xref: /openbmc/qemu/linux-user/elfload.c (revision de15df5ead400b7c3d0cf21c8164a7686dc81933)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7 
8 #include "qemu.h"
9 #include "disas/disas.h"
10 #include "qemu/path.h"
11 #include "qemu/queue.h"
12 #include "qemu/guest-random.h"
13 #include "qemu/units.h"
14 #include "qemu/selfmap.h"
15 
16 #ifdef _ARCH_PPC64
17 #undef ARCH_DLINFO
18 #undef ELF_PLATFORM
19 #undef ELF_HWCAP
20 #undef ELF_HWCAP2
21 #undef ELF_CLASS
22 #undef ELF_DATA
23 #undef ELF_ARCH
24 #endif
25 
26 #define ELF_OSABI   ELFOSABI_SYSV
27 
28 /* from personality.h */
29 
30 /*
31  * Flags for bug emulation.
32  *
33  * These occupy the top three bytes.
34  */
35 enum {
36     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
37     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
38                                            descriptors (signal handling) */
39     MMAP_PAGE_ZERO =    0x0100000,
40     ADDR_COMPAT_LAYOUT = 0x0200000,
41     READ_IMPLIES_EXEC = 0x0400000,
42     ADDR_LIMIT_32BIT =  0x0800000,
43     SHORT_INODE =       0x1000000,
44     WHOLE_SECONDS =     0x2000000,
45     STICKY_TIMEOUTS =   0x4000000,
46     ADDR_LIMIT_3GB =    0x8000000,
47 };
48 
49 /*
50  * Personality types.
51  *
52  * These go in the low byte.  Avoid using the top bit, it will
53  * conflict with error returns.
54  */
55 enum {
56     PER_LINUX =         0x0000,
57     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
58     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
59     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
60     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
61     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
62     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
63     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
64     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
65     PER_BSD =           0x0006,
66     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
67     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
68     PER_LINUX32 =       0x0008,
69     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
70     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
71     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
72     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
73     PER_RISCOS =        0x000c,
74     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
75     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
76     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
77     PER_HPUX =          0x0010,
78     PER_MASK =          0x00ff,
79 };
80 
81 /*
82  * Return the base personality without flags.
83  */
84 #define personality(pers)       (pers & PER_MASK)
85 
86 int info_is_fdpic(struct image_info *info)
87 {
88     return info->personality == PER_LINUX_FDPIC;
89 }
90 
91 /* this flag is uneffective under linux too, should be deleted */
92 #ifndef MAP_DENYWRITE
93 #define MAP_DENYWRITE 0
94 #endif
95 
96 /* should probably go in elf.h */
97 #ifndef ELIBBAD
98 #define ELIBBAD 80
99 #endif
100 
101 #ifdef TARGET_WORDS_BIGENDIAN
102 #define ELF_DATA        ELFDATA2MSB
103 #else
104 #define ELF_DATA        ELFDATA2LSB
105 #endif
106 
107 #ifdef TARGET_ABI_MIPSN32
108 typedef abi_ullong      target_elf_greg_t;
109 #define tswapreg(ptr)   tswap64(ptr)
110 #else
111 typedef abi_ulong       target_elf_greg_t;
112 #define tswapreg(ptr)   tswapal(ptr)
113 #endif
114 
115 #ifdef USE_UID16
116 typedef abi_ushort      target_uid_t;
117 typedef abi_ushort      target_gid_t;
118 #else
119 typedef abi_uint        target_uid_t;
120 typedef abi_uint        target_gid_t;
121 #endif
122 typedef abi_int         target_pid_t;
123 
124 #ifdef TARGET_I386
125 
126 #define ELF_PLATFORM get_elf_platform()
127 
128 static const char *get_elf_platform(void)
129 {
130     static char elf_platform[] = "i386";
131     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
132     if (family > 6)
133         family = 6;
134     if (family >= 3)
135         elf_platform[1] = '0' + family;
136     return elf_platform;
137 }
138 
139 #define ELF_HWCAP get_elf_hwcap()
140 
141 static uint32_t get_elf_hwcap(void)
142 {
143     X86CPU *cpu = X86_CPU(thread_cpu);
144 
145     return cpu->env.features[FEAT_1_EDX];
146 }
147 
148 #ifdef TARGET_X86_64
149 #define ELF_START_MMAP 0x2aaaaab000ULL
150 
151 #define ELF_CLASS      ELFCLASS64
152 #define ELF_ARCH       EM_X86_64
153 
154 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
155 {
156     regs->rax = 0;
157     regs->rsp = infop->start_stack;
158     regs->rip = infop->entry;
159 }
160 
161 #define ELF_NREG    27
162 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
163 
164 /*
165  * Note that ELF_NREG should be 29 as there should be place for
166  * TRAPNO and ERR "registers" as well but linux doesn't dump
167  * those.
168  *
169  * See linux kernel: arch/x86/include/asm/elf.h
170  */
171 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
172 {
173     (*regs)[0] = env->regs[15];
174     (*regs)[1] = env->regs[14];
175     (*regs)[2] = env->regs[13];
176     (*regs)[3] = env->regs[12];
177     (*regs)[4] = env->regs[R_EBP];
178     (*regs)[5] = env->regs[R_EBX];
179     (*regs)[6] = env->regs[11];
180     (*regs)[7] = env->regs[10];
181     (*regs)[8] = env->regs[9];
182     (*regs)[9] = env->regs[8];
183     (*regs)[10] = env->regs[R_EAX];
184     (*regs)[11] = env->regs[R_ECX];
185     (*regs)[12] = env->regs[R_EDX];
186     (*regs)[13] = env->regs[R_ESI];
187     (*regs)[14] = env->regs[R_EDI];
188     (*regs)[15] = env->regs[R_EAX]; /* XXX */
189     (*regs)[16] = env->eip;
190     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
191     (*regs)[18] = env->eflags;
192     (*regs)[19] = env->regs[R_ESP];
193     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
194     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
195     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
196     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
197     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
198     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
199     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
200 }
201 
202 #else
203 
204 #define ELF_START_MMAP 0x80000000
205 
206 /*
207  * This is used to ensure we don't load something for the wrong architecture.
208  */
209 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
210 
211 /*
212  * These are used to set parameters in the core dumps.
213  */
214 #define ELF_CLASS       ELFCLASS32
215 #define ELF_ARCH        EM_386
216 
217 static inline void init_thread(struct target_pt_regs *regs,
218                                struct image_info *infop)
219 {
220     regs->esp = infop->start_stack;
221     regs->eip = infop->entry;
222 
223     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
224        starts %edx contains a pointer to a function which might be
225        registered using `atexit'.  This provides a mean for the
226        dynamic linker to call DT_FINI functions for shared libraries
227        that have been loaded before the code runs.
228 
229        A value of 0 tells we have no such handler.  */
230     regs->edx = 0;
231 }
232 
233 #define ELF_NREG    17
234 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
235 
236 /*
237  * Note that ELF_NREG should be 19 as there should be place for
238  * TRAPNO and ERR "registers" as well but linux doesn't dump
239  * those.
240  *
241  * See linux kernel: arch/x86/include/asm/elf.h
242  */
243 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
244 {
245     (*regs)[0] = env->regs[R_EBX];
246     (*regs)[1] = env->regs[R_ECX];
247     (*regs)[2] = env->regs[R_EDX];
248     (*regs)[3] = env->regs[R_ESI];
249     (*regs)[4] = env->regs[R_EDI];
250     (*regs)[5] = env->regs[R_EBP];
251     (*regs)[6] = env->regs[R_EAX];
252     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
253     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
254     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
255     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
256     (*regs)[11] = env->regs[R_EAX]; /* XXX */
257     (*regs)[12] = env->eip;
258     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
259     (*regs)[14] = env->eflags;
260     (*regs)[15] = env->regs[R_ESP];
261     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
262 }
263 #endif
264 
265 #define USE_ELF_CORE_DUMP
266 #define ELF_EXEC_PAGESIZE       4096
267 
268 #endif
269 
270 #ifdef TARGET_ARM
271 
272 #ifndef TARGET_AARCH64
273 /* 32 bit ARM definitions */
274 
275 #define ELF_START_MMAP 0x80000000
276 
277 #define ELF_ARCH        EM_ARM
278 #define ELF_CLASS       ELFCLASS32
279 
280 static inline void init_thread(struct target_pt_regs *regs,
281                                struct image_info *infop)
282 {
283     abi_long stack = infop->start_stack;
284     memset(regs, 0, sizeof(*regs));
285 
286     regs->uregs[16] = ARM_CPU_MODE_USR;
287     if (infop->entry & 1) {
288         regs->uregs[16] |= CPSR_T;
289     }
290     regs->uregs[15] = infop->entry & 0xfffffffe;
291     regs->uregs[13] = infop->start_stack;
292     /* FIXME - what to for failure of get_user()? */
293     get_user_ual(regs->uregs[2], stack + 8); /* envp */
294     get_user_ual(regs->uregs[1], stack + 4); /* envp */
295     /* XXX: it seems that r0 is zeroed after ! */
296     regs->uregs[0] = 0;
297     /* For uClinux PIC binaries.  */
298     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
299     regs->uregs[10] = infop->start_data;
300 
301     /* Support ARM FDPIC.  */
302     if (info_is_fdpic(infop)) {
303         /* As described in the ABI document, r7 points to the loadmap info
304          * prepared by the kernel. If an interpreter is needed, r8 points
305          * to the interpreter loadmap and r9 points to the interpreter
306          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
307          * r9 points to the main program PT_DYNAMIC info.
308          */
309         regs->uregs[7] = infop->loadmap_addr;
310         if (infop->interpreter_loadmap_addr) {
311             /* Executable is dynamically loaded.  */
312             regs->uregs[8] = infop->interpreter_loadmap_addr;
313             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
314         } else {
315             regs->uregs[8] = 0;
316             regs->uregs[9] = infop->pt_dynamic_addr;
317         }
318     }
319 }
320 
321 #define ELF_NREG    18
322 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
323 
324 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
325 {
326     (*regs)[0] = tswapreg(env->regs[0]);
327     (*regs)[1] = tswapreg(env->regs[1]);
328     (*regs)[2] = tswapreg(env->regs[2]);
329     (*regs)[3] = tswapreg(env->regs[3]);
330     (*regs)[4] = tswapreg(env->regs[4]);
331     (*regs)[5] = tswapreg(env->regs[5]);
332     (*regs)[6] = tswapreg(env->regs[6]);
333     (*regs)[7] = tswapreg(env->regs[7]);
334     (*regs)[8] = tswapreg(env->regs[8]);
335     (*regs)[9] = tswapreg(env->regs[9]);
336     (*regs)[10] = tswapreg(env->regs[10]);
337     (*regs)[11] = tswapreg(env->regs[11]);
338     (*regs)[12] = tswapreg(env->regs[12]);
339     (*regs)[13] = tswapreg(env->regs[13]);
340     (*regs)[14] = tswapreg(env->regs[14]);
341     (*regs)[15] = tswapreg(env->regs[15]);
342 
343     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
344     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
345 }
346 
347 #define USE_ELF_CORE_DUMP
348 #define ELF_EXEC_PAGESIZE       4096
349 
350 enum
351 {
352     ARM_HWCAP_ARM_SWP       = 1 << 0,
353     ARM_HWCAP_ARM_HALF      = 1 << 1,
354     ARM_HWCAP_ARM_THUMB     = 1 << 2,
355     ARM_HWCAP_ARM_26BIT     = 1 << 3,
356     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
357     ARM_HWCAP_ARM_FPA       = 1 << 5,
358     ARM_HWCAP_ARM_VFP       = 1 << 6,
359     ARM_HWCAP_ARM_EDSP      = 1 << 7,
360     ARM_HWCAP_ARM_JAVA      = 1 << 8,
361     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
362     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
363     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
364     ARM_HWCAP_ARM_NEON      = 1 << 12,
365     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
366     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
367     ARM_HWCAP_ARM_TLS       = 1 << 15,
368     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
369     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
370     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
371     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
372     ARM_HWCAP_ARM_LPAE      = 1 << 20,
373     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
374 };
375 
376 enum {
377     ARM_HWCAP2_ARM_AES      = 1 << 0,
378     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
379     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
380     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
381     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
382 };
383 
384 /* The commpage only exists for 32 bit kernels */
385 
386 #define ARM_COMMPAGE (intptr_t)0xffff0f00u
387 
388 static bool init_guest_commpage(void)
389 {
390     void *want = g2h(ARM_COMMPAGE & -qemu_host_page_size);
391     void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
392                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
393 
394     if (addr == MAP_FAILED) {
395         perror("Allocating guest commpage");
396         exit(EXIT_FAILURE);
397     }
398     if (addr != want) {
399         return false;
400     }
401 
402     /* Set kernel helper versions; rest of page is 0.  */
403     __put_user(5, (uint32_t *)g2h(0xffff0ffcu));
404 
405     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
406         perror("Protecting guest commpage");
407         exit(EXIT_FAILURE);
408     }
409     return true;
410 }
411 
412 #define ELF_HWCAP get_elf_hwcap()
413 #define ELF_HWCAP2 get_elf_hwcap2()
414 
415 static uint32_t get_elf_hwcap(void)
416 {
417     ARMCPU *cpu = ARM_CPU(thread_cpu);
418     uint32_t hwcaps = 0;
419 
420     hwcaps |= ARM_HWCAP_ARM_SWP;
421     hwcaps |= ARM_HWCAP_ARM_HALF;
422     hwcaps |= ARM_HWCAP_ARM_THUMB;
423     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
424 
425     /* probe for the extra features */
426 #define GET_FEATURE(feat, hwcap) \
427     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
428 
429 #define GET_FEATURE_ID(feat, hwcap) \
430     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
431 
432     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
433     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
434     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
435     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
436     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
437     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
438     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
439     GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
440     GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
441     GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
442 
443     if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
444         cpu_isar_feature(aa32_fpdp_v3, cpu)) {
445         hwcaps |= ARM_HWCAP_ARM_VFPv3;
446         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
447             hwcaps |= ARM_HWCAP_ARM_VFPD32;
448         } else {
449             hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
450         }
451     }
452     GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
453 
454     return hwcaps;
455 }
456 
457 static uint32_t get_elf_hwcap2(void)
458 {
459     ARMCPU *cpu = ARM_CPU(thread_cpu);
460     uint32_t hwcaps = 0;
461 
462     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
463     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
464     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
465     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
466     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
467     return hwcaps;
468 }
469 
470 #undef GET_FEATURE
471 #undef GET_FEATURE_ID
472 
473 #define ELF_PLATFORM get_elf_platform()
474 
475 static const char *get_elf_platform(void)
476 {
477     CPUARMState *env = thread_cpu->env_ptr;
478 
479 #ifdef TARGET_WORDS_BIGENDIAN
480 # define END  "b"
481 #else
482 # define END  "l"
483 #endif
484 
485     if (arm_feature(env, ARM_FEATURE_V8)) {
486         return "v8" END;
487     } else if (arm_feature(env, ARM_FEATURE_V7)) {
488         if (arm_feature(env, ARM_FEATURE_M)) {
489             return "v7m" END;
490         } else {
491             return "v7" END;
492         }
493     } else if (arm_feature(env, ARM_FEATURE_V6)) {
494         return "v6" END;
495     } else if (arm_feature(env, ARM_FEATURE_V5)) {
496         return "v5" END;
497     } else {
498         return "v4" END;
499     }
500 
501 #undef END
502 }
503 
504 #else
505 /* 64 bit ARM definitions */
506 #define ELF_START_MMAP 0x80000000
507 
508 #define ELF_ARCH        EM_AARCH64
509 #define ELF_CLASS       ELFCLASS64
510 #ifdef TARGET_WORDS_BIGENDIAN
511 # define ELF_PLATFORM    "aarch64_be"
512 #else
513 # define ELF_PLATFORM    "aarch64"
514 #endif
515 
516 static inline void init_thread(struct target_pt_regs *regs,
517                                struct image_info *infop)
518 {
519     abi_long stack = infop->start_stack;
520     memset(regs, 0, sizeof(*regs));
521 
522     regs->pc = infop->entry & ~0x3ULL;
523     regs->sp = stack;
524 }
525 
526 #define ELF_NREG    34
527 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
528 
529 static void elf_core_copy_regs(target_elf_gregset_t *regs,
530                                const CPUARMState *env)
531 {
532     int i;
533 
534     for (i = 0; i < 32; i++) {
535         (*regs)[i] = tswapreg(env->xregs[i]);
536     }
537     (*regs)[32] = tswapreg(env->pc);
538     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
539 }
540 
541 #define USE_ELF_CORE_DUMP
542 #define ELF_EXEC_PAGESIZE       4096
543 
544 enum {
545     ARM_HWCAP_A64_FP            = 1 << 0,
546     ARM_HWCAP_A64_ASIMD         = 1 << 1,
547     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
548     ARM_HWCAP_A64_AES           = 1 << 3,
549     ARM_HWCAP_A64_PMULL         = 1 << 4,
550     ARM_HWCAP_A64_SHA1          = 1 << 5,
551     ARM_HWCAP_A64_SHA2          = 1 << 6,
552     ARM_HWCAP_A64_CRC32         = 1 << 7,
553     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
554     ARM_HWCAP_A64_FPHP          = 1 << 9,
555     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
556     ARM_HWCAP_A64_CPUID         = 1 << 11,
557     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
558     ARM_HWCAP_A64_JSCVT         = 1 << 13,
559     ARM_HWCAP_A64_FCMA          = 1 << 14,
560     ARM_HWCAP_A64_LRCPC         = 1 << 15,
561     ARM_HWCAP_A64_DCPOP         = 1 << 16,
562     ARM_HWCAP_A64_SHA3          = 1 << 17,
563     ARM_HWCAP_A64_SM3           = 1 << 18,
564     ARM_HWCAP_A64_SM4           = 1 << 19,
565     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
566     ARM_HWCAP_A64_SHA512        = 1 << 21,
567     ARM_HWCAP_A64_SVE           = 1 << 22,
568     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
569     ARM_HWCAP_A64_DIT           = 1 << 24,
570     ARM_HWCAP_A64_USCAT         = 1 << 25,
571     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
572     ARM_HWCAP_A64_FLAGM         = 1 << 27,
573     ARM_HWCAP_A64_SSBS          = 1 << 28,
574     ARM_HWCAP_A64_SB            = 1 << 29,
575     ARM_HWCAP_A64_PACA          = 1 << 30,
576     ARM_HWCAP_A64_PACG          = 1UL << 31,
577 
578     ARM_HWCAP2_A64_DCPODP       = 1 << 0,
579     ARM_HWCAP2_A64_SVE2         = 1 << 1,
580     ARM_HWCAP2_A64_SVEAES       = 1 << 2,
581     ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
582     ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
583     ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
584     ARM_HWCAP2_A64_SVESM4       = 1 << 6,
585     ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
586     ARM_HWCAP2_A64_FRINT        = 1 << 8,
587 };
588 
589 #define ELF_HWCAP   get_elf_hwcap()
590 #define ELF_HWCAP2  get_elf_hwcap2()
591 
592 #define GET_FEATURE_ID(feat, hwcap) \
593     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
594 
595 static uint32_t get_elf_hwcap(void)
596 {
597     ARMCPU *cpu = ARM_CPU(thread_cpu);
598     uint32_t hwcaps = 0;
599 
600     hwcaps |= ARM_HWCAP_A64_FP;
601     hwcaps |= ARM_HWCAP_A64_ASIMD;
602     hwcaps |= ARM_HWCAP_A64_CPUID;
603 
604     /* probe for the extra features */
605 
606     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
607     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
608     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
609     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
610     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
611     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
612     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
613     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
614     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
615     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
616     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
617     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
618     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
619     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
620     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
621     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
622     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
623     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
624     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
625     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
626     GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
627     GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
628     GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
629 
630     return hwcaps;
631 }
632 
633 static uint32_t get_elf_hwcap2(void)
634 {
635     ARMCPU *cpu = ARM_CPU(thread_cpu);
636     uint32_t hwcaps = 0;
637 
638     GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
639     GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
640     GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
641 
642     return hwcaps;
643 }
644 
645 #undef GET_FEATURE_ID
646 
647 #endif /* not TARGET_AARCH64 */
648 #endif /* TARGET_ARM */
649 
650 #ifdef TARGET_SPARC
651 #ifdef TARGET_SPARC64
652 
653 #define ELF_START_MMAP 0x80000000
654 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
655                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
656 #ifndef TARGET_ABI32
657 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
658 #else
659 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
660 #endif
661 
662 #define ELF_CLASS   ELFCLASS64
663 #define ELF_ARCH    EM_SPARCV9
664 
665 #define STACK_BIAS              2047
666 
667 static inline void init_thread(struct target_pt_regs *regs,
668                                struct image_info *infop)
669 {
670 #ifndef TARGET_ABI32
671     regs->tstate = 0;
672 #endif
673     regs->pc = infop->entry;
674     regs->npc = regs->pc + 4;
675     regs->y = 0;
676 #ifdef TARGET_ABI32
677     regs->u_regs[14] = infop->start_stack - 16 * 4;
678 #else
679     if (personality(infop->personality) == PER_LINUX32)
680         regs->u_regs[14] = infop->start_stack - 16 * 4;
681     else
682         regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
683 #endif
684 }
685 
686 #else
687 #define ELF_START_MMAP 0x80000000
688 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
689                     | HWCAP_SPARC_MULDIV)
690 
691 #define ELF_CLASS   ELFCLASS32
692 #define ELF_ARCH    EM_SPARC
693 
694 static inline void init_thread(struct target_pt_regs *regs,
695                                struct image_info *infop)
696 {
697     regs->psr = 0;
698     regs->pc = infop->entry;
699     regs->npc = regs->pc + 4;
700     regs->y = 0;
701     regs->u_regs[14] = infop->start_stack - 16 * 4;
702 }
703 
704 #endif
705 #endif
706 
707 #ifdef TARGET_PPC
708 
709 #define ELF_MACHINE    PPC_ELF_MACHINE
710 #define ELF_START_MMAP 0x80000000
711 
712 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
713 
714 #define elf_check_arch(x) ( (x) == EM_PPC64 )
715 
716 #define ELF_CLASS       ELFCLASS64
717 
718 #else
719 
720 #define ELF_CLASS       ELFCLASS32
721 
722 #endif
723 
724 #define ELF_ARCH        EM_PPC
725 
726 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
727    See arch/powerpc/include/asm/cputable.h.  */
728 enum {
729     QEMU_PPC_FEATURE_32 = 0x80000000,
730     QEMU_PPC_FEATURE_64 = 0x40000000,
731     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
732     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
733     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
734     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
735     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
736     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
737     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
738     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
739     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
740     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
741     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
742     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
743     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
744     QEMU_PPC_FEATURE_CELL = 0x00010000,
745     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
746     QEMU_PPC_FEATURE_SMT = 0x00004000,
747     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
748     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
749     QEMU_PPC_FEATURE_PA6T = 0x00000800,
750     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
751     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
752     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
753     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
754     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
755 
756     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
757     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
758 
759     /* Feature definitions in AT_HWCAP2.  */
760     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
761     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
762     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
763     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
764     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
765     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
766     QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
767     QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
768     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
769     QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
770     QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
771     QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
772     QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
773 };
774 
775 #define ELF_HWCAP get_elf_hwcap()
776 
777 static uint32_t get_elf_hwcap(void)
778 {
779     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
780     uint32_t features = 0;
781 
782     /* We don't have to be terribly complete here; the high points are
783        Altivec/FP/SPE support.  Anything else is just a bonus.  */
784 #define GET_FEATURE(flag, feature)                                      \
785     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
786 #define GET_FEATURE2(flags, feature) \
787     do { \
788         if ((cpu->env.insns_flags2 & flags) == flags) { \
789             features |= feature; \
790         } \
791     } while (0)
792     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
793     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
794     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
795     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
796     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
797     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
798     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
799     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
800     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
801     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
802     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
803                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
804                   QEMU_PPC_FEATURE_ARCH_2_06);
805 #undef GET_FEATURE
806 #undef GET_FEATURE2
807 
808     return features;
809 }
810 
811 #define ELF_HWCAP2 get_elf_hwcap2()
812 
813 static uint32_t get_elf_hwcap2(void)
814 {
815     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
816     uint32_t features = 0;
817 
818 #define GET_FEATURE(flag, feature)                                      \
819     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
820 #define GET_FEATURE2(flag, feature)                                      \
821     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
822 
823     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
824     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
825     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
826                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
827                   QEMU_PPC_FEATURE2_VEC_CRYPTO);
828     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
829                  QEMU_PPC_FEATURE2_DARN);
830 
831 #undef GET_FEATURE
832 #undef GET_FEATURE2
833 
834     return features;
835 }
836 
837 /*
838  * The requirements here are:
839  * - keep the final alignment of sp (sp & 0xf)
840  * - make sure the 32-bit value at the first 16 byte aligned position of
841  *   AUXV is greater than 16 for glibc compatibility.
842  *   AT_IGNOREPPC is used for that.
843  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
844  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
845  */
846 #define DLINFO_ARCH_ITEMS       5
847 #define ARCH_DLINFO                                     \
848     do {                                                \
849         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
850         /*                                              \
851          * Handle glibc compatibility: these magic entries must \
852          * be at the lowest addresses in the final auxv.        \
853          */                                             \
854         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
855         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
856         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
857         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
858         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
859     } while (0)
860 
861 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
862 {
863     _regs->gpr[1] = infop->start_stack;
864 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
865     if (get_ppc64_abi(infop) < 2) {
866         uint64_t val;
867         get_user_u64(val, infop->entry + 8);
868         _regs->gpr[2] = val + infop->load_bias;
869         get_user_u64(val, infop->entry);
870         infop->entry = val + infop->load_bias;
871     } else {
872         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
873     }
874 #endif
875     _regs->nip = infop->entry;
876 }
877 
878 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
879 #define ELF_NREG 48
880 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
881 
882 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
883 {
884     int i;
885     target_ulong ccr = 0;
886 
887     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
888         (*regs)[i] = tswapreg(env->gpr[i]);
889     }
890 
891     (*regs)[32] = tswapreg(env->nip);
892     (*regs)[33] = tswapreg(env->msr);
893     (*regs)[35] = tswapreg(env->ctr);
894     (*regs)[36] = tswapreg(env->lr);
895     (*regs)[37] = tswapreg(env->xer);
896 
897     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
898         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
899     }
900     (*regs)[38] = tswapreg(ccr);
901 }
902 
903 #define USE_ELF_CORE_DUMP
904 #define ELF_EXEC_PAGESIZE       4096
905 
906 #endif
907 
908 #ifdef TARGET_MIPS
909 
910 #define ELF_START_MMAP 0x80000000
911 
912 #ifdef TARGET_MIPS64
913 #define ELF_CLASS   ELFCLASS64
914 #else
915 #define ELF_CLASS   ELFCLASS32
916 #endif
917 #define ELF_ARCH    EM_MIPS
918 
919 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
920 
921 static inline void init_thread(struct target_pt_regs *regs,
922                                struct image_info *infop)
923 {
924     regs->cp0_status = 2 << CP0St_KSU;
925     regs->cp0_epc = infop->entry;
926     regs->regs[29] = infop->start_stack;
927 }
928 
929 /* See linux kernel: arch/mips/include/asm/elf.h.  */
930 #define ELF_NREG 45
931 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
932 
933 /* See linux kernel: arch/mips/include/asm/reg.h.  */
934 enum {
935 #ifdef TARGET_MIPS64
936     TARGET_EF_R0 = 0,
937 #else
938     TARGET_EF_R0 = 6,
939 #endif
940     TARGET_EF_R26 = TARGET_EF_R0 + 26,
941     TARGET_EF_R27 = TARGET_EF_R0 + 27,
942     TARGET_EF_LO = TARGET_EF_R0 + 32,
943     TARGET_EF_HI = TARGET_EF_R0 + 33,
944     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
945     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
946     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
947     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
948 };
949 
950 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
951 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
952 {
953     int i;
954 
955     for (i = 0; i < TARGET_EF_R0; i++) {
956         (*regs)[i] = 0;
957     }
958     (*regs)[TARGET_EF_R0] = 0;
959 
960     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
961         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
962     }
963 
964     (*regs)[TARGET_EF_R26] = 0;
965     (*regs)[TARGET_EF_R27] = 0;
966     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
967     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
968     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
969     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
970     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
971     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
972 }
973 
974 #define USE_ELF_CORE_DUMP
975 #define ELF_EXEC_PAGESIZE        4096
976 
977 /* See arch/mips/include/uapi/asm/hwcap.h.  */
978 enum {
979     HWCAP_MIPS_R6           = (1 << 0),
980     HWCAP_MIPS_MSA          = (1 << 1),
981 };
982 
983 #define ELF_HWCAP get_elf_hwcap()
984 
985 static uint32_t get_elf_hwcap(void)
986 {
987     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
988     uint32_t hwcaps = 0;
989 
990 #define GET_FEATURE(flag, hwcap) \
991     do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
992 
993     GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
994     GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
995 
996 #undef GET_FEATURE
997 
998     return hwcaps;
999 }
1000 
1001 #endif /* TARGET_MIPS */
1002 
1003 #ifdef TARGET_MICROBLAZE
1004 
1005 #define ELF_START_MMAP 0x80000000
1006 
1007 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1008 
1009 #define ELF_CLASS   ELFCLASS32
1010 #define ELF_ARCH    EM_MICROBLAZE
1011 
1012 static inline void init_thread(struct target_pt_regs *regs,
1013                                struct image_info *infop)
1014 {
1015     regs->pc = infop->entry;
1016     regs->r1 = infop->start_stack;
1017 
1018 }
1019 
1020 #define ELF_EXEC_PAGESIZE        4096
1021 
1022 #define USE_ELF_CORE_DUMP
1023 #define ELF_NREG 38
1024 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1025 
1026 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1027 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1028 {
1029     int i, pos = 0;
1030 
1031     for (i = 0; i < 32; i++) {
1032         (*regs)[pos++] = tswapreg(env->regs[i]);
1033     }
1034 
1035     for (i = 0; i < 6; i++) {
1036         (*regs)[pos++] = tswapreg(env->sregs[i]);
1037     }
1038 }
1039 
1040 #endif /* TARGET_MICROBLAZE */
1041 
1042 #ifdef TARGET_NIOS2
1043 
1044 #define ELF_START_MMAP 0x80000000
1045 
1046 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1047 
1048 #define ELF_CLASS   ELFCLASS32
1049 #define ELF_ARCH    EM_ALTERA_NIOS2
1050 
1051 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1052 {
1053     regs->ea = infop->entry;
1054     regs->sp = infop->start_stack;
1055     regs->estatus = 0x3;
1056 }
1057 
1058 #define ELF_EXEC_PAGESIZE        4096
1059 
1060 #define USE_ELF_CORE_DUMP
1061 #define ELF_NREG 49
1062 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1063 
1064 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1065 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1066                                const CPUNios2State *env)
1067 {
1068     int i;
1069 
1070     (*regs)[0] = -1;
1071     for (i = 1; i < 8; i++)    /* r0-r7 */
1072         (*regs)[i] = tswapreg(env->regs[i + 7]);
1073 
1074     for (i = 8; i < 16; i++)   /* r8-r15 */
1075         (*regs)[i] = tswapreg(env->regs[i - 8]);
1076 
1077     for (i = 16; i < 24; i++)  /* r16-r23 */
1078         (*regs)[i] = tswapreg(env->regs[i + 7]);
1079     (*regs)[24] = -1;    /* R_ET */
1080     (*regs)[25] = -1;    /* R_BT */
1081     (*regs)[26] = tswapreg(env->regs[R_GP]);
1082     (*regs)[27] = tswapreg(env->regs[R_SP]);
1083     (*regs)[28] = tswapreg(env->regs[R_FP]);
1084     (*regs)[29] = tswapreg(env->regs[R_EA]);
1085     (*regs)[30] = -1;    /* R_SSTATUS */
1086     (*regs)[31] = tswapreg(env->regs[R_RA]);
1087 
1088     (*regs)[32] = tswapreg(env->regs[R_PC]);
1089 
1090     (*regs)[33] = -1; /* R_STATUS */
1091     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1092 
1093     for (i = 35; i < 49; i++)    /* ... */
1094         (*regs)[i] = -1;
1095 }
1096 
1097 #endif /* TARGET_NIOS2 */
1098 
1099 #ifdef TARGET_OPENRISC
1100 
1101 #define ELF_START_MMAP 0x08000000
1102 
1103 #define ELF_ARCH EM_OPENRISC
1104 #define ELF_CLASS ELFCLASS32
1105 #define ELF_DATA  ELFDATA2MSB
1106 
1107 static inline void init_thread(struct target_pt_regs *regs,
1108                                struct image_info *infop)
1109 {
1110     regs->pc = infop->entry;
1111     regs->gpr[1] = infop->start_stack;
1112 }
1113 
1114 #define USE_ELF_CORE_DUMP
1115 #define ELF_EXEC_PAGESIZE 8192
1116 
1117 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1118 #define ELF_NREG 34 /* gprs and pc, sr */
1119 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1120 
1121 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1122                                const CPUOpenRISCState *env)
1123 {
1124     int i;
1125 
1126     for (i = 0; i < 32; i++) {
1127         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1128     }
1129     (*regs)[32] = tswapreg(env->pc);
1130     (*regs)[33] = tswapreg(cpu_get_sr(env));
1131 }
1132 #define ELF_HWCAP 0
1133 #define ELF_PLATFORM NULL
1134 
1135 #endif /* TARGET_OPENRISC */
1136 
1137 #ifdef TARGET_SH4
1138 
1139 #define ELF_START_MMAP 0x80000000
1140 
1141 #define ELF_CLASS ELFCLASS32
1142 #define ELF_ARCH  EM_SH
1143 
1144 static inline void init_thread(struct target_pt_regs *regs,
1145                                struct image_info *infop)
1146 {
1147     /* Check other registers XXXXX */
1148     regs->pc = infop->entry;
1149     regs->regs[15] = infop->start_stack;
1150 }
1151 
1152 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1153 #define ELF_NREG 23
1154 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1155 
1156 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1157 enum {
1158     TARGET_REG_PC = 16,
1159     TARGET_REG_PR = 17,
1160     TARGET_REG_SR = 18,
1161     TARGET_REG_GBR = 19,
1162     TARGET_REG_MACH = 20,
1163     TARGET_REG_MACL = 21,
1164     TARGET_REG_SYSCALL = 22
1165 };
1166 
1167 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1168                                       const CPUSH4State *env)
1169 {
1170     int i;
1171 
1172     for (i = 0; i < 16; i++) {
1173         (*regs)[i] = tswapreg(env->gregs[i]);
1174     }
1175 
1176     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1177     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1178     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1179     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1180     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1181     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1182     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1183 }
1184 
1185 #define USE_ELF_CORE_DUMP
1186 #define ELF_EXEC_PAGESIZE        4096
1187 
1188 enum {
1189     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1190     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1191     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1192     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1193     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1194     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1195     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1196     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1197     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1198     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1199 };
1200 
1201 #define ELF_HWCAP get_elf_hwcap()
1202 
1203 static uint32_t get_elf_hwcap(void)
1204 {
1205     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1206     uint32_t hwcap = 0;
1207 
1208     hwcap |= SH_CPU_HAS_FPU;
1209 
1210     if (cpu->env.features & SH_FEATURE_SH4A) {
1211         hwcap |= SH_CPU_HAS_LLSC;
1212     }
1213 
1214     return hwcap;
1215 }
1216 
1217 #endif
1218 
1219 #ifdef TARGET_CRIS
1220 
1221 #define ELF_START_MMAP 0x80000000
1222 
1223 #define ELF_CLASS ELFCLASS32
1224 #define ELF_ARCH  EM_CRIS
1225 
1226 static inline void init_thread(struct target_pt_regs *regs,
1227                                struct image_info *infop)
1228 {
1229     regs->erp = infop->entry;
1230 }
1231 
1232 #define ELF_EXEC_PAGESIZE        8192
1233 
1234 #endif
1235 
1236 #ifdef TARGET_M68K
1237 
1238 #define ELF_START_MMAP 0x80000000
1239 
1240 #define ELF_CLASS       ELFCLASS32
1241 #define ELF_ARCH        EM_68K
1242 
1243 /* ??? Does this need to do anything?
1244    #define ELF_PLAT_INIT(_r) */
1245 
1246 static inline void init_thread(struct target_pt_regs *regs,
1247                                struct image_info *infop)
1248 {
1249     regs->usp = infop->start_stack;
1250     regs->sr = 0;
1251     regs->pc = infop->entry;
1252 }
1253 
1254 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1255 #define ELF_NREG 20
1256 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1257 
1258 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1259 {
1260     (*regs)[0] = tswapreg(env->dregs[1]);
1261     (*regs)[1] = tswapreg(env->dregs[2]);
1262     (*regs)[2] = tswapreg(env->dregs[3]);
1263     (*regs)[3] = tswapreg(env->dregs[4]);
1264     (*regs)[4] = tswapreg(env->dregs[5]);
1265     (*regs)[5] = tswapreg(env->dregs[6]);
1266     (*regs)[6] = tswapreg(env->dregs[7]);
1267     (*regs)[7] = tswapreg(env->aregs[0]);
1268     (*regs)[8] = tswapreg(env->aregs[1]);
1269     (*regs)[9] = tswapreg(env->aregs[2]);
1270     (*regs)[10] = tswapreg(env->aregs[3]);
1271     (*regs)[11] = tswapreg(env->aregs[4]);
1272     (*regs)[12] = tswapreg(env->aregs[5]);
1273     (*regs)[13] = tswapreg(env->aregs[6]);
1274     (*regs)[14] = tswapreg(env->dregs[0]);
1275     (*regs)[15] = tswapreg(env->aregs[7]);
1276     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1277     (*regs)[17] = tswapreg(env->sr);
1278     (*regs)[18] = tswapreg(env->pc);
1279     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1280 }
1281 
1282 #define USE_ELF_CORE_DUMP
1283 #define ELF_EXEC_PAGESIZE       8192
1284 
1285 #endif
1286 
1287 #ifdef TARGET_ALPHA
1288 
1289 #define ELF_START_MMAP (0x30000000000ULL)
1290 
1291 #define ELF_CLASS      ELFCLASS64
1292 #define ELF_ARCH       EM_ALPHA
1293 
1294 static inline void init_thread(struct target_pt_regs *regs,
1295                                struct image_info *infop)
1296 {
1297     regs->pc = infop->entry;
1298     regs->ps = 8;
1299     regs->usp = infop->start_stack;
1300 }
1301 
1302 #define ELF_EXEC_PAGESIZE        8192
1303 
1304 #endif /* TARGET_ALPHA */
1305 
1306 #ifdef TARGET_S390X
1307 
1308 #define ELF_START_MMAP (0x20000000000ULL)
1309 
1310 #define ELF_CLASS	ELFCLASS64
1311 #define ELF_DATA	ELFDATA2MSB
1312 #define ELF_ARCH	EM_S390
1313 
1314 #include "elf.h"
1315 
1316 #define ELF_HWCAP get_elf_hwcap()
1317 
1318 #define GET_FEATURE(_feat, _hwcap) \
1319     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1320 
1321 static uint32_t get_elf_hwcap(void)
1322 {
1323     /*
1324      * Let's assume we always have esan3 and zarch.
1325      * 31-bit processes can use 64-bit registers (high gprs).
1326      */
1327     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1328 
1329     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1330     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1331     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1332     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1333     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1334         s390_has_feat(S390_FEAT_ETF3_ENH)) {
1335         hwcap |= HWCAP_S390_ETF3EH;
1336     }
1337     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1338 
1339     return hwcap;
1340 }
1341 
1342 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1343 {
1344     regs->psw.addr = infop->entry;
1345     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1346     regs->gprs[15] = infop->start_stack;
1347 }
1348 
1349 #endif /* TARGET_S390X */
1350 
1351 #ifdef TARGET_TILEGX
1352 
1353 /* 42 bits real used address, a half for user mode */
1354 #define ELF_START_MMAP (0x00000020000000000ULL)
1355 
1356 #define elf_check_arch(x) ((x) == EM_TILEGX)
1357 
1358 #define ELF_CLASS   ELFCLASS64
1359 #define ELF_DATA    ELFDATA2LSB
1360 #define ELF_ARCH    EM_TILEGX
1361 
1362 static inline void init_thread(struct target_pt_regs *regs,
1363                                struct image_info *infop)
1364 {
1365     regs->pc = infop->entry;
1366     regs->sp = infop->start_stack;
1367 
1368 }
1369 
1370 #define ELF_EXEC_PAGESIZE        65536 /* TILE-Gx page size is 64KB */
1371 
1372 #endif /* TARGET_TILEGX */
1373 
1374 #ifdef TARGET_RISCV
1375 
1376 #define ELF_START_MMAP 0x80000000
1377 #define ELF_ARCH  EM_RISCV
1378 
1379 #ifdef TARGET_RISCV32
1380 #define ELF_CLASS ELFCLASS32
1381 #else
1382 #define ELF_CLASS ELFCLASS64
1383 #endif
1384 
1385 static inline void init_thread(struct target_pt_regs *regs,
1386                                struct image_info *infop)
1387 {
1388     regs->sepc = infop->entry;
1389     regs->sp = infop->start_stack;
1390 }
1391 
1392 #define ELF_EXEC_PAGESIZE 4096
1393 
1394 #endif /* TARGET_RISCV */
1395 
1396 #ifdef TARGET_HPPA
1397 
1398 #define ELF_START_MMAP  0x80000000
1399 #define ELF_CLASS       ELFCLASS32
1400 #define ELF_ARCH        EM_PARISC
1401 #define ELF_PLATFORM    "PARISC"
1402 #define STACK_GROWS_DOWN 0
1403 #define STACK_ALIGNMENT  64
1404 
1405 static inline void init_thread(struct target_pt_regs *regs,
1406                                struct image_info *infop)
1407 {
1408     regs->iaoq[0] = infop->entry;
1409     regs->iaoq[1] = infop->entry + 4;
1410     regs->gr[23] = 0;
1411     regs->gr[24] = infop->arg_start;
1412     regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1413     /* The top-of-stack contains a linkage buffer.  */
1414     regs->gr[30] = infop->start_stack + 64;
1415     regs->gr[31] = infop->entry;
1416 }
1417 
1418 #endif /* TARGET_HPPA */
1419 
1420 #ifdef TARGET_XTENSA
1421 
1422 #define ELF_START_MMAP 0x20000000
1423 
1424 #define ELF_CLASS       ELFCLASS32
1425 #define ELF_ARCH        EM_XTENSA
1426 
1427 static inline void init_thread(struct target_pt_regs *regs,
1428                                struct image_info *infop)
1429 {
1430     regs->windowbase = 0;
1431     regs->windowstart = 1;
1432     regs->areg[1] = infop->start_stack;
1433     regs->pc = infop->entry;
1434 }
1435 
1436 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1437 #define ELF_NREG 128
1438 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1439 
1440 enum {
1441     TARGET_REG_PC,
1442     TARGET_REG_PS,
1443     TARGET_REG_LBEG,
1444     TARGET_REG_LEND,
1445     TARGET_REG_LCOUNT,
1446     TARGET_REG_SAR,
1447     TARGET_REG_WINDOWSTART,
1448     TARGET_REG_WINDOWBASE,
1449     TARGET_REG_THREADPTR,
1450     TARGET_REG_AR0 = 64,
1451 };
1452 
1453 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1454                                const CPUXtensaState *env)
1455 {
1456     unsigned i;
1457 
1458     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1459     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1460     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1461     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1462     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1463     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1464     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1465     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1466     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1467     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1468     for (i = 0; i < env->config->nareg; ++i) {
1469         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1470     }
1471 }
1472 
1473 #define USE_ELF_CORE_DUMP
1474 #define ELF_EXEC_PAGESIZE       4096
1475 
1476 #endif /* TARGET_XTENSA */
1477 
1478 #ifndef ELF_PLATFORM
1479 #define ELF_PLATFORM (NULL)
1480 #endif
1481 
1482 #ifndef ELF_MACHINE
1483 #define ELF_MACHINE ELF_ARCH
1484 #endif
1485 
1486 #ifndef elf_check_arch
1487 #define elf_check_arch(x) ((x) == ELF_ARCH)
1488 #endif
1489 
1490 #ifndef ELF_HWCAP
1491 #define ELF_HWCAP 0
1492 #endif
1493 
1494 #ifndef STACK_GROWS_DOWN
1495 #define STACK_GROWS_DOWN 1
1496 #endif
1497 
1498 #ifndef STACK_ALIGNMENT
1499 #define STACK_ALIGNMENT 16
1500 #endif
1501 
1502 #ifdef TARGET_ABI32
1503 #undef ELF_CLASS
1504 #define ELF_CLASS ELFCLASS32
1505 #undef bswaptls
1506 #define bswaptls(ptr) bswap32s(ptr)
1507 #endif
1508 
1509 #include "elf.h"
1510 
1511 struct exec
1512 {
1513     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1514     unsigned int a_text;   /* length of text, in bytes */
1515     unsigned int a_data;   /* length of data, in bytes */
1516     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1517     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1518     unsigned int a_entry;  /* start address */
1519     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1520     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1521 };
1522 
1523 
1524 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1525 #define OMAGIC 0407
1526 #define NMAGIC 0410
1527 #define ZMAGIC 0413
1528 #define QMAGIC 0314
1529 
1530 /* Necessary parameters */
1531 #define TARGET_ELF_EXEC_PAGESIZE \
1532         (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1533          TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1534 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1535 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1536                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1537 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1538 
1539 #define DLINFO_ITEMS 16
1540 
1541 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1542 {
1543     memcpy(to, from, n);
1544 }
1545 
1546 #ifdef BSWAP_NEEDED
1547 static void bswap_ehdr(struct elfhdr *ehdr)
1548 {
1549     bswap16s(&ehdr->e_type);            /* Object file type */
1550     bswap16s(&ehdr->e_machine);         /* Architecture */
1551     bswap32s(&ehdr->e_version);         /* Object file version */
1552     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1553     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1554     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1555     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1556     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1557     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1558     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1559     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1560     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1561     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1562 }
1563 
1564 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1565 {
1566     int i;
1567     for (i = 0; i < phnum; ++i, ++phdr) {
1568         bswap32s(&phdr->p_type);        /* Segment type */
1569         bswap32s(&phdr->p_flags);       /* Segment flags */
1570         bswaptls(&phdr->p_offset);      /* Segment file offset */
1571         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1572         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1573         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1574         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1575         bswaptls(&phdr->p_align);       /* Segment alignment */
1576     }
1577 }
1578 
1579 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1580 {
1581     int i;
1582     for (i = 0; i < shnum; ++i, ++shdr) {
1583         bswap32s(&shdr->sh_name);
1584         bswap32s(&shdr->sh_type);
1585         bswaptls(&shdr->sh_flags);
1586         bswaptls(&shdr->sh_addr);
1587         bswaptls(&shdr->sh_offset);
1588         bswaptls(&shdr->sh_size);
1589         bswap32s(&shdr->sh_link);
1590         bswap32s(&shdr->sh_info);
1591         bswaptls(&shdr->sh_addralign);
1592         bswaptls(&shdr->sh_entsize);
1593     }
1594 }
1595 
1596 static void bswap_sym(struct elf_sym *sym)
1597 {
1598     bswap32s(&sym->st_name);
1599     bswaptls(&sym->st_value);
1600     bswaptls(&sym->st_size);
1601     bswap16s(&sym->st_shndx);
1602 }
1603 
1604 #ifdef TARGET_MIPS
1605 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1606 {
1607     bswap16s(&abiflags->version);
1608     bswap32s(&abiflags->ases);
1609     bswap32s(&abiflags->isa_ext);
1610     bswap32s(&abiflags->flags1);
1611     bswap32s(&abiflags->flags2);
1612 }
1613 #endif
1614 #else
1615 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1616 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1617 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1618 static inline void bswap_sym(struct elf_sym *sym) { }
1619 #ifdef TARGET_MIPS
1620 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1621 #endif
1622 #endif
1623 
1624 #ifdef USE_ELF_CORE_DUMP
1625 static int elf_core_dump(int, const CPUArchState *);
1626 #endif /* USE_ELF_CORE_DUMP */
1627 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1628 
1629 /* Verify the portions of EHDR within E_IDENT for the target.
1630    This can be performed before bswapping the entire header.  */
1631 static bool elf_check_ident(struct elfhdr *ehdr)
1632 {
1633     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1634             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1635             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1636             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1637             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1638             && ehdr->e_ident[EI_DATA] == ELF_DATA
1639             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1640 }
1641 
1642 /* Verify the portions of EHDR outside of E_IDENT for the target.
1643    This has to wait until after bswapping the header.  */
1644 static bool elf_check_ehdr(struct elfhdr *ehdr)
1645 {
1646     return (elf_check_arch(ehdr->e_machine)
1647             && ehdr->e_ehsize == sizeof(struct elfhdr)
1648             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1649             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1650 }
1651 
1652 /*
1653  * 'copy_elf_strings()' copies argument/envelope strings from user
1654  * memory to free pages in kernel mem. These are in a format ready
1655  * to be put directly into the top of new user memory.
1656  *
1657  */
1658 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1659                                   abi_ulong p, abi_ulong stack_limit)
1660 {
1661     char *tmp;
1662     int len, i;
1663     abi_ulong top = p;
1664 
1665     if (!p) {
1666         return 0;       /* bullet-proofing */
1667     }
1668 
1669     if (STACK_GROWS_DOWN) {
1670         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1671         for (i = argc - 1; i >= 0; --i) {
1672             tmp = argv[i];
1673             if (!tmp) {
1674                 fprintf(stderr, "VFS: argc is wrong");
1675                 exit(-1);
1676             }
1677             len = strlen(tmp) + 1;
1678             tmp += len;
1679 
1680             if (len > (p - stack_limit)) {
1681                 return 0;
1682             }
1683             while (len) {
1684                 int bytes_to_copy = (len > offset) ? offset : len;
1685                 tmp -= bytes_to_copy;
1686                 p -= bytes_to_copy;
1687                 offset -= bytes_to_copy;
1688                 len -= bytes_to_copy;
1689 
1690                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1691 
1692                 if (offset == 0) {
1693                     memcpy_to_target(p, scratch, top - p);
1694                     top = p;
1695                     offset = TARGET_PAGE_SIZE;
1696                 }
1697             }
1698         }
1699         if (p != top) {
1700             memcpy_to_target(p, scratch + offset, top - p);
1701         }
1702     } else {
1703         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1704         for (i = 0; i < argc; ++i) {
1705             tmp = argv[i];
1706             if (!tmp) {
1707                 fprintf(stderr, "VFS: argc is wrong");
1708                 exit(-1);
1709             }
1710             len = strlen(tmp) + 1;
1711             if (len > (stack_limit - p)) {
1712                 return 0;
1713             }
1714             while (len) {
1715                 int bytes_to_copy = (len > remaining) ? remaining : len;
1716 
1717                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1718 
1719                 tmp += bytes_to_copy;
1720                 remaining -= bytes_to_copy;
1721                 p += bytes_to_copy;
1722                 len -= bytes_to_copy;
1723 
1724                 if (remaining == 0) {
1725                     memcpy_to_target(top, scratch, p - top);
1726                     top = p;
1727                     remaining = TARGET_PAGE_SIZE;
1728                 }
1729             }
1730         }
1731         if (p != top) {
1732             memcpy_to_target(top, scratch, p - top);
1733         }
1734     }
1735 
1736     return p;
1737 }
1738 
1739 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1740  * argument/environment space. Newer kernels (>2.6.33) allow more,
1741  * dependent on stack size, but guarantee at least 32 pages for
1742  * backwards compatibility.
1743  */
1744 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1745 
1746 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1747                                  struct image_info *info)
1748 {
1749     abi_ulong size, error, guard;
1750 
1751     size = guest_stack_size;
1752     if (size < STACK_LOWER_LIMIT) {
1753         size = STACK_LOWER_LIMIT;
1754     }
1755     guard = TARGET_PAGE_SIZE;
1756     if (guard < qemu_real_host_page_size) {
1757         guard = qemu_real_host_page_size;
1758     }
1759 
1760     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1761                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1762     if (error == -1) {
1763         perror("mmap stack");
1764         exit(-1);
1765     }
1766 
1767     /* We reserve one extra page at the top of the stack as guard.  */
1768     if (STACK_GROWS_DOWN) {
1769         target_mprotect(error, guard, PROT_NONE);
1770         info->stack_limit = error + guard;
1771         return info->stack_limit + size - sizeof(void *);
1772     } else {
1773         target_mprotect(error + size, guard, PROT_NONE);
1774         info->stack_limit = error + size;
1775         return error;
1776     }
1777 }
1778 
1779 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1780    after the data section (i.e. bss).  */
1781 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1782 {
1783     uintptr_t host_start, host_map_start, host_end;
1784 
1785     last_bss = TARGET_PAGE_ALIGN(last_bss);
1786 
1787     /* ??? There is confusion between qemu_real_host_page_size and
1788        qemu_host_page_size here and elsewhere in target_mmap, which
1789        may lead to the end of the data section mapping from the file
1790        not being mapped.  At least there was an explicit test and
1791        comment for that here, suggesting that "the file size must
1792        be known".  The comment probably pre-dates the introduction
1793        of the fstat system call in target_mmap which does in fact
1794        find out the size.  What isn't clear is if the workaround
1795        here is still actually needed.  For now, continue with it,
1796        but merge it with the "normal" mmap that would allocate the bss.  */
1797 
1798     host_start = (uintptr_t) g2h(elf_bss);
1799     host_end = (uintptr_t) g2h(last_bss);
1800     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1801 
1802     if (host_map_start < host_end) {
1803         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1804                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1805         if (p == MAP_FAILED) {
1806             perror("cannot mmap brk");
1807             exit(-1);
1808         }
1809     }
1810 
1811     /* Ensure that the bss page(s) are valid */
1812     if ((page_get_flags(last_bss-1) & prot) != prot) {
1813         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1814     }
1815 
1816     if (host_start < host_map_start) {
1817         memset((void *)host_start, 0, host_map_start - host_start);
1818     }
1819 }
1820 
1821 #ifdef TARGET_ARM
1822 static int elf_is_fdpic(struct elfhdr *exec)
1823 {
1824     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1825 }
1826 #else
1827 /* Default implementation, always false.  */
1828 static int elf_is_fdpic(struct elfhdr *exec)
1829 {
1830     return 0;
1831 }
1832 #endif
1833 
1834 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1835 {
1836     uint16_t n;
1837     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1838 
1839     /* elf32_fdpic_loadseg */
1840     n = info->nsegs;
1841     while (n--) {
1842         sp -= 12;
1843         put_user_u32(loadsegs[n].addr, sp+0);
1844         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1845         put_user_u32(loadsegs[n].p_memsz, sp+8);
1846     }
1847 
1848     /* elf32_fdpic_loadmap */
1849     sp -= 4;
1850     put_user_u16(0, sp+0); /* version */
1851     put_user_u16(info->nsegs, sp+2); /* nsegs */
1852 
1853     info->personality = PER_LINUX_FDPIC;
1854     info->loadmap_addr = sp;
1855 
1856     return sp;
1857 }
1858 
1859 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1860                                    struct elfhdr *exec,
1861                                    struct image_info *info,
1862                                    struct image_info *interp_info)
1863 {
1864     abi_ulong sp;
1865     abi_ulong u_argc, u_argv, u_envp, u_auxv;
1866     int size;
1867     int i;
1868     abi_ulong u_rand_bytes;
1869     uint8_t k_rand_bytes[16];
1870     abi_ulong u_platform;
1871     const char *k_platform;
1872     const int n = sizeof(elf_addr_t);
1873 
1874     sp = p;
1875 
1876     /* Needs to be before we load the env/argc/... */
1877     if (elf_is_fdpic(exec)) {
1878         /* Need 4 byte alignment for these structs */
1879         sp &= ~3;
1880         sp = loader_build_fdpic_loadmap(info, sp);
1881         info->other_info = interp_info;
1882         if (interp_info) {
1883             interp_info->other_info = info;
1884             sp = loader_build_fdpic_loadmap(interp_info, sp);
1885             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1886             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1887         } else {
1888             info->interpreter_loadmap_addr = 0;
1889             info->interpreter_pt_dynamic_addr = 0;
1890         }
1891     }
1892 
1893     u_platform = 0;
1894     k_platform = ELF_PLATFORM;
1895     if (k_platform) {
1896         size_t len = strlen(k_platform) + 1;
1897         if (STACK_GROWS_DOWN) {
1898             sp -= (len + n - 1) & ~(n - 1);
1899             u_platform = sp;
1900             /* FIXME - check return value of memcpy_to_target() for failure */
1901             memcpy_to_target(sp, k_platform, len);
1902         } else {
1903             memcpy_to_target(sp, k_platform, len);
1904             u_platform = sp;
1905             sp += len + 1;
1906         }
1907     }
1908 
1909     /* Provide 16 byte alignment for the PRNG, and basic alignment for
1910      * the argv and envp pointers.
1911      */
1912     if (STACK_GROWS_DOWN) {
1913         sp = QEMU_ALIGN_DOWN(sp, 16);
1914     } else {
1915         sp = QEMU_ALIGN_UP(sp, 16);
1916     }
1917 
1918     /*
1919      * Generate 16 random bytes for userspace PRNG seeding.
1920      */
1921     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
1922     if (STACK_GROWS_DOWN) {
1923         sp -= 16;
1924         u_rand_bytes = sp;
1925         /* FIXME - check return value of memcpy_to_target() for failure */
1926         memcpy_to_target(sp, k_rand_bytes, 16);
1927     } else {
1928         memcpy_to_target(sp, k_rand_bytes, 16);
1929         u_rand_bytes = sp;
1930         sp += 16;
1931     }
1932 
1933     size = (DLINFO_ITEMS + 1) * 2;
1934     if (k_platform)
1935         size += 2;
1936 #ifdef DLINFO_ARCH_ITEMS
1937     size += DLINFO_ARCH_ITEMS * 2;
1938 #endif
1939 #ifdef ELF_HWCAP2
1940     size += 2;
1941 #endif
1942     info->auxv_len = size * n;
1943 
1944     size += envc + argc + 2;
1945     size += 1;  /* argc itself */
1946     size *= n;
1947 
1948     /* Allocate space and finalize stack alignment for entry now.  */
1949     if (STACK_GROWS_DOWN) {
1950         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1951         sp = u_argc;
1952     } else {
1953         u_argc = sp;
1954         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1955     }
1956 
1957     u_argv = u_argc + n;
1958     u_envp = u_argv + (argc + 1) * n;
1959     u_auxv = u_envp + (envc + 1) * n;
1960     info->saved_auxv = u_auxv;
1961     info->arg_start = u_argv;
1962     info->arg_end = u_argv + argc * n;
1963 
1964     /* This is correct because Linux defines
1965      * elf_addr_t as Elf32_Off / Elf64_Off
1966      */
1967 #define NEW_AUX_ENT(id, val) do {               \
1968         put_user_ual(id, u_auxv);  u_auxv += n; \
1969         put_user_ual(val, u_auxv); u_auxv += n; \
1970     } while(0)
1971 
1972 #ifdef ARCH_DLINFO
1973     /*
1974      * ARCH_DLINFO must come first so platform specific code can enforce
1975      * special alignment requirements on the AUXV if necessary (eg. PPC).
1976      */
1977     ARCH_DLINFO;
1978 #endif
1979     /* There must be exactly DLINFO_ITEMS entries here, or the assert
1980      * on info->auxv_len will trigger.
1981      */
1982     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1983     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1984     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1985     if ((info->alignment & ~qemu_host_page_mask) != 0) {
1986         /* Target doesn't support host page size alignment */
1987         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1988     } else {
1989         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
1990                                                qemu_host_page_size)));
1991     }
1992     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1993     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1994     NEW_AUX_ENT(AT_ENTRY, info->entry);
1995     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1996     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1997     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1998     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1999     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2000     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2001     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2002     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2003     NEW_AUX_ENT(AT_EXECFN, info->file_string);
2004 
2005 #ifdef ELF_HWCAP2
2006     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2007 #endif
2008 
2009     if (u_platform) {
2010         NEW_AUX_ENT(AT_PLATFORM, u_platform);
2011     }
2012     NEW_AUX_ENT (AT_NULL, 0);
2013 #undef NEW_AUX_ENT
2014 
2015     /* Check that our initial calculation of the auxv length matches how much
2016      * we actually put into it.
2017      */
2018     assert(info->auxv_len == u_auxv - info->saved_auxv);
2019 
2020     put_user_ual(argc, u_argc);
2021 
2022     p = info->arg_strings;
2023     for (i = 0; i < argc; ++i) {
2024         put_user_ual(p, u_argv);
2025         u_argv += n;
2026         p += target_strlen(p) + 1;
2027     }
2028     put_user_ual(0, u_argv);
2029 
2030     p = info->env_strings;
2031     for (i = 0; i < envc; ++i) {
2032         put_user_ual(p, u_envp);
2033         u_envp += n;
2034         p += target_strlen(p) + 1;
2035     }
2036     put_user_ual(0, u_envp);
2037 
2038     return sp;
2039 }
2040 
2041 #ifndef ARM_COMMPAGE
2042 #define ARM_COMMPAGE 0
2043 #define init_guest_commpage() true
2044 #endif
2045 
2046 static void pgb_fail_in_use(const char *image_name)
2047 {
2048     error_report("%s: requires virtual address space that is in use "
2049                  "(omit the -B option or choose a different value)",
2050                  image_name);
2051     exit(EXIT_FAILURE);
2052 }
2053 
2054 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2055                                 abi_ulong guest_hiaddr, long align)
2056 {
2057     const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2058     void *addr, *test;
2059 
2060     if (!QEMU_IS_ALIGNED(guest_base, align)) {
2061         fprintf(stderr, "Requested guest base 0x%lx does not satisfy "
2062                 "host minimum alignment (0x%lx)\n",
2063                 guest_base, align);
2064         exit(EXIT_FAILURE);
2065     }
2066 
2067     /* Sanity check the guest binary. */
2068     if (reserved_va) {
2069         if (guest_hiaddr > reserved_va) {
2070             error_report("%s: requires more than reserved virtual "
2071                          "address space (0x%" PRIx64 " > 0x%lx)",
2072                          image_name, (uint64_t)guest_hiaddr, reserved_va);
2073             exit(EXIT_FAILURE);
2074         }
2075     } else {
2076 #if HOST_LONG_BITS < TARGET_ABI_BITS
2077         if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2078             error_report("%s: requires more virtual address space "
2079                          "than the host can provide (0x%" PRIx64 ")",
2080                          image_name, (uint64_t)guest_hiaddr - guest_base);
2081             exit(EXIT_FAILURE);
2082         }
2083 #endif
2084     }
2085 
2086     /*
2087      * Expand the allocation to the entire reserved_va.
2088      * Exclude the mmap_min_addr hole.
2089      */
2090     if (reserved_va) {
2091         guest_loaddr = (guest_base >= mmap_min_addr ? 0
2092                         : mmap_min_addr - guest_base);
2093         guest_hiaddr = reserved_va;
2094     }
2095 
2096     /* Reserve the address space for the binary, or reserved_va. */
2097     test = g2h(guest_loaddr);
2098     addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0);
2099     if (test != addr) {
2100         pgb_fail_in_use(image_name);
2101     }
2102 }
2103 
2104 /**
2105  * pgd_find_hole_fallback: potential mmap address
2106  * @guest_size: size of available space
2107  * @brk: location of break
2108  * @align: memory alignment
2109  *
2110  * This is a fallback method for finding a hole in the host address
2111  * space if we don't have the benefit of being able to access
2112  * /proc/self/map. It can potentially take a very long time as we can
2113  * only dumbly iterate up the host address space seeing if the
2114  * allocation would work.
2115  */
2116 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2117                                         long align, uintptr_t offset)
2118 {
2119     uintptr_t base;
2120 
2121     /* Start (aligned) at the bottom and work our way up */
2122     base = ROUND_UP(mmap_min_addr, align);
2123 
2124     while (true) {
2125         uintptr_t align_start, end;
2126         align_start = ROUND_UP(base, align);
2127         end = align_start + guest_size + offset;
2128 
2129         /* if brk is anywhere in the range give ourselves some room to grow. */
2130         if (align_start <= brk && brk < end) {
2131             base = brk + (16 * MiB);
2132             continue;
2133         } else if (align_start + guest_size < align_start) {
2134             /* we have run out of space */
2135             return -1;
2136         } else {
2137             int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE | MAP_FIXED;
2138             void * mmap_start = mmap((void *) align_start, guest_size,
2139                                      PROT_NONE, flags, -1, 0);
2140             if (mmap_start != MAP_FAILED) {
2141                 munmap((void *) align_start, guest_size);
2142                 return (uintptr_t) mmap_start + offset;
2143             }
2144             base += qemu_host_page_size;
2145         }
2146     }
2147 }
2148 
2149 /* Return value for guest_base, or -1 if no hole found. */
2150 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
2151                                long align, uintptr_t offset)
2152 {
2153     GSList *maps, *iter;
2154     uintptr_t this_start, this_end, next_start, brk;
2155     intptr_t ret = -1;
2156 
2157     assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2158 
2159     maps = read_self_maps();
2160 
2161     /* Read brk after we've read the maps, which will malloc. */
2162     brk = (uintptr_t)sbrk(0);
2163 
2164     if (!maps) {
2165         return pgd_find_hole_fallback(guest_size, brk, align, offset);
2166     }
2167 
2168     /* The first hole is before the first map entry. */
2169     this_start = mmap_min_addr;
2170 
2171     for (iter = maps; iter;
2172          this_start = next_start, iter = g_slist_next(iter)) {
2173         uintptr_t align_start, hole_size;
2174 
2175         this_end = ((MapInfo *)iter->data)->start;
2176         next_start = ((MapInfo *)iter->data)->end;
2177         align_start = ROUND_UP(this_start + offset, align);
2178 
2179         /* Skip holes that are too small. */
2180         if (align_start >= this_end) {
2181             continue;
2182         }
2183         hole_size = this_end - align_start;
2184         if (hole_size < guest_size) {
2185             continue;
2186         }
2187 
2188         /* If this hole contains brk, give ourselves some room to grow. */
2189         if (this_start <= brk && brk < this_end) {
2190             hole_size -= guest_size;
2191             if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2192                 align_start += 1 * GiB;
2193             } else if (hole_size >= 16 * MiB) {
2194                 align_start += 16 * MiB;
2195             } else {
2196                 align_start = (this_end - guest_size) & -align;
2197                 if (align_start < this_start) {
2198                     continue;
2199                 }
2200             }
2201         }
2202 
2203         /* Record the lowest successful match. */
2204         if (ret < 0) {
2205             ret = align_start - guest_loaddr;
2206         }
2207         /* If this hole contains the identity map, select it. */
2208         if (align_start <= guest_loaddr &&
2209             guest_loaddr + guest_size <= this_end) {
2210             ret = 0;
2211         }
2212         /* If this hole ends above the identity map, stop looking. */
2213         if (this_end >= guest_loaddr) {
2214             break;
2215         }
2216     }
2217     free_self_maps(maps);
2218 
2219     return ret;
2220 }
2221 
2222 static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2223                        abi_ulong orig_hiaddr, long align)
2224 {
2225     uintptr_t loaddr = orig_loaddr;
2226     uintptr_t hiaddr = orig_hiaddr;
2227     uintptr_t offset = 0;
2228     uintptr_t addr;
2229 
2230     if (hiaddr != orig_hiaddr) {
2231         error_report("%s: requires virtual address space that the "
2232                      "host cannot provide (0x%" PRIx64 ")",
2233                      image_name, (uint64_t)orig_hiaddr);
2234         exit(EXIT_FAILURE);
2235     }
2236 
2237     loaddr &= -align;
2238     if (ARM_COMMPAGE) {
2239         /*
2240          * Extend the allocation to include the commpage.
2241          * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2242          * need to ensure there is space bellow the guest_base so we
2243          * can map the commpage in the place needed when the address
2244          * arithmetic wraps around.
2245          */
2246         if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
2247             hiaddr = (uintptr_t) 4 << 30;
2248         } else {
2249             offset = -(ARM_COMMPAGE & -align);
2250         }
2251     }
2252 
2253     addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset);
2254     if (addr == -1) {
2255         /*
2256          * If ARM_COMMPAGE, there *might* be a non-consecutive allocation
2257          * that can satisfy both.  But as the normal arm32 link base address
2258          * is ~32k, and we extend down to include the commpage, making the
2259          * overhead only ~96k, this is unlikely.
2260          */
2261         error_report("%s: Unable to allocate %#zx bytes of "
2262                      "virtual address space", image_name,
2263                      (size_t)(hiaddr - loaddr));
2264         exit(EXIT_FAILURE);
2265     }
2266 
2267     guest_base = addr;
2268 }
2269 
2270 static void pgb_dynamic(const char *image_name, long align)
2271 {
2272     /*
2273      * The executable is dynamic and does not require a fixed address.
2274      * All we need is a commpage that satisfies align.
2275      * If we do not need a commpage, leave guest_base == 0.
2276      */
2277     if (ARM_COMMPAGE) {
2278         uintptr_t addr, commpage;
2279 
2280         /* 64-bit hosts should have used reserved_va. */
2281         assert(sizeof(uintptr_t) == 4);
2282 
2283         /*
2284          * By putting the commpage at the first hole, that puts guest_base
2285          * just above that, and maximises the positive guest addresses.
2286          */
2287         commpage = ARM_COMMPAGE & -align;
2288         addr = pgb_find_hole(commpage, -commpage, align, 0);
2289         assert(addr != -1);
2290         guest_base = addr;
2291     }
2292 }
2293 
2294 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2295                             abi_ulong guest_hiaddr, long align)
2296 {
2297     const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2298     void *addr, *test;
2299 
2300     if (guest_hiaddr > reserved_va) {
2301         error_report("%s: requires more than reserved virtual "
2302                      "address space (0x%" PRIx64 " > 0x%lx)",
2303                      image_name, (uint64_t)guest_hiaddr, reserved_va);
2304         exit(EXIT_FAILURE);
2305     }
2306 
2307     /* Widen the "image" to the entire reserved address space. */
2308     pgb_static(image_name, 0, reserved_va, align);
2309 
2310     /* Reserve the memory on the host. */
2311     assert(guest_base != 0);
2312     test = g2h(0);
2313     addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0);
2314     if (addr == MAP_FAILED) {
2315         error_report("Unable to reserve 0x%lx bytes of virtual address "
2316                      "space for use as guest address space (check your "
2317                      "virtual memory ulimit setting or reserve less "
2318                      "using -R option)", reserved_va);
2319         exit(EXIT_FAILURE);
2320     }
2321     assert(addr == test);
2322 }
2323 
2324 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2325                       abi_ulong guest_hiaddr)
2326 {
2327     /* In order to use host shmat, we must be able to honor SHMLBA.  */
2328     uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2329 
2330     if (have_guest_base) {
2331         pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2332     } else if (reserved_va) {
2333         pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2334     } else if (guest_loaddr) {
2335         pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2336     } else {
2337         pgb_dynamic(image_name, align);
2338     }
2339 
2340     /* Reserve and initialize the commpage. */
2341     if (!init_guest_commpage()) {
2342         /*
2343          * With have_guest_base, the user has selected the address and
2344          * we are trying to work with that.  Otherwise, we have selected
2345          * free space and init_guest_commpage must succeeded.
2346          */
2347         assert(have_guest_base);
2348         pgb_fail_in_use(image_name);
2349     }
2350 
2351     assert(QEMU_IS_ALIGNED(guest_base, align));
2352     qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2353                   "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2354 }
2355 
2356 /* Load an ELF image into the address space.
2357 
2358    IMAGE_NAME is the filename of the image, to use in error messages.
2359    IMAGE_FD is the open file descriptor for the image.
2360 
2361    BPRM_BUF is a copy of the beginning of the file; this of course
2362    contains the elf file header at offset 0.  It is assumed that this
2363    buffer is sufficiently aligned to present no problems to the host
2364    in accessing data at aligned offsets within the buffer.
2365 
2366    On return: INFO values will be filled in, as necessary or available.  */
2367 
2368 static void load_elf_image(const char *image_name, int image_fd,
2369                            struct image_info *info, char **pinterp_name,
2370                            char bprm_buf[BPRM_BUF_SIZE])
2371 {
2372     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2373     struct elf_phdr *phdr;
2374     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2375     int i, retval;
2376     const char *errmsg;
2377 
2378     /* First of all, some simple consistency checks */
2379     errmsg = "Invalid ELF image for this architecture";
2380     if (!elf_check_ident(ehdr)) {
2381         goto exit_errmsg;
2382     }
2383     bswap_ehdr(ehdr);
2384     if (!elf_check_ehdr(ehdr)) {
2385         goto exit_errmsg;
2386     }
2387 
2388     i = ehdr->e_phnum * sizeof(struct elf_phdr);
2389     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2390         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2391     } else {
2392         phdr = (struct elf_phdr *) alloca(i);
2393         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2394         if (retval != i) {
2395             goto exit_read;
2396         }
2397     }
2398     bswap_phdr(phdr, ehdr->e_phnum);
2399 
2400     info->nsegs = 0;
2401     info->pt_dynamic_addr = 0;
2402 
2403     mmap_lock();
2404 
2405     /* Find the maximum size of the image and allocate an appropriate
2406        amount of memory to handle that.  */
2407     loaddr = -1, hiaddr = 0;
2408     info->alignment = 0;
2409     for (i = 0; i < ehdr->e_phnum; ++i) {
2410         if (phdr[i].p_type == PT_LOAD) {
2411             abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2412             if (a < loaddr) {
2413                 loaddr = a;
2414             }
2415             a = phdr[i].p_vaddr + phdr[i].p_memsz;
2416             if (a > hiaddr) {
2417                 hiaddr = a;
2418             }
2419             ++info->nsegs;
2420             info->alignment |= phdr[i].p_align;
2421         }
2422     }
2423 
2424     if (pinterp_name != NULL) {
2425         /*
2426          * This is the main executable.
2427          *
2428          * Reserve extra space for brk.
2429          * We hold on to this space while placing the interpreter
2430          * and the stack, lest they be placed immediately after
2431          * the data segment and block allocation from the brk.
2432          *
2433          * 16MB is chosen as "large enough" without being so large
2434          * as to allow the result to not fit with a 32-bit guest on
2435          * a 32-bit host.
2436          */
2437         info->reserve_brk = 16 * MiB;
2438         hiaddr += info->reserve_brk;
2439 
2440         if (ehdr->e_type == ET_EXEC) {
2441             /*
2442              * Make sure that the low address does not conflict with
2443              * MMAP_MIN_ADDR or the QEMU application itself.
2444              */
2445             probe_guest_base(image_name, loaddr, hiaddr);
2446         } else {
2447             /*
2448              * The binary is dynamic, but we still need to
2449              * select guest_base.  In this case we pass a size.
2450              */
2451             probe_guest_base(image_name, 0, hiaddr - loaddr);
2452         }
2453     }
2454 
2455     /*
2456      * Reserve address space for all of this.
2457      *
2458      * In the case of ET_EXEC, we supply MAP_FIXED so that we get
2459      * exactly the address range that is required.
2460      *
2461      * Otherwise this is ET_DYN, and we are searching for a location
2462      * that can hold the memory space required.  If the image is
2463      * pre-linked, LOADDR will be non-zero, and the kernel should
2464      * honor that address if it happens to be free.
2465      *
2466      * In both cases, we will overwrite pages in this range with mappings
2467      * from the executable.
2468      */
2469     load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2470                             MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
2471                             (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
2472                             -1, 0);
2473     if (load_addr == -1) {
2474         goto exit_perror;
2475     }
2476     load_bias = load_addr - loaddr;
2477 
2478     if (elf_is_fdpic(ehdr)) {
2479         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2480             g_malloc(sizeof(*loadsegs) * info->nsegs);
2481 
2482         for (i = 0; i < ehdr->e_phnum; ++i) {
2483             switch (phdr[i].p_type) {
2484             case PT_DYNAMIC:
2485                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2486                 break;
2487             case PT_LOAD:
2488                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2489                 loadsegs->p_vaddr = phdr[i].p_vaddr;
2490                 loadsegs->p_memsz = phdr[i].p_memsz;
2491                 ++loadsegs;
2492                 break;
2493             }
2494         }
2495     }
2496 
2497     info->load_bias = load_bias;
2498     info->code_offset = load_bias;
2499     info->data_offset = load_bias;
2500     info->load_addr = load_addr;
2501     info->entry = ehdr->e_entry + load_bias;
2502     info->start_code = -1;
2503     info->end_code = 0;
2504     info->start_data = -1;
2505     info->end_data = 0;
2506     info->brk = 0;
2507     info->elf_flags = ehdr->e_flags;
2508 
2509     for (i = 0; i < ehdr->e_phnum; i++) {
2510         struct elf_phdr *eppnt = phdr + i;
2511         if (eppnt->p_type == PT_LOAD) {
2512             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2513             int elf_prot = 0;
2514 
2515             if (eppnt->p_flags & PF_R) elf_prot =  PROT_READ;
2516             if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2517             if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2518 
2519             vaddr = load_bias + eppnt->p_vaddr;
2520             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2521             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2522             vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2523 
2524             /*
2525              * Some segments may be completely empty without any backing file
2526              * segment, in that case just let zero_bss allocate an empty buffer
2527              * for it.
2528              */
2529             if (eppnt->p_filesz != 0) {
2530                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2531                                     MAP_PRIVATE | MAP_FIXED,
2532                                     image_fd, eppnt->p_offset - vaddr_po);
2533 
2534                 if (error == -1) {
2535                     goto exit_perror;
2536                 }
2537             }
2538 
2539             vaddr_ef = vaddr + eppnt->p_filesz;
2540             vaddr_em = vaddr + eppnt->p_memsz;
2541 
2542             /* If the load segment requests extra zeros (e.g. bss), map it.  */
2543             if (vaddr_ef < vaddr_em) {
2544                 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2545             }
2546 
2547             /* Find the full program boundaries.  */
2548             if (elf_prot & PROT_EXEC) {
2549                 if (vaddr < info->start_code) {
2550                     info->start_code = vaddr;
2551                 }
2552                 if (vaddr_ef > info->end_code) {
2553                     info->end_code = vaddr_ef;
2554                 }
2555             }
2556             if (elf_prot & PROT_WRITE) {
2557                 if (vaddr < info->start_data) {
2558                     info->start_data = vaddr;
2559                 }
2560                 if (vaddr_ef > info->end_data) {
2561                     info->end_data = vaddr_ef;
2562                 }
2563                 if (vaddr_em > info->brk) {
2564                     info->brk = vaddr_em;
2565                 }
2566             }
2567         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2568             char *interp_name;
2569 
2570             if (*pinterp_name) {
2571                 errmsg = "Multiple PT_INTERP entries";
2572                 goto exit_errmsg;
2573             }
2574             interp_name = malloc(eppnt->p_filesz);
2575             if (!interp_name) {
2576                 goto exit_perror;
2577             }
2578 
2579             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2580                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2581                        eppnt->p_filesz);
2582             } else {
2583                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2584                                eppnt->p_offset);
2585                 if (retval != eppnt->p_filesz) {
2586                     goto exit_perror;
2587                 }
2588             }
2589             if (interp_name[eppnt->p_filesz - 1] != 0) {
2590                 errmsg = "Invalid PT_INTERP entry";
2591                 goto exit_errmsg;
2592             }
2593             *pinterp_name = interp_name;
2594 #ifdef TARGET_MIPS
2595         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2596             Mips_elf_abiflags_v0 abiflags;
2597             if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2598                 errmsg = "Invalid PT_MIPS_ABIFLAGS entry";
2599                 goto exit_errmsg;
2600             }
2601             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2602                 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2603                        sizeof(Mips_elf_abiflags_v0));
2604             } else {
2605                 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2606                                eppnt->p_offset);
2607                 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2608                     goto exit_perror;
2609                 }
2610             }
2611             bswap_mips_abiflags(&abiflags);
2612             info->fp_abi = abiflags.fp_abi;
2613 #endif
2614         }
2615     }
2616 
2617     if (info->end_data == 0) {
2618         info->start_data = info->end_code;
2619         info->end_data = info->end_code;
2620         info->brk = info->end_code;
2621     }
2622 
2623     if (qemu_log_enabled()) {
2624         load_symbols(ehdr, image_fd, load_bias);
2625     }
2626 
2627     mmap_unlock();
2628 
2629     close(image_fd);
2630     return;
2631 
2632  exit_read:
2633     if (retval >= 0) {
2634         errmsg = "Incomplete read of file header";
2635         goto exit_errmsg;
2636     }
2637  exit_perror:
2638     errmsg = strerror(errno);
2639  exit_errmsg:
2640     fprintf(stderr, "%s: %s\n", image_name, errmsg);
2641     exit(-1);
2642 }
2643 
2644 static void load_elf_interp(const char *filename, struct image_info *info,
2645                             char bprm_buf[BPRM_BUF_SIZE])
2646 {
2647     int fd, retval;
2648 
2649     fd = open(path(filename), O_RDONLY);
2650     if (fd < 0) {
2651         goto exit_perror;
2652     }
2653 
2654     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2655     if (retval < 0) {
2656         goto exit_perror;
2657     }
2658     if (retval < BPRM_BUF_SIZE) {
2659         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2660     }
2661 
2662     load_elf_image(filename, fd, info, NULL, bprm_buf);
2663     return;
2664 
2665  exit_perror:
2666     fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2667     exit(-1);
2668 }
2669 
2670 static int symfind(const void *s0, const void *s1)
2671 {
2672     target_ulong addr = *(target_ulong *)s0;
2673     struct elf_sym *sym = (struct elf_sym *)s1;
2674     int result = 0;
2675     if (addr < sym->st_value) {
2676         result = -1;
2677     } else if (addr >= sym->st_value + sym->st_size) {
2678         result = 1;
2679     }
2680     return result;
2681 }
2682 
2683 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2684 {
2685 #if ELF_CLASS == ELFCLASS32
2686     struct elf_sym *syms = s->disas_symtab.elf32;
2687 #else
2688     struct elf_sym *syms = s->disas_symtab.elf64;
2689 #endif
2690 
2691     // binary search
2692     struct elf_sym *sym;
2693 
2694     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2695     if (sym != NULL) {
2696         return s->disas_strtab + sym->st_name;
2697     }
2698 
2699     return "";
2700 }
2701 
2702 /* FIXME: This should use elf_ops.h  */
2703 static int symcmp(const void *s0, const void *s1)
2704 {
2705     struct elf_sym *sym0 = (struct elf_sym *)s0;
2706     struct elf_sym *sym1 = (struct elf_sym *)s1;
2707     return (sym0->st_value < sym1->st_value)
2708         ? -1
2709         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2710 }
2711 
2712 /* Best attempt to load symbols from this ELF object. */
2713 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2714 {
2715     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2716     uint64_t segsz;
2717     struct elf_shdr *shdr;
2718     char *strings = NULL;
2719     struct syminfo *s = NULL;
2720     struct elf_sym *new_syms, *syms = NULL;
2721 
2722     shnum = hdr->e_shnum;
2723     i = shnum * sizeof(struct elf_shdr);
2724     shdr = (struct elf_shdr *)alloca(i);
2725     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2726         return;
2727     }
2728 
2729     bswap_shdr(shdr, shnum);
2730     for (i = 0; i < shnum; ++i) {
2731         if (shdr[i].sh_type == SHT_SYMTAB) {
2732             sym_idx = i;
2733             str_idx = shdr[i].sh_link;
2734             goto found;
2735         }
2736     }
2737 
2738     /* There will be no symbol table if the file was stripped.  */
2739     return;
2740 
2741  found:
2742     /* Now know where the strtab and symtab are.  Snarf them.  */
2743     s = g_try_new(struct syminfo, 1);
2744     if (!s) {
2745         goto give_up;
2746     }
2747 
2748     segsz = shdr[str_idx].sh_size;
2749     s->disas_strtab = strings = g_try_malloc(segsz);
2750     if (!strings ||
2751         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2752         goto give_up;
2753     }
2754 
2755     segsz = shdr[sym_idx].sh_size;
2756     syms = g_try_malloc(segsz);
2757     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2758         goto give_up;
2759     }
2760 
2761     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2762         /* Implausibly large symbol table: give up rather than ploughing
2763          * on with the number of symbols calculation overflowing
2764          */
2765         goto give_up;
2766     }
2767     nsyms = segsz / sizeof(struct elf_sym);
2768     for (i = 0; i < nsyms; ) {
2769         bswap_sym(syms + i);
2770         /* Throw away entries which we do not need.  */
2771         if (syms[i].st_shndx == SHN_UNDEF
2772             || syms[i].st_shndx >= SHN_LORESERVE
2773             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2774             if (i < --nsyms) {
2775                 syms[i] = syms[nsyms];
2776             }
2777         } else {
2778 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2779             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
2780             syms[i].st_value &= ~(target_ulong)1;
2781 #endif
2782             syms[i].st_value += load_bias;
2783             i++;
2784         }
2785     }
2786 
2787     /* No "useful" symbol.  */
2788     if (nsyms == 0) {
2789         goto give_up;
2790     }
2791 
2792     /* Attempt to free the storage associated with the local symbols
2793        that we threw away.  Whether or not this has any effect on the
2794        memory allocation depends on the malloc implementation and how
2795        many symbols we managed to discard.  */
2796     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2797     if (new_syms == NULL) {
2798         goto give_up;
2799     }
2800     syms = new_syms;
2801 
2802     qsort(syms, nsyms, sizeof(*syms), symcmp);
2803 
2804     s->disas_num_syms = nsyms;
2805 #if ELF_CLASS == ELFCLASS32
2806     s->disas_symtab.elf32 = syms;
2807 #else
2808     s->disas_symtab.elf64 = syms;
2809 #endif
2810     s->lookup_symbol = lookup_symbolxx;
2811     s->next = syminfos;
2812     syminfos = s;
2813 
2814     return;
2815 
2816 give_up:
2817     g_free(s);
2818     g_free(strings);
2819     g_free(syms);
2820 }
2821 
2822 uint32_t get_elf_eflags(int fd)
2823 {
2824     struct elfhdr ehdr;
2825     off_t offset;
2826     int ret;
2827 
2828     /* Read ELF header */
2829     offset = lseek(fd, 0, SEEK_SET);
2830     if (offset == (off_t) -1) {
2831         return 0;
2832     }
2833     ret = read(fd, &ehdr, sizeof(ehdr));
2834     if (ret < sizeof(ehdr)) {
2835         return 0;
2836     }
2837     offset = lseek(fd, offset, SEEK_SET);
2838     if (offset == (off_t) -1) {
2839         return 0;
2840     }
2841 
2842     /* Check ELF signature */
2843     if (!elf_check_ident(&ehdr)) {
2844         return 0;
2845     }
2846 
2847     /* check header */
2848     bswap_ehdr(&ehdr);
2849     if (!elf_check_ehdr(&ehdr)) {
2850         return 0;
2851     }
2852 
2853     /* return architecture id */
2854     return ehdr.e_flags;
2855 }
2856 
2857 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2858 {
2859     struct image_info interp_info;
2860     struct elfhdr elf_ex;
2861     char *elf_interpreter = NULL;
2862     char *scratch;
2863 
2864     memset(&interp_info, 0, sizeof(interp_info));
2865 #ifdef TARGET_MIPS
2866     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
2867 #endif
2868 
2869     info->start_mmap = (abi_ulong)ELF_START_MMAP;
2870 
2871     load_elf_image(bprm->filename, bprm->fd, info,
2872                    &elf_interpreter, bprm->buf);
2873 
2874     /* ??? We need a copy of the elf header for passing to create_elf_tables.
2875        If we do nothing, we'll have overwritten this when we re-use bprm->buf
2876        when we load the interpreter.  */
2877     elf_ex = *(struct elfhdr *)bprm->buf;
2878 
2879     /* Do this so that we can load the interpreter, if need be.  We will
2880        change some of these later */
2881     bprm->p = setup_arg_pages(bprm, info);
2882 
2883     scratch = g_new0(char, TARGET_PAGE_SIZE);
2884     if (STACK_GROWS_DOWN) {
2885         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2886                                    bprm->p, info->stack_limit);
2887         info->file_string = bprm->p;
2888         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2889                                    bprm->p, info->stack_limit);
2890         info->env_strings = bprm->p;
2891         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2892                                    bprm->p, info->stack_limit);
2893         info->arg_strings = bprm->p;
2894     } else {
2895         info->arg_strings = bprm->p;
2896         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2897                                    bprm->p, info->stack_limit);
2898         info->env_strings = bprm->p;
2899         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2900                                    bprm->p, info->stack_limit);
2901         info->file_string = bprm->p;
2902         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2903                                    bprm->p, info->stack_limit);
2904     }
2905 
2906     g_free(scratch);
2907 
2908     if (!bprm->p) {
2909         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2910         exit(-1);
2911     }
2912 
2913     if (elf_interpreter) {
2914         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2915 
2916         /* If the program interpreter is one of these two, then assume
2917            an iBCS2 image.  Otherwise assume a native linux image.  */
2918 
2919         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2920             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2921             info->personality = PER_SVR4;
2922 
2923             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
2924                and some applications "depend" upon this behavior.  Since
2925                we do not have the power to recompile these, we emulate
2926                the SVr4 behavior.  Sigh.  */
2927             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2928                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2929         }
2930 #ifdef TARGET_MIPS
2931         info->interp_fp_abi = interp_info.fp_abi;
2932 #endif
2933     }
2934 
2935     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2936                                 info, (elf_interpreter ? &interp_info : NULL));
2937     info->start_stack = bprm->p;
2938 
2939     /* If we have an interpreter, set that as the program's entry point.
2940        Copy the load_bias as well, to help PPC64 interpret the entry
2941        point as a function descriptor.  Do this after creating elf tables
2942        so that we copy the original program entry point into the AUXV.  */
2943     if (elf_interpreter) {
2944         info->load_bias = interp_info.load_bias;
2945         info->entry = interp_info.entry;
2946         free(elf_interpreter);
2947     }
2948 
2949 #ifdef USE_ELF_CORE_DUMP
2950     bprm->core_dump = &elf_core_dump;
2951 #endif
2952 
2953     /*
2954      * If we reserved extra space for brk, release it now.
2955      * The implementation of do_brk in syscalls.c expects to be able
2956      * to mmap pages in this space.
2957      */
2958     if (info->reserve_brk) {
2959         abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
2960         abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
2961         target_munmap(start_brk, end_brk - start_brk);
2962     }
2963 
2964     return 0;
2965 }
2966 
2967 #ifdef USE_ELF_CORE_DUMP
2968 /*
2969  * Definitions to generate Intel SVR4-like core files.
2970  * These mostly have the same names as the SVR4 types with "target_elf_"
2971  * tacked on the front to prevent clashes with linux definitions,
2972  * and the typedef forms have been avoided.  This is mostly like
2973  * the SVR4 structure, but more Linuxy, with things that Linux does
2974  * not support and which gdb doesn't really use excluded.
2975  *
2976  * Fields we don't dump (their contents is zero) in linux-user qemu
2977  * are marked with XXX.
2978  *
2979  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2980  *
2981  * Porting ELF coredump for target is (quite) simple process.  First you
2982  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2983  * the target resides):
2984  *
2985  * #define USE_ELF_CORE_DUMP
2986  *
2987  * Next you define type of register set used for dumping.  ELF specification
2988  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2989  *
2990  * typedef <target_regtype> target_elf_greg_t;
2991  * #define ELF_NREG <number of registers>
2992  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2993  *
2994  * Last step is to implement target specific function that copies registers
2995  * from given cpu into just specified register set.  Prototype is:
2996  *
2997  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2998  *                                const CPUArchState *env);
2999  *
3000  * Parameters:
3001  *     regs - copy register values into here (allocated and zeroed by caller)
3002  *     env - copy registers from here
3003  *
3004  * Example for ARM target is provided in this file.
3005  */
3006 
3007 /* An ELF note in memory */
3008 struct memelfnote {
3009     const char *name;
3010     size_t     namesz;
3011     size_t     namesz_rounded;
3012     int        type;
3013     size_t     datasz;
3014     size_t     datasz_rounded;
3015     void       *data;
3016     size_t     notesz;
3017 };
3018 
3019 struct target_elf_siginfo {
3020     abi_int    si_signo; /* signal number */
3021     abi_int    si_code;  /* extra code */
3022     abi_int    si_errno; /* errno */
3023 };
3024 
3025 struct target_elf_prstatus {
3026     struct target_elf_siginfo pr_info;      /* Info associated with signal */
3027     abi_short          pr_cursig;    /* Current signal */
3028     abi_ulong          pr_sigpend;   /* XXX */
3029     abi_ulong          pr_sighold;   /* XXX */
3030     target_pid_t       pr_pid;
3031     target_pid_t       pr_ppid;
3032     target_pid_t       pr_pgrp;
3033     target_pid_t       pr_sid;
3034     struct target_timeval pr_utime;  /* XXX User time */
3035     struct target_timeval pr_stime;  /* XXX System time */
3036     struct target_timeval pr_cutime; /* XXX Cumulative user time */
3037     struct target_timeval pr_cstime; /* XXX Cumulative system time */
3038     target_elf_gregset_t      pr_reg;       /* GP registers */
3039     abi_int            pr_fpvalid;   /* XXX */
3040 };
3041 
3042 #define ELF_PRARGSZ     (80) /* Number of chars for args */
3043 
3044 struct target_elf_prpsinfo {
3045     char         pr_state;       /* numeric process state */
3046     char         pr_sname;       /* char for pr_state */
3047     char         pr_zomb;        /* zombie */
3048     char         pr_nice;        /* nice val */
3049     abi_ulong    pr_flag;        /* flags */
3050     target_uid_t pr_uid;
3051     target_gid_t pr_gid;
3052     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3053     /* Lots missing */
3054     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3055     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3056 };
3057 
3058 /* Here is the structure in which status of each thread is captured. */
3059 struct elf_thread_status {
3060     QTAILQ_ENTRY(elf_thread_status)  ets_link;
3061     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
3062 #if 0
3063     elf_fpregset_t fpu;             /* NT_PRFPREG */
3064     struct task_struct *thread;
3065     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
3066 #endif
3067     struct memelfnote notes[1];
3068     int num_notes;
3069 };
3070 
3071 struct elf_note_info {
3072     struct memelfnote   *notes;
3073     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
3074     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
3075 
3076     QTAILQ_HEAD(, elf_thread_status) thread_list;
3077 #if 0
3078     /*
3079      * Current version of ELF coredump doesn't support
3080      * dumping fp regs etc.
3081      */
3082     elf_fpregset_t *fpu;
3083     elf_fpxregset_t *xfpu;
3084     int thread_status_size;
3085 #endif
3086     int notes_size;
3087     int numnote;
3088 };
3089 
3090 struct vm_area_struct {
3091     target_ulong   vma_start;  /* start vaddr of memory region */
3092     target_ulong   vma_end;    /* end vaddr of memory region */
3093     abi_ulong      vma_flags;  /* protection etc. flags for the region */
3094     QTAILQ_ENTRY(vm_area_struct) vma_link;
3095 };
3096 
3097 struct mm_struct {
3098     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3099     int mm_count;           /* number of mappings */
3100 };
3101 
3102 static struct mm_struct *vma_init(void);
3103 static void vma_delete(struct mm_struct *);
3104 static int vma_add_mapping(struct mm_struct *, target_ulong,
3105                            target_ulong, abi_ulong);
3106 static int vma_get_mapping_count(const struct mm_struct *);
3107 static struct vm_area_struct *vma_first(const struct mm_struct *);
3108 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3109 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3110 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3111                       unsigned long flags);
3112 
3113 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3114 static void fill_note(struct memelfnote *, const char *, int,
3115                       unsigned int, void *);
3116 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3117 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3118 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3119 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3120 static size_t note_size(const struct memelfnote *);
3121 static void free_note_info(struct elf_note_info *);
3122 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3123 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3124 static int core_dump_filename(const TaskState *, char *, size_t);
3125 
3126 static int dump_write(int, const void *, size_t);
3127 static int write_note(struct memelfnote *, int);
3128 static int write_note_info(struct elf_note_info *, int);
3129 
3130 #ifdef BSWAP_NEEDED
3131 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3132 {
3133     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3134     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3135     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3136     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3137     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3138     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3139     prstatus->pr_pid = tswap32(prstatus->pr_pid);
3140     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3141     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3142     prstatus->pr_sid = tswap32(prstatus->pr_sid);
3143     /* cpu times are not filled, so we skip them */
3144     /* regs should be in correct format already */
3145     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3146 }
3147 
3148 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3149 {
3150     psinfo->pr_flag = tswapal(psinfo->pr_flag);
3151     psinfo->pr_uid = tswap16(psinfo->pr_uid);
3152     psinfo->pr_gid = tswap16(psinfo->pr_gid);
3153     psinfo->pr_pid = tswap32(psinfo->pr_pid);
3154     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3155     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3156     psinfo->pr_sid = tswap32(psinfo->pr_sid);
3157 }
3158 
3159 static void bswap_note(struct elf_note *en)
3160 {
3161     bswap32s(&en->n_namesz);
3162     bswap32s(&en->n_descsz);
3163     bswap32s(&en->n_type);
3164 }
3165 #else
3166 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3167 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3168 static inline void bswap_note(struct elf_note *en) { }
3169 #endif /* BSWAP_NEEDED */
3170 
3171 /*
3172  * Minimal support for linux memory regions.  These are needed
3173  * when we are finding out what memory exactly belongs to
3174  * emulated process.  No locks needed here, as long as
3175  * thread that received the signal is stopped.
3176  */
3177 
3178 static struct mm_struct *vma_init(void)
3179 {
3180     struct mm_struct *mm;
3181 
3182     if ((mm = g_malloc(sizeof (*mm))) == NULL)
3183         return (NULL);
3184 
3185     mm->mm_count = 0;
3186     QTAILQ_INIT(&mm->mm_mmap);
3187 
3188     return (mm);
3189 }
3190 
3191 static void vma_delete(struct mm_struct *mm)
3192 {
3193     struct vm_area_struct *vma;
3194 
3195     while ((vma = vma_first(mm)) != NULL) {
3196         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3197         g_free(vma);
3198     }
3199     g_free(mm);
3200 }
3201 
3202 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3203                            target_ulong end, abi_ulong flags)
3204 {
3205     struct vm_area_struct *vma;
3206 
3207     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3208         return (-1);
3209 
3210     vma->vma_start = start;
3211     vma->vma_end = end;
3212     vma->vma_flags = flags;
3213 
3214     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3215     mm->mm_count++;
3216 
3217     return (0);
3218 }
3219 
3220 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3221 {
3222     return (QTAILQ_FIRST(&mm->mm_mmap));
3223 }
3224 
3225 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3226 {
3227     return (QTAILQ_NEXT(vma, vma_link));
3228 }
3229 
3230 static int vma_get_mapping_count(const struct mm_struct *mm)
3231 {
3232     return (mm->mm_count);
3233 }
3234 
3235 /*
3236  * Calculate file (dump) size of given memory region.
3237  */
3238 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3239 {
3240     /* if we cannot even read the first page, skip it */
3241     if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3242         return (0);
3243 
3244     /*
3245      * Usually we don't dump executable pages as they contain
3246      * non-writable code that debugger can read directly from
3247      * target library etc.  However, thread stacks are marked
3248      * also executable so we read in first page of given region
3249      * and check whether it contains elf header.  If there is
3250      * no elf header, we dump it.
3251      */
3252     if (vma->vma_flags & PROT_EXEC) {
3253         char page[TARGET_PAGE_SIZE];
3254 
3255         copy_from_user(page, vma->vma_start, sizeof (page));
3256         if ((page[EI_MAG0] == ELFMAG0) &&
3257             (page[EI_MAG1] == ELFMAG1) &&
3258             (page[EI_MAG2] == ELFMAG2) &&
3259             (page[EI_MAG3] == ELFMAG3)) {
3260             /*
3261              * Mappings are possibly from ELF binary.  Don't dump
3262              * them.
3263              */
3264             return (0);
3265         }
3266     }
3267 
3268     return (vma->vma_end - vma->vma_start);
3269 }
3270 
3271 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3272                       unsigned long flags)
3273 {
3274     struct mm_struct *mm = (struct mm_struct *)priv;
3275 
3276     vma_add_mapping(mm, start, end, flags);
3277     return (0);
3278 }
3279 
3280 static void fill_note(struct memelfnote *note, const char *name, int type,
3281                       unsigned int sz, void *data)
3282 {
3283     unsigned int namesz;
3284 
3285     namesz = strlen(name) + 1;
3286     note->name = name;
3287     note->namesz = namesz;
3288     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3289     note->type = type;
3290     note->datasz = sz;
3291     note->datasz_rounded = roundup(sz, sizeof (int32_t));
3292 
3293     note->data = data;
3294 
3295     /*
3296      * We calculate rounded up note size here as specified by
3297      * ELF document.
3298      */
3299     note->notesz = sizeof (struct elf_note) +
3300         note->namesz_rounded + note->datasz_rounded;
3301 }
3302 
3303 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3304                             uint32_t flags)
3305 {
3306     (void) memset(elf, 0, sizeof(*elf));
3307 
3308     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3309     elf->e_ident[EI_CLASS] = ELF_CLASS;
3310     elf->e_ident[EI_DATA] = ELF_DATA;
3311     elf->e_ident[EI_VERSION] = EV_CURRENT;
3312     elf->e_ident[EI_OSABI] = ELF_OSABI;
3313 
3314     elf->e_type = ET_CORE;
3315     elf->e_machine = machine;
3316     elf->e_version = EV_CURRENT;
3317     elf->e_phoff = sizeof(struct elfhdr);
3318     elf->e_flags = flags;
3319     elf->e_ehsize = sizeof(struct elfhdr);
3320     elf->e_phentsize = sizeof(struct elf_phdr);
3321     elf->e_phnum = segs;
3322 
3323     bswap_ehdr(elf);
3324 }
3325 
3326 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3327 {
3328     phdr->p_type = PT_NOTE;
3329     phdr->p_offset = offset;
3330     phdr->p_vaddr = 0;
3331     phdr->p_paddr = 0;
3332     phdr->p_filesz = sz;
3333     phdr->p_memsz = 0;
3334     phdr->p_flags = 0;
3335     phdr->p_align = 0;
3336 
3337     bswap_phdr(phdr, 1);
3338 }
3339 
3340 static size_t note_size(const struct memelfnote *note)
3341 {
3342     return (note->notesz);
3343 }
3344 
3345 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3346                           const TaskState *ts, int signr)
3347 {
3348     (void) memset(prstatus, 0, sizeof (*prstatus));
3349     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3350     prstatus->pr_pid = ts->ts_tid;
3351     prstatus->pr_ppid = getppid();
3352     prstatus->pr_pgrp = getpgrp();
3353     prstatus->pr_sid = getsid(0);
3354 
3355     bswap_prstatus(prstatus);
3356 }
3357 
3358 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3359 {
3360     char *base_filename;
3361     unsigned int i, len;
3362 
3363     (void) memset(psinfo, 0, sizeof (*psinfo));
3364 
3365     len = ts->info->arg_end - ts->info->arg_start;
3366     if (len >= ELF_PRARGSZ)
3367         len = ELF_PRARGSZ - 1;
3368     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3369         return -EFAULT;
3370     for (i = 0; i < len; i++)
3371         if (psinfo->pr_psargs[i] == 0)
3372             psinfo->pr_psargs[i] = ' ';
3373     psinfo->pr_psargs[len] = 0;
3374 
3375     psinfo->pr_pid = getpid();
3376     psinfo->pr_ppid = getppid();
3377     psinfo->pr_pgrp = getpgrp();
3378     psinfo->pr_sid = getsid(0);
3379     psinfo->pr_uid = getuid();
3380     psinfo->pr_gid = getgid();
3381 
3382     base_filename = g_path_get_basename(ts->bprm->filename);
3383     /*
3384      * Using strncpy here is fine: at max-length,
3385      * this field is not NUL-terminated.
3386      */
3387     (void) strncpy(psinfo->pr_fname, base_filename,
3388                    sizeof(psinfo->pr_fname));
3389 
3390     g_free(base_filename);
3391     bswap_psinfo(psinfo);
3392     return (0);
3393 }
3394 
3395 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3396 {
3397     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3398     elf_addr_t orig_auxv = auxv;
3399     void *ptr;
3400     int len = ts->info->auxv_len;
3401 
3402     /*
3403      * Auxiliary vector is stored in target process stack.  It contains
3404      * {type, value} pairs that we need to dump into note.  This is not
3405      * strictly necessary but we do it here for sake of completeness.
3406      */
3407 
3408     /* read in whole auxv vector and copy it to memelfnote */
3409     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3410     if (ptr != NULL) {
3411         fill_note(note, "CORE", NT_AUXV, len, ptr);
3412         unlock_user(ptr, auxv, len);
3413     }
3414 }
3415 
3416 /*
3417  * Constructs name of coredump file.  We have following convention
3418  * for the name:
3419  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3420  *
3421  * Returns 0 in case of success, -1 otherwise (errno is set).
3422  */
3423 static int core_dump_filename(const TaskState *ts, char *buf,
3424                               size_t bufsize)
3425 {
3426     char timestamp[64];
3427     char *base_filename = NULL;
3428     struct timeval tv;
3429     struct tm tm;
3430 
3431     assert(bufsize >= PATH_MAX);
3432 
3433     if (gettimeofday(&tv, NULL) < 0) {
3434         (void) fprintf(stderr, "unable to get current timestamp: %s",
3435                        strerror(errno));
3436         return (-1);
3437     }
3438 
3439     base_filename = g_path_get_basename(ts->bprm->filename);
3440     (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3441                     localtime_r(&tv.tv_sec, &tm));
3442     (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3443                     base_filename, timestamp, (int)getpid());
3444     g_free(base_filename);
3445 
3446     return (0);
3447 }
3448 
3449 static int dump_write(int fd, const void *ptr, size_t size)
3450 {
3451     const char *bufp = (const char *)ptr;
3452     ssize_t bytes_written, bytes_left;
3453     struct rlimit dumpsize;
3454     off_t pos;
3455 
3456     bytes_written = 0;
3457     getrlimit(RLIMIT_CORE, &dumpsize);
3458     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3459         if (errno == ESPIPE) { /* not a seekable stream */
3460             bytes_left = size;
3461         } else {
3462             return pos;
3463         }
3464     } else {
3465         if (dumpsize.rlim_cur <= pos) {
3466             return -1;
3467         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3468             bytes_left = size;
3469         } else {
3470             size_t limit_left=dumpsize.rlim_cur - pos;
3471             bytes_left = limit_left >= size ? size : limit_left ;
3472         }
3473     }
3474 
3475     /*
3476      * In normal conditions, single write(2) should do but
3477      * in case of socket etc. this mechanism is more portable.
3478      */
3479     do {
3480         bytes_written = write(fd, bufp, bytes_left);
3481         if (bytes_written < 0) {
3482             if (errno == EINTR)
3483                 continue;
3484             return (-1);
3485         } else if (bytes_written == 0) { /* eof */
3486             return (-1);
3487         }
3488         bufp += bytes_written;
3489         bytes_left -= bytes_written;
3490     } while (bytes_left > 0);
3491 
3492     return (0);
3493 }
3494 
3495 static int write_note(struct memelfnote *men, int fd)
3496 {
3497     struct elf_note en;
3498 
3499     en.n_namesz = men->namesz;
3500     en.n_type = men->type;
3501     en.n_descsz = men->datasz;
3502 
3503     bswap_note(&en);
3504 
3505     if (dump_write(fd, &en, sizeof(en)) != 0)
3506         return (-1);
3507     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3508         return (-1);
3509     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3510         return (-1);
3511 
3512     return (0);
3513 }
3514 
3515 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3516 {
3517     CPUState *cpu = env_cpu((CPUArchState *)env);
3518     TaskState *ts = (TaskState *)cpu->opaque;
3519     struct elf_thread_status *ets;
3520 
3521     ets = g_malloc0(sizeof (*ets));
3522     ets->num_notes = 1; /* only prstatus is dumped */
3523     fill_prstatus(&ets->prstatus, ts, 0);
3524     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3525     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3526               &ets->prstatus);
3527 
3528     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3529 
3530     info->notes_size += note_size(&ets->notes[0]);
3531 }
3532 
3533 static void init_note_info(struct elf_note_info *info)
3534 {
3535     /* Initialize the elf_note_info structure so that it is at
3536      * least safe to call free_note_info() on it. Must be
3537      * called before calling fill_note_info().
3538      */
3539     memset(info, 0, sizeof (*info));
3540     QTAILQ_INIT(&info->thread_list);
3541 }
3542 
3543 static int fill_note_info(struct elf_note_info *info,
3544                           long signr, const CPUArchState *env)
3545 {
3546 #define NUMNOTES 3
3547     CPUState *cpu = env_cpu((CPUArchState *)env);
3548     TaskState *ts = (TaskState *)cpu->opaque;
3549     int i;
3550 
3551     info->notes = g_new0(struct memelfnote, NUMNOTES);
3552     if (info->notes == NULL)
3553         return (-ENOMEM);
3554     info->prstatus = g_malloc0(sizeof (*info->prstatus));
3555     if (info->prstatus == NULL)
3556         return (-ENOMEM);
3557     info->psinfo = g_malloc0(sizeof (*info->psinfo));
3558     if (info->prstatus == NULL)
3559         return (-ENOMEM);
3560 
3561     /*
3562      * First fill in status (and registers) of current thread
3563      * including process info & aux vector.
3564      */
3565     fill_prstatus(info->prstatus, ts, signr);
3566     elf_core_copy_regs(&info->prstatus->pr_reg, env);
3567     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3568               sizeof (*info->prstatus), info->prstatus);
3569     fill_psinfo(info->psinfo, ts);
3570     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3571               sizeof (*info->psinfo), info->psinfo);
3572     fill_auxv_note(&info->notes[2], ts);
3573     info->numnote = 3;
3574 
3575     info->notes_size = 0;
3576     for (i = 0; i < info->numnote; i++)
3577         info->notes_size += note_size(&info->notes[i]);
3578 
3579     /* read and fill status of all threads */
3580     cpu_list_lock();
3581     CPU_FOREACH(cpu) {
3582         if (cpu == thread_cpu) {
3583             continue;
3584         }
3585         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3586     }
3587     cpu_list_unlock();
3588 
3589     return (0);
3590 }
3591 
3592 static void free_note_info(struct elf_note_info *info)
3593 {
3594     struct elf_thread_status *ets;
3595 
3596     while (!QTAILQ_EMPTY(&info->thread_list)) {
3597         ets = QTAILQ_FIRST(&info->thread_list);
3598         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3599         g_free(ets);
3600     }
3601 
3602     g_free(info->prstatus);
3603     g_free(info->psinfo);
3604     g_free(info->notes);
3605 }
3606 
3607 static int write_note_info(struct elf_note_info *info, int fd)
3608 {
3609     struct elf_thread_status *ets;
3610     int i, error = 0;
3611 
3612     /* write prstatus, psinfo and auxv for current thread */
3613     for (i = 0; i < info->numnote; i++)
3614         if ((error = write_note(&info->notes[i], fd)) != 0)
3615             return (error);
3616 
3617     /* write prstatus for each thread */
3618     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3619         if ((error = write_note(&ets->notes[0], fd)) != 0)
3620             return (error);
3621     }
3622 
3623     return (0);
3624 }
3625 
3626 /*
3627  * Write out ELF coredump.
3628  *
3629  * See documentation of ELF object file format in:
3630  * http://www.caldera.com/developers/devspecs/gabi41.pdf
3631  *
3632  * Coredump format in linux is following:
3633  *
3634  * 0   +----------------------+         \
3635  *     | ELF header           | ET_CORE  |
3636  *     +----------------------+          |
3637  *     | ELF program headers  |          |--- headers
3638  *     | - NOTE section       |          |
3639  *     | - PT_LOAD sections   |          |
3640  *     +----------------------+         /
3641  *     | NOTEs:               |
3642  *     | - NT_PRSTATUS        |
3643  *     | - NT_PRSINFO         |
3644  *     | - NT_AUXV            |
3645  *     +----------------------+ <-- aligned to target page
3646  *     | Process memory dump  |
3647  *     :                      :
3648  *     .                      .
3649  *     :                      :
3650  *     |                      |
3651  *     +----------------------+
3652  *
3653  * NT_PRSTATUS -> struct elf_prstatus (per thread)
3654  * NT_PRSINFO  -> struct elf_prpsinfo
3655  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3656  *
3657  * Format follows System V format as close as possible.  Current
3658  * version limitations are as follows:
3659  *     - no floating point registers are dumped
3660  *
3661  * Function returns 0 in case of success, negative errno otherwise.
3662  *
3663  * TODO: make this work also during runtime: it should be
3664  * possible to force coredump from running process and then
3665  * continue processing.  For example qemu could set up SIGUSR2
3666  * handler (provided that target process haven't registered
3667  * handler for that) that does the dump when signal is received.
3668  */
3669 static int elf_core_dump(int signr, const CPUArchState *env)
3670 {
3671     const CPUState *cpu = env_cpu((CPUArchState *)env);
3672     const TaskState *ts = (const TaskState *)cpu->opaque;
3673     struct vm_area_struct *vma = NULL;
3674     char corefile[PATH_MAX];
3675     struct elf_note_info info;
3676     struct elfhdr elf;
3677     struct elf_phdr phdr;
3678     struct rlimit dumpsize;
3679     struct mm_struct *mm = NULL;
3680     off_t offset = 0, data_offset = 0;
3681     int segs = 0;
3682     int fd = -1;
3683 
3684     init_note_info(&info);
3685 
3686     errno = 0;
3687     getrlimit(RLIMIT_CORE, &dumpsize);
3688     if (dumpsize.rlim_cur == 0)
3689         return 0;
3690 
3691     if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3692         return (-errno);
3693 
3694     if ((fd = open(corefile, O_WRONLY | O_CREAT,
3695                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3696         return (-errno);
3697 
3698     /*
3699      * Walk through target process memory mappings and
3700      * set up structure containing this information.  After
3701      * this point vma_xxx functions can be used.
3702      */
3703     if ((mm = vma_init()) == NULL)
3704         goto out;
3705 
3706     walk_memory_regions(mm, vma_walker);
3707     segs = vma_get_mapping_count(mm);
3708 
3709     /*
3710      * Construct valid coredump ELF header.  We also
3711      * add one more segment for notes.
3712      */
3713     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3714     if (dump_write(fd, &elf, sizeof (elf)) != 0)
3715         goto out;
3716 
3717     /* fill in the in-memory version of notes */
3718     if (fill_note_info(&info, signr, env) < 0)
3719         goto out;
3720 
3721     offset += sizeof (elf);                             /* elf header */
3722     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
3723 
3724     /* write out notes program header */
3725     fill_elf_note_phdr(&phdr, info.notes_size, offset);
3726 
3727     offset += info.notes_size;
3728     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3729         goto out;
3730 
3731     /*
3732      * ELF specification wants data to start at page boundary so
3733      * we align it here.
3734      */
3735     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3736 
3737     /*
3738      * Write program headers for memory regions mapped in
3739      * the target process.
3740      */
3741     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3742         (void) memset(&phdr, 0, sizeof (phdr));
3743 
3744         phdr.p_type = PT_LOAD;
3745         phdr.p_offset = offset;
3746         phdr.p_vaddr = vma->vma_start;
3747         phdr.p_paddr = 0;
3748         phdr.p_filesz = vma_dump_size(vma);
3749         offset += phdr.p_filesz;
3750         phdr.p_memsz = vma->vma_end - vma->vma_start;
3751         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3752         if (vma->vma_flags & PROT_WRITE)
3753             phdr.p_flags |= PF_W;
3754         if (vma->vma_flags & PROT_EXEC)
3755             phdr.p_flags |= PF_X;
3756         phdr.p_align = ELF_EXEC_PAGESIZE;
3757 
3758         bswap_phdr(&phdr, 1);
3759         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3760             goto out;
3761         }
3762     }
3763 
3764     /*
3765      * Next we write notes just after program headers.  No
3766      * alignment needed here.
3767      */
3768     if (write_note_info(&info, fd) < 0)
3769         goto out;
3770 
3771     /* align data to page boundary */
3772     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3773         goto out;
3774 
3775     /*
3776      * Finally we can dump process memory into corefile as well.
3777      */
3778     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3779         abi_ulong addr;
3780         abi_ulong end;
3781 
3782         end = vma->vma_start + vma_dump_size(vma);
3783 
3784         for (addr = vma->vma_start; addr < end;
3785              addr += TARGET_PAGE_SIZE) {
3786             char page[TARGET_PAGE_SIZE];
3787             int error;
3788 
3789             /*
3790              *  Read in page from target process memory and
3791              *  write it to coredump file.
3792              */
3793             error = copy_from_user(page, addr, sizeof (page));
3794             if (error != 0) {
3795                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3796                                addr);
3797                 errno = -error;
3798                 goto out;
3799             }
3800             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3801                 goto out;
3802         }
3803     }
3804 
3805  out:
3806     free_note_info(&info);
3807     if (mm != NULL)
3808         vma_delete(mm);
3809     (void) close(fd);
3810 
3811     if (errno != 0)
3812         return (-errno);
3813     return (0);
3814 }
3815 #endif /* USE_ELF_CORE_DUMP */
3816 
3817 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3818 {
3819     init_thread(regs, infop);
3820 }
3821