1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/resource.h> 6 #include <sys/shm.h> 7 8 #include "qemu.h" 9 #include "user-internals.h" 10 #include "signal-common.h" 11 #include "loader.h" 12 #include "user-mmap.h" 13 #include "disas/disas.h" 14 #include "qemu/bitops.h" 15 #include "qemu/path.h" 16 #include "qemu/queue.h" 17 #include "qemu/guest-random.h" 18 #include "qemu/units.h" 19 #include "qemu/selfmap.h" 20 #include "qapi/error.h" 21 #include "qemu/error-report.h" 22 #include "target_signal.h" 23 #include "accel/tcg/debuginfo.h" 24 25 #ifdef _ARCH_PPC64 26 #undef ARCH_DLINFO 27 #undef ELF_PLATFORM 28 #undef ELF_HWCAP 29 #undef ELF_HWCAP2 30 #undef ELF_CLASS 31 #undef ELF_DATA 32 #undef ELF_ARCH 33 #endif 34 35 #define ELF_OSABI ELFOSABI_SYSV 36 37 /* from personality.h */ 38 39 /* 40 * Flags for bug emulation. 41 * 42 * These occupy the top three bytes. 43 */ 44 enum { 45 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 46 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 47 descriptors (signal handling) */ 48 MMAP_PAGE_ZERO = 0x0100000, 49 ADDR_COMPAT_LAYOUT = 0x0200000, 50 READ_IMPLIES_EXEC = 0x0400000, 51 ADDR_LIMIT_32BIT = 0x0800000, 52 SHORT_INODE = 0x1000000, 53 WHOLE_SECONDS = 0x2000000, 54 STICKY_TIMEOUTS = 0x4000000, 55 ADDR_LIMIT_3GB = 0x8000000, 56 }; 57 58 /* 59 * Personality types. 60 * 61 * These go in the low byte. Avoid using the top bit, it will 62 * conflict with error returns. 63 */ 64 enum { 65 PER_LINUX = 0x0000, 66 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 67 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 68 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 69 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 70 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 71 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 72 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 73 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 74 PER_BSD = 0x0006, 75 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 76 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 77 PER_LINUX32 = 0x0008, 78 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 79 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 80 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 81 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 82 PER_RISCOS = 0x000c, 83 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 84 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 85 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 86 PER_HPUX = 0x0010, 87 PER_MASK = 0x00ff, 88 }; 89 90 /* 91 * Return the base personality without flags. 92 */ 93 #define personality(pers) (pers & PER_MASK) 94 95 int info_is_fdpic(struct image_info *info) 96 { 97 return info->personality == PER_LINUX_FDPIC; 98 } 99 100 /* this flag is uneffective under linux too, should be deleted */ 101 #ifndef MAP_DENYWRITE 102 #define MAP_DENYWRITE 0 103 #endif 104 105 /* should probably go in elf.h */ 106 #ifndef ELIBBAD 107 #define ELIBBAD 80 108 #endif 109 110 #if TARGET_BIG_ENDIAN 111 #define ELF_DATA ELFDATA2MSB 112 #else 113 #define ELF_DATA ELFDATA2LSB 114 #endif 115 116 #ifdef TARGET_ABI_MIPSN32 117 typedef abi_ullong target_elf_greg_t; 118 #define tswapreg(ptr) tswap64(ptr) 119 #else 120 typedef abi_ulong target_elf_greg_t; 121 #define tswapreg(ptr) tswapal(ptr) 122 #endif 123 124 #ifdef USE_UID16 125 typedef abi_ushort target_uid_t; 126 typedef abi_ushort target_gid_t; 127 #else 128 typedef abi_uint target_uid_t; 129 typedef abi_uint target_gid_t; 130 #endif 131 typedef abi_int target_pid_t; 132 133 #ifdef TARGET_I386 134 135 #define ELF_HWCAP get_elf_hwcap() 136 137 static uint32_t get_elf_hwcap(void) 138 { 139 X86CPU *cpu = X86_CPU(thread_cpu); 140 141 return cpu->env.features[FEAT_1_EDX]; 142 } 143 144 #ifdef TARGET_X86_64 145 #define ELF_START_MMAP 0x2aaaaab000ULL 146 147 #define ELF_CLASS ELFCLASS64 148 #define ELF_ARCH EM_X86_64 149 150 #define ELF_PLATFORM "x86_64" 151 152 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 153 { 154 regs->rax = 0; 155 regs->rsp = infop->start_stack; 156 regs->rip = infop->entry; 157 } 158 159 #define ELF_NREG 27 160 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 161 162 /* 163 * Note that ELF_NREG should be 29 as there should be place for 164 * TRAPNO and ERR "registers" as well but linux doesn't dump 165 * those. 166 * 167 * See linux kernel: arch/x86/include/asm/elf.h 168 */ 169 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 170 { 171 (*regs)[0] = tswapreg(env->regs[15]); 172 (*regs)[1] = tswapreg(env->regs[14]); 173 (*regs)[2] = tswapreg(env->regs[13]); 174 (*regs)[3] = tswapreg(env->regs[12]); 175 (*regs)[4] = tswapreg(env->regs[R_EBP]); 176 (*regs)[5] = tswapreg(env->regs[R_EBX]); 177 (*regs)[6] = tswapreg(env->regs[11]); 178 (*regs)[7] = tswapreg(env->regs[10]); 179 (*regs)[8] = tswapreg(env->regs[9]); 180 (*regs)[9] = tswapreg(env->regs[8]); 181 (*regs)[10] = tswapreg(env->regs[R_EAX]); 182 (*regs)[11] = tswapreg(env->regs[R_ECX]); 183 (*regs)[12] = tswapreg(env->regs[R_EDX]); 184 (*regs)[13] = tswapreg(env->regs[R_ESI]); 185 (*regs)[14] = tswapreg(env->regs[R_EDI]); 186 (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */ 187 (*regs)[16] = tswapreg(env->eip); 188 (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff); 189 (*regs)[18] = tswapreg(env->eflags); 190 (*regs)[19] = tswapreg(env->regs[R_ESP]); 191 (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff); 192 (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff); 193 (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff); 194 (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff); 195 (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff); 196 (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff); 197 (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff); 198 } 199 200 #if ULONG_MAX > UINT32_MAX 201 #define INIT_GUEST_COMMPAGE 202 static bool init_guest_commpage(void) 203 { 204 /* 205 * The vsyscall page is at a high negative address aka kernel space, 206 * which means that we cannot actually allocate it with target_mmap. 207 * We still should be able to use page_set_flags, unless the user 208 * has specified -R reserved_va, which would trigger an assert(). 209 */ 210 if (reserved_va != 0 && 211 TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE >= reserved_va) { 212 error_report("Cannot allocate vsyscall page"); 213 exit(EXIT_FAILURE); 214 } 215 page_set_flags(TARGET_VSYSCALL_PAGE, 216 TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE, 217 PAGE_EXEC | PAGE_VALID); 218 return true; 219 } 220 #endif 221 #else 222 223 #define ELF_START_MMAP 0x80000000 224 225 /* 226 * This is used to ensure we don't load something for the wrong architecture. 227 */ 228 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 229 230 /* 231 * These are used to set parameters in the core dumps. 232 */ 233 #define ELF_CLASS ELFCLASS32 234 #define ELF_ARCH EM_386 235 236 #define ELF_PLATFORM get_elf_platform() 237 #define EXSTACK_DEFAULT true 238 239 static const char *get_elf_platform(void) 240 { 241 static char elf_platform[] = "i386"; 242 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 243 if (family > 6) { 244 family = 6; 245 } 246 if (family >= 3) { 247 elf_platform[1] = '0' + family; 248 } 249 return elf_platform; 250 } 251 252 static inline void init_thread(struct target_pt_regs *regs, 253 struct image_info *infop) 254 { 255 regs->esp = infop->start_stack; 256 regs->eip = infop->entry; 257 258 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 259 starts %edx contains a pointer to a function which might be 260 registered using `atexit'. This provides a mean for the 261 dynamic linker to call DT_FINI functions for shared libraries 262 that have been loaded before the code runs. 263 264 A value of 0 tells we have no such handler. */ 265 regs->edx = 0; 266 } 267 268 #define ELF_NREG 17 269 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 270 271 /* 272 * Note that ELF_NREG should be 19 as there should be place for 273 * TRAPNO and ERR "registers" as well but linux doesn't dump 274 * those. 275 * 276 * See linux kernel: arch/x86/include/asm/elf.h 277 */ 278 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 279 { 280 (*regs)[0] = tswapreg(env->regs[R_EBX]); 281 (*regs)[1] = tswapreg(env->regs[R_ECX]); 282 (*regs)[2] = tswapreg(env->regs[R_EDX]); 283 (*regs)[3] = tswapreg(env->regs[R_ESI]); 284 (*regs)[4] = tswapreg(env->regs[R_EDI]); 285 (*regs)[5] = tswapreg(env->regs[R_EBP]); 286 (*regs)[6] = tswapreg(env->regs[R_EAX]); 287 (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff); 288 (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff); 289 (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff); 290 (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff); 291 (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */ 292 (*regs)[12] = tswapreg(env->eip); 293 (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff); 294 (*regs)[14] = tswapreg(env->eflags); 295 (*regs)[15] = tswapreg(env->regs[R_ESP]); 296 (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff); 297 } 298 #endif 299 300 #define USE_ELF_CORE_DUMP 301 #define ELF_EXEC_PAGESIZE 4096 302 303 #endif 304 305 #ifdef TARGET_ARM 306 307 #ifndef TARGET_AARCH64 308 /* 32 bit ARM definitions */ 309 310 #define ELF_START_MMAP 0x80000000 311 312 #define ELF_ARCH EM_ARM 313 #define ELF_CLASS ELFCLASS32 314 #define EXSTACK_DEFAULT true 315 316 static inline void init_thread(struct target_pt_regs *regs, 317 struct image_info *infop) 318 { 319 abi_long stack = infop->start_stack; 320 memset(regs, 0, sizeof(*regs)); 321 322 regs->uregs[16] = ARM_CPU_MODE_USR; 323 if (infop->entry & 1) { 324 regs->uregs[16] |= CPSR_T; 325 } 326 regs->uregs[15] = infop->entry & 0xfffffffe; 327 regs->uregs[13] = infop->start_stack; 328 /* FIXME - what to for failure of get_user()? */ 329 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 330 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 331 /* XXX: it seems that r0 is zeroed after ! */ 332 regs->uregs[0] = 0; 333 /* For uClinux PIC binaries. */ 334 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 335 regs->uregs[10] = infop->start_data; 336 337 /* Support ARM FDPIC. */ 338 if (info_is_fdpic(infop)) { 339 /* As described in the ABI document, r7 points to the loadmap info 340 * prepared by the kernel. If an interpreter is needed, r8 points 341 * to the interpreter loadmap and r9 points to the interpreter 342 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and 343 * r9 points to the main program PT_DYNAMIC info. 344 */ 345 regs->uregs[7] = infop->loadmap_addr; 346 if (infop->interpreter_loadmap_addr) { 347 /* Executable is dynamically loaded. */ 348 regs->uregs[8] = infop->interpreter_loadmap_addr; 349 regs->uregs[9] = infop->interpreter_pt_dynamic_addr; 350 } else { 351 regs->uregs[8] = 0; 352 regs->uregs[9] = infop->pt_dynamic_addr; 353 } 354 } 355 } 356 357 #define ELF_NREG 18 358 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 359 360 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 361 { 362 (*regs)[0] = tswapreg(env->regs[0]); 363 (*regs)[1] = tswapreg(env->regs[1]); 364 (*regs)[2] = tswapreg(env->regs[2]); 365 (*regs)[3] = tswapreg(env->regs[3]); 366 (*regs)[4] = tswapreg(env->regs[4]); 367 (*regs)[5] = tswapreg(env->regs[5]); 368 (*regs)[6] = tswapreg(env->regs[6]); 369 (*regs)[7] = tswapreg(env->regs[7]); 370 (*regs)[8] = tswapreg(env->regs[8]); 371 (*regs)[9] = tswapreg(env->regs[9]); 372 (*regs)[10] = tswapreg(env->regs[10]); 373 (*regs)[11] = tswapreg(env->regs[11]); 374 (*regs)[12] = tswapreg(env->regs[12]); 375 (*regs)[13] = tswapreg(env->regs[13]); 376 (*regs)[14] = tswapreg(env->regs[14]); 377 (*regs)[15] = tswapreg(env->regs[15]); 378 379 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 380 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 381 } 382 383 #define USE_ELF_CORE_DUMP 384 #define ELF_EXEC_PAGESIZE 4096 385 386 enum 387 { 388 ARM_HWCAP_ARM_SWP = 1 << 0, 389 ARM_HWCAP_ARM_HALF = 1 << 1, 390 ARM_HWCAP_ARM_THUMB = 1 << 2, 391 ARM_HWCAP_ARM_26BIT = 1 << 3, 392 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 393 ARM_HWCAP_ARM_FPA = 1 << 5, 394 ARM_HWCAP_ARM_VFP = 1 << 6, 395 ARM_HWCAP_ARM_EDSP = 1 << 7, 396 ARM_HWCAP_ARM_JAVA = 1 << 8, 397 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 398 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 399 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 400 ARM_HWCAP_ARM_NEON = 1 << 12, 401 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 402 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 403 ARM_HWCAP_ARM_TLS = 1 << 15, 404 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 405 ARM_HWCAP_ARM_IDIVA = 1 << 17, 406 ARM_HWCAP_ARM_IDIVT = 1 << 18, 407 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 408 ARM_HWCAP_ARM_LPAE = 1 << 20, 409 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 410 }; 411 412 enum { 413 ARM_HWCAP2_ARM_AES = 1 << 0, 414 ARM_HWCAP2_ARM_PMULL = 1 << 1, 415 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 416 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 417 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 418 }; 419 420 /* The commpage only exists for 32 bit kernels */ 421 422 #define HI_COMMPAGE (intptr_t)0xffff0f00u 423 424 static bool init_guest_commpage(void) 425 { 426 abi_ptr commpage = HI_COMMPAGE & -qemu_host_page_size; 427 void *want = g2h_untagged(commpage); 428 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE, 429 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 430 431 if (addr == MAP_FAILED) { 432 perror("Allocating guest commpage"); 433 exit(EXIT_FAILURE); 434 } 435 if (addr != want) { 436 return false; 437 } 438 439 /* Set kernel helper versions; rest of page is 0. */ 440 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu)); 441 442 if (mprotect(addr, qemu_host_page_size, PROT_READ)) { 443 perror("Protecting guest commpage"); 444 exit(EXIT_FAILURE); 445 } 446 447 page_set_flags(commpage, commpage + qemu_host_page_size, 448 PAGE_READ | PAGE_EXEC | PAGE_VALID); 449 return true; 450 } 451 452 #define ELF_HWCAP get_elf_hwcap() 453 #define ELF_HWCAP2 get_elf_hwcap2() 454 455 static uint32_t get_elf_hwcap(void) 456 { 457 ARMCPU *cpu = ARM_CPU(thread_cpu); 458 uint32_t hwcaps = 0; 459 460 hwcaps |= ARM_HWCAP_ARM_SWP; 461 hwcaps |= ARM_HWCAP_ARM_HALF; 462 hwcaps |= ARM_HWCAP_ARM_THUMB; 463 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 464 465 /* probe for the extra features */ 466 #define GET_FEATURE(feat, hwcap) \ 467 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 468 469 #define GET_FEATURE_ID(feat, hwcap) \ 470 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 471 472 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 473 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 474 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 475 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 476 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 477 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 478 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 479 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA); 480 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT); 481 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP); 482 483 if (cpu_isar_feature(aa32_fpsp_v3, cpu) || 484 cpu_isar_feature(aa32_fpdp_v3, cpu)) { 485 hwcaps |= ARM_HWCAP_ARM_VFPv3; 486 if (cpu_isar_feature(aa32_simd_r32, cpu)) { 487 hwcaps |= ARM_HWCAP_ARM_VFPD32; 488 } else { 489 hwcaps |= ARM_HWCAP_ARM_VFPv3D16; 490 } 491 } 492 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4); 493 494 return hwcaps; 495 } 496 497 static uint32_t get_elf_hwcap2(void) 498 { 499 ARMCPU *cpu = ARM_CPU(thread_cpu); 500 uint32_t hwcaps = 0; 501 502 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES); 503 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL); 504 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1); 505 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2); 506 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32); 507 return hwcaps; 508 } 509 510 #undef GET_FEATURE 511 #undef GET_FEATURE_ID 512 513 #define ELF_PLATFORM get_elf_platform() 514 515 static const char *get_elf_platform(void) 516 { 517 CPUARMState *env = thread_cpu->env_ptr; 518 519 #if TARGET_BIG_ENDIAN 520 # define END "b" 521 #else 522 # define END "l" 523 #endif 524 525 if (arm_feature(env, ARM_FEATURE_V8)) { 526 return "v8" END; 527 } else if (arm_feature(env, ARM_FEATURE_V7)) { 528 if (arm_feature(env, ARM_FEATURE_M)) { 529 return "v7m" END; 530 } else { 531 return "v7" END; 532 } 533 } else if (arm_feature(env, ARM_FEATURE_V6)) { 534 return "v6" END; 535 } else if (arm_feature(env, ARM_FEATURE_V5)) { 536 return "v5" END; 537 } else { 538 return "v4" END; 539 } 540 541 #undef END 542 } 543 544 #else 545 /* 64 bit ARM definitions */ 546 #define ELF_START_MMAP 0x80000000 547 548 #define ELF_ARCH EM_AARCH64 549 #define ELF_CLASS ELFCLASS64 550 #if TARGET_BIG_ENDIAN 551 # define ELF_PLATFORM "aarch64_be" 552 #else 553 # define ELF_PLATFORM "aarch64" 554 #endif 555 556 static inline void init_thread(struct target_pt_regs *regs, 557 struct image_info *infop) 558 { 559 abi_long stack = infop->start_stack; 560 memset(regs, 0, sizeof(*regs)); 561 562 regs->pc = infop->entry & ~0x3ULL; 563 regs->sp = stack; 564 } 565 566 #define ELF_NREG 34 567 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 568 569 static void elf_core_copy_regs(target_elf_gregset_t *regs, 570 const CPUARMState *env) 571 { 572 int i; 573 574 for (i = 0; i < 32; i++) { 575 (*regs)[i] = tswapreg(env->xregs[i]); 576 } 577 (*regs)[32] = tswapreg(env->pc); 578 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 579 } 580 581 #define USE_ELF_CORE_DUMP 582 #define ELF_EXEC_PAGESIZE 4096 583 584 enum { 585 ARM_HWCAP_A64_FP = 1 << 0, 586 ARM_HWCAP_A64_ASIMD = 1 << 1, 587 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 588 ARM_HWCAP_A64_AES = 1 << 3, 589 ARM_HWCAP_A64_PMULL = 1 << 4, 590 ARM_HWCAP_A64_SHA1 = 1 << 5, 591 ARM_HWCAP_A64_SHA2 = 1 << 6, 592 ARM_HWCAP_A64_CRC32 = 1 << 7, 593 ARM_HWCAP_A64_ATOMICS = 1 << 8, 594 ARM_HWCAP_A64_FPHP = 1 << 9, 595 ARM_HWCAP_A64_ASIMDHP = 1 << 10, 596 ARM_HWCAP_A64_CPUID = 1 << 11, 597 ARM_HWCAP_A64_ASIMDRDM = 1 << 12, 598 ARM_HWCAP_A64_JSCVT = 1 << 13, 599 ARM_HWCAP_A64_FCMA = 1 << 14, 600 ARM_HWCAP_A64_LRCPC = 1 << 15, 601 ARM_HWCAP_A64_DCPOP = 1 << 16, 602 ARM_HWCAP_A64_SHA3 = 1 << 17, 603 ARM_HWCAP_A64_SM3 = 1 << 18, 604 ARM_HWCAP_A64_SM4 = 1 << 19, 605 ARM_HWCAP_A64_ASIMDDP = 1 << 20, 606 ARM_HWCAP_A64_SHA512 = 1 << 21, 607 ARM_HWCAP_A64_SVE = 1 << 22, 608 ARM_HWCAP_A64_ASIMDFHM = 1 << 23, 609 ARM_HWCAP_A64_DIT = 1 << 24, 610 ARM_HWCAP_A64_USCAT = 1 << 25, 611 ARM_HWCAP_A64_ILRCPC = 1 << 26, 612 ARM_HWCAP_A64_FLAGM = 1 << 27, 613 ARM_HWCAP_A64_SSBS = 1 << 28, 614 ARM_HWCAP_A64_SB = 1 << 29, 615 ARM_HWCAP_A64_PACA = 1 << 30, 616 ARM_HWCAP_A64_PACG = 1UL << 31, 617 618 ARM_HWCAP2_A64_DCPODP = 1 << 0, 619 ARM_HWCAP2_A64_SVE2 = 1 << 1, 620 ARM_HWCAP2_A64_SVEAES = 1 << 2, 621 ARM_HWCAP2_A64_SVEPMULL = 1 << 3, 622 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4, 623 ARM_HWCAP2_A64_SVESHA3 = 1 << 5, 624 ARM_HWCAP2_A64_SVESM4 = 1 << 6, 625 ARM_HWCAP2_A64_FLAGM2 = 1 << 7, 626 ARM_HWCAP2_A64_FRINT = 1 << 8, 627 ARM_HWCAP2_A64_SVEI8MM = 1 << 9, 628 ARM_HWCAP2_A64_SVEF32MM = 1 << 10, 629 ARM_HWCAP2_A64_SVEF64MM = 1 << 11, 630 ARM_HWCAP2_A64_SVEBF16 = 1 << 12, 631 ARM_HWCAP2_A64_I8MM = 1 << 13, 632 ARM_HWCAP2_A64_BF16 = 1 << 14, 633 ARM_HWCAP2_A64_DGH = 1 << 15, 634 ARM_HWCAP2_A64_RNG = 1 << 16, 635 ARM_HWCAP2_A64_BTI = 1 << 17, 636 ARM_HWCAP2_A64_MTE = 1 << 18, 637 ARM_HWCAP2_A64_ECV = 1 << 19, 638 ARM_HWCAP2_A64_AFP = 1 << 20, 639 ARM_HWCAP2_A64_RPRES = 1 << 21, 640 ARM_HWCAP2_A64_MTE3 = 1 << 22, 641 ARM_HWCAP2_A64_SME = 1 << 23, 642 ARM_HWCAP2_A64_SME_I16I64 = 1 << 24, 643 ARM_HWCAP2_A64_SME_F64F64 = 1 << 25, 644 ARM_HWCAP2_A64_SME_I8I32 = 1 << 26, 645 ARM_HWCAP2_A64_SME_F16F32 = 1 << 27, 646 ARM_HWCAP2_A64_SME_B16F32 = 1 << 28, 647 ARM_HWCAP2_A64_SME_F32F32 = 1 << 29, 648 ARM_HWCAP2_A64_SME_FA64 = 1 << 30, 649 }; 650 651 #define ELF_HWCAP get_elf_hwcap() 652 #define ELF_HWCAP2 get_elf_hwcap2() 653 654 #define GET_FEATURE_ID(feat, hwcap) \ 655 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 656 657 static uint32_t get_elf_hwcap(void) 658 { 659 ARMCPU *cpu = ARM_CPU(thread_cpu); 660 uint32_t hwcaps = 0; 661 662 hwcaps |= ARM_HWCAP_A64_FP; 663 hwcaps |= ARM_HWCAP_A64_ASIMD; 664 hwcaps |= ARM_HWCAP_A64_CPUID; 665 666 /* probe for the extra features */ 667 668 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES); 669 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL); 670 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1); 671 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2); 672 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512); 673 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32); 674 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3); 675 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3); 676 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4); 677 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); 678 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS); 679 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM); 680 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP); 681 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA); 682 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE); 683 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG); 684 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM); 685 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT); 686 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB); 687 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM); 688 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP); 689 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC); 690 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC); 691 692 return hwcaps; 693 } 694 695 static uint32_t get_elf_hwcap2(void) 696 { 697 ARMCPU *cpu = ARM_CPU(thread_cpu); 698 uint32_t hwcaps = 0; 699 700 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP); 701 GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2); 702 GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES); 703 GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL); 704 GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM); 705 GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3); 706 GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4); 707 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2); 708 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT); 709 GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM); 710 GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM); 711 GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM); 712 GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16); 713 GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM); 714 GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16); 715 GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG); 716 GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI); 717 GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE); 718 GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME | 719 ARM_HWCAP2_A64_SME_F32F32 | 720 ARM_HWCAP2_A64_SME_B16F32 | 721 ARM_HWCAP2_A64_SME_F16F32 | 722 ARM_HWCAP2_A64_SME_I8I32)); 723 GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64); 724 GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64); 725 GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64); 726 727 return hwcaps; 728 } 729 730 #undef GET_FEATURE_ID 731 732 #endif /* not TARGET_AARCH64 */ 733 #endif /* TARGET_ARM */ 734 735 #ifdef TARGET_SPARC 736 #ifdef TARGET_SPARC64 737 738 #define ELF_START_MMAP 0x80000000 739 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 740 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 741 #ifndef TARGET_ABI32 742 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 743 #else 744 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 745 #endif 746 747 #define ELF_CLASS ELFCLASS64 748 #define ELF_ARCH EM_SPARCV9 749 #else 750 #define ELF_START_MMAP 0x80000000 751 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 752 | HWCAP_SPARC_MULDIV) 753 #define ELF_CLASS ELFCLASS32 754 #define ELF_ARCH EM_SPARC 755 #endif /* TARGET_SPARC64 */ 756 757 static inline void init_thread(struct target_pt_regs *regs, 758 struct image_info *infop) 759 { 760 /* Note that target_cpu_copy_regs does not read psr/tstate. */ 761 regs->pc = infop->entry; 762 regs->npc = regs->pc + 4; 763 regs->y = 0; 764 regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong) 765 - TARGET_STACK_BIAS); 766 } 767 #endif /* TARGET_SPARC */ 768 769 #ifdef TARGET_PPC 770 771 #define ELF_MACHINE PPC_ELF_MACHINE 772 #define ELF_START_MMAP 0x80000000 773 774 #if defined(TARGET_PPC64) 775 776 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 777 778 #define ELF_CLASS ELFCLASS64 779 780 #else 781 782 #define ELF_CLASS ELFCLASS32 783 #define EXSTACK_DEFAULT true 784 785 #endif 786 787 #define ELF_ARCH EM_PPC 788 789 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 790 See arch/powerpc/include/asm/cputable.h. */ 791 enum { 792 QEMU_PPC_FEATURE_32 = 0x80000000, 793 QEMU_PPC_FEATURE_64 = 0x40000000, 794 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 795 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 796 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 797 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 798 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 799 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 800 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 801 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 802 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 803 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 804 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 805 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 806 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 807 QEMU_PPC_FEATURE_CELL = 0x00010000, 808 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 809 QEMU_PPC_FEATURE_SMT = 0x00004000, 810 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 811 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 812 QEMU_PPC_FEATURE_PA6T = 0x00000800, 813 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 814 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 815 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 816 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 817 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 818 819 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 820 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 821 822 /* Feature definitions in AT_HWCAP2. */ 823 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 824 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 825 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 826 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 827 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 828 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 829 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000, 830 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000, 831 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ 832 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */ 833 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */ 834 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */ 835 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */ 836 QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */ 837 QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */ 838 }; 839 840 #define ELF_HWCAP get_elf_hwcap() 841 842 static uint32_t get_elf_hwcap(void) 843 { 844 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 845 uint32_t features = 0; 846 847 /* We don't have to be terribly complete here; the high points are 848 Altivec/FP/SPE support. Anything else is just a bonus. */ 849 #define GET_FEATURE(flag, feature) \ 850 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 851 #define GET_FEATURE2(flags, feature) \ 852 do { \ 853 if ((cpu->env.insns_flags2 & flags) == flags) { \ 854 features |= feature; \ 855 } \ 856 } while (0) 857 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 858 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 859 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 860 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 861 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 862 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 863 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 864 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 865 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 866 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 867 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 868 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 869 QEMU_PPC_FEATURE_ARCH_2_06); 870 #undef GET_FEATURE 871 #undef GET_FEATURE2 872 873 return features; 874 } 875 876 #define ELF_HWCAP2 get_elf_hwcap2() 877 878 static uint32_t get_elf_hwcap2(void) 879 { 880 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 881 uint32_t features = 0; 882 883 #define GET_FEATURE(flag, feature) \ 884 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 885 #define GET_FEATURE2(flag, feature) \ 886 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 887 888 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 889 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 890 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 891 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 | 892 QEMU_PPC_FEATURE2_VEC_CRYPTO); 893 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 | 894 QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128); 895 GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 | 896 QEMU_PPC_FEATURE2_MMA); 897 898 #undef GET_FEATURE 899 #undef GET_FEATURE2 900 901 return features; 902 } 903 904 /* 905 * The requirements here are: 906 * - keep the final alignment of sp (sp & 0xf) 907 * - make sure the 32-bit value at the first 16 byte aligned position of 908 * AUXV is greater than 16 for glibc compatibility. 909 * AT_IGNOREPPC is used for that. 910 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 911 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 912 */ 913 #define DLINFO_ARCH_ITEMS 5 914 #define ARCH_DLINFO \ 915 do { \ 916 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 917 /* \ 918 * Handle glibc compatibility: these magic entries must \ 919 * be at the lowest addresses in the final auxv. \ 920 */ \ 921 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 922 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 923 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 924 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 925 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 926 } while (0) 927 928 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 929 { 930 _regs->gpr[1] = infop->start_stack; 931 #if defined(TARGET_PPC64) 932 if (get_ppc64_abi(infop) < 2) { 933 uint64_t val; 934 get_user_u64(val, infop->entry + 8); 935 _regs->gpr[2] = val + infop->load_bias; 936 get_user_u64(val, infop->entry); 937 infop->entry = val + infop->load_bias; 938 } else { 939 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 940 } 941 #endif 942 _regs->nip = infop->entry; 943 } 944 945 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 946 #define ELF_NREG 48 947 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 948 949 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 950 { 951 int i; 952 target_ulong ccr = 0; 953 954 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 955 (*regs)[i] = tswapreg(env->gpr[i]); 956 } 957 958 (*regs)[32] = tswapreg(env->nip); 959 (*regs)[33] = tswapreg(env->msr); 960 (*regs)[35] = tswapreg(env->ctr); 961 (*regs)[36] = tswapreg(env->lr); 962 (*regs)[37] = tswapreg(cpu_read_xer(env)); 963 964 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 965 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 966 } 967 (*regs)[38] = tswapreg(ccr); 968 } 969 970 #define USE_ELF_CORE_DUMP 971 #define ELF_EXEC_PAGESIZE 4096 972 973 #endif 974 975 #ifdef TARGET_LOONGARCH64 976 977 #define ELF_START_MMAP 0x80000000 978 979 #define ELF_CLASS ELFCLASS64 980 #define ELF_ARCH EM_LOONGARCH 981 #define EXSTACK_DEFAULT true 982 983 #define elf_check_arch(x) ((x) == EM_LOONGARCH) 984 985 static inline void init_thread(struct target_pt_regs *regs, 986 struct image_info *infop) 987 { 988 /*Set crmd PG,DA = 1,0 */ 989 regs->csr.crmd = 2 << 3; 990 regs->csr.era = infop->entry; 991 regs->regs[3] = infop->start_stack; 992 } 993 994 /* See linux kernel: arch/loongarch/include/asm/elf.h */ 995 #define ELF_NREG 45 996 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 997 998 enum { 999 TARGET_EF_R0 = 0, 1000 TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33, 1001 TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34, 1002 }; 1003 1004 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1005 const CPULoongArchState *env) 1006 { 1007 int i; 1008 1009 (*regs)[TARGET_EF_R0] = 0; 1010 1011 for (i = 1; i < ARRAY_SIZE(env->gpr); i++) { 1012 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]); 1013 } 1014 1015 (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc); 1016 (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV); 1017 } 1018 1019 #define USE_ELF_CORE_DUMP 1020 #define ELF_EXEC_PAGESIZE 4096 1021 1022 #define ELF_HWCAP get_elf_hwcap() 1023 1024 /* See arch/loongarch/include/uapi/asm/hwcap.h */ 1025 enum { 1026 HWCAP_LOONGARCH_CPUCFG = (1 << 0), 1027 HWCAP_LOONGARCH_LAM = (1 << 1), 1028 HWCAP_LOONGARCH_UAL = (1 << 2), 1029 HWCAP_LOONGARCH_FPU = (1 << 3), 1030 HWCAP_LOONGARCH_LSX = (1 << 4), 1031 HWCAP_LOONGARCH_LASX = (1 << 5), 1032 HWCAP_LOONGARCH_CRC32 = (1 << 6), 1033 HWCAP_LOONGARCH_COMPLEX = (1 << 7), 1034 HWCAP_LOONGARCH_CRYPTO = (1 << 8), 1035 HWCAP_LOONGARCH_LVZ = (1 << 9), 1036 HWCAP_LOONGARCH_LBT_X86 = (1 << 10), 1037 HWCAP_LOONGARCH_LBT_ARM = (1 << 11), 1038 HWCAP_LOONGARCH_LBT_MIPS = (1 << 12), 1039 }; 1040 1041 static uint32_t get_elf_hwcap(void) 1042 { 1043 LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu); 1044 uint32_t hwcaps = 0; 1045 1046 hwcaps |= HWCAP_LOONGARCH_CRC32; 1047 1048 if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) { 1049 hwcaps |= HWCAP_LOONGARCH_UAL; 1050 } 1051 1052 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) { 1053 hwcaps |= HWCAP_LOONGARCH_FPU; 1054 } 1055 1056 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) { 1057 hwcaps |= HWCAP_LOONGARCH_LAM; 1058 } 1059 1060 return hwcaps; 1061 } 1062 1063 #define ELF_PLATFORM "loongarch" 1064 1065 #endif /* TARGET_LOONGARCH64 */ 1066 1067 #ifdef TARGET_MIPS 1068 1069 #define ELF_START_MMAP 0x80000000 1070 1071 #ifdef TARGET_MIPS64 1072 #define ELF_CLASS ELFCLASS64 1073 #else 1074 #define ELF_CLASS ELFCLASS32 1075 #endif 1076 #define ELF_ARCH EM_MIPS 1077 #define EXSTACK_DEFAULT true 1078 1079 #ifdef TARGET_ABI_MIPSN32 1080 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2) 1081 #else 1082 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2)) 1083 #endif 1084 1085 #define ELF_BASE_PLATFORM get_elf_base_platform() 1086 1087 #define MATCH_PLATFORM_INSN(_flags, _base_platform) \ 1088 do { if ((cpu->env.insn_flags & (_flags)) == _flags) \ 1089 { return _base_platform; } } while (0) 1090 1091 static const char *get_elf_base_platform(void) 1092 { 1093 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 1094 1095 /* 64 bit ISAs goes first */ 1096 MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6"); 1097 MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5"); 1098 MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2"); 1099 MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64"); 1100 MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5"); 1101 MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4"); 1102 MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3"); 1103 1104 /* 32 bit ISAs */ 1105 MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6"); 1106 MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5"); 1107 MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2"); 1108 MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32"); 1109 MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2"); 1110 1111 /* Fallback */ 1112 return "mips"; 1113 } 1114 #undef MATCH_PLATFORM_INSN 1115 1116 static inline void init_thread(struct target_pt_regs *regs, 1117 struct image_info *infop) 1118 { 1119 regs->cp0_status = 2 << CP0St_KSU; 1120 regs->cp0_epc = infop->entry; 1121 regs->regs[29] = infop->start_stack; 1122 } 1123 1124 /* See linux kernel: arch/mips/include/asm/elf.h. */ 1125 #define ELF_NREG 45 1126 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1127 1128 /* See linux kernel: arch/mips/include/asm/reg.h. */ 1129 enum { 1130 #ifdef TARGET_MIPS64 1131 TARGET_EF_R0 = 0, 1132 #else 1133 TARGET_EF_R0 = 6, 1134 #endif 1135 TARGET_EF_R26 = TARGET_EF_R0 + 26, 1136 TARGET_EF_R27 = TARGET_EF_R0 + 27, 1137 TARGET_EF_LO = TARGET_EF_R0 + 32, 1138 TARGET_EF_HI = TARGET_EF_R0 + 33, 1139 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 1140 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 1141 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 1142 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 1143 }; 1144 1145 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1146 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 1147 { 1148 int i; 1149 1150 for (i = 0; i < TARGET_EF_R0; i++) { 1151 (*regs)[i] = 0; 1152 } 1153 (*regs)[TARGET_EF_R0] = 0; 1154 1155 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 1156 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 1157 } 1158 1159 (*regs)[TARGET_EF_R26] = 0; 1160 (*regs)[TARGET_EF_R27] = 0; 1161 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 1162 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 1163 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 1164 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 1165 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 1166 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 1167 } 1168 1169 #define USE_ELF_CORE_DUMP 1170 #define ELF_EXEC_PAGESIZE 4096 1171 1172 /* See arch/mips/include/uapi/asm/hwcap.h. */ 1173 enum { 1174 HWCAP_MIPS_R6 = (1 << 0), 1175 HWCAP_MIPS_MSA = (1 << 1), 1176 HWCAP_MIPS_CRC32 = (1 << 2), 1177 HWCAP_MIPS_MIPS16 = (1 << 3), 1178 HWCAP_MIPS_MDMX = (1 << 4), 1179 HWCAP_MIPS_MIPS3D = (1 << 5), 1180 HWCAP_MIPS_SMARTMIPS = (1 << 6), 1181 HWCAP_MIPS_DSP = (1 << 7), 1182 HWCAP_MIPS_DSP2 = (1 << 8), 1183 HWCAP_MIPS_DSP3 = (1 << 9), 1184 HWCAP_MIPS_MIPS16E2 = (1 << 10), 1185 HWCAP_LOONGSON_MMI = (1 << 11), 1186 HWCAP_LOONGSON_EXT = (1 << 12), 1187 HWCAP_LOONGSON_EXT2 = (1 << 13), 1188 HWCAP_LOONGSON_CPUCFG = (1 << 14), 1189 }; 1190 1191 #define ELF_HWCAP get_elf_hwcap() 1192 1193 #define GET_FEATURE_INSN(_flag, _hwcap) \ 1194 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0) 1195 1196 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \ 1197 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0) 1198 1199 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \ 1200 do { \ 1201 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \ 1202 hwcaps |= _hwcap; \ 1203 } \ 1204 } while (0) 1205 1206 static uint32_t get_elf_hwcap(void) 1207 { 1208 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 1209 uint32_t hwcaps = 0; 1210 1211 GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH, 1212 2, HWCAP_MIPS_R6); 1213 GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA); 1214 GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI); 1215 GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT); 1216 1217 return hwcaps; 1218 } 1219 1220 #undef GET_FEATURE_REG_EQU 1221 #undef GET_FEATURE_REG_SET 1222 #undef GET_FEATURE_INSN 1223 1224 #endif /* TARGET_MIPS */ 1225 1226 #ifdef TARGET_MICROBLAZE 1227 1228 #define ELF_START_MMAP 0x80000000 1229 1230 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 1231 1232 #define ELF_CLASS ELFCLASS32 1233 #define ELF_ARCH EM_MICROBLAZE 1234 1235 static inline void init_thread(struct target_pt_regs *regs, 1236 struct image_info *infop) 1237 { 1238 regs->pc = infop->entry; 1239 regs->r1 = infop->start_stack; 1240 1241 } 1242 1243 #define ELF_EXEC_PAGESIZE 4096 1244 1245 #define USE_ELF_CORE_DUMP 1246 #define ELF_NREG 38 1247 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1248 1249 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1250 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 1251 { 1252 int i, pos = 0; 1253 1254 for (i = 0; i < 32; i++) { 1255 (*regs)[pos++] = tswapreg(env->regs[i]); 1256 } 1257 1258 (*regs)[pos++] = tswapreg(env->pc); 1259 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env)); 1260 (*regs)[pos++] = 0; 1261 (*regs)[pos++] = tswapreg(env->ear); 1262 (*regs)[pos++] = 0; 1263 (*regs)[pos++] = tswapreg(env->esr); 1264 } 1265 1266 #endif /* TARGET_MICROBLAZE */ 1267 1268 #ifdef TARGET_NIOS2 1269 1270 #define ELF_START_MMAP 0x80000000 1271 1272 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) 1273 1274 #define ELF_CLASS ELFCLASS32 1275 #define ELF_ARCH EM_ALTERA_NIOS2 1276 1277 static void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1278 { 1279 regs->ea = infop->entry; 1280 regs->sp = infop->start_stack; 1281 } 1282 1283 #define LO_COMMPAGE TARGET_PAGE_SIZE 1284 1285 static bool init_guest_commpage(void) 1286 { 1287 static const uint8_t kuser_page[4 + 2 * 64] = { 1288 /* __kuser_helper_version */ 1289 [0x00] = 0x02, 0x00, 0x00, 0x00, 1290 1291 /* __kuser_cmpxchg */ 1292 [0x04] = 0x3a, 0x6c, 0x3b, 0x00, /* trap 16 */ 1293 0x3a, 0x28, 0x00, 0xf8, /* ret */ 1294 1295 /* __kuser_sigtramp */ 1296 [0x44] = 0xc4, 0x22, 0x80, 0x00, /* movi r2, __NR_rt_sigreturn */ 1297 0x3a, 0x68, 0x3b, 0x00, /* trap 0 */ 1298 }; 1299 1300 void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size); 1301 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE, 1302 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 1303 1304 if (addr == MAP_FAILED) { 1305 perror("Allocating guest commpage"); 1306 exit(EXIT_FAILURE); 1307 } 1308 if (addr != want) { 1309 return false; 1310 } 1311 1312 memcpy(addr, kuser_page, sizeof(kuser_page)); 1313 1314 if (mprotect(addr, qemu_host_page_size, PROT_READ)) { 1315 perror("Protecting guest commpage"); 1316 exit(EXIT_FAILURE); 1317 } 1318 1319 page_set_flags(LO_COMMPAGE, LO_COMMPAGE + TARGET_PAGE_SIZE, 1320 PAGE_READ | PAGE_EXEC | PAGE_VALID); 1321 return true; 1322 } 1323 1324 #define ELF_EXEC_PAGESIZE 4096 1325 1326 #define USE_ELF_CORE_DUMP 1327 #define ELF_NREG 49 1328 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1329 1330 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1331 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1332 const CPUNios2State *env) 1333 { 1334 int i; 1335 1336 (*regs)[0] = -1; 1337 for (i = 1; i < 8; i++) /* r0-r7 */ 1338 (*regs)[i] = tswapreg(env->regs[i + 7]); 1339 1340 for (i = 8; i < 16; i++) /* r8-r15 */ 1341 (*regs)[i] = tswapreg(env->regs[i - 8]); 1342 1343 for (i = 16; i < 24; i++) /* r16-r23 */ 1344 (*regs)[i] = tswapreg(env->regs[i + 7]); 1345 (*regs)[24] = -1; /* R_ET */ 1346 (*regs)[25] = -1; /* R_BT */ 1347 (*regs)[26] = tswapreg(env->regs[R_GP]); 1348 (*regs)[27] = tswapreg(env->regs[R_SP]); 1349 (*regs)[28] = tswapreg(env->regs[R_FP]); 1350 (*regs)[29] = tswapreg(env->regs[R_EA]); 1351 (*regs)[30] = -1; /* R_SSTATUS */ 1352 (*regs)[31] = tswapreg(env->regs[R_RA]); 1353 1354 (*regs)[32] = tswapreg(env->pc); 1355 1356 (*regs)[33] = -1; /* R_STATUS */ 1357 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); 1358 1359 for (i = 35; i < 49; i++) /* ... */ 1360 (*regs)[i] = -1; 1361 } 1362 1363 #endif /* TARGET_NIOS2 */ 1364 1365 #ifdef TARGET_OPENRISC 1366 1367 #define ELF_START_MMAP 0x08000000 1368 1369 #define ELF_ARCH EM_OPENRISC 1370 #define ELF_CLASS ELFCLASS32 1371 #define ELF_DATA ELFDATA2MSB 1372 1373 static inline void init_thread(struct target_pt_regs *regs, 1374 struct image_info *infop) 1375 { 1376 regs->pc = infop->entry; 1377 regs->gpr[1] = infop->start_stack; 1378 } 1379 1380 #define USE_ELF_CORE_DUMP 1381 #define ELF_EXEC_PAGESIZE 8192 1382 1383 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1384 #define ELF_NREG 34 /* gprs and pc, sr */ 1385 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1386 1387 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1388 const CPUOpenRISCState *env) 1389 { 1390 int i; 1391 1392 for (i = 0; i < 32; i++) { 1393 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1394 } 1395 (*regs)[32] = tswapreg(env->pc); 1396 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1397 } 1398 #define ELF_HWCAP 0 1399 #define ELF_PLATFORM NULL 1400 1401 #endif /* TARGET_OPENRISC */ 1402 1403 #ifdef TARGET_SH4 1404 1405 #define ELF_START_MMAP 0x80000000 1406 1407 #define ELF_CLASS ELFCLASS32 1408 #define ELF_ARCH EM_SH 1409 1410 static inline void init_thread(struct target_pt_regs *regs, 1411 struct image_info *infop) 1412 { 1413 /* Check other registers XXXXX */ 1414 regs->pc = infop->entry; 1415 regs->regs[15] = infop->start_stack; 1416 } 1417 1418 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1419 #define ELF_NREG 23 1420 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1421 1422 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1423 enum { 1424 TARGET_REG_PC = 16, 1425 TARGET_REG_PR = 17, 1426 TARGET_REG_SR = 18, 1427 TARGET_REG_GBR = 19, 1428 TARGET_REG_MACH = 20, 1429 TARGET_REG_MACL = 21, 1430 TARGET_REG_SYSCALL = 22 1431 }; 1432 1433 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1434 const CPUSH4State *env) 1435 { 1436 int i; 1437 1438 for (i = 0; i < 16; i++) { 1439 (*regs)[i] = tswapreg(env->gregs[i]); 1440 } 1441 1442 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1443 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1444 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1445 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1446 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1447 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1448 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1449 } 1450 1451 #define USE_ELF_CORE_DUMP 1452 #define ELF_EXEC_PAGESIZE 4096 1453 1454 enum { 1455 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1456 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1457 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1458 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1459 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1460 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1461 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1462 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1463 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1464 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1465 }; 1466 1467 #define ELF_HWCAP get_elf_hwcap() 1468 1469 static uint32_t get_elf_hwcap(void) 1470 { 1471 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1472 uint32_t hwcap = 0; 1473 1474 hwcap |= SH_CPU_HAS_FPU; 1475 1476 if (cpu->env.features & SH_FEATURE_SH4A) { 1477 hwcap |= SH_CPU_HAS_LLSC; 1478 } 1479 1480 return hwcap; 1481 } 1482 1483 #endif 1484 1485 #ifdef TARGET_CRIS 1486 1487 #define ELF_START_MMAP 0x80000000 1488 1489 #define ELF_CLASS ELFCLASS32 1490 #define ELF_ARCH EM_CRIS 1491 1492 static inline void init_thread(struct target_pt_regs *regs, 1493 struct image_info *infop) 1494 { 1495 regs->erp = infop->entry; 1496 } 1497 1498 #define ELF_EXEC_PAGESIZE 8192 1499 1500 #endif 1501 1502 #ifdef TARGET_M68K 1503 1504 #define ELF_START_MMAP 0x80000000 1505 1506 #define ELF_CLASS ELFCLASS32 1507 #define ELF_ARCH EM_68K 1508 1509 /* ??? Does this need to do anything? 1510 #define ELF_PLAT_INIT(_r) */ 1511 1512 static inline void init_thread(struct target_pt_regs *regs, 1513 struct image_info *infop) 1514 { 1515 regs->usp = infop->start_stack; 1516 regs->sr = 0; 1517 regs->pc = infop->entry; 1518 } 1519 1520 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1521 #define ELF_NREG 20 1522 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1523 1524 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1525 { 1526 (*regs)[0] = tswapreg(env->dregs[1]); 1527 (*regs)[1] = tswapreg(env->dregs[2]); 1528 (*regs)[2] = tswapreg(env->dregs[3]); 1529 (*regs)[3] = tswapreg(env->dregs[4]); 1530 (*regs)[4] = tswapreg(env->dregs[5]); 1531 (*regs)[5] = tswapreg(env->dregs[6]); 1532 (*regs)[6] = tswapreg(env->dregs[7]); 1533 (*regs)[7] = tswapreg(env->aregs[0]); 1534 (*regs)[8] = tswapreg(env->aregs[1]); 1535 (*regs)[9] = tswapreg(env->aregs[2]); 1536 (*regs)[10] = tswapreg(env->aregs[3]); 1537 (*regs)[11] = tswapreg(env->aregs[4]); 1538 (*regs)[12] = tswapreg(env->aregs[5]); 1539 (*regs)[13] = tswapreg(env->aregs[6]); 1540 (*regs)[14] = tswapreg(env->dregs[0]); 1541 (*regs)[15] = tswapreg(env->aregs[7]); 1542 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1543 (*regs)[17] = tswapreg(env->sr); 1544 (*regs)[18] = tswapreg(env->pc); 1545 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1546 } 1547 1548 #define USE_ELF_CORE_DUMP 1549 #define ELF_EXEC_PAGESIZE 8192 1550 1551 #endif 1552 1553 #ifdef TARGET_ALPHA 1554 1555 #define ELF_START_MMAP (0x30000000000ULL) 1556 1557 #define ELF_CLASS ELFCLASS64 1558 #define ELF_ARCH EM_ALPHA 1559 1560 static inline void init_thread(struct target_pt_regs *regs, 1561 struct image_info *infop) 1562 { 1563 regs->pc = infop->entry; 1564 regs->ps = 8; 1565 regs->usp = infop->start_stack; 1566 } 1567 1568 #define ELF_EXEC_PAGESIZE 8192 1569 1570 #endif /* TARGET_ALPHA */ 1571 1572 #ifdef TARGET_S390X 1573 1574 #define ELF_START_MMAP (0x20000000000ULL) 1575 1576 #define ELF_CLASS ELFCLASS64 1577 #define ELF_DATA ELFDATA2MSB 1578 #define ELF_ARCH EM_S390 1579 1580 #include "elf.h" 1581 1582 #define ELF_HWCAP get_elf_hwcap() 1583 1584 #define GET_FEATURE(_feat, _hwcap) \ 1585 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0) 1586 1587 static uint32_t get_elf_hwcap(void) 1588 { 1589 /* 1590 * Let's assume we always have esan3 and zarch. 1591 * 31-bit processes can use 64-bit registers (high gprs). 1592 */ 1593 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS; 1594 1595 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE); 1596 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA); 1597 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP); 1598 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM); 1599 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) && 1600 s390_has_feat(S390_FEAT_ETF3_ENH)) { 1601 hwcap |= HWCAP_S390_ETF3EH; 1602 } 1603 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS); 1604 GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT); 1605 1606 return hwcap; 1607 } 1608 1609 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1610 { 1611 regs->psw.addr = infop->entry; 1612 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1613 regs->gprs[15] = infop->start_stack; 1614 } 1615 1616 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */ 1617 #define ELF_NREG 27 1618 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1619 1620 enum { 1621 TARGET_REG_PSWM = 0, 1622 TARGET_REG_PSWA = 1, 1623 TARGET_REG_GPRS = 2, 1624 TARGET_REG_ARS = 18, 1625 TARGET_REG_ORIG_R2 = 26, 1626 }; 1627 1628 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1629 const CPUS390XState *env) 1630 { 1631 int i; 1632 uint32_t *aregs; 1633 1634 (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask); 1635 (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr); 1636 for (i = 0; i < 16; i++) { 1637 (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]); 1638 } 1639 aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]); 1640 for (i = 0; i < 16; i++) { 1641 aregs[i] = tswap32(env->aregs[i]); 1642 } 1643 (*regs)[TARGET_REG_ORIG_R2] = 0; 1644 } 1645 1646 #define USE_ELF_CORE_DUMP 1647 #define ELF_EXEC_PAGESIZE 4096 1648 1649 #endif /* TARGET_S390X */ 1650 1651 #ifdef TARGET_RISCV 1652 1653 #define ELF_START_MMAP 0x80000000 1654 #define ELF_ARCH EM_RISCV 1655 1656 #ifdef TARGET_RISCV32 1657 #define ELF_CLASS ELFCLASS32 1658 #else 1659 #define ELF_CLASS ELFCLASS64 1660 #endif 1661 1662 #define ELF_HWCAP get_elf_hwcap() 1663 1664 static uint32_t get_elf_hwcap(void) 1665 { 1666 #define MISA_BIT(EXT) (1 << (EXT - 'A')) 1667 RISCVCPU *cpu = RISCV_CPU(thread_cpu); 1668 uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A') 1669 | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C'); 1670 1671 return cpu->env.misa_ext & mask; 1672 #undef MISA_BIT 1673 } 1674 1675 static inline void init_thread(struct target_pt_regs *regs, 1676 struct image_info *infop) 1677 { 1678 regs->sepc = infop->entry; 1679 regs->sp = infop->start_stack; 1680 } 1681 1682 #define ELF_EXEC_PAGESIZE 4096 1683 1684 #endif /* TARGET_RISCV */ 1685 1686 #ifdef TARGET_HPPA 1687 1688 #define ELF_START_MMAP 0x80000000 1689 #define ELF_CLASS ELFCLASS32 1690 #define ELF_ARCH EM_PARISC 1691 #define ELF_PLATFORM "PARISC" 1692 #define STACK_GROWS_DOWN 0 1693 #define STACK_ALIGNMENT 64 1694 1695 static inline void init_thread(struct target_pt_regs *regs, 1696 struct image_info *infop) 1697 { 1698 regs->iaoq[0] = infop->entry; 1699 regs->iaoq[1] = infop->entry + 4; 1700 regs->gr[23] = 0; 1701 regs->gr[24] = infop->argv; 1702 regs->gr[25] = infop->argc; 1703 /* The top-of-stack contains a linkage buffer. */ 1704 regs->gr[30] = infop->start_stack + 64; 1705 regs->gr[31] = infop->entry; 1706 } 1707 1708 #define LO_COMMPAGE 0 1709 1710 static bool init_guest_commpage(void) 1711 { 1712 void *want = g2h_untagged(LO_COMMPAGE); 1713 void *addr = mmap(want, qemu_host_page_size, PROT_NONE, 1714 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 1715 1716 if (addr == MAP_FAILED) { 1717 perror("Allocating guest commpage"); 1718 exit(EXIT_FAILURE); 1719 } 1720 if (addr != want) { 1721 return false; 1722 } 1723 1724 /* 1725 * On Linux, page zero is normally marked execute only + gateway. 1726 * Normal read or write is supposed to fail (thus PROT_NONE above), 1727 * but specific offsets have kernel code mapped to raise permissions 1728 * and implement syscalls. Here, simply mark the page executable. 1729 * Special case the entry points during translation (see do_page_zero). 1730 */ 1731 page_set_flags(LO_COMMPAGE, LO_COMMPAGE + TARGET_PAGE_SIZE, 1732 PAGE_EXEC | PAGE_VALID); 1733 return true; 1734 } 1735 1736 #endif /* TARGET_HPPA */ 1737 1738 #ifdef TARGET_XTENSA 1739 1740 #define ELF_START_MMAP 0x20000000 1741 1742 #define ELF_CLASS ELFCLASS32 1743 #define ELF_ARCH EM_XTENSA 1744 1745 static inline void init_thread(struct target_pt_regs *regs, 1746 struct image_info *infop) 1747 { 1748 regs->windowbase = 0; 1749 regs->windowstart = 1; 1750 regs->areg[1] = infop->start_stack; 1751 regs->pc = infop->entry; 1752 if (info_is_fdpic(infop)) { 1753 regs->areg[4] = infop->loadmap_addr; 1754 regs->areg[5] = infop->interpreter_loadmap_addr; 1755 if (infop->interpreter_loadmap_addr) { 1756 regs->areg[6] = infop->interpreter_pt_dynamic_addr; 1757 } else { 1758 regs->areg[6] = infop->pt_dynamic_addr; 1759 } 1760 } 1761 } 1762 1763 /* See linux kernel: arch/xtensa/include/asm/elf.h. */ 1764 #define ELF_NREG 128 1765 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1766 1767 enum { 1768 TARGET_REG_PC, 1769 TARGET_REG_PS, 1770 TARGET_REG_LBEG, 1771 TARGET_REG_LEND, 1772 TARGET_REG_LCOUNT, 1773 TARGET_REG_SAR, 1774 TARGET_REG_WINDOWSTART, 1775 TARGET_REG_WINDOWBASE, 1776 TARGET_REG_THREADPTR, 1777 TARGET_REG_AR0 = 64, 1778 }; 1779 1780 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1781 const CPUXtensaState *env) 1782 { 1783 unsigned i; 1784 1785 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1786 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); 1787 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); 1788 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); 1789 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); 1790 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); 1791 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); 1792 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); 1793 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); 1794 xtensa_sync_phys_from_window((CPUXtensaState *)env); 1795 for (i = 0; i < env->config->nareg; ++i) { 1796 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); 1797 } 1798 } 1799 1800 #define USE_ELF_CORE_DUMP 1801 #define ELF_EXEC_PAGESIZE 4096 1802 1803 #endif /* TARGET_XTENSA */ 1804 1805 #ifdef TARGET_HEXAGON 1806 1807 #define ELF_START_MMAP 0x20000000 1808 1809 #define ELF_CLASS ELFCLASS32 1810 #define ELF_ARCH EM_HEXAGON 1811 1812 static inline void init_thread(struct target_pt_regs *regs, 1813 struct image_info *infop) 1814 { 1815 regs->sepc = infop->entry; 1816 regs->sp = infop->start_stack; 1817 } 1818 1819 #endif /* TARGET_HEXAGON */ 1820 1821 #ifndef ELF_BASE_PLATFORM 1822 #define ELF_BASE_PLATFORM (NULL) 1823 #endif 1824 1825 #ifndef ELF_PLATFORM 1826 #define ELF_PLATFORM (NULL) 1827 #endif 1828 1829 #ifndef ELF_MACHINE 1830 #define ELF_MACHINE ELF_ARCH 1831 #endif 1832 1833 #ifndef elf_check_arch 1834 #define elf_check_arch(x) ((x) == ELF_ARCH) 1835 #endif 1836 1837 #ifndef elf_check_abi 1838 #define elf_check_abi(x) (1) 1839 #endif 1840 1841 #ifndef ELF_HWCAP 1842 #define ELF_HWCAP 0 1843 #endif 1844 1845 #ifndef STACK_GROWS_DOWN 1846 #define STACK_GROWS_DOWN 1 1847 #endif 1848 1849 #ifndef STACK_ALIGNMENT 1850 #define STACK_ALIGNMENT 16 1851 #endif 1852 1853 #ifdef TARGET_ABI32 1854 #undef ELF_CLASS 1855 #define ELF_CLASS ELFCLASS32 1856 #undef bswaptls 1857 #define bswaptls(ptr) bswap32s(ptr) 1858 #endif 1859 1860 #ifndef EXSTACK_DEFAULT 1861 #define EXSTACK_DEFAULT false 1862 #endif 1863 1864 #include "elf.h" 1865 1866 /* We must delay the following stanzas until after "elf.h". */ 1867 #if defined(TARGET_AARCH64) 1868 1869 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, 1870 const uint32_t *data, 1871 struct image_info *info, 1872 Error **errp) 1873 { 1874 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) { 1875 if (pr_datasz != sizeof(uint32_t)) { 1876 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND"); 1877 return false; 1878 } 1879 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */ 1880 info->note_flags = *data; 1881 } 1882 return true; 1883 } 1884 #define ARCH_USE_GNU_PROPERTY 1 1885 1886 #else 1887 1888 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, 1889 const uint32_t *data, 1890 struct image_info *info, 1891 Error **errp) 1892 { 1893 g_assert_not_reached(); 1894 } 1895 #define ARCH_USE_GNU_PROPERTY 0 1896 1897 #endif 1898 1899 struct exec 1900 { 1901 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1902 unsigned int a_text; /* length of text, in bytes */ 1903 unsigned int a_data; /* length of data, in bytes */ 1904 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1905 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1906 unsigned int a_entry; /* start address */ 1907 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1908 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1909 }; 1910 1911 1912 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1913 #define OMAGIC 0407 1914 #define NMAGIC 0410 1915 #define ZMAGIC 0413 1916 #define QMAGIC 0314 1917 1918 /* Necessary parameters */ 1919 #define TARGET_ELF_EXEC_PAGESIZE \ 1920 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \ 1921 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE)) 1922 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE) 1923 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1924 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1925 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1926 1927 #define DLINFO_ITEMS 16 1928 1929 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1930 { 1931 memcpy(to, from, n); 1932 } 1933 1934 #ifdef BSWAP_NEEDED 1935 static void bswap_ehdr(struct elfhdr *ehdr) 1936 { 1937 bswap16s(&ehdr->e_type); /* Object file type */ 1938 bswap16s(&ehdr->e_machine); /* Architecture */ 1939 bswap32s(&ehdr->e_version); /* Object file version */ 1940 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1941 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1942 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1943 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1944 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1945 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1946 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1947 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1948 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1949 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1950 } 1951 1952 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1953 { 1954 int i; 1955 for (i = 0; i < phnum; ++i, ++phdr) { 1956 bswap32s(&phdr->p_type); /* Segment type */ 1957 bswap32s(&phdr->p_flags); /* Segment flags */ 1958 bswaptls(&phdr->p_offset); /* Segment file offset */ 1959 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1960 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1961 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1962 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1963 bswaptls(&phdr->p_align); /* Segment alignment */ 1964 } 1965 } 1966 1967 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1968 { 1969 int i; 1970 for (i = 0; i < shnum; ++i, ++shdr) { 1971 bswap32s(&shdr->sh_name); 1972 bswap32s(&shdr->sh_type); 1973 bswaptls(&shdr->sh_flags); 1974 bswaptls(&shdr->sh_addr); 1975 bswaptls(&shdr->sh_offset); 1976 bswaptls(&shdr->sh_size); 1977 bswap32s(&shdr->sh_link); 1978 bswap32s(&shdr->sh_info); 1979 bswaptls(&shdr->sh_addralign); 1980 bswaptls(&shdr->sh_entsize); 1981 } 1982 } 1983 1984 static void bswap_sym(struct elf_sym *sym) 1985 { 1986 bswap32s(&sym->st_name); 1987 bswaptls(&sym->st_value); 1988 bswaptls(&sym->st_size); 1989 bswap16s(&sym->st_shndx); 1990 } 1991 1992 #ifdef TARGET_MIPS 1993 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) 1994 { 1995 bswap16s(&abiflags->version); 1996 bswap32s(&abiflags->ases); 1997 bswap32s(&abiflags->isa_ext); 1998 bswap32s(&abiflags->flags1); 1999 bswap32s(&abiflags->flags2); 2000 } 2001 #endif 2002 #else 2003 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 2004 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 2005 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 2006 static inline void bswap_sym(struct elf_sym *sym) { } 2007 #ifdef TARGET_MIPS 2008 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { } 2009 #endif 2010 #endif 2011 2012 #ifdef USE_ELF_CORE_DUMP 2013 static int elf_core_dump(int, const CPUArchState *); 2014 #endif /* USE_ELF_CORE_DUMP */ 2015 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 2016 2017 /* Verify the portions of EHDR within E_IDENT for the target. 2018 This can be performed before bswapping the entire header. */ 2019 static bool elf_check_ident(struct elfhdr *ehdr) 2020 { 2021 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 2022 && ehdr->e_ident[EI_MAG1] == ELFMAG1 2023 && ehdr->e_ident[EI_MAG2] == ELFMAG2 2024 && ehdr->e_ident[EI_MAG3] == ELFMAG3 2025 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 2026 && ehdr->e_ident[EI_DATA] == ELF_DATA 2027 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 2028 } 2029 2030 /* Verify the portions of EHDR outside of E_IDENT for the target. 2031 This has to wait until after bswapping the header. */ 2032 static bool elf_check_ehdr(struct elfhdr *ehdr) 2033 { 2034 return (elf_check_arch(ehdr->e_machine) 2035 && elf_check_abi(ehdr->e_flags) 2036 && ehdr->e_ehsize == sizeof(struct elfhdr) 2037 && ehdr->e_phentsize == sizeof(struct elf_phdr) 2038 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 2039 } 2040 2041 /* 2042 * 'copy_elf_strings()' copies argument/envelope strings from user 2043 * memory to free pages in kernel mem. These are in a format ready 2044 * to be put directly into the top of new user memory. 2045 * 2046 */ 2047 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 2048 abi_ulong p, abi_ulong stack_limit) 2049 { 2050 char *tmp; 2051 int len, i; 2052 abi_ulong top = p; 2053 2054 if (!p) { 2055 return 0; /* bullet-proofing */ 2056 } 2057 2058 if (STACK_GROWS_DOWN) { 2059 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 2060 for (i = argc - 1; i >= 0; --i) { 2061 tmp = argv[i]; 2062 if (!tmp) { 2063 fprintf(stderr, "VFS: argc is wrong"); 2064 exit(-1); 2065 } 2066 len = strlen(tmp) + 1; 2067 tmp += len; 2068 2069 if (len > (p - stack_limit)) { 2070 return 0; 2071 } 2072 while (len) { 2073 int bytes_to_copy = (len > offset) ? offset : len; 2074 tmp -= bytes_to_copy; 2075 p -= bytes_to_copy; 2076 offset -= bytes_to_copy; 2077 len -= bytes_to_copy; 2078 2079 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 2080 2081 if (offset == 0) { 2082 memcpy_to_target(p, scratch, top - p); 2083 top = p; 2084 offset = TARGET_PAGE_SIZE; 2085 } 2086 } 2087 } 2088 if (p != top) { 2089 memcpy_to_target(p, scratch + offset, top - p); 2090 } 2091 } else { 2092 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 2093 for (i = 0; i < argc; ++i) { 2094 tmp = argv[i]; 2095 if (!tmp) { 2096 fprintf(stderr, "VFS: argc is wrong"); 2097 exit(-1); 2098 } 2099 len = strlen(tmp) + 1; 2100 if (len > (stack_limit - p)) { 2101 return 0; 2102 } 2103 while (len) { 2104 int bytes_to_copy = (len > remaining) ? remaining : len; 2105 2106 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 2107 2108 tmp += bytes_to_copy; 2109 remaining -= bytes_to_copy; 2110 p += bytes_to_copy; 2111 len -= bytes_to_copy; 2112 2113 if (remaining == 0) { 2114 memcpy_to_target(top, scratch, p - top); 2115 top = p; 2116 remaining = TARGET_PAGE_SIZE; 2117 } 2118 } 2119 } 2120 if (p != top) { 2121 memcpy_to_target(top, scratch, p - top); 2122 } 2123 } 2124 2125 return p; 2126 } 2127 2128 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 2129 * argument/environment space. Newer kernels (>2.6.33) allow more, 2130 * dependent on stack size, but guarantee at least 32 pages for 2131 * backwards compatibility. 2132 */ 2133 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 2134 2135 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 2136 struct image_info *info) 2137 { 2138 abi_ulong size, error, guard; 2139 int prot; 2140 2141 size = guest_stack_size; 2142 if (size < STACK_LOWER_LIMIT) { 2143 size = STACK_LOWER_LIMIT; 2144 } 2145 2146 if (STACK_GROWS_DOWN) { 2147 guard = TARGET_PAGE_SIZE; 2148 if (guard < qemu_real_host_page_size()) { 2149 guard = qemu_real_host_page_size(); 2150 } 2151 } else { 2152 /* no guard page for hppa target where stack grows upwards. */ 2153 guard = 0; 2154 } 2155 2156 prot = PROT_READ | PROT_WRITE; 2157 if (info->exec_stack) { 2158 prot |= PROT_EXEC; 2159 } 2160 error = target_mmap(0, size + guard, prot, 2161 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2162 if (error == -1) { 2163 perror("mmap stack"); 2164 exit(-1); 2165 } 2166 2167 /* We reserve one extra page at the top of the stack as guard. */ 2168 if (STACK_GROWS_DOWN) { 2169 target_mprotect(error, guard, PROT_NONE); 2170 info->stack_limit = error + guard; 2171 return info->stack_limit + size - sizeof(void *); 2172 } else { 2173 info->stack_limit = error + size; 2174 return error; 2175 } 2176 } 2177 2178 /* Map and zero the bss. We need to explicitly zero any fractional pages 2179 after the data section (i.e. bss). */ 2180 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 2181 { 2182 uintptr_t host_start, host_map_start, host_end; 2183 2184 last_bss = TARGET_PAGE_ALIGN(last_bss); 2185 2186 /* ??? There is confusion between qemu_real_host_page_size and 2187 qemu_host_page_size here and elsewhere in target_mmap, which 2188 may lead to the end of the data section mapping from the file 2189 not being mapped. At least there was an explicit test and 2190 comment for that here, suggesting that "the file size must 2191 be known". The comment probably pre-dates the introduction 2192 of the fstat system call in target_mmap which does in fact 2193 find out the size. What isn't clear is if the workaround 2194 here is still actually needed. For now, continue with it, 2195 but merge it with the "normal" mmap that would allocate the bss. */ 2196 2197 host_start = (uintptr_t) g2h_untagged(elf_bss); 2198 host_end = (uintptr_t) g2h_untagged(last_bss); 2199 host_map_start = REAL_HOST_PAGE_ALIGN(host_start); 2200 2201 if (host_map_start < host_end) { 2202 void *p = mmap((void *)host_map_start, host_end - host_map_start, 2203 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2204 if (p == MAP_FAILED) { 2205 perror("cannot mmap brk"); 2206 exit(-1); 2207 } 2208 } 2209 2210 /* Ensure that the bss page(s) are valid */ 2211 if ((page_get_flags(last_bss-1) & prot) != prot) { 2212 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 2213 } 2214 2215 if (host_start < host_map_start) { 2216 memset((void *)host_start, 0, host_map_start - host_start); 2217 } 2218 } 2219 2220 #if defined(TARGET_ARM) 2221 static int elf_is_fdpic(struct elfhdr *exec) 2222 { 2223 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; 2224 } 2225 #elif defined(TARGET_XTENSA) 2226 static int elf_is_fdpic(struct elfhdr *exec) 2227 { 2228 return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC; 2229 } 2230 #else 2231 /* Default implementation, always false. */ 2232 static int elf_is_fdpic(struct elfhdr *exec) 2233 { 2234 return 0; 2235 } 2236 #endif 2237 2238 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 2239 { 2240 uint16_t n; 2241 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 2242 2243 /* elf32_fdpic_loadseg */ 2244 n = info->nsegs; 2245 while (n--) { 2246 sp -= 12; 2247 put_user_u32(loadsegs[n].addr, sp+0); 2248 put_user_u32(loadsegs[n].p_vaddr, sp+4); 2249 put_user_u32(loadsegs[n].p_memsz, sp+8); 2250 } 2251 2252 /* elf32_fdpic_loadmap */ 2253 sp -= 4; 2254 put_user_u16(0, sp+0); /* version */ 2255 put_user_u16(info->nsegs, sp+2); /* nsegs */ 2256 2257 info->personality = PER_LINUX_FDPIC; 2258 info->loadmap_addr = sp; 2259 2260 return sp; 2261 } 2262 2263 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 2264 struct elfhdr *exec, 2265 struct image_info *info, 2266 struct image_info *interp_info) 2267 { 2268 abi_ulong sp; 2269 abi_ulong u_argc, u_argv, u_envp, u_auxv; 2270 int size; 2271 int i; 2272 abi_ulong u_rand_bytes; 2273 uint8_t k_rand_bytes[16]; 2274 abi_ulong u_platform, u_base_platform; 2275 const char *k_platform, *k_base_platform; 2276 const int n = sizeof(elf_addr_t); 2277 2278 sp = p; 2279 2280 /* Needs to be before we load the env/argc/... */ 2281 if (elf_is_fdpic(exec)) { 2282 /* Need 4 byte alignment for these structs */ 2283 sp &= ~3; 2284 sp = loader_build_fdpic_loadmap(info, sp); 2285 info->other_info = interp_info; 2286 if (interp_info) { 2287 interp_info->other_info = info; 2288 sp = loader_build_fdpic_loadmap(interp_info, sp); 2289 info->interpreter_loadmap_addr = interp_info->loadmap_addr; 2290 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; 2291 } else { 2292 info->interpreter_loadmap_addr = 0; 2293 info->interpreter_pt_dynamic_addr = 0; 2294 } 2295 } 2296 2297 u_base_platform = 0; 2298 k_base_platform = ELF_BASE_PLATFORM; 2299 if (k_base_platform) { 2300 size_t len = strlen(k_base_platform) + 1; 2301 if (STACK_GROWS_DOWN) { 2302 sp -= (len + n - 1) & ~(n - 1); 2303 u_base_platform = sp; 2304 /* FIXME - check return value of memcpy_to_target() for failure */ 2305 memcpy_to_target(sp, k_base_platform, len); 2306 } else { 2307 memcpy_to_target(sp, k_base_platform, len); 2308 u_base_platform = sp; 2309 sp += len + 1; 2310 } 2311 } 2312 2313 u_platform = 0; 2314 k_platform = ELF_PLATFORM; 2315 if (k_platform) { 2316 size_t len = strlen(k_platform) + 1; 2317 if (STACK_GROWS_DOWN) { 2318 sp -= (len + n - 1) & ~(n - 1); 2319 u_platform = sp; 2320 /* FIXME - check return value of memcpy_to_target() for failure */ 2321 memcpy_to_target(sp, k_platform, len); 2322 } else { 2323 memcpy_to_target(sp, k_platform, len); 2324 u_platform = sp; 2325 sp += len + 1; 2326 } 2327 } 2328 2329 /* Provide 16 byte alignment for the PRNG, and basic alignment for 2330 * the argv and envp pointers. 2331 */ 2332 if (STACK_GROWS_DOWN) { 2333 sp = QEMU_ALIGN_DOWN(sp, 16); 2334 } else { 2335 sp = QEMU_ALIGN_UP(sp, 16); 2336 } 2337 2338 /* 2339 * Generate 16 random bytes for userspace PRNG seeding. 2340 */ 2341 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes)); 2342 if (STACK_GROWS_DOWN) { 2343 sp -= 16; 2344 u_rand_bytes = sp; 2345 /* FIXME - check return value of memcpy_to_target() for failure */ 2346 memcpy_to_target(sp, k_rand_bytes, 16); 2347 } else { 2348 memcpy_to_target(sp, k_rand_bytes, 16); 2349 u_rand_bytes = sp; 2350 sp += 16; 2351 } 2352 2353 size = (DLINFO_ITEMS + 1) * 2; 2354 if (k_base_platform) 2355 size += 2; 2356 if (k_platform) 2357 size += 2; 2358 #ifdef DLINFO_ARCH_ITEMS 2359 size += DLINFO_ARCH_ITEMS * 2; 2360 #endif 2361 #ifdef ELF_HWCAP2 2362 size += 2; 2363 #endif 2364 info->auxv_len = size * n; 2365 2366 size += envc + argc + 2; 2367 size += 1; /* argc itself */ 2368 size *= n; 2369 2370 /* Allocate space and finalize stack alignment for entry now. */ 2371 if (STACK_GROWS_DOWN) { 2372 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 2373 sp = u_argc; 2374 } else { 2375 u_argc = sp; 2376 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 2377 } 2378 2379 u_argv = u_argc + n; 2380 u_envp = u_argv + (argc + 1) * n; 2381 u_auxv = u_envp + (envc + 1) * n; 2382 info->saved_auxv = u_auxv; 2383 info->argc = argc; 2384 info->envc = envc; 2385 info->argv = u_argv; 2386 info->envp = u_envp; 2387 2388 /* This is correct because Linux defines 2389 * elf_addr_t as Elf32_Off / Elf64_Off 2390 */ 2391 #define NEW_AUX_ENT(id, val) do { \ 2392 put_user_ual(id, u_auxv); u_auxv += n; \ 2393 put_user_ual(val, u_auxv); u_auxv += n; \ 2394 } while(0) 2395 2396 #ifdef ARCH_DLINFO 2397 /* 2398 * ARCH_DLINFO must come first so platform specific code can enforce 2399 * special alignment requirements on the AUXV if necessary (eg. PPC). 2400 */ 2401 ARCH_DLINFO; 2402 #endif 2403 /* There must be exactly DLINFO_ITEMS entries here, or the assert 2404 * on info->auxv_len will trigger. 2405 */ 2406 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 2407 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 2408 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 2409 if ((info->alignment & ~qemu_host_page_mask) != 0) { 2410 /* Target doesn't support host page size alignment */ 2411 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); 2412 } else { 2413 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, 2414 qemu_host_page_size))); 2415 } 2416 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 2417 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 2418 NEW_AUX_ENT(AT_ENTRY, info->entry); 2419 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 2420 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 2421 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 2422 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 2423 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 2424 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 2425 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 2426 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); 2427 NEW_AUX_ENT(AT_EXECFN, info->file_string); 2428 2429 #ifdef ELF_HWCAP2 2430 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 2431 #endif 2432 2433 if (u_base_platform) { 2434 NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform); 2435 } 2436 if (u_platform) { 2437 NEW_AUX_ENT(AT_PLATFORM, u_platform); 2438 } 2439 NEW_AUX_ENT (AT_NULL, 0); 2440 #undef NEW_AUX_ENT 2441 2442 /* Check that our initial calculation of the auxv length matches how much 2443 * we actually put into it. 2444 */ 2445 assert(info->auxv_len == u_auxv - info->saved_auxv); 2446 2447 put_user_ual(argc, u_argc); 2448 2449 p = info->arg_strings; 2450 for (i = 0; i < argc; ++i) { 2451 put_user_ual(p, u_argv); 2452 u_argv += n; 2453 p += target_strlen(p) + 1; 2454 } 2455 put_user_ual(0, u_argv); 2456 2457 p = info->env_strings; 2458 for (i = 0; i < envc; ++i) { 2459 put_user_ual(p, u_envp); 2460 u_envp += n; 2461 p += target_strlen(p) + 1; 2462 } 2463 put_user_ual(0, u_envp); 2464 2465 return sp; 2466 } 2467 2468 #if defined(HI_COMMPAGE) 2469 #define LO_COMMPAGE -1 2470 #elif defined(LO_COMMPAGE) 2471 #define HI_COMMPAGE 0 2472 #else 2473 #define HI_COMMPAGE 0 2474 #define LO_COMMPAGE -1 2475 #ifndef INIT_GUEST_COMMPAGE 2476 #define init_guest_commpage() true 2477 #endif 2478 #endif 2479 2480 static void pgb_fail_in_use(const char *image_name) 2481 { 2482 error_report("%s: requires virtual address space that is in use " 2483 "(omit the -B option or choose a different value)", 2484 image_name); 2485 exit(EXIT_FAILURE); 2486 } 2487 2488 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr, 2489 abi_ulong guest_hiaddr, long align) 2490 { 2491 const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 2492 void *addr, *test; 2493 2494 if (!QEMU_IS_ALIGNED(guest_base, align)) { 2495 fprintf(stderr, "Requested guest base %p does not satisfy " 2496 "host minimum alignment (0x%lx)\n", 2497 (void *)guest_base, align); 2498 exit(EXIT_FAILURE); 2499 } 2500 2501 /* Sanity check the guest binary. */ 2502 if (reserved_va) { 2503 if (guest_hiaddr > reserved_va) { 2504 error_report("%s: requires more than reserved virtual " 2505 "address space (0x%" PRIx64 " > 0x%lx)", 2506 image_name, (uint64_t)guest_hiaddr, reserved_va); 2507 exit(EXIT_FAILURE); 2508 } 2509 } else { 2510 #if HOST_LONG_BITS < TARGET_ABI_BITS 2511 if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) { 2512 error_report("%s: requires more virtual address space " 2513 "than the host can provide (0x%" PRIx64 ")", 2514 image_name, (uint64_t)guest_hiaddr - guest_base); 2515 exit(EXIT_FAILURE); 2516 } 2517 #endif 2518 } 2519 2520 /* 2521 * Expand the allocation to the entire reserved_va. 2522 * Exclude the mmap_min_addr hole. 2523 */ 2524 if (reserved_va) { 2525 guest_loaddr = (guest_base >= mmap_min_addr ? 0 2526 : mmap_min_addr - guest_base); 2527 guest_hiaddr = reserved_va; 2528 } 2529 2530 /* Reserve the address space for the binary, or reserved_va. */ 2531 test = g2h_untagged(guest_loaddr); 2532 addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0); 2533 if (test != addr) { 2534 pgb_fail_in_use(image_name); 2535 } 2536 qemu_log_mask(CPU_LOG_PAGE, 2537 "%s: base @ %p for " TARGET_ABI_FMT_ld " bytes\n", 2538 __func__, addr, guest_hiaddr - guest_loaddr); 2539 } 2540 2541 /** 2542 * pgd_find_hole_fallback: potential mmap address 2543 * @guest_size: size of available space 2544 * @brk: location of break 2545 * @align: memory alignment 2546 * 2547 * This is a fallback method for finding a hole in the host address 2548 * space if we don't have the benefit of being able to access 2549 * /proc/self/map. It can potentially take a very long time as we can 2550 * only dumbly iterate up the host address space seeing if the 2551 * allocation would work. 2552 */ 2553 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk, 2554 long align, uintptr_t offset) 2555 { 2556 uintptr_t base; 2557 2558 /* Start (aligned) at the bottom and work our way up */ 2559 base = ROUND_UP(mmap_min_addr, align); 2560 2561 while (true) { 2562 uintptr_t align_start, end; 2563 align_start = ROUND_UP(base, align); 2564 end = align_start + guest_size + offset; 2565 2566 /* if brk is anywhere in the range give ourselves some room to grow. */ 2567 if (align_start <= brk && brk < end) { 2568 base = brk + (16 * MiB); 2569 continue; 2570 } else if (align_start + guest_size < align_start) { 2571 /* we have run out of space */ 2572 return -1; 2573 } else { 2574 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE | 2575 MAP_FIXED_NOREPLACE; 2576 void * mmap_start = mmap((void *) align_start, guest_size, 2577 PROT_NONE, flags, -1, 0); 2578 if (mmap_start != MAP_FAILED) { 2579 munmap(mmap_start, guest_size); 2580 if (mmap_start == (void *) align_start) { 2581 qemu_log_mask(CPU_LOG_PAGE, 2582 "%s: base @ %p for %" PRIdPTR" bytes\n", 2583 __func__, mmap_start + offset, guest_size); 2584 return (uintptr_t) mmap_start + offset; 2585 } 2586 } 2587 base += qemu_host_page_size; 2588 } 2589 } 2590 } 2591 2592 /* Return value for guest_base, or -1 if no hole found. */ 2593 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size, 2594 long align, uintptr_t offset) 2595 { 2596 GSList *maps, *iter; 2597 uintptr_t this_start, this_end, next_start, brk; 2598 intptr_t ret = -1; 2599 2600 assert(QEMU_IS_ALIGNED(guest_loaddr, align)); 2601 2602 maps = read_self_maps(); 2603 2604 /* Read brk after we've read the maps, which will malloc. */ 2605 brk = (uintptr_t)sbrk(0); 2606 2607 if (!maps) { 2608 return pgd_find_hole_fallback(guest_size, brk, align, offset); 2609 } 2610 2611 /* The first hole is before the first map entry. */ 2612 this_start = mmap_min_addr; 2613 2614 for (iter = maps; iter; 2615 this_start = next_start, iter = g_slist_next(iter)) { 2616 uintptr_t align_start, hole_size; 2617 2618 this_end = ((MapInfo *)iter->data)->start; 2619 next_start = ((MapInfo *)iter->data)->end; 2620 align_start = ROUND_UP(this_start + offset, align); 2621 2622 /* Skip holes that are too small. */ 2623 if (align_start >= this_end) { 2624 continue; 2625 } 2626 hole_size = this_end - align_start; 2627 if (hole_size < guest_size) { 2628 continue; 2629 } 2630 2631 /* If this hole contains brk, give ourselves some room to grow. */ 2632 if (this_start <= brk && brk < this_end) { 2633 hole_size -= guest_size; 2634 if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) { 2635 align_start += 1 * GiB; 2636 } else if (hole_size >= 16 * MiB) { 2637 align_start += 16 * MiB; 2638 } else { 2639 align_start = (this_end - guest_size) & -align; 2640 if (align_start < this_start) { 2641 continue; 2642 } 2643 } 2644 } 2645 2646 /* Record the lowest successful match. */ 2647 if (ret < 0) { 2648 ret = align_start; 2649 } 2650 /* If this hole contains the identity map, select it. */ 2651 if (align_start <= guest_loaddr && 2652 guest_loaddr + guest_size <= this_end) { 2653 ret = 0; 2654 } 2655 /* If this hole ends above the identity map, stop looking. */ 2656 if (this_end >= guest_loaddr) { 2657 break; 2658 } 2659 } 2660 free_self_maps(maps); 2661 2662 if (ret != -1) { 2663 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %" PRIxPTR 2664 " for %" PRIuPTR " bytes\n", 2665 __func__, ret, guest_size); 2666 } 2667 2668 return ret; 2669 } 2670 2671 static void pgb_static(const char *image_name, abi_ulong orig_loaddr, 2672 abi_ulong orig_hiaddr, long align) 2673 { 2674 uintptr_t loaddr = orig_loaddr; 2675 uintptr_t hiaddr = orig_hiaddr; 2676 uintptr_t offset = 0; 2677 uintptr_t addr; 2678 2679 if (hiaddr != orig_hiaddr) { 2680 error_report("%s: requires virtual address space that the " 2681 "host cannot provide (0x%" PRIx64 ")", 2682 image_name, (uint64_t)orig_hiaddr); 2683 exit(EXIT_FAILURE); 2684 } 2685 2686 loaddr &= -align; 2687 if (HI_COMMPAGE) { 2688 /* 2689 * Extend the allocation to include the commpage. 2690 * For a 64-bit host, this is just 4GiB; for a 32-bit host we 2691 * need to ensure there is space bellow the guest_base so we 2692 * can map the commpage in the place needed when the address 2693 * arithmetic wraps around. 2694 */ 2695 if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) { 2696 hiaddr = (uintptr_t) 4 << 30; 2697 } else { 2698 offset = -(HI_COMMPAGE & -align); 2699 } 2700 } else if (LO_COMMPAGE != -1) { 2701 loaddr = MIN(loaddr, LO_COMMPAGE & -align); 2702 } 2703 2704 addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset); 2705 if (addr == -1) { 2706 /* 2707 * If HI_COMMPAGE, there *might* be a non-consecutive allocation 2708 * that can satisfy both. But as the normal arm32 link base address 2709 * is ~32k, and we extend down to include the commpage, making the 2710 * overhead only ~96k, this is unlikely. 2711 */ 2712 error_report("%s: Unable to allocate %#zx bytes of " 2713 "virtual address space", image_name, 2714 (size_t)(hiaddr - loaddr)); 2715 exit(EXIT_FAILURE); 2716 } 2717 2718 guest_base = addr; 2719 2720 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %"PRIxPTR" for %" PRIuPTR" bytes\n", 2721 __func__, addr, hiaddr - loaddr); 2722 } 2723 2724 static void pgb_dynamic(const char *image_name, long align) 2725 { 2726 /* 2727 * The executable is dynamic and does not require a fixed address. 2728 * All we need is a commpage that satisfies align. 2729 * If we do not need a commpage, leave guest_base == 0. 2730 */ 2731 if (HI_COMMPAGE) { 2732 uintptr_t addr, commpage; 2733 2734 /* 64-bit hosts should have used reserved_va. */ 2735 assert(sizeof(uintptr_t) == 4); 2736 2737 /* 2738 * By putting the commpage at the first hole, that puts guest_base 2739 * just above that, and maximises the positive guest addresses. 2740 */ 2741 commpage = HI_COMMPAGE & -align; 2742 addr = pgb_find_hole(commpage, -commpage, align, 0); 2743 assert(addr != -1); 2744 guest_base = addr; 2745 } 2746 } 2747 2748 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr, 2749 abi_ulong guest_hiaddr, long align) 2750 { 2751 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 2752 void *addr, *test; 2753 2754 if (guest_hiaddr > reserved_va) { 2755 error_report("%s: requires more than reserved virtual " 2756 "address space (0x%" PRIx64 " > 0x%lx)", 2757 image_name, (uint64_t)guest_hiaddr, reserved_va); 2758 exit(EXIT_FAILURE); 2759 } 2760 2761 /* Widen the "image" to the entire reserved address space. */ 2762 pgb_static(image_name, 0, reserved_va, align); 2763 2764 /* osdep.h defines this as 0 if it's missing */ 2765 flags |= MAP_FIXED_NOREPLACE; 2766 2767 /* Reserve the memory on the host. */ 2768 assert(guest_base != 0); 2769 test = g2h_untagged(0); 2770 addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0); 2771 if (addr == MAP_FAILED || addr != test) { 2772 error_report("Unable to reserve 0x%lx bytes of virtual address " 2773 "space at %p (%s) for use as guest address space (check your " 2774 "virtual memory ulimit setting, min_mmap_addr or reserve less " 2775 "using -R option)", reserved_va, test, strerror(errno)); 2776 exit(EXIT_FAILURE); 2777 } 2778 2779 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %p for %lu bytes\n", 2780 __func__, addr, reserved_va); 2781 } 2782 2783 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr, 2784 abi_ulong guest_hiaddr) 2785 { 2786 /* In order to use host shmat, we must be able to honor SHMLBA. */ 2787 uintptr_t align = MAX(SHMLBA, qemu_host_page_size); 2788 2789 if (have_guest_base) { 2790 pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align); 2791 } else if (reserved_va) { 2792 pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align); 2793 } else if (guest_loaddr) { 2794 pgb_static(image_name, guest_loaddr, guest_hiaddr, align); 2795 } else { 2796 pgb_dynamic(image_name, align); 2797 } 2798 2799 /* Reserve and initialize the commpage. */ 2800 if (!init_guest_commpage()) { 2801 /* 2802 * With have_guest_base, the user has selected the address and 2803 * we are trying to work with that. Otherwise, we have selected 2804 * free space and init_guest_commpage must succeeded. 2805 */ 2806 assert(have_guest_base); 2807 pgb_fail_in_use(image_name); 2808 } 2809 2810 assert(QEMU_IS_ALIGNED(guest_base, align)); 2811 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space " 2812 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base); 2813 } 2814 2815 enum { 2816 /* The string "GNU\0" as a magic number. */ 2817 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16), 2818 NOTE_DATA_SZ = 1 * KiB, 2819 NOTE_NAME_SZ = 4, 2820 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8, 2821 }; 2822 2823 /* 2824 * Process a single gnu_property entry. 2825 * Return false for error. 2826 */ 2827 static bool parse_elf_property(const uint32_t *data, int *off, int datasz, 2828 struct image_info *info, bool have_prev_type, 2829 uint32_t *prev_type, Error **errp) 2830 { 2831 uint32_t pr_type, pr_datasz, step; 2832 2833 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) { 2834 goto error_data; 2835 } 2836 datasz -= *off; 2837 data += *off / sizeof(uint32_t); 2838 2839 if (datasz < 2 * sizeof(uint32_t)) { 2840 goto error_data; 2841 } 2842 pr_type = data[0]; 2843 pr_datasz = data[1]; 2844 data += 2; 2845 datasz -= 2 * sizeof(uint32_t); 2846 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN); 2847 if (step > datasz) { 2848 goto error_data; 2849 } 2850 2851 /* Properties are supposed to be unique and sorted on pr_type. */ 2852 if (have_prev_type && pr_type <= *prev_type) { 2853 if (pr_type == *prev_type) { 2854 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY"); 2855 } else { 2856 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY"); 2857 } 2858 return false; 2859 } 2860 *prev_type = pr_type; 2861 2862 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) { 2863 return false; 2864 } 2865 2866 *off += 2 * sizeof(uint32_t) + step; 2867 return true; 2868 2869 error_data: 2870 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY"); 2871 return false; 2872 } 2873 2874 /* Process NT_GNU_PROPERTY_TYPE_0. */ 2875 static bool parse_elf_properties(int image_fd, 2876 struct image_info *info, 2877 const struct elf_phdr *phdr, 2878 char bprm_buf[BPRM_BUF_SIZE], 2879 Error **errp) 2880 { 2881 union { 2882 struct elf_note nhdr; 2883 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)]; 2884 } note; 2885 2886 int n, off, datasz; 2887 bool have_prev_type; 2888 uint32_t prev_type; 2889 2890 /* Unless the arch requires properties, ignore them. */ 2891 if (!ARCH_USE_GNU_PROPERTY) { 2892 return true; 2893 } 2894 2895 /* If the properties are crazy large, that's too bad. */ 2896 n = phdr->p_filesz; 2897 if (n > sizeof(note)) { 2898 error_setg(errp, "PT_GNU_PROPERTY too large"); 2899 return false; 2900 } 2901 if (n < sizeof(note.nhdr)) { 2902 error_setg(errp, "PT_GNU_PROPERTY too small"); 2903 return false; 2904 } 2905 2906 if (phdr->p_offset + n <= BPRM_BUF_SIZE) { 2907 memcpy(¬e, bprm_buf + phdr->p_offset, n); 2908 } else { 2909 ssize_t len = pread(image_fd, ¬e, n, phdr->p_offset); 2910 if (len != n) { 2911 error_setg_errno(errp, errno, "Error reading file header"); 2912 return false; 2913 } 2914 } 2915 2916 /* 2917 * The contents of a valid PT_GNU_PROPERTY is a sequence 2918 * of uint32_t -- swap them all now. 2919 */ 2920 #ifdef BSWAP_NEEDED 2921 for (int i = 0; i < n / 4; i++) { 2922 bswap32s(note.data + i); 2923 } 2924 #endif 2925 2926 /* 2927 * Note that nhdr is 3 words, and that the "name" described by namesz 2928 * immediately follows nhdr and is thus at the 4th word. Further, all 2929 * of the inputs to the kernel's round_up are multiples of 4. 2930 */ 2931 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 || 2932 note.nhdr.n_namesz != NOTE_NAME_SZ || 2933 note.data[3] != GNU0_MAGIC) { 2934 error_setg(errp, "Invalid note in PT_GNU_PROPERTY"); 2935 return false; 2936 } 2937 off = sizeof(note.nhdr) + NOTE_NAME_SZ; 2938 2939 datasz = note.nhdr.n_descsz + off; 2940 if (datasz > n) { 2941 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY"); 2942 return false; 2943 } 2944 2945 have_prev_type = false; 2946 prev_type = 0; 2947 while (1) { 2948 if (off == datasz) { 2949 return true; /* end, exit ok */ 2950 } 2951 if (!parse_elf_property(note.data, &off, datasz, info, 2952 have_prev_type, &prev_type, errp)) { 2953 return false; 2954 } 2955 have_prev_type = true; 2956 } 2957 } 2958 2959 /* Load an ELF image into the address space. 2960 2961 IMAGE_NAME is the filename of the image, to use in error messages. 2962 IMAGE_FD is the open file descriptor for the image. 2963 2964 BPRM_BUF is a copy of the beginning of the file; this of course 2965 contains the elf file header at offset 0. It is assumed that this 2966 buffer is sufficiently aligned to present no problems to the host 2967 in accessing data at aligned offsets within the buffer. 2968 2969 On return: INFO values will be filled in, as necessary or available. */ 2970 2971 static void load_elf_image(const char *image_name, int image_fd, 2972 struct image_info *info, char **pinterp_name, 2973 char bprm_buf[BPRM_BUF_SIZE]) 2974 { 2975 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 2976 struct elf_phdr *phdr; 2977 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 2978 int i, retval, prot_exec; 2979 Error *err = NULL; 2980 2981 /* First of all, some simple consistency checks */ 2982 if (!elf_check_ident(ehdr)) { 2983 error_setg(&err, "Invalid ELF image for this architecture"); 2984 goto exit_errmsg; 2985 } 2986 bswap_ehdr(ehdr); 2987 if (!elf_check_ehdr(ehdr)) { 2988 error_setg(&err, "Invalid ELF image for this architecture"); 2989 goto exit_errmsg; 2990 } 2991 2992 i = ehdr->e_phnum * sizeof(struct elf_phdr); 2993 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 2994 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 2995 } else { 2996 phdr = (struct elf_phdr *) alloca(i); 2997 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 2998 if (retval != i) { 2999 goto exit_read; 3000 } 3001 } 3002 bswap_phdr(phdr, ehdr->e_phnum); 3003 3004 info->nsegs = 0; 3005 info->pt_dynamic_addr = 0; 3006 3007 mmap_lock(); 3008 3009 /* 3010 * Find the maximum size of the image and allocate an appropriate 3011 * amount of memory to handle that. Locate the interpreter, if any. 3012 */ 3013 loaddr = -1, hiaddr = 0; 3014 info->alignment = 0; 3015 info->exec_stack = EXSTACK_DEFAULT; 3016 for (i = 0; i < ehdr->e_phnum; ++i) { 3017 struct elf_phdr *eppnt = phdr + i; 3018 if (eppnt->p_type == PT_LOAD) { 3019 abi_ulong a = eppnt->p_vaddr - eppnt->p_offset; 3020 if (a < loaddr) { 3021 loaddr = a; 3022 } 3023 a = eppnt->p_vaddr + eppnt->p_memsz; 3024 if (a > hiaddr) { 3025 hiaddr = a; 3026 } 3027 ++info->nsegs; 3028 info->alignment |= eppnt->p_align; 3029 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 3030 g_autofree char *interp_name = NULL; 3031 3032 if (*pinterp_name) { 3033 error_setg(&err, "Multiple PT_INTERP entries"); 3034 goto exit_errmsg; 3035 } 3036 3037 interp_name = g_malloc(eppnt->p_filesz); 3038 3039 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 3040 memcpy(interp_name, bprm_buf + eppnt->p_offset, 3041 eppnt->p_filesz); 3042 } else { 3043 retval = pread(image_fd, interp_name, eppnt->p_filesz, 3044 eppnt->p_offset); 3045 if (retval != eppnt->p_filesz) { 3046 goto exit_read; 3047 } 3048 } 3049 if (interp_name[eppnt->p_filesz - 1] != 0) { 3050 error_setg(&err, "Invalid PT_INTERP entry"); 3051 goto exit_errmsg; 3052 } 3053 *pinterp_name = g_steal_pointer(&interp_name); 3054 } else if (eppnt->p_type == PT_GNU_PROPERTY) { 3055 if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) { 3056 goto exit_errmsg; 3057 } 3058 } else if (eppnt->p_type == PT_GNU_STACK) { 3059 info->exec_stack = eppnt->p_flags & PF_X; 3060 } 3061 } 3062 3063 if (pinterp_name != NULL) { 3064 /* 3065 * This is the main executable. 3066 * 3067 * Reserve extra space for brk. 3068 * We hold on to this space while placing the interpreter 3069 * and the stack, lest they be placed immediately after 3070 * the data segment and block allocation from the brk. 3071 * 3072 * 16MB is chosen as "large enough" without being so large as 3073 * to allow the result to not fit with a 32-bit guest on a 3074 * 32-bit host. However some 64 bit guests (e.g. s390x) 3075 * attempt to place their heap further ahead and currently 3076 * nothing stops them smashing into QEMUs address space. 3077 */ 3078 #if TARGET_LONG_BITS == 64 3079 info->reserve_brk = 32 * MiB; 3080 #else 3081 info->reserve_brk = 16 * MiB; 3082 #endif 3083 hiaddr += info->reserve_brk; 3084 3085 if (ehdr->e_type == ET_EXEC) { 3086 /* 3087 * Make sure that the low address does not conflict with 3088 * MMAP_MIN_ADDR or the QEMU application itself. 3089 */ 3090 probe_guest_base(image_name, loaddr, hiaddr); 3091 } else { 3092 /* 3093 * The binary is dynamic, but we still need to 3094 * select guest_base. In this case we pass a size. 3095 */ 3096 probe_guest_base(image_name, 0, hiaddr - loaddr); 3097 } 3098 } 3099 3100 /* 3101 * Reserve address space for all of this. 3102 * 3103 * In the case of ET_EXEC, we supply MAP_FIXED so that we get 3104 * exactly the address range that is required. 3105 * 3106 * Otherwise this is ET_DYN, and we are searching for a location 3107 * that can hold the memory space required. If the image is 3108 * pre-linked, LOADDR will be non-zero, and the kernel should 3109 * honor that address if it happens to be free. 3110 * 3111 * In both cases, we will overwrite pages in this range with mappings 3112 * from the executable. 3113 */ 3114 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 3115 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | 3116 (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0), 3117 -1, 0); 3118 if (load_addr == -1) { 3119 goto exit_mmap; 3120 } 3121 load_bias = load_addr - loaddr; 3122 3123 if (elf_is_fdpic(ehdr)) { 3124 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 3125 g_malloc(sizeof(*loadsegs) * info->nsegs); 3126 3127 for (i = 0; i < ehdr->e_phnum; ++i) { 3128 switch (phdr[i].p_type) { 3129 case PT_DYNAMIC: 3130 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 3131 break; 3132 case PT_LOAD: 3133 loadsegs->addr = phdr[i].p_vaddr + load_bias; 3134 loadsegs->p_vaddr = phdr[i].p_vaddr; 3135 loadsegs->p_memsz = phdr[i].p_memsz; 3136 ++loadsegs; 3137 break; 3138 } 3139 } 3140 } 3141 3142 info->load_bias = load_bias; 3143 info->code_offset = load_bias; 3144 info->data_offset = load_bias; 3145 info->load_addr = load_addr; 3146 info->entry = ehdr->e_entry + load_bias; 3147 info->start_code = -1; 3148 info->end_code = 0; 3149 info->start_data = -1; 3150 info->end_data = 0; 3151 info->brk = 0; 3152 info->elf_flags = ehdr->e_flags; 3153 3154 prot_exec = PROT_EXEC; 3155 #ifdef TARGET_AARCH64 3156 /* 3157 * If the BTI feature is present, this indicates that the executable 3158 * pages of the startup binary should be mapped with PROT_BTI, so that 3159 * branch targets are enforced. 3160 * 3161 * The startup binary is either the interpreter or the static executable. 3162 * The interpreter is responsible for all pages of a dynamic executable. 3163 * 3164 * Elf notes are backward compatible to older cpus. 3165 * Do not enable BTI unless it is supported. 3166 */ 3167 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) 3168 && (pinterp_name == NULL || *pinterp_name == 0) 3169 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) { 3170 prot_exec |= TARGET_PROT_BTI; 3171 } 3172 #endif 3173 3174 for (i = 0; i < ehdr->e_phnum; i++) { 3175 struct elf_phdr *eppnt = phdr + i; 3176 if (eppnt->p_type == PT_LOAD) { 3177 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len; 3178 int elf_prot = 0; 3179 3180 if (eppnt->p_flags & PF_R) { 3181 elf_prot |= PROT_READ; 3182 } 3183 if (eppnt->p_flags & PF_W) { 3184 elf_prot |= PROT_WRITE; 3185 } 3186 if (eppnt->p_flags & PF_X) { 3187 elf_prot |= prot_exec; 3188 } 3189 3190 vaddr = load_bias + eppnt->p_vaddr; 3191 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 3192 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 3193 3194 vaddr_ef = vaddr + eppnt->p_filesz; 3195 vaddr_em = vaddr + eppnt->p_memsz; 3196 3197 /* 3198 * Some segments may be completely empty, with a non-zero p_memsz 3199 * but no backing file segment. 3200 */ 3201 if (eppnt->p_filesz != 0) { 3202 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po); 3203 error = target_mmap(vaddr_ps, vaddr_len, elf_prot, 3204 MAP_PRIVATE | MAP_FIXED, 3205 image_fd, eppnt->p_offset - vaddr_po); 3206 3207 if (error == -1) { 3208 goto exit_mmap; 3209 } 3210 3211 /* 3212 * If the load segment requests extra zeros (e.g. bss), map it. 3213 */ 3214 if (eppnt->p_filesz < eppnt->p_memsz) { 3215 zero_bss(vaddr_ef, vaddr_em, elf_prot); 3216 } 3217 } else if (eppnt->p_memsz != 0) { 3218 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po); 3219 error = target_mmap(vaddr_ps, vaddr_len, elf_prot, 3220 MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS, 3221 -1, 0); 3222 3223 if (error == -1) { 3224 goto exit_mmap; 3225 } 3226 } 3227 3228 /* Find the full program boundaries. */ 3229 if (elf_prot & PROT_EXEC) { 3230 if (vaddr < info->start_code) { 3231 info->start_code = vaddr; 3232 } 3233 if (vaddr_ef > info->end_code) { 3234 info->end_code = vaddr_ef; 3235 } 3236 } 3237 if (elf_prot & PROT_WRITE) { 3238 if (vaddr < info->start_data) { 3239 info->start_data = vaddr; 3240 } 3241 if (vaddr_ef > info->end_data) { 3242 info->end_data = vaddr_ef; 3243 } 3244 } 3245 if (vaddr_em > info->brk) { 3246 info->brk = vaddr_em; 3247 } 3248 #ifdef TARGET_MIPS 3249 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) { 3250 Mips_elf_abiflags_v0 abiflags; 3251 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) { 3252 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry"); 3253 goto exit_errmsg; 3254 } 3255 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 3256 memcpy(&abiflags, bprm_buf + eppnt->p_offset, 3257 sizeof(Mips_elf_abiflags_v0)); 3258 } else { 3259 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0), 3260 eppnt->p_offset); 3261 if (retval != sizeof(Mips_elf_abiflags_v0)) { 3262 goto exit_read; 3263 } 3264 } 3265 bswap_mips_abiflags(&abiflags); 3266 info->fp_abi = abiflags.fp_abi; 3267 #endif 3268 } 3269 } 3270 3271 if (info->end_data == 0) { 3272 info->start_data = info->end_code; 3273 info->end_data = info->end_code; 3274 } 3275 3276 if (qemu_log_enabled()) { 3277 load_symbols(ehdr, image_fd, load_bias); 3278 } 3279 3280 debuginfo_report_elf(image_name, image_fd, load_bias); 3281 3282 mmap_unlock(); 3283 3284 close(image_fd); 3285 return; 3286 3287 exit_read: 3288 if (retval >= 0) { 3289 error_setg(&err, "Incomplete read of file header"); 3290 } else { 3291 error_setg_errno(&err, errno, "Error reading file header"); 3292 } 3293 goto exit_errmsg; 3294 exit_mmap: 3295 error_setg_errno(&err, errno, "Error mapping file"); 3296 goto exit_errmsg; 3297 exit_errmsg: 3298 error_reportf_err(err, "%s: ", image_name); 3299 exit(-1); 3300 } 3301 3302 static void load_elf_interp(const char *filename, struct image_info *info, 3303 char bprm_buf[BPRM_BUF_SIZE]) 3304 { 3305 int fd, retval; 3306 Error *err = NULL; 3307 3308 fd = open(path(filename), O_RDONLY); 3309 if (fd < 0) { 3310 error_setg_file_open(&err, errno, filename); 3311 error_report_err(err); 3312 exit(-1); 3313 } 3314 3315 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 3316 if (retval < 0) { 3317 error_setg_errno(&err, errno, "Error reading file header"); 3318 error_reportf_err(err, "%s: ", filename); 3319 exit(-1); 3320 } 3321 3322 if (retval < BPRM_BUF_SIZE) { 3323 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 3324 } 3325 3326 load_elf_image(filename, fd, info, NULL, bprm_buf); 3327 } 3328 3329 static int symfind(const void *s0, const void *s1) 3330 { 3331 target_ulong addr = *(target_ulong *)s0; 3332 struct elf_sym *sym = (struct elf_sym *)s1; 3333 int result = 0; 3334 if (addr < sym->st_value) { 3335 result = -1; 3336 } else if (addr >= sym->st_value + sym->st_size) { 3337 result = 1; 3338 } 3339 return result; 3340 } 3341 3342 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 3343 { 3344 #if ELF_CLASS == ELFCLASS32 3345 struct elf_sym *syms = s->disas_symtab.elf32; 3346 #else 3347 struct elf_sym *syms = s->disas_symtab.elf64; 3348 #endif 3349 3350 // binary search 3351 struct elf_sym *sym; 3352 3353 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 3354 if (sym != NULL) { 3355 return s->disas_strtab + sym->st_name; 3356 } 3357 3358 return ""; 3359 } 3360 3361 /* FIXME: This should use elf_ops.h */ 3362 static int symcmp(const void *s0, const void *s1) 3363 { 3364 struct elf_sym *sym0 = (struct elf_sym *)s0; 3365 struct elf_sym *sym1 = (struct elf_sym *)s1; 3366 return (sym0->st_value < sym1->st_value) 3367 ? -1 3368 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 3369 } 3370 3371 /* Best attempt to load symbols from this ELF object. */ 3372 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 3373 { 3374 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 3375 uint64_t segsz; 3376 struct elf_shdr *shdr; 3377 char *strings = NULL; 3378 struct syminfo *s = NULL; 3379 struct elf_sym *new_syms, *syms = NULL; 3380 3381 shnum = hdr->e_shnum; 3382 i = shnum * sizeof(struct elf_shdr); 3383 shdr = (struct elf_shdr *)alloca(i); 3384 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 3385 return; 3386 } 3387 3388 bswap_shdr(shdr, shnum); 3389 for (i = 0; i < shnum; ++i) { 3390 if (shdr[i].sh_type == SHT_SYMTAB) { 3391 sym_idx = i; 3392 str_idx = shdr[i].sh_link; 3393 goto found; 3394 } 3395 } 3396 3397 /* There will be no symbol table if the file was stripped. */ 3398 return; 3399 3400 found: 3401 /* Now know where the strtab and symtab are. Snarf them. */ 3402 s = g_try_new(struct syminfo, 1); 3403 if (!s) { 3404 goto give_up; 3405 } 3406 3407 segsz = shdr[str_idx].sh_size; 3408 s->disas_strtab = strings = g_try_malloc(segsz); 3409 if (!strings || 3410 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { 3411 goto give_up; 3412 } 3413 3414 segsz = shdr[sym_idx].sh_size; 3415 syms = g_try_malloc(segsz); 3416 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { 3417 goto give_up; 3418 } 3419 3420 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 3421 /* Implausibly large symbol table: give up rather than ploughing 3422 * on with the number of symbols calculation overflowing 3423 */ 3424 goto give_up; 3425 } 3426 nsyms = segsz / sizeof(struct elf_sym); 3427 for (i = 0; i < nsyms; ) { 3428 bswap_sym(syms + i); 3429 /* Throw away entries which we do not need. */ 3430 if (syms[i].st_shndx == SHN_UNDEF 3431 || syms[i].st_shndx >= SHN_LORESERVE 3432 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 3433 if (i < --nsyms) { 3434 syms[i] = syms[nsyms]; 3435 } 3436 } else { 3437 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 3438 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 3439 syms[i].st_value &= ~(target_ulong)1; 3440 #endif 3441 syms[i].st_value += load_bias; 3442 i++; 3443 } 3444 } 3445 3446 /* No "useful" symbol. */ 3447 if (nsyms == 0) { 3448 goto give_up; 3449 } 3450 3451 /* Attempt to free the storage associated with the local symbols 3452 that we threw away. Whether or not this has any effect on the 3453 memory allocation depends on the malloc implementation and how 3454 many symbols we managed to discard. */ 3455 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 3456 if (new_syms == NULL) { 3457 goto give_up; 3458 } 3459 syms = new_syms; 3460 3461 qsort(syms, nsyms, sizeof(*syms), symcmp); 3462 3463 s->disas_num_syms = nsyms; 3464 #if ELF_CLASS == ELFCLASS32 3465 s->disas_symtab.elf32 = syms; 3466 #else 3467 s->disas_symtab.elf64 = syms; 3468 #endif 3469 s->lookup_symbol = lookup_symbolxx; 3470 s->next = syminfos; 3471 syminfos = s; 3472 3473 return; 3474 3475 give_up: 3476 g_free(s); 3477 g_free(strings); 3478 g_free(syms); 3479 } 3480 3481 uint32_t get_elf_eflags(int fd) 3482 { 3483 struct elfhdr ehdr; 3484 off_t offset; 3485 int ret; 3486 3487 /* Read ELF header */ 3488 offset = lseek(fd, 0, SEEK_SET); 3489 if (offset == (off_t) -1) { 3490 return 0; 3491 } 3492 ret = read(fd, &ehdr, sizeof(ehdr)); 3493 if (ret < sizeof(ehdr)) { 3494 return 0; 3495 } 3496 offset = lseek(fd, offset, SEEK_SET); 3497 if (offset == (off_t) -1) { 3498 return 0; 3499 } 3500 3501 /* Check ELF signature */ 3502 if (!elf_check_ident(&ehdr)) { 3503 return 0; 3504 } 3505 3506 /* check header */ 3507 bswap_ehdr(&ehdr); 3508 if (!elf_check_ehdr(&ehdr)) { 3509 return 0; 3510 } 3511 3512 /* return architecture id */ 3513 return ehdr.e_flags; 3514 } 3515 3516 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 3517 { 3518 struct image_info interp_info; 3519 struct elfhdr elf_ex; 3520 char *elf_interpreter = NULL; 3521 char *scratch; 3522 3523 memset(&interp_info, 0, sizeof(interp_info)); 3524 #ifdef TARGET_MIPS 3525 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN; 3526 #endif 3527 3528 info->start_mmap = (abi_ulong)ELF_START_MMAP; 3529 3530 load_elf_image(bprm->filename, bprm->fd, info, 3531 &elf_interpreter, bprm->buf); 3532 3533 /* ??? We need a copy of the elf header for passing to create_elf_tables. 3534 If we do nothing, we'll have overwritten this when we re-use bprm->buf 3535 when we load the interpreter. */ 3536 elf_ex = *(struct elfhdr *)bprm->buf; 3537 3538 /* Do this so that we can load the interpreter, if need be. We will 3539 change some of these later */ 3540 bprm->p = setup_arg_pages(bprm, info); 3541 3542 scratch = g_new0(char, TARGET_PAGE_SIZE); 3543 if (STACK_GROWS_DOWN) { 3544 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 3545 bprm->p, info->stack_limit); 3546 info->file_string = bprm->p; 3547 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 3548 bprm->p, info->stack_limit); 3549 info->env_strings = bprm->p; 3550 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 3551 bprm->p, info->stack_limit); 3552 info->arg_strings = bprm->p; 3553 } else { 3554 info->arg_strings = bprm->p; 3555 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 3556 bprm->p, info->stack_limit); 3557 info->env_strings = bprm->p; 3558 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 3559 bprm->p, info->stack_limit); 3560 info->file_string = bprm->p; 3561 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 3562 bprm->p, info->stack_limit); 3563 } 3564 3565 g_free(scratch); 3566 3567 if (!bprm->p) { 3568 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 3569 exit(-1); 3570 } 3571 3572 if (elf_interpreter) { 3573 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 3574 3575 /* If the program interpreter is one of these two, then assume 3576 an iBCS2 image. Otherwise assume a native linux image. */ 3577 3578 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 3579 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 3580 info->personality = PER_SVR4; 3581 3582 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 3583 and some applications "depend" upon this behavior. Since 3584 we do not have the power to recompile these, we emulate 3585 the SVr4 behavior. Sigh. */ 3586 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 3587 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 3588 } 3589 #ifdef TARGET_MIPS 3590 info->interp_fp_abi = interp_info.fp_abi; 3591 #endif 3592 } 3593 3594 /* 3595 * TODO: load a vdso, which would also contain the signal trampolines. 3596 * Otherwise, allocate a private page to hold them. 3597 */ 3598 if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) { 3599 abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE, 3600 PROT_READ | PROT_WRITE, 3601 MAP_PRIVATE | MAP_ANON, -1, 0); 3602 if (tramp_page == -1) { 3603 return -errno; 3604 } 3605 3606 setup_sigtramp(tramp_page); 3607 target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC); 3608 } 3609 3610 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 3611 info, (elf_interpreter ? &interp_info : NULL)); 3612 info->start_stack = bprm->p; 3613 3614 /* If we have an interpreter, set that as the program's entry point. 3615 Copy the load_bias as well, to help PPC64 interpret the entry 3616 point as a function descriptor. Do this after creating elf tables 3617 so that we copy the original program entry point into the AUXV. */ 3618 if (elf_interpreter) { 3619 info->load_bias = interp_info.load_bias; 3620 info->entry = interp_info.entry; 3621 g_free(elf_interpreter); 3622 } 3623 3624 #ifdef USE_ELF_CORE_DUMP 3625 bprm->core_dump = &elf_core_dump; 3626 #endif 3627 3628 /* 3629 * If we reserved extra space for brk, release it now. 3630 * The implementation of do_brk in syscalls.c expects to be able 3631 * to mmap pages in this space. 3632 */ 3633 if (info->reserve_brk) { 3634 abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk); 3635 abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk); 3636 target_munmap(start_brk, end_brk - start_brk); 3637 } 3638 3639 return 0; 3640 } 3641 3642 #ifdef USE_ELF_CORE_DUMP 3643 /* 3644 * Definitions to generate Intel SVR4-like core files. 3645 * These mostly have the same names as the SVR4 types with "target_elf_" 3646 * tacked on the front to prevent clashes with linux definitions, 3647 * and the typedef forms have been avoided. This is mostly like 3648 * the SVR4 structure, but more Linuxy, with things that Linux does 3649 * not support and which gdb doesn't really use excluded. 3650 * 3651 * Fields we don't dump (their contents is zero) in linux-user qemu 3652 * are marked with XXX. 3653 * 3654 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 3655 * 3656 * Porting ELF coredump for target is (quite) simple process. First you 3657 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 3658 * the target resides): 3659 * 3660 * #define USE_ELF_CORE_DUMP 3661 * 3662 * Next you define type of register set used for dumping. ELF specification 3663 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 3664 * 3665 * typedef <target_regtype> target_elf_greg_t; 3666 * #define ELF_NREG <number of registers> 3667 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 3668 * 3669 * Last step is to implement target specific function that copies registers 3670 * from given cpu into just specified register set. Prototype is: 3671 * 3672 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 3673 * const CPUArchState *env); 3674 * 3675 * Parameters: 3676 * regs - copy register values into here (allocated and zeroed by caller) 3677 * env - copy registers from here 3678 * 3679 * Example for ARM target is provided in this file. 3680 */ 3681 3682 /* An ELF note in memory */ 3683 struct memelfnote { 3684 const char *name; 3685 size_t namesz; 3686 size_t namesz_rounded; 3687 int type; 3688 size_t datasz; 3689 size_t datasz_rounded; 3690 void *data; 3691 size_t notesz; 3692 }; 3693 3694 struct target_elf_siginfo { 3695 abi_int si_signo; /* signal number */ 3696 abi_int si_code; /* extra code */ 3697 abi_int si_errno; /* errno */ 3698 }; 3699 3700 struct target_elf_prstatus { 3701 struct target_elf_siginfo pr_info; /* Info associated with signal */ 3702 abi_short pr_cursig; /* Current signal */ 3703 abi_ulong pr_sigpend; /* XXX */ 3704 abi_ulong pr_sighold; /* XXX */ 3705 target_pid_t pr_pid; 3706 target_pid_t pr_ppid; 3707 target_pid_t pr_pgrp; 3708 target_pid_t pr_sid; 3709 struct target_timeval pr_utime; /* XXX User time */ 3710 struct target_timeval pr_stime; /* XXX System time */ 3711 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 3712 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 3713 target_elf_gregset_t pr_reg; /* GP registers */ 3714 abi_int pr_fpvalid; /* XXX */ 3715 }; 3716 3717 #define ELF_PRARGSZ (80) /* Number of chars for args */ 3718 3719 struct target_elf_prpsinfo { 3720 char pr_state; /* numeric process state */ 3721 char pr_sname; /* char for pr_state */ 3722 char pr_zomb; /* zombie */ 3723 char pr_nice; /* nice val */ 3724 abi_ulong pr_flag; /* flags */ 3725 target_uid_t pr_uid; 3726 target_gid_t pr_gid; 3727 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 3728 /* Lots missing */ 3729 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */ 3730 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 3731 }; 3732 3733 /* Here is the structure in which status of each thread is captured. */ 3734 struct elf_thread_status { 3735 QTAILQ_ENTRY(elf_thread_status) ets_link; 3736 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 3737 #if 0 3738 elf_fpregset_t fpu; /* NT_PRFPREG */ 3739 struct task_struct *thread; 3740 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 3741 #endif 3742 struct memelfnote notes[1]; 3743 int num_notes; 3744 }; 3745 3746 struct elf_note_info { 3747 struct memelfnote *notes; 3748 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 3749 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 3750 3751 QTAILQ_HEAD(, elf_thread_status) thread_list; 3752 #if 0 3753 /* 3754 * Current version of ELF coredump doesn't support 3755 * dumping fp regs etc. 3756 */ 3757 elf_fpregset_t *fpu; 3758 elf_fpxregset_t *xfpu; 3759 int thread_status_size; 3760 #endif 3761 int notes_size; 3762 int numnote; 3763 }; 3764 3765 struct vm_area_struct { 3766 target_ulong vma_start; /* start vaddr of memory region */ 3767 target_ulong vma_end; /* end vaddr of memory region */ 3768 abi_ulong vma_flags; /* protection etc. flags for the region */ 3769 QTAILQ_ENTRY(vm_area_struct) vma_link; 3770 }; 3771 3772 struct mm_struct { 3773 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 3774 int mm_count; /* number of mappings */ 3775 }; 3776 3777 static struct mm_struct *vma_init(void); 3778 static void vma_delete(struct mm_struct *); 3779 static int vma_add_mapping(struct mm_struct *, target_ulong, 3780 target_ulong, abi_ulong); 3781 static int vma_get_mapping_count(const struct mm_struct *); 3782 static struct vm_area_struct *vma_first(const struct mm_struct *); 3783 static struct vm_area_struct *vma_next(struct vm_area_struct *); 3784 static abi_ulong vma_dump_size(const struct vm_area_struct *); 3785 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3786 unsigned long flags); 3787 3788 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 3789 static void fill_note(struct memelfnote *, const char *, int, 3790 unsigned int, void *); 3791 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 3792 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 3793 static void fill_auxv_note(struct memelfnote *, const TaskState *); 3794 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 3795 static size_t note_size(const struct memelfnote *); 3796 static void free_note_info(struct elf_note_info *); 3797 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 3798 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 3799 3800 static int dump_write(int, const void *, size_t); 3801 static int write_note(struct memelfnote *, int); 3802 static int write_note_info(struct elf_note_info *, int); 3803 3804 #ifdef BSWAP_NEEDED 3805 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 3806 { 3807 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 3808 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 3809 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 3810 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 3811 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 3812 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 3813 prstatus->pr_pid = tswap32(prstatus->pr_pid); 3814 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 3815 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 3816 prstatus->pr_sid = tswap32(prstatus->pr_sid); 3817 /* cpu times are not filled, so we skip them */ 3818 /* regs should be in correct format already */ 3819 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 3820 } 3821 3822 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 3823 { 3824 psinfo->pr_flag = tswapal(psinfo->pr_flag); 3825 psinfo->pr_uid = tswap16(psinfo->pr_uid); 3826 psinfo->pr_gid = tswap16(psinfo->pr_gid); 3827 psinfo->pr_pid = tswap32(psinfo->pr_pid); 3828 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 3829 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 3830 psinfo->pr_sid = tswap32(psinfo->pr_sid); 3831 } 3832 3833 static void bswap_note(struct elf_note *en) 3834 { 3835 bswap32s(&en->n_namesz); 3836 bswap32s(&en->n_descsz); 3837 bswap32s(&en->n_type); 3838 } 3839 #else 3840 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 3841 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 3842 static inline void bswap_note(struct elf_note *en) { } 3843 #endif /* BSWAP_NEEDED */ 3844 3845 /* 3846 * Minimal support for linux memory regions. These are needed 3847 * when we are finding out what memory exactly belongs to 3848 * emulated process. No locks needed here, as long as 3849 * thread that received the signal is stopped. 3850 */ 3851 3852 static struct mm_struct *vma_init(void) 3853 { 3854 struct mm_struct *mm; 3855 3856 if ((mm = g_malloc(sizeof (*mm))) == NULL) 3857 return (NULL); 3858 3859 mm->mm_count = 0; 3860 QTAILQ_INIT(&mm->mm_mmap); 3861 3862 return (mm); 3863 } 3864 3865 static void vma_delete(struct mm_struct *mm) 3866 { 3867 struct vm_area_struct *vma; 3868 3869 while ((vma = vma_first(mm)) != NULL) { 3870 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 3871 g_free(vma); 3872 } 3873 g_free(mm); 3874 } 3875 3876 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 3877 target_ulong end, abi_ulong flags) 3878 { 3879 struct vm_area_struct *vma; 3880 3881 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 3882 return (-1); 3883 3884 vma->vma_start = start; 3885 vma->vma_end = end; 3886 vma->vma_flags = flags; 3887 3888 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 3889 mm->mm_count++; 3890 3891 return (0); 3892 } 3893 3894 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 3895 { 3896 return (QTAILQ_FIRST(&mm->mm_mmap)); 3897 } 3898 3899 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 3900 { 3901 return (QTAILQ_NEXT(vma, vma_link)); 3902 } 3903 3904 static int vma_get_mapping_count(const struct mm_struct *mm) 3905 { 3906 return (mm->mm_count); 3907 } 3908 3909 /* 3910 * Calculate file (dump) size of given memory region. 3911 */ 3912 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 3913 { 3914 /* if we cannot even read the first page, skip it */ 3915 if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 3916 return (0); 3917 3918 /* 3919 * Usually we don't dump executable pages as they contain 3920 * non-writable code that debugger can read directly from 3921 * target library etc. However, thread stacks are marked 3922 * also executable so we read in first page of given region 3923 * and check whether it contains elf header. If there is 3924 * no elf header, we dump it. 3925 */ 3926 if (vma->vma_flags & PROT_EXEC) { 3927 char page[TARGET_PAGE_SIZE]; 3928 3929 if (copy_from_user(page, vma->vma_start, sizeof (page))) { 3930 return 0; 3931 } 3932 if ((page[EI_MAG0] == ELFMAG0) && 3933 (page[EI_MAG1] == ELFMAG1) && 3934 (page[EI_MAG2] == ELFMAG2) && 3935 (page[EI_MAG3] == ELFMAG3)) { 3936 /* 3937 * Mappings are possibly from ELF binary. Don't dump 3938 * them. 3939 */ 3940 return (0); 3941 } 3942 } 3943 3944 return (vma->vma_end - vma->vma_start); 3945 } 3946 3947 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3948 unsigned long flags) 3949 { 3950 struct mm_struct *mm = (struct mm_struct *)priv; 3951 3952 vma_add_mapping(mm, start, end, flags); 3953 return (0); 3954 } 3955 3956 static void fill_note(struct memelfnote *note, const char *name, int type, 3957 unsigned int sz, void *data) 3958 { 3959 unsigned int namesz; 3960 3961 namesz = strlen(name) + 1; 3962 note->name = name; 3963 note->namesz = namesz; 3964 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 3965 note->type = type; 3966 note->datasz = sz; 3967 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 3968 3969 note->data = data; 3970 3971 /* 3972 * We calculate rounded up note size here as specified by 3973 * ELF document. 3974 */ 3975 note->notesz = sizeof (struct elf_note) + 3976 note->namesz_rounded + note->datasz_rounded; 3977 } 3978 3979 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 3980 uint32_t flags) 3981 { 3982 (void) memset(elf, 0, sizeof(*elf)); 3983 3984 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 3985 elf->e_ident[EI_CLASS] = ELF_CLASS; 3986 elf->e_ident[EI_DATA] = ELF_DATA; 3987 elf->e_ident[EI_VERSION] = EV_CURRENT; 3988 elf->e_ident[EI_OSABI] = ELF_OSABI; 3989 3990 elf->e_type = ET_CORE; 3991 elf->e_machine = machine; 3992 elf->e_version = EV_CURRENT; 3993 elf->e_phoff = sizeof(struct elfhdr); 3994 elf->e_flags = flags; 3995 elf->e_ehsize = sizeof(struct elfhdr); 3996 elf->e_phentsize = sizeof(struct elf_phdr); 3997 elf->e_phnum = segs; 3998 3999 bswap_ehdr(elf); 4000 } 4001 4002 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 4003 { 4004 phdr->p_type = PT_NOTE; 4005 phdr->p_offset = offset; 4006 phdr->p_vaddr = 0; 4007 phdr->p_paddr = 0; 4008 phdr->p_filesz = sz; 4009 phdr->p_memsz = 0; 4010 phdr->p_flags = 0; 4011 phdr->p_align = 0; 4012 4013 bswap_phdr(phdr, 1); 4014 } 4015 4016 static size_t note_size(const struct memelfnote *note) 4017 { 4018 return (note->notesz); 4019 } 4020 4021 static void fill_prstatus(struct target_elf_prstatus *prstatus, 4022 const TaskState *ts, int signr) 4023 { 4024 (void) memset(prstatus, 0, sizeof (*prstatus)); 4025 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 4026 prstatus->pr_pid = ts->ts_tid; 4027 prstatus->pr_ppid = getppid(); 4028 prstatus->pr_pgrp = getpgrp(); 4029 prstatus->pr_sid = getsid(0); 4030 4031 bswap_prstatus(prstatus); 4032 } 4033 4034 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 4035 { 4036 char *base_filename; 4037 unsigned int i, len; 4038 4039 (void) memset(psinfo, 0, sizeof (*psinfo)); 4040 4041 len = ts->info->env_strings - ts->info->arg_strings; 4042 if (len >= ELF_PRARGSZ) 4043 len = ELF_PRARGSZ - 1; 4044 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) { 4045 return -EFAULT; 4046 } 4047 for (i = 0; i < len; i++) 4048 if (psinfo->pr_psargs[i] == 0) 4049 psinfo->pr_psargs[i] = ' '; 4050 psinfo->pr_psargs[len] = 0; 4051 4052 psinfo->pr_pid = getpid(); 4053 psinfo->pr_ppid = getppid(); 4054 psinfo->pr_pgrp = getpgrp(); 4055 psinfo->pr_sid = getsid(0); 4056 psinfo->pr_uid = getuid(); 4057 psinfo->pr_gid = getgid(); 4058 4059 base_filename = g_path_get_basename(ts->bprm->filename); 4060 /* 4061 * Using strncpy here is fine: at max-length, 4062 * this field is not NUL-terminated. 4063 */ 4064 (void) strncpy(psinfo->pr_fname, base_filename, 4065 sizeof(psinfo->pr_fname)); 4066 4067 g_free(base_filename); 4068 bswap_psinfo(psinfo); 4069 return (0); 4070 } 4071 4072 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 4073 { 4074 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 4075 elf_addr_t orig_auxv = auxv; 4076 void *ptr; 4077 int len = ts->info->auxv_len; 4078 4079 /* 4080 * Auxiliary vector is stored in target process stack. It contains 4081 * {type, value} pairs that we need to dump into note. This is not 4082 * strictly necessary but we do it here for sake of completeness. 4083 */ 4084 4085 /* read in whole auxv vector and copy it to memelfnote */ 4086 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 4087 if (ptr != NULL) { 4088 fill_note(note, "CORE", NT_AUXV, len, ptr); 4089 unlock_user(ptr, auxv, len); 4090 } 4091 } 4092 4093 /* 4094 * Constructs name of coredump file. We have following convention 4095 * for the name: 4096 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 4097 * 4098 * Returns the filename 4099 */ 4100 static char *core_dump_filename(const TaskState *ts) 4101 { 4102 g_autoptr(GDateTime) now = g_date_time_new_now_local(); 4103 g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S"); 4104 g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename); 4105 4106 return g_strdup_printf("qemu_%s_%s_%d.core", 4107 base_filename, nowstr, (int)getpid()); 4108 } 4109 4110 static int dump_write(int fd, const void *ptr, size_t size) 4111 { 4112 const char *bufp = (const char *)ptr; 4113 ssize_t bytes_written, bytes_left; 4114 struct rlimit dumpsize; 4115 off_t pos; 4116 4117 bytes_written = 0; 4118 getrlimit(RLIMIT_CORE, &dumpsize); 4119 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 4120 if (errno == ESPIPE) { /* not a seekable stream */ 4121 bytes_left = size; 4122 } else { 4123 return pos; 4124 } 4125 } else { 4126 if (dumpsize.rlim_cur <= pos) { 4127 return -1; 4128 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 4129 bytes_left = size; 4130 } else { 4131 size_t limit_left=dumpsize.rlim_cur - pos; 4132 bytes_left = limit_left >= size ? size : limit_left ; 4133 } 4134 } 4135 4136 /* 4137 * In normal conditions, single write(2) should do but 4138 * in case of socket etc. this mechanism is more portable. 4139 */ 4140 do { 4141 bytes_written = write(fd, bufp, bytes_left); 4142 if (bytes_written < 0) { 4143 if (errno == EINTR) 4144 continue; 4145 return (-1); 4146 } else if (bytes_written == 0) { /* eof */ 4147 return (-1); 4148 } 4149 bufp += bytes_written; 4150 bytes_left -= bytes_written; 4151 } while (bytes_left > 0); 4152 4153 return (0); 4154 } 4155 4156 static int write_note(struct memelfnote *men, int fd) 4157 { 4158 struct elf_note en; 4159 4160 en.n_namesz = men->namesz; 4161 en.n_type = men->type; 4162 en.n_descsz = men->datasz; 4163 4164 bswap_note(&en); 4165 4166 if (dump_write(fd, &en, sizeof(en)) != 0) 4167 return (-1); 4168 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 4169 return (-1); 4170 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 4171 return (-1); 4172 4173 return (0); 4174 } 4175 4176 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 4177 { 4178 CPUState *cpu = env_cpu((CPUArchState *)env); 4179 TaskState *ts = (TaskState *)cpu->opaque; 4180 struct elf_thread_status *ets; 4181 4182 ets = g_malloc0(sizeof (*ets)); 4183 ets->num_notes = 1; /* only prstatus is dumped */ 4184 fill_prstatus(&ets->prstatus, ts, 0); 4185 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 4186 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 4187 &ets->prstatus); 4188 4189 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 4190 4191 info->notes_size += note_size(&ets->notes[0]); 4192 } 4193 4194 static void init_note_info(struct elf_note_info *info) 4195 { 4196 /* Initialize the elf_note_info structure so that it is at 4197 * least safe to call free_note_info() on it. Must be 4198 * called before calling fill_note_info(). 4199 */ 4200 memset(info, 0, sizeof (*info)); 4201 QTAILQ_INIT(&info->thread_list); 4202 } 4203 4204 static int fill_note_info(struct elf_note_info *info, 4205 long signr, const CPUArchState *env) 4206 { 4207 #define NUMNOTES 3 4208 CPUState *cpu = env_cpu((CPUArchState *)env); 4209 TaskState *ts = (TaskState *)cpu->opaque; 4210 int i; 4211 4212 info->notes = g_new0(struct memelfnote, NUMNOTES); 4213 if (info->notes == NULL) 4214 return (-ENOMEM); 4215 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 4216 if (info->prstatus == NULL) 4217 return (-ENOMEM); 4218 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 4219 if (info->prstatus == NULL) 4220 return (-ENOMEM); 4221 4222 /* 4223 * First fill in status (and registers) of current thread 4224 * including process info & aux vector. 4225 */ 4226 fill_prstatus(info->prstatus, ts, signr); 4227 elf_core_copy_regs(&info->prstatus->pr_reg, env); 4228 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 4229 sizeof (*info->prstatus), info->prstatus); 4230 fill_psinfo(info->psinfo, ts); 4231 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 4232 sizeof (*info->psinfo), info->psinfo); 4233 fill_auxv_note(&info->notes[2], ts); 4234 info->numnote = 3; 4235 4236 info->notes_size = 0; 4237 for (i = 0; i < info->numnote; i++) 4238 info->notes_size += note_size(&info->notes[i]); 4239 4240 /* read and fill status of all threads */ 4241 cpu_list_lock(); 4242 CPU_FOREACH(cpu) { 4243 if (cpu == thread_cpu) { 4244 continue; 4245 } 4246 fill_thread_info(info, cpu->env_ptr); 4247 } 4248 cpu_list_unlock(); 4249 4250 return (0); 4251 } 4252 4253 static void free_note_info(struct elf_note_info *info) 4254 { 4255 struct elf_thread_status *ets; 4256 4257 while (!QTAILQ_EMPTY(&info->thread_list)) { 4258 ets = QTAILQ_FIRST(&info->thread_list); 4259 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 4260 g_free(ets); 4261 } 4262 4263 g_free(info->prstatus); 4264 g_free(info->psinfo); 4265 g_free(info->notes); 4266 } 4267 4268 static int write_note_info(struct elf_note_info *info, int fd) 4269 { 4270 struct elf_thread_status *ets; 4271 int i, error = 0; 4272 4273 /* write prstatus, psinfo and auxv for current thread */ 4274 for (i = 0; i < info->numnote; i++) 4275 if ((error = write_note(&info->notes[i], fd)) != 0) 4276 return (error); 4277 4278 /* write prstatus for each thread */ 4279 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 4280 if ((error = write_note(&ets->notes[0], fd)) != 0) 4281 return (error); 4282 } 4283 4284 return (0); 4285 } 4286 4287 /* 4288 * Write out ELF coredump. 4289 * 4290 * See documentation of ELF object file format in: 4291 * http://www.caldera.com/developers/devspecs/gabi41.pdf 4292 * 4293 * Coredump format in linux is following: 4294 * 4295 * 0 +----------------------+ \ 4296 * | ELF header | ET_CORE | 4297 * +----------------------+ | 4298 * | ELF program headers | |--- headers 4299 * | - NOTE section | | 4300 * | - PT_LOAD sections | | 4301 * +----------------------+ / 4302 * | NOTEs: | 4303 * | - NT_PRSTATUS | 4304 * | - NT_PRSINFO | 4305 * | - NT_AUXV | 4306 * +----------------------+ <-- aligned to target page 4307 * | Process memory dump | 4308 * : : 4309 * . . 4310 * : : 4311 * | | 4312 * +----------------------+ 4313 * 4314 * NT_PRSTATUS -> struct elf_prstatus (per thread) 4315 * NT_PRSINFO -> struct elf_prpsinfo 4316 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 4317 * 4318 * Format follows System V format as close as possible. Current 4319 * version limitations are as follows: 4320 * - no floating point registers are dumped 4321 * 4322 * Function returns 0 in case of success, negative errno otherwise. 4323 * 4324 * TODO: make this work also during runtime: it should be 4325 * possible to force coredump from running process and then 4326 * continue processing. For example qemu could set up SIGUSR2 4327 * handler (provided that target process haven't registered 4328 * handler for that) that does the dump when signal is received. 4329 */ 4330 static int elf_core_dump(int signr, const CPUArchState *env) 4331 { 4332 const CPUState *cpu = env_cpu((CPUArchState *)env); 4333 const TaskState *ts = (const TaskState *)cpu->opaque; 4334 struct vm_area_struct *vma = NULL; 4335 g_autofree char *corefile = NULL; 4336 struct elf_note_info info; 4337 struct elfhdr elf; 4338 struct elf_phdr phdr; 4339 struct rlimit dumpsize; 4340 struct mm_struct *mm = NULL; 4341 off_t offset = 0, data_offset = 0; 4342 int segs = 0; 4343 int fd = -1; 4344 4345 init_note_info(&info); 4346 4347 errno = 0; 4348 getrlimit(RLIMIT_CORE, &dumpsize); 4349 if (dumpsize.rlim_cur == 0) 4350 return 0; 4351 4352 corefile = core_dump_filename(ts); 4353 4354 if ((fd = open(corefile, O_WRONLY | O_CREAT, 4355 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 4356 return (-errno); 4357 4358 /* 4359 * Walk through target process memory mappings and 4360 * set up structure containing this information. After 4361 * this point vma_xxx functions can be used. 4362 */ 4363 if ((mm = vma_init()) == NULL) 4364 goto out; 4365 4366 walk_memory_regions(mm, vma_walker); 4367 segs = vma_get_mapping_count(mm); 4368 4369 /* 4370 * Construct valid coredump ELF header. We also 4371 * add one more segment for notes. 4372 */ 4373 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 4374 if (dump_write(fd, &elf, sizeof (elf)) != 0) 4375 goto out; 4376 4377 /* fill in the in-memory version of notes */ 4378 if (fill_note_info(&info, signr, env) < 0) 4379 goto out; 4380 4381 offset += sizeof (elf); /* elf header */ 4382 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 4383 4384 /* write out notes program header */ 4385 fill_elf_note_phdr(&phdr, info.notes_size, offset); 4386 4387 offset += info.notes_size; 4388 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 4389 goto out; 4390 4391 /* 4392 * ELF specification wants data to start at page boundary so 4393 * we align it here. 4394 */ 4395 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 4396 4397 /* 4398 * Write program headers for memory regions mapped in 4399 * the target process. 4400 */ 4401 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 4402 (void) memset(&phdr, 0, sizeof (phdr)); 4403 4404 phdr.p_type = PT_LOAD; 4405 phdr.p_offset = offset; 4406 phdr.p_vaddr = vma->vma_start; 4407 phdr.p_paddr = 0; 4408 phdr.p_filesz = vma_dump_size(vma); 4409 offset += phdr.p_filesz; 4410 phdr.p_memsz = vma->vma_end - vma->vma_start; 4411 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 4412 if (vma->vma_flags & PROT_WRITE) 4413 phdr.p_flags |= PF_W; 4414 if (vma->vma_flags & PROT_EXEC) 4415 phdr.p_flags |= PF_X; 4416 phdr.p_align = ELF_EXEC_PAGESIZE; 4417 4418 bswap_phdr(&phdr, 1); 4419 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { 4420 goto out; 4421 } 4422 } 4423 4424 /* 4425 * Next we write notes just after program headers. No 4426 * alignment needed here. 4427 */ 4428 if (write_note_info(&info, fd) < 0) 4429 goto out; 4430 4431 /* align data to page boundary */ 4432 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 4433 goto out; 4434 4435 /* 4436 * Finally we can dump process memory into corefile as well. 4437 */ 4438 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 4439 abi_ulong addr; 4440 abi_ulong end; 4441 4442 end = vma->vma_start + vma_dump_size(vma); 4443 4444 for (addr = vma->vma_start; addr < end; 4445 addr += TARGET_PAGE_SIZE) { 4446 char page[TARGET_PAGE_SIZE]; 4447 int error; 4448 4449 /* 4450 * Read in page from target process memory and 4451 * write it to coredump file. 4452 */ 4453 error = copy_from_user(page, addr, sizeof (page)); 4454 if (error != 0) { 4455 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 4456 addr); 4457 errno = -error; 4458 goto out; 4459 } 4460 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 4461 goto out; 4462 } 4463 } 4464 4465 out: 4466 free_note_info(&info); 4467 if (mm != NULL) 4468 vma_delete(mm); 4469 (void) close(fd); 4470 4471 if (errno != 0) 4472 return (-errno); 4473 return (0); 4474 } 4475 #endif /* USE_ELF_CORE_DUMP */ 4476 4477 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 4478 { 4479 init_thread(regs, infop); 4480 } 4481