SEEK_SET);
8770             break;
8771         }
8772 
8773         prev_diroff = hde->d_off;
8774         tde->d_ino = tswap64(hde->d_ino);
8775         tde->d_off = tswap64(hde->d_off);
8776         tde->d_reclen = tswap16(treclen);
8777         tde->d_type = hde->d_type;
8778         memcpy(tde->d_name, hde->d_name, namelen);
8779     }
8780 
8781     unlock_user(tdirp, arg2, toff);
8782     return toff;
8783 }
8784 #endif /* TARGET_NR_getdents64 */
8785 
8786 #if defined(TARGET_NR_riscv_hwprobe)
8787 
8788 #define RISCV_HWPROBE_KEY_MVENDORID     0
8789 #define RISCV_HWPROBE_KEY_MARCHID       1
8790 #define RISCV_HWPROBE_KEY_MIMPID        2
8791 
8792 #define RISCV_HWPROBE_KEY_BASE_BEHAVIOR 3
8793 #define     RISCV_HWPROBE_BASE_BEHAVIOR_IMA (1 << 0)
8794 
8795 #define RISCV_HWPROBE_KEY_IMA_EXT_0     4
8796 #define     RISCV_HWPROBE_IMA_FD       (1 << 0)
8797 #define     RISCV_HWPROBE_IMA_C        (1 << 1)
8798 #define     RISCV_HWPROBE_IMA_V        (1 << 2)
8799 #define     RISCV_HWPROBE_EXT_ZBA      (1 << 3)
8800 #define     RISCV_HWPROBE_EXT_ZBB      (1 << 4)
8801 #define     RISCV_HWPROBE_EXT_ZBS      (1 << 5)
8802 
8803 #define RISCV_HWPROBE_KEY_CPUPERF_0     5
8804 #define     RISCV_HWPROBE_MISALIGNED_UNKNOWN     (0 << 0)
8805 #define     RISCV_HWPROBE_MISALIGNED_EMULATED    (1 << 0)
8806 #define     RISCV_HWPROBE_MISALIGNED_SLOW        (2 << 0)
8807 #define     RISCV_HWPROBE_MISALIGNED_FAST        (3 << 0)
8808 #define     RISCV_HWPROBE_MISALIGNED_UNSUPPORTED (4 << 0)
8809 #define     RISCV_HWPROBE_MISALIGNED_MASK        (7 << 0)
8810 
8811 struct riscv_hwprobe {
8812     abi_llong  key;
8813     abi_ullong value;
8814 };
8815 
8816 static void risc_hwprobe_fill_pairs(CPURISCVState *env,
8817                                     struct riscv_hwprobe *pair,
8818                                     size_t pair_count)
8819 {
8820     const RISCVCPUConfig *cfg = riscv_cpu_cfg(env);
8821 
8822     for (; pair_count > 0; pair_count--, pair++) {
8823         abi_llong key;
8824         abi_ullong value;
8825         __put_user(0, &pair->value);
8826         __get_user(key, &pair->key);
8827         switch (key) {
8828         case RISCV_HWPROBE_KEY_MVENDORID:
8829             __put_user(cfg->mvendorid, &pair->value);
8830             break;
8831         case RISCV_HWPROBE_KEY_MARCHID:
8832             __put_user(cfg->marchid, &pair->value);
8833             break;
8834         case RISCV_HWPROBE_KEY_MIMPID:
8835             __put_user(cfg->mimpid, &pair->value);
8836             break;
8837         case RISCV_HWPROBE_KEY_BASE_BEHAVIOR:
8838             value = riscv_has_ext(env, RVI) &&
8839                     riscv_has_ext(env, RVM) &&
8840                     riscv_has_ext(env, RVA) ?
8841                     RISCV_HWPROBE_BASE_BEHAVIOR_IMA : 0;
8842             __put_user(value, &pair->value);
8843             break;
8844         case RISCV_HWPROBE_KEY_IMA_EXT_0:
8845             value = riscv_has_ext(env, RVF) &&
8846                     riscv_has_ext(env, RVD) ?
8847                     RISCV_HWPROBE_IMA_FD : 0;
8848             value |= riscv_has_ext(env, RVC) ?
8849                      RISCV_HWPROBE_IMA_C : 0;
8850             value |= riscv_has_ext(env, RVV) ?
8851                      RISCV_HWPROBE_IMA_V : 0;
8852             value |= cfg->ext_zba ?
8853                      RISCV_HWPROBE_EXT_ZBA : 0;
8854             value |= cfg->ext_zbb ?
8855                      RISCV_HWPROBE_EXT_ZBB : 0;
8856             value |= cfg->ext_zbs ?
8857                      RISCV_HWPROBE_EXT_ZBS : 0;
8858             __put_user(value, &pair->value);
8859             break;
8860         case RISCV_HWPROBE_KEY_CPUPERF_0:
8861             __put_user(RISCV_HWPROBE_MISALIGNED_FAST, &pair->value);
8862             break;
8863         default:
8864             __put_user(-1, &pair->key);
8865             break;
8866         }
8867     }
8868 }
8869 
8870 static int cpu_set_valid(abi_long arg3, abi_long arg4)
8871 {
8872     int ret, i, tmp;
8873     size_t host_mask_size, target_mask_size;
8874     unsigned long *host_mask;
8875 
8876     /*
8877      * cpu_set_t represent CPU masks as bit masks of type unsigned long *.
8878      * arg3 contains the cpu count.
8879      */
8880     tmp = (8 * sizeof(abi_ulong));
8881     target_mask_size = ((arg3 + tmp - 1) / tmp) * sizeof(abi_ulong);
8882     host_mask_size = (target_mask_size + (sizeof(*host_mask) - 1)) &
8883                      ~(sizeof(*host_mask) - 1);
8884 
8885     host_mask = alloca(host_mask_size);
8886 
8887     ret = target_to_host_cpu_mask(host_mask, host_mask_size,
8888                                   arg4, target_mask_size);
8889     if (ret != 0) {
8890         return ret;
8891     }
8892 
8893     for (i = 0 ; i < host_mask_size / sizeof(*host_mask); i++) {
8894         if (host_mask[i] != 0) {
8895             return 0;
8896         }
8897     }
8898     return -TARGET_EINVAL;
8899 }
8900 
8901 static abi_long do_riscv_hwprobe(CPUArchState *cpu_env, abi_long arg1,
8902                                  abi_long arg2, abi_long arg3,
8903                                  abi_long arg4, abi_long arg5)
8904 {
8905     int ret;
8906     struct riscv_hwprobe *host_pairs;
8907 
8908     /* flags must be 0 */
8909     if (arg5 != 0) {
8910         return -TARGET_EINVAL;
8911     }
8912 
8913     /* check cpu_set */
8914     if (arg3 != 0) {
8915         ret = cpu_set_valid(arg3, arg4);
8916         if (ret != 0) {
8917             return ret;
8918         }
8919     } else if (arg4 != 0) {
8920         return -TARGET_EINVAL;
8921     }
8922 
8923     /* no pairs */
8924     if (arg2 == 0) {
8925         return 0;
8926     }
8927 
8928     host_pairs = lock_user(VERIFY_WRITE, arg1,
8929                            sizeof(*host_pairs) * (size_t)arg2, 0);
8930     if (host_pairs == NULL) {
8931         return -TARGET_EFAULT;
8932     }
8933     risc_hwprobe_fill_pairs(cpu_env, host_pairs, arg2);
8934     unlock_user(host_pairs, arg1, sizeof(*host_pairs) * (size_t)arg2);
8935     return 0;
8936 }
8937 #endif /* TARGET_NR_riscv_hwprobe */
8938 
8939 #if defined(TARGET_NR_pivot_root) && defined(__NR_pivot_root)
8940 _syscall2(int, pivot_root, const char *, new_root, const char *, put_old)
8941 #endif
8942 
8943 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree)
8944 #define __NR_sys_open_tree __NR_open_tree
8945 _syscall3(int, sys_open_tree, int, __dfd, const char *, __filename,
8946           unsigned int, __flags)
8947 #endif
8948 
8949 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount)
8950 #define __NR_sys_move_mount __NR_move_mount
8951 _syscall5(int, sys_move_mount, int, __from_dfd, const char *, __from_pathname,
8952            int, __to_dfd, const char *, __to_pathname, unsigned int, flag)
8953 #endif
8954 
8955 /* This is an internal helper for do_syscall so that it is easier
8956  * to have a single return point, so that actions, such as logging
8957  * of syscall results, can be performed.
8958  * All errnos that do_syscall() returns must be -TARGET_<errcode>.
8959  */
8960 static abi_long do_syscall1(CPUArchState *cpu_env, int num, abi_long arg1,
8961                             abi_long arg2, abi_long arg3, abi_long arg4,
8962                             abi_long arg5, abi_long arg6, abi_long arg7,
8963                             abi_long arg8)
8964 {
8965     CPUState *cpu = env_cpu(cpu_env);
8966     abi_long ret;
8967 #if defined(TARGET_NR_stat) || defined(TARGET_NR_stat64) \
8968     || defined(TARGET_NR_lstat) || defined(TARGET_NR_lstat64) \
8969     || defined(TARGET_NR_fstat) || defined(TARGET_NR_fstat64) \
8970     || defined(TARGET_NR_statx)
8971     struct stat st;
8972 #endif
8973 #if defined(TARGET_NR_statfs) || defined(TARGET_NR_statfs64) \
8974     || defined(TARGET_NR_fstatfs)
8975     struct statfs stfs;
8976 #endif
8977     void *p;
8978 
8979     switch(num) {
8980     case TARGET_NR_exit:
8981         /* In old applications this may be used to implement _exit(2).
8982            However in threaded applications it is used for thread termination,
8983            and _exit_group is used for application termination.
8984            Do thread termination if we have more then one thread.  */
8985 
8986         if (block_signals()) {
8987             return -QEMU_ERESTARTSYS;
8988         }
8989 
8990         pthread_mutex_lock(&clone_lock);
8991 
8992         if (CPU_NEXT(first_cpu)) {
8993             TaskState *ts = cpu->opaque;
8994 
8995             if (ts->child_tidptr) {
8996                 put_user_u32(0, ts->child_tidptr);
8997                 do_sys_futex(g2h(cpu, ts->child_tidptr),
8998                              FUTEX_WAKE, INT_MAX, NULL, NULL, 0);
8999             }
9000 
9001             object_unparent(OBJECT(cpu));
9002             object_unref(OBJECT(cpu));
9003             /*
9004              * At this point the CPU should be unrealized and removed
9005              * from cpu lists. We can clean-up the rest of the thread
9006              * data without the lock held.
9007              */
9008 
9009             pthread_mutex_unlock(&clone_lock);
9010 
9011             thread_cpu = NULL;
9012             g_free(ts);
9013             rcu_unregister_thread();
9014             pthread_exit(NULL);
9015         }
9016 
9017         pthread_mutex_unlock(&clone_lock);
9018         preexit_cleanup(cpu_env, arg1);
9019         _exit(arg1);
9020         return 0; /* avoid warning */
9021     case TARGET_NR_read:
9022         if (arg2 == 0 && arg3 == 0) {
9023             return get_errno(safe_read(arg1, 0, 0));
9024         } else {
9025             if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
9026                 return -TARGET_EFAULT;
9027             ret = get_errno(safe_read(arg1, p, arg3));
9028             if (ret >= 0 &&
9029                 fd_trans_host_to_target_data(arg1)) {
9030                 ret = fd_trans_host_to_target_data(arg1)(p, ret);
9031             }
9032             unlock_user(p, arg2, ret);
9033         }
9034         return ret;
9035     case TARGET_NR_write:
9036         if (arg2 == 0 && arg3 == 0) {
9037             return get_errno(safe_write(arg1, 0, 0));
9038         }
9039         if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
9040             return -TARGET_EFAULT;
9041         if (fd_trans_target_to_host_data(arg1)) {
9042             void *copy = g_malloc(arg3);
9043             memcpy(copy, p, arg3);
9044             ret = fd_trans_target_to_host_data(arg1)(copy, arg3);
9045             if (ret >= 0) {
9046                 ret = get_errno(safe_write(arg1, copy, ret));
9047             }
9048             g_free(copy);
9049         } else {
9050             ret = get_errno(safe_write(arg1, p, arg3));
9051         }
9052         unlock_user(p, arg2, 0);
9053         return ret;
9054 
9055 #ifdef TARGET_NR_open
9056     case TARGET_NR_open:
9057         if (!(p = lock_user_string(arg1)))
9058             return -TARGET_EFAULT;
9059         ret = get_errno(do_guest_openat(cpu_env, AT_FDCWD, p,
9060                                   target_to_host_bitmask(arg2, fcntl_flags_tbl),
9061                                   arg3, true));
9062         fd_trans_unregister(ret);
9063         unlock_user(p, arg1, 0);
9064         return ret;
9065 #endif
9066     case TARGET_NR_openat:
9067         if (!(p = lock_user_string(arg2)))
9068             return -TARGET_EFAULT;
9069         ret = get_errno(do_guest_openat(cpu_env, arg1, p,
9070                                   target_to_host_bitmask(arg3, fcntl_flags_tbl),
9071                                   arg4, true));
9072         fd_trans_unregister(ret);
9073         unlock_user(p, arg2, 0);
9074         return ret;
9075 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
9076     case TARGET_NR_name_to_handle_at:
9077         ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5);
9078         return ret;
9079 #endif
9080 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
9081     case TARGET_NR_open_by_handle_at:
9082         ret = do_open_by_handle_at(arg1, arg2, arg3);
9083         fd_trans_unregister(ret);
9084         return ret;
9085 #endif
9086 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
9087     case TARGET_NR_pidfd_open:
9088         return get_errno(pidfd_open(arg1, arg2));
9089 #endif
9090 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal)
9091     case TARGET_NR_pidfd_send_signal:
9092         {
9093             siginfo_t uinfo, *puinfo;
9094 
9095             if (arg3) {
9096                 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
9097                 if (!p) {
9098                     return -TARGET_EFAULT;
9099                  }
9100                  target_to_host_siginfo(&uinfo, p);
9101                  unlock_user(p, arg3, 0);
9102                  puinfo = &uinfo;
9103             } else {
9104                  puinfo = NULL;
9105             }
9106             ret = get_errno(pidfd_send_signal(arg1, target_to_host_signal(arg2),
9107                                               puinfo, arg4));
9108         }
9109         return ret;
9110 #endif
9111 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd)
9112     case TARGET_NR_pidfd_getfd:
9113         return get_errno(pidfd_getfd(arg1, arg2, arg3));
9114 #endif
9115     case TARGET_NR_close:
9116         fd_trans_unregister(arg1);
9117         return get_errno(close(arg1));
9118 #if defined(__NR_close_range) && defined(TARGET_NR_close_range)
9119     case TARGET_NR_close_range:
9120         ret = get_errno(sys_close_range(arg1, arg2, arg3));
9121         if (ret == 0 && !(arg3 & CLOSE_RANGE_CLOEXEC)) {
9122             abi_long fd, maxfd;
9123             maxfd = MIN(arg2, target_fd_max);
9124             for (fd = arg1; fd < maxfd; fd++) {
9125                 fd_trans_unregister(fd);
9126             }
9127         }
9128         return ret;
9129 #endif
9130 
9131     case TARGET_NR_brk:
9132         return do_brk(arg1);
9133 #ifdef TARGET_NR_fork
9134     case TARGET_NR_fork:
9135         return get_errno(do_fork(cpu_env, TARGET_SIGCHLD, 0, 0, 0, 0));
9136 #endif
9137 #ifdef TARGET_NR_waitpid
9138     case TARGET_NR_waitpid:
9139         {
9140             int status;
9141             ret = get_errno(safe_wait4(arg1, &status, arg3, 0));
9142             if (!is_error(ret) && arg2 && ret
9143                 && put_user_s32(host_to_target_waitstatus(status), arg2))
9144                 return -TARGET_EFAULT;
9145         }
9146         return ret;
9147 #endif
9148 #ifdef TARGET_NR_waitid
9149     case TARGET_NR_waitid:
9150         {
9151             siginfo_t info;
9152             info.si_pid = 0;
9153             ret = get_errno(safe_waitid(arg1, arg2, &info, arg4, NULL));
9154             if (!is_error(ret) && arg3 && info.si_pid != 0) {
9155                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_siginfo_t), 0)))
9156                     return -TARGET_EFAULT;
9157                 host_to_target_siginfo(p, &info);
9158                 unlock_user(p, arg3, sizeof(target_siginfo_t));
9159             }
9160         }
9161         return ret;
9162 #endif
9163 #ifdef TARGET_NR_creat /* not on alpha */
9164     case TARGET_NR_creat:
9165         if (!(p = lock_user_string(arg1)))
9166             return -TARGET_EFAULT;
9167         ret = get_errno(creat(p, arg2));
9168         fd_trans_unregister(ret);
9169         unlock_user(p, arg1, 0);
9170         return ret;
9171 #endif
9172 #ifdef TARGET_NR_link
9173     case TARGET_NR_link:
9174         {
9175             void * p2;
9176             p = lock_user_string(arg1);
9177             p2 = lock_user_string(arg2);
9178             if (!p || !p2)
9179                 ret = -TARGET_EFAULT;
9180             else
9181                 ret = get_errno(link(p, p2));
9182             unlock_user(p2, arg2, 0);
9183             unlock_user(p, arg1, 0);
9184         }
9185         return ret;
9186 #endif
9187 #if defined(TARGET_NR_linkat)
9188     case TARGET_NR_linkat:
9189         {
9190             void * p2 = NULL;
9191             if (!arg2 || !arg4)
9192                 return -TARGET_EFAULT;
9193             p  = lock_user_string(arg2);
9194             p2 = lock_user_string(arg4);
9195             if (!p || !p2)
9196                 ret = -TARGET_EFAULT;
9197             else
9198                 ret = get_errno(linkat(arg1, p, arg3, p2, arg5));
9199             unlock_user(p, arg2, 0);
9200             unlock_user(p2, arg4, 0);
9201         }
9202         return ret;
9203 #endif
9204 #ifdef TARGET_NR_unlink
9205     case TARGET_NR_unlink:
9206         if (!(p = lock_user_string(arg1)))
9207             return -TARGET_EFAULT;
9208         ret = get_errno(unlink(p));
9209         unlock_user(p, arg1, 0);
9210         return ret;
9211 #endif
9212 #if defined(TARGET_NR_unlinkat)
9213     case TARGET_NR_unlinkat:
9214         if (!(p = lock_user_string(arg2)))
9215             return -TARGET_EFAULT;
9216         ret = get_errno(unlinkat(arg1, p, arg3));
9217         unlock_user(p, arg2, 0);
9218         return ret;
9219 #endif
9220     case TARGET_NR_execveat:
9221         return do_execv(cpu_env, arg1, arg2, arg3, arg4, arg5, true);
9222     case TARGET_NR_execve:
9223         return do_execv(cpu_env, AT_FDCWD, arg1, arg2, arg3, 0, false);
9224     case TARGET_NR_chdir:
9225         if (!(p = lock_user_string(arg1)))
9226             return -TARGET_EFAULT;
9227         ret = get_errno(chdir(p));
9228         unlock_user(p, arg1, 0);
9229         return ret;
9230 #ifdef TARGET_NR_time
9231     case TARGET_NR_time:
9232         {
9233             time_t host_time;
9234             ret = get_errno(time(&host_time));
9235             if (!is_error(ret)
9236                 && arg1
9237                 && put_user_sal(host_time, arg1))
9238                 return -TARGET_EFAULT;
9239         }
9240         return ret;
9241 #endif
9242 #ifdef TARGET_NR_mknod
9243     case TARGET_NR_mknod:
9244         if (!(p = lock_user_string(arg1)))
9245             return -TARGET_EFAULT;
9246         ret = get_errno(mknod(p, arg2, arg3));
9247         unlock_user(p, arg1, 0);
9248         return ret;
9249 #endif
9250 #if defined(TARGET_NR_mknodat)
9251     case TARGET_NR_mknodat:
9252         if (!(p = lock_user_string(arg2)))
9253             return -TARGET_EFAULT;
9254         ret = get_errno(mknodat(arg1, p, arg3, arg4));
9255         unlock_user(p, arg2, 0);
9256         return ret;
9257 #endif
9258 #ifdef TARGET_NR_chmod
9259     case TARGET_NR_chmod:
9260         if (!(p = lock_user_string(arg1)))
9261             return -TARGET_EFAULT;
9262         ret = get_errno(chmod(p, arg2));
9263         unlock_user(p, arg1, 0);
9264         return ret;
9265 #endif
9266 #ifdef TARGET_NR_lseek
9267     case TARGET_NR_lseek:
9268         return get_errno(lseek(arg1, arg2, arg3));
9269 #endif
9270 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
9271     /* Alpha specific */
9272     case TARGET_NR_getxpid:
9273         cpu_env->ir[IR_A4] = getppid();
9274         return get_errno(getpid());
9275 #endif
9276 #ifdef TARGET_NR_getpid
9277     case TARGET_NR_getpid:
9278         return get_errno(getpid());
9279 #endif
9280     case TARGET_NR_mount:
9281         {
9282             /* need to look at the data field */
9283             void *p2, *p3;
9284 
9285             if (arg1) {
9286                 p = lock_user_string(arg1);
9287                 if (!p) {
9288                     return -TARGET_EFAULT;
9289                 }
9290             } else {
9291                 p = NULL;
9292             }
9293 
9294             p2 = lock_user_string(arg2);
9295             if (!p2) {
9296                 if (arg1) {
9297                     unlock_user(p, arg1, 0);
9298                 }
9299                 return -TARGET_EFAULT;
9300             }
9301 
9302             if (arg3) {
9303                 p3 = lock_user_string(arg3);
9304                 if (!p3) {
9305                     if (arg1) {
9306                         unlock_user(p, arg1, 0);
9307                     }
9308                     unlock_user(p2, arg2, 0);
9309                     return -TARGET_EFAULT;
9310                 }
9311             } else {
9312                 p3 = NULL;
9313             }
9314 
9315             /* FIXME - arg5 should be locked, but it isn't clear how to
9316              * do that since it's not guaranteed to be a NULL-terminated
9317              * string.
9318              */
9319             if (!arg5) {
9320                 ret = mount(p, p2, p3, (unsigned long)arg4, NULL);
9321             } else {
9322                 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(cpu, arg5));
9323             }
9324             ret = get_errno(ret);
9325 
9326             if (arg1) {
9327                 unlock_user(p, arg1, 0);
9328             }
9329             unlock_user(p2, arg2, 0);
9330             if (arg3) {
9331                 unlock_user(p3, arg3, 0);
9332             }
9333         }
9334         return ret;
9335 #if defined(TARGET_NR_umount) || defined(TARGET_NR_oldumount)
9336 #if defined(TARGET_NR_umount)
9337     case TARGET_NR_umount:
9338 #endif
9339 #if defined(TARGET_NR_oldumount)
9340     case TARGET_NR_oldumount:
9341 #endif
9342         if (!(p = lock_user_string(arg1)))
9343             return -TARGET_EFAULT;
9344         ret = get_errno(umount(p));
9345         unlock_user(p, arg1, 0);
9346         return ret;
9347 #endif
9348 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount)
9349     case TARGET_NR_move_mount:
9350         {
9351             void *p2, *p4;
9352 
9353             if (!arg2 || !arg4) {
9354                 return -TARGET_EFAULT;
9355             }
9356 
9357             p2 = lock_user_string(arg2);
9358             if (!p2) {
9359                 return -TARGET_EFAULT;
9360             }
9361 
9362             p4 = lock_user_string(arg4);
9363             if (!p4) {
9364                 unlock_user(p2, arg2, 0);
9365                 return -TARGET_EFAULT;
9366             }
9367             ret = get_errno(sys_move_mount(arg1, p2, arg3, p4, arg5));
9368 
9369             unlock_user(p2, arg2, 0);
9370             unlock_user(p4, arg4, 0);
9371 
9372             return ret;
9373         }
9374 #endif
9375 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree)
9376     case TARGET_NR_open_tree:
9377         {
9378             void *p2;
9379             int host_flags;
9380 
9381             if (!arg2) {
9382                 return -TARGET_EFAULT;
9383             }
9384 
9385             p2 = lock_user_string(arg2);
9386             if (!p2) {
9387                 return -TARGET_EFAULT;
9388             }
9389 
9390             host_flags = arg3 & ~TARGET_O_CLOEXEC;
9391             if (arg3 & TARGET_O_CLOEXEC) {
9392                 host_flags |= O_CLOEXEC;
9393             }
9394 
9395             ret = get_errno(sys_open_tree(arg1, p2, host_flags));
9396 
9397             unlock_user(p2, arg2, 0);
9398 
9399             return ret;
9400         }
9401 #endif
9402 #ifdef TARGET_NR_stime /* not on alpha */
9403     case TARGET_NR_stime:
9404         {
9405             struct timespec ts;
9406             ts.tv_nsec = 0;
9407             if (get_user_sal(ts.tv_sec, arg1)) {
9408                 return -TARGET_EFAULT;
9409             }
9410             return get_errno(clock_settime(CLOCK_REALTIME, &ts));
9411         }
9412 #endif
9413 #ifdef TARGET_NR_alarm /* not on alpha */
9414     case TARGET_NR_alarm:
9415         return alarm(arg1);
9416 #endif
9417 #ifdef TARGET_NR_pause /* not on alpha */
9418     case TARGET_NR_pause:
9419         if (!block_signals()) {
9420             sigsuspend(&((TaskState *)cpu->opaque)->signal_mask);
9421         }
9422         return -TARGET_EINTR;
9423 #endif
9424 #ifdef TARGET_NR_utime
9425     case TARGET_NR_utime:
9426         {
9427             struct utimbuf tbuf, *host_tbuf;
9428             struct target_utimbuf *target_tbuf;
9429             if (arg2) {
9430                 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1))
9431                     return -TARGET_EFAULT;
9432                 tbuf.actime = tswapal(target_tbuf->actime);
9433                 tbuf.modtime = tswapal(target_tbuf->modtime);
9434                 unlock_user_struct(target_tbuf, arg2, 0);
9435                 host_tbuf = &tbuf;
9436             } else {
9437                 host_tbuf = NULL;
9438             }
9439             if (!(p = lock_user_string(arg1)))
9440                 return -TARGET_EFAULT;
9441             ret = get_errno(utime(p, host_tbuf));
9442             unlock_user(p, arg1, 0);
9443         }
9444         return ret;
9445 #endif
9446 #ifdef TARGET_NR_utimes
9447     case TARGET_NR_utimes:
9448         {
9449             struct timeval *tvp, tv[2];
9450             if (arg2) {
9451                 if (copy_from_user_timeval(&tv[0], arg2)
9452                     || copy_from_user_timeval(&tv[1],
9453                                               arg2 + sizeof(struct target_timeval)))
9454                     return -TARGET_EFAULT;
9455                 tvp = tv;
9456             } else {
9457                 tvp = NULL;
9458             }
9459             if (!(p = lock_user_string(arg1)))
9460                 return -TARGET_EFAULT;
9461             ret = get_errno(utimes(p, tvp));
9462             unlock_user(p, arg1, 0);
9463         }
9464         return ret;
9465 #endif
9466 #if defined(TARGET_NR_futimesat)
9467     case TARGET_NR_futimesat:
9468         {
9469             struct timeval *tvp, tv[2];
9470             if (arg3) {
9471                 if (copy_from_user_timeval(&tv[0], arg3)
9472                     || copy_from_user_timeval(&tv[1],
9473                                               arg3 + sizeof(struct target_timeval)))
9474                     return -TARGET_EFAULT;
9475                 tvp = tv;
9476             } else {
9477                 tvp = NULL;
9478             }
9479             if (!(p = lock_user_string(arg2))) {
9480                 return -TARGET_EFAULT;
9481             }
9482             ret = get_errno(futimesat(arg1, path(p), tvp));
9483             unlock_user(p, arg2, 0);
9484         }
9485         return ret;
9486 #endif
9487 #ifdef TARGET_NR_access
9488     case TARGET_NR_access:
9489         if (!(p = lock_user_string(arg1))) {
9490             return -TARGET_EFAULT;
9491         }
9492         ret = get_errno(access(path(p), arg2));
9493         unlock_user(p, arg1, 0);
9494         return ret;
9495 #endif
9496 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
9497     case TARGET_NR_faccessat:
9498         if (!(p = lock_user_string(arg2))) {
9499             return -TARGET_EFAULT;
9500         }
9501         ret = get_errno(faccessat(arg1, p, arg3, 0));
9502         unlock_user(p, arg2, 0);
9503         return ret;
9504 #endif
9505 #if defined(TARGET_NR_faccessat2)
9506     case TARGET_NR_faccessat2:
9507         if (!(p = lock_user_string(arg2))) {
9508             return -TARGET_EFAULT;
9509         }
9510         ret = get_errno(faccessat(arg1, p, arg3, arg4));
9511         unlock_user(p, arg2, 0);
9512         return ret;
9513 #endif
9514 #ifdef TARGET_NR_nice /* not on alpha */
9515     case TARGET_NR_nice:
9516         return get_errno(nice(arg1));
9517 #endif
9518     case TARGET_NR_sync:
9519         sync();
9520         return 0;
9521 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS)
9522     case TARGET_NR_syncfs:
9523         return get_errno(syncfs(arg1));
9524 #endif
9525     case TARGET_NR_kill:
9526         return get_errno(safe_kill(arg1, target_to_host_signal(arg2)));
9527 #ifdef TARGET_NR_rename
9528     case TARGET_NR_rename:
9529         {
9530             void *p2;
9531             p = lock_user_string(arg1);
9532             p2 = lock_user_string(arg2);
9533             if (!p || !p2)
9534                 ret = -TARGET_EFAULT;
9535             else
9536                 ret = get_errno(rename(p, p2));
9537             unlock_user(p2, arg2, 0);
9538             unlock_user(p, arg1, 0);
9539         }
9540         return ret;
9541 #endif
9542 #if defined(TARGET_NR_renameat)
9543     case TARGET_NR_renameat:
9544         {
9545             void *p2;
9546             p  = lock_user_string(arg2);
9547             p2 = lock_user_string(arg4);
9548             if (!p || !p2)
9549                 ret = -TARGET_EFAULT;
9550             else
9551                 ret = get_errno(renameat(arg1, p, arg3, p2));
9552             unlock_user(p2, arg4, 0);
9553             unlock_user(p, arg2, 0);
9554         }
9555         return ret;
9556 #endif
9557 #if defined(TARGET_NR_renameat2)
9558     case TARGET_NR_renameat2:
9559         {
9560             void *p2;
9561             p  = lock_user_string(arg2);
9562             p2 = lock_user_string(arg4);
9563             if (!p || !p2) {
9564                 ret = -TARGET_EFAULT;
9565             } else {
9566                 ret = get_errno(sys_renameat2(arg1, p, arg3, p2, arg5));
9567             }
9568             unlock_user(p2, arg4, 0);
9569             unlock_user(p, arg2, 0);
9570         }
9571         return ret;
9572 #endif
9573 #ifdef TARGET_NR_mkdir
9574     case TARGET_NR_mkdir:
9575         if (!(p = lock_user_string(arg1)))
9576             return -TARGET_EFAULT;
9577         ret = get_errno(mkdir(p, arg2));
9578         unlock_user(p, arg1, 0);
9579         return ret;
9580 #endif
9581 #if defined(TARGET_NR_mkdirat)
9582     case TARGET_NR_mkdirat:
9583         if (!(p = lock_user_string(arg2)))
9584             return -TARGET_EFAULT;
9585         ret = get_errno(mkdirat(arg1, p, arg3));
9586         unlock_user(p, arg2, 0);
9587         return ret;
9588 #endif
9589 #ifdef TARGET_NR_rmdir
9590     case TARGET_NR_rmdir:
9591         if (!(p = lock_user_string(arg1)))
9592             return -TARGET_EFAULT;
9593         ret = get_errno(rmdir(p));
9594         unlock_user(p, arg1, 0);
9595         return ret;
9596 #endif
9597     case TARGET_NR_dup:
9598         ret = get_errno(dup(arg1));
9599         if (ret >= 0) {
9600             fd_trans_dup(arg1, ret);
9601         }
9602         return ret;
9603 #ifdef TARGET_NR_pipe
9604     case TARGET_NR_pipe:
9605         return do_pipe(cpu_env, arg1, 0, 0);
9606 #endif
9607 #ifdef TARGET_NR_pipe2
9608     case TARGET_NR_pipe2:
9609         return do_pipe(cpu_env, arg1,
9610                        target_to_host_bitmask(arg2, fcntl_flags_tbl), 1);
9611 #endif
9612     case TARGET_NR_times:
9613         {
9614             struct target_tms *tmsp;
9615             struct tms tms;
9616             ret = get_errno(times(&tms));
9617             if (arg1) {
9618                 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0);
9619                 if (!tmsp)
9620                     return -TARGET_EFAULT;
9621                 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime));
9622                 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime));
9623                 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime));
9624                 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime));
9625             }
9626             if (!is_error(ret))
9627                 ret = host_to_target_clock_t(ret);
9628         }
9629         return ret;
9630     case TARGET_NR_acct:
9631         if (arg1 == 0) {
9632             ret = get_errno(acct(NULL));
9633         } else {
9634             if (!(p = lock_user_string(arg1))) {
9635                 return -TARGET_EFAULT;
9636             }
9637             ret = get_errno(acct(path(p)));
9638             unlock_user(p, arg1, 0);
9639         }
9640         return ret;
9641 #ifdef TARGET_NR_umount2
9642     case TARGET_NR_umount2:
9643         if (!(p = lock_user_string(arg1)))
9644             return -TARGET_EFAULT;
9645         ret = get_errno(umount2(p, arg2));
9646         unlock_user(p, arg1, 0);
9647         return ret;
9648 #endif
9649     case TARGET_NR_ioctl:
9650         return do_ioctl(arg1, arg2, arg3);
9651 #ifdef TARGET_NR_fcntl
9652     case TARGET_NR_fcntl:
9653         return do_fcntl(arg1, arg2, arg3);
9654 #endif
9655     case TARGET_NR_setpgid:
9656         return get_errno(setpgid(arg1, arg2));
9657     case TARGET_NR_umask:
9658         return get_errno(umask(arg1));
9659     case TARGET_NR_chroot:
9660         if (!(p = lock_user_string(arg1)))
9661             return -TARGET_EFAULT;
9662         ret = get_errno(chroot(p));
9663         unlock_user(p, arg1, 0);
9664         return ret;
9665 #ifdef TARGET_NR_dup2
9666     case TARGET_NR_dup2:
9667         ret = get_errno(dup2(arg1, arg2));
9668         if (ret >= 0) {
9669             fd_trans_dup(arg1, arg2);
9670         }
9671         return ret;
9672 #endif
9673 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
9674     case TARGET_NR_dup3:
9675     {
9676         int host_flags;
9677 
9678         if ((arg3 & ~TARGET_O_CLOEXEC) != 0) {
9679             return -EINVAL;
9680         }
9681         host_flags = target_to_host_bitmask(arg3, fcntl_flags_tbl);
9682         ret = get_errno(dup3(arg1, arg2, host_flags));
9683         if (ret >= 0) {
9684             fd_trans_dup(arg1, arg2);
9685         }
9686         return ret;
9687     }
9688 #endif
9689 #ifdef TARGET_NR_getppid /* not on alpha */
9690     case TARGET_NR_getppid:
9691         return get_errno(getppid());
9692 #endif
9693 #ifdef TARGET_NR_getpgrp
9694     case TARGET_NR_getpgrp:
9695         return get_errno(getpgrp());
9696 #endif
9697     case TARGET_NR_setsid:
9698         return get_errno(setsid());
9699 #ifdef TARGET_NR_sigaction
9700     case TARGET_NR_sigaction:
9701         {
9702 #if defined(TARGET_MIPS)
9703 	    struct target_sigaction act, oact, *pact, *old_act;
9704 
9705 	    if (arg2) {
9706                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
9707                     return -TARGET_EFAULT;
9708 		act._sa_handler = old_act->_sa_handler;
9709 		target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]);
9710 		act.sa_flags = old_act->sa_flags;
9711 		unlock_user_struct(old_act, arg2, 0);
9712 		pact = &act;
9713 	    } else {
9714 		pact = NULL;
9715 	    }
9716 
9717         ret = get_errno(do_sigaction(arg1, pact, &oact, 0));
9718 
9719 	    if (!is_error(ret) && arg3) {
9720                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
9721                     return -TARGET_EFAULT;
9722 		old_act->_sa_handler = oact._sa_handler;
9723 		old_act->sa_flags = oact.sa_flags;
9724 		old_act->sa_mask.sig[0] = oact.sa_mask.sig[0];
9725 		old_act->sa_mask.sig[1] = 0;
9726 		old_act->sa_mask.sig[2] = 0;
9727 		old_act->sa_mask.sig[3] = 0;
9728 		unlock_user_struct(old_act, arg3, 1);
9729 	    }
9730 #else
9731             struct target_old_sigaction *old_act;
9732             struct target_sigaction act, oact, *pact;
9733             if (arg2) {
9734                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
9735                     return -TARGET_EFAULT;
9736                 act._sa_handler = old_act->_sa_handler;
9737                 target_siginitset(&act.sa_mask, old_act->sa_mask);
9738                 act.sa_flags = old_act->sa_flags;
9739 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9740                 act.sa_restorer = old_act->sa_restorer;
9741 #endif
9742                 unlock_user_struct(old_act, arg2, 0);
9743                 pact = &act;
9744             } else {
9745                 pact = NULL;
9746             }
9747             ret = get_errno(do_sigaction(arg1, pact, &oact, 0));
9748             if (!is_error(ret) && arg3) {
9749                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
9750                     return -TARGET_EFAULT;
9751                 old_act->_sa_handler = oact._sa_handler;
9752                 old_act->sa_mask = oact.sa_mask.sig[0];
9753                 old_act->sa_flags = oact.sa_flags;
9754 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9755                 old_act->sa_restorer = oact.sa_restorer;
9756 #endif
9757                 unlock_user_struct(old_act, arg3, 1);
9758             }
9759 #endif
9760         }
9761         return ret;
9762 #endif
9763     case TARGET_NR_rt_sigaction:
9764         {
9765             /*
9766              * For Alpha and SPARC this is a 5 argument syscall, with
9767              * a 'restorer' parameter which must be copied into the
9768              * sa_restorer field of the sigaction struct.
9769              * For Alpha that 'restorer' is arg5; for SPARC it is arg4,
9770              * and arg5 is the sigsetsize.
9771              */
9772 #if defined(TARGET_ALPHA)
9773             target_ulong sigsetsize = arg4;
9774             target_ulong restorer = arg5;
9775 #elif defined(TARGET_SPARC)
9776             target_ulong restorer = arg4;
9777             target_ulong sigsetsize = arg5;
9778 #else
9779             target_ulong sigsetsize = arg4;
9780             target_ulong restorer = 0;
9781 #endif
9782             struct target_sigaction *act = NULL;
9783             struct target_sigaction *oact = NULL;
9784 
9785             if (sigsetsize != sizeof(target_sigset_t)) {
9786                 return -TARGET_EINVAL;
9787             }
9788             if (arg2 && !lock_user_struct(VERIFY_READ, act, arg2, 1)) {
9789                 return -TARGET_EFAULT;
9790             }
9791             if (arg3 && !lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) {
9792                 ret = -TARGET_EFAULT;
9793             } else {
9794                 ret = get_errno(do_sigaction(arg1, act, oact, restorer));
9795                 if (oact) {
9796                     unlock_user_struct(oact, arg3, 1);
9797                 }
9798             }
9799             if (act) {
9800                 unlock_user_struct(act, arg2, 0);
9801             }
9802         }
9803         return ret;
9804 #ifdef TARGET_NR_sgetmask /* not on alpha */
9805     case TARGET_NR_sgetmask:
9806         {
9807             sigset_t cur_set;
9808             abi_ulong target_set;
9809             ret = do_sigprocmask(0, NULL, &cur_set);
9810             if (!ret) {
9811                 host_to_target_old_sigset(&target_set, &cur_set);
9812                 ret = target_set;
9813             }
9814         }
9815         return ret;
9816 #endif
9817 #ifdef TARGET_NR_ssetmask /* not on alpha */
9818     case TARGET_NR_ssetmask:
9819         {
9820             sigset_t set, oset;
9821             abi_ulong target_set = arg1;
9822             target_to_host_old_sigset(&set, &target_set);
9823             ret = do_sigprocmask(SIG_SETMASK, &set, &oset);
9824             if (!ret) {
9825                 host_to_target_old_sigset(&target_set, &oset);
9826                 ret = target_set;
9827             }
9828         }
9829         return ret;
9830 #endif
9831 #ifdef TARGET_NR_sigprocmask
9832     case TARGET_NR_sigprocmask:
9833         {
9834 #if defined(TARGET_ALPHA)
9835             sigset_t set, oldset;
9836             abi_ulong mask;
9837             int how;
9838 
9839             switch (arg1) {
9840             case TARGET_SIG_BLOCK:
9841                 how = SIG_BLOCK;
9842                 break;
9843             case TARGET_SIG_UNBLOCK:
9844                 how = SIG_UNBLOCK;
9845                 break;
9846             case TARGET_SIG_SETMASK:
9847                 how = SIG_SETMASK;
9848                 break;
9849             default:
9850                 return -TARGET_EINVAL;
9851             }
9852             mask = arg2;
9853             target_to_host_old_sigset(&set, &mask);
9854 
9855             ret = do_sigprocmask(how, &set, &oldset);
9856             if (!is_error(ret)) {
9857                 host_to_target_old_sigset(&mask, &oldset);
9858                 ret = mask;
9859                 cpu_env->ir[IR_V0] = 0; /* force no error */
9860             }
9861 #else
9862             sigset_t set, oldset, *set_ptr;
9863             int how;
9864 
9865             if (arg2) {
9866                 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1);
9867                 if (!p) {
9868                     return -TARGET_EFAULT;
9869                 }
9870                 target_to_host_old_sigset(&set, p);
9871                 unlock_user(p, arg2, 0);
9872                 set_ptr = &set;
9873                 switch (arg1) {
9874                 case TARGET_SIG_BLOCK:
9875                     how = SIG_BLOCK;
9876                     break;
9877                 case TARGET_SIG_UNBLOCK:
9878                     how = SIG_UNBLOCK;
9879                     break;
9880                 case TARGET_SIG_SETMASK:
9881                     how = SIG_SETMASK;
9882                     break;
9883                 default:
9884                     return -TARGET_EINVAL;
9885                 }
9886             } else {
9887                 how = 0;
9888                 set_ptr = NULL;
9889             }
9890             ret = do_sigprocmask(how, set_ptr, &oldset);
9891             if (!is_error(ret) && arg3) {
9892                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
9893                     return -TARGET_EFAULT;
9894                 host_to_target_old_sigset(p, &oldset);
9895                 unlock_user(p, arg3, sizeof(target_sigset_t));
9896             }
9897 #endif
9898         }
9899         return ret;
9900 #endif
9901     case TARGET_NR_rt_sigprocmask:
9902         {
9903             int how = arg1;
9904             sigset_t set, oldset, *set_ptr;
9905 
9906             if (arg4 != sizeof(target_sigset_t)) {
9907                 return -TARGET_EINVAL;
9908             }
9909 
9910             if (arg2) {
9911                 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1);
9912                 if (!p) {
9913                     return -TARGET_EFAULT;
9914                 }
9915                 target_to_host_sigset(&set, p);
9916                 unlock_user(p, arg2, 0);
9917                 set_ptr = &set;
9918                 switch(how) {
9919                 case TARGET_SIG_BLOCK:
9920                     how = SIG_BLOCK;
9921                     break;
9922                 case TARGET_SIG_UNBLOCK:
9923                     how = SIG_UNBLOCK;
9924                     break;
9925                 case TARGET_SIG_SETMASK:
9926                     how = SIG_SETMASK;
9927                     break;
9928                 default:
9929                     return -TARGET_EINVAL;
9930                 }
9931             } else {
9932                 how = 0;
9933                 set_ptr = NULL;
9934             }
9935             ret = do_sigprocmask(how, set_ptr, &oldset);
9936             if (!is_error(ret) && arg3) {
9937                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
9938                     return -TARGET_EFAULT;
9939                 host_to_target_sigset(p, &oldset);
9940                 unlock_user(p, arg3, sizeof(target_sigset_t));
9941             }
9942         }
9943         return ret;
9944 #ifdef TARGET_NR_sigpending
9945     case TARGET_NR_sigpending:
9946         {
9947             sigset_t set;
9948             ret = get_errno(sigpending(&set));
9949             if (!is_error(ret)) {
9950                 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
9951                     return -TARGET_EFAULT;
9952                 host_to_target_old_sigset(p, &set);
9953                 unlock_user(p, arg1, sizeof(target_sigset_t));
9954             }
9955         }
9956         return ret;
9957 #endif
9958     case TARGET_NR_rt_sigpending:
9959         {
9960             sigset_t set;
9961 
9962             /* Yes, this check is >, not != like most. We follow the kernel's
9963              * logic and it does it like this because it implements
9964              * NR_sigpending through the same code path, and in that case
9965              * the old_sigset_t is smaller in size.
9966              */
9967             if (arg2 > sizeof(target_sigset_t)) {
9968                 return -TARGET_EINVAL;
9969             }
9970 
9971             ret = get_errno(sigpending(&set));
9972             if (!is_error(ret)) {
9973                 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
9974                     return -TARGET_EFAULT;
9975                 host_to_target_sigset(p, &set);
9976                 unlock_user(p, arg1, sizeof(target_sigset_t));
9977             }
9978         }
9979         return ret;
9980 #ifdef TARGET_NR_sigsuspend
9981     case TARGET_NR_sigsuspend:
9982         {
9983             sigset_t *set;
9984 
9985 #if defined(TARGET_ALPHA)
9986             TaskState *ts = cpu->opaque;
9987             /* target_to_host_old_sigset will bswap back */
9988             abi_ulong mask = tswapal(arg1);
9989             set = &ts->sigsuspend_mask;
9990             target_to_host_old_sigset(set, &mask);
9991 #else
9992             ret = process_sigsuspend_mask(&set, arg1, sizeof(target_sigset_t));
9993             if (ret != 0) {
9994                 return ret;
9995             }
9996 #endif
9997             ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE));
9998             finish_sigsuspend_mask(ret);
9999         }
10000         return ret;
10001 #endif
10002     case TARGET_NR_rt_sigsuspend:
10003         {
10004             sigset_t *set;
10005 
10006             ret = process_sigsuspend_mask(&set, arg1, arg2);
10007             if (ret != 0) {
10008                 return ret;
10009             }
10010             ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE));
10011             finish_sigsuspend_mask(ret);
10012         }
10013         return ret;
10014 #ifdef TARGET_NR_rt_sigtimedwait
10015     case TARGET_NR_rt_sigtimedwait:
10016         {
10017             sigset_t set;
10018             struct timespec uts, *puts;
10019             siginfo_t uinfo;
10020 
10021             if (arg4 != sizeof(target_sigset_t)) {
10022                 return -TARGET_EINVAL;
10023             }
10024 
10025             if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
10026                 return -TARGET_EFAULT;
10027             target_to_host_sigset(&set, p);
10028             unlock_user(p, arg1, 0);
10029             if (arg3) {
10030                 puts = &uts;
10031                 if (target_to_host_timespec(puts, arg3)) {
10032                     return -TARGET_EFAULT;
10033                 }
10034             } else {
10035                 puts = NULL;
10036             }
10037             ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
10038                                                  SIGSET_T_SIZE));
10039             if (!is_error(ret)) {
10040                 if (arg2) {
10041                     p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t),
10042                                   0);
10043                     if (!p) {
10044                         return -TARGET_EFAULT;
10045                     }
10046                     host_to_target_siginfo(p, &uinfo);
10047                     unlock_user(p, arg2, sizeof(target_siginfo_t));
10048                 }
10049                 ret = host_to_target_signal(ret);
10050             }
10051         }
10052         return ret;
10053 #endif
10054 #ifdef TARGET_NR_rt_sigtimedwait_time64
10055     case TARGET_NR_rt_sigtimedwait_time64:
10056         {
10057             sigset_t set;
10058             struct timespec uts, *puts;
10059             siginfo_t uinfo;
10060 
10061             if (arg4 != sizeof(target_sigset_t)) {
10062                 return -TARGET_EINVAL;
10063             }
10064 
10065             p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1);
10066             if (!p) {
10067                 return -TARGET_EFAULT;
10068             }
10069             target_to_host_sigset(&set, p);
10070             unlock_user(p, arg1, 0);
10071             if (arg3) {
10072                 puts = &uts;
10073                 if (target_to_host_timespec64(puts, arg3)) {
10074                     return -TARGET_EFAULT;
10075                 }
10076             } else {
10077                 puts = NULL;
10078             }
10079             ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
10080                                                  SIGSET_T_SIZE));
10081             if (!is_error(ret)) {
10082                 if (arg2) {
10083                     p = lock_user(VERIFY_WRITE, arg2,
10084                                   sizeof(target_siginfo_t), 0);
10085                     if (!p) {
10086                         return -TARGET_EFAULT;
10087                     }
10088                     host_to_target_siginfo(p, &uinfo);
10089                     unlock_user(p, arg2, sizeof(target_siginfo_t));
10090                 }
10091                 ret = host_to_target_signal(ret);
10092             }
10093         }
10094         return ret;
10095 #endif
10096     case TARGET_NR_rt_sigqueueinfo:
10097         {
10098             siginfo_t uinfo;
10099 
10100             p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
10101             if (!p) {
10102                 return -TARGET_EFAULT;
10103             }
10104             target_to_host_siginfo(&uinfo, p);
10105             unlock_user(p, arg3, 0);
10106             ret = get_errno(sys_rt_sigqueueinfo(arg1, target_to_host_signal(arg2), &uinfo));
10107         }
10108         return ret;
10109     case TARGET_NR_rt_tgsigqueueinfo:
10110         {
10111             siginfo_t uinfo;
10112 
10113             p = lock_user(VERIFY_READ, arg4, sizeof(target_siginfo_t), 1);
10114             if (!p) {
10115                 return -TARGET_EFAULT;
10116             }
10117             target_to_host_siginfo(&uinfo, p);
10118             unlock_user(p, arg4, 0);
10119             ret = get_errno(sys_rt_tgsigqueueinfo(arg1, arg2, target_to_host_signal(arg3), &uinfo));
10120         }
10121         return ret;
10122 #ifdef TARGET_NR_sigreturn
10123     case TARGET_NR_sigreturn:
10124         if (block_signals()) {
10125             return -QEMU_ERESTARTSYS;
10126         }
10127         return do_sigreturn(cpu_env);
10128 #endif
10129     case TARGET_NR_rt_sigreturn:
10130         if (block_signals()) {
10131             return -QEMU_ERESTARTSYS;
10132         }
10133         return do_rt_sigreturn(cpu_env);
10134     case TARGET_NR_sethostname:
10135         if (!(p = lock_user_string(arg1)))
10136             return -TARGET_EFAULT;
10137         ret = get_errno(sethostname(p, arg2));
10138         unlock_user(p, arg1, 0);
10139         return ret;
10140 #ifdef TARGET_NR_setrlimit
10141     case TARGET_NR_setrlimit:
10142         {
10143             int resource = target_to_host_resource(arg1);
10144             struct target_rlimit *target_rlim;
10145             struct rlimit rlim;
10146             if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1))
10147                 return -TARGET_EFAULT;
10148             rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur);
10149             rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max);
10150             unlock_user_struct(target_rlim, arg2, 0);
10151             /*
10152              * If we just passed through resource limit settings for memory then
10153              * they would also apply to QEMU's own allocations, and QEMU will
10154              * crash or hang or die if its allocations fail. Ideally we would
10155              * track the guest allocations in QEMU and apply the limits ourselves.
10156              * For now, just tell the guest the call succeeded but don't actually
10157              * limit anything.
10158              */
10159             if (resource != RLIMIT_AS &&
10160                 resource != RLIMIT_DATA &&
10161                 resource != RLIMIT_STACK) {
10162                 return get_errno(setrlimit(resource, &rlim));
10163             } else {
10164                 return 0;
10165             }
10166         }
10167 #endif
10168 #ifdef TARGET_NR_getrlimit
10169     case TARGET_NR_getrlimit:
10170         {
10171             int resource = target_to_host_resource(arg1);
10172             struct target_rlimit *target_rlim;
10173             struct rlimit rlim;
10174 
10175             ret = get_errno(getrlimit(resource, &rlim));
10176             if (!is_error(ret)) {
10177                 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
10178                     return -TARGET_EFAULT;
10179                 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
10180                 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
10181                 unlock_user_struct(target_rlim, arg2, 1);
10182             }
10183         }
10184         return ret;
10185 #endif
10186     case TARGET_NR_getrusage:
10187         {
10188             struct rusage rusage;
10189             ret = get_errno(getrusage(arg1, &rusage));
10190             if (!is_error(ret)) {
10191                 ret = host_to_target_rusage(arg2, &rusage);
10192             }
10193         }
10194         return ret;
10195 #if defined(TARGET_NR_gettimeofday)
10196     case TARGET_NR_gettimeofday:
10197         {
10198             struct timeval tv;
10199             struct timezone tz;
10200 
10201             ret = get_errno(gettimeofday(&tv, &tz));
10202             if (!is_error(ret)) {
10203                 if (arg1 && copy_to_user_timeval(arg1, &tv)) {
10204                     return -TARGET_EFAULT;
10205                 }
10206                 if (arg2 && copy_to_user_timezone(arg2, &tz)) {
10207                     return -TARGET_EFAULT;
10208                 }
10209             }
10210         }
10211         return ret;
10212 #endif
10213 #if defined(TARGET_NR_settimeofday)
10214     case TARGET_NR_settimeofday:
10215         {
10216             struct timeval tv, *ptv = NULL;
10217             struct timezone tz, *ptz = NULL;
10218 
10219             if (arg1) {
10220                 if (copy_from_user_timeval(&tv, arg1)) {
10221                     return -TARGET_EFAULT;
10222                 }
10223                 ptv = &tv;
10224             }
10225 
10226             if (arg2) {
10227                 if (copy_from_user_timezone(&tz, arg2)) {
10228                     return -TARGET_EFAULT;
10229                 }
10230                 ptz = &tz;
10231             }
10232 
10233             return get_errno(settimeofday(ptv, ptz));
10234         }
10235 #endif
10236 #if defined(TARGET_NR_select)
10237     case TARGET_NR_select:
10238 #if defined(TARGET_WANT_NI_OLD_SELECT)
10239         /* some architectures used to have old_select here
10240          * but now ENOSYS it.
10241          */
10242         ret = -TARGET_ENOSYS;
10243 #elif defined(TARGET_WANT_OLD_SYS_SELECT)
10244         ret = do_old_select(arg1);
10245 #else
10246         ret = do_select(arg1, arg2, arg3, arg4, arg5);
10247 #endif
10248         return ret;
10249 #endif
10250 #ifdef TARGET_NR_pselect6
10251     case TARGET_NR_pselect6:
10252         return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, false);
10253 #endif
10254 #ifdef TARGET_NR_pselect6_time64
10255     case TARGET_NR_pselect6_time64:
10256         return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, true);
10257 #endif
10258 #ifdef TARGET_NR_symlink
10259     case TARGET_NR_symlink:
10260         {
10261             void *p2;
10262             p = lock_user_string(arg1);
10263             p2 = lock_user_string(arg2);
10264             if (!p || !p2)
10265                 ret = -TARGET_EFAULT;
10266             else
10267                 ret = get_errno(symlink(p, p2));
10268             unlock_user(p2, arg2, 0);
10269             unlock_user(p, arg1, 0);
10270         }
10271         return ret;
10272 #endif
10273 #if defined(TARGET_NR_symlinkat)
10274     case TARGET_NR_symlinkat:
10275         {
10276             void *p2;
10277             p  = lock_user_string(arg1);
10278             p2 = lock_user_string(arg3);
10279             if (!p || !p2)
10280                 ret = -TARGET_EFAULT;
10281             else
10282                 ret = get_errno(symlinkat(p, arg2, p2));
10283             unlock_user(p2, arg3, 0);
10284             unlock_user(p, arg1, 0);
10285         }
10286         return ret;
10287 #endif
10288 #ifdef TARGET_NR_readlink
10289     case TARGET_NR_readlink:
10290         {
10291             void *p2;
10292             p = lock_user_string(arg1);
10293             p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10294             ret = get_errno(do_guest_readlink(p, p2, arg3));
10295             unlock_user(p2, arg2, ret);
10296             unlock_user(p, arg1, 0);
10297         }
10298         return ret;
10299 #endif
10300 #if defined(TARGET_NR_readlinkat)
10301     case TARGET_NR_readlinkat:
10302         {
10303             void *p2;
10304             p  = lock_user_string(arg2);
10305             p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0);
10306             if (!p || !p2) {
10307                 ret = -TARGET_EFAULT;
10308             } else if (!arg4) {
10309                 /* Short circuit this for the magic exe check. */
10310                 ret = -TARGET_EINVAL;
10311             } else if (is_proc_myself((const char *)p, "exe")) {
10312                 /*
10313                  * Don't worry about sign mismatch as earlier mapping
10314                  * logic would have thrown a bad address error.
10315                  */
10316                 ret = MIN(strlen(exec_path), arg4);
10317                 /* We cannot NUL terminate the string. */
10318                 memcpy(p2, exec_path, ret);
10319             } else {
10320                 ret = get_errno(readlinkat(arg1, path(p), p2, arg4));
10321             }
10322             unlock_user(p2, arg3, ret);
10323             unlock_user(p, arg2, 0);
10324         }
10325         return ret;
10326 #endif
10327 #ifdef TARGET_NR_swapon
10328     case TARGET_NR_swapon:
10329         if (!(p = lock_user_string(arg1)))
10330             return -TARGET_EFAULT;
10331         ret = get_errno(swapon(p, arg2));
10332         unlock_user(p, arg1, 0);
10333         return ret;
10334 #endif
10335     case TARGET_NR_reboot:
10336         if (arg3 == LINUX_REBOOT_CMD_RESTART2) {
10337            /* arg4 must be ignored in all other cases */
10338            p = lock_user_string(arg4);
10339            if (!p) {
10340                return -TARGET_EFAULT;
10341            }
10342            ret = get_errno(reboot(arg1, arg2, arg3, p));
10343            unlock_user(p, arg4, 0);
10344         } else {
10345            ret = get_errno(reboot(arg1, arg2, arg3, NULL));
10346         }
10347         return ret;
10348 #ifdef TARGET_NR_mmap
10349     case TARGET_NR_mmap:
10350 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \
10351     (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \
10352     defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
10353     || defined(TARGET_S390X)
10354         {
10355             abi_ulong *v;
10356             abi_ulong v1, v2, v3, v4, v5, v6;
10357             if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1)))
10358                 return -TARGET_EFAULT;
10359             v1 = tswapal(v[0]);
10360             v2 = tswapal(v[1]);
10361             v3 = tswapal(v[2]);
10362             v4 = tswapal(v[3]);
10363             v5 = tswapal(v[4]);
10364             v6 = tswapal(v[5]);
10365             unlock_user(v, arg1, 0);
10366             return do_mmap(v1, v2, v3, v4, v5, v6);
10367         }
10368 #else
10369         /* mmap pointers are always untagged */
10370         return do_mmap(arg1, arg2, arg3, arg4, arg5, arg6);
10371 #endif
10372 #endif
10373 #ifdef TARGET_NR_mmap2
10374     case TARGET_NR_mmap2:
10375 #ifndef MMAP_SHIFT
10376 #define MMAP_SHIFT 12
10377 #endif
10378         return do_mmap(arg1, arg2, arg3, arg4, arg5,
10379                        (off_t)(abi_ulong)arg6 << MMAP_SHIFT);
10380 #endif
10381     case TARGET_NR_munmap:
10382         arg1 = cpu_untagged_addr(cpu, arg1);
10383         return get_errno(target_munmap(arg1, arg2));
10384     case TARGET_NR_mprotect:
10385         arg1 = cpu_untagged_addr(cpu, arg1);
10386         {
10387             TaskState *ts = cpu->opaque;
10388             /* Special hack to detect libc making the stack executable.  */
10389             if ((arg3 & PROT_GROWSDOWN)
10390                 && arg1 >= ts->info->stack_limit
10391                 && arg1 <= ts->info->start_stack) {
10392                 arg3 &= ~PROT_GROWSDOWN;
10393                 arg2 = arg2 + arg1 - ts->info->stack_limit;
10394                 arg1 = ts->info->stack_limit;
10395             }
10396         }
10397         return get_errno(target_mprotect(arg1, arg2, arg3));
10398 #ifdef TARGET_NR_mremap
10399     case TARGET_NR_mremap:
10400         arg1 = cpu_untagged_addr(cpu, arg1);
10401         /* mremap new_addr (arg5) is always untagged */
10402         return get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5));
10403 #endif
10404         /* ??? msync/mlock/munlock are broken for softmmu.  */
10405 #ifdef TARGET_NR_msync
10406     case TARGET_NR_msync:
10407         return get_errno(msync(g2h(cpu, arg1), arg2,
10408                                target_to_host_msync_arg(arg3)));
10409 #endif
10410 #ifdef TARGET_NR_mlock
10411     case TARGET_NR_mlock:
10412         return get_errno(mlock(g2h(cpu, arg1), arg2));
10413 #endif
10414 #ifdef TARGET_NR_munlock
10415     case TARGET_NR_munlock:
10416         return get_errno(munlock(g2h(cpu, arg1), arg2));
10417 #endif
10418 #ifdef TARGET_NR_mlockall
10419     case TARGET_NR_mlockall:
10420         return get_errno(mlockall(target_to_host_mlockall_arg(arg1)));
10421 #endif
10422 #ifdef TARGET_NR_munlockall
10423     case TARGET_NR_munlockall:
10424         return get_errno(munlockall());
10425 #endif
10426 #ifdef TARGET_NR_truncate
10427     case TARGET_NR_truncate:
10428         if (!(p = lock_user_string(arg1)))
10429             return -TARGET_EFAULT;
10430         ret = get_errno(truncate(p, arg2));
10431         unlock_user(p, arg1, 0);
10432         return ret;
10433 #endif
10434 #ifdef TARGET_NR_ftruncate
10435     case TARGET_NR_ftruncate:
10436         return get_errno(ftruncate(arg1, arg2));
10437 #endif
10438     case TARGET_NR_fchmod:
10439         return get_errno(fchmod(arg1, arg2));
10440 #if defined(TARGET_NR_fchmodat)
10441     case TARGET_NR_fchmodat:
10442         if (!(p = lock_user_string(arg2)))
10443             return -TARGET_EFAULT;
10444         ret = get_errno(fchmodat(arg1, p, arg3, 0));
10445         unlock_user(p, arg2, 0);
10446         return ret;
10447 #endif
10448     case TARGET_NR_getpriority:
10449         /* Note that negative values are valid for getpriority, so we must
10450            differentiate based on errno settings.  */
10451         errno = 0;
10452         ret = getpriority(arg1, arg2);
10453         if (ret == -1 && errno != 0) {
10454             return -host_to_target_errno(errno);
10455         }
10456 #ifdef TARGET_ALPHA
10457         /* Return value is the unbiased priority.  Signal no error.  */
10458         cpu_env->ir[IR_V0] = 0;
10459 #else
10460         /* Return value is a biased priority to avoid negative numbers.  */
10461         ret = 20 - ret;
10462 #endif
10463         return ret;
10464     case TARGET_NR_setpriority:
10465         return get_errno(setpriority(arg1, arg2, arg3));
10466 #ifdef TARGET_NR_statfs
10467     case TARGET_NR_statfs:
10468         if (!(p = lock_user_string(arg1))) {
10469             return -TARGET_EFAULT;
10470         }
10471         ret = get_errno(statfs(path(p), &stfs));
10472         unlock_user(p, arg1, 0);
10473     convert_statfs:
10474         if (!is_error(ret)) {
10475             struct target_statfs *target_stfs;
10476 
10477             if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0))
10478                 return -TARGET_EFAULT;
10479             __put_user(stfs.f_type, &target_stfs->f_type);
10480             __put_user(stfs.f_bsize, &target_stfs->f_bsize);
10481             __put_user(stfs.f_blocks, &target_stfs->f_blocks);
10482             __put_user(stfs.f_bfree, &target_stfs->f_bfree);
10483             __put_user(stfs.f_bavail, &target_stfs->f_bavail);
10484             __put_user(stfs.f_files, &target_stfs->f_files);
10485             __put_user(stfs.f_ffree, &target_stfs->f_ffree);
10486             __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
10487             __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
10488             __put_user(stfs.f_namelen, &target_stfs->f_namelen);
10489             __put_user(stfs.f_frsize, &target_stfs->f_frsize);
10490 #ifdef _STATFS_F_FLAGS
10491             __put_user(stfs.f_flags, &target_stfs->f_flags);
10492 #else
10493             __put_user(0, &target_stfs->f_flags);
10494 #endif
10495             memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
10496             unlock_user_struct(target_stfs, arg2, 1);
10497         }
10498         return ret;
10499 #endif
10500 #ifdef TARGET_NR_fstatfs
10501     case TARGET_NR_fstatfs:
10502         ret = get_errno(fstatfs(arg1, &stfs));
10503         goto convert_statfs;
10504 #endif
10505 #ifdef TARGET_NR_statfs64
10506     case TARGET_NR_statfs64:
10507         if (!(p = lock_user_string(arg1))) {
10508             return -TARGET_EFAULT;
10509         }
10510         ret = get_errno(statfs(path(p), &stfs));
10511         unlock_user(p, arg1, 0);
10512     convert_statfs64:
10513         if (!is_error(ret)) {
10514             struct target_statfs64 *target_stfs;
10515 
10516             if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0))
10517                 return -TARGET_EFAULT;
10518             __put_user(stfs.f_type, &target_stfs->f_type);
10519             __put_user(stfs.f_bsize, &target_stfs->f_bsize);
10520             __put_user(stfs.f_blocks, &target_stfs->f_blocks);
10521             __put_user(stfs.f_bfree, &target_stfs->f_bfree);
10522             __put_user(stfs.f_bavail, &target_stfs->f_bavail);
10523             __put_user(stfs.f_files, &target_stfs->f_files);
10524             __put_user(stfs.f_ffree, &target_stfs->f_ffree);
10525             __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
10526             __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
10527             __put_user(stfs.f_namelen, &target_stfs->f_namelen);
10528             __put_user(stfs.f_frsize, &target_stfs->f_frsize);
10529 #ifdef _STATFS_F_FLAGS
10530             __put_user(stfs.f_flags, &target_stfs->f_flags);
10531 #else
10532             __put_user(0, &target_stfs->f_flags);
10533 #endif
10534             memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
10535             unlock_user_struct(target_stfs, arg3, 1);
10536         }
10537         return ret;
10538     case TARGET_NR_fstatfs64:
10539         ret = get_errno(fstatfs(arg1, &stfs));
10540         goto convert_statfs64;
10541 #endif
10542 #ifdef TARGET_NR_socketcall
10543     case TARGET_NR_socketcall:
10544         return do_socketcall(arg1, arg2);
10545 #endif
10546 #ifdef TARGET_NR_accept
10547     case TARGET_NR_accept:
10548         return do_accept4(arg1, arg2, arg3, 0);
10549 #endif
10550 #ifdef TARGET_NR_accept4
10551     case TARGET_NR_accept4:
10552         return do_accept4(arg1, arg2, arg3, arg4);
10553 #endif
10554 #ifdef TARGET_NR_bind
10555     case TARGET_NR_bind:
10556         return do_bind(arg1, arg2, arg3);
10557 #endif
10558 #ifdef TARGET_NR_connect
10559     case TARGET_NR_connect:
10560         return do_connect(arg1, arg2, arg3);
10561 #endif
10562 #ifdef TARGET_NR_getpeername
10563     case TARGET_NR_getpeername:
10564         return do_getpeername(arg1, arg2, arg3);
10565 #endif
10566 #ifdef TARGET_NR_getsockname
10567     case TARGET_NR_getsockname:
10568         return do_getsockname(arg1, arg2, arg3);
10569 #endif
10570 #ifdef TARGET_NR_getsockopt
10571     case TARGET_NR_getsockopt:
10572         return do_getsockopt(arg1, arg2, arg3, arg4, arg5);
10573 #endif
10574 #ifdef TARGET_NR_listen
10575     case TARGET_NR_listen:
10576         return get_errno(listen(arg1, arg2));
10577 #endif
10578 #ifdef TARGET_NR_recv
10579     case TARGET_NR_recv:
10580         return do_recvfrom(arg1, arg2, arg3, arg4, 0, 0);
10581 #endif
10582 #ifdef TARGET_NR_recvfrom
10583     case TARGET_NR_recvfrom:
10584         return do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6);
10585 #endif
10586 #ifdef TARGET_NR_recvmsg
10587     case TARGET_NR_recvmsg:
10588         return do_sendrecvmsg(arg1, arg2, arg3, 0);
10589 #endif
10590 #ifdef TARGET_NR_send
10591     case TARGET_NR_send:
10592         return do_sendto(arg1, arg2, arg3, arg4, 0, 0);
10593 #endif
10594 #ifdef TARGET_NR_sendmsg
10595     case TARGET_NR_sendmsg:
10596         return do_sendrecvmsg(arg1, arg2, arg3, 1);
10597 #endif
10598 #ifdef TARGET_NR_sendmmsg
10599     case TARGET_NR_sendmmsg:
10600         return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1);
10601 #endif
10602 #ifdef TARGET_NR_recvmmsg
10603     case TARGET_NR_recvmmsg:
10604         return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0);
10605 #endif
10606 #ifdef TARGET_NR_sendto
10607     case TARGET_NR_sendto:
10608         return do_sendto(arg1, arg2, arg3, arg4, arg5, arg6);
10609 #endif
10610 #ifdef TARGET_NR_shutdown
10611     case TARGET_NR_shutdown:
10612         return get_errno(shutdown(arg1, arg2));
10613 #endif
10614 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
10615     case TARGET_NR_getrandom:
10616         p = lock_user(VERIFY_WRITE, arg1, arg2, 0);
10617         if (!p) {
10618             return -TARGET_EFAULT;
10619         }
10620         ret = get_errno(getrandom(p, arg2, arg3));
10621         unlock_user(p, arg1, ret);
10622         return ret;
10623 #endif
10624 #ifdef TARGET_NR_socket
10625     case TARGET_NR_socket:
10626         return do_socket(arg1, arg2, arg3);
10627 #endif
10628 #ifdef TARGET_NR_socketpair
10629     case TARGET_NR_socketpair:
10630         return do_socketpair(arg1, arg2, arg3, arg4);
10631 #endif
10632 #ifdef TARGET_NR_setsockopt
10633     case TARGET_NR_setsockopt:
10634         return do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5);
10635 #endif
10636 #if defined(TARGET_NR_syslog)
10637     case TARGET_NR_syslog:
10638         {
10639             int len = arg2;
10640 
10641             switch (arg1) {
10642             case TARGET_SYSLOG_ACTION_CLOSE:         /* Close log */
10643             case TARGET_SYSLOG_ACTION_OPEN:          /* Open log */
10644             case TARGET_SYSLOG_ACTION_CLEAR:         /* Clear ring buffer */
10645             case TARGET_SYSLOG_ACTION_CONSOLE_OFF:   /* Disable logging */
10646             case TARGET_SYSLOG_ACTION_CONSOLE_ON:    /* Enable logging */
10647             case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL: /* Set messages level */
10648             case TARGET_SYSLOG_ACTION_SIZE_UNREAD:   /* Number of chars */
10649             case TARGET_SYSLOG_ACTION_SIZE_BUFFER:   /* Size of the buffer */
10650                 return get_errno(sys_syslog((int)arg1, NULL, (int)arg3));
10651             case TARGET_SYSLOG_ACTION_READ:          /* Read from log */
10652             case TARGET_SYSLOG_ACTION_READ_CLEAR:    /* Read/clear msgs */
10653             case TARGET_SYSLOG_ACTION_READ_ALL:      /* Read last messages */
10654                 {
10655                     if (len < 0) {
10656                         return -TARGET_EINVAL;
10657                     }
10658                     if (len == 0) {
10659                         return 0;
10660                     }
10661                     p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10662                     if (!p) {
10663                         return -TARGET_EFAULT;
10664                     }
10665                     ret = get_errno(sys_syslog((int)arg1, p, (int)arg3));
10666                     unlock_user(p, arg2, arg3);
10667                 }
10668                 return ret;
10669             default:
10670                 return -TARGET_EINVAL;
10671             }
10672         }
10673         break;
10674 #endif
10675     case TARGET_NR_setitimer:
10676         {
10677             struct itimerval value, ovalue, *pvalue;
10678 
10679             if (arg2) {
10680                 pvalue = &value;
10681                 if (copy_from_user_timeval(&pvalue->it_interval, arg2)
10682                     || copy_from_user_timeval(&pvalue->it_value,
10683                                               arg2 + sizeof(struct target_timeval)))
10684                     return -TARGET_EFAULT;
10685             } else {
10686                 pvalue = NULL;
10687             }
10688             ret = get_errno(setitimer(arg1, pvalue, &ovalue));
10689             if (!is_error(ret) && arg3) {
10690                 if (copy_to_user_timeval(arg3,
10691                                          &ovalue.it_interval)
10692                     || copy_to_user_timeval(arg3 + sizeof(struct target_timeval),
10693                                             &ovalue.it_value))
10694                     return -TARGET_EFAULT;
10695             }
10696         }
10697         return ret;
10698     case TARGET_NR_getitimer:
10699         {
10700             struct itimerval value;
10701 
10702             ret = get_errno(getitimer(arg1, &value));
10703             if (!is_error(ret) && arg2) {
10704                 if (copy_to_user_timeval(arg2,
10705                                          &value.it_interval)
10706                     || copy_to_user_timeval(arg2 + sizeof(struct target_timeval),
10707                                             &value.it_value))
10708                     return -TARGET_EFAULT;
10709             }
10710         }
10711         return ret;
10712 #ifdef TARGET_NR_stat
10713     case TARGET_NR_stat:
10714         if (!(p = lock_user_string(arg1))) {
10715             return -TARGET_EFAULT;
10716         }
10717         ret = get_errno(stat(path(p), &st));
10718         unlock_user(p, arg1, 0);
10719         goto do_stat;
10720 #endif
10721 #ifdef TARGET_NR_lstat
10722     case TARGET_NR_lstat:
10723         if (!(p = lock_user_string(arg1))) {
10724             return -TARGET_EFAULT;
10725         }
10726         ret = get_errno(lstat(path(p), &st));
10727         unlock_user(p, arg1, 0);
10728         goto do_stat;
10729 #endif
10730 #ifdef TARGET_NR_fstat
10731     case TARGET_NR_fstat:
10732         {
10733             ret = get_errno(fstat(arg1, &st));
10734 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat)
10735         do_stat:
10736 #endif
10737             if (!is_error(ret)) {
10738                 struct target_stat *target_st;
10739 
10740                 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0))
10741                     return -TARGET_EFAULT;
10742                 memset(target_st, 0, sizeof(*target_st));
10743                 __put_user(st.st_dev, &target_st->st_dev);
10744                 __put_user(st.st_ino, &target_st->st_ino);
10745                 __put_user(st.st_mode, &target_st->st_mode);
10746                 __put_user(st.st_uid, &target_st->st_uid);
10747                 __put_user(st.st_gid, &target_st->st_gid);
10748                 __put_user(st.st_nlink, &target_st->st_nlink);
10749                 __put_user(st.st_rdev, &target_st->st_rdev);
10750                 __put_user(st.st_size, &target_st->st_size);
10751                 __put_user(st.st_blksize, &target_st->st_blksize);
10752                 __put_user(st.st_blocks, &target_st->st_blocks);
10753                 __put_user(st.st_atime, &target_st->target_st_atime);
10754                 __put_user(st.st_mtime, &target_st->target_st_mtime);
10755                 __put_user(st.st_ctime, &target_st->target_st_ctime);
10756 #if defined(HAVE_STRUCT_STAT_ST_ATIM) && defined(TARGET_STAT_HAVE_NSEC)
10757                 __put_user(st.st_atim.tv_nsec,
10758                            &target_st->target_st_atime_nsec);
10759                 __put_user(st.st_mtim.tv_nsec,
10760                            &target_st->target_st_mtime_nsec);
10761                 __put_user(st.st_ctim.tv_nsec,
10762                            &target_st->target_st_ctime_nsec);
10763 #endif
10764                 unlock_user_struct(target_st, arg2, 1);
10765             }
10766         }
10767         return ret;
10768 #endif
10769     case TARGET_NR_vhangup:
10770         return get_errno(vhangup());
10771 #ifdef TARGET_NR_syscall
10772     case TARGET_NR_syscall:
10773         return do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5,
10774                           arg6, arg7, arg8, 0);
10775 #endif
10776 #if defined(TARGET_NR_wait4)
10777     case TARGET_NR_wait4:
10778         {
10779             int status;
10780             abi_long status_ptr = arg2;
10781             struct rusage rusage, *rusage_ptr;
10782             abi_ulong target_rusage = arg4;
10783             abi_long rusage_err;
10784             if (target_rusage)
10785                 rusage_ptr = &rusage;
10786             else
10787                 rusage_ptr = NULL;
10788             ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr));
10789             if (!is_error(ret)) {
10790                 if (status_ptr && ret) {
10791                     status = host_to_target_waitstatus(status);
10792                     if (put_user_s32(status, status_ptr))
10793                         return -TARGET_EFAULT;
10794                 }
10795                 if (target_rusage) {
10796                     rusage_err = host_to_target_rusage(target_rusage, &rusage);
10797                     if (rusage_err) {
10798                         ret = rusage_err;
10799                     }
10800                 }
10801             }
10802         }
10803         return ret;
10804 #endif
10805 #ifdef TARGET_NR_swapoff
10806     case TARGET_NR_swapoff:
10807         if (!(p = lock_user_string(arg1)))
10808             return -TARGET_EFAULT;
10809         ret = get_errno(swapoff(p));
10810         unlock_user(p, arg1, 0);
10811         return ret;
10812 #endif
10813     case TARGET_NR_sysinfo:
10814         {
10815             struct target_sysinfo *target_value;
10816             struct sysinfo value;
10817             ret = get_errno(sysinfo(&value));
10818             if (!is_error(ret) && arg1)
10819             {
10820                 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0))
10821                     return -TARGET_EFAULT;
10822                 __put_user(value.uptime, &target_value->uptime);
10823                 __put_user(value.loads[0], &target_value->loads[0]);
10824                 __put_user(value.loads[1], &target_value->loads[1]);
10825                 __put_user(value.loads[2], &target_value->loads[2]);
10826                 __put_user(value.totalram, &target_value->totalram);
10827                 __put_user(value.freeram, &target_value->freeram);
10828                 __put_user(value.sharedram, &target_value->sharedram);
10829                 __put_user(value.bufferram, &target_value->bufferram);
10830                 __put_user(value.totalswap, &target_value->totalswap);
10831                 __put_user(value.freeswap, &target_value->freeswap);
10832                 __put_user(value.procs, &target_value->procs);
10833                 __put_user(value.totalhigh, &target_value->totalhigh);
10834                 __put_user(value.freehigh, &target_value->freehigh);
10835                 __put_user(value.mem_unit, &target_value->mem_unit);
10836                 unlock_user_struct(target_value, arg1, 1);
10837             }
10838         }
10839         return ret;
10840 #ifdef TARGET_NR_ipc
10841     case TARGET_NR_ipc:
10842         return do_ipc(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6);
10843 #endif
10844 #ifdef TARGET_NR_semget
10845     case TARGET_NR_semget:
10846         return get_errno(semget(arg1, arg2, arg3));
10847 #endif
10848 #ifdef TARGET_NR_semop
10849     case TARGET_NR_semop:
10850         return do_semtimedop(arg1, arg2, arg3, 0, false);
10851 #endif
10852 #ifdef TARGET_NR_semtimedop
10853     case TARGET_NR_semtimedop:
10854         return do_semtimedop(arg1, arg2, arg3, arg4, false);
10855 #endif
10856 #ifdef TARGET_NR_semtimedop_time64
10857     case TARGET_NR_semtimedop_time64:
10858         return do_semtimedop(arg1, arg2, arg3, arg4, true);
10859 #endif
10860 #ifdef TARGET_NR_semctl
10861     case TARGET_NR_semctl:
10862         return do_semctl(arg1, arg2, arg3, arg4);
10863 #endif
10864 #ifdef TARGET_NR_msgctl
10865     case TARGET_NR_msgctl:
10866         return do_msgctl(arg1, arg2, arg3);
10867 #endif
10868 #ifdef TARGET_NR_msgget
10869     case TARGET_NR_msgget:
10870         return get_errno(msgget(arg1, arg2));
10871 #endif
10872 #ifdef TARGET_NR_msgrcv
10873     case TARGET_NR_msgrcv:
10874         return do_msgrcv(arg1, arg2, arg3, arg4, arg5);
10875 #endif
10876 #ifdef TARGET_NR_msgsnd
10877     case TARGET_NR_msgsnd:
10878         return do_msgsnd(arg1, arg2, arg3, arg4);
10879 #endif
10880 #ifdef TARGET_NR_shmget
10881     case TARGET_NR_shmget:
10882         return get_errno(shmget(arg1, arg2, arg3));
10883 #endif
10884 #ifdef TARGET_NR_shmctl
10885     case TARGET_NR_shmctl:
10886         return do_shmctl(arg1, arg2, arg3);
10887 #endif
10888 #ifdef TARGET_NR_shmat
10889     case TARGET_NR_shmat:
10890         return target_shmat(cpu_env, arg1, arg2, arg3);
10891 #endif
10892 #ifdef TARGET_NR_shmdt
10893     case TARGET_NR_shmdt:
10894         return target_shmdt(arg1);
10895 #endif
10896     case TARGET_NR_fsync:
10897         return get_errno(fsync(arg1));
10898     case TARGET_NR_clone:
10899         /* Linux manages to have three different orderings for its
10900          * arguments to clone(); the BACKWARDS and BACKWARDS2 defines
10901          * match the kernel's CONFIG_CLONE_* settings.
10902          * Microblaze is further special in that it uses a sixth
10903          * implicit argument to clone for the TLS pointer.
10904          */
10905 #if defined(TARGET_MICROBLAZE)
10906         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5));
10907 #elif defined(TARGET_CLONE_BACKWARDS)
10908         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5));
10909 #elif defined(TARGET_CLONE_BACKWARDS2)
10910         ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4));
10911 #else
10912         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4));
10913 #endif
10914         return ret;
10915 #ifdef __NR_exit_group
10916         /* new thread calls */
10917     case TARGET_NR_exit_group:
10918         preexit_cleanup(cpu_env, arg1);
10919         return get_errno(exit_group(arg1));
10920 #endif
10921     case TARGET_NR_setdomainname:
10922         if (!(p = lock_user_string(arg1)))
10923             return -TARGET_EFAULT;
10924         ret = get_errno(setdomainname(p, arg2));
10925         unlock_user(p, arg1, 0);
10926         return ret;
10927     case TARGET_NR_uname:
10928         /* no need to transcode because we use the linux syscall */
10929         {
10930             struct new_utsname * buf;
10931 
10932             if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0))
10933                 return -TARGET_EFAULT;
10934             ret = get_errno(sys_uname(buf));
10935             if (!is_error(ret)) {
10936                 /* Overwrite the native machine name with whatever is being
10937                    emulated. */
10938                 g_strlcpy(buf->machine, cpu_to_uname_machine(cpu_env),
10939                           sizeof(buf->machine));
10940                 /* Allow the user to override the reported release.  */
10941                 if (qemu_uname_release && *qemu_uname_release) {
10942                     g_strlcpy(buf->release, qemu_uname_release,
10943                               sizeof(buf->release));
10944                 }
10945             }
10946             unlock_user_struct(buf, arg1, 1);
10947         }
10948         return ret;
10949 #ifdef TARGET_I386
10950     case TARGET_NR_modify_ldt:
10951         return do_modify_ldt(cpu_env, arg1, arg2, arg3);
10952 #if !defined(TARGET_X86_64)
10953     case TARGET_NR_vm86:
10954         return do_vm86(cpu_env, arg1, arg2);
10955 #endif
10956 #endif
10957 #if defined(TARGET_NR_adjtimex)
10958     case TARGET_NR_adjtimex:
10959         {
10960             struct timex host_buf;
10961 
10962             if (target_to_host_timex(&host_buf, arg1) != 0) {
10963                 return -TARGET_EFAULT;
10964             }
10965             ret = get_errno(adjtimex(&host_buf));
10966             if (!is_error(ret)) {
10967                 if (host_to_target_timex(arg1, &host_buf) != 0) {
10968                     return -TARGET_EFAULT;
10969                 }
10970             }
10971         }
10972         return ret;
10973 #endif
10974 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)
10975     case TARGET_NR_clock_adjtime:
10976         {
10977             struct timex htx;
10978 
10979             if (target_to_host_timex(&htx, arg2) != 0) {
10980                 return -TARGET_EFAULT;
10981             }
10982             ret = get_errno(clock_adjtime(arg1, &htx));
10983             if (!is_error(ret) && host_to_target_timex(arg2, &htx)) {
10984                 return -TARGET_EFAULT;
10985             }
10986         }
10987         return ret;
10988 #endif
10989 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
10990     case TARGET_NR_clock_adjtime64:
10991         {
10992             struct timex htx;
10993 
10994             if (target_to_host_timex64(&htx, arg2) != 0) {
10995                 return -TARGET_EFAULT;
10996             }
10997             ret = get_errno(clock_adjtime(arg1, &htx));
10998             if (!is_error(ret) && host_to_target_timex64(arg2, &htx)) {
10999                     return -TARGET_EFAULT;
11000             }
11001         }
11002         return ret;
11003 #endif
11004     case TARGET_NR_getpgid:
11005         return get_errno(getpgid(arg1));
11006     case TARGET_NR_fchdir:
11007         return get_errno(fchdir(arg1));
11008     case TARGET_NR_personality:
11009         return get_errno(personality(arg1));
11010 #ifdef TARGET_NR__llseek /* Not on alpha */
11011     case TARGET_NR__llseek:
11012         {
11013             int64_t res;
11014 #if !defined(__NR_llseek)
11015             res = lseek(arg1, ((uint64_t)arg2 << 32) | (abi_ulong)arg3, arg5);
11016             if (res == -1) {
11017                 ret = get_errno(res);
11018             } else {
11019                 ret = 0;
11020             }
11021 #else
11022             ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5));
11023 #endif
11024             if ((ret == 0) && put_user_s64(res, arg4)) {
11025                 return -TARGET_EFAULT;
11026             }
11027         }
11028         return ret;
11029 #endif
11030 #ifdef TARGET_NR_getdents
11031     case TARGET_NR_getdents:
11032         return do_getdents(arg1, arg2, arg3);
11033 #endif /* TARGET_NR_getdents */
11034 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
11035     case TARGET_NR_getdents64:
11036         return do_getdents64(arg1, arg2, arg3);
11037 #endif /* TARGET_NR_getdents64 */
11038 #if defined(TARGET_NR__newselect)
11039     case TARGET_NR__newselect:
11040         return do_select(arg1, arg2, arg3, arg4, arg5);
11041 #endif
11042 #ifdef TARGET_NR_poll
11043     case TARGET_NR_poll:
11044         return do_ppoll(arg1, arg2, arg3, arg4, arg5, false, false);
11045 #endif
11046 #ifdef TARGET_NR_ppoll
11047     case TARGET_NR_ppoll:
11048         return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, false);
11049 #endif
11050 #ifdef TARGET_NR_ppoll_time64
11051     case TARGET_NR_ppoll_time64:
11052         return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, true);
11053 #endif
11054     case TARGET_NR_flock:
11055         /* NOTE: the flock constant seems to be the same for every
11056            Linux platform */
11057         return get_errno(safe_flock(arg1, arg2));
11058     case TARGET_NR_readv:
11059         {
11060             struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
11061             if (vec != NULL) {
11062                 ret = get_errno(safe_readv(arg1, vec, arg3));
11063                 unlock_iovec(vec, arg2, arg3, 1);
11064             } else {
11065                 ret = -host_to_target_errno(errno);
11066             }
11067         }
11068         return ret;
11069     case TARGET_NR_writev:
11070         {
11071             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
11072             if (vec != NULL) {
11073                 ret = get_errno(safe_writev(arg1, vec, arg3));
11074                 unlock_iovec(vec, arg2, arg3, 0);
11075             } else {
11076                 ret = -host_to_target_errno(errno);
11077             }
11078         }
11079         return ret;
11080 #if defined(TARGET_NR_preadv)
11081     case TARGET_NR_preadv:
11082         {
11083             struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
11084             if (vec != NULL) {
11085                 unsigned long low, high;
11086 
11087                 target_to_host_low_high(arg4, arg5, &low, &high);
11088                 ret = get_errno(safe_preadv(arg1, vec, arg3, low, high));
11089                 unlock_iovec(vec, arg2, arg3, 1);
11090             } else {
11091                 ret = -host_to_target_errno(errno);
11092            }
11093         }
11094         return ret;
11095 #endif
11096 #if defined(TARGET_NR_pwritev)
11097     case TARGET_NR_pwritev:
11098         {
11099             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
11100             if (vec != NULL) {
11101                 unsigned long low, high;
11102 
11103                 target_to_host_low_high(arg4, arg5, &low, &high);
11104                 ret = get_errno(safe_pwritev(arg1, vec, arg3, low, high));
11105                 unlock_iovec(vec, arg2, arg3, 0);
11106             } else {
11107                 ret = -host_to_target_errno(errno);
11108            }
11109         }
11110         return ret;
11111 #endif
11112     case TARGET_NR_getsid:
11113         return get_errno(getsid(arg1));
11114 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
11115     case TARGET_NR_fdatasync:
11116         return get_errno(fdatasync(arg1));
11117 #endif
11118     case TARGET_NR_sched_getaffinity:
11119         {
11120             unsigned int mask_size;
11121             unsigned long *mask;
11122 
11123             /*
11124              * sched_getaffinity needs multiples of ulong, so need to take
11125              * care of mismatches between target ulong and host ulong sizes.
11126              */
11127             if (arg2 & (sizeof(abi_ulong) - 1)) {
11128                 return -TARGET_EINVAL;
11129             }
11130             mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
11131 
11132             mask = alloca(mask_size);
11133             memset(mask, 0, mask_size);
11134             ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask));
11135 
11136             if (!is_error(ret)) {
11137                 if (ret > arg2) {
11138                     /* More data returned than the caller's buffer will fit.
11139                      * This only happens if sizeof(abi_long) < sizeof(long)
11140                      * and the caller passed us a buffer holding an odd number
11141                      * of abi_longs. If the host kernel is actually using the
11142                      * extra 4 bytes then fail EINVAL; otherwise we can just
11143                      * ignore them and only copy the interesting part.
11144                      */
11145                     int numcpus = sysconf(_SC_NPROCESSORS_CONF);
11146                     if (numcpus > arg2 * 8) {
11147                         return -TARGET_EINVAL;
11148                     }
11149                     ret = arg2;
11150                 }
11151 
11152                 if (host_to_target_cpu_mask(mask, mask_size, arg3, ret)) {
11153                     return -TARGET_EFAULT;
11154                 }
11155             }
11156         }
11157         return ret;
11158     case TARGET_NR_sched_setaffinity:
11159         {
11160             unsigned int mask_size;
11161             unsigned long *mask;
11162 
11163             /*
11164              * sched_setaffinity needs multiples of ulong, so need to take
11165              * care of mismatches between target ulong and host ulong sizes.
11166              */
11167             if (arg2 & (sizeof(abi_ulong) - 1)) {
11168                 return -TARGET_EINVAL;
11169             }
11170             mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
11171             mask = alloca(mask_size);
11172 
11173             ret = target_to_host_cpu_mask(mask, mask_size, arg3, arg2);
11174             if (ret) {
11175                 return ret;
11176             }
11177 
11178             return get_errno(sys_sched_setaffinity(arg1, mask_size, mask));
11179         }
11180     case TARGET_NR_getcpu:
11181         {
11182             unsigned cpuid, node;
11183             ret = get_errno(sys_getcpu(arg1 ? &cpuid : NULL,
11184                                        arg2 ? &node : NULL,
11185                                        NULL));
11186             if (is_error(ret)) {
11187                 return ret;
11188             }
11189             if (arg1 && put_user_u32(cpuid, arg1)) {
11190                 return -TARGET_EFAULT;
11191             }
11192             if (arg2 && put_user_u32(node, arg2)) {
11193                 return -TARGET_EFAULT;
11194             }
11195         }
11196         return ret;
11197     case TARGET_NR_sched_setparam:
11198         {
11199             struct target_sched_param *target_schp;
11200             struct sched_param schp;
11201 
11202             if (arg2 == 0) {
11203                 return -TARGET_EINVAL;
11204             }
11205             if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1)) {
11206                 return -TARGET_EFAULT;
11207             }
11208             schp.sched_priority = tswap32(target_schp->sched_priority);
11209             unlock_user_struct(target_schp, arg2, 0);
11210             return get_errno(sys_sched_setparam(arg1, &schp));
11211         }
11212     case TARGET_NR_sched_getparam:
11213         {
11214             struct target_sched_param *target_schp;
11215             struct sched_param schp;
11216 
11217             if (arg2 == 0) {
11218                 return -TARGET_EINVAL;
11219             }
11220             ret = get_errno(sys_sched_getparam(arg1, &schp));
11221             if (!is_error(ret)) {
11222                 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0)) {
11223                     return -TARGET_EFAULT;
11224                 }
11225                 target_schp->sched_priority = tswap32(schp.sched_priority);
11226                 unlock_user_struct(target_schp, arg2, 1);
11227             }
11228         }
11229         return ret;
11230     case TARGET_NR_sched_setscheduler:
11231         {
11232             struct target_sched_param *target_schp;
11233             struct sched_param schp;
11234             if (arg3 == 0) {
11235                 return -TARGET_EINVAL;
11236             }
11237             if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1)) {
11238                 return -TARGET_EFAULT;
11239             }
11240             schp.sched_priority = tswap32(target_schp->sched_priority);
11241             unlock_user_struct(target_schp, arg3, 0);
11242             return get_errno(sys_sched_setscheduler(arg1, arg2, &schp));
11243         }
11244     case TARGET_NR_sched_getscheduler:
11245         return get_errno(sys_sched_getscheduler(arg1));
11246     case TARGET_NR_sched_getattr:
11247         {
11248             struct target_sched_attr *target_scha;
11249             struct sched_attr scha;
11250             if (arg2 == 0) {
11251                 return -TARGET_EINVAL;
11252             }
11253             if (arg3 > sizeof(scha)) {
11254                 arg3 = sizeof(scha);
11255             }
11256             ret = get_errno(sys_sched_getattr(arg1, &scha, arg3, arg4));
11257             if (!is_error(ret)) {
11258                 target_scha = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11259                 if (!target_scha) {
11260                     return -TARGET_EFAULT;
11261                 }
11262                 target_scha->size = tswap32(scha.size);
11263                 target_scha->sched_policy = tswap32(scha.sched_policy);
11264                 target_scha->sched_flags = tswap64(scha.sched_flags);
11265                 target_scha->sched_nice = tswap32(scha.sched_nice);
11266                 target_scha->sched_priority = tswap32(scha.sched_priority);
11267                 target_scha->sched_runtime = tswap64(scha.sched_runtime);
11268                 target_scha->sched_deadline = tswap64(scha.sched_deadline);
11269                 target_scha->sched_period = tswap64(scha.sched_period);
11270                 if (scha.size > offsetof(struct sched_attr, sched_util_min)) {
11271                     target_scha->sched_util_min = tswap32(scha.sched_util_min);
11272                     target_scha->sched_util_max = tswap32(scha.sched_util_max);
11273                 }
11274                 unlock_user(target_scha, arg2, arg3);
11275             }
11276             return ret;
11277         }
11278     case TARGET_NR_sched_setattr:
11279         {
11280             struct target_sched_attr *target_scha;
11281             struct sched_attr scha;
11282             uint32_t size;
11283             int zeroed;
11284             if (arg2 == 0) {
11285                 return -TARGET_EINVAL;
11286             }
11287             if (get_user_u32(size, arg2)) {
11288                 return -TARGET_EFAULT;
11289             }
11290             if (!size) {
11291                 size = offsetof(struct target_sched_attr, sched_util_min);
11292             }
11293             if (size < offsetof(struct target_sched_attr, sched_util_min)) {
11294                 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) {
11295                     return -TARGET_EFAULT;
11296                 }
11297                 return -TARGET_E2BIG;
11298             }
11299 
11300             zeroed = check_zeroed_user(arg2, sizeof(struct target_sched_attr), size);
11301             if (zeroed < 0) {
11302                 return zeroed;
11303             } else if (zeroed == 0) {
11304                 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) {
11305                     return -TARGET_EFAULT;
11306                 }
11307                 return -TARGET_E2BIG;
11308             }
11309             if (size > sizeof(struct target_sched_attr)) {
11310                 size = sizeof(struct target_sched_attr);
11311             }
11312 
11313             target_scha = lock_user(VERIFY_READ, arg2, size, 1);
11314             if (!target_scha) {
11315                 return -TARGET_EFAULT;
11316             }
11317             scha.size = size;
11318             scha.sched_policy = tswap32(target_scha->sched_policy);
11319             scha.sched_flags = tswap64(target_scha->sched_flags);
11320             scha.sched_nice = tswap32(target_scha->sched_nice);
11321             scha.sched_priority = tswap32(target_scha->sched_priority);
11322             scha.sched_runtime = tswap64(target_scha->sched_runtime);
11323             scha.sched_deadline = tswap64(target_scha->sched_deadline);
11324             scha.sched_period = tswap64(target_scha->sched_period);
11325             if (size > offsetof(struct target_sched_attr, sched_util_min)) {
11326                 scha.sched_util_min = tswap32(target_scha->sched_util_min);
11327                 scha.sched_util_max = tswap32(target_scha->sched_util_max);
11328             }
11329             unlock_user(target_scha, arg2, 0);
11330             return get_errno(sys_sched_setattr(arg1, &scha, arg3));
11331         }
11332     case TARGET_NR_sched_yield:
11333         return get_errno(sched_yield());
11334     case TARGET_NR_sched_get_priority_max:
11335         return get_errno(sched_get_priority_max(arg1));
11336     case TARGET_NR_sched_get_priority_min:
11337         return get_errno(sched_get_priority_min(arg1));
11338 #ifdef TARGET_NR_sched_rr_get_interval
11339     case TARGET_NR_sched_rr_get_interval:
11340         {
11341             struct timespec ts;
11342             ret = get_errno(sched_rr_get_interval(arg1, &ts));
11343             if (!is_error(ret)) {
11344                 ret = host_to_target_timespec(arg2, &ts);
11345             }
11346         }
11347         return ret;
11348 #endif
11349 #ifdef TARGET_NR_sched_rr_get_interval_time64
11350     case TARGET_NR_sched_rr_get_interval_time64:
11351         {
11352             struct timespec ts;
11353             ret = get_errno(sched_rr_get_interval(arg1, &ts));
11354             if (!is_error(ret)) {
11355                 ret = host_to_target_timespec64(arg2, &ts);
11356             }
11357         }
11358         return ret;
11359 #endif
11360 #if defined(TARGET_NR_nanosleep)
11361     case TARGET_NR_nanosleep:
11362         {
11363             struct timespec req, rem;
11364             target_to_host_timespec(&req, arg1);
11365             ret = get_errno(safe_nanosleep(&req, &rem));
11366             if (is_error(ret) && arg2) {
11367                 host_to_target_timespec(arg2, &rem);
11368             }
11369         }
11370         return ret;
11371 #endif
11372     case TARGET_NR_prctl:
11373         return do_prctl(cpu_env, arg1, arg2, arg3, arg4, arg5);
11374         break;
11375 #ifdef TARGET_NR_arch_prctl
11376     case TARGET_NR_arch_prctl:
11377         return do_arch_prctl(cpu_env, arg1, arg2);
11378 #endif
11379 #ifdef TARGET_NR_pread64
11380     case TARGET_NR_pread64:
11381         if (regpairs_aligned(cpu_env, num)) {
11382             arg4 = arg5;
11383             arg5 = arg6;
11384         }
11385         if (arg2 == 0 && arg3 == 0) {
11386             /* Special-case NULL buffer and zero length, which should succeed */
11387             p = 0;
11388         } else {
11389             p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11390             if (!p) {
11391                 return -TARGET_EFAULT;
11392             }
11393         }
11394         ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5)));
11395         unlock_user(p, arg2, ret);
11396         return ret;
11397     case TARGET_NR_pwrite64:
11398         if (regpairs_aligned(cpu_env, num)) {
11399             arg4 = arg5;
11400             arg5 = arg6;
11401         }
11402         if (arg2 == 0 && arg3 == 0) {
11403             /* Special-case NULL buffer and zero length, which should succeed */
11404             p = 0;
11405         } else {
11406             p = lock_user(VERIFY_READ, arg2, arg3, 1);
11407             if (!p) {
11408                 return -TARGET_EFAULT;
11409             }
11410         }
11411         ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5)));
11412         unlock_user(p, arg2, 0);
11413         return ret;
11414 #endif
11415     case TARGET_NR_getcwd:
11416         if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0)))
11417             return -TARGET_EFAULT;
11418         ret = get_errno(sys_getcwd1(p, arg2));
11419         unlock_user(p, arg1, ret);
11420         return ret;
11421     case TARGET_NR_capget:
11422     case TARGET_NR_capset:
11423     {
11424         struct target_user_cap_header *target_header;
11425         struct target_user_cap_data *target_data = NULL;
11426         struct __user_cap_header_struct header;
11427         struct __user_cap_data_struct data[2];
11428         struct __user_cap_data_struct *dataptr = NULL;
11429         int i, target_datalen;
11430         int data_items = 1;
11431 
11432         if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) {
11433             return -TARGET_EFAULT;
11434         }
11435         header.version = tswap32(target_header->version);
11436         header.pid = tswap32(target_header->pid);
11437 
11438         if (header.version != _LINUX_CAPABILITY_VERSION) {
11439             /* Version 2 and up takes pointer to two user_data structs */
11440             data_items = 2;
11441         }
11442 
11443         target_datalen = sizeof(*target_data) * data_items;
11444 
11445         if (arg2) {
11446             if (num == TARGET_NR_capget) {
11447                 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0);
11448             } else {
11449                 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1);
11450             }
11451             if (!target_data) {
11452                 unlock_user_struct(target_header, arg1, 0);
11453                 return -TARGET_EFAULT;
11454             }
11455 
11456             if (num == TARGET_NR_capset) {
11457                 for (i = 0; i < data_items; i++) {
11458                     data[i].effective = tswap32(target_data[i].effective);
11459                     data[i].permitted = tswap32(target_data[i].permitted);
11460                     data[i].inheritable = tswap32(target_data[i].inheritable);
11461                 }
11462             }
11463 
11464             dataptr = data;
11465         }
11466 
11467         if (num == TARGET_NR_capget) {
11468             ret = get_errno(capget(&header, dataptr));
11469         } else {
11470             ret = get_errno(capset(&header, dataptr));
11471         }
11472 
11473         /* The kernel always updates version for both capget and capset */
11474         target_header->version = tswap32(header.version);
11475         unlock_user_struct(target_header, arg1, 1);
11476 
11477         if (arg2) {
11478             if (num == TARGET_NR_capget) {
11479                 for (i = 0; i < data_items; i++) {
11480                     target_data[i].effective = tswap32(data[i].effective);
11481                     target_data[i].permitted = tswap32(data[i].permitted);
11482                     target_data[i].inheritable = tswap32(data[i].inheritable);
11483                 }
11484                 unlock_user(target_data, arg2, target_datalen);
11485             } else {
11486                 unlock_user(target_data, arg2, 0);
11487             }
11488         }
11489         return ret;
11490     }
11491     case TARGET_NR_sigaltstack:
11492         return do_sigaltstack(arg1, arg2, cpu_env);
11493 
11494 #ifdef CONFIG_SENDFILE
11495 #ifdef TARGET_NR_sendfile
11496     case TARGET_NR_sendfile:
11497     {
11498         off_t *offp = NULL;
11499         off_t off;
11500         if (arg3) {
11501             ret = get_user_sal(off, arg3);
11502             if (is_error(ret)) {
11503                 return ret;
11504             }
11505             offp = &off;
11506         }
11507         ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11508         if (!is_error(ret) && arg3) {
11509             abi_long ret2 = put_user_sal(off, arg3);
11510             if (is_error(ret2)) {
11511                 ret = ret2;
11512             }
11513         }
11514         return ret;
11515     }
11516 #endif
11517 #ifdef TARGET_NR_sendfile64
11518     case TARGET_NR_sendfile64:
11519     {
11520         off_t *offp = NULL;
11521         off_t off;
11522         if (arg3) {
11523             ret = get_user_s64(off, arg3);
11524             if (is_error(ret)) {
11525                 return ret;
11526             }
11527             offp = &off;
11528         }
11529         ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11530         if (!is_error(ret) && arg3) {
11531             abi_long ret2 = put_user_s64(off, arg3);
11532             if (is_error(ret2)) {
11533                 ret = ret2;
11534             }
11535         }
11536         return ret;
11537     }
11538 #endif
11539 #endif
11540 #ifdef TARGET_NR_vfork
11541     case TARGET_NR_vfork:
11542         return get_errno(do_fork(cpu_env,
11543                          CLONE_VFORK | CLONE_VM | TARGET_SIGCHLD,
11544                          0, 0, 0, 0));
11545 #endif
11546 #ifdef TARGET_NR_ugetrlimit
11547     case TARGET_NR_ugetrlimit:
11548     {
11549 	struct rlimit rlim;
11550 	int resource = target_to_host_resource(arg1);
11551 	ret = get_errno(getrlimit(resource, &rlim));
11552 	if (!is_error(ret)) {
11553 	    struct target_rlimit *target_rlim;
11554             if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
11555                 return -TARGET_EFAULT;
11556 	    target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
11557 	    target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
11558             unlock_user_struct(target_rlim, arg2, 1);
11559 	}
11560         return ret;
11561     }
11562 #endif
11563 #ifdef TARGET_NR_truncate64
11564     case TARGET_NR_truncate64:
11565         if (!(p = lock_user_string(arg1)))
11566             return -TARGET_EFAULT;
11567 	ret = target_truncate64(cpu_env, p, arg2, arg3, arg4);
11568         unlock_user(p, arg1, 0);
11569         return ret;
11570 #endif
11571 #ifdef TARGET_NR_ftruncate64
11572     case TARGET_NR_ftruncate64:
11573         return target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4);
11574 #endif
11575 #ifdef TARGET_NR_stat64
11576     case TARGET_NR_stat64:
11577         if (!(p = lock_user_string(arg1))) {
11578             return -TARGET_EFAULT;
11579         }
11580         ret = get_errno(stat(path(p), &st));
11581         unlock_user(p, arg1, 0);
11582         if (!is_error(ret))
11583             ret = host_to_target_stat64(cpu_env, arg2, &st);
11584         return ret;
11585 #endif
11586 #ifdef TARGET_NR_lstat64
11587     case TARGET_NR_lstat64:
11588         if (!(p = lock_user_string(arg1))) {
11589             return -TARGET_EFAULT;
11590         }
11591         ret = get_errno(lstat(path(p), &st));
11592         unlock_user(p, arg1, 0);
11593         if (!is_error(ret))
11594             ret = host_to_target_stat64(cpu_env, arg2, &st);
11595         return ret;
11596 #endif
11597 #ifdef TARGET_NR_fstat64
11598     case TARGET_NR_fstat64:
11599         ret = get_errno(fstat(arg1, &st));
11600         if (!is_error(ret))
11601             ret = host_to_target_stat64(cpu_env, arg2, &st);
11602         return ret;
11603 #endif
11604 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat))
11605 #ifdef TARGET_NR_fstatat64
11606     case TARGET_NR_fstatat64:
11607 #endif
11608 #ifdef TARGET_NR_newfstatat
11609     case TARGET_NR_newfstatat:
11610 #endif
11611         if (!(p = lock_user_string(arg2))) {
11612             return -TARGET_EFAULT;
11613         }
11614         ret = get_errno(fstatat(arg1, path(p), &st, arg4));
11615         unlock_user(p, arg2, 0);
11616         if (!is_error(ret))
11617             ret = host_to_target_stat64(cpu_env, arg3, &st);
11618         return ret;
11619 #endif
11620 #if defined(TARGET_NR_statx)
11621     case TARGET_NR_statx:
11622         {
11623             struct target_statx *target_stx;
11624             int dirfd = arg1;
11625             int flags = arg3;
11626 
11627             p = lock_user_string(arg2);
11628             if (p == NULL) {
11629                 return -TARGET_EFAULT;
11630             }
11631 #if defined(__NR_statx)
11632             {
11633                 /*
11634                  * It is assumed that struct statx is architecture independent.
11635                  */
11636                 struct target_statx host_stx;
11637                 int mask = arg4;
11638 
11639                 ret = get_errno(sys_statx(dirfd, p, flags, mask, &host_stx));
11640                 if (!is_error(ret)) {
11641                     if (host_to_target_statx(&host_stx, arg5) != 0) {
11642                         unlock_user(p, arg2, 0);
11643                         return -TARGET_EFAULT;
11644                     }
11645                 }
11646 
11647                 if (ret != -TARGET_ENOSYS) {
11648                     unlock_user(p, arg2, 0);
11649                     return ret;
11650                 }
11651             }
11652 #endif
11653             ret = get_errno(fstatat(dirfd, path(p), &st, flags));
11654             unlock_user(p, arg2, 0);
11655 
11656             if (!is_error(ret)) {
11657                 if (!lock_user_struct(VERIFY_WRITE, target_stx, arg5, 0)) {
11658                     return -TARGET_EFAULT;
11659                 }
11660                 memset(target_stx, 0, sizeof(*target_stx));
11661                 __put_user(major(st.st_dev), &target_stx->stx_dev_major);
11662                 __put_user(minor(st.st_dev), &target_stx->stx_dev_minor);
11663                 __put_user(st.st_ino, &target_stx->stx_ino);
11664                 __put_user(st.st_mode, &target_stx->stx_mode);
11665                 __put_user(st.st_uid, &target_stx->stx_uid);
11666                 __put_user(st.st_gid, &target_stx->stx_gid);
11667                 __put_user(st.st_nlink, &target_stx->stx_nlink);
11668                 __put_user(major(st.st_rdev), &target_stx->stx_rdev_major);
11669                 __put_user(minor(st.st_rdev), &target_stx->stx_rdev_minor);
11670                 __put_user(st.st_size, &target_stx->stx_size);
11671                 __put_user(st.st_blksize, &target_stx->stx_blksize);
11672                 __put_user(st.st_blocks, &target_stx->stx_blocks);
11673                 __put_user(st.st_atime, &target_stx->stx_atime.tv_sec);
11674                 __put_user(st.st_mtime, &target_stx->stx_mtime.tv_sec);
11675                 __put_user(st.st_ctime, &target_stx->stx_ctime.tv_sec);
11676                 unlock_user_struct(target_stx, arg5, 1);
11677             }
11678         }
11679         return ret;
11680 #endif
11681 #ifdef TARGET_NR_lchown
11682     case TARGET_NR_lchown:
11683         if (!(p = lock_user_string(arg1)))
11684             return -TARGET_EFAULT;
11685         ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3)));
11686         unlock_user(p, arg1, 0);
11687         return ret;
11688 #endif
11689 #ifdef TARGET_NR_getuid
11690     case TARGET_NR_getuid:
11691         return get_errno(high2lowuid(getuid()));
11692 #endif
11693 #ifdef TARGET_NR_getgid
11694     case TARGET_NR_getgid:
11695         return get_errno(high2lowgid(getgid()));
11696 #endif
11697 #ifdef TARGET_NR_geteuid
11698     case TARGET_NR_geteuid:
11699         return get_errno(high2lowuid(geteuid()));
11700 #endif
11701 #ifdef TARGET_NR_getegid
11702     case TARGET_NR_getegid:
11703         return get_errno(high2lowgid(getegid()));
11704 #endif
11705     case TARGET_NR_setreuid:
11706         return get_errno(setreuid(low2highuid(arg1), low2highuid(arg2)));
11707     case TARGET_NR_setregid:
11708         return get_errno(setregid(low2highgid(arg1), low2highgid(arg2)));
11709     case TARGET_NR_getgroups:
11710         { /* the same code as for TARGET_NR_getgroups32 */
11711             int gidsetsize = arg1;
11712             target_id *target_grouplist;
11713             g_autofree gid_t *grouplist = NULL;
11714             int i;
11715 
11716             if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
11717                 return -TARGET_EINVAL;
11718             }
11719             if (gidsetsize > 0) {
11720                 grouplist = g_try_new(gid_t, gidsetsize);
11721                 if (!grouplist) {
11722                     return -TARGET_ENOMEM;
11723                 }
11724             }
11725             ret = get_errno(getgroups(gidsetsize, grouplist));
11726             if (!is_error(ret) && gidsetsize > 0) {
11727                 target_grouplist = lock_user(VERIFY_WRITE, arg2,
11728                                              gidsetsize * sizeof(target_id), 0);
11729                 if (!target_grouplist) {
11730                     return -TARGET_EFAULT;
11731                 }
11732                 for (i = 0; i < ret; i++) {
11733                     target_grouplist[i] = tswapid(high2lowgid(grouplist[i]));
11734                 }
11735                 unlock_user(target_grouplist, arg2,
11736                             gidsetsize * sizeof(target_id));
11737             }
11738             return ret;
11739         }
11740     case TARGET_NR_setgroups:
11741         { /* the same code as for TARGET_NR_setgroups32 */
11742             int gidsetsize = arg1;
11743             target_id *target_grouplist;
11744             g_autofree gid_t *grouplist = NULL;
11745             int i;
11746 
11747             if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
11748                 return -TARGET_EINVAL;
11749             }
11750             if (gidsetsize > 0) {
11751                 grouplist = g_try_new(gid_t, gidsetsize);
11752                 if (!grouplist) {
11753                     return -TARGET_ENOMEM;
11754                 }
11755                 target_grouplist = lock_user(VERIFY_READ, arg2,
11756                                              gidsetsize * sizeof(target_id), 1);
11757                 if (!target_grouplist) {
11758                     return -TARGET_EFAULT;
11759                 }
11760                 for (i = 0; i < gidsetsize; i++) {
11761                     grouplist[i] = low2highgid(tswapid(target_grouplist[i]));
11762                 }
11763                 unlock_user(target_grouplist, arg2,
11764                             gidsetsize * sizeof(target_id));
11765             }
11766             return get_errno(setgroups(gidsetsize, grouplist));
11767         }
11768     case TARGET_NR_fchown:
11769         return get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3)));
11770 #if defined(TARGET_NR_fchownat)
11771     case TARGET_NR_fchownat:
11772         if (!(p = lock_user_string(arg2)))
11773             return -TARGET_EFAULT;
11774         ret = get_errno(fchownat(arg1, p, low2highuid(arg3),
11775                                  low2highgid(arg4), arg5));
11776         unlock_user(p, arg2, 0);
11777         return ret;
11778 #endif
11779 #ifdef TARGET_NR_setresuid
11780     case TARGET_NR_setresuid:
11781         return get_errno(sys_setresuid(low2highuid(arg1),
11782                                        low2highuid(arg2),
11783                                        low2highuid(arg3)));
11784 #endif
11785 #ifdef TARGET_NR_getresuid
11786     case TARGET_NR_getresuid:
11787         {
11788             uid_t ruid, euid, suid;
11789             ret = get_errno(getresuid(&ruid, &euid, &suid));
11790             if (!is_error(ret)) {
11791                 if (put_user_id(high2lowuid(ruid), arg1)
11792                     || put_user_id(high2lowuid(euid), arg2)
11793                     || put_user_id(high2lowuid(suid), arg3))
11794                     return -TARGET_EFAULT;
11795             }
11796         }
11797         return ret;
11798 #endif
11799 #ifdef TARGET_NR_getresgid
11800     case TARGET_NR_setresgid:
11801         return get_errno(sys_setresgid(low2highgid(arg1),
11802                                        low2highgid(arg2),
11803                                        low2highgid(arg3)));
11804 #endif
11805 #ifdef TARGET_NR_getresgid
11806     case TARGET_NR_getresgid:
11807         {
11808             gid_t rgid, egid, sgid;
11809             ret = get_errno(getresgid(&rgid, &egid, &sgid));
11810             if (!is_error(ret)) {
11811                 if (put_user_id(high2lowgid(rgid), arg1)
11812                     || put_user_id(high2lowgid(egid), arg2)
11813                     || put_user_id(high2lowgid(sgid), arg3))
11814                     return -TARGET_EFAULT;
11815             }
11816         }
11817         return ret;
11818 #endif
11819 #ifdef TARGET_NR_chown
11820     case TARGET_NR_chown:
11821         if (!(p = lock_user_string(arg1)))
11822             return -TARGET_EFAULT;
11823         ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3)));
11824         unlock_user(p, arg1, 0);
11825         return ret;
11826 #endif
11827     case TARGET_NR_setuid:
11828         return get_errno(sys_setuid(low2highuid(arg1)));
11829     case TARGET_NR_setgid:
11830         return get_errno(sys_setgid(low2highgid(arg1)));
11831     case TARGET_NR_setfsuid:
11832         return get_errno(setfsuid(arg1));
11833     case TARGET_NR_setfsgid:
11834         return get_errno(setfsgid(arg1));
11835 
11836 #ifdef TARGET_NR_lchown32
11837     case TARGET_NR_lchown32:
11838         if (!(p = lock_user_string(arg1)))
11839             return -TARGET_EFAULT;
11840         ret = get_errno(lchown(p, arg2, arg3));
11841         unlock_user(p, arg1, 0);
11842         return ret;
11843 #endif
11844 #ifdef TARGET_NR_getuid32
11845     case TARGET_NR_getuid32:
11846         return get_errno(getuid());
11847 #endif
11848 
11849 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
11850    /* Alpha specific */
11851     case TARGET_NR_getxuid:
11852          {
11853             uid_t euid;
11854             euid=geteuid();
11855             cpu_env->ir[IR_A4]=euid;
11856          }
11857         return get_errno(getuid());
11858 #endif
11859 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
11860    /* Alpha specific */
11861     case TARGET_NR_getxgid:
11862          {
11863             uid_t egid;
11864             egid=getegid();
11865             cpu_env->ir[IR_A4]=egid;
11866          }
11867         return get_errno(getgid());
11868 #endif
11869 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
11870     /* Alpha specific */
11871     case TARGET_NR_osf_getsysinfo:
11872         ret = -TARGET_EOPNOTSUPP;
11873         switch (arg1) {
11874           case TARGET_GSI_IEEE_FP_CONTROL:
11875             {
11876                 uint64_t fpcr = cpu_alpha_load_fpcr(cpu_env);
11877                 uint64_t swcr = cpu_env->swcr;
11878 
11879                 swcr &= ~SWCR_STATUS_MASK;
11880                 swcr |= (fpcr >> 35) & SWCR_STATUS_MASK;
11881 
11882                 if (put_user_u64 (swcr, arg2))
11883                         return -TARGET_EFAULT;
11884                 ret = 0;
11885             }
11886             break;
11887 
11888           /* case GSI_IEEE_STATE_AT_SIGNAL:
11889              -- Not implemented in linux kernel.
11890              case GSI_UACPROC:
11891              -- Retrieves current unaligned access state; not much used.
11892              case GSI_PROC_TYPE:
11893              -- Retrieves implver information; surely not used.
11894              case GSI_GET_HWRPB:
11895              -- Grabs a copy of the HWRPB; surely not used.
11896           */
11897         }
11898         return ret;
11899 #endif
11900 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
11901     /* Alpha specific */
11902     case TARGET_NR_osf_setsysinfo:
11903         ret = -TARGET_EOPNOTSUPP;
11904         switch (arg1) {
11905           case TARGET_SSI_IEEE_FP_CONTROL:
11906             {
11907                 uint64_t swcr, fpcr;
11908 
11909                 if (get_user_u64 (swcr, arg2)) {
11910                     return -TARGET_EFAULT;
11911                 }
11912 
11913                 /*
11914                  * The kernel calls swcr_update_status to update the
11915                  * status bits from the fpcr at every point that it
11916                  * could be queried.  Therefore, we store the status
11917                  * bits only in FPCR.
11918                  */
11919                 cpu_env->swcr = swcr & (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK);
11920 
11921                 fpcr = cpu_alpha_load_fpcr(cpu_env);
11922                 fpcr &= ((uint64_t)FPCR_DYN_MASK << 32);
11923                 fpcr |= alpha_ieee_swcr_to_fpcr(swcr);
11924                 cpu_alpha_store_fpcr(cpu_env, fpcr);
11925                 ret = 0;
11926             }
11927             break;
11928 
11929           case TARGET_SSI_IEEE_RAISE_EXCEPTION:
11930             {
11931                 uint64_t exc, fpcr, fex;
11932 
11933                 if (get_user_u64(exc, arg2)) {
11934                     return -TARGET_EFAULT;
11935                 }
11936                 exc &= SWCR_STATUS_MASK;
11937                 fpcr = cpu_alpha_load_fpcr(cpu_env);
11938 
11939                 /* Old exceptions are not signaled.  */
11940                 fex = alpha_ieee_fpcr_to_swcr(fpcr);
11941                 fex = exc & ~fex;
11942                 fex >>= SWCR_STATUS_TO_EXCSUM_SHIFT;
11943                 fex &= (cpu_env)->swcr;
11944 
11945                 /* Update the hardware fpcr.  */
11946                 fpcr |= alpha_ieee_swcr_to_fpcr(exc);
11947                 cpu_alpha_store_fpcr(cpu_env, fpcr);
11948 
11949                 if (fex) {
11950                     int si_code = TARGET_FPE_FLTUNK;
11951                     target_siginfo_t info;
11952 
11953                     if (fex & SWCR_TRAP_ENABLE_DNO) {
11954                         si_code = TARGET_FPE_FLTUND;
11955                     }
11956                     if (fex & SWCR_TRAP_ENABLE_INE) {
11957                         si_code = TARGET_FPE_FLTRES;
11958                     }
11959                     if (fex & SWCR_TRAP_ENABLE_UNF) {
11960                         si_code = TARGET_FPE_FLTUND;
11961                     }
11962                     if (fex & SWCR_TRAP_ENABLE_OVF) {
11963                         si_code = TARGET_FPE_FLTOVF;
11964                     }
11965                     if (fex & SWCR_TRAP_ENABLE_DZE) {
11966                         si_code = TARGET_FPE_FLTDIV;
11967                     }
11968                     if (fex & SWCR_TRAP_ENABLE_INV) {
11969                         si_code = TARGET_FPE_FLTINV;
11970                     }
11971 
11972                     info.si_signo = SIGFPE;
11973                     info.si_errno = 0;
11974                     info.si_code = si_code;
11975                     info._sifields._sigfault._addr = (cpu_env)->pc;
11976                     queue_signal(cpu_env, info.si_signo,
11977                                  QEMU_SI_FAULT, &info);
11978                 }
11979                 ret = 0;
11980             }
11981             break;
11982 
11983           /* case SSI_NVPAIRS:
11984              -- Used with SSIN_UACPROC to enable unaligned accesses.
11985              case SSI_IEEE_STATE_AT_SIGNAL:
11986              case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
11987              -- Not implemented in linux kernel
11988           */
11989         }
11990         return ret;
11991 #endif
11992 #ifdef TARGET_NR_osf_sigprocmask
11993     /* Alpha specific.  */
11994     case TARGET_NR_osf_sigprocmask:
11995         {
11996             abi_ulong mask;
11997             int how;
11998             sigset_t set, oldset;
11999 
12000             switch(arg1) {
12001             case TARGET_SIG_BLOCK:
12002                 how = SIG_BLOCK;
12003                 break;
12004             case TARGET_SIG_UNBLOCK:
12005                 how = SIG_UNBLOCK;
12006                 break;
12007             case TARGET_SIG_SETMASK:
12008                 how = SIG_SETMASK;
12009                 break;
12010             default:
12011                 return -TARGET_EINVAL;
12012             }
12013             mask = arg2;
12014             target_to_host_old_sigset(&set, &mask);
12015             ret = do_sigprocmask(how, &set, &oldset);
12016             if (!ret) {
12017                 host_to_target_old_sigset(&mask, &oldset);
12018                 ret = mask;
12019             }
12020         }
12021         return ret;
12022 #endif
12023 
12024 #ifdef TARGET_NR_getgid32
12025     case TARGET_NR_getgid32:
12026         return get_errno(getgid());
12027 #endif
12028 #ifdef TARGET_NR_geteuid32
12029     case TARGET_NR_geteuid32:
12030         return get_errno(geteuid());
12031 #endif
12032 #ifdef TARGET_NR_getegid32
12033     case TARGET_NR_getegid32:
12034         return get_errno(getegid());
12035 #endif
12036 #ifdef TARGET_NR_setreuid32
12037     case TARGET_NR_setreuid32:
12038         return get_errno(setreuid(arg1, arg2));
12039 #endif
12040 #ifdef TARGET_NR_setregid32
12041     case TARGET_NR_setregid32:
12042         return get_errno(setregid(arg1, arg2));
12043 #endif
12044 #ifdef TARGET_NR_getgroups32
12045     case TARGET_NR_getgroups32:
12046         { /* the same code as for TARGET_NR_getgroups */
12047             int gidsetsize = arg1;
12048             uint32_t *target_grouplist;
12049             g_autofree gid_t *grouplist = NULL;
12050             int i;
12051 
12052             if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
12053                 return -TARGET_EINVAL;
12054             }
12055             if (gidsetsize > 0) {
12056                 grouplist = g_try_new(gid_t, gidsetsize);
12057                 if (!grouplist) {
12058                     return -TARGET_ENOMEM;
12059                 }
12060             }
12061             ret = get_errno(getgroups(gidsetsize, grouplist));
12062             if (!is_error(ret) && gidsetsize > 0) {
12063                 target_grouplist = lock_user(VERIFY_WRITE, arg2,
12064                                              gidsetsize * 4, 0);
12065                 if (!target_grouplist) {
12066                     return -TARGET_EFAULT;
12067                 }
12068                 for (i = 0; i < ret; i++) {
12069                     target_grouplist[i] = tswap32(grouplist[i]);
12070                 }
12071                 unlock_user(target_grouplist, arg2, gidsetsize * 4);
12072             }
12073             return ret;
12074         }
12075 #endif
12076 #ifdef TARGET_NR_setgroups32
12077     case TARGET_NR_setgroups32:
12078         { /* the same code as for TARGET_NR_setgroups */
12079             int gidsetsize = arg1;
12080             uint32_t *target_grouplist;
12081             g_autofree gid_t *grouplist = NULL;
12082             int i;
12083 
12084             if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
12085                 return -TARGET_EINVAL;
12086             }
12087             if (gidsetsize > 0) {
12088                 grouplist = g_try_new(gid_t, gidsetsize);
12089                 if (!grouplist) {
12090                     return -TARGET_ENOMEM;
12091                 }
12092                 target_grouplist = lock_user(VERIFY_READ, arg2,
12093                                              gidsetsize * 4, 1);
12094                 if (!target_grouplist) {
12095                     return -TARGET_EFAULT;
12096                 }
12097                 for (i = 0; i < gidsetsize; i++) {
12098                     grouplist[i] = tswap32(target_grouplist[i]);
12099                 }
12100                 unlock_user(target_grouplist, arg2, 0);
12101             }
12102             return get_errno(setgroups(gidsetsize, grouplist));
12103         }
12104 #endif
12105 #ifdef TARGET_NR_fchown32
12106     case TARGET_NR_fchown32:
12107         return get_errno(fchown(arg1, arg2, arg3));
12108 #endif
12109 #ifdef TARGET_NR_setresuid32
12110     case TARGET_NR_setresuid32:
12111         return get_errno(sys_setresuid(arg1, arg2, arg3));
12112 #endif
12113 #ifdef TARGET_NR_getresuid32
12114     case TARGET_NR_getresuid32:
12115         {
12116             uid_t ruid, euid, suid;
12117             ret = get_errno(getresuid(&ruid, &euid, &suid));
12118             if (!is_error(ret)) {
12119                 if (put_user_u32(ruid, arg1)
12120                     || put_user_u32(euid, arg2)
12121                     || put_user_u32(suid, arg3))
12122                     return -TARGET_EFAULT;
12123             }
12124         }
12125         return ret;
12126 #endif
12127 #ifdef TARGET_NR_setresgid32
12128     case TARGET_NR_setresgid32:
12129         return get_errno(sys_setresgid(arg1, arg2, arg3));
12130 #endif
12131 #ifdef TARGET_NR_getresgid32
12132     case TARGET_NR_getresgid32:
12133         {
12134             gid_t rgid, egid, sgid;
12135             ret = get_errno(getresgid(&rgid, &egid, &sgid));
12136             if (!is_error(ret)) {
12137                 if (put_user_u32(rgid, arg1)
12138                     || put_user_u32(egid, arg2)
12139                     || put_user_u32(sgid, arg3))
12140                     return -TARGET_EFAULT;
12141             }
12142         }
12143         return ret;
12144 #endif
12145 #ifdef TARGET_NR_chown32
12146     case TARGET_NR_chown32:
12147         if (!(p = lock_user_string(arg1)))
12148             return -TARGET_EFAULT;
12149         ret = get_errno(chown(p, arg2, arg3));
12150         unlock_user(p, arg1, 0);
12151         return ret;
12152 #endif
12153 #ifdef TARGET_NR_setuid32
12154     case TARGET_NR_setuid32:
12155         return get_errno(sys_setuid(arg1));
12156 #endif
12157 #ifdef TARGET_NR_setgid32
12158     case TARGET_NR_setgid32:
12159         return get_errno(sys_setgid(arg1));
12160 #endif
12161 #ifdef TARGET_NR_setfsuid32
12162     case TARGET_NR_setfsuid32:
12163         return get_errno(setfsuid(arg1));
12164 #endif
12165 #ifdef TARGET_NR_setfsgid32
12166     case TARGET_NR_setfsgid32:
12167         return get_errno(setfsgid(arg1));
12168 #endif
12169 #ifdef TARGET_NR_mincore
12170     case TARGET_NR_mincore:
12171         {
12172             void *a = lock_user(VERIFY_NONE, arg1, arg2, 0);
12173             if (!a) {
12174                 return -TARGET_ENOMEM;
12175             }
12176             p = lock_user_string(arg3);
12177             if (!p) {
12178                 ret = -TARGET_EFAULT;
12179             } else {
12180                 ret = get_errno(mincore(a, arg2, p));
12181                 unlock_user(p, arg3, ret);
12182             }
12183             unlock_user(a, arg1, 0);
12184         }
12185         return ret;
12186 #endif
12187 #ifdef TARGET_NR_arm_fadvise64_64
12188     case TARGET_NR_arm_fadvise64_64:
12189         /* arm_fadvise64_64 looks like fadvise64_64 but
12190          * with different argument order: fd, advice, offset, len
12191          * rather than the usual fd, offset, len, advice.
12192          * Note that offset and len are both 64-bit so appear as
12193          * pairs of 32-bit registers.
12194          */
12195         ret = posix_fadvise(arg1, target_offset64(arg3, arg4),
12196                             target_offset64(arg5, arg6), arg2);
12197         return -host_to_target_errno(ret);
12198 #endif
12199 
12200 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
12201 
12202 #ifdef TARGET_NR_fadvise64_64
12203     case TARGET_NR_fadvise64_64:
12204 #if defined(TARGET_PPC) || defined(TARGET_XTENSA)
12205         /* 6 args: fd, advice, offset (high, low), len (high, low) */
12206         ret = arg2;
12207         arg2 = arg3;
12208         arg3 = arg4;
12209         arg4 = arg5;
12210         arg5 = arg6;
12211         arg6 = ret;
12212 #else
12213         /* 6 args: fd, offset (high, low), len (high, low), advice */
12214         if (regpairs_aligned(cpu_env, num)) {
12215             /* offset is in (3,4), len in (5,6) and advice in 7 */
12216             arg2 = arg3;
12217             arg3 = arg4;
12218             arg4 = arg5;
12219             arg5 = arg6;
12220             arg6 = arg7;
12221         }
12222 #endif
12223         ret = posix_fadvise(arg1, target_offset64(arg2, arg3),
12224                             target_offset64(arg4, arg5), arg6);
12225         return -host_to_target_errno(ret);
12226 #endif
12227 
12228 #ifdef TARGET_NR_fadvise64
12229     case TARGET_NR_fadvise64:
12230         /* 5 args: fd, offset (high, low), len, advice */
12231         if (regpairs_aligned(cpu_env, num)) {
12232             /* offset is in (3,4), len in 5 and advice in 6 */
12233             arg2 = arg3;
12234             arg3 = arg4;
12235             arg4 = arg5;
12236             arg5 = arg6;
12237         }
12238         ret = posix_fadvise(arg1, target_offset64(arg2, arg3), arg4, arg5);
12239         return -host_to_target_errno(ret);
12240 #endif
12241 
12242 #else /* not a 32-bit ABI */
12243 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64)
12244 #ifdef TARGET_NR_fadvise64_64
12245     case TARGET_NR_fadvise64_64:
12246 #endif
12247 #ifdef TARGET_NR_fadvise64
12248     case TARGET_NR_fadvise64:
12249 #endif
12250 #ifdef TARGET_S390X
12251         switch (arg4) {
12252         case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */
12253         case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */
12254         case 6: arg4 = POSIX_FADV_DONTNEED; break;
12255         case 7: arg4 = POSIX_FADV_NOREUSE; break;
12256         default: break;
12257         }
12258 #endif
12259         return -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4));
12260 #endif
12261 #endif /* end of 64-bit ABI fadvise handling */
12262 
12263 #ifdef TARGET_NR_madvise
12264     case TARGET_NR_madvise:
12265         return target_madvise(arg1, arg2, arg3);
12266 #endif
12267 #ifdef TARGET_NR_fcntl64
12268     case TARGET_NR_fcntl64:
12269     {
12270         int cmd;
12271         struct flock64 fl;
12272         from_flock64_fn *copyfrom = copy_from_user_flock64;
12273         to_flock64_fn *copyto = copy_to_user_flock64;
12274 
12275 #ifdef TARGET_ARM
12276         if (!cpu_env->eabi) {
12277             copyfrom = copy_from_user_oabi_flock64;
12278             copyto = copy_to_user_oabi_flock64;
12279         }
12280 #endif
12281 
12282         cmd = target_to_host_fcntl_cmd(arg2);
12283         if (cmd == -TARGET_EINVAL) {
12284             return cmd;
12285         }
12286 
12287         switch(arg2) {
12288         case TARGET_F_GETLK64:
12289             ret = copyfrom(&fl, arg3);
12290             if (ret) {
12291                 break;
12292             }
12293             ret = get_errno(safe_fcntl(arg1, cmd, &fl));
12294             if (ret == 0) {
12295                 ret = copyto(arg3, &fl);
12296             }
12297 	    break;
12298 
12299         case TARGET_F_SETLK64:
12300         case TARGET_F_SETLKW64:
12301             ret = copyfrom(&fl, arg3);
12302             if (ret) {
12303                 break;
12304             }
12305             ret = get_errno(safe_fcntl(arg1, cmd, &fl));
12306 	    break;
12307         default:
12308             ret = do_fcntl(arg1, arg2, arg3);
12309             break;
12310         }
12311         return ret;
12312     }
12313 #endif
12314 #ifdef TARGET_NR_cacheflush
12315     case TARGET_NR_cacheflush:
12316         /* self-modifying code is handled automatically, so nothing needed */
12317         return 0;
12318 #endif
12319 #ifdef TARGET_NR_getpagesize
12320     case TARGET_NR_getpagesize:
12321         return TARGET_PAGE_SIZE;
12322 #endif
12323     case TARGET_NR_gettid:
12324         return get_errno(sys_gettid());
12325 #ifdef TARGET_NR_readahead
12326     case TARGET_NR_readahead:
12327 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
12328         if (regpairs_aligned(cpu_env, num)) {
12329             arg2 = arg3;
12330             arg3 = arg4;
12331             arg4 = arg5;
12332         }
12333         ret = get_errno(readahead(arg1, target_offset64(arg2, arg3) , arg4));
12334 #else
12335         ret = get_errno(readahead(arg1, arg2, arg3));
12336 #endif
12337         return ret;
12338 #endif
12339 #ifdef CONFIG_ATTR
12340 #ifdef TARGET_NR_setxattr
12341     case TARGET_NR_listxattr:
12342     case TARGET_NR_llistxattr:
12343     {
12344         void *b = 0;
12345         if (arg2) {
12346             b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
12347             if (!b) {
12348                 return -TARGET_EFAULT;
12349             }
12350         }
12351         p = lock_user_string(arg1);
12352         if (p) {
12353             if (num == TARGET_NR_listxattr) {
12354                 ret = get_errno(listxattr(p, b, arg3));
12355             } else {
12356                 ret = get_errno(llistxattr(p, b, arg3));
12357             }
12358         } else {
12359             ret = -TARGET_EFAULT;
12360         }
12361         unlock_user(p, arg1, 0);
12362         unlock_user(b, arg2, arg3);
12363         return ret;
12364     }
12365     case TARGET_NR_flistxattr:
12366     {
12367         void *b = 0;
12368         if (arg2) {
12369             b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
12370             if (!b) {
12371                 return -TARGET_EFAULT;
12372             }
12373         }
12374         ret = get_errno(flistxattr(arg1, b, arg3));
12375         unlock_user(b, arg2, arg3);
12376         return ret;
12377     }
12378     case TARGET_NR_setxattr:
12379     case TARGET_NR_lsetxattr:
12380         {
12381             void *n, *v = 0;
12382             if (arg3) {
12383                 v = lock_user(VERIFY_READ, arg3, arg4, 1);
12384                 if (!v) {
12385                     return -TARGET_EFAULT;
12386                 }
12387             }
12388             p = lock_user_string(arg1);
12389             n = lock_user_string(arg2);
12390             if (p && n) {
12391                 if (num == TARGET_NR_setxattr) {
12392                     ret = get_errno(setxattr(p, n, v, arg4, arg5));
12393                 } else {
12394                     ret = get_errno(lsetxattr(p, n, v, arg4, arg5));
12395                 }
12396             } else {
12397                 ret = -TARGET_EFAULT;
12398             }
12399             unlock_user(p, arg1, 0);
12400             unlock_user(n, arg2, 0);
12401             unlock_user(v, arg3, 0);
12402         }
12403         return ret;
12404     case TARGET_NR_fsetxattr:
12405         {
12406             void *n, *v = 0;
12407             if (arg3) {
12408                 v = lock_user(VERIFY_READ, arg3, arg4, 1);
12409                 if (!v) {
12410                     return -TARGET_EFAULT;
12411                 }
12412             }
12413             n = lock_user_string(arg2);
12414             if (n) {
12415                 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5));
12416             } else {
12417                 ret = -TARGET_EFAULT;
12418             }
12419             unlock_user(n, arg2, 0);
12420             unlock_user(v, arg3, 0);
12421         }
12422         return ret;
12423     case TARGET_NR_getxattr:
12424     case TARGET_NR_lgetxattr:
12425         {
12426             void *n, *v = 0;
12427             if (arg3) {
12428                 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
12429                 if (!v) {
12430                     return -TARGET_EFAULT;
12431                 }
12432             }
12433             p = lock_user_string(arg1);
12434             n = lock_user_string(arg2);
12435             if (p && n) {
12436                 if (num == TARGET_NR_getxattr) {
12437                     ret = get_errno(getxattr(p, n, v, arg4));
12438                 } else {
12439                     ret = get_errno(lgetxattr(p, n, v, arg4));
12440                 }
12441             } else {
12442                 ret = -TARGET_EFAULT;
12443             }
12444             unlock_user(p, arg1, 0);
12445             unlock_user(n, arg2, 0);
12446             unlock_user(v, arg3, arg4);
12447         }
12448         return ret;
12449     case TARGET_NR_fgetxattr:
12450         {
12451             void *n, *v = 0;
12452             if (arg3) {
12453                 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
12454                 if (!v) {
12455                     return -TARGET_EFAULT;
12456                 }
12457             }
12458             n = lock_user_string(arg2);
12459             if (n) {
12460                 ret = get_errno(fgetxattr(arg1, n, v, arg4));
12461             } else {
12462                 ret = -TARGET_EFAULT;
12463             }
12464             unlock_user(n, arg2, 0);
12465             unlock_user(v, arg3, arg4);
12466         }
12467         return ret;
12468     case TARGET_NR_removexattr:
12469     case TARGET_NR_lremovexattr:
12470         {
12471             void *n;
12472             p = lock_user_string(arg1);
12473             n = lock_user_string(arg2);
12474             if (p && n) {
12475                 if (num == TARGET_NR_removexattr) {
12476                     ret = get_errno(removexattr(p, n));
12477                 } else {
12478                     ret = get_errno(lremovexattr(p, n));
12479                 }
12480             } else {
12481                 ret = -TARGET_EFAULT;
12482             }
12483             unlock_user(p, arg1, 0);
12484             unlock_user(n, arg2, 0);
12485         }
12486         return ret;
12487     case TARGET_NR_fremovexattr:
12488         {
12489             void *n;
12490             n = lock_user_string(arg2);
12491             if (n) {
12492                 ret = get_errno(fremovexattr(arg1, n));
12493             } else {
12494                 ret = -TARGET_EFAULT;
12495             }
12496             unlock_user(n, arg2, 0);
12497         }
12498         return ret;
12499 #endif
12500 #endif /* CONFIG_ATTR */
12501 #ifdef TARGET_NR_set_thread_area
12502     case TARGET_NR_set_thread_area:
12503 #if defined(TARGET_MIPS)
12504       cpu_env->active_tc.CP0_UserLocal = arg1;
12505       return 0;
12506 #elif defined(TARGET_CRIS)
12507       if (arg1 & 0xff)
12508           ret = -TARGET_EINVAL;
12509       else {
12510           cpu_env->pregs[PR_PID] = arg1;
12511           ret = 0;
12512       }
12513       return ret;
12514 #elif defined(TARGET_I386) && defined(TARGET_ABI32)
12515       return do_set_thread_area(cpu_env, arg1);
12516 #elif defined(TARGET_M68K)
12517       {
12518           TaskState *ts = cpu->opaque;
12519           ts->tp_value = arg1;
12520           return 0;
12521       }
12522 #else
12523       return -TARGET_ENOSYS;
12524 #endif
12525 #endif
12526 #ifdef TARGET_NR_get_thread_area
12527     case TARGET_NR_get_thread_area:
12528 #if defined(TARGET_I386) && defined(TARGET_ABI32)
12529         return do_get_thread_area(cpu_env, arg1);
12530 #elif defined(TARGET_M68K)
12531         {
12532             TaskState *ts = cpu->opaque;
12533             return ts->tp_value;
12534         }
12535 #else
12536         return -TARGET_ENOSYS;
12537 #endif
12538 #endif
12539 #ifdef TARGET_NR_getdomainname
12540     case TARGET_NR_getdomainname:
12541         return -TARGET_ENOSYS;
12542 #endif
12543 
12544 #ifdef TARGET_NR_clock_settime
12545     case TARGET_NR_clock_settime:
12546     {
12547         struct timespec ts;
12548 
12549         ret = target_to_host_timespec(&ts, arg2);
12550         if (!is_error(ret)) {
12551             ret = get_errno(clock_settime(arg1, &ts));
12552         }
12553         return ret;
12554     }
12555 #endif
12556 #ifdef TARGET_NR_clock_settime64
12557     case TARGET_NR_clock_settime64:
12558     {
12559         struct timespec ts;
12560 
12561         ret = target_to_host_timespec64(&ts, arg2);
12562         if (!is_error(ret)) {
12563             ret = get_errno(clock_settime(arg1, &ts));
12564         }
12565         return ret;
12566     }
12567 #endif
12568 #ifdef TARGET_NR_clock_gettime
12569     case TARGET_NR_clock_gettime:
12570     {
12571         struct timespec ts;
12572         ret = get_errno(clock_gettime(arg1, &ts));
12573         if (!is_error(ret)) {
12574             ret = host_to_target_timespec(arg2, &ts);
12575         }
12576         return ret;
12577     }
12578 #endif
12579 #ifdef TARGET_NR_clock_gettime64
12580     case TARGET_NR_clock_gettime64:
12581     {
12582         struct timespec ts;
12583         ret = get_errno(clock_gettime(arg1, &ts));
12584         if (!is_error(ret)) {
12585             ret = host_to_target_timespec64(arg2, &ts);
12586         }
12587         return ret;
12588     }
12589 #endif
12590 #ifdef TARGET_NR_clock_getres
12591     case TARGET_NR_clock_getres:
12592     {
12593         struct timespec ts;
12594         ret = get_errno(clock_getres(arg1, &ts));
12595         if (!is_error(ret)) {
12596             host_to_target_timespec(arg2, &ts);
12597         }
12598         return ret;
12599     }
12600 #endif
12601 #ifdef TARGET_NR_clock_getres_time64
12602     case TARGET_NR_clock_getres_time64:
12603     {
12604         struct timespec ts;
12605         ret = get_errno(clock_getres(arg1, &ts));
12606         if (!is_error(ret)) {
12607             host_to_target_timespec64(arg2, &ts);
12608         }
12609         return ret;
12610     }
12611 #endif
12612 #ifdef TARGET_NR_clock_nanosleep
12613     case TARGET_NR_clock_nanosleep:
12614     {
12615         struct timespec ts;
12616         if (target_to_host_timespec(&ts, arg3)) {
12617             return -TARGET_EFAULT;
12618         }
12619         ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12620                                              &ts, arg4 ? &ts : NULL));
12621         /*
12622          * if the call is interrupted by a signal handler, it fails
12623          * with error -TARGET_EINTR and if arg4 is not NULL and arg2 is not
12624          * TIMER_ABSTIME, it returns the remaining unslept time in arg4.
12625          */
12626         if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME &&
12627             host_to_target_timespec(arg4, &ts)) {
12628               return -TARGET_EFAULT;
12629         }
12630 
12631         return ret;
12632     }
12633 #endif
12634 #ifdef TARGET_NR_clock_nanosleep_time64
12635     case TARGET_NR_clock_nanosleep_time64:
12636     {
12637         struct timespec ts;
12638 
12639         if (target_to_host_timespec64(&ts, arg3)) {
12640             return -TARGET_EFAULT;
12641         }
12642 
12643         ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12644                                              &ts, arg4 ? &ts : NULL));
12645 
12646         if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME &&
12647             host_to_target_timespec64(arg4, &ts)) {
12648             return -TARGET_EFAULT;
12649         }
12650         return ret;
12651     }
12652 #endif
12653 
12654 #if defined(TARGET_NR_set_tid_address)
12655     case TARGET_NR_set_tid_address:
12656     {
12657         TaskState *ts = cpu->opaque;
12658         ts->child_tidptr = arg1;
12659         /* do not call host set_tid_address() syscall, instead return tid() */
12660         return get_errno(sys_gettid());
12661     }
12662 #endif
12663 
12664     case TARGET_NR_tkill:
12665         return get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2)));
12666 
12667     case TARGET_NR_tgkill:
12668         return get_errno(safe_tgkill((int)arg1, (int)arg2,
12669                          target_to_host_signal(arg3)));
12670 
12671 #ifdef TARGET_NR_set_robust_list
12672     case TARGET_NR_set_robust_list:
12673     case TARGET_NR_get_robust_list:
12674         /* The ABI for supporting robust futexes has userspace pass
12675          * the kernel a pointer to a linked list which is updated by
12676          * userspace after the syscall; the list is walked by the kernel
12677          * when the thread exits. Since the linked list in QEMU guest
12678          * memory isn't a valid linked list for the host and we have
12679          * no way to reliably intercept the thread-death event, we can't
12680          * support these. Silently return ENOSYS so that guest userspace
12681          * falls back to a non-robust futex implementation (which should
12682          * be OK except in the corner case of the guest crashing while
12683          * holding a mutex that is shared with another process via
12684          * shared memory).
12685          */
12686         return -TARGET_ENOSYS;
12687 #endif
12688 
12689 #if defined(TARGET_NR_utimensat)
12690     case TARGET_NR_utimensat:
12691         {
12692             struct timespec *tsp, ts[2];
12693             if (!arg3) {
12694                 tsp = NULL;
12695             } else {
12696                 if (target_to_host_timespec(ts, arg3)) {
12697                     return -TARGET_EFAULT;
12698                 }
12699                 if (target_to_host_timespec(ts + 1, arg3 +
12700                                             sizeof(struct target_timespec))) {
12701                     return -TARGET_EFAULT;
12702                 }
12703                 tsp = ts;
12704             }
12705             if (!arg2)
12706                 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12707             else {
12708                 if (!(p = lock_user_string(arg2))) {
12709                     return -TARGET_EFAULT;
12710                 }
12711                 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12712                 unlock_user(p, arg2, 0);
12713             }
12714         }
12715         return ret;
12716 #endif
12717 #ifdef TARGET_NR_utimensat_time64
12718     case TARGET_NR_utimensat_time64:
12719         {
12720             struct timespec *tsp, ts[2];
12721             if (!arg3) {
12722                 tsp = NULL;
12723             } else {
12724                 if (target_to_host_timespec64(ts, arg3)) {
12725                     return -TARGET_EFAULT;
12726                 }
12727                 if (target_to_host_timespec64(ts + 1, arg3 +
12728                                      sizeof(struct target__kernel_timespec))) {
12729                     return -TARGET_EFAULT;
12730                 }
12731                 tsp = ts;
12732             }
12733             if (!arg2)
12734                 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12735             else {
12736                 p = lock_user_string(arg2);
12737                 if (!p) {
12738                     return -TARGET_EFAULT;
12739                 }
12740                 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12741                 unlock_user(p, arg2, 0);
12742             }
12743         }
12744         return ret;
12745 #endif
12746 #ifdef TARGET_NR_futex
12747     case TARGET_NR_futex:
12748         return do_futex(cpu, false, arg1, arg2, arg3, arg4, arg5, arg6);
12749 #endif
12750 #ifdef TARGET_NR_futex_time64
12751     case TARGET_NR_futex_time64:
12752         return do_futex(cpu, true, arg1, arg2, arg3, arg4, arg5, arg6);
12753 #endif
12754 #ifdef CONFIG_INOTIFY
12755 #if defined(TARGET_NR_inotify_init)
12756     case TARGET_NR_inotify_init:
12757         ret = get_errno(inotify_init());
12758         if (ret >= 0) {
12759             fd_trans_register(ret, &target_inotify_trans);
12760         }
12761         return ret;
12762 #endif
12763 #if defined(TARGET_NR_inotify_init1) && defined(CONFIG_INOTIFY1)
12764     case TARGET_NR_inotify_init1:
12765         ret = get_errno(inotify_init1(target_to_host_bitmask(arg1,
12766                                           fcntl_flags_tbl)));
12767         if (ret >= 0) {
12768             fd_trans_register(ret, &target_inotify_trans);
12769         }
12770         return ret;
12771 #endif
12772 #if defined(TARGET_NR_inotify_add_watch)
12773     case TARGET_NR_inotify_add_watch:
12774         p = lock_user_string(arg2);
12775         ret = get_errno(inotify_add_watch(arg1, path(p), arg3));
12776         unlock_user(p, arg2, 0);
12777         return ret;
12778 #endif
12779 #if defined(TARGET_NR_inotify_rm_watch)
12780     case TARGET_NR_inotify_rm_watch:
12781         return get_errno(inotify_rm_watch(arg1, arg2));
12782 #endif
12783 #endif
12784 
12785 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
12786     case TARGET_NR_mq_open:
12787         {
12788             struct mq_attr posix_mq_attr;
12789             struct mq_attr *pposix_mq_attr;
12790             int host_flags;
12791 
12792             host_flags = target_to_host_bitmask(arg2, fcntl_flags_tbl);
12793             pposix_mq_attr = NULL;
12794             if (arg4) {
12795                 if (copy_from_user_mq_attr(&posix_mq_attr, arg4) != 0) {
12796                     return -TARGET_EFAULT;
12797                 }
12798                 pposix_mq_attr = &posix_mq_attr;
12799             }
12800             p = lock_user_string(arg1 - 1);
12801             if (!p) {
12802                 return -TARGET_EFAULT;
12803             }
12804             ret = get_errno(mq_open(p, host_flags, arg3, pposix_mq_attr));
12805             unlock_user (p, arg1, 0);
12806         }
12807         return ret;
12808 
12809     case TARGET_NR_mq_unlink:
12810         p = lock_user_string(arg1 - 1);
12811         if (!p) {
12812             return -TARGET_EFAULT;
12813         }
12814         ret = get_errno(mq_unlink(p));
12815         unlock_user (p, arg1, 0);
12816         return ret;
12817 
12818 #ifdef TARGET_NR_mq_timedsend
12819     case TARGET_NR_mq_timedsend:
12820         {
12821             struct timespec ts;
12822 
12823             p = lock_user (VERIFY_READ, arg2, arg3, 1);
12824             if (arg5 != 0) {
12825                 if (target_to_host_timespec(&ts, arg5)) {
12826                     return -TARGET_EFAULT;
12827                 }
12828                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12829                 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) {
12830                     return -TARGET_EFAULT;
12831                 }
12832             } else {
12833                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12834             }
12835             unlock_user (p, arg2, arg3);
12836         }
12837         return ret;
12838 #endif
12839 #ifdef TARGET_NR_mq_timedsend_time64
12840     case TARGET_NR_mq_timedsend_time64:
12841         {
12842             struct timespec ts;
12843 
12844             p = lock_user(VERIFY_READ, arg2, arg3, 1);
12845             if (arg5 != 0) {
12846                 if (target_to_host_timespec64(&ts, arg5)) {
12847                     return -TARGET_EFAULT;
12848                 }
12849                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12850                 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) {
12851                     return -TARGET_EFAULT;
12852                 }
12853             } else {
12854                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12855             }
12856             unlock_user(p, arg2, arg3);
12857         }
12858         return ret;
12859 #endif
12860 
12861 #ifdef TARGET_NR_mq_timedreceive
12862     case TARGET_NR_mq_timedreceive:
12863         {
12864             struct timespec ts;
12865             unsigned int prio;
12866 
12867             p = lock_user (VERIFY_READ, arg2, arg3, 1);
12868             if (arg5 != 0) {
12869                 if (target_to_host_timespec(&ts, arg5)) {
12870                     return -TARGET_EFAULT;
12871                 }
12872                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12873                                                      &prio, &ts));
12874                 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) {
12875                     return -TARGET_EFAULT;
12876                 }
12877             } else {
12878                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12879                                                      &prio, NULL));
12880             }
12881             unlock_user (p, arg2, arg3);
12882             if (arg4 != 0)
12883                 put_user_u32(prio, arg4);
12884         }
12885         return ret;
12886 #endif
12887 #ifdef TARGET_NR_mq_timedreceive_time64
12888     case TARGET_NR_mq_timedreceive_time64:
12889         {
12890             struct timespec ts;
12891             unsigned int prio;
12892 
12893             p = lock_user(VERIFY_READ, arg2, arg3, 1);
12894             if (arg5 != 0) {
12895                 if (target_to_host_timespec64(&ts, arg5)) {
12896                     return -TARGET_EFAULT;
12897                 }
12898                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12899                                                      &prio, &ts));
12900                 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) {
12901                     return -TARGET_EFAULT;
12902                 }
12903             } else {
12904                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12905                                                      &prio, NULL));
12906             }
12907             unlock_user(p, arg2, arg3);
12908             if (arg4 != 0) {
12909                 put_user_u32(prio, arg4);
12910             }
12911         }
12912         return ret;
12913 #endif
12914 
12915     /* Not implemented for now... */
12916 /*     case TARGET_NR_mq_notify: */
12917 /*         break; */
12918 
12919     case TARGET_NR_mq_getsetattr:
12920         {
12921             struct mq_attr posix_mq_attr_in, posix_mq_attr_out;
12922             ret = 0;
12923             if (arg2 != 0) {
12924                 copy_from_user_mq_attr(&posix_mq_attr_in, arg2);
12925                 ret = get_errno(mq_setattr(arg1, &posix_mq_attr_in,
12926                                            &posix_mq_attr_out));
12927             } else if (arg3 != 0) {
12928                 ret = get_errno(mq_getattr(arg1, &posix_mq_attr_out));
12929             }
12930             if (ret == 0 && arg3 != 0) {
12931                 copy_to_user_mq_attr(arg3, &posix_mq_attr_out);
12932             }
12933         }
12934         return ret;
12935 #endif
12936 
12937 #ifdef CONFIG_SPLICE
12938 #ifdef TARGET_NR_tee
12939     case TARGET_NR_tee:
12940         {
12941             ret = get_errno(tee(arg1,arg2,arg3,arg4));
12942         }
12943         return ret;
12944 #endif
12945 #ifdef TARGET_NR_splice
12946     case TARGET_NR_splice:
12947         {
12948             loff_t loff_in, loff_out;
12949             loff_t *ploff_in = NULL, *ploff_out = NULL;
12950             if (arg2) {
12951                 if (get_user_u64(loff_in, arg2)) {
12952                     return -TARGET_EFAULT;
12953                 }
12954                 ploff_in = &loff_in;
12955             }
12956             if (arg4) {
12957                 if (get_user_u64(loff_out, arg4)) {
12958                     return -TARGET_EFAULT;
12959                 }
12960                 ploff_out = &loff_out;
12961             }
12962             ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6));
12963             if (arg2) {
12964                 if (put_user_u64(loff_in, arg2)) {
12965                     return -TARGET_EFAULT;
12966                 }
12967             }
12968             if (arg4) {
12969                 if (put_user_u64(loff_out, arg4)) {
12970                     return -TARGET_EFAULT;
12971                 }
12972             }
12973         }
12974         return ret;
12975 #endif
12976 #ifdef TARGET_NR_vmsplice
12977 	case TARGET_NR_vmsplice:
12978         {
12979             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
12980             if (vec != NULL) {
12981                 ret = get_errno(vmsplice(arg1, vec, arg3, arg4));
12982                 unlock_iovec(vec, arg2, arg3, 0);
12983             } else {
12984                 ret = -host_to_target_errno(errno);
12985             }
12986         }
12987         return ret;
12988 #endif
12989 #endif /* CONFIG_SPLICE */
12990 #ifdef CONFIG_EVENTFD
12991 #if defined(TARGET_NR_eventfd)
12992     case TARGET_NR_eventfd:
12993         ret = get_errno(eventfd(arg1, 0));
12994         if (ret >= 0) {
12995             fd_trans_register(ret, &target_eventfd_trans);
12996         }
12997         return ret;
12998 #endif
12999 #if defined(TARGET_NR_eventfd2)
13000     case TARGET_NR_eventfd2:
13001     {
13002         int host_flags = arg2 & (~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC));
13003         if (arg2 & TARGET_O_NONBLOCK) {
13004             host_flags |= O_NONBLOCK;
13005         }
13006         if (arg2 & TARGET_O_CLOEXEC) {
13007             host_flags |= O_CLOEXEC;
13008         }
13009         ret = get_errno(eventfd(arg1, host_flags));
13010         if (ret >= 0) {
13011             fd_trans_register(ret, &target_eventfd_trans);
13012         }
13013         return ret;
13014     }
13015 #endif
13016 #endif /* CONFIG_EVENTFD  */
13017 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
13018     case TARGET_NR_fallocate:
13019 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13020         ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4),
13021                                   target_offset64(arg5, arg6)));
13022 #else
13023         ret = get_errno(fallocate(arg1, arg2, arg3, arg4));
13024 #endif
13025         return ret;
13026 #endif
13027 #if defined(CONFIG_SYNC_FILE_RANGE)
13028 #if defined(TARGET_NR_sync_file_range)
13029     case TARGET_NR_sync_file_range:
13030 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13031 #if defined(TARGET_MIPS)
13032         ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
13033                                         target_offset64(arg5, arg6), arg7));
13034 #else
13035         ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3),
13036                                         target_offset64(arg4, arg5), arg6));
13037 #endif /* !TARGET_MIPS */
13038 #else
13039         ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4));
13040 #endif
13041         return ret;
13042 #endif
13043 #if defined(TARGET_NR_sync_file_range2) || \
13044     defined(TARGET_NR_arm_sync_file_range)
13045 #if defined(TARGET_NR_sync_file_range2)
13046     case TARGET_NR_sync_file_range2:
13047 #endif
13048 #if defined(TARGET_NR_arm_sync_file_range)
13049     case TARGET_NR_arm_sync_file_range:
13050 #endif
13051         /* This is like sync_file_range but the arguments are reordered */
13052 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13053         ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
13054                                         target_offset64(arg5, arg6), arg2));
13055 #else
13056         ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2));
13057 #endif
13058         return ret;
13059 #endif
13060 #endif
13061 #if defined(TARGET_NR_signalfd4)
13062     case TARGET_NR_signalfd4:
13063         return do_signalfd4(arg1, arg2, arg4);
13064 #endif
13065 #if defined(TARGET_NR_signalfd)
13066     case TARGET_NR_signalfd:
13067         return do_signalfd4(arg1, arg2, 0);
13068 #endif
13069 #if defined(CONFIG_EPOLL)
13070 #if defined(TARGET_NR_epoll_create)
13071     case TARGET_NR_epoll_create:
13072         return get_errno(epoll_create(arg1));
13073 #endif
13074 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
13075     case TARGET_NR_epoll_create1:
13076         return get_errno(epoll_create1(target_to_host_bitmask(arg1, fcntl_flags_tbl)));
13077 #endif
13078 #if defined(TARGET_NR_epoll_ctl)
13079     case TARGET_NR_epoll_ctl:
13080     {
13081         struct epoll_event ep;
13082         struct epoll_event *epp = 0;
13083         if (arg4) {
13084             if (arg2 != EPOLL_CTL_DEL) {
13085                 struct target_epoll_event *target_ep;
13086                 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) {
13087                     return -TARGET_EFAULT;
13088                 }
13089                 ep.events = tswap32(target_ep->events);
13090                 /*
13091                  * The epoll_data_t union is just opaque data to the kernel,
13092                  * so we transfer all 64 bits across and need not worry what
13093                  * actual data type it is.
13094                  */
13095                 ep.data.u64 = tswap64(target_ep->data.u64);
13096                 unlock_user_struct(target_ep, arg4, 0);
13097             }
13098             /*
13099              * before kernel 2.6.9, EPOLL_CTL_DEL operation required a
13100              * non-null pointer, even though this argument is ignored.
13101              *
13102              */
13103             epp = &ep;
13104         }
13105         return get_errno(epoll_ctl(arg1, arg2, arg3, epp));
13106     }
13107 #endif
13108 
13109 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait)
13110 #if defined(TARGET_NR_epoll_wait)
13111     case TARGET_NR_epoll_wait:
13112 #endif
13113 #if defined(TARGET_NR_epoll_pwait)
13114     case TARGET_NR_epoll_pwait:
13115 #endif
13116     {
13117         struct target_epoll_event *target_ep;
13118         struct epoll_event *ep;
13119         int epfd = arg1;
13120         int maxevents = arg3;
13121         int timeout = arg4;
13122 
13123         if (maxevents <= 0 || maxevents > TARGET_EP_MAX_EVENTS) {
13124             return -TARGET_EINVAL;
13125         }
13126 
13127         target_ep = lock_user(VERIFY_WRITE, arg2,
13128                               maxevents * sizeof(struct target_epoll_event), 1);
13129         if (!target_ep) {
13130             return -TARGET_EFAULT;
13131         }
13132 
13133         ep = g_try_new(struct epoll_event, maxevents);
13134         if (!ep) {
13135             unlock_user(target_ep, arg2, 0);
13136             return -TARGET_ENOMEM;
13137         }
13138 
13139         switch (num) {
13140 #if defined(TARGET_NR_epoll_pwait)
13141         case TARGET_NR_epoll_pwait:
13142         {
13143             sigset_t *set = NULL;
13144 
13145             if (arg5) {
13146                 ret = process_sigsuspend_mask(&set, arg5, arg6);
13147                 if (ret != 0) {
13148                     break;
13149                 }
13150             }
13151 
13152             ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
13153                                              set, SIGSET_T_SIZE));
13154 
13155             if (set) {
13156                 finish_sigsuspend_mask(ret);
13157             }
13158             break;
13159         }
13160 #endif
13161 #if defined(TARGET_NR_epoll_wait)
13162         case TARGET_NR_epoll_wait:
13163             ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
13164                                              NULL, 0));
13165             break;
13166 #endif
13167         default:
13168             ret = -TARGET_ENOSYS;
13169         }
13170         if (!is_error(ret)) {
13171             int i;
13172             for (i = 0; i < ret; i++) {
13173                 target_ep[i].events = tswap32(ep[i].events);
13174                 target_ep[i].data.u64 = tswap64(ep[i].data.u64);
13175             }
13176             unlock_user(target_ep, arg2,
13177                         ret * sizeof(struct target_epoll_event));
13178         } else {
13179             unlock_user(target_ep, arg2, 0);
13180         }
13181         g_free(ep);
13182         return ret;
13183     }
13184 #endif
13185 #endif
13186 #ifdef TARGET_NR_prlimit64
13187     case TARGET_NR_prlimit64:
13188     {
13189         /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
13190         struct target_rlimit64 *target_rnew, *target_rold;
13191         struct host_rlimit64 rnew, rold, *rnewp = 0;
13192         int resource = target_to_host_resource(arg2);
13193 
13194         if (arg3 && (resource != RLIMIT_AS &&
13195                      resource != RLIMIT_DATA &&
13196                      resource != RLIMIT_STACK)) {
13197             if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) {
13198                 return -TARGET_EFAULT;
13199             }
13200             __get_user(rnew.rlim_cur, &target_rnew->rlim_cur);
13201             __get_user(rnew.rlim_max, &target_rnew->rlim_max);
13202             unlock_user_struct(target_rnew, arg3, 0);
13203             rnewp = &rnew;
13204         }
13205 
13206         ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0));
13207         if (!is_error(ret) && arg4) {
13208             if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) {
13209                 return -TARGET_EFAULT;
13210             }
13211             __put_user(rold.rlim_cur, &target_rold->rlim_cur);
13212             __put_user(rold.rlim_max, &target_rold->rlim_max);
13213             unlock_user_struct(target_rold, arg4, 1);
13214         }
13215         return ret;
13216     }
13217 #endif
13218 #ifdef TARGET_NR_gethostname
13219     case TARGET_NR_gethostname:
13220     {
13221         char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0);
13222         if (name) {
13223             ret = get_errno(gethostname(name, arg2));
13224             unlock_user(name, arg1, arg2);
13225         } else {
13226             ret = -TARGET_EFAULT;
13227         }
13228         return ret;
13229     }
13230 #endif
13231 #ifdef TARGET_NR_atomic_cmpxchg_32
13232     case TARGET_NR_atomic_cmpxchg_32:
13233     {
13234         /* should use start_exclusive from main.c */
13235         abi_ulong mem_value;
13236         if (get_user_u32(mem_value, arg6)) {
13237             target_siginfo_t info;
13238             info.si_signo = SIGSEGV;
13239             info.si_errno = 0;
13240             info.si_code = TARGET_SEGV_MAPERR;
13241             info._sifields._sigfault._addr = arg6;
13242             queue_signal(cpu_env, info.si_signo, QEMU_SI_FAULT, &info);
13243             ret = 0xdeadbeef;
13244 
13245         }
13246         if (mem_value == arg2)
13247             put_user_u32(arg1, arg6);
13248         return mem_value;
13249     }
13250 #endif
13251 #ifdef TARGET_NR_atomic_barrier
13252     case TARGET_NR_atomic_barrier:
13253         /* Like the kernel implementation and the
13254            qemu arm barrier, no-op this? */
13255         return 0;
13256 #endif
13257 
13258 #ifdef TARGET_NR_timer_create
13259     case TARGET_NR_timer_create:
13260     {
13261         /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */
13262 
13263         struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL;
13264 
13265         int clkid = arg1;
13266         int timer_index = next_free_host_timer();
13267 
13268         if (timer_index < 0) {
13269             ret = -TARGET_EAGAIN;
13270         } else {
13271             timer_t *phtimer = g_posix_timers  + timer_index;
13272 
13273             if (arg2) {
13274                 phost_sevp = &host_sevp;
13275                 ret = target_to_host_sigevent(phost_sevp, arg2);
13276                 if (ret != 0) {
13277                     free_host_timer_slot(timer_index);
13278                     return ret;
13279                 }
13280             }
13281 
13282             ret = get_errno(timer_create(clkid, phost_sevp, phtimer));
13283             if (ret) {
13284                 free_host_timer_slot(timer_index);
13285             } else {
13286                 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) {
13287                     timer_delete(*phtimer);
13288                     free_host_timer_slot(timer_index);
13289                     return -TARGET_EFAULT;
13290                 }
13291             }
13292         }
13293         return ret;
13294     }
13295 #endif
13296 
13297 #ifdef TARGET_NR_timer_settime
13298     case TARGET_NR_timer_settime:
13299     {
13300         /* args: timer_t timerid, int flags, const struct itimerspec *new_value,
13301          * struct itimerspec * old_value */
13302         target_timer_t timerid = get_timer_id(arg1);
13303 
13304         if (timerid < 0) {
13305             ret = timerid;
13306         } else if (arg3 == 0) {
13307             ret = -TARGET_EINVAL;
13308         } else {
13309             timer_t htimer = g_posix_timers[timerid];
13310             struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
13311 
13312             if (target_to_host_itimerspec(&hspec_new, arg3)) {
13313                 return -TARGET_EFAULT;
13314             }
13315             ret = get_errno(
13316                           timer_settime(htimer, arg2, &hspec_new, &hspec_old));
13317             if (arg4 && host_to_target_itimerspec(arg4, &hspec_old)) {
13318                 return -TARGET_EFAULT;
13319             }
13320         }
13321         return ret;
13322     }
13323 #endif
13324 
13325 #ifdef TARGET_NR_timer_settime64
13326     case TARGET_NR_timer_settime64:
13327     {
13328         target_timer_t timerid = get_timer_id(arg1);
13329 
13330         if (timerid < 0) {
13331             ret = timerid;
13332         } else if (arg3 == 0) {
13333             ret = -TARGET_EINVAL;
13334         } else {
13335             timer_t htimer = g_posix_timers[timerid];
13336             struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
13337 
13338             if (target_to_host_itimerspec64(&hspec_new, arg3)) {
13339                 return -TARGET_EFAULT;
13340             }
13341             ret = get_errno(
13342                           timer_settime(htimer, arg2, &hspec_new, &hspec_old));
13343             if (arg4 && host_to_target_itimerspec64(arg4, &hspec_old)) {
13344                 return -TARGET_EFAULT;
13345             }
13346         }
13347         return ret;
13348     }
13349 #endif
13350 
13351 #ifdef TARGET_NR_timer_gettime
13352     case TARGET_NR_timer_gettime:
13353     {
13354         /* args: timer_t timerid, struct itimerspec *curr_value */
13355         target_timer_t timerid = get_timer_id(arg1);
13356 
13357         if (timerid < 0) {
13358             ret = timerid;
13359         } else if (!arg2) {
13360             ret = -TARGET_EFAULT;
13361         } else {
13362             timer_t htimer = g_posix_timers[timerid];
13363             struct itimerspec hspec;
13364             ret = get_errno(timer_gettime(htimer, &hspec));
13365 
13366             if (host_to_target_itimerspec(arg2, &hspec)) {
13367                 ret = -TARGET_EFAULT;
13368             }
13369         }
13370         return ret;
13371     }
13372 #endif
13373 
13374 #ifdef TARGET_NR_timer_gettime64
13375     case TARGET_NR_timer_gettime64:
13376     {
13377         /* args: timer_t timerid, struct itimerspec64 *curr_value */
13378         target_timer_t timerid = get_timer_id(arg1);
13379 
13380         if (timerid < 0) {
13381             ret = timerid;
13382         } else if (!arg2) {
13383             ret = -TARGET_EFAULT;
13384         } else {
13385             timer_t htimer = g_posix_timers[timerid];
13386             struct itimerspec hspec;
13387             ret = get_errno(timer_gettime(htimer, &hspec));
13388 
13389             if (host_to_target_itimerspec64(arg2, &hspec)) {
13390                 ret = -TARGET_EFAULT;
13391             }
13392         }
13393         return ret;
13394     }
13395 #endif
13396 
13397 #ifdef TARGET_NR_timer_getoverrun
13398     case TARGET_NR_timer_getoverrun:
13399     {
13400         /* args: timer_t timerid */
13401         target_timer_t timerid = get_timer_id(arg1);
13402 
13403         if (timerid < 0) {
13404             ret = timerid;
13405         } else {
13406             timer_t htimer = g_posix_timers[timerid];
13407             ret = get_errno(timer_getoverrun(htimer));
13408         }
13409         return ret;
13410     }
13411 #endif
13412 
13413 #ifdef TARGET_NR_timer_delete
13414     case TARGET_NR_timer_delete:
13415     {
13416         /* args: timer_t timerid */
13417         target_timer_t timerid = get_timer_id(arg1);
13418 
13419         if (timerid < 0) {
13420             ret = timerid;
13421         } else {
13422             timer_t htimer = g_posix_timers[timerid];
13423             ret = get_errno(timer_delete(htimer));
13424             free_host_timer_slot(timerid);
13425         }
13426         return ret;
13427     }
13428 #endif
13429 
13430 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD)
13431     case TARGET_NR_timerfd_create:
13432         ret = get_errno(timerfd_create(arg1,
13433                         target_to_host_bitmask(arg2, fcntl_flags_tbl)));
13434         if (ret >= 0) {
13435             fd_trans_register(ret, &target_timerfd_trans);
13436         }
13437         return ret;
13438 #endif
13439 
13440 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD)
13441     case TARGET_NR_timerfd_gettime:
13442         {
13443             struct itimerspec its_curr;
13444 
13445             ret = get_errno(timerfd_gettime(arg1, &its_curr));
13446 
13447             if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) {
13448                 return -TARGET_EFAULT;
13449             }
13450         }
13451         return ret;
13452 #endif
13453 
13454 #if defined(TARGET_NR_timerfd_gettime64) && defined(CONFIG_TIMERFD)
13455     case TARGET_NR_timerfd_gettime64:
13456         {
13457             struct itimerspec its_curr;
13458 
13459             ret = get_errno(timerfd_gettime(arg1, &its_curr));
13460 
13461             if (arg2 && host_to_target_itimerspec64(arg2, &its_curr)) {
13462                 return -TARGET_EFAULT;
13463             }
13464         }
13465         return ret;
13466 #endif
13467 
13468 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)
13469     case TARGET_NR_timerfd_settime:
13470         {
13471             struct itimerspec its_new, its_old, *p_new;
13472 
13473             if (arg3) {
13474                 if (target_to_host_itimerspec(&its_new, arg3)) {
13475                     return -TARGET_EFAULT;
13476                 }
13477                 p_new = &its_new;
13478             } else {
13479                 p_new = NULL;
13480             }
13481 
13482             ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
13483 
13484             if (arg4 && host_to_target_itimerspec(arg4, &its_old)) {
13485                 return -TARGET_EFAULT;
13486             }
13487         }
13488         return ret;
13489 #endif
13490 
13491 #if defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)
13492     case TARGET_NR_timerfd_settime64:
13493         {
13494             struct itimerspec its_new, its_old, *p_new;
13495 
13496             if (arg3) {
13497                 if (target_to_host_itimerspec64(&its_new, arg3)) {
13498                     return -TARGET_EFAULT;
13499                 }
13500                 p_new = &its_new;
13501             } else {
13502                 p_new = NULL;
13503             }
13504 
13505             ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
13506 
13507             if (arg4 && host_to_target_itimerspec64(arg4, &its_old)) {
13508                 return -TARGET_EFAULT;
13509             }
13510         }
13511         return ret;
13512 #endif
13513 
13514 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
13515     case TARGET_NR_ioprio_get:
13516         return get_errno(ioprio_get(arg1, arg2));
13517 #endif
13518 
13519 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
13520     case TARGET_NR_ioprio_set:
13521         return get_errno(ioprio_set(arg1, arg2, arg3));
13522 #endif
13523 
13524 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS)
13525     case TARGET_NR_setns:
13526         return get_errno(setns(arg1, arg2));
13527 #endif
13528 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS)
13529     case TARGET_NR_unshare:
13530         return get_errno(unshare(arg1));
13531 #endif
13532 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
13533     case TARGET_NR_kcmp:
13534         return get_errno(kcmp(arg1, arg2, arg3, arg4, arg5));
13535 #endif
13536 #ifdef TARGET_NR_swapcontext
13537     case TARGET_NR_swapcontext:
13538         /* PowerPC specific.  */
13539         return do_swapcontext(cpu_env, arg1, arg2, arg3);
13540 #endif
13541 #ifdef TARGET_NR_memfd_create
13542     case TARGET_NR_memfd_create:
13543         p = lock_user_string(arg1);
13544         if (!p) {
13545             return -TARGET_EFAULT;
13546         }
13547         ret = get_errno(memfd_create(p, arg2));
13548         fd_trans_unregister(ret);
13549         unlock_user(p, arg1, 0);
13550         return ret;
13551 #endif
13552 #if defined TARGET_NR_membarrier && defined __NR_membarrier
13553     case TARGET_NR_membarrier:
13554         return get_errno(membarrier(arg1, arg2));
13555 #endif
13556 
13557 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
13558     case TARGET_NR_copy_file_range:
13559         {
13560             loff_t inoff, outoff;
13561             loff_t *pinoff = NULL, *poutoff = NULL;
13562 
13563             if (arg2) {
13564                 if (get_user_u64(inoff, arg2)) {
13565                     return -TARGET_EFAULT;
13566                 }
13567                 pinoff = &inoff;
13568             }
13569             if (arg4) {
13570                 if (get_user_u64(outoff, arg4)) {
13571                     return -TARGET_EFAULT;
13572                 }
13573                 poutoff = &outoff;
13574             }
13575             /* Do not sign-extend the count parameter. */
13576             ret = get_errno(safe_copy_file_range(arg1, pinoff, arg3, poutoff,
13577                                                  (abi_ulong)arg5, arg6));
13578             if (!is_error(ret) && ret > 0) {
13579                 if (arg2) {
13580                     if (put_user_u64(inoff, arg2)) {
13581                         return -TARGET_EFAULT;
13582                     }
13583                 }
13584                 if (arg4) {
13585                     if (put_user_u64(outoff, arg4)) {
13586                         return -TARGET_EFAULT;
13587                     }
13588                 }
13589             }
13590         }
13591         return ret;
13592 #endif
13593 
13594 #if defined(TARGET_NR_pivot_root)
13595     case TARGET_NR_pivot_root:
13596         {
13597             void *p2;
13598             p = lock_user_string(arg1); /* new_root */
13599             p2 = lock_user_string(arg2); /* put_old */
13600             if (!p || !p2) {
13601                 ret = -TARGET_EFAULT;
13602             } else {
13603                 ret = get_errno(pivot_root(p, p2));
13604             }
13605             unlock_user(p2, arg2, 0);
13606             unlock_user(p, arg1, 0);
13607         }
13608         return ret;
13609 #endif
13610 
13611 #if defined(TARGET_NR_riscv_hwprobe)
13612     case TARGET_NR_riscv_hwprobe:
13613         return do_riscv_hwprobe(cpu_env, arg1, arg2, arg3, arg4, arg5);
13614 #endif
13615 
13616     default:
13617         qemu_log_mask(LOG_UNIMP, "Unsupported syscall: %d\n", num);
13618         return -TARGET_ENOSYS;
13619     }
13620     return ret;
13621 }
13622 
13623 abi_long do_syscall(CPUArchState *cpu_env, int num, abi_long arg1,
13624                     abi_long arg2, abi_long arg3, abi_long arg4,
13625                     abi_long arg5, abi_long arg6, abi_long arg7,
13626                     abi_long arg8)
13627 {
13628     CPUState *cpu = env_cpu(cpu_env);
13629     abi_long ret;
13630 
13631 #ifdef DEBUG_ERESTARTSYS
13632     /* Debug-only code for exercising the syscall-restart code paths
13633      * in the per-architecture cpu main loops: restart every syscall
13634      * the guest makes once before letting it through.
13635      */
13636     {
13637         static bool flag;
13638         flag = !flag;
13639         if (flag) {
13640             return -QEMU_ERESTARTSYS;
13641         }
13642     }
13643 #endif
13644 
13645     record_syscall_start(cpu, num, arg1,
13646                          arg2, arg3, arg4, arg5, arg6, arg7, arg8);
13647 
13648     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
13649         print_syscall(cpu_env, num, arg1, arg2, arg3, arg4, arg5, arg6);
13650     }
13651 
13652     ret = do_syscall1(cpu_env, num, arg1, arg2, arg3, arg4,
13653                       arg5, arg6, arg7, arg8);
13654 
13655     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
13656         print_syscall_ret(cpu_env, num, ret, arg1, arg2,
13657                           arg3, arg4, arg5, arg6);
13658     }
13659 
13660     record_syscall_return(cpu, num, ret);
13661     return ret;
13662 }
13663