xref: /openbmc/qemu/linux-user/elfload.c (revision deadbb14ba7a9cbdabbd102f7bf470c0baf9f25a)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/prctl.h>
6 #include <sys/resource.h>
7 #include <sys/shm.h>
8 
9 #include "qemu.h"
10 #include "user/tswap-target.h"
11 #include "exec/page-protection.h"
12 #include "user/guest-base.h"
13 #include "user-internals.h"
14 #include "signal-common.h"
15 #include "loader.h"
16 #include "user-mmap.h"
17 #include "disas/disas.h"
18 #include "qemu/bitops.h"
19 #include "qemu/path.h"
20 #include "qemu/queue.h"
21 #include "qemu/guest-random.h"
22 #include "qemu/units.h"
23 #include "qemu/selfmap.h"
24 #include "qemu/lockable.h"
25 #include "qapi/error.h"
26 #include "qemu/error-report.h"
27 #include "target_signal.h"
28 #include "tcg/debuginfo.h"
29 
30 #ifdef TARGET_ARM
31 #include "target/arm/cpu-features.h"
32 #endif
33 
34 #ifdef _ARCH_PPC64
35 #undef ARCH_DLINFO
36 #undef ELF_PLATFORM
37 #undef ELF_HWCAP
38 #undef ELF_HWCAP2
39 #undef ELF_CLASS
40 #undef ELF_DATA
41 #undef ELF_ARCH
42 #endif
43 
44 #ifndef TARGET_ARCH_HAS_SIGTRAMP_PAGE
45 #define TARGET_ARCH_HAS_SIGTRAMP_PAGE 0
46 #endif
47 
48 typedef struct {
49     const uint8_t *image;
50     const uint32_t *relocs;
51     unsigned image_size;
52     unsigned reloc_count;
53     unsigned sigreturn_ofs;
54     unsigned rt_sigreturn_ofs;
55 } VdsoImageInfo;
56 
57 #define ELF_OSABI   ELFOSABI_SYSV
58 
59 /* from personality.h */
60 
61 /*
62  * Flags for bug emulation.
63  *
64  * These occupy the top three bytes.
65  */
66 enum {
67     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
68     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
69                                            descriptors (signal handling) */
70     MMAP_PAGE_ZERO =    0x0100000,
71     ADDR_COMPAT_LAYOUT = 0x0200000,
72     READ_IMPLIES_EXEC = 0x0400000,
73     ADDR_LIMIT_32BIT =  0x0800000,
74     SHORT_INODE =       0x1000000,
75     WHOLE_SECONDS =     0x2000000,
76     STICKY_TIMEOUTS =   0x4000000,
77     ADDR_LIMIT_3GB =    0x8000000,
78 };
79 
80 /*
81  * Personality types.
82  *
83  * These go in the low byte.  Avoid using the top bit, it will
84  * conflict with error returns.
85  */
86 enum {
87     PER_LINUX =         0x0000,
88     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
89     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
90     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
91     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
92     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
93     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
94     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
95     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
96     PER_BSD =           0x0006,
97     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
98     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
99     PER_LINUX32 =       0x0008,
100     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
101     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
102     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
103     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
104     PER_RISCOS =        0x000c,
105     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
106     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
107     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
108     PER_HPUX =          0x0010,
109     PER_MASK =          0x00ff,
110 };
111 
112 /*
113  * Return the base personality without flags.
114  */
115 #define personality(pers)       (pers & PER_MASK)
116 
117 int info_is_fdpic(struct image_info *info)
118 {
119     return info->personality == PER_LINUX_FDPIC;
120 }
121 
122 /* this flag is uneffective under linux too, should be deleted */
123 #ifndef MAP_DENYWRITE
124 #define MAP_DENYWRITE 0
125 #endif
126 
127 /* should probably go in elf.h */
128 #ifndef ELIBBAD
129 #define ELIBBAD 80
130 #endif
131 
132 #if TARGET_BIG_ENDIAN
133 #define ELF_DATA        ELFDATA2MSB
134 #else
135 #define ELF_DATA        ELFDATA2LSB
136 #endif
137 
138 #ifdef TARGET_ABI_MIPSN32
139 typedef abi_ullong      target_elf_greg_t;
140 #define tswapreg(ptr)   tswap64(ptr)
141 #else
142 typedef abi_ulong       target_elf_greg_t;
143 #define tswapreg(ptr)   tswapal(ptr)
144 #endif
145 
146 #ifdef USE_UID16
147 typedef abi_ushort      target_uid_t;
148 typedef abi_ushort      target_gid_t;
149 #else
150 typedef abi_uint        target_uid_t;
151 typedef abi_uint        target_gid_t;
152 #endif
153 typedef abi_int         target_pid_t;
154 
155 #ifdef TARGET_I386
156 
157 #define ELF_HWCAP get_elf_hwcap()
158 
159 static uint32_t get_elf_hwcap(void)
160 {
161     X86CPU *cpu = X86_CPU(thread_cpu);
162 
163     return cpu->env.features[FEAT_1_EDX];
164 }
165 
166 #ifdef TARGET_X86_64
167 #define ELF_CLASS      ELFCLASS64
168 #define ELF_ARCH       EM_X86_64
169 
170 #define ELF_PLATFORM   "x86_64"
171 
172 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
173 {
174     regs->rax = 0;
175     regs->rsp = infop->start_stack;
176     regs->rip = infop->entry;
177 }
178 
179 #define ELF_NREG    27
180 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
181 
182 /*
183  * Note that ELF_NREG should be 29 as there should be place for
184  * TRAPNO and ERR "registers" as well but linux doesn't dump
185  * those.
186  *
187  * See linux kernel: arch/x86/include/asm/elf.h
188  */
189 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
190 {
191     (*regs)[0] = tswapreg(env->regs[15]);
192     (*regs)[1] = tswapreg(env->regs[14]);
193     (*regs)[2] = tswapreg(env->regs[13]);
194     (*regs)[3] = tswapreg(env->regs[12]);
195     (*regs)[4] = tswapreg(env->regs[R_EBP]);
196     (*regs)[5] = tswapreg(env->regs[R_EBX]);
197     (*regs)[6] = tswapreg(env->regs[11]);
198     (*regs)[7] = tswapreg(env->regs[10]);
199     (*regs)[8] = tswapreg(env->regs[9]);
200     (*regs)[9] = tswapreg(env->regs[8]);
201     (*regs)[10] = tswapreg(env->regs[R_EAX]);
202     (*regs)[11] = tswapreg(env->regs[R_ECX]);
203     (*regs)[12] = tswapreg(env->regs[R_EDX]);
204     (*regs)[13] = tswapreg(env->regs[R_ESI]);
205     (*regs)[14] = tswapreg(env->regs[R_EDI]);
206     (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
207     (*regs)[16] = tswapreg(env->eip);
208     (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
209     (*regs)[18] = tswapreg(env->eflags);
210     (*regs)[19] = tswapreg(env->regs[R_ESP]);
211     (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
212     (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
213     (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
214     (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
215     (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
216     (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
217     (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
218 }
219 
220 #if ULONG_MAX > UINT32_MAX
221 #define INIT_GUEST_COMMPAGE
222 static bool init_guest_commpage(void)
223 {
224     /*
225      * The vsyscall page is at a high negative address aka kernel space,
226      * which means that we cannot actually allocate it with target_mmap.
227      * We still should be able to use page_set_flags, unless the user
228      * has specified -R reserved_va, which would trigger an assert().
229      */
230     if (reserved_va != 0 &&
231         TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) {
232         error_report("Cannot allocate vsyscall page");
233         exit(EXIT_FAILURE);
234     }
235     page_set_flags(TARGET_VSYSCALL_PAGE,
236                    TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK,
237                    PAGE_EXEC | PAGE_VALID);
238     return true;
239 }
240 #endif
241 #else
242 
243 /*
244  * This is used to ensure we don't load something for the wrong architecture.
245  */
246 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
247 
248 /*
249  * These are used to set parameters in the core dumps.
250  */
251 #define ELF_CLASS       ELFCLASS32
252 #define ELF_ARCH        EM_386
253 
254 #define ELF_PLATFORM get_elf_platform()
255 #define EXSTACK_DEFAULT true
256 
257 static const char *get_elf_platform(void)
258 {
259     static char elf_platform[] = "i386";
260     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
261     if (family > 6) {
262         family = 6;
263     }
264     if (family >= 3) {
265         elf_platform[1] = '0' + family;
266     }
267     return elf_platform;
268 }
269 
270 static inline void init_thread(struct target_pt_regs *regs,
271                                struct image_info *infop)
272 {
273     regs->esp = infop->start_stack;
274     regs->eip = infop->entry;
275 
276     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
277        starts %edx contains a pointer to a function which might be
278        registered using `atexit'.  This provides a mean for the
279        dynamic linker to call DT_FINI functions for shared libraries
280        that have been loaded before the code runs.
281 
282        A value of 0 tells we have no such handler.  */
283     regs->edx = 0;
284 }
285 
286 #define ELF_NREG    17
287 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
288 
289 /*
290  * Note that ELF_NREG should be 19 as there should be place for
291  * TRAPNO and ERR "registers" as well but linux doesn't dump
292  * those.
293  *
294  * See linux kernel: arch/x86/include/asm/elf.h
295  */
296 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
297 {
298     (*regs)[0] = tswapreg(env->regs[R_EBX]);
299     (*regs)[1] = tswapreg(env->regs[R_ECX]);
300     (*regs)[2] = tswapreg(env->regs[R_EDX]);
301     (*regs)[3] = tswapreg(env->regs[R_ESI]);
302     (*regs)[4] = tswapreg(env->regs[R_EDI]);
303     (*regs)[5] = tswapreg(env->regs[R_EBP]);
304     (*regs)[6] = tswapreg(env->regs[R_EAX]);
305     (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
306     (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
307     (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
308     (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
309     (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
310     (*regs)[12] = tswapreg(env->eip);
311     (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
312     (*regs)[14] = tswapreg(env->eflags);
313     (*regs)[15] = tswapreg(env->regs[R_ESP]);
314     (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
315 }
316 
317 /*
318  * i386 is the only target which supplies AT_SYSINFO for the vdso.
319  * All others only supply AT_SYSINFO_EHDR.
320  */
321 #define DLINFO_ARCH_ITEMS (vdso_info != NULL)
322 #define ARCH_DLINFO                                     \
323     do {                                                \
324         if (vdso_info) {                                \
325             NEW_AUX_ENT(AT_SYSINFO, vdso_info->entry);  \
326         }                                               \
327     } while (0)
328 
329 #endif /* TARGET_X86_64 */
330 
331 #define VDSO_HEADER "vdso.c.inc"
332 
333 #define USE_ELF_CORE_DUMP
334 #define ELF_EXEC_PAGESIZE       4096
335 
336 #endif /* TARGET_I386 */
337 
338 #ifdef TARGET_ARM
339 
340 #ifndef TARGET_AARCH64
341 /* 32 bit ARM definitions */
342 
343 #define ELF_ARCH        EM_ARM
344 #define ELF_CLASS       ELFCLASS32
345 #define EXSTACK_DEFAULT true
346 
347 static inline void init_thread(struct target_pt_regs *regs,
348                                struct image_info *infop)
349 {
350     abi_long stack = infop->start_stack;
351     memset(regs, 0, sizeof(*regs));
352 
353     regs->uregs[16] = ARM_CPU_MODE_USR;
354     if (infop->entry & 1) {
355         regs->uregs[16] |= CPSR_T;
356     }
357     regs->uregs[15] = infop->entry & 0xfffffffe;
358     regs->uregs[13] = infop->start_stack;
359     /* FIXME - what to for failure of get_user()? */
360     get_user_ual(regs->uregs[2], stack + 8); /* envp */
361     get_user_ual(regs->uregs[1], stack + 4); /* envp */
362     /* XXX: it seems that r0 is zeroed after ! */
363     regs->uregs[0] = 0;
364     /* For uClinux PIC binaries.  */
365     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
366     regs->uregs[10] = infop->start_data;
367 
368     /* Support ARM FDPIC.  */
369     if (info_is_fdpic(infop)) {
370         /* As described in the ABI document, r7 points to the loadmap info
371          * prepared by the kernel. If an interpreter is needed, r8 points
372          * to the interpreter loadmap and r9 points to the interpreter
373          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
374          * r9 points to the main program PT_DYNAMIC info.
375          */
376         regs->uregs[7] = infop->loadmap_addr;
377         if (infop->interpreter_loadmap_addr) {
378             /* Executable is dynamically loaded.  */
379             regs->uregs[8] = infop->interpreter_loadmap_addr;
380             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
381         } else {
382             regs->uregs[8] = 0;
383             regs->uregs[9] = infop->pt_dynamic_addr;
384         }
385     }
386 }
387 
388 #define ELF_NREG    18
389 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
390 
391 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
392 {
393     (*regs)[0] = tswapreg(env->regs[0]);
394     (*regs)[1] = tswapreg(env->regs[1]);
395     (*regs)[2] = tswapreg(env->regs[2]);
396     (*regs)[3] = tswapreg(env->regs[3]);
397     (*regs)[4] = tswapreg(env->regs[4]);
398     (*regs)[5] = tswapreg(env->regs[5]);
399     (*regs)[6] = tswapreg(env->regs[6]);
400     (*regs)[7] = tswapreg(env->regs[7]);
401     (*regs)[8] = tswapreg(env->regs[8]);
402     (*regs)[9] = tswapreg(env->regs[9]);
403     (*regs)[10] = tswapreg(env->regs[10]);
404     (*regs)[11] = tswapreg(env->regs[11]);
405     (*regs)[12] = tswapreg(env->regs[12]);
406     (*regs)[13] = tswapreg(env->regs[13]);
407     (*regs)[14] = tswapreg(env->regs[14]);
408     (*regs)[15] = tswapreg(env->regs[15]);
409 
410     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
411     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
412 }
413 
414 #define USE_ELF_CORE_DUMP
415 #define ELF_EXEC_PAGESIZE       4096
416 
417 enum
418 {
419     ARM_HWCAP_ARM_SWP       = 1 << 0,
420     ARM_HWCAP_ARM_HALF      = 1 << 1,
421     ARM_HWCAP_ARM_THUMB     = 1 << 2,
422     ARM_HWCAP_ARM_26BIT     = 1 << 3,
423     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
424     ARM_HWCAP_ARM_FPA       = 1 << 5,
425     ARM_HWCAP_ARM_VFP       = 1 << 6,
426     ARM_HWCAP_ARM_EDSP      = 1 << 7,
427     ARM_HWCAP_ARM_JAVA      = 1 << 8,
428     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
429     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
430     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
431     ARM_HWCAP_ARM_NEON      = 1 << 12,
432     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
433     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
434     ARM_HWCAP_ARM_TLS       = 1 << 15,
435     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
436     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
437     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
438     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
439     ARM_HWCAP_ARM_LPAE      = 1 << 20,
440     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
441     ARM_HWCAP_ARM_FPHP      = 1 << 22,
442     ARM_HWCAP_ARM_ASIMDHP   = 1 << 23,
443     ARM_HWCAP_ARM_ASIMDDP   = 1 << 24,
444     ARM_HWCAP_ARM_ASIMDFHM  = 1 << 25,
445     ARM_HWCAP_ARM_ASIMDBF16 = 1 << 26,
446     ARM_HWCAP_ARM_I8MM      = 1 << 27,
447 };
448 
449 enum {
450     ARM_HWCAP2_ARM_AES      = 1 << 0,
451     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
452     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
453     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
454     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
455     ARM_HWCAP2_ARM_SB       = 1 << 5,
456     ARM_HWCAP2_ARM_SSBS     = 1 << 6,
457 };
458 
459 /* The commpage only exists for 32 bit kernels */
460 
461 #define HI_COMMPAGE (intptr_t)0xffff0f00u
462 
463 static bool init_guest_commpage(void)
464 {
465     ARMCPU *cpu = ARM_CPU(thread_cpu);
466     int host_page_size = qemu_real_host_page_size();
467     abi_ptr commpage;
468     void *want;
469     void *addr;
470 
471     /*
472      * M-profile allocates maximum of 2GB address space, so can never
473      * allocate the commpage.  Skip it.
474      */
475     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
476         return true;
477     }
478 
479     commpage = HI_COMMPAGE & -host_page_size;
480     want = g2h_untagged(commpage);
481     addr = mmap(want, host_page_size, PROT_READ | PROT_WRITE,
482                 MAP_ANONYMOUS | MAP_PRIVATE |
483                 (commpage < reserved_va ? MAP_FIXED : MAP_FIXED_NOREPLACE),
484                 -1, 0);
485 
486     if (addr == MAP_FAILED) {
487         perror("Allocating guest commpage");
488         exit(EXIT_FAILURE);
489     }
490     if (addr != want) {
491         return false;
492     }
493 
494     /* Set kernel helper versions; rest of page is 0.  */
495     __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
496 
497     if (mprotect(addr, host_page_size, PROT_READ)) {
498         perror("Protecting guest commpage");
499         exit(EXIT_FAILURE);
500     }
501 
502     page_set_flags(commpage, commpage | (host_page_size - 1),
503                    PAGE_READ | PAGE_EXEC | PAGE_VALID);
504     return true;
505 }
506 
507 #define ELF_HWCAP get_elf_hwcap()
508 #define ELF_HWCAP2 get_elf_hwcap2()
509 
510 uint32_t get_elf_hwcap(void)
511 {
512     ARMCPU *cpu = ARM_CPU(thread_cpu);
513     uint32_t hwcaps = 0;
514 
515     hwcaps |= ARM_HWCAP_ARM_SWP;
516     hwcaps |= ARM_HWCAP_ARM_HALF;
517     hwcaps |= ARM_HWCAP_ARM_THUMB;
518     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
519 
520     /* probe for the extra features */
521 #define GET_FEATURE(feat, hwcap) \
522     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
523 
524 #define GET_FEATURE_ID(feat, hwcap) \
525     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
526 
527     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
528     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
529     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
530     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
531     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
532     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
533     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
534     GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
535     GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
536     GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
537 
538     if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
539         cpu_isar_feature(aa32_fpdp_v3, cpu)) {
540         hwcaps |= ARM_HWCAP_ARM_VFPv3;
541         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
542             hwcaps |= ARM_HWCAP_ARM_VFPD32;
543         } else {
544             hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
545         }
546     }
547     GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
548     /*
549      * MVFR1.FPHP and .SIMDHP must be in sync, and QEMU uses the same
550      * isar_feature function for both. The kernel reports them as two hwcaps.
551      */
552     GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_FPHP);
553     GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_ASIMDHP);
554     GET_FEATURE_ID(aa32_dp, ARM_HWCAP_ARM_ASIMDDP);
555     GET_FEATURE_ID(aa32_fhm, ARM_HWCAP_ARM_ASIMDFHM);
556     GET_FEATURE_ID(aa32_bf16, ARM_HWCAP_ARM_ASIMDBF16);
557     GET_FEATURE_ID(aa32_i8mm, ARM_HWCAP_ARM_I8MM);
558 
559     return hwcaps;
560 }
561 
562 uint64_t get_elf_hwcap2(void)
563 {
564     ARMCPU *cpu = ARM_CPU(thread_cpu);
565     uint64_t hwcaps = 0;
566 
567     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
568     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
569     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
570     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
571     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
572     GET_FEATURE_ID(aa32_sb, ARM_HWCAP2_ARM_SB);
573     GET_FEATURE_ID(aa32_ssbs, ARM_HWCAP2_ARM_SSBS);
574     return hwcaps;
575 }
576 
577 const char *elf_hwcap_str(uint32_t bit)
578 {
579     static const char *hwcap_str[] = {
580     [__builtin_ctz(ARM_HWCAP_ARM_SWP      )] = "swp",
581     [__builtin_ctz(ARM_HWCAP_ARM_HALF     )] = "half",
582     [__builtin_ctz(ARM_HWCAP_ARM_THUMB    )] = "thumb",
583     [__builtin_ctz(ARM_HWCAP_ARM_26BIT    )] = "26bit",
584     [__builtin_ctz(ARM_HWCAP_ARM_FAST_MULT)] = "fast_mult",
585     [__builtin_ctz(ARM_HWCAP_ARM_FPA      )] = "fpa",
586     [__builtin_ctz(ARM_HWCAP_ARM_VFP      )] = "vfp",
587     [__builtin_ctz(ARM_HWCAP_ARM_EDSP     )] = "edsp",
588     [__builtin_ctz(ARM_HWCAP_ARM_JAVA     )] = "java",
589     [__builtin_ctz(ARM_HWCAP_ARM_IWMMXT   )] = "iwmmxt",
590     [__builtin_ctz(ARM_HWCAP_ARM_CRUNCH   )] = "crunch",
591     [__builtin_ctz(ARM_HWCAP_ARM_THUMBEE  )] = "thumbee",
592     [__builtin_ctz(ARM_HWCAP_ARM_NEON     )] = "neon",
593     [__builtin_ctz(ARM_HWCAP_ARM_VFPv3    )] = "vfpv3",
594     [__builtin_ctz(ARM_HWCAP_ARM_VFPv3D16 )] = "vfpv3d16",
595     [__builtin_ctz(ARM_HWCAP_ARM_TLS      )] = "tls",
596     [__builtin_ctz(ARM_HWCAP_ARM_VFPv4    )] = "vfpv4",
597     [__builtin_ctz(ARM_HWCAP_ARM_IDIVA    )] = "idiva",
598     [__builtin_ctz(ARM_HWCAP_ARM_IDIVT    )] = "idivt",
599     [__builtin_ctz(ARM_HWCAP_ARM_VFPD32   )] = "vfpd32",
600     [__builtin_ctz(ARM_HWCAP_ARM_LPAE     )] = "lpae",
601     [__builtin_ctz(ARM_HWCAP_ARM_EVTSTRM  )] = "evtstrm",
602     [__builtin_ctz(ARM_HWCAP_ARM_FPHP     )] = "fphp",
603     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDHP  )] = "asimdhp",
604     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDDP  )] = "asimddp",
605     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDFHM )] = "asimdfhm",
606     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDBF16)] = "asimdbf16",
607     [__builtin_ctz(ARM_HWCAP_ARM_I8MM     )] = "i8mm",
608     };
609 
610     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
611 }
612 
613 const char *elf_hwcap2_str(uint32_t bit)
614 {
615     static const char *hwcap_str[] = {
616     [__builtin_ctz(ARM_HWCAP2_ARM_AES  )] = "aes",
617     [__builtin_ctz(ARM_HWCAP2_ARM_PMULL)] = "pmull",
618     [__builtin_ctz(ARM_HWCAP2_ARM_SHA1 )] = "sha1",
619     [__builtin_ctz(ARM_HWCAP2_ARM_SHA2 )] = "sha2",
620     [__builtin_ctz(ARM_HWCAP2_ARM_CRC32)] = "crc32",
621     [__builtin_ctz(ARM_HWCAP2_ARM_SB   )] = "sb",
622     [__builtin_ctz(ARM_HWCAP2_ARM_SSBS )] = "ssbs",
623     };
624 
625     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
626 }
627 
628 #undef GET_FEATURE
629 #undef GET_FEATURE_ID
630 
631 #define ELF_PLATFORM get_elf_platform()
632 
633 static const char *get_elf_platform(void)
634 {
635     CPUARMState *env = cpu_env(thread_cpu);
636 
637 #if TARGET_BIG_ENDIAN
638 # define END  "b"
639 #else
640 # define END  "l"
641 #endif
642 
643     if (arm_feature(env, ARM_FEATURE_V8)) {
644         return "v8" END;
645     } else if (arm_feature(env, ARM_FEATURE_V7)) {
646         if (arm_feature(env, ARM_FEATURE_M)) {
647             return "v7m" END;
648         } else {
649             return "v7" END;
650         }
651     } else if (arm_feature(env, ARM_FEATURE_V6)) {
652         return "v6" END;
653     } else if (arm_feature(env, ARM_FEATURE_V5)) {
654         return "v5" END;
655     } else {
656         return "v4" END;
657     }
658 
659 #undef END
660 }
661 
662 #else
663 /* 64 bit ARM definitions */
664 
665 #define ELF_ARCH        EM_AARCH64
666 #define ELF_CLASS       ELFCLASS64
667 #if TARGET_BIG_ENDIAN
668 # define ELF_PLATFORM    "aarch64_be"
669 #else
670 # define ELF_PLATFORM    "aarch64"
671 #endif
672 
673 static inline void init_thread(struct target_pt_regs *regs,
674                                struct image_info *infop)
675 {
676     abi_long stack = infop->start_stack;
677     memset(regs, 0, sizeof(*regs));
678 
679     regs->pc = infop->entry & ~0x3ULL;
680     regs->sp = stack;
681 }
682 
683 #define ELF_NREG    34
684 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
685 
686 static void elf_core_copy_regs(target_elf_gregset_t *regs,
687                                const CPUARMState *env)
688 {
689     int i;
690 
691     for (i = 0; i < 32; i++) {
692         (*regs)[i] = tswapreg(env->xregs[i]);
693     }
694     (*regs)[32] = tswapreg(env->pc);
695     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
696 }
697 
698 #define USE_ELF_CORE_DUMP
699 #define ELF_EXEC_PAGESIZE       4096
700 
701 enum {
702     ARM_HWCAP_A64_FP            = 1 << 0,
703     ARM_HWCAP_A64_ASIMD         = 1 << 1,
704     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
705     ARM_HWCAP_A64_AES           = 1 << 3,
706     ARM_HWCAP_A64_PMULL         = 1 << 4,
707     ARM_HWCAP_A64_SHA1          = 1 << 5,
708     ARM_HWCAP_A64_SHA2          = 1 << 6,
709     ARM_HWCAP_A64_CRC32         = 1 << 7,
710     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
711     ARM_HWCAP_A64_FPHP          = 1 << 9,
712     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
713     ARM_HWCAP_A64_CPUID         = 1 << 11,
714     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
715     ARM_HWCAP_A64_JSCVT         = 1 << 13,
716     ARM_HWCAP_A64_FCMA          = 1 << 14,
717     ARM_HWCAP_A64_LRCPC         = 1 << 15,
718     ARM_HWCAP_A64_DCPOP         = 1 << 16,
719     ARM_HWCAP_A64_SHA3          = 1 << 17,
720     ARM_HWCAP_A64_SM3           = 1 << 18,
721     ARM_HWCAP_A64_SM4           = 1 << 19,
722     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
723     ARM_HWCAP_A64_SHA512        = 1 << 21,
724     ARM_HWCAP_A64_SVE           = 1 << 22,
725     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
726     ARM_HWCAP_A64_DIT           = 1 << 24,
727     ARM_HWCAP_A64_USCAT         = 1 << 25,
728     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
729     ARM_HWCAP_A64_FLAGM         = 1 << 27,
730     ARM_HWCAP_A64_SSBS          = 1 << 28,
731     ARM_HWCAP_A64_SB            = 1 << 29,
732     ARM_HWCAP_A64_PACA          = 1 << 30,
733     ARM_HWCAP_A64_PACG          = 1UL << 31,
734 
735     ARM_HWCAP2_A64_DCPODP       = 1 << 0,
736     ARM_HWCAP2_A64_SVE2         = 1 << 1,
737     ARM_HWCAP2_A64_SVEAES       = 1 << 2,
738     ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
739     ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
740     ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
741     ARM_HWCAP2_A64_SVESM4       = 1 << 6,
742     ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
743     ARM_HWCAP2_A64_FRINT        = 1 << 8,
744     ARM_HWCAP2_A64_SVEI8MM      = 1 << 9,
745     ARM_HWCAP2_A64_SVEF32MM     = 1 << 10,
746     ARM_HWCAP2_A64_SVEF64MM     = 1 << 11,
747     ARM_HWCAP2_A64_SVEBF16      = 1 << 12,
748     ARM_HWCAP2_A64_I8MM         = 1 << 13,
749     ARM_HWCAP2_A64_BF16         = 1 << 14,
750     ARM_HWCAP2_A64_DGH          = 1 << 15,
751     ARM_HWCAP2_A64_RNG          = 1 << 16,
752     ARM_HWCAP2_A64_BTI          = 1 << 17,
753     ARM_HWCAP2_A64_MTE          = 1 << 18,
754     ARM_HWCAP2_A64_ECV          = 1 << 19,
755     ARM_HWCAP2_A64_AFP          = 1 << 20,
756     ARM_HWCAP2_A64_RPRES        = 1 << 21,
757     ARM_HWCAP2_A64_MTE3         = 1 << 22,
758     ARM_HWCAP2_A64_SME          = 1 << 23,
759     ARM_HWCAP2_A64_SME_I16I64   = 1 << 24,
760     ARM_HWCAP2_A64_SME_F64F64   = 1 << 25,
761     ARM_HWCAP2_A64_SME_I8I32    = 1 << 26,
762     ARM_HWCAP2_A64_SME_F16F32   = 1 << 27,
763     ARM_HWCAP2_A64_SME_B16F32   = 1 << 28,
764     ARM_HWCAP2_A64_SME_F32F32   = 1 << 29,
765     ARM_HWCAP2_A64_SME_FA64     = 1 << 30,
766     ARM_HWCAP2_A64_WFXT         = 1ULL << 31,
767     ARM_HWCAP2_A64_EBF16        = 1ULL << 32,
768     ARM_HWCAP2_A64_SVE_EBF16    = 1ULL << 33,
769     ARM_HWCAP2_A64_CSSC         = 1ULL << 34,
770     ARM_HWCAP2_A64_RPRFM        = 1ULL << 35,
771     ARM_HWCAP2_A64_SVE2P1       = 1ULL << 36,
772     ARM_HWCAP2_A64_SME2         = 1ULL << 37,
773     ARM_HWCAP2_A64_SME2P1       = 1ULL << 38,
774     ARM_HWCAP2_A64_SME_I16I32   = 1ULL << 39,
775     ARM_HWCAP2_A64_SME_BI32I32  = 1ULL << 40,
776     ARM_HWCAP2_A64_SME_B16B16   = 1ULL << 41,
777     ARM_HWCAP2_A64_SME_F16F16   = 1ULL << 42,
778     ARM_HWCAP2_A64_MOPS         = 1ULL << 43,
779     ARM_HWCAP2_A64_HBC          = 1ULL << 44,
780 };
781 
782 #define ELF_HWCAP   get_elf_hwcap()
783 #define ELF_HWCAP2  get_elf_hwcap2()
784 
785 #define GET_FEATURE_ID(feat, hwcap) \
786     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
787 
788 uint32_t get_elf_hwcap(void)
789 {
790     ARMCPU *cpu = ARM_CPU(thread_cpu);
791     uint32_t hwcaps = 0;
792 
793     hwcaps |= ARM_HWCAP_A64_FP;
794     hwcaps |= ARM_HWCAP_A64_ASIMD;
795     hwcaps |= ARM_HWCAP_A64_CPUID;
796 
797     /* probe for the extra features */
798 
799     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
800     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
801     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
802     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
803     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
804     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
805     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
806     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
807     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
808     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
809     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
810     GET_FEATURE_ID(aa64_lse2, ARM_HWCAP_A64_USCAT);
811     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
812     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
813     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
814     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
815     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
816     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
817     GET_FEATURE_ID(aa64_dit, ARM_HWCAP_A64_DIT);
818     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
819     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
820     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
821     GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
822     GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
823     GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
824 
825     return hwcaps;
826 }
827 
828 uint64_t get_elf_hwcap2(void)
829 {
830     ARMCPU *cpu = ARM_CPU(thread_cpu);
831     uint64_t hwcaps = 0;
832 
833     GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
834     GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
835     GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
836     GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
837     GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
838     GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
839     GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
840     GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
841     GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
842     GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
843     GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
844     GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
845     GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
846     GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
847     GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
848     GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
849     GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
850     GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
851     GET_FEATURE_ID(aa64_mte3, ARM_HWCAP2_A64_MTE3);
852     GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME |
853                               ARM_HWCAP2_A64_SME_F32F32 |
854                               ARM_HWCAP2_A64_SME_B16F32 |
855                               ARM_HWCAP2_A64_SME_F16F32 |
856                               ARM_HWCAP2_A64_SME_I8I32));
857     GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64);
858     GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64);
859     GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64);
860     GET_FEATURE_ID(aa64_hbc, ARM_HWCAP2_A64_HBC);
861     GET_FEATURE_ID(aa64_mops, ARM_HWCAP2_A64_MOPS);
862 
863     return hwcaps;
864 }
865 
866 const char *elf_hwcap_str(uint32_t bit)
867 {
868     static const char *hwcap_str[] = {
869     [__builtin_ctz(ARM_HWCAP_A64_FP      )] = "fp",
870     [__builtin_ctz(ARM_HWCAP_A64_ASIMD   )] = "asimd",
871     [__builtin_ctz(ARM_HWCAP_A64_EVTSTRM )] = "evtstrm",
872     [__builtin_ctz(ARM_HWCAP_A64_AES     )] = "aes",
873     [__builtin_ctz(ARM_HWCAP_A64_PMULL   )] = "pmull",
874     [__builtin_ctz(ARM_HWCAP_A64_SHA1    )] = "sha1",
875     [__builtin_ctz(ARM_HWCAP_A64_SHA2    )] = "sha2",
876     [__builtin_ctz(ARM_HWCAP_A64_CRC32   )] = "crc32",
877     [__builtin_ctz(ARM_HWCAP_A64_ATOMICS )] = "atomics",
878     [__builtin_ctz(ARM_HWCAP_A64_FPHP    )] = "fphp",
879     [__builtin_ctz(ARM_HWCAP_A64_ASIMDHP )] = "asimdhp",
880     [__builtin_ctz(ARM_HWCAP_A64_CPUID   )] = "cpuid",
881     [__builtin_ctz(ARM_HWCAP_A64_ASIMDRDM)] = "asimdrdm",
882     [__builtin_ctz(ARM_HWCAP_A64_JSCVT   )] = "jscvt",
883     [__builtin_ctz(ARM_HWCAP_A64_FCMA    )] = "fcma",
884     [__builtin_ctz(ARM_HWCAP_A64_LRCPC   )] = "lrcpc",
885     [__builtin_ctz(ARM_HWCAP_A64_DCPOP   )] = "dcpop",
886     [__builtin_ctz(ARM_HWCAP_A64_SHA3    )] = "sha3",
887     [__builtin_ctz(ARM_HWCAP_A64_SM3     )] = "sm3",
888     [__builtin_ctz(ARM_HWCAP_A64_SM4     )] = "sm4",
889     [__builtin_ctz(ARM_HWCAP_A64_ASIMDDP )] = "asimddp",
890     [__builtin_ctz(ARM_HWCAP_A64_SHA512  )] = "sha512",
891     [__builtin_ctz(ARM_HWCAP_A64_SVE     )] = "sve",
892     [__builtin_ctz(ARM_HWCAP_A64_ASIMDFHM)] = "asimdfhm",
893     [__builtin_ctz(ARM_HWCAP_A64_DIT     )] = "dit",
894     [__builtin_ctz(ARM_HWCAP_A64_USCAT   )] = "uscat",
895     [__builtin_ctz(ARM_HWCAP_A64_ILRCPC  )] = "ilrcpc",
896     [__builtin_ctz(ARM_HWCAP_A64_FLAGM   )] = "flagm",
897     [__builtin_ctz(ARM_HWCAP_A64_SSBS    )] = "ssbs",
898     [__builtin_ctz(ARM_HWCAP_A64_SB      )] = "sb",
899     [__builtin_ctz(ARM_HWCAP_A64_PACA    )] = "paca",
900     [__builtin_ctz(ARM_HWCAP_A64_PACG    )] = "pacg",
901     };
902 
903     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
904 }
905 
906 const char *elf_hwcap2_str(uint32_t bit)
907 {
908     static const char *hwcap_str[] = {
909     [__builtin_ctz(ARM_HWCAP2_A64_DCPODP       )] = "dcpodp",
910     [__builtin_ctz(ARM_HWCAP2_A64_SVE2         )] = "sve2",
911     [__builtin_ctz(ARM_HWCAP2_A64_SVEAES       )] = "sveaes",
912     [__builtin_ctz(ARM_HWCAP2_A64_SVEPMULL     )] = "svepmull",
913     [__builtin_ctz(ARM_HWCAP2_A64_SVEBITPERM   )] = "svebitperm",
914     [__builtin_ctz(ARM_HWCAP2_A64_SVESHA3      )] = "svesha3",
915     [__builtin_ctz(ARM_HWCAP2_A64_SVESM4       )] = "svesm4",
916     [__builtin_ctz(ARM_HWCAP2_A64_FLAGM2       )] = "flagm2",
917     [__builtin_ctz(ARM_HWCAP2_A64_FRINT        )] = "frint",
918     [__builtin_ctz(ARM_HWCAP2_A64_SVEI8MM      )] = "svei8mm",
919     [__builtin_ctz(ARM_HWCAP2_A64_SVEF32MM     )] = "svef32mm",
920     [__builtin_ctz(ARM_HWCAP2_A64_SVEF64MM     )] = "svef64mm",
921     [__builtin_ctz(ARM_HWCAP2_A64_SVEBF16      )] = "svebf16",
922     [__builtin_ctz(ARM_HWCAP2_A64_I8MM         )] = "i8mm",
923     [__builtin_ctz(ARM_HWCAP2_A64_BF16         )] = "bf16",
924     [__builtin_ctz(ARM_HWCAP2_A64_DGH          )] = "dgh",
925     [__builtin_ctz(ARM_HWCAP2_A64_RNG          )] = "rng",
926     [__builtin_ctz(ARM_HWCAP2_A64_BTI          )] = "bti",
927     [__builtin_ctz(ARM_HWCAP2_A64_MTE          )] = "mte",
928     [__builtin_ctz(ARM_HWCAP2_A64_ECV          )] = "ecv",
929     [__builtin_ctz(ARM_HWCAP2_A64_AFP          )] = "afp",
930     [__builtin_ctz(ARM_HWCAP2_A64_RPRES        )] = "rpres",
931     [__builtin_ctz(ARM_HWCAP2_A64_MTE3         )] = "mte3",
932     [__builtin_ctz(ARM_HWCAP2_A64_SME          )] = "sme",
933     [__builtin_ctz(ARM_HWCAP2_A64_SME_I16I64   )] = "smei16i64",
934     [__builtin_ctz(ARM_HWCAP2_A64_SME_F64F64   )] = "smef64f64",
935     [__builtin_ctz(ARM_HWCAP2_A64_SME_I8I32    )] = "smei8i32",
936     [__builtin_ctz(ARM_HWCAP2_A64_SME_F16F32   )] = "smef16f32",
937     [__builtin_ctz(ARM_HWCAP2_A64_SME_B16F32   )] = "smeb16f32",
938     [__builtin_ctz(ARM_HWCAP2_A64_SME_F32F32   )] = "smef32f32",
939     [__builtin_ctz(ARM_HWCAP2_A64_SME_FA64     )] = "smefa64",
940     [__builtin_ctz(ARM_HWCAP2_A64_WFXT         )] = "wfxt",
941     [__builtin_ctzll(ARM_HWCAP2_A64_EBF16      )] = "ebf16",
942     [__builtin_ctzll(ARM_HWCAP2_A64_SVE_EBF16  )] = "sveebf16",
943     [__builtin_ctzll(ARM_HWCAP2_A64_CSSC       )] = "cssc",
944     [__builtin_ctzll(ARM_HWCAP2_A64_RPRFM      )] = "rprfm",
945     [__builtin_ctzll(ARM_HWCAP2_A64_SVE2P1     )] = "sve2p1",
946     [__builtin_ctzll(ARM_HWCAP2_A64_SME2       )] = "sme2",
947     [__builtin_ctzll(ARM_HWCAP2_A64_SME2P1     )] = "sme2p1",
948     [__builtin_ctzll(ARM_HWCAP2_A64_SME_I16I32 )] = "smei16i32",
949     [__builtin_ctzll(ARM_HWCAP2_A64_SME_BI32I32)] = "smebi32i32",
950     [__builtin_ctzll(ARM_HWCAP2_A64_SME_B16B16 )] = "smeb16b16",
951     [__builtin_ctzll(ARM_HWCAP2_A64_SME_F16F16 )] = "smef16f16",
952     [__builtin_ctzll(ARM_HWCAP2_A64_MOPS       )] = "mops",
953     [__builtin_ctzll(ARM_HWCAP2_A64_HBC        )] = "hbc",
954     };
955 
956     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
957 }
958 
959 #undef GET_FEATURE_ID
960 
961 #endif /* not TARGET_AARCH64 */
962 
963 #if TARGET_BIG_ENDIAN
964 # define VDSO_HEADER  "vdso-be.c.inc"
965 #else
966 # define VDSO_HEADER  "vdso-le.c.inc"
967 #endif
968 
969 #endif /* TARGET_ARM */
970 
971 #ifdef TARGET_SPARC
972 
973 #ifndef TARGET_SPARC64
974 # define ELF_CLASS  ELFCLASS32
975 # define ELF_ARCH   EM_SPARC
976 #elif defined(TARGET_ABI32)
977 # define ELF_CLASS  ELFCLASS32
978 # define elf_check_arch(x) ((x) == EM_SPARC32PLUS || (x) == EM_SPARC)
979 #else
980 # define ELF_CLASS  ELFCLASS64
981 # define ELF_ARCH   EM_SPARCV9
982 #endif
983 
984 #include "elf.h"
985 
986 #define ELF_HWCAP get_elf_hwcap()
987 
988 static uint32_t get_elf_hwcap(void)
989 {
990     /* There are not many sparc32 hwcap bits -- we have all of them. */
991     uint32_t r = HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR |
992                  HWCAP_SPARC_SWAP | HWCAP_SPARC_MULDIV;
993 
994 #ifdef TARGET_SPARC64
995     CPUSPARCState *env = cpu_env(thread_cpu);
996     uint32_t features = env->def.features;
997 
998     r |= HWCAP_SPARC_V9 | HWCAP_SPARC_V8PLUS;
999     /* 32x32 multiply and divide are efficient. */
1000     r |= HWCAP_SPARC_MUL32 | HWCAP_SPARC_DIV32;
1001     /* We don't have an internal feature bit for this. */
1002     r |= HWCAP_SPARC_POPC;
1003     r |= features & CPU_FEATURE_FSMULD ? HWCAP_SPARC_FSMULD : 0;
1004     r |= features & CPU_FEATURE_VIS1 ? HWCAP_SPARC_VIS : 0;
1005     r |= features & CPU_FEATURE_VIS2 ? HWCAP_SPARC_VIS2 : 0;
1006     r |= features & CPU_FEATURE_FMAF ? HWCAP_SPARC_FMAF : 0;
1007     r |= features & CPU_FEATURE_VIS3 ? HWCAP_SPARC_VIS3 : 0;
1008 #endif
1009 
1010     return r;
1011 }
1012 
1013 static inline void init_thread(struct target_pt_regs *regs,
1014                                struct image_info *infop)
1015 {
1016     /* Note that target_cpu_copy_regs does not read psr/tstate. */
1017     regs->pc = infop->entry;
1018     regs->npc = regs->pc + 4;
1019     regs->y = 0;
1020     regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
1021                         - TARGET_STACK_BIAS);
1022 }
1023 #endif /* TARGET_SPARC */
1024 
1025 #ifdef TARGET_PPC
1026 
1027 #define ELF_MACHINE    PPC_ELF_MACHINE
1028 
1029 #if defined(TARGET_PPC64)
1030 
1031 #define elf_check_arch(x) ( (x) == EM_PPC64 )
1032 
1033 #define ELF_CLASS       ELFCLASS64
1034 
1035 #else
1036 
1037 #define ELF_CLASS       ELFCLASS32
1038 #define EXSTACK_DEFAULT true
1039 
1040 #endif
1041 
1042 #define ELF_ARCH        EM_PPC
1043 
1044 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
1045    See arch/powerpc/include/asm/cputable.h.  */
1046 enum {
1047     QEMU_PPC_FEATURE_32 = 0x80000000,
1048     QEMU_PPC_FEATURE_64 = 0x40000000,
1049     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
1050     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
1051     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
1052     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
1053     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
1054     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
1055     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
1056     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
1057     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
1058     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
1059     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
1060     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
1061     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
1062     QEMU_PPC_FEATURE_CELL = 0x00010000,
1063     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
1064     QEMU_PPC_FEATURE_SMT = 0x00004000,
1065     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
1066     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
1067     QEMU_PPC_FEATURE_PA6T = 0x00000800,
1068     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
1069     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
1070     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
1071     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
1072     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
1073 
1074     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
1075     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
1076 
1077     /* Feature definitions in AT_HWCAP2.  */
1078     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
1079     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
1080     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
1081     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
1082     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
1083     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
1084     QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
1085     QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
1086     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
1087     QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
1088     QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
1089     QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
1090     QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
1091     QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */
1092     QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */
1093 };
1094 
1095 #define ELF_HWCAP get_elf_hwcap()
1096 
1097 static uint32_t get_elf_hwcap(void)
1098 {
1099     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
1100     uint32_t features = 0;
1101 
1102     /* We don't have to be terribly complete here; the high points are
1103        Altivec/FP/SPE support.  Anything else is just a bonus.  */
1104 #define GET_FEATURE(flag, feature)                                      \
1105     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
1106 #define GET_FEATURE2(flags, feature) \
1107     do { \
1108         if ((cpu->env.insns_flags2 & flags) == flags) { \
1109             features |= feature; \
1110         } \
1111     } while (0)
1112     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
1113     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
1114     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
1115     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
1116     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
1117     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
1118     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
1119     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
1120     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
1121     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
1122     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
1123                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
1124                   QEMU_PPC_FEATURE_ARCH_2_06);
1125 #undef GET_FEATURE
1126 #undef GET_FEATURE2
1127 
1128     return features;
1129 }
1130 
1131 #define ELF_HWCAP2 get_elf_hwcap2()
1132 
1133 static uint32_t get_elf_hwcap2(void)
1134 {
1135     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
1136     uint32_t features = 0;
1137 
1138 #define GET_FEATURE(flag, feature)                                      \
1139     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
1140 #define GET_FEATURE2(flag, feature)                                      \
1141     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
1142 
1143     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
1144     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
1145     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
1146                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
1147                   QEMU_PPC_FEATURE2_VEC_CRYPTO);
1148     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
1149                  QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
1150     GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 |
1151                  QEMU_PPC_FEATURE2_MMA);
1152 
1153 #undef GET_FEATURE
1154 #undef GET_FEATURE2
1155 
1156     return features;
1157 }
1158 
1159 /*
1160  * The requirements here are:
1161  * - keep the final alignment of sp (sp & 0xf)
1162  * - make sure the 32-bit value at the first 16 byte aligned position of
1163  *   AUXV is greater than 16 for glibc compatibility.
1164  *   AT_IGNOREPPC is used for that.
1165  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
1166  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
1167  */
1168 #define DLINFO_ARCH_ITEMS       5
1169 #define ARCH_DLINFO                                     \
1170     do {                                                \
1171         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
1172         /*                                              \
1173          * Handle glibc compatibility: these magic entries must \
1174          * be at the lowest addresses in the final auxv.        \
1175          */                                             \
1176         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
1177         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
1178         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
1179         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
1180         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
1181     } while (0)
1182 
1183 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
1184 {
1185     _regs->gpr[1] = infop->start_stack;
1186 #if defined(TARGET_PPC64)
1187     if (get_ppc64_abi(infop) < 2) {
1188         uint64_t val;
1189         get_user_u64(val, infop->entry + 8);
1190         _regs->gpr[2] = val + infop->load_bias;
1191         get_user_u64(val, infop->entry);
1192         infop->entry = val + infop->load_bias;
1193     } else {
1194         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
1195     }
1196 #endif
1197     _regs->nip = infop->entry;
1198 }
1199 
1200 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
1201 #define ELF_NREG 48
1202 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1203 
1204 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
1205 {
1206     int i;
1207     target_ulong ccr = 0;
1208 
1209     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
1210         (*regs)[i] = tswapreg(env->gpr[i]);
1211     }
1212 
1213     (*regs)[32] = tswapreg(env->nip);
1214     (*regs)[33] = tswapreg(env->msr);
1215     (*regs)[35] = tswapreg(env->ctr);
1216     (*regs)[36] = tswapreg(env->lr);
1217     (*regs)[37] = tswapreg(cpu_read_xer(env));
1218 
1219     ccr = ppc_get_cr(env);
1220     (*regs)[38] = tswapreg(ccr);
1221 }
1222 
1223 #define USE_ELF_CORE_DUMP
1224 #define ELF_EXEC_PAGESIZE       4096
1225 
1226 #ifndef TARGET_PPC64
1227 # define VDSO_HEADER  "vdso-32.c.inc"
1228 #elif TARGET_BIG_ENDIAN
1229 # define VDSO_HEADER  "vdso-64.c.inc"
1230 #else
1231 # define VDSO_HEADER  "vdso-64le.c.inc"
1232 #endif
1233 
1234 #endif
1235 
1236 #ifdef TARGET_LOONGARCH64
1237 
1238 #define ELF_CLASS   ELFCLASS64
1239 #define ELF_ARCH    EM_LOONGARCH
1240 #define EXSTACK_DEFAULT true
1241 
1242 #define elf_check_arch(x) ((x) == EM_LOONGARCH)
1243 
1244 #define VDSO_HEADER "vdso.c.inc"
1245 
1246 static inline void init_thread(struct target_pt_regs *regs,
1247                                struct image_info *infop)
1248 {
1249     /*Set crmd PG,DA = 1,0 */
1250     regs->csr.crmd = 2 << 3;
1251     regs->csr.era = infop->entry;
1252     regs->regs[3] = infop->start_stack;
1253 }
1254 
1255 /* See linux kernel: arch/loongarch/include/asm/elf.h */
1256 #define ELF_NREG 45
1257 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1258 
1259 enum {
1260     TARGET_EF_R0 = 0,
1261     TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33,
1262     TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34,
1263 };
1264 
1265 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1266                                const CPULoongArchState *env)
1267 {
1268     int i;
1269 
1270     (*regs)[TARGET_EF_R0] = 0;
1271 
1272     for (i = 1; i < ARRAY_SIZE(env->gpr); i++) {
1273         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]);
1274     }
1275 
1276     (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc);
1277     (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV);
1278 }
1279 
1280 #define USE_ELF_CORE_DUMP
1281 #define ELF_EXEC_PAGESIZE        4096
1282 
1283 #define ELF_HWCAP get_elf_hwcap()
1284 
1285 /* See arch/loongarch/include/uapi/asm/hwcap.h */
1286 enum {
1287     HWCAP_LOONGARCH_CPUCFG   = (1 << 0),
1288     HWCAP_LOONGARCH_LAM      = (1 << 1),
1289     HWCAP_LOONGARCH_UAL      = (1 << 2),
1290     HWCAP_LOONGARCH_FPU      = (1 << 3),
1291     HWCAP_LOONGARCH_LSX      = (1 << 4),
1292     HWCAP_LOONGARCH_LASX     = (1 << 5),
1293     HWCAP_LOONGARCH_CRC32    = (1 << 6),
1294     HWCAP_LOONGARCH_COMPLEX  = (1 << 7),
1295     HWCAP_LOONGARCH_CRYPTO   = (1 << 8),
1296     HWCAP_LOONGARCH_LVZ      = (1 << 9),
1297     HWCAP_LOONGARCH_LBT_X86  = (1 << 10),
1298     HWCAP_LOONGARCH_LBT_ARM  = (1 << 11),
1299     HWCAP_LOONGARCH_LBT_MIPS = (1 << 12),
1300 };
1301 
1302 static uint32_t get_elf_hwcap(void)
1303 {
1304     LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu);
1305     uint32_t hwcaps = 0;
1306 
1307     hwcaps |= HWCAP_LOONGARCH_CRC32;
1308 
1309     if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) {
1310         hwcaps |= HWCAP_LOONGARCH_UAL;
1311     }
1312 
1313     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) {
1314         hwcaps |= HWCAP_LOONGARCH_FPU;
1315     }
1316 
1317     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) {
1318         hwcaps |= HWCAP_LOONGARCH_LAM;
1319     }
1320 
1321     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LSX)) {
1322         hwcaps |= HWCAP_LOONGARCH_LSX;
1323     }
1324 
1325     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LASX)) {
1326         hwcaps |= HWCAP_LOONGARCH_LASX;
1327     }
1328 
1329     return hwcaps;
1330 }
1331 
1332 #define ELF_PLATFORM "loongarch"
1333 
1334 #endif /* TARGET_LOONGARCH64 */
1335 
1336 #ifdef TARGET_MIPS
1337 
1338 #ifdef TARGET_MIPS64
1339 #define ELF_CLASS   ELFCLASS64
1340 #else
1341 #define ELF_CLASS   ELFCLASS32
1342 #endif
1343 #define ELF_ARCH    EM_MIPS
1344 #define EXSTACK_DEFAULT true
1345 
1346 #ifdef TARGET_ABI_MIPSN32
1347 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
1348 #else
1349 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
1350 #endif
1351 
1352 #define ELF_BASE_PLATFORM get_elf_base_platform()
1353 
1354 #define MATCH_PLATFORM_INSN(_flags, _base_platform)      \
1355     do { if ((cpu->env.insn_flags & (_flags)) == _flags) \
1356     { return _base_platform; } } while (0)
1357 
1358 static const char *get_elf_base_platform(void)
1359 {
1360     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1361 
1362     /* 64 bit ISAs goes first */
1363     MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6");
1364     MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5");
1365     MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2");
1366     MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64");
1367     MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5");
1368     MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4");
1369     MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3");
1370 
1371     /* 32 bit ISAs */
1372     MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6");
1373     MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5");
1374     MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2");
1375     MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32");
1376     MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2");
1377 
1378     /* Fallback */
1379     return "mips";
1380 }
1381 #undef MATCH_PLATFORM_INSN
1382 
1383 static inline void init_thread(struct target_pt_regs *regs,
1384                                struct image_info *infop)
1385 {
1386     regs->cp0_status = 2 << CP0St_KSU;
1387     regs->cp0_epc = infop->entry;
1388     regs->regs[29] = infop->start_stack;
1389 }
1390 
1391 /* See linux kernel: arch/mips/include/asm/elf.h.  */
1392 #define ELF_NREG 45
1393 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1394 
1395 /* See linux kernel: arch/mips/include/asm/reg.h.  */
1396 enum {
1397 #ifdef TARGET_MIPS64
1398     TARGET_EF_R0 = 0,
1399 #else
1400     TARGET_EF_R0 = 6,
1401 #endif
1402     TARGET_EF_R26 = TARGET_EF_R0 + 26,
1403     TARGET_EF_R27 = TARGET_EF_R0 + 27,
1404     TARGET_EF_LO = TARGET_EF_R0 + 32,
1405     TARGET_EF_HI = TARGET_EF_R0 + 33,
1406     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
1407     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
1408     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
1409     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
1410 };
1411 
1412 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1413 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
1414 {
1415     int i;
1416 
1417     for (i = 0; i < TARGET_EF_R0; i++) {
1418         (*regs)[i] = 0;
1419     }
1420     (*regs)[TARGET_EF_R0] = 0;
1421 
1422     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
1423         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
1424     }
1425 
1426     (*regs)[TARGET_EF_R26] = 0;
1427     (*regs)[TARGET_EF_R27] = 0;
1428     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
1429     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
1430     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
1431     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
1432     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
1433     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
1434 }
1435 
1436 #define USE_ELF_CORE_DUMP
1437 #define ELF_EXEC_PAGESIZE        4096
1438 
1439 /* See arch/mips/include/uapi/asm/hwcap.h.  */
1440 enum {
1441     HWCAP_MIPS_R6           = (1 << 0),
1442     HWCAP_MIPS_MSA          = (1 << 1),
1443     HWCAP_MIPS_CRC32        = (1 << 2),
1444     HWCAP_MIPS_MIPS16       = (1 << 3),
1445     HWCAP_MIPS_MDMX         = (1 << 4),
1446     HWCAP_MIPS_MIPS3D       = (1 << 5),
1447     HWCAP_MIPS_SMARTMIPS    = (1 << 6),
1448     HWCAP_MIPS_DSP          = (1 << 7),
1449     HWCAP_MIPS_DSP2         = (1 << 8),
1450     HWCAP_MIPS_DSP3         = (1 << 9),
1451     HWCAP_MIPS_MIPS16E2     = (1 << 10),
1452     HWCAP_LOONGSON_MMI      = (1 << 11),
1453     HWCAP_LOONGSON_EXT      = (1 << 12),
1454     HWCAP_LOONGSON_EXT2     = (1 << 13),
1455     HWCAP_LOONGSON_CPUCFG   = (1 << 14),
1456 };
1457 
1458 #define ELF_HWCAP get_elf_hwcap()
1459 
1460 #define GET_FEATURE_INSN(_flag, _hwcap) \
1461     do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1462 
1463 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1464     do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1465 
1466 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1467     do { \
1468         if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1469             hwcaps |= _hwcap; \
1470         } \
1471     } while (0)
1472 
1473 static uint32_t get_elf_hwcap(void)
1474 {
1475     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1476     uint32_t hwcaps = 0;
1477 
1478     GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1479                         2, HWCAP_MIPS_R6);
1480     GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1481     GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1482     GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1483 
1484     return hwcaps;
1485 }
1486 
1487 #undef GET_FEATURE_REG_EQU
1488 #undef GET_FEATURE_REG_SET
1489 #undef GET_FEATURE_INSN
1490 
1491 #endif /* TARGET_MIPS */
1492 
1493 #ifdef TARGET_MICROBLAZE
1494 
1495 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1496 
1497 #define ELF_CLASS   ELFCLASS32
1498 #define ELF_ARCH    EM_MICROBLAZE
1499 
1500 static inline void init_thread(struct target_pt_regs *regs,
1501                                struct image_info *infop)
1502 {
1503     regs->pc = infop->entry;
1504     regs->r1 = infop->start_stack;
1505 
1506 }
1507 
1508 #define ELF_EXEC_PAGESIZE        4096
1509 
1510 #define USE_ELF_CORE_DUMP
1511 #define ELF_NREG 38
1512 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1513 
1514 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1515 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1516 {
1517     int i, pos = 0;
1518 
1519     for (i = 0; i < 32; i++) {
1520         (*regs)[pos++] = tswapreg(env->regs[i]);
1521     }
1522 
1523     (*regs)[pos++] = tswapreg(env->pc);
1524     (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1525     (*regs)[pos++] = 0;
1526     (*regs)[pos++] = tswapreg(env->ear);
1527     (*regs)[pos++] = 0;
1528     (*regs)[pos++] = tswapreg(env->esr);
1529 }
1530 
1531 #endif /* TARGET_MICROBLAZE */
1532 
1533 #ifdef TARGET_OPENRISC
1534 
1535 #define ELF_ARCH EM_OPENRISC
1536 #define ELF_CLASS ELFCLASS32
1537 #define ELF_DATA  ELFDATA2MSB
1538 
1539 static inline void init_thread(struct target_pt_regs *regs,
1540                                struct image_info *infop)
1541 {
1542     regs->pc = infop->entry;
1543     regs->gpr[1] = infop->start_stack;
1544 }
1545 
1546 #define USE_ELF_CORE_DUMP
1547 #define ELF_EXEC_PAGESIZE 8192
1548 
1549 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1550 #define ELF_NREG 34 /* gprs and pc, sr */
1551 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1552 
1553 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1554                                const CPUOpenRISCState *env)
1555 {
1556     int i;
1557 
1558     for (i = 0; i < 32; i++) {
1559         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1560     }
1561     (*regs)[32] = tswapreg(env->pc);
1562     (*regs)[33] = tswapreg(cpu_get_sr(env));
1563 }
1564 #define ELF_HWCAP 0
1565 #define ELF_PLATFORM NULL
1566 
1567 #endif /* TARGET_OPENRISC */
1568 
1569 #ifdef TARGET_SH4
1570 
1571 #define ELF_CLASS ELFCLASS32
1572 #define ELF_ARCH  EM_SH
1573 
1574 static inline void init_thread(struct target_pt_regs *regs,
1575                                struct image_info *infop)
1576 {
1577     /* Check other registers XXXXX */
1578     regs->pc = infop->entry;
1579     regs->regs[15] = infop->start_stack;
1580 }
1581 
1582 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1583 #define ELF_NREG 23
1584 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1585 
1586 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1587 enum {
1588     TARGET_REG_PC = 16,
1589     TARGET_REG_PR = 17,
1590     TARGET_REG_SR = 18,
1591     TARGET_REG_GBR = 19,
1592     TARGET_REG_MACH = 20,
1593     TARGET_REG_MACL = 21,
1594     TARGET_REG_SYSCALL = 22
1595 };
1596 
1597 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1598                                       const CPUSH4State *env)
1599 {
1600     int i;
1601 
1602     for (i = 0; i < 16; i++) {
1603         (*regs)[i] = tswapreg(env->gregs[i]);
1604     }
1605 
1606     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1607     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1608     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1609     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1610     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1611     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1612     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1613 }
1614 
1615 #define USE_ELF_CORE_DUMP
1616 #define ELF_EXEC_PAGESIZE        4096
1617 
1618 enum {
1619     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1620     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1621     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1622     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1623     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1624     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1625     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1626     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1627     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1628     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1629 };
1630 
1631 #define ELF_HWCAP get_elf_hwcap()
1632 
1633 static uint32_t get_elf_hwcap(void)
1634 {
1635     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1636     uint32_t hwcap = 0;
1637 
1638     hwcap |= SH_CPU_HAS_FPU;
1639 
1640     if (cpu->env.features & SH_FEATURE_SH4A) {
1641         hwcap |= SH_CPU_HAS_LLSC;
1642     }
1643 
1644     return hwcap;
1645 }
1646 
1647 #endif
1648 
1649 #ifdef TARGET_CRIS
1650 
1651 #define ELF_CLASS ELFCLASS32
1652 #define ELF_ARCH  EM_CRIS
1653 
1654 static inline void init_thread(struct target_pt_regs *regs,
1655                                struct image_info *infop)
1656 {
1657     regs->erp = infop->entry;
1658 }
1659 
1660 #define ELF_EXEC_PAGESIZE        8192
1661 
1662 #endif
1663 
1664 #ifdef TARGET_M68K
1665 
1666 #define ELF_CLASS       ELFCLASS32
1667 #define ELF_ARCH        EM_68K
1668 
1669 /* ??? Does this need to do anything?
1670    #define ELF_PLAT_INIT(_r) */
1671 
1672 static inline void init_thread(struct target_pt_regs *regs,
1673                                struct image_info *infop)
1674 {
1675     regs->usp = infop->start_stack;
1676     regs->sr = 0;
1677     regs->pc = infop->entry;
1678 }
1679 
1680 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1681 #define ELF_NREG 20
1682 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1683 
1684 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1685 {
1686     (*regs)[0] = tswapreg(env->dregs[1]);
1687     (*regs)[1] = tswapreg(env->dregs[2]);
1688     (*regs)[2] = tswapreg(env->dregs[3]);
1689     (*regs)[3] = tswapreg(env->dregs[4]);
1690     (*regs)[4] = tswapreg(env->dregs[5]);
1691     (*regs)[5] = tswapreg(env->dregs[6]);
1692     (*regs)[6] = tswapreg(env->dregs[7]);
1693     (*regs)[7] = tswapreg(env->aregs[0]);
1694     (*regs)[8] = tswapreg(env->aregs[1]);
1695     (*regs)[9] = tswapreg(env->aregs[2]);
1696     (*regs)[10] = tswapreg(env->aregs[3]);
1697     (*regs)[11] = tswapreg(env->aregs[4]);
1698     (*regs)[12] = tswapreg(env->aregs[5]);
1699     (*regs)[13] = tswapreg(env->aregs[6]);
1700     (*regs)[14] = tswapreg(env->dregs[0]);
1701     (*regs)[15] = tswapreg(env->aregs[7]);
1702     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1703     (*regs)[17] = tswapreg(env->sr);
1704     (*regs)[18] = tswapreg(env->pc);
1705     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1706 }
1707 
1708 #define USE_ELF_CORE_DUMP
1709 #define ELF_EXEC_PAGESIZE       8192
1710 
1711 #endif
1712 
1713 #ifdef TARGET_ALPHA
1714 
1715 #define ELF_CLASS      ELFCLASS64
1716 #define ELF_ARCH       EM_ALPHA
1717 
1718 static inline void init_thread(struct target_pt_regs *regs,
1719                                struct image_info *infop)
1720 {
1721     regs->pc = infop->entry;
1722     regs->ps = 8;
1723     regs->usp = infop->start_stack;
1724 }
1725 
1726 #define ELF_EXEC_PAGESIZE        8192
1727 
1728 #endif /* TARGET_ALPHA */
1729 
1730 #ifdef TARGET_S390X
1731 
1732 #define ELF_CLASS	ELFCLASS64
1733 #define ELF_DATA	ELFDATA2MSB
1734 #define ELF_ARCH	EM_S390
1735 
1736 #include "elf.h"
1737 
1738 #define ELF_HWCAP get_elf_hwcap()
1739 
1740 #define GET_FEATURE(_feat, _hwcap) \
1741     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1742 
1743 uint32_t get_elf_hwcap(void)
1744 {
1745     /*
1746      * Let's assume we always have esan3 and zarch.
1747      * 31-bit processes can use 64-bit registers (high gprs).
1748      */
1749     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1750 
1751     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1752     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1753     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1754     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1755     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1756         s390_has_feat(S390_FEAT_ETF3_ENH)) {
1757         hwcap |= HWCAP_S390_ETF3EH;
1758     }
1759     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1760     GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
1761     GET_FEATURE(S390_FEAT_VECTOR_ENH2, HWCAP_S390_VXRS_EXT2);
1762 
1763     return hwcap;
1764 }
1765 
1766 const char *elf_hwcap_str(uint32_t bit)
1767 {
1768     static const char *hwcap_str[] = {
1769         [HWCAP_S390_NR_ESAN3]     = "esan3",
1770         [HWCAP_S390_NR_ZARCH]     = "zarch",
1771         [HWCAP_S390_NR_STFLE]     = "stfle",
1772         [HWCAP_S390_NR_MSA]       = "msa",
1773         [HWCAP_S390_NR_LDISP]     = "ldisp",
1774         [HWCAP_S390_NR_EIMM]      = "eimm",
1775         [HWCAP_S390_NR_DFP]       = "dfp",
1776         [HWCAP_S390_NR_HPAGE]     = "edat",
1777         [HWCAP_S390_NR_ETF3EH]    = "etf3eh",
1778         [HWCAP_S390_NR_HIGH_GPRS] = "highgprs",
1779         [HWCAP_S390_NR_TE]        = "te",
1780         [HWCAP_S390_NR_VXRS]      = "vx",
1781         [HWCAP_S390_NR_VXRS_BCD]  = "vxd",
1782         [HWCAP_S390_NR_VXRS_EXT]  = "vxe",
1783         [HWCAP_S390_NR_GS]        = "gs",
1784         [HWCAP_S390_NR_VXRS_EXT2] = "vxe2",
1785         [HWCAP_S390_NR_VXRS_PDE]  = "vxp",
1786         [HWCAP_S390_NR_SORT]      = "sort",
1787         [HWCAP_S390_NR_DFLT]      = "dflt",
1788         [HWCAP_S390_NR_NNPA]      = "nnpa",
1789         [HWCAP_S390_NR_PCI_MIO]   = "pcimio",
1790         [HWCAP_S390_NR_SIE]       = "sie",
1791     };
1792 
1793     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
1794 }
1795 
1796 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1797 {
1798     regs->psw.addr = infop->entry;
1799     regs->psw.mask = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | \
1800                      PSW_MASK_MCHECK | PSW_MASK_PSTATE | PSW_MASK_64 | \
1801                      PSW_MASK_32;
1802     regs->gprs[15] = infop->start_stack;
1803 }
1804 
1805 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs).  */
1806 #define ELF_NREG 27
1807 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1808 
1809 enum {
1810     TARGET_REG_PSWM = 0,
1811     TARGET_REG_PSWA = 1,
1812     TARGET_REG_GPRS = 2,
1813     TARGET_REG_ARS = 18,
1814     TARGET_REG_ORIG_R2 = 26,
1815 };
1816 
1817 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1818                                const CPUS390XState *env)
1819 {
1820     int i;
1821     uint32_t *aregs;
1822 
1823     (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1824     (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1825     for (i = 0; i < 16; i++) {
1826         (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1827     }
1828     aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1829     for (i = 0; i < 16; i++) {
1830         aregs[i] = tswap32(env->aregs[i]);
1831     }
1832     (*regs)[TARGET_REG_ORIG_R2] = 0;
1833 }
1834 
1835 #define USE_ELF_CORE_DUMP
1836 #define ELF_EXEC_PAGESIZE 4096
1837 
1838 #define VDSO_HEADER "vdso.c.inc"
1839 
1840 #endif /* TARGET_S390X */
1841 
1842 #ifdef TARGET_RISCV
1843 
1844 #define ELF_ARCH  EM_RISCV
1845 
1846 #ifdef TARGET_RISCV32
1847 #define ELF_CLASS ELFCLASS32
1848 #define VDSO_HEADER "vdso-32.c.inc"
1849 #else
1850 #define ELF_CLASS ELFCLASS64
1851 #define VDSO_HEADER "vdso-64.c.inc"
1852 #endif
1853 
1854 #define ELF_HWCAP get_elf_hwcap()
1855 
1856 static uint32_t get_elf_hwcap(void)
1857 {
1858 #define MISA_BIT(EXT) (1 << (EXT - 'A'))
1859     RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1860     uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1861                     | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C')
1862                     | MISA_BIT('V');
1863 
1864     return cpu->env.misa_ext & mask;
1865 #undef MISA_BIT
1866 }
1867 
1868 static inline void init_thread(struct target_pt_regs *regs,
1869                                struct image_info *infop)
1870 {
1871     regs->sepc = infop->entry;
1872     regs->sp = infop->start_stack;
1873 }
1874 
1875 #define ELF_EXEC_PAGESIZE 4096
1876 
1877 #endif /* TARGET_RISCV */
1878 
1879 #ifdef TARGET_HPPA
1880 
1881 #define ELF_CLASS       ELFCLASS32
1882 #define ELF_ARCH        EM_PARISC
1883 #define ELF_PLATFORM    "PARISC"
1884 #define STACK_GROWS_DOWN 0
1885 #define STACK_ALIGNMENT  64
1886 
1887 #define VDSO_HEADER "vdso.c.inc"
1888 
1889 static inline void init_thread(struct target_pt_regs *regs,
1890                                struct image_info *infop)
1891 {
1892     regs->iaoq[0] = infop->entry | PRIV_USER;
1893     regs->iaoq[1] = regs->iaoq[0] + 4;
1894     regs->gr[23] = 0;
1895     regs->gr[24] = infop->argv;
1896     regs->gr[25] = infop->argc;
1897     /* The top-of-stack contains a linkage buffer.  */
1898     regs->gr[30] = infop->start_stack + 64;
1899     regs->gr[31] = infop->entry;
1900 }
1901 
1902 #define LO_COMMPAGE  0
1903 
1904 static bool init_guest_commpage(void)
1905 {
1906     /* If reserved_va, then we have already mapped 0 page on the host. */
1907     if (!reserved_va) {
1908         void *want, *addr;
1909 
1910         want = g2h_untagged(LO_COMMPAGE);
1911         addr = mmap(want, TARGET_PAGE_SIZE, PROT_NONE,
1912                     MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED_NOREPLACE, -1, 0);
1913         if (addr == MAP_FAILED) {
1914             perror("Allocating guest commpage");
1915             exit(EXIT_FAILURE);
1916         }
1917         if (addr != want) {
1918             return false;
1919         }
1920     }
1921 
1922     /*
1923      * On Linux, page zero is normally marked execute only + gateway.
1924      * Normal read or write is supposed to fail (thus PROT_NONE above),
1925      * but specific offsets have kernel code mapped to raise permissions
1926      * and implement syscalls.  Here, simply mark the page executable.
1927      * Special case the entry points during translation (see do_page_zero).
1928      */
1929     page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
1930                    PAGE_EXEC | PAGE_VALID);
1931     return true;
1932 }
1933 
1934 #endif /* TARGET_HPPA */
1935 
1936 #ifdef TARGET_XTENSA
1937 
1938 #define ELF_CLASS       ELFCLASS32
1939 #define ELF_ARCH        EM_XTENSA
1940 
1941 static inline void init_thread(struct target_pt_regs *regs,
1942                                struct image_info *infop)
1943 {
1944     regs->windowbase = 0;
1945     regs->windowstart = 1;
1946     regs->areg[1] = infop->start_stack;
1947     regs->pc = infop->entry;
1948     if (info_is_fdpic(infop)) {
1949         regs->areg[4] = infop->loadmap_addr;
1950         regs->areg[5] = infop->interpreter_loadmap_addr;
1951         if (infop->interpreter_loadmap_addr) {
1952             regs->areg[6] = infop->interpreter_pt_dynamic_addr;
1953         } else {
1954             regs->areg[6] = infop->pt_dynamic_addr;
1955         }
1956     }
1957 }
1958 
1959 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1960 #define ELF_NREG 128
1961 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1962 
1963 enum {
1964     TARGET_REG_PC,
1965     TARGET_REG_PS,
1966     TARGET_REG_LBEG,
1967     TARGET_REG_LEND,
1968     TARGET_REG_LCOUNT,
1969     TARGET_REG_SAR,
1970     TARGET_REG_WINDOWSTART,
1971     TARGET_REG_WINDOWBASE,
1972     TARGET_REG_THREADPTR,
1973     TARGET_REG_AR0 = 64,
1974 };
1975 
1976 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1977                                const CPUXtensaState *env)
1978 {
1979     unsigned i;
1980 
1981     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1982     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1983     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1984     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1985     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1986     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1987     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1988     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1989     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1990     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1991     for (i = 0; i < env->config->nareg; ++i) {
1992         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1993     }
1994 }
1995 
1996 #define USE_ELF_CORE_DUMP
1997 #define ELF_EXEC_PAGESIZE       4096
1998 
1999 #endif /* TARGET_XTENSA */
2000 
2001 #ifdef TARGET_HEXAGON
2002 
2003 #define ELF_CLASS       ELFCLASS32
2004 #define ELF_ARCH        EM_HEXAGON
2005 
2006 static inline void init_thread(struct target_pt_regs *regs,
2007                                struct image_info *infop)
2008 {
2009     regs->sepc = infop->entry;
2010     regs->sp = infop->start_stack;
2011 }
2012 
2013 #endif /* TARGET_HEXAGON */
2014 
2015 #ifndef ELF_BASE_PLATFORM
2016 #define ELF_BASE_PLATFORM (NULL)
2017 #endif
2018 
2019 #ifndef ELF_PLATFORM
2020 #define ELF_PLATFORM (NULL)
2021 #endif
2022 
2023 #ifndef ELF_MACHINE
2024 #define ELF_MACHINE ELF_ARCH
2025 #endif
2026 
2027 #ifndef elf_check_arch
2028 #define elf_check_arch(x) ((x) == ELF_ARCH)
2029 #endif
2030 
2031 #ifndef elf_check_abi
2032 #define elf_check_abi(x) (1)
2033 #endif
2034 
2035 #ifndef ELF_HWCAP
2036 #define ELF_HWCAP 0
2037 #endif
2038 
2039 #ifndef STACK_GROWS_DOWN
2040 #define STACK_GROWS_DOWN 1
2041 #endif
2042 
2043 #ifndef STACK_ALIGNMENT
2044 #define STACK_ALIGNMENT 16
2045 #endif
2046 
2047 #ifdef TARGET_ABI32
2048 #undef ELF_CLASS
2049 #define ELF_CLASS ELFCLASS32
2050 #undef bswaptls
2051 #define bswaptls(ptr) bswap32s(ptr)
2052 #endif
2053 
2054 #ifndef EXSTACK_DEFAULT
2055 #define EXSTACK_DEFAULT false
2056 #endif
2057 
2058 #include "elf.h"
2059 
2060 /* We must delay the following stanzas until after "elf.h". */
2061 #if defined(TARGET_AARCH64)
2062 
2063 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
2064                                     const uint32_t *data,
2065                                     struct image_info *info,
2066                                     Error **errp)
2067 {
2068     if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
2069         if (pr_datasz != sizeof(uint32_t)) {
2070             error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
2071             return false;
2072         }
2073         /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
2074         info->note_flags = *data;
2075     }
2076     return true;
2077 }
2078 #define ARCH_USE_GNU_PROPERTY 1
2079 
2080 #else
2081 
2082 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
2083                                     const uint32_t *data,
2084                                     struct image_info *info,
2085                                     Error **errp)
2086 {
2087     g_assert_not_reached();
2088 }
2089 #define ARCH_USE_GNU_PROPERTY 0
2090 
2091 #endif
2092 
2093 struct exec
2094 {
2095     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
2096     unsigned int a_text;   /* length of text, in bytes */
2097     unsigned int a_data;   /* length of data, in bytes */
2098     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
2099     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
2100     unsigned int a_entry;  /* start address */
2101     unsigned int a_trsize; /* length of relocation info for text, in bytes */
2102     unsigned int a_drsize; /* length of relocation info for data, in bytes */
2103 };
2104 
2105 
2106 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
2107 #define OMAGIC 0407
2108 #define NMAGIC 0410
2109 #define ZMAGIC 0413
2110 #define QMAGIC 0314
2111 
2112 #define DLINFO_ITEMS 16
2113 
2114 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
2115 {
2116     memcpy(to, from, n);
2117 }
2118 
2119 #ifdef BSWAP_NEEDED
2120 static void bswap_ehdr(struct elfhdr *ehdr)
2121 {
2122     bswap16s(&ehdr->e_type);            /* Object file type */
2123     bswap16s(&ehdr->e_machine);         /* Architecture */
2124     bswap32s(&ehdr->e_version);         /* Object file version */
2125     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
2126     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
2127     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
2128     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
2129     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
2130     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
2131     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
2132     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
2133     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
2134     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
2135 }
2136 
2137 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
2138 {
2139     int i;
2140     for (i = 0; i < phnum; ++i, ++phdr) {
2141         bswap32s(&phdr->p_type);        /* Segment type */
2142         bswap32s(&phdr->p_flags);       /* Segment flags */
2143         bswaptls(&phdr->p_offset);      /* Segment file offset */
2144         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
2145         bswaptls(&phdr->p_paddr);       /* Segment physical address */
2146         bswaptls(&phdr->p_filesz);      /* Segment size in file */
2147         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
2148         bswaptls(&phdr->p_align);       /* Segment alignment */
2149     }
2150 }
2151 
2152 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
2153 {
2154     int i;
2155     for (i = 0; i < shnum; ++i, ++shdr) {
2156         bswap32s(&shdr->sh_name);
2157         bswap32s(&shdr->sh_type);
2158         bswaptls(&shdr->sh_flags);
2159         bswaptls(&shdr->sh_addr);
2160         bswaptls(&shdr->sh_offset);
2161         bswaptls(&shdr->sh_size);
2162         bswap32s(&shdr->sh_link);
2163         bswap32s(&shdr->sh_info);
2164         bswaptls(&shdr->sh_addralign);
2165         bswaptls(&shdr->sh_entsize);
2166     }
2167 }
2168 
2169 static void bswap_sym(struct elf_sym *sym)
2170 {
2171     bswap32s(&sym->st_name);
2172     bswaptls(&sym->st_value);
2173     bswaptls(&sym->st_size);
2174     bswap16s(&sym->st_shndx);
2175 }
2176 
2177 #ifdef TARGET_MIPS
2178 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
2179 {
2180     bswap16s(&abiflags->version);
2181     bswap32s(&abiflags->ases);
2182     bswap32s(&abiflags->isa_ext);
2183     bswap32s(&abiflags->flags1);
2184     bswap32s(&abiflags->flags2);
2185 }
2186 #endif
2187 #else
2188 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
2189 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
2190 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
2191 static inline void bswap_sym(struct elf_sym *sym) { }
2192 #ifdef TARGET_MIPS
2193 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
2194 #endif
2195 #endif
2196 
2197 #ifdef USE_ELF_CORE_DUMP
2198 static int elf_core_dump(int, const CPUArchState *);
2199 #endif /* USE_ELF_CORE_DUMP */
2200 static void load_symbols(struct elfhdr *hdr, const ImageSource *src,
2201                          abi_ulong load_bias);
2202 
2203 /* Verify the portions of EHDR within E_IDENT for the target.
2204    This can be performed before bswapping the entire header.  */
2205 static bool elf_check_ident(struct elfhdr *ehdr)
2206 {
2207     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
2208             && ehdr->e_ident[EI_MAG1] == ELFMAG1
2209             && ehdr->e_ident[EI_MAG2] == ELFMAG2
2210             && ehdr->e_ident[EI_MAG3] == ELFMAG3
2211             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
2212             && ehdr->e_ident[EI_DATA] == ELF_DATA
2213             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
2214 }
2215 
2216 /* Verify the portions of EHDR outside of E_IDENT for the target.
2217    This has to wait until after bswapping the header.  */
2218 static bool elf_check_ehdr(struct elfhdr *ehdr)
2219 {
2220     return (elf_check_arch(ehdr->e_machine)
2221             && elf_check_abi(ehdr->e_flags)
2222             && ehdr->e_ehsize == sizeof(struct elfhdr)
2223             && ehdr->e_phentsize == sizeof(struct elf_phdr)
2224             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
2225 }
2226 
2227 /*
2228  * 'copy_elf_strings()' copies argument/envelope strings from user
2229  * memory to free pages in kernel mem. These are in a format ready
2230  * to be put directly into the top of new user memory.
2231  *
2232  */
2233 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
2234                                   abi_ulong p, abi_ulong stack_limit)
2235 {
2236     char *tmp;
2237     int len, i;
2238     abi_ulong top = p;
2239 
2240     if (!p) {
2241         return 0;       /* bullet-proofing */
2242     }
2243 
2244     if (STACK_GROWS_DOWN) {
2245         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
2246         for (i = argc - 1; i >= 0; --i) {
2247             tmp = argv[i];
2248             if (!tmp) {
2249                 fprintf(stderr, "VFS: argc is wrong");
2250                 exit(-1);
2251             }
2252             len = strlen(tmp) + 1;
2253             tmp += len;
2254 
2255             if (len > (p - stack_limit)) {
2256                 return 0;
2257             }
2258             while (len) {
2259                 int bytes_to_copy = (len > offset) ? offset : len;
2260                 tmp -= bytes_to_copy;
2261                 p -= bytes_to_copy;
2262                 offset -= bytes_to_copy;
2263                 len -= bytes_to_copy;
2264 
2265                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
2266 
2267                 if (offset == 0) {
2268                     memcpy_to_target(p, scratch, top - p);
2269                     top = p;
2270                     offset = TARGET_PAGE_SIZE;
2271                 }
2272             }
2273         }
2274         if (p != top) {
2275             memcpy_to_target(p, scratch + offset, top - p);
2276         }
2277     } else {
2278         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
2279         for (i = 0; i < argc; ++i) {
2280             tmp = argv[i];
2281             if (!tmp) {
2282                 fprintf(stderr, "VFS: argc is wrong");
2283                 exit(-1);
2284             }
2285             len = strlen(tmp) + 1;
2286             if (len > (stack_limit - p)) {
2287                 return 0;
2288             }
2289             while (len) {
2290                 int bytes_to_copy = (len > remaining) ? remaining : len;
2291 
2292                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
2293 
2294                 tmp += bytes_to_copy;
2295                 remaining -= bytes_to_copy;
2296                 p += bytes_to_copy;
2297                 len -= bytes_to_copy;
2298 
2299                 if (remaining == 0) {
2300                     memcpy_to_target(top, scratch, p - top);
2301                     top = p;
2302                     remaining = TARGET_PAGE_SIZE;
2303                 }
2304             }
2305         }
2306         if (p != top) {
2307             memcpy_to_target(top, scratch, p - top);
2308         }
2309     }
2310 
2311     return p;
2312 }
2313 
2314 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
2315  * argument/environment space. Newer kernels (>2.6.33) allow more,
2316  * dependent on stack size, but guarantee at least 32 pages for
2317  * backwards compatibility.
2318  */
2319 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
2320 
2321 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
2322                                  struct image_info *info)
2323 {
2324     abi_ulong size, error, guard;
2325     int prot;
2326 
2327     size = guest_stack_size;
2328     if (size < STACK_LOWER_LIMIT) {
2329         size = STACK_LOWER_LIMIT;
2330     }
2331 
2332     if (STACK_GROWS_DOWN) {
2333         guard = TARGET_PAGE_SIZE;
2334         if (guard < qemu_real_host_page_size()) {
2335             guard = qemu_real_host_page_size();
2336         }
2337     } else {
2338         /* no guard page for hppa target where stack grows upwards. */
2339         guard = 0;
2340     }
2341 
2342     prot = PROT_READ | PROT_WRITE;
2343     if (info->exec_stack) {
2344         prot |= PROT_EXEC;
2345     }
2346     error = target_mmap(0, size + guard, prot,
2347                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2348     if (error == -1) {
2349         perror("mmap stack");
2350         exit(-1);
2351     }
2352 
2353     /* We reserve one extra page at the top of the stack as guard.  */
2354     if (STACK_GROWS_DOWN) {
2355         target_mprotect(error, guard, PROT_NONE);
2356         info->stack_limit = error + guard;
2357         return info->stack_limit + size - sizeof(void *);
2358     } else {
2359         info->stack_limit = error + size;
2360         return error;
2361     }
2362 }
2363 
2364 /**
2365  * zero_bss:
2366  *
2367  * Map and zero the bss.  We need to explicitly zero any fractional pages
2368  * after the data section (i.e. bss).  Return false on mapping failure.
2369  */
2370 static bool zero_bss(abi_ulong start_bss, abi_ulong end_bss,
2371                      int prot, Error **errp)
2372 {
2373     abi_ulong align_bss;
2374 
2375     /* We only expect writable bss; the code segment shouldn't need this. */
2376     if (!(prot & PROT_WRITE)) {
2377         error_setg(errp, "PT_LOAD with non-writable bss");
2378         return false;
2379     }
2380 
2381     align_bss = TARGET_PAGE_ALIGN(start_bss);
2382     end_bss = TARGET_PAGE_ALIGN(end_bss);
2383 
2384     if (start_bss < align_bss) {
2385         int flags = page_get_flags(start_bss);
2386 
2387         if (!(flags & PAGE_RWX)) {
2388             /*
2389              * The whole address space of the executable was reserved
2390              * at the start, therefore all pages will be VALID.
2391              * But assuming there are no PROT_NONE PT_LOAD segments,
2392              * a PROT_NONE page means no data all bss, and we can
2393              * simply extend the new anon mapping back to the start
2394              * of the page of bss.
2395              */
2396             align_bss -= TARGET_PAGE_SIZE;
2397         } else {
2398             /*
2399              * The start of the bss shares a page with something.
2400              * The only thing that we expect is the data section,
2401              * which would already be marked writable.
2402              * Overlapping the RX code segment seems malformed.
2403              */
2404             if (!(flags & PAGE_WRITE)) {
2405                 error_setg(errp, "PT_LOAD with bss overlapping "
2406                            "non-writable page");
2407                 return false;
2408             }
2409 
2410             /* The page is already mapped and writable. */
2411             memset(g2h_untagged(start_bss), 0, align_bss - start_bss);
2412         }
2413     }
2414 
2415     if (align_bss < end_bss &&
2416         target_mmap(align_bss, end_bss - align_bss, prot,
2417                     MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) == -1) {
2418         error_setg_errno(errp, errno, "Error mapping bss");
2419         return false;
2420     }
2421     return true;
2422 }
2423 
2424 #if defined(TARGET_ARM)
2425 static int elf_is_fdpic(struct elfhdr *exec)
2426 {
2427     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
2428 }
2429 #elif defined(TARGET_XTENSA)
2430 static int elf_is_fdpic(struct elfhdr *exec)
2431 {
2432     return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC;
2433 }
2434 #else
2435 /* Default implementation, always false.  */
2436 static int elf_is_fdpic(struct elfhdr *exec)
2437 {
2438     return 0;
2439 }
2440 #endif
2441 
2442 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
2443 {
2444     uint16_t n;
2445     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
2446 
2447     /* elf32_fdpic_loadseg */
2448     n = info->nsegs;
2449     while (n--) {
2450         sp -= 12;
2451         put_user_u32(loadsegs[n].addr, sp+0);
2452         put_user_u32(loadsegs[n].p_vaddr, sp+4);
2453         put_user_u32(loadsegs[n].p_memsz, sp+8);
2454     }
2455 
2456     /* elf32_fdpic_loadmap */
2457     sp -= 4;
2458     put_user_u16(0, sp+0); /* version */
2459     put_user_u16(info->nsegs, sp+2); /* nsegs */
2460 
2461     info->personality = PER_LINUX_FDPIC;
2462     info->loadmap_addr = sp;
2463 
2464     return sp;
2465 }
2466 
2467 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
2468                                    struct elfhdr *exec,
2469                                    struct image_info *info,
2470                                    struct image_info *interp_info,
2471                                    struct image_info *vdso_info)
2472 {
2473     abi_ulong sp;
2474     abi_ulong u_argc, u_argv, u_envp, u_auxv;
2475     int size;
2476     int i;
2477     abi_ulong u_rand_bytes;
2478     uint8_t k_rand_bytes[16];
2479     abi_ulong u_platform, u_base_platform;
2480     const char *k_platform, *k_base_platform;
2481     const int n = sizeof(elf_addr_t);
2482 
2483     sp = p;
2484 
2485     /* Needs to be before we load the env/argc/... */
2486     if (elf_is_fdpic(exec)) {
2487         /* Need 4 byte alignment for these structs */
2488         sp &= ~3;
2489         sp = loader_build_fdpic_loadmap(info, sp);
2490         info->other_info = interp_info;
2491         if (interp_info) {
2492             interp_info->other_info = info;
2493             sp = loader_build_fdpic_loadmap(interp_info, sp);
2494             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2495             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2496         } else {
2497             info->interpreter_loadmap_addr = 0;
2498             info->interpreter_pt_dynamic_addr = 0;
2499         }
2500     }
2501 
2502     u_base_platform = 0;
2503     k_base_platform = ELF_BASE_PLATFORM;
2504     if (k_base_platform) {
2505         size_t len = strlen(k_base_platform) + 1;
2506         if (STACK_GROWS_DOWN) {
2507             sp -= (len + n - 1) & ~(n - 1);
2508             u_base_platform = sp;
2509             /* FIXME - check return value of memcpy_to_target() for failure */
2510             memcpy_to_target(sp, k_base_platform, len);
2511         } else {
2512             memcpy_to_target(sp, k_base_platform, len);
2513             u_base_platform = sp;
2514             sp += len + 1;
2515         }
2516     }
2517 
2518     u_platform = 0;
2519     k_platform = ELF_PLATFORM;
2520     if (k_platform) {
2521         size_t len = strlen(k_platform) + 1;
2522         if (STACK_GROWS_DOWN) {
2523             sp -= (len + n - 1) & ~(n - 1);
2524             u_platform = sp;
2525             /* FIXME - check return value of memcpy_to_target() for failure */
2526             memcpy_to_target(sp, k_platform, len);
2527         } else {
2528             memcpy_to_target(sp, k_platform, len);
2529             u_platform = sp;
2530             sp += len + 1;
2531         }
2532     }
2533 
2534     /* Provide 16 byte alignment for the PRNG, and basic alignment for
2535      * the argv and envp pointers.
2536      */
2537     if (STACK_GROWS_DOWN) {
2538         sp = QEMU_ALIGN_DOWN(sp, 16);
2539     } else {
2540         sp = QEMU_ALIGN_UP(sp, 16);
2541     }
2542 
2543     /*
2544      * Generate 16 random bytes for userspace PRNG seeding.
2545      */
2546     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2547     if (STACK_GROWS_DOWN) {
2548         sp -= 16;
2549         u_rand_bytes = sp;
2550         /* FIXME - check return value of memcpy_to_target() for failure */
2551         memcpy_to_target(sp, k_rand_bytes, 16);
2552     } else {
2553         memcpy_to_target(sp, k_rand_bytes, 16);
2554         u_rand_bytes = sp;
2555         sp += 16;
2556     }
2557 
2558     size = (DLINFO_ITEMS + 1) * 2;
2559     if (k_base_platform) {
2560         size += 2;
2561     }
2562     if (k_platform) {
2563         size += 2;
2564     }
2565     if (vdso_info) {
2566         size += 2;
2567     }
2568 #ifdef DLINFO_ARCH_ITEMS
2569     size += DLINFO_ARCH_ITEMS * 2;
2570 #endif
2571 #ifdef ELF_HWCAP2
2572     size += 2;
2573 #endif
2574     info->auxv_len = size * n;
2575 
2576     size += envc + argc + 2;
2577     size += 1;  /* argc itself */
2578     size *= n;
2579 
2580     /* Allocate space and finalize stack alignment for entry now.  */
2581     if (STACK_GROWS_DOWN) {
2582         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2583         sp = u_argc;
2584     } else {
2585         u_argc = sp;
2586         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2587     }
2588 
2589     u_argv = u_argc + n;
2590     u_envp = u_argv + (argc + 1) * n;
2591     u_auxv = u_envp + (envc + 1) * n;
2592     info->saved_auxv = u_auxv;
2593     info->argc = argc;
2594     info->envc = envc;
2595     info->argv = u_argv;
2596     info->envp = u_envp;
2597 
2598     /* This is correct because Linux defines
2599      * elf_addr_t as Elf32_Off / Elf64_Off
2600      */
2601 #define NEW_AUX_ENT(id, val) do {               \
2602         put_user_ual(id, u_auxv);  u_auxv += n; \
2603         put_user_ual(val, u_auxv); u_auxv += n; \
2604     } while(0)
2605 
2606 #ifdef ARCH_DLINFO
2607     /*
2608      * ARCH_DLINFO must come first so platform specific code can enforce
2609      * special alignment requirements on the AUXV if necessary (eg. PPC).
2610      */
2611     ARCH_DLINFO;
2612 #endif
2613     /* There must be exactly DLINFO_ITEMS entries here, or the assert
2614      * on info->auxv_len will trigger.
2615      */
2616     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2617     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2618     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2619     NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2620     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2621     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2622     NEW_AUX_ENT(AT_ENTRY, info->entry);
2623     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2624     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2625     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2626     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2627     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2628     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2629     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2630     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2631     NEW_AUX_ENT(AT_EXECFN, info->file_string);
2632 
2633 #ifdef ELF_HWCAP2
2634     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2635 #endif
2636 
2637     if (u_base_platform) {
2638         NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform);
2639     }
2640     if (u_platform) {
2641         NEW_AUX_ENT(AT_PLATFORM, u_platform);
2642     }
2643     if (vdso_info) {
2644         NEW_AUX_ENT(AT_SYSINFO_EHDR, vdso_info->load_addr);
2645     }
2646     NEW_AUX_ENT (AT_NULL, 0);
2647 #undef NEW_AUX_ENT
2648 
2649     /* Check that our initial calculation of the auxv length matches how much
2650      * we actually put into it.
2651      */
2652     assert(info->auxv_len == u_auxv - info->saved_auxv);
2653 
2654     put_user_ual(argc, u_argc);
2655 
2656     p = info->arg_strings;
2657     for (i = 0; i < argc; ++i) {
2658         put_user_ual(p, u_argv);
2659         u_argv += n;
2660         p += target_strlen(p) + 1;
2661     }
2662     put_user_ual(0, u_argv);
2663 
2664     p = info->env_strings;
2665     for (i = 0; i < envc; ++i) {
2666         put_user_ual(p, u_envp);
2667         u_envp += n;
2668         p += target_strlen(p) + 1;
2669     }
2670     put_user_ual(0, u_envp);
2671 
2672     return sp;
2673 }
2674 
2675 #if defined(HI_COMMPAGE)
2676 #define LO_COMMPAGE -1
2677 #elif defined(LO_COMMPAGE)
2678 #define HI_COMMPAGE 0
2679 #else
2680 #define HI_COMMPAGE 0
2681 #define LO_COMMPAGE -1
2682 #ifndef INIT_GUEST_COMMPAGE
2683 #define init_guest_commpage() true
2684 #endif
2685 #endif
2686 
2687 /**
2688  * pgb_try_mmap:
2689  * @addr: host start address
2690  * @addr_last: host last address
2691  * @keep: do not unmap the probe region
2692  *
2693  * Return 1 if [@addr, @addr_last] is not mapped in the host,
2694  * return 0 if it is not available to map, and -1 on mmap error.
2695  * If @keep, the region is left mapped on success, otherwise unmapped.
2696  */
2697 static int pgb_try_mmap(uintptr_t addr, uintptr_t addr_last, bool keep)
2698 {
2699     size_t size = addr_last - addr + 1;
2700     void *p = mmap((void *)addr, size, PROT_NONE,
2701                    MAP_ANONYMOUS | MAP_PRIVATE |
2702                    MAP_NORESERVE | MAP_FIXED_NOREPLACE, -1, 0);
2703     int ret;
2704 
2705     if (p == MAP_FAILED) {
2706         return errno == EEXIST ? 0 : -1;
2707     }
2708     ret = p == (void *)addr;
2709     if (!keep || !ret) {
2710         munmap(p, size);
2711     }
2712     return ret;
2713 }
2714 
2715 /**
2716  * pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t size, uintptr_t brk)
2717  * @addr: host address
2718  * @addr_last: host last address
2719  * @brk: host brk
2720  *
2721  * Like pgb_try_mmap, but additionally reserve some memory following brk.
2722  */
2723 static int pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t addr_last,
2724                                  uintptr_t brk, bool keep)
2725 {
2726     uintptr_t brk_last = brk + 16 * MiB - 1;
2727 
2728     /* Do not map anything close to the host brk. */
2729     if (addr <= brk_last && brk <= addr_last) {
2730         return 0;
2731     }
2732     return pgb_try_mmap(addr, addr_last, keep);
2733 }
2734 
2735 /**
2736  * pgb_try_mmap_set:
2737  * @ga: set of guest addrs
2738  * @base: guest_base
2739  * @brk: host brk
2740  *
2741  * Return true if all @ga can be mapped by the host at @base.
2742  * On success, retain the mapping at index 0 for reserved_va.
2743  */
2744 
2745 typedef struct PGBAddrs {
2746     uintptr_t bounds[3][2]; /* start/last pairs */
2747     int nbounds;
2748 } PGBAddrs;
2749 
2750 static bool pgb_try_mmap_set(const PGBAddrs *ga, uintptr_t base, uintptr_t brk)
2751 {
2752     for (int i = ga->nbounds - 1; i >= 0; --i) {
2753         if (pgb_try_mmap_skip_brk(ga->bounds[i][0] + base,
2754                                   ga->bounds[i][1] + base,
2755                                   brk, i == 0 && reserved_va) <= 0) {
2756             return false;
2757         }
2758     }
2759     return true;
2760 }
2761 
2762 /**
2763  * pgb_addr_set:
2764  * @ga: output set of guest addrs
2765  * @guest_loaddr: guest image low address
2766  * @guest_loaddr: guest image high address
2767  * @identity: create for identity mapping
2768  *
2769  * Fill in @ga with the image, COMMPAGE and NULL page.
2770  */
2771 static bool pgb_addr_set(PGBAddrs *ga, abi_ulong guest_loaddr,
2772                          abi_ulong guest_hiaddr, bool try_identity)
2773 {
2774     int n;
2775 
2776     /*
2777      * With a low commpage, or a guest mapped very low,
2778      * we may not be able to use the identity map.
2779      */
2780     if (try_identity) {
2781         if (LO_COMMPAGE != -1 && LO_COMMPAGE < mmap_min_addr) {
2782             return false;
2783         }
2784         if (guest_loaddr != 0 && guest_loaddr < mmap_min_addr) {
2785             return false;
2786         }
2787     }
2788 
2789     memset(ga, 0, sizeof(*ga));
2790     n = 0;
2791 
2792     if (reserved_va) {
2793         ga->bounds[n][0] = try_identity ? mmap_min_addr : 0;
2794         ga->bounds[n][1] = reserved_va;
2795         n++;
2796         /* LO_COMMPAGE and NULL handled by reserving from 0. */
2797     } else {
2798         /* Add any LO_COMMPAGE or NULL page. */
2799         if (LO_COMMPAGE != -1) {
2800             ga->bounds[n][0] = 0;
2801             ga->bounds[n][1] = LO_COMMPAGE + TARGET_PAGE_SIZE - 1;
2802             n++;
2803         } else if (!try_identity) {
2804             ga->bounds[n][0] = 0;
2805             ga->bounds[n][1] = TARGET_PAGE_SIZE - 1;
2806             n++;
2807         }
2808 
2809         /* Add the guest image for ET_EXEC. */
2810         if (guest_loaddr) {
2811             ga->bounds[n][0] = guest_loaddr;
2812             ga->bounds[n][1] = guest_hiaddr;
2813             n++;
2814         }
2815     }
2816 
2817     /*
2818      * Temporarily disable
2819      *   "comparison is always false due to limited range of data type"
2820      * due to comparison between unsigned and (possible) 0.
2821      */
2822 #pragma GCC diagnostic push
2823 #pragma GCC diagnostic ignored "-Wtype-limits"
2824 
2825     /* Add any HI_COMMPAGE not covered by reserved_va. */
2826     if (reserved_va < HI_COMMPAGE) {
2827         ga->bounds[n][0] = HI_COMMPAGE & qemu_real_host_page_mask();
2828         ga->bounds[n][1] = HI_COMMPAGE + TARGET_PAGE_SIZE - 1;
2829         n++;
2830     }
2831 
2832 #pragma GCC diagnostic pop
2833 
2834     ga->nbounds = n;
2835     return true;
2836 }
2837 
2838 static void pgb_fail_in_use(const char *image_name)
2839 {
2840     error_report("%s: requires virtual address space that is in use "
2841                  "(omit the -B option or choose a different value)",
2842                  image_name);
2843     exit(EXIT_FAILURE);
2844 }
2845 
2846 static void pgb_fixed(const char *image_name, uintptr_t guest_loaddr,
2847                       uintptr_t guest_hiaddr, uintptr_t align)
2848 {
2849     PGBAddrs ga;
2850     uintptr_t brk = (uintptr_t)sbrk(0);
2851 
2852     if (!QEMU_IS_ALIGNED(guest_base, align)) {
2853         fprintf(stderr, "Requested guest base %p does not satisfy "
2854                 "host minimum alignment (0x%" PRIxPTR ")\n",
2855                 (void *)guest_base, align);
2856         exit(EXIT_FAILURE);
2857     }
2858 
2859     if (!pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, !guest_base)
2860         || !pgb_try_mmap_set(&ga, guest_base, brk)) {
2861         pgb_fail_in_use(image_name);
2862     }
2863 }
2864 
2865 /**
2866  * pgb_find_fallback:
2867  *
2868  * This is a fallback method for finding holes in the host address space
2869  * if we don't have the benefit of being able to access /proc/self/map.
2870  * It can potentially take a very long time as we can only dumbly iterate
2871  * up the host address space seeing if the allocation would work.
2872  */
2873 static uintptr_t pgb_find_fallback(const PGBAddrs *ga, uintptr_t align,
2874                                    uintptr_t brk)
2875 {
2876     /* TODO: come up with a better estimate of how much to skip. */
2877     uintptr_t skip = sizeof(uintptr_t) == 4 ? MiB : GiB;
2878 
2879     for (uintptr_t base = skip; ; base += skip) {
2880         base = ROUND_UP(base, align);
2881         if (pgb_try_mmap_set(ga, base, brk)) {
2882             return base;
2883         }
2884         if (base >= -skip) {
2885             return -1;
2886         }
2887     }
2888 }
2889 
2890 static uintptr_t pgb_try_itree(const PGBAddrs *ga, uintptr_t base,
2891                                IntervalTreeRoot *root)
2892 {
2893     for (int i = ga->nbounds - 1; i >= 0; --i) {
2894         uintptr_t s = base + ga->bounds[i][0];
2895         uintptr_t l = base + ga->bounds[i][1];
2896         IntervalTreeNode *n;
2897 
2898         if (l < s) {
2899             /* Wraparound. Skip to advance S to mmap_min_addr. */
2900             return mmap_min_addr - s;
2901         }
2902 
2903         n = interval_tree_iter_first(root, s, l);
2904         if (n != NULL) {
2905             /* Conflict.  Skip to advance S to LAST + 1. */
2906             return n->last - s + 1;
2907         }
2908     }
2909     return 0;  /* success */
2910 }
2911 
2912 static uintptr_t pgb_find_itree(const PGBAddrs *ga, IntervalTreeRoot *root,
2913                                 uintptr_t align, uintptr_t brk)
2914 {
2915     uintptr_t last = mmap_min_addr;
2916     uintptr_t base, skip;
2917 
2918     while (true) {
2919         base = ROUND_UP(last, align);
2920         if (base < last) {
2921             return -1;
2922         }
2923 
2924         skip = pgb_try_itree(ga, base, root);
2925         if (skip == 0) {
2926             break;
2927         }
2928 
2929         last = base + skip;
2930         if (last < base) {
2931             return -1;
2932         }
2933     }
2934 
2935     /*
2936      * We've chosen 'base' based on holes in the interval tree,
2937      * but we don't yet know if it is a valid host address.
2938      * Because it is the first matching hole, if the host addresses
2939      * are invalid we know there are no further matches.
2940      */
2941     return pgb_try_mmap_set(ga, base, brk) ? base : -1;
2942 }
2943 
2944 static void pgb_dynamic(const char *image_name, uintptr_t guest_loaddr,
2945                         uintptr_t guest_hiaddr, uintptr_t align)
2946 {
2947     IntervalTreeRoot *root;
2948     uintptr_t brk, ret;
2949     PGBAddrs ga;
2950 
2951     /* Try the identity map first. */
2952     if (pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, true)) {
2953         brk = (uintptr_t)sbrk(0);
2954         if (pgb_try_mmap_set(&ga, 0, brk)) {
2955             guest_base = 0;
2956             return;
2957         }
2958     }
2959 
2960     /*
2961      * Rebuild the address set for non-identity map.
2962      * This differs in the mapping of the guest NULL page.
2963      */
2964     pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, false);
2965 
2966     root = read_self_maps();
2967 
2968     /* Read brk after we've read the maps, which will malloc. */
2969     brk = (uintptr_t)sbrk(0);
2970 
2971     if (!root) {
2972         ret = pgb_find_fallback(&ga, align, brk);
2973     } else {
2974         /*
2975          * Reserve the area close to the host brk.
2976          * This will be freed with the rest of the tree.
2977          */
2978         IntervalTreeNode *b = g_new0(IntervalTreeNode, 1);
2979         b->start = brk;
2980         b->last = brk + 16 * MiB - 1;
2981         interval_tree_insert(b, root);
2982 
2983         ret = pgb_find_itree(&ga, root, align, brk);
2984         free_self_maps(root);
2985     }
2986 
2987     if (ret == -1) {
2988         int w = TARGET_LONG_BITS / 4;
2989 
2990         error_report("%s: Unable to find a guest_base to satisfy all "
2991                      "guest address mapping requirements", image_name);
2992 
2993         for (int i = 0; i < ga.nbounds; ++i) {
2994             error_printf("  %0*" PRIx64 "-%0*" PRIx64 "\n",
2995                          w, (uint64_t)ga.bounds[i][0],
2996                          w, (uint64_t)ga.bounds[i][1]);
2997         }
2998         exit(EXIT_FAILURE);
2999     }
3000     guest_base = ret;
3001 }
3002 
3003 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
3004                       abi_ulong guest_hiaddr)
3005 {
3006     /* In order to use host shmat, we must be able to honor SHMLBA.  */
3007     uintptr_t align = MAX(SHMLBA, TARGET_PAGE_SIZE);
3008 
3009     /* Sanity check the guest binary. */
3010     if (reserved_va) {
3011         if (guest_hiaddr > reserved_va) {
3012             error_report("%s: requires more than reserved virtual "
3013                          "address space (0x%" PRIx64 " > 0x%lx)",
3014                          image_name, (uint64_t)guest_hiaddr, reserved_va);
3015             exit(EXIT_FAILURE);
3016         }
3017     } else {
3018         if (guest_hiaddr != (uintptr_t)guest_hiaddr) {
3019             error_report("%s: requires more virtual address space "
3020                          "than the host can provide (0x%" PRIx64 ")",
3021                          image_name, (uint64_t)guest_hiaddr + 1);
3022             exit(EXIT_FAILURE);
3023         }
3024     }
3025 
3026     if (have_guest_base) {
3027         pgb_fixed(image_name, guest_loaddr, guest_hiaddr, align);
3028     } else {
3029         pgb_dynamic(image_name, guest_loaddr, guest_hiaddr, align);
3030     }
3031 
3032     /* Reserve and initialize the commpage. */
3033     if (!init_guest_commpage()) {
3034         /* We have already probed for the commpage being free. */
3035         g_assert_not_reached();
3036     }
3037 
3038     assert(QEMU_IS_ALIGNED(guest_base, align));
3039     qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
3040                   "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
3041 }
3042 
3043 enum {
3044     /* The string "GNU\0" as a magic number. */
3045     GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
3046     NOTE_DATA_SZ = 1 * KiB,
3047     NOTE_NAME_SZ = 4,
3048     ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
3049 };
3050 
3051 /*
3052  * Process a single gnu_property entry.
3053  * Return false for error.
3054  */
3055 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
3056                                struct image_info *info, bool have_prev_type,
3057                                uint32_t *prev_type, Error **errp)
3058 {
3059     uint32_t pr_type, pr_datasz, step;
3060 
3061     if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
3062         goto error_data;
3063     }
3064     datasz -= *off;
3065     data += *off / sizeof(uint32_t);
3066 
3067     if (datasz < 2 * sizeof(uint32_t)) {
3068         goto error_data;
3069     }
3070     pr_type = data[0];
3071     pr_datasz = data[1];
3072     data += 2;
3073     datasz -= 2 * sizeof(uint32_t);
3074     step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
3075     if (step > datasz) {
3076         goto error_data;
3077     }
3078 
3079     /* Properties are supposed to be unique and sorted on pr_type. */
3080     if (have_prev_type && pr_type <= *prev_type) {
3081         if (pr_type == *prev_type) {
3082             error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
3083         } else {
3084             error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
3085         }
3086         return false;
3087     }
3088     *prev_type = pr_type;
3089 
3090     if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
3091         return false;
3092     }
3093 
3094     *off += 2 * sizeof(uint32_t) + step;
3095     return true;
3096 
3097  error_data:
3098     error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
3099     return false;
3100 }
3101 
3102 /* Process NT_GNU_PROPERTY_TYPE_0. */
3103 static bool parse_elf_properties(const ImageSource *src,
3104                                  struct image_info *info,
3105                                  const struct elf_phdr *phdr,
3106                                  Error **errp)
3107 {
3108     union {
3109         struct elf_note nhdr;
3110         uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
3111     } note;
3112 
3113     int n, off, datasz;
3114     bool have_prev_type;
3115     uint32_t prev_type;
3116 
3117     /* Unless the arch requires properties, ignore them. */
3118     if (!ARCH_USE_GNU_PROPERTY) {
3119         return true;
3120     }
3121 
3122     /* If the properties are crazy large, that's too bad. */
3123     n = phdr->p_filesz;
3124     if (n > sizeof(note)) {
3125         error_setg(errp, "PT_GNU_PROPERTY too large");
3126         return false;
3127     }
3128     if (n < sizeof(note.nhdr)) {
3129         error_setg(errp, "PT_GNU_PROPERTY too small");
3130         return false;
3131     }
3132 
3133     if (!imgsrc_read(&note, phdr->p_offset, n, src, errp)) {
3134         return false;
3135     }
3136 
3137     /*
3138      * The contents of a valid PT_GNU_PROPERTY is a sequence
3139      * of uint32_t -- swap them all now.
3140      */
3141 #ifdef BSWAP_NEEDED
3142     for (int i = 0; i < n / 4; i++) {
3143         bswap32s(note.data + i);
3144     }
3145 #endif
3146 
3147     /*
3148      * Note that nhdr is 3 words, and that the "name" described by namesz
3149      * immediately follows nhdr and is thus at the 4th word.  Further, all
3150      * of the inputs to the kernel's round_up are multiples of 4.
3151      */
3152     if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
3153         note.nhdr.n_namesz != NOTE_NAME_SZ ||
3154         note.data[3] != GNU0_MAGIC) {
3155         error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
3156         return false;
3157     }
3158     off = sizeof(note.nhdr) + NOTE_NAME_SZ;
3159 
3160     datasz = note.nhdr.n_descsz + off;
3161     if (datasz > n) {
3162         error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
3163         return false;
3164     }
3165 
3166     have_prev_type = false;
3167     prev_type = 0;
3168     while (1) {
3169         if (off == datasz) {
3170             return true;  /* end, exit ok */
3171         }
3172         if (!parse_elf_property(note.data, &off, datasz, info,
3173                                 have_prev_type, &prev_type, errp)) {
3174             return false;
3175         }
3176         have_prev_type = true;
3177     }
3178 }
3179 
3180 /**
3181  * load_elf_image: Load an ELF image into the address space.
3182  * @image_name: the filename of the image, to use in error messages.
3183  * @src: the ImageSource from which to read.
3184  * @info: info collected from the loaded image.
3185  * @ehdr: the ELF header, not yet bswapped.
3186  * @pinterp_name: record any PT_INTERP string found.
3187  *
3188  * On return: @info values will be filled in, as necessary or available.
3189  */
3190 
3191 static void load_elf_image(const char *image_name, const ImageSource *src,
3192                            struct image_info *info, struct elfhdr *ehdr,
3193                            char **pinterp_name)
3194 {
3195     g_autofree struct elf_phdr *phdr = NULL;
3196     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
3197     int i, prot_exec;
3198     Error *err = NULL;
3199 
3200     /*
3201      * First of all, some simple consistency checks.
3202      * Note that we rely on the bswapped ehdr staying in bprm_buf,
3203      * for later use by load_elf_binary and create_elf_tables.
3204      */
3205     if (!imgsrc_read(ehdr, 0, sizeof(*ehdr), src, &err)) {
3206         goto exit_errmsg;
3207     }
3208     if (!elf_check_ident(ehdr)) {
3209         error_setg(&err, "Invalid ELF image for this architecture");
3210         goto exit_errmsg;
3211     }
3212     bswap_ehdr(ehdr);
3213     if (!elf_check_ehdr(ehdr)) {
3214         error_setg(&err, "Invalid ELF image for this architecture");
3215         goto exit_errmsg;
3216     }
3217 
3218     phdr = imgsrc_read_alloc(ehdr->e_phoff,
3219                              ehdr->e_phnum * sizeof(struct elf_phdr),
3220                              src, &err);
3221     if (phdr == NULL) {
3222         goto exit_errmsg;
3223     }
3224     bswap_phdr(phdr, ehdr->e_phnum);
3225 
3226     info->nsegs = 0;
3227     info->pt_dynamic_addr = 0;
3228 
3229     mmap_lock();
3230 
3231     /*
3232      * Find the maximum size of the image and allocate an appropriate
3233      * amount of memory to handle that.  Locate the interpreter, if any.
3234      */
3235     loaddr = -1, hiaddr = 0;
3236     info->alignment = 0;
3237     info->exec_stack = EXSTACK_DEFAULT;
3238     for (i = 0; i < ehdr->e_phnum; ++i) {
3239         struct elf_phdr *eppnt = phdr + i;
3240         if (eppnt->p_type == PT_LOAD) {
3241             abi_ulong a = eppnt->p_vaddr & TARGET_PAGE_MASK;
3242             if (a < loaddr) {
3243                 loaddr = a;
3244             }
3245             a = eppnt->p_vaddr + eppnt->p_memsz - 1;
3246             if (a > hiaddr) {
3247                 hiaddr = a;
3248             }
3249             ++info->nsegs;
3250             info->alignment |= eppnt->p_align;
3251         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
3252             g_autofree char *interp_name = NULL;
3253 
3254             if (*pinterp_name) {
3255                 error_setg(&err, "Multiple PT_INTERP entries");
3256                 goto exit_errmsg;
3257             }
3258 
3259             interp_name = imgsrc_read_alloc(eppnt->p_offset, eppnt->p_filesz,
3260                                             src, &err);
3261             if (interp_name == NULL) {
3262                 goto exit_errmsg;
3263             }
3264             if (interp_name[eppnt->p_filesz - 1] != 0) {
3265                 error_setg(&err, "Invalid PT_INTERP entry");
3266                 goto exit_errmsg;
3267             }
3268             *pinterp_name = g_steal_pointer(&interp_name);
3269         } else if (eppnt->p_type == PT_GNU_PROPERTY) {
3270             if (!parse_elf_properties(src, info, eppnt, &err)) {
3271                 goto exit_errmsg;
3272             }
3273         } else if (eppnt->p_type == PT_GNU_STACK) {
3274             info->exec_stack = eppnt->p_flags & PF_X;
3275         }
3276     }
3277 
3278     load_addr = loaddr;
3279 
3280     if (pinterp_name != NULL) {
3281         if (ehdr->e_type == ET_EXEC) {
3282             /*
3283              * Make sure that the low address does not conflict with
3284              * MMAP_MIN_ADDR or the QEMU application itself.
3285              */
3286             probe_guest_base(image_name, loaddr, hiaddr);
3287         } else {
3288             abi_ulong align;
3289 
3290             /*
3291              * The binary is dynamic, but we still need to
3292              * select guest_base.  In this case we pass a size.
3293              */
3294             probe_guest_base(image_name, 0, hiaddr - loaddr);
3295 
3296             /*
3297              * Avoid collision with the loader by providing a different
3298              * default load address.
3299              */
3300             load_addr += elf_et_dyn_base;
3301 
3302             /*
3303              * TODO: Better support for mmap alignment is desirable.
3304              * Since we do not have complete control over the guest
3305              * address space, we prefer the kernel to choose some address
3306              * rather than force the use of LOAD_ADDR via MAP_FIXED.
3307              * But without MAP_FIXED we cannot guarantee alignment,
3308              * only suggest it.
3309              */
3310             align = pow2ceil(info->alignment);
3311             if (align) {
3312                 load_addr &= -align;
3313             }
3314         }
3315     }
3316 
3317     /*
3318      * Reserve address space for all of this.
3319      *
3320      * In the case of ET_EXEC, we supply MAP_FIXED_NOREPLACE so that we get
3321      * exactly the address range that is required.  Without reserved_va,
3322      * the guest address space is not isolated.  We have attempted to avoid
3323      * conflict with the host program itself via probe_guest_base, but using
3324      * MAP_FIXED_NOREPLACE instead of MAP_FIXED provides an extra check.
3325      *
3326      * Otherwise this is ET_DYN, and we are searching for a location
3327      * that can hold the memory space required.  If the image is
3328      * pre-linked, LOAD_ADDR will be non-zero, and the kernel should
3329      * honor that address if it happens to be free.
3330      *
3331      * In both cases, we will overwrite pages in this range with mappings
3332      * from the executable.
3333      */
3334     load_addr = target_mmap(load_addr, (size_t)hiaddr - loaddr + 1, PROT_NONE,
3335                             MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
3336                             (ehdr->e_type == ET_EXEC ? MAP_FIXED_NOREPLACE : 0),
3337                             -1, 0);
3338     if (load_addr == -1) {
3339         goto exit_mmap;
3340     }
3341     load_bias = load_addr - loaddr;
3342 
3343     if (elf_is_fdpic(ehdr)) {
3344         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
3345             g_malloc(sizeof(*loadsegs) * info->nsegs);
3346 
3347         for (i = 0; i < ehdr->e_phnum; ++i) {
3348             switch (phdr[i].p_type) {
3349             case PT_DYNAMIC:
3350                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
3351                 break;
3352             case PT_LOAD:
3353                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
3354                 loadsegs->p_vaddr = phdr[i].p_vaddr;
3355                 loadsegs->p_memsz = phdr[i].p_memsz;
3356                 ++loadsegs;
3357                 break;
3358             }
3359         }
3360     }
3361 
3362     info->load_bias = load_bias;
3363     info->code_offset = load_bias;
3364     info->data_offset = load_bias;
3365     info->load_addr = load_addr;
3366     info->entry = ehdr->e_entry + load_bias;
3367     info->start_code = -1;
3368     info->end_code = 0;
3369     info->start_data = -1;
3370     info->end_data = 0;
3371     /* Usual start for brk is after all sections of the main executable. */
3372     info->brk = TARGET_PAGE_ALIGN(hiaddr + load_bias);
3373     info->elf_flags = ehdr->e_flags;
3374 
3375     prot_exec = PROT_EXEC;
3376 #ifdef TARGET_AARCH64
3377     /*
3378      * If the BTI feature is present, this indicates that the executable
3379      * pages of the startup binary should be mapped with PROT_BTI, so that
3380      * branch targets are enforced.
3381      *
3382      * The startup binary is either the interpreter or the static executable.
3383      * The interpreter is responsible for all pages of a dynamic executable.
3384      *
3385      * Elf notes are backward compatible to older cpus.
3386      * Do not enable BTI unless it is supported.
3387      */
3388     if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
3389         && (pinterp_name == NULL || *pinterp_name == 0)
3390         && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
3391         prot_exec |= TARGET_PROT_BTI;
3392     }
3393 #endif
3394 
3395     for (i = 0; i < ehdr->e_phnum; i++) {
3396         struct elf_phdr *eppnt = phdr + i;
3397         if (eppnt->p_type == PT_LOAD) {
3398             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
3399             int elf_prot = 0;
3400 
3401             if (eppnt->p_flags & PF_R) {
3402                 elf_prot |= PROT_READ;
3403             }
3404             if (eppnt->p_flags & PF_W) {
3405                 elf_prot |= PROT_WRITE;
3406             }
3407             if (eppnt->p_flags & PF_X) {
3408                 elf_prot |= prot_exec;
3409             }
3410 
3411             vaddr = load_bias + eppnt->p_vaddr;
3412             vaddr_po = vaddr & ~TARGET_PAGE_MASK;
3413             vaddr_ps = vaddr & TARGET_PAGE_MASK;
3414 
3415             vaddr_ef = vaddr + eppnt->p_filesz;
3416             vaddr_em = vaddr + eppnt->p_memsz;
3417 
3418             /*
3419              * Some segments may be completely empty, with a non-zero p_memsz
3420              * but no backing file segment.
3421              */
3422             if (eppnt->p_filesz != 0) {
3423                 error = imgsrc_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
3424                                     elf_prot, MAP_PRIVATE | MAP_FIXED,
3425                                     src, eppnt->p_offset - vaddr_po);
3426                 if (error == -1) {
3427                     goto exit_mmap;
3428                 }
3429             }
3430 
3431             /* If the load segment requests extra zeros (e.g. bss), map it. */
3432             if (vaddr_ef < vaddr_em &&
3433                 !zero_bss(vaddr_ef, vaddr_em, elf_prot, &err)) {
3434                 goto exit_errmsg;
3435             }
3436 
3437             /* Find the full program boundaries.  */
3438             if (elf_prot & PROT_EXEC) {
3439                 if (vaddr < info->start_code) {
3440                     info->start_code = vaddr;
3441                 }
3442                 if (vaddr_ef > info->end_code) {
3443                     info->end_code = vaddr_ef;
3444                 }
3445             }
3446             if (elf_prot & PROT_WRITE) {
3447                 if (vaddr < info->start_data) {
3448                     info->start_data = vaddr;
3449                 }
3450                 if (vaddr_ef > info->end_data) {
3451                     info->end_data = vaddr_ef;
3452                 }
3453             }
3454 #ifdef TARGET_MIPS
3455         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
3456             Mips_elf_abiflags_v0 abiflags;
3457 
3458             if (!imgsrc_read(&abiflags, eppnt->p_offset, sizeof(abiflags),
3459                              src, &err)) {
3460                 goto exit_errmsg;
3461             }
3462             bswap_mips_abiflags(&abiflags);
3463             info->fp_abi = abiflags.fp_abi;
3464 #endif
3465         }
3466     }
3467 
3468     if (info->end_data == 0) {
3469         info->start_data = info->end_code;
3470         info->end_data = info->end_code;
3471     }
3472 
3473     if (qemu_log_enabled()) {
3474         load_symbols(ehdr, src, load_bias);
3475     }
3476 
3477     debuginfo_report_elf(image_name, src->fd, load_bias);
3478 
3479     mmap_unlock();
3480 
3481     close(src->fd);
3482     return;
3483 
3484  exit_mmap:
3485     error_setg_errno(&err, errno, "Error mapping file");
3486     goto exit_errmsg;
3487  exit_errmsg:
3488     error_reportf_err(err, "%s: ", image_name);
3489     exit(-1);
3490 }
3491 
3492 static void load_elf_interp(const char *filename, struct image_info *info,
3493                             char bprm_buf[BPRM_BUF_SIZE])
3494 {
3495     struct elfhdr ehdr;
3496     ImageSource src;
3497     int fd, retval;
3498     Error *err = NULL;
3499 
3500     fd = open(path(filename), O_RDONLY);
3501     if (fd < 0) {
3502         error_setg_file_open(&err, errno, filename);
3503         error_report_err(err);
3504         exit(-1);
3505     }
3506 
3507     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
3508     if (retval < 0) {
3509         error_setg_errno(&err, errno, "Error reading file header");
3510         error_reportf_err(err, "%s: ", filename);
3511         exit(-1);
3512     }
3513 
3514     src.fd = fd;
3515     src.cache = bprm_buf;
3516     src.cache_size = retval;
3517 
3518     load_elf_image(filename, &src, info, &ehdr, NULL);
3519 }
3520 
3521 #ifdef VDSO_HEADER
3522 #include VDSO_HEADER
3523 #define  vdso_image_info()  &vdso_image_info
3524 #else
3525 #define  vdso_image_info()  NULL
3526 #endif
3527 
3528 static void load_elf_vdso(struct image_info *info, const VdsoImageInfo *vdso)
3529 {
3530     ImageSource src;
3531     struct elfhdr ehdr;
3532     abi_ulong load_bias, load_addr;
3533 
3534     src.fd = -1;
3535     src.cache = vdso->image;
3536     src.cache_size = vdso->image_size;
3537 
3538     load_elf_image("<internal-vdso>", &src, info, &ehdr, NULL);
3539     load_addr = info->load_addr;
3540     load_bias = info->load_bias;
3541 
3542     /*
3543      * We need to relocate the VDSO image.  The one built into the kernel
3544      * is built for a fixed address.  The one built for QEMU is not, since
3545      * that requires close control of the guest address space.
3546      * We pre-processed the image to locate all of the addresses that need
3547      * to be updated.
3548      */
3549     for (unsigned i = 0, n = vdso->reloc_count; i < n; i++) {
3550         abi_ulong *addr = g2h_untagged(load_addr + vdso->relocs[i]);
3551         *addr = tswapal(tswapal(*addr) + load_bias);
3552     }
3553 
3554     /* Install signal trampolines, if present. */
3555     if (vdso->sigreturn_ofs) {
3556         default_sigreturn = load_addr + vdso->sigreturn_ofs;
3557     }
3558     if (vdso->rt_sigreturn_ofs) {
3559         default_rt_sigreturn = load_addr + vdso->rt_sigreturn_ofs;
3560     }
3561 
3562     /* Remove write from VDSO segment. */
3563     target_mprotect(info->start_data, info->end_data - info->start_data,
3564                     PROT_READ | PROT_EXEC);
3565 }
3566 
3567 static int symfind(const void *s0, const void *s1)
3568 {
3569     struct elf_sym *sym = (struct elf_sym *)s1;
3570     __typeof(sym->st_value) addr = *(uint64_t *)s0;
3571     int result = 0;
3572 
3573     if (addr < sym->st_value) {
3574         result = -1;
3575     } else if (addr >= sym->st_value + sym->st_size) {
3576         result = 1;
3577     }
3578     return result;
3579 }
3580 
3581 static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr)
3582 {
3583 #if ELF_CLASS == ELFCLASS32
3584     struct elf_sym *syms = s->disas_symtab.elf32;
3585 #else
3586     struct elf_sym *syms = s->disas_symtab.elf64;
3587 #endif
3588 
3589     // binary search
3590     struct elf_sym *sym;
3591 
3592     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
3593     if (sym != NULL) {
3594         return s->disas_strtab + sym->st_name;
3595     }
3596 
3597     return "";
3598 }
3599 
3600 /* FIXME: This should use elf_ops.h.inc  */
3601 static int symcmp(const void *s0, const void *s1)
3602 {
3603     struct elf_sym *sym0 = (struct elf_sym *)s0;
3604     struct elf_sym *sym1 = (struct elf_sym *)s1;
3605     return (sym0->st_value < sym1->st_value)
3606         ? -1
3607         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3608 }
3609 
3610 /* Best attempt to load symbols from this ELF object. */
3611 static void load_symbols(struct elfhdr *hdr, const ImageSource *src,
3612                          abi_ulong load_bias)
3613 {
3614     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3615     g_autofree struct elf_shdr *shdr = NULL;
3616     char *strings = NULL;
3617     struct elf_sym *syms = NULL;
3618     struct elf_sym *new_syms;
3619     uint64_t segsz;
3620 
3621     shnum = hdr->e_shnum;
3622     shdr = imgsrc_read_alloc(hdr->e_shoff, shnum * sizeof(struct elf_shdr),
3623                              src, NULL);
3624     if (shdr == NULL) {
3625         return;
3626     }
3627 
3628     bswap_shdr(shdr, shnum);
3629     for (i = 0; i < shnum; ++i) {
3630         if (shdr[i].sh_type == SHT_SYMTAB) {
3631             sym_idx = i;
3632             str_idx = shdr[i].sh_link;
3633             goto found;
3634         }
3635     }
3636 
3637     /* There will be no symbol table if the file was stripped.  */
3638     return;
3639 
3640  found:
3641     /* Now know where the strtab and symtab are.  Snarf them.  */
3642 
3643     segsz = shdr[str_idx].sh_size;
3644     strings = g_try_malloc(segsz);
3645     if (!strings) {
3646         goto give_up;
3647     }
3648     if (!imgsrc_read(strings, shdr[str_idx].sh_offset, segsz, src, NULL)) {
3649         goto give_up;
3650     }
3651 
3652     segsz = shdr[sym_idx].sh_size;
3653     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3654         /*
3655          * Implausibly large symbol table: give up rather than ploughing
3656          * on with the number of symbols calculation overflowing.
3657          */
3658         goto give_up;
3659     }
3660     nsyms = segsz / sizeof(struct elf_sym);
3661     syms = g_try_malloc(segsz);
3662     if (!syms) {
3663         goto give_up;
3664     }
3665     if (!imgsrc_read(syms, shdr[sym_idx].sh_offset, segsz, src, NULL)) {
3666         goto give_up;
3667     }
3668 
3669     for (i = 0; i < nsyms; ) {
3670         bswap_sym(syms + i);
3671         /* Throw away entries which we do not need.  */
3672         if (syms[i].st_shndx == SHN_UNDEF
3673             || syms[i].st_shndx >= SHN_LORESERVE
3674             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3675             if (i < --nsyms) {
3676                 syms[i] = syms[nsyms];
3677             }
3678         } else {
3679 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3680             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
3681             syms[i].st_value &= ~(target_ulong)1;
3682 #endif
3683             syms[i].st_value += load_bias;
3684             i++;
3685         }
3686     }
3687 
3688     /* No "useful" symbol.  */
3689     if (nsyms == 0) {
3690         goto give_up;
3691     }
3692 
3693     /*
3694      * Attempt to free the storage associated with the local symbols
3695      * that we threw away.  Whether or not this has any effect on the
3696      * memory allocation depends on the malloc implementation and how
3697      * many symbols we managed to discard.
3698      */
3699     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3700     if (new_syms == NULL) {
3701         goto give_up;
3702     }
3703     syms = new_syms;
3704 
3705     qsort(syms, nsyms, sizeof(*syms), symcmp);
3706 
3707     {
3708         struct syminfo *s = g_new(struct syminfo, 1);
3709 
3710         s->disas_strtab = strings;
3711         s->disas_num_syms = nsyms;
3712 #if ELF_CLASS == ELFCLASS32
3713         s->disas_symtab.elf32 = syms;
3714 #else
3715         s->disas_symtab.elf64 = syms;
3716 #endif
3717         s->lookup_symbol = lookup_symbolxx;
3718         s->next = syminfos;
3719         syminfos = s;
3720     }
3721     return;
3722 
3723  give_up:
3724     g_free(strings);
3725     g_free(syms);
3726 }
3727 
3728 uint32_t get_elf_eflags(int fd)
3729 {
3730     struct elfhdr ehdr;
3731     off_t offset;
3732     int ret;
3733 
3734     /* Read ELF header */
3735     offset = lseek(fd, 0, SEEK_SET);
3736     if (offset == (off_t) -1) {
3737         return 0;
3738     }
3739     ret = read(fd, &ehdr, sizeof(ehdr));
3740     if (ret < sizeof(ehdr)) {
3741         return 0;
3742     }
3743     offset = lseek(fd, offset, SEEK_SET);
3744     if (offset == (off_t) -1) {
3745         return 0;
3746     }
3747 
3748     /* Check ELF signature */
3749     if (!elf_check_ident(&ehdr)) {
3750         return 0;
3751     }
3752 
3753     /* check header */
3754     bswap_ehdr(&ehdr);
3755     if (!elf_check_ehdr(&ehdr)) {
3756         return 0;
3757     }
3758 
3759     /* return architecture id */
3760     return ehdr.e_flags;
3761 }
3762 
3763 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3764 {
3765     /*
3766      * We need a copy of the elf header for passing to create_elf_tables.
3767      * We will have overwritten the original when we re-use bprm->buf
3768      * while loading the interpreter.  Allocate the storage for this now
3769      * and let elf_load_image do any swapping that may be required.
3770      */
3771     struct elfhdr ehdr;
3772     struct image_info interp_info, vdso_info;
3773     char *elf_interpreter = NULL;
3774     char *scratch;
3775 
3776     memset(&interp_info, 0, sizeof(interp_info));
3777 #ifdef TARGET_MIPS
3778     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3779 #endif
3780 
3781     load_elf_image(bprm->filename, &bprm->src, info, &ehdr, &elf_interpreter);
3782 
3783     /* Do this so that we can load the interpreter, if need be.  We will
3784        change some of these later */
3785     bprm->p = setup_arg_pages(bprm, info);
3786 
3787     scratch = g_new0(char, TARGET_PAGE_SIZE);
3788     if (STACK_GROWS_DOWN) {
3789         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3790                                    bprm->p, info->stack_limit);
3791         info->file_string = bprm->p;
3792         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3793                                    bprm->p, info->stack_limit);
3794         info->env_strings = bprm->p;
3795         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3796                                    bprm->p, info->stack_limit);
3797         info->arg_strings = bprm->p;
3798     } else {
3799         info->arg_strings = bprm->p;
3800         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3801                                    bprm->p, info->stack_limit);
3802         info->env_strings = bprm->p;
3803         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3804                                    bprm->p, info->stack_limit);
3805         info->file_string = bprm->p;
3806         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3807                                    bprm->p, info->stack_limit);
3808     }
3809 
3810     g_free(scratch);
3811 
3812     if (!bprm->p) {
3813         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3814         exit(-1);
3815     }
3816 
3817     if (elf_interpreter) {
3818         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3819 
3820         /*
3821          * While unusual because of ELF_ET_DYN_BASE, if we are unlucky
3822          * with the mappings the interpreter can be loaded above but
3823          * near the main executable, which can leave very little room
3824          * for the heap.
3825          * If the current brk has less than 16MB, use the end of the
3826          * interpreter.
3827          */
3828         if (interp_info.brk > info->brk &&
3829             interp_info.load_bias - info->brk < 16 * MiB)  {
3830             info->brk = interp_info.brk;
3831         }
3832 
3833         /* If the program interpreter is one of these two, then assume
3834            an iBCS2 image.  Otherwise assume a native linux image.  */
3835 
3836         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3837             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3838             info->personality = PER_SVR4;
3839 
3840             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
3841                and some applications "depend" upon this behavior.  Since
3842                we do not have the power to recompile these, we emulate
3843                the SVr4 behavior.  Sigh.  */
3844             target_mmap(0, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC,
3845                         MAP_FIXED_NOREPLACE | MAP_PRIVATE | MAP_ANONYMOUS,
3846                         -1, 0);
3847         }
3848 #ifdef TARGET_MIPS
3849         info->interp_fp_abi = interp_info.fp_abi;
3850 #endif
3851     }
3852 
3853     /*
3854      * Load a vdso if available, which will amongst other things contain the
3855      * signal trampolines.  Otherwise, allocate a separate page for them.
3856      */
3857     const VdsoImageInfo *vdso = vdso_image_info();
3858     if (vdso) {
3859         load_elf_vdso(&vdso_info, vdso);
3860         info->vdso = vdso_info.load_bias;
3861     } else if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
3862         abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
3863                                           PROT_READ | PROT_WRITE,
3864                                           MAP_PRIVATE | MAP_ANON, -1, 0);
3865         if (tramp_page == -1) {
3866             return -errno;
3867         }
3868 
3869         setup_sigtramp(tramp_page);
3870         target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
3871     }
3872 
3873     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &ehdr, info,
3874                                 elf_interpreter ? &interp_info : NULL,
3875                                 vdso ? &vdso_info : NULL);
3876     info->start_stack = bprm->p;
3877 
3878     /* If we have an interpreter, set that as the program's entry point.
3879        Copy the load_bias as well, to help PPC64 interpret the entry
3880        point as a function descriptor.  Do this after creating elf tables
3881        so that we copy the original program entry point into the AUXV.  */
3882     if (elf_interpreter) {
3883         info->load_bias = interp_info.load_bias;
3884         info->entry = interp_info.entry;
3885         g_free(elf_interpreter);
3886     }
3887 
3888 #ifdef USE_ELF_CORE_DUMP
3889     bprm->core_dump = &elf_core_dump;
3890 #endif
3891 
3892     return 0;
3893 }
3894 
3895 #ifdef USE_ELF_CORE_DUMP
3896 #include "exec/translate-all.h"
3897 
3898 /*
3899  * Definitions to generate Intel SVR4-like core files.
3900  * These mostly have the same names as the SVR4 types with "target_elf_"
3901  * tacked on the front to prevent clashes with linux definitions,
3902  * and the typedef forms have been avoided.  This is mostly like
3903  * the SVR4 structure, but more Linuxy, with things that Linux does
3904  * not support and which gdb doesn't really use excluded.
3905  *
3906  * Fields we don't dump (their contents is zero) in linux-user qemu
3907  * are marked with XXX.
3908  *
3909  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3910  *
3911  * Porting ELF coredump for target is (quite) simple process.  First you
3912  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3913  * the target resides):
3914  *
3915  * #define USE_ELF_CORE_DUMP
3916  *
3917  * Next you define type of register set used for dumping.  ELF specification
3918  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3919  *
3920  * typedef <target_regtype> target_elf_greg_t;
3921  * #define ELF_NREG <number of registers>
3922  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3923  *
3924  * Last step is to implement target specific function that copies registers
3925  * from given cpu into just specified register set.  Prototype is:
3926  *
3927  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3928  *                                const CPUArchState *env);
3929  *
3930  * Parameters:
3931  *     regs - copy register values into here (allocated and zeroed by caller)
3932  *     env - copy registers from here
3933  *
3934  * Example for ARM target is provided in this file.
3935  */
3936 
3937 struct target_elf_siginfo {
3938     abi_int    si_signo; /* signal number */
3939     abi_int    si_code;  /* extra code */
3940     abi_int    si_errno; /* errno */
3941 };
3942 
3943 struct target_elf_prstatus {
3944     struct target_elf_siginfo pr_info;      /* Info associated with signal */
3945     abi_short          pr_cursig;    /* Current signal */
3946     abi_ulong          pr_sigpend;   /* XXX */
3947     abi_ulong          pr_sighold;   /* XXX */
3948     target_pid_t       pr_pid;
3949     target_pid_t       pr_ppid;
3950     target_pid_t       pr_pgrp;
3951     target_pid_t       pr_sid;
3952     struct target_timeval pr_utime;  /* XXX User time */
3953     struct target_timeval pr_stime;  /* XXX System time */
3954     struct target_timeval pr_cutime; /* XXX Cumulative user time */
3955     struct target_timeval pr_cstime; /* XXX Cumulative system time */
3956     target_elf_gregset_t      pr_reg;       /* GP registers */
3957     abi_int            pr_fpvalid;   /* XXX */
3958 };
3959 
3960 #define ELF_PRARGSZ     (80) /* Number of chars for args */
3961 
3962 struct target_elf_prpsinfo {
3963     char         pr_state;       /* numeric process state */
3964     char         pr_sname;       /* char for pr_state */
3965     char         pr_zomb;        /* zombie */
3966     char         pr_nice;        /* nice val */
3967     abi_ulong    pr_flag;        /* flags */
3968     target_uid_t pr_uid;
3969     target_gid_t pr_gid;
3970     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3971     /* Lots missing */
3972     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3973     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3974 };
3975 
3976 #ifdef BSWAP_NEEDED
3977 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3978 {
3979     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3980     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3981     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3982     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3983     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3984     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3985     prstatus->pr_pid = tswap32(prstatus->pr_pid);
3986     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3987     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3988     prstatus->pr_sid = tswap32(prstatus->pr_sid);
3989     /* cpu times are not filled, so we skip them */
3990     /* regs should be in correct format already */
3991     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3992 }
3993 
3994 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3995 {
3996     psinfo->pr_flag = tswapal(psinfo->pr_flag);
3997     psinfo->pr_uid = tswap16(psinfo->pr_uid);
3998     psinfo->pr_gid = tswap16(psinfo->pr_gid);
3999     psinfo->pr_pid = tswap32(psinfo->pr_pid);
4000     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
4001     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
4002     psinfo->pr_sid = tswap32(psinfo->pr_sid);
4003 }
4004 
4005 static void bswap_note(struct elf_note *en)
4006 {
4007     bswap32s(&en->n_namesz);
4008     bswap32s(&en->n_descsz);
4009     bswap32s(&en->n_type);
4010 }
4011 #else
4012 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
4013 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
4014 static inline void bswap_note(struct elf_note *en) { }
4015 #endif /* BSWAP_NEEDED */
4016 
4017 /*
4018  * Calculate file (dump) size of given memory region.
4019  */
4020 static size_t vma_dump_size(target_ulong start, target_ulong end,
4021                             unsigned long flags)
4022 {
4023     /* The area must be readable. */
4024     if (!(flags & PAGE_READ)) {
4025         return 0;
4026     }
4027 
4028     /*
4029      * Usually we don't dump executable pages as they contain
4030      * non-writable code that debugger can read directly from
4031      * target library etc. If there is no elf header, we dump it.
4032      */
4033     if (!(flags & PAGE_WRITE_ORG) &&
4034         (flags & PAGE_EXEC) &&
4035         memcmp(g2h_untagged(start), ELFMAG, SELFMAG) == 0) {
4036         return 0;
4037     }
4038 
4039     return end - start;
4040 }
4041 
4042 static size_t size_note(const char *name, size_t datasz)
4043 {
4044     size_t namesz = strlen(name) + 1;
4045 
4046     namesz = ROUND_UP(namesz, 4);
4047     datasz = ROUND_UP(datasz, 4);
4048 
4049     return sizeof(struct elf_note) + namesz + datasz;
4050 }
4051 
4052 static void *fill_note(void **pptr, int type, const char *name, size_t datasz)
4053 {
4054     void *ptr = *pptr;
4055     struct elf_note *n = ptr;
4056     size_t namesz = strlen(name) + 1;
4057 
4058     n->n_namesz = namesz;
4059     n->n_descsz = datasz;
4060     n->n_type = type;
4061     bswap_note(n);
4062 
4063     ptr += sizeof(*n);
4064     memcpy(ptr, name, namesz);
4065 
4066     namesz = ROUND_UP(namesz, 4);
4067     datasz = ROUND_UP(datasz, 4);
4068 
4069     *pptr = ptr + namesz + datasz;
4070     return ptr + namesz;
4071 }
4072 
4073 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
4074                             uint32_t flags)
4075 {
4076     memcpy(elf->e_ident, ELFMAG, SELFMAG);
4077 
4078     elf->e_ident[EI_CLASS] = ELF_CLASS;
4079     elf->e_ident[EI_DATA] = ELF_DATA;
4080     elf->e_ident[EI_VERSION] = EV_CURRENT;
4081     elf->e_ident[EI_OSABI] = ELF_OSABI;
4082 
4083     elf->e_type = ET_CORE;
4084     elf->e_machine = machine;
4085     elf->e_version = EV_CURRENT;
4086     elf->e_phoff = sizeof(struct elfhdr);
4087     elf->e_flags = flags;
4088     elf->e_ehsize = sizeof(struct elfhdr);
4089     elf->e_phentsize = sizeof(struct elf_phdr);
4090     elf->e_phnum = segs;
4091 
4092     bswap_ehdr(elf);
4093 }
4094 
4095 static void fill_elf_note_phdr(struct elf_phdr *phdr, size_t sz, off_t offset)
4096 {
4097     phdr->p_type = PT_NOTE;
4098     phdr->p_offset = offset;
4099     phdr->p_filesz = sz;
4100 
4101     bswap_phdr(phdr, 1);
4102 }
4103 
4104 static void fill_prstatus_note(void *data, const TaskState *ts,
4105                                CPUState *cpu, int signr)
4106 {
4107     /*
4108      * Because note memory is only aligned to 4, and target_elf_prstatus
4109      * may well have higher alignment requirements, fill locally and
4110      * memcpy to the destination afterward.
4111      */
4112     struct target_elf_prstatus prstatus = {
4113         .pr_info.si_signo = signr,
4114         .pr_cursig = signr,
4115         .pr_pid = ts->ts_tid,
4116         .pr_ppid = getppid(),
4117         .pr_pgrp = getpgrp(),
4118         .pr_sid = getsid(0),
4119     };
4120 
4121     elf_core_copy_regs(&prstatus.pr_reg, cpu_env(cpu));
4122     bswap_prstatus(&prstatus);
4123     memcpy(data, &prstatus, sizeof(prstatus));
4124 }
4125 
4126 static void fill_prpsinfo_note(void *data, const TaskState *ts)
4127 {
4128     /*
4129      * Because note memory is only aligned to 4, and target_elf_prpsinfo
4130      * may well have higher alignment requirements, fill locally and
4131      * memcpy to the destination afterward.
4132      */
4133     struct target_elf_prpsinfo psinfo = {
4134         .pr_pid = getpid(),
4135         .pr_ppid = getppid(),
4136         .pr_pgrp = getpgrp(),
4137         .pr_sid = getsid(0),
4138         .pr_uid = getuid(),
4139         .pr_gid = getgid(),
4140     };
4141     char *base_filename;
4142     size_t len;
4143 
4144     len = ts->info->env_strings - ts->info->arg_strings;
4145     len = MIN(len, ELF_PRARGSZ);
4146     memcpy(&psinfo.pr_psargs, g2h_untagged(ts->info->arg_strings), len);
4147     for (size_t i = 0; i < len; i++) {
4148         if (psinfo.pr_psargs[i] == 0) {
4149             psinfo.pr_psargs[i] = ' ';
4150         }
4151     }
4152 
4153     base_filename = g_path_get_basename(ts->bprm->filename);
4154     /*
4155      * Using strncpy here is fine: at max-length,
4156      * this field is not NUL-terminated.
4157      */
4158     strncpy(psinfo.pr_fname, base_filename, sizeof(psinfo.pr_fname));
4159     g_free(base_filename);
4160 
4161     bswap_psinfo(&psinfo);
4162     memcpy(data, &psinfo, sizeof(psinfo));
4163 }
4164 
4165 static void fill_auxv_note(void *data, const TaskState *ts)
4166 {
4167     memcpy(data, g2h_untagged(ts->info->saved_auxv), ts->info->auxv_len);
4168 }
4169 
4170 /*
4171  * Constructs name of coredump file.  We have following convention
4172  * for the name:
4173  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
4174  *
4175  * Returns the filename
4176  */
4177 static char *core_dump_filename(const TaskState *ts)
4178 {
4179     g_autoptr(GDateTime) now = g_date_time_new_now_local();
4180     g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
4181     g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
4182 
4183     return g_strdup_printf("qemu_%s_%s_%d.core",
4184                            base_filename, nowstr, (int)getpid());
4185 }
4186 
4187 static int dump_write(int fd, const void *ptr, size_t size)
4188 {
4189     const char *bufp = (const char *)ptr;
4190     ssize_t bytes_written, bytes_left;
4191 
4192     bytes_written = 0;
4193     bytes_left = size;
4194 
4195     /*
4196      * In normal conditions, single write(2) should do but
4197      * in case of socket etc. this mechanism is more portable.
4198      */
4199     do {
4200         bytes_written = write(fd, bufp, bytes_left);
4201         if (bytes_written < 0) {
4202             if (errno == EINTR)
4203                 continue;
4204             return (-1);
4205         } else if (bytes_written == 0) { /* eof */
4206             return (-1);
4207         }
4208         bufp += bytes_written;
4209         bytes_left -= bytes_written;
4210     } while (bytes_left > 0);
4211 
4212     return (0);
4213 }
4214 
4215 static int wmr_page_unprotect_regions(void *opaque, target_ulong start,
4216                                       target_ulong end, unsigned long flags)
4217 {
4218     if ((flags & (PAGE_WRITE | PAGE_WRITE_ORG)) == PAGE_WRITE_ORG) {
4219         size_t step = MAX(TARGET_PAGE_SIZE, qemu_real_host_page_size());
4220 
4221         while (1) {
4222             page_unprotect(start, 0);
4223             if (end - start <= step) {
4224                 break;
4225             }
4226             start += step;
4227         }
4228     }
4229     return 0;
4230 }
4231 
4232 typedef struct {
4233     unsigned count;
4234     size_t size;
4235 } CountAndSizeRegions;
4236 
4237 static int wmr_count_and_size_regions(void *opaque, target_ulong start,
4238                                       target_ulong end, unsigned long flags)
4239 {
4240     CountAndSizeRegions *css = opaque;
4241 
4242     css->count++;
4243     css->size += vma_dump_size(start, end, flags);
4244     return 0;
4245 }
4246 
4247 typedef struct {
4248     struct elf_phdr *phdr;
4249     off_t offset;
4250 } FillRegionPhdr;
4251 
4252 static int wmr_fill_region_phdr(void *opaque, target_ulong start,
4253                                 target_ulong end, unsigned long flags)
4254 {
4255     FillRegionPhdr *d = opaque;
4256     struct elf_phdr *phdr = d->phdr;
4257 
4258     phdr->p_type = PT_LOAD;
4259     phdr->p_vaddr = start;
4260     phdr->p_paddr = 0;
4261     phdr->p_filesz = vma_dump_size(start, end, flags);
4262     phdr->p_offset = d->offset;
4263     d->offset += phdr->p_filesz;
4264     phdr->p_memsz = end - start;
4265     phdr->p_flags = (flags & PAGE_READ ? PF_R : 0)
4266                   | (flags & PAGE_WRITE_ORG ? PF_W : 0)
4267                   | (flags & PAGE_EXEC ? PF_X : 0);
4268     phdr->p_align = ELF_EXEC_PAGESIZE;
4269 
4270     bswap_phdr(phdr, 1);
4271     d->phdr = phdr + 1;
4272     return 0;
4273 }
4274 
4275 static int wmr_write_region(void *opaque, target_ulong start,
4276                             target_ulong end, unsigned long flags)
4277 {
4278     int fd = *(int *)opaque;
4279     size_t size = vma_dump_size(start, end, flags);
4280 
4281     if (!size) {
4282         return 0;
4283     }
4284     return dump_write(fd, g2h_untagged(start), size);
4285 }
4286 
4287 /*
4288  * Write out ELF coredump.
4289  *
4290  * See documentation of ELF object file format in:
4291  * http://www.caldera.com/developers/devspecs/gabi41.pdf
4292  *
4293  * Coredump format in linux is following:
4294  *
4295  * 0   +----------------------+         \
4296  *     | ELF header           | ET_CORE  |
4297  *     +----------------------+          |
4298  *     | ELF program headers  |          |--- headers
4299  *     | - NOTE section       |          |
4300  *     | - PT_LOAD sections   |          |
4301  *     +----------------------+         /
4302  *     | NOTEs:               |
4303  *     | - NT_PRSTATUS        |
4304  *     | - NT_PRSINFO         |
4305  *     | - NT_AUXV            |
4306  *     +----------------------+ <-- aligned to target page
4307  *     | Process memory dump  |
4308  *     :                      :
4309  *     .                      .
4310  *     :                      :
4311  *     |                      |
4312  *     +----------------------+
4313  *
4314  * NT_PRSTATUS -> struct elf_prstatus (per thread)
4315  * NT_PRSINFO  -> struct elf_prpsinfo
4316  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
4317  *
4318  * Format follows System V format as close as possible.  Current
4319  * version limitations are as follows:
4320  *     - no floating point registers are dumped
4321  *
4322  * Function returns 0 in case of success, negative errno otherwise.
4323  *
4324  * TODO: make this work also during runtime: it should be
4325  * possible to force coredump from running process and then
4326  * continue processing.  For example qemu could set up SIGUSR2
4327  * handler (provided that target process haven't registered
4328  * handler for that) that does the dump when signal is received.
4329  */
4330 static int elf_core_dump(int signr, const CPUArchState *env)
4331 {
4332     const CPUState *cpu = env_cpu((CPUArchState *)env);
4333     const TaskState *ts = (const TaskState *)get_task_state((CPUState *)cpu);
4334     struct rlimit dumpsize;
4335     CountAndSizeRegions css;
4336     off_t offset, note_offset, data_offset;
4337     size_t note_size;
4338     int cpus, ret;
4339     int fd = -1;
4340     CPUState *cpu_iter;
4341 
4342     if (prctl(PR_GET_DUMPABLE) == 0) {
4343         return 0;
4344     }
4345 
4346     if (getrlimit(RLIMIT_CORE, &dumpsize) < 0 || dumpsize.rlim_cur == 0) {
4347         return 0;
4348     }
4349 
4350     cpu_list_lock();
4351     mmap_lock();
4352 
4353     /* By unprotecting, we merge vmas that might be split. */
4354     walk_memory_regions(NULL, wmr_page_unprotect_regions);
4355 
4356     /*
4357      * Walk through target process memory mappings and
4358      * set up structure containing this information.
4359      */
4360     memset(&css, 0, sizeof(css));
4361     walk_memory_regions(&css, wmr_count_and_size_regions);
4362 
4363     cpus = 0;
4364     CPU_FOREACH(cpu_iter) {
4365         cpus++;
4366     }
4367 
4368     offset = sizeof(struct elfhdr);
4369     offset += (css.count + 1) * sizeof(struct elf_phdr);
4370     note_offset = offset;
4371 
4372     offset += size_note("CORE", ts->info->auxv_len);
4373     offset += size_note("CORE", sizeof(struct target_elf_prpsinfo));
4374     offset += size_note("CORE", sizeof(struct target_elf_prstatus)) * cpus;
4375     note_size = offset - note_offset;
4376     data_offset = ROUND_UP(offset, ELF_EXEC_PAGESIZE);
4377 
4378     /* Do not dump if the corefile size exceeds the limit. */
4379     if (dumpsize.rlim_cur != RLIM_INFINITY
4380         && dumpsize.rlim_cur < data_offset + css.size) {
4381         errno = 0;
4382         goto out;
4383     }
4384 
4385     {
4386         g_autofree char *corefile = core_dump_filename(ts);
4387         fd = open(corefile, O_WRONLY | O_CREAT | O_TRUNC,
4388                   S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH);
4389     }
4390     if (fd < 0) {
4391         goto out;
4392     }
4393 
4394     /*
4395      * There is a fair amount of alignment padding within the notes
4396      * as well as preceeding the process memory.  Allocate a zeroed
4397      * block to hold it all.  Write all of the headers directly into
4398      * this buffer and then write it out as a block.
4399      */
4400     {
4401         g_autofree void *header = g_malloc0(data_offset);
4402         FillRegionPhdr frp;
4403         void *hptr, *dptr;
4404 
4405         /* Create elf file header. */
4406         hptr = header;
4407         fill_elf_header(hptr, css.count + 1, ELF_MACHINE, 0);
4408         hptr += sizeof(struct elfhdr);
4409 
4410         /* Create elf program headers. */
4411         fill_elf_note_phdr(hptr, note_size, note_offset);
4412         hptr += sizeof(struct elf_phdr);
4413 
4414         frp.phdr = hptr;
4415         frp.offset = data_offset;
4416         walk_memory_regions(&frp, wmr_fill_region_phdr);
4417         hptr = frp.phdr;
4418 
4419         /* Create the notes. */
4420         dptr = fill_note(&hptr, NT_AUXV, "CORE", ts->info->auxv_len);
4421         fill_auxv_note(dptr, ts);
4422 
4423         dptr = fill_note(&hptr, NT_PRPSINFO, "CORE",
4424                          sizeof(struct target_elf_prpsinfo));
4425         fill_prpsinfo_note(dptr, ts);
4426 
4427         CPU_FOREACH(cpu_iter) {
4428             dptr = fill_note(&hptr, NT_PRSTATUS, "CORE",
4429                              sizeof(struct target_elf_prstatus));
4430             fill_prstatus_note(dptr, ts, cpu_iter,
4431                                cpu_iter == cpu ? signr : 0);
4432         }
4433 
4434         if (dump_write(fd, header, data_offset) < 0) {
4435             goto out;
4436         }
4437     }
4438 
4439     /*
4440      * Finally write process memory into the corefile as well.
4441      */
4442     if (walk_memory_regions(&fd, wmr_write_region) < 0) {
4443         goto out;
4444     }
4445     errno = 0;
4446 
4447  out:
4448     ret = -errno;
4449     mmap_unlock();
4450     cpu_list_unlock();
4451     if (fd >= 0) {
4452         close(fd);
4453     }
4454     return ret;
4455 }
4456 #endif /* USE_ELF_CORE_DUMP */
4457 
4458 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4459 {
4460     init_thread(regs, infop);
4461 }
4462