xref: /openbmc/qemu/linux-user/elfload.c (revision b77af26e973705e8fd96cff102fc978ee44043da)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7 
8 #include "qemu.h"
9 #include "user-internals.h"
10 #include "signal-common.h"
11 #include "loader.h"
12 #include "user-mmap.h"
13 #include "disas/disas.h"
14 #include "qemu/bitops.h"
15 #include "qemu/path.h"
16 #include "qemu/queue.h"
17 #include "qemu/guest-random.h"
18 #include "qemu/units.h"
19 #include "qemu/selfmap.h"
20 #include "qemu/lockable.h"
21 #include "qapi/error.h"
22 #include "qemu/error-report.h"
23 #include "target_signal.h"
24 #include "accel/tcg/debuginfo.h"
25 
26 #ifdef _ARCH_PPC64
27 #undef ARCH_DLINFO
28 #undef ELF_PLATFORM
29 #undef ELF_HWCAP
30 #undef ELF_HWCAP2
31 #undef ELF_CLASS
32 #undef ELF_DATA
33 #undef ELF_ARCH
34 #endif
35 
36 #define ELF_OSABI   ELFOSABI_SYSV
37 
38 /* from personality.h */
39 
40 /*
41  * Flags for bug emulation.
42  *
43  * These occupy the top three bytes.
44  */
45 enum {
46     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
47     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
48                                            descriptors (signal handling) */
49     MMAP_PAGE_ZERO =    0x0100000,
50     ADDR_COMPAT_LAYOUT = 0x0200000,
51     READ_IMPLIES_EXEC = 0x0400000,
52     ADDR_LIMIT_32BIT =  0x0800000,
53     SHORT_INODE =       0x1000000,
54     WHOLE_SECONDS =     0x2000000,
55     STICKY_TIMEOUTS =   0x4000000,
56     ADDR_LIMIT_3GB =    0x8000000,
57 };
58 
59 /*
60  * Personality types.
61  *
62  * These go in the low byte.  Avoid using the top bit, it will
63  * conflict with error returns.
64  */
65 enum {
66     PER_LINUX =         0x0000,
67     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
68     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
69     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
70     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
71     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
72     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
73     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
74     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
75     PER_BSD =           0x0006,
76     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
77     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
78     PER_LINUX32 =       0x0008,
79     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
80     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
81     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
82     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
83     PER_RISCOS =        0x000c,
84     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
85     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
86     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
87     PER_HPUX =          0x0010,
88     PER_MASK =          0x00ff,
89 };
90 
91 /*
92  * Return the base personality without flags.
93  */
94 #define personality(pers)       (pers & PER_MASK)
95 
96 int info_is_fdpic(struct image_info *info)
97 {
98     return info->personality == PER_LINUX_FDPIC;
99 }
100 
101 /* this flag is uneffective under linux too, should be deleted */
102 #ifndef MAP_DENYWRITE
103 #define MAP_DENYWRITE 0
104 #endif
105 
106 /* should probably go in elf.h */
107 #ifndef ELIBBAD
108 #define ELIBBAD 80
109 #endif
110 
111 #if TARGET_BIG_ENDIAN
112 #define ELF_DATA        ELFDATA2MSB
113 #else
114 #define ELF_DATA        ELFDATA2LSB
115 #endif
116 
117 #ifdef TARGET_ABI_MIPSN32
118 typedef abi_ullong      target_elf_greg_t;
119 #define tswapreg(ptr)   tswap64(ptr)
120 #else
121 typedef abi_ulong       target_elf_greg_t;
122 #define tswapreg(ptr)   tswapal(ptr)
123 #endif
124 
125 #ifdef USE_UID16
126 typedef abi_ushort      target_uid_t;
127 typedef abi_ushort      target_gid_t;
128 #else
129 typedef abi_uint        target_uid_t;
130 typedef abi_uint        target_gid_t;
131 #endif
132 typedef abi_int         target_pid_t;
133 
134 #ifdef TARGET_I386
135 
136 #define ELF_HWCAP get_elf_hwcap()
137 
138 static uint32_t get_elf_hwcap(void)
139 {
140     X86CPU *cpu = X86_CPU(thread_cpu);
141 
142     return cpu->env.features[FEAT_1_EDX];
143 }
144 
145 #ifdef TARGET_X86_64
146 #define ELF_CLASS      ELFCLASS64
147 #define ELF_ARCH       EM_X86_64
148 
149 #define ELF_PLATFORM   "x86_64"
150 
151 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
152 {
153     regs->rax = 0;
154     regs->rsp = infop->start_stack;
155     regs->rip = infop->entry;
156 }
157 
158 #define ELF_NREG    27
159 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
160 
161 /*
162  * Note that ELF_NREG should be 29 as there should be place for
163  * TRAPNO and ERR "registers" as well but linux doesn't dump
164  * those.
165  *
166  * See linux kernel: arch/x86/include/asm/elf.h
167  */
168 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
169 {
170     (*regs)[0] = tswapreg(env->regs[15]);
171     (*regs)[1] = tswapreg(env->regs[14]);
172     (*regs)[2] = tswapreg(env->regs[13]);
173     (*regs)[3] = tswapreg(env->regs[12]);
174     (*regs)[4] = tswapreg(env->regs[R_EBP]);
175     (*regs)[5] = tswapreg(env->regs[R_EBX]);
176     (*regs)[6] = tswapreg(env->regs[11]);
177     (*regs)[7] = tswapreg(env->regs[10]);
178     (*regs)[8] = tswapreg(env->regs[9]);
179     (*regs)[9] = tswapreg(env->regs[8]);
180     (*regs)[10] = tswapreg(env->regs[R_EAX]);
181     (*regs)[11] = tswapreg(env->regs[R_ECX]);
182     (*regs)[12] = tswapreg(env->regs[R_EDX]);
183     (*regs)[13] = tswapreg(env->regs[R_ESI]);
184     (*regs)[14] = tswapreg(env->regs[R_EDI]);
185     (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
186     (*regs)[16] = tswapreg(env->eip);
187     (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
188     (*regs)[18] = tswapreg(env->eflags);
189     (*regs)[19] = tswapreg(env->regs[R_ESP]);
190     (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
191     (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
192     (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
193     (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
194     (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
195     (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
196     (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
197 }
198 
199 #if ULONG_MAX > UINT32_MAX
200 #define INIT_GUEST_COMMPAGE
201 static bool init_guest_commpage(void)
202 {
203     /*
204      * The vsyscall page is at a high negative address aka kernel space,
205      * which means that we cannot actually allocate it with target_mmap.
206      * We still should be able to use page_set_flags, unless the user
207      * has specified -R reserved_va, which would trigger an assert().
208      */
209     if (reserved_va != 0 &&
210         TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) {
211         error_report("Cannot allocate vsyscall page");
212         exit(EXIT_FAILURE);
213     }
214     page_set_flags(TARGET_VSYSCALL_PAGE,
215                    TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK,
216                    PAGE_EXEC | PAGE_VALID);
217     return true;
218 }
219 #endif
220 #else
221 
222 /*
223  * This is used to ensure we don't load something for the wrong architecture.
224  */
225 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
226 
227 /*
228  * These are used to set parameters in the core dumps.
229  */
230 #define ELF_CLASS       ELFCLASS32
231 #define ELF_ARCH        EM_386
232 
233 #define ELF_PLATFORM get_elf_platform()
234 #define EXSTACK_DEFAULT true
235 
236 static const char *get_elf_platform(void)
237 {
238     static char elf_platform[] = "i386";
239     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
240     if (family > 6) {
241         family = 6;
242     }
243     if (family >= 3) {
244         elf_platform[1] = '0' + family;
245     }
246     return elf_platform;
247 }
248 
249 static inline void init_thread(struct target_pt_regs *regs,
250                                struct image_info *infop)
251 {
252     regs->esp = infop->start_stack;
253     regs->eip = infop->entry;
254 
255     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
256        starts %edx contains a pointer to a function which might be
257        registered using `atexit'.  This provides a mean for the
258        dynamic linker to call DT_FINI functions for shared libraries
259        that have been loaded before the code runs.
260 
261        A value of 0 tells we have no such handler.  */
262     regs->edx = 0;
263 }
264 
265 #define ELF_NREG    17
266 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
267 
268 /*
269  * Note that ELF_NREG should be 19 as there should be place for
270  * TRAPNO and ERR "registers" as well but linux doesn't dump
271  * those.
272  *
273  * See linux kernel: arch/x86/include/asm/elf.h
274  */
275 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
276 {
277     (*regs)[0] = tswapreg(env->regs[R_EBX]);
278     (*regs)[1] = tswapreg(env->regs[R_ECX]);
279     (*regs)[2] = tswapreg(env->regs[R_EDX]);
280     (*regs)[3] = tswapreg(env->regs[R_ESI]);
281     (*regs)[4] = tswapreg(env->regs[R_EDI]);
282     (*regs)[5] = tswapreg(env->regs[R_EBP]);
283     (*regs)[6] = tswapreg(env->regs[R_EAX]);
284     (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
285     (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
286     (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
287     (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
288     (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
289     (*regs)[12] = tswapreg(env->eip);
290     (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
291     (*regs)[14] = tswapreg(env->eflags);
292     (*regs)[15] = tswapreg(env->regs[R_ESP]);
293     (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
294 }
295 #endif
296 
297 #define USE_ELF_CORE_DUMP
298 #define ELF_EXEC_PAGESIZE       4096
299 
300 #endif
301 
302 #ifdef TARGET_ARM
303 
304 #ifndef TARGET_AARCH64
305 /* 32 bit ARM definitions */
306 
307 #define ELF_ARCH        EM_ARM
308 #define ELF_CLASS       ELFCLASS32
309 #define EXSTACK_DEFAULT true
310 
311 static inline void init_thread(struct target_pt_regs *regs,
312                                struct image_info *infop)
313 {
314     abi_long stack = infop->start_stack;
315     memset(regs, 0, sizeof(*regs));
316 
317     regs->uregs[16] = ARM_CPU_MODE_USR;
318     if (infop->entry & 1) {
319         regs->uregs[16] |= CPSR_T;
320     }
321     regs->uregs[15] = infop->entry & 0xfffffffe;
322     regs->uregs[13] = infop->start_stack;
323     /* FIXME - what to for failure of get_user()? */
324     get_user_ual(regs->uregs[2], stack + 8); /* envp */
325     get_user_ual(regs->uregs[1], stack + 4); /* envp */
326     /* XXX: it seems that r0 is zeroed after ! */
327     regs->uregs[0] = 0;
328     /* For uClinux PIC binaries.  */
329     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
330     regs->uregs[10] = infop->start_data;
331 
332     /* Support ARM FDPIC.  */
333     if (info_is_fdpic(infop)) {
334         /* As described in the ABI document, r7 points to the loadmap info
335          * prepared by the kernel. If an interpreter is needed, r8 points
336          * to the interpreter loadmap and r9 points to the interpreter
337          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
338          * r9 points to the main program PT_DYNAMIC info.
339          */
340         regs->uregs[7] = infop->loadmap_addr;
341         if (infop->interpreter_loadmap_addr) {
342             /* Executable is dynamically loaded.  */
343             regs->uregs[8] = infop->interpreter_loadmap_addr;
344             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
345         } else {
346             regs->uregs[8] = 0;
347             regs->uregs[9] = infop->pt_dynamic_addr;
348         }
349     }
350 }
351 
352 #define ELF_NREG    18
353 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
354 
355 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
356 {
357     (*regs)[0] = tswapreg(env->regs[0]);
358     (*regs)[1] = tswapreg(env->regs[1]);
359     (*regs)[2] = tswapreg(env->regs[2]);
360     (*regs)[3] = tswapreg(env->regs[3]);
361     (*regs)[4] = tswapreg(env->regs[4]);
362     (*regs)[5] = tswapreg(env->regs[5]);
363     (*regs)[6] = tswapreg(env->regs[6]);
364     (*regs)[7] = tswapreg(env->regs[7]);
365     (*regs)[8] = tswapreg(env->regs[8]);
366     (*regs)[9] = tswapreg(env->regs[9]);
367     (*regs)[10] = tswapreg(env->regs[10]);
368     (*regs)[11] = tswapreg(env->regs[11]);
369     (*regs)[12] = tswapreg(env->regs[12]);
370     (*regs)[13] = tswapreg(env->regs[13]);
371     (*regs)[14] = tswapreg(env->regs[14]);
372     (*regs)[15] = tswapreg(env->regs[15]);
373 
374     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
375     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
376 }
377 
378 #define USE_ELF_CORE_DUMP
379 #define ELF_EXEC_PAGESIZE       4096
380 
381 enum
382 {
383     ARM_HWCAP_ARM_SWP       = 1 << 0,
384     ARM_HWCAP_ARM_HALF      = 1 << 1,
385     ARM_HWCAP_ARM_THUMB     = 1 << 2,
386     ARM_HWCAP_ARM_26BIT     = 1 << 3,
387     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
388     ARM_HWCAP_ARM_FPA       = 1 << 5,
389     ARM_HWCAP_ARM_VFP       = 1 << 6,
390     ARM_HWCAP_ARM_EDSP      = 1 << 7,
391     ARM_HWCAP_ARM_JAVA      = 1 << 8,
392     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
393     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
394     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
395     ARM_HWCAP_ARM_NEON      = 1 << 12,
396     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
397     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
398     ARM_HWCAP_ARM_TLS       = 1 << 15,
399     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
400     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
401     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
402     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
403     ARM_HWCAP_ARM_LPAE      = 1 << 20,
404     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
405     ARM_HWCAP_ARM_FPHP      = 1 << 22,
406     ARM_HWCAP_ARM_ASIMDHP   = 1 << 23,
407     ARM_HWCAP_ARM_ASIMDDP   = 1 << 24,
408     ARM_HWCAP_ARM_ASIMDFHM  = 1 << 25,
409     ARM_HWCAP_ARM_ASIMDBF16 = 1 << 26,
410     ARM_HWCAP_ARM_I8MM      = 1 << 27,
411 };
412 
413 enum {
414     ARM_HWCAP2_ARM_AES      = 1 << 0,
415     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
416     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
417     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
418     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
419     ARM_HWCAP2_ARM_SB       = 1 << 5,
420     ARM_HWCAP2_ARM_SSBS     = 1 << 6,
421 };
422 
423 /* The commpage only exists for 32 bit kernels */
424 
425 #define HI_COMMPAGE (intptr_t)0xffff0f00u
426 
427 static bool init_guest_commpage(void)
428 {
429     ARMCPU *cpu = ARM_CPU(thread_cpu);
430     abi_ptr commpage;
431     void *want;
432     void *addr;
433 
434     /*
435      * M-profile allocates maximum of 2GB address space, so can never
436      * allocate the commpage.  Skip it.
437      */
438     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
439         return true;
440     }
441 
442     commpage = HI_COMMPAGE & -qemu_host_page_size;
443     want = g2h_untagged(commpage);
444     addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
445                 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
446 
447     if (addr == MAP_FAILED) {
448         perror("Allocating guest commpage");
449         exit(EXIT_FAILURE);
450     }
451     if (addr != want) {
452         return false;
453     }
454 
455     /* Set kernel helper versions; rest of page is 0.  */
456     __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
457 
458     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
459         perror("Protecting guest commpage");
460         exit(EXIT_FAILURE);
461     }
462 
463     page_set_flags(commpage, commpage | ~qemu_host_page_mask,
464                    PAGE_READ | PAGE_EXEC | PAGE_VALID);
465     return true;
466 }
467 
468 #define ELF_HWCAP get_elf_hwcap()
469 #define ELF_HWCAP2 get_elf_hwcap2()
470 
471 uint32_t get_elf_hwcap(void)
472 {
473     ARMCPU *cpu = ARM_CPU(thread_cpu);
474     uint32_t hwcaps = 0;
475 
476     hwcaps |= ARM_HWCAP_ARM_SWP;
477     hwcaps |= ARM_HWCAP_ARM_HALF;
478     hwcaps |= ARM_HWCAP_ARM_THUMB;
479     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
480 
481     /* probe for the extra features */
482 #define GET_FEATURE(feat, hwcap) \
483     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
484 
485 #define GET_FEATURE_ID(feat, hwcap) \
486     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
487 
488     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
489     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
490     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
491     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
492     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
493     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
494     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
495     GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
496     GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
497     GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
498 
499     if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
500         cpu_isar_feature(aa32_fpdp_v3, cpu)) {
501         hwcaps |= ARM_HWCAP_ARM_VFPv3;
502         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
503             hwcaps |= ARM_HWCAP_ARM_VFPD32;
504         } else {
505             hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
506         }
507     }
508     GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
509     /*
510      * MVFR1.FPHP and .SIMDHP must be in sync, and QEMU uses the same
511      * isar_feature function for both. The kernel reports them as two hwcaps.
512      */
513     GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_FPHP);
514     GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_ASIMDHP);
515     GET_FEATURE_ID(aa32_dp, ARM_HWCAP_ARM_ASIMDDP);
516     GET_FEATURE_ID(aa32_fhm, ARM_HWCAP_ARM_ASIMDFHM);
517     GET_FEATURE_ID(aa32_bf16, ARM_HWCAP_ARM_ASIMDBF16);
518     GET_FEATURE_ID(aa32_i8mm, ARM_HWCAP_ARM_I8MM);
519 
520     return hwcaps;
521 }
522 
523 uint32_t get_elf_hwcap2(void)
524 {
525     ARMCPU *cpu = ARM_CPU(thread_cpu);
526     uint32_t hwcaps = 0;
527 
528     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
529     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
530     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
531     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
532     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
533     GET_FEATURE_ID(aa32_sb, ARM_HWCAP2_ARM_SB);
534     GET_FEATURE_ID(aa32_ssbs, ARM_HWCAP2_ARM_SSBS);
535     return hwcaps;
536 }
537 
538 const char *elf_hwcap_str(uint32_t bit)
539 {
540     static const char *hwcap_str[] = {
541     [__builtin_ctz(ARM_HWCAP_ARM_SWP      )] = "swp",
542     [__builtin_ctz(ARM_HWCAP_ARM_HALF     )] = "half",
543     [__builtin_ctz(ARM_HWCAP_ARM_THUMB    )] = "thumb",
544     [__builtin_ctz(ARM_HWCAP_ARM_26BIT    )] = "26bit",
545     [__builtin_ctz(ARM_HWCAP_ARM_FAST_MULT)] = "fast_mult",
546     [__builtin_ctz(ARM_HWCAP_ARM_FPA      )] = "fpa",
547     [__builtin_ctz(ARM_HWCAP_ARM_VFP      )] = "vfp",
548     [__builtin_ctz(ARM_HWCAP_ARM_EDSP     )] = "edsp",
549     [__builtin_ctz(ARM_HWCAP_ARM_JAVA     )] = "java",
550     [__builtin_ctz(ARM_HWCAP_ARM_IWMMXT   )] = "iwmmxt",
551     [__builtin_ctz(ARM_HWCAP_ARM_CRUNCH   )] = "crunch",
552     [__builtin_ctz(ARM_HWCAP_ARM_THUMBEE  )] = "thumbee",
553     [__builtin_ctz(ARM_HWCAP_ARM_NEON     )] = "neon",
554     [__builtin_ctz(ARM_HWCAP_ARM_VFPv3    )] = "vfpv3",
555     [__builtin_ctz(ARM_HWCAP_ARM_VFPv3D16 )] = "vfpv3d16",
556     [__builtin_ctz(ARM_HWCAP_ARM_TLS      )] = "tls",
557     [__builtin_ctz(ARM_HWCAP_ARM_VFPv4    )] = "vfpv4",
558     [__builtin_ctz(ARM_HWCAP_ARM_IDIVA    )] = "idiva",
559     [__builtin_ctz(ARM_HWCAP_ARM_IDIVT    )] = "idivt",
560     [__builtin_ctz(ARM_HWCAP_ARM_VFPD32   )] = "vfpd32",
561     [__builtin_ctz(ARM_HWCAP_ARM_LPAE     )] = "lpae",
562     [__builtin_ctz(ARM_HWCAP_ARM_EVTSTRM  )] = "evtstrm",
563     [__builtin_ctz(ARM_HWCAP_ARM_FPHP     )] = "fphp",
564     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDHP  )] = "asimdhp",
565     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDDP  )] = "asimddp",
566     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDFHM )] = "asimdfhm",
567     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDBF16)] = "asimdbf16",
568     [__builtin_ctz(ARM_HWCAP_ARM_I8MM     )] = "i8mm",
569     };
570 
571     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
572 }
573 
574 const char *elf_hwcap2_str(uint32_t bit)
575 {
576     static const char *hwcap_str[] = {
577     [__builtin_ctz(ARM_HWCAP2_ARM_AES  )] = "aes",
578     [__builtin_ctz(ARM_HWCAP2_ARM_PMULL)] = "pmull",
579     [__builtin_ctz(ARM_HWCAP2_ARM_SHA1 )] = "sha1",
580     [__builtin_ctz(ARM_HWCAP2_ARM_SHA2 )] = "sha2",
581     [__builtin_ctz(ARM_HWCAP2_ARM_CRC32)] = "crc32",
582     [__builtin_ctz(ARM_HWCAP2_ARM_SB   )] = "sb",
583     [__builtin_ctz(ARM_HWCAP2_ARM_SSBS )] = "ssbs",
584     };
585 
586     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
587 }
588 
589 #undef GET_FEATURE
590 #undef GET_FEATURE_ID
591 
592 #define ELF_PLATFORM get_elf_platform()
593 
594 static const char *get_elf_platform(void)
595 {
596     CPUARMState *env = cpu_env(thread_cpu);
597 
598 #if TARGET_BIG_ENDIAN
599 # define END  "b"
600 #else
601 # define END  "l"
602 #endif
603 
604     if (arm_feature(env, ARM_FEATURE_V8)) {
605         return "v8" END;
606     } else if (arm_feature(env, ARM_FEATURE_V7)) {
607         if (arm_feature(env, ARM_FEATURE_M)) {
608             return "v7m" END;
609         } else {
610             return "v7" END;
611         }
612     } else if (arm_feature(env, ARM_FEATURE_V6)) {
613         return "v6" END;
614     } else if (arm_feature(env, ARM_FEATURE_V5)) {
615         return "v5" END;
616     } else {
617         return "v4" END;
618     }
619 
620 #undef END
621 }
622 
623 #else
624 /* 64 bit ARM definitions */
625 
626 #define ELF_ARCH        EM_AARCH64
627 #define ELF_CLASS       ELFCLASS64
628 #if TARGET_BIG_ENDIAN
629 # define ELF_PLATFORM    "aarch64_be"
630 #else
631 # define ELF_PLATFORM    "aarch64"
632 #endif
633 
634 static inline void init_thread(struct target_pt_regs *regs,
635                                struct image_info *infop)
636 {
637     abi_long stack = infop->start_stack;
638     memset(regs, 0, sizeof(*regs));
639 
640     regs->pc = infop->entry & ~0x3ULL;
641     regs->sp = stack;
642 }
643 
644 #define ELF_NREG    34
645 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
646 
647 static void elf_core_copy_regs(target_elf_gregset_t *regs,
648                                const CPUARMState *env)
649 {
650     int i;
651 
652     for (i = 0; i < 32; i++) {
653         (*regs)[i] = tswapreg(env->xregs[i]);
654     }
655     (*regs)[32] = tswapreg(env->pc);
656     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
657 }
658 
659 #define USE_ELF_CORE_DUMP
660 #define ELF_EXEC_PAGESIZE       4096
661 
662 enum {
663     ARM_HWCAP_A64_FP            = 1 << 0,
664     ARM_HWCAP_A64_ASIMD         = 1 << 1,
665     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
666     ARM_HWCAP_A64_AES           = 1 << 3,
667     ARM_HWCAP_A64_PMULL         = 1 << 4,
668     ARM_HWCAP_A64_SHA1          = 1 << 5,
669     ARM_HWCAP_A64_SHA2          = 1 << 6,
670     ARM_HWCAP_A64_CRC32         = 1 << 7,
671     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
672     ARM_HWCAP_A64_FPHP          = 1 << 9,
673     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
674     ARM_HWCAP_A64_CPUID         = 1 << 11,
675     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
676     ARM_HWCAP_A64_JSCVT         = 1 << 13,
677     ARM_HWCAP_A64_FCMA          = 1 << 14,
678     ARM_HWCAP_A64_LRCPC         = 1 << 15,
679     ARM_HWCAP_A64_DCPOP         = 1 << 16,
680     ARM_HWCAP_A64_SHA3          = 1 << 17,
681     ARM_HWCAP_A64_SM3           = 1 << 18,
682     ARM_HWCAP_A64_SM4           = 1 << 19,
683     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
684     ARM_HWCAP_A64_SHA512        = 1 << 21,
685     ARM_HWCAP_A64_SVE           = 1 << 22,
686     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
687     ARM_HWCAP_A64_DIT           = 1 << 24,
688     ARM_HWCAP_A64_USCAT         = 1 << 25,
689     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
690     ARM_HWCAP_A64_FLAGM         = 1 << 27,
691     ARM_HWCAP_A64_SSBS          = 1 << 28,
692     ARM_HWCAP_A64_SB            = 1 << 29,
693     ARM_HWCAP_A64_PACA          = 1 << 30,
694     ARM_HWCAP_A64_PACG          = 1UL << 31,
695 
696     ARM_HWCAP2_A64_DCPODP       = 1 << 0,
697     ARM_HWCAP2_A64_SVE2         = 1 << 1,
698     ARM_HWCAP2_A64_SVEAES       = 1 << 2,
699     ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
700     ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
701     ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
702     ARM_HWCAP2_A64_SVESM4       = 1 << 6,
703     ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
704     ARM_HWCAP2_A64_FRINT        = 1 << 8,
705     ARM_HWCAP2_A64_SVEI8MM      = 1 << 9,
706     ARM_HWCAP2_A64_SVEF32MM     = 1 << 10,
707     ARM_HWCAP2_A64_SVEF64MM     = 1 << 11,
708     ARM_HWCAP2_A64_SVEBF16      = 1 << 12,
709     ARM_HWCAP2_A64_I8MM         = 1 << 13,
710     ARM_HWCAP2_A64_BF16         = 1 << 14,
711     ARM_HWCAP2_A64_DGH          = 1 << 15,
712     ARM_HWCAP2_A64_RNG          = 1 << 16,
713     ARM_HWCAP2_A64_BTI          = 1 << 17,
714     ARM_HWCAP2_A64_MTE          = 1 << 18,
715     ARM_HWCAP2_A64_ECV          = 1 << 19,
716     ARM_HWCAP2_A64_AFP          = 1 << 20,
717     ARM_HWCAP2_A64_RPRES        = 1 << 21,
718     ARM_HWCAP2_A64_MTE3         = 1 << 22,
719     ARM_HWCAP2_A64_SME          = 1 << 23,
720     ARM_HWCAP2_A64_SME_I16I64   = 1 << 24,
721     ARM_HWCAP2_A64_SME_F64F64   = 1 << 25,
722     ARM_HWCAP2_A64_SME_I8I32    = 1 << 26,
723     ARM_HWCAP2_A64_SME_F16F32   = 1 << 27,
724     ARM_HWCAP2_A64_SME_B16F32   = 1 << 28,
725     ARM_HWCAP2_A64_SME_F32F32   = 1 << 29,
726     ARM_HWCAP2_A64_SME_FA64     = 1 << 30,
727     ARM_HWCAP2_A64_WFXT         = 1ULL << 31,
728     ARM_HWCAP2_A64_EBF16        = 1ULL << 32,
729     ARM_HWCAP2_A64_SVE_EBF16    = 1ULL << 33,
730     ARM_HWCAP2_A64_CSSC         = 1ULL << 34,
731     ARM_HWCAP2_A64_RPRFM        = 1ULL << 35,
732     ARM_HWCAP2_A64_SVE2P1       = 1ULL << 36,
733     ARM_HWCAP2_A64_SME2         = 1ULL << 37,
734     ARM_HWCAP2_A64_SME2P1       = 1ULL << 38,
735     ARM_HWCAP2_A64_SME_I16I32   = 1ULL << 39,
736     ARM_HWCAP2_A64_SME_BI32I32  = 1ULL << 40,
737     ARM_HWCAP2_A64_SME_B16B16   = 1ULL << 41,
738     ARM_HWCAP2_A64_SME_F16F16   = 1ULL << 42,
739     ARM_HWCAP2_A64_MOPS         = 1ULL << 43,
740     ARM_HWCAP2_A64_HBC          = 1ULL << 44,
741 };
742 
743 #define ELF_HWCAP   get_elf_hwcap()
744 #define ELF_HWCAP2  get_elf_hwcap2()
745 
746 #define GET_FEATURE_ID(feat, hwcap) \
747     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
748 
749 uint32_t get_elf_hwcap(void)
750 {
751     ARMCPU *cpu = ARM_CPU(thread_cpu);
752     uint32_t hwcaps = 0;
753 
754     hwcaps |= ARM_HWCAP_A64_FP;
755     hwcaps |= ARM_HWCAP_A64_ASIMD;
756     hwcaps |= ARM_HWCAP_A64_CPUID;
757 
758     /* probe for the extra features */
759 
760     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
761     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
762     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
763     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
764     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
765     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
766     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
767     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
768     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
769     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
770     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
771     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
772     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
773     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
774     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
775     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
776     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
777     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
778     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
779     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
780     GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
781     GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
782     GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
783 
784     return hwcaps;
785 }
786 
787 uint32_t get_elf_hwcap2(void)
788 {
789     ARMCPU *cpu = ARM_CPU(thread_cpu);
790     uint32_t hwcaps = 0;
791 
792     GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
793     GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
794     GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
795     GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
796     GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
797     GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
798     GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
799     GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
800     GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
801     GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
802     GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
803     GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
804     GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
805     GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
806     GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
807     GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
808     GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
809     GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
810     GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME |
811                               ARM_HWCAP2_A64_SME_F32F32 |
812                               ARM_HWCAP2_A64_SME_B16F32 |
813                               ARM_HWCAP2_A64_SME_F16F32 |
814                               ARM_HWCAP2_A64_SME_I8I32));
815     GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64);
816     GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64);
817     GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64);
818     GET_FEATURE_ID(aa64_hbc, ARM_HWCAP2_A64_HBC);
819     GET_FEATURE_ID(aa64_mops, ARM_HWCAP2_A64_MOPS);
820 
821     return hwcaps;
822 }
823 
824 const char *elf_hwcap_str(uint32_t bit)
825 {
826     static const char *hwcap_str[] = {
827     [__builtin_ctz(ARM_HWCAP_A64_FP      )] = "fp",
828     [__builtin_ctz(ARM_HWCAP_A64_ASIMD   )] = "asimd",
829     [__builtin_ctz(ARM_HWCAP_A64_EVTSTRM )] = "evtstrm",
830     [__builtin_ctz(ARM_HWCAP_A64_AES     )] = "aes",
831     [__builtin_ctz(ARM_HWCAP_A64_PMULL   )] = "pmull",
832     [__builtin_ctz(ARM_HWCAP_A64_SHA1    )] = "sha1",
833     [__builtin_ctz(ARM_HWCAP_A64_SHA2    )] = "sha2",
834     [__builtin_ctz(ARM_HWCAP_A64_CRC32   )] = "crc32",
835     [__builtin_ctz(ARM_HWCAP_A64_ATOMICS )] = "atomics",
836     [__builtin_ctz(ARM_HWCAP_A64_FPHP    )] = "fphp",
837     [__builtin_ctz(ARM_HWCAP_A64_ASIMDHP )] = "asimdhp",
838     [__builtin_ctz(ARM_HWCAP_A64_CPUID   )] = "cpuid",
839     [__builtin_ctz(ARM_HWCAP_A64_ASIMDRDM)] = "asimdrdm",
840     [__builtin_ctz(ARM_HWCAP_A64_JSCVT   )] = "jscvt",
841     [__builtin_ctz(ARM_HWCAP_A64_FCMA    )] = "fcma",
842     [__builtin_ctz(ARM_HWCAP_A64_LRCPC   )] = "lrcpc",
843     [__builtin_ctz(ARM_HWCAP_A64_DCPOP   )] = "dcpop",
844     [__builtin_ctz(ARM_HWCAP_A64_SHA3    )] = "sha3",
845     [__builtin_ctz(ARM_HWCAP_A64_SM3     )] = "sm3",
846     [__builtin_ctz(ARM_HWCAP_A64_SM4     )] = "sm4",
847     [__builtin_ctz(ARM_HWCAP_A64_ASIMDDP )] = "asimddp",
848     [__builtin_ctz(ARM_HWCAP_A64_SHA512  )] = "sha512",
849     [__builtin_ctz(ARM_HWCAP_A64_SVE     )] = "sve",
850     [__builtin_ctz(ARM_HWCAP_A64_ASIMDFHM)] = "asimdfhm",
851     [__builtin_ctz(ARM_HWCAP_A64_DIT     )] = "dit",
852     [__builtin_ctz(ARM_HWCAP_A64_USCAT   )] = "uscat",
853     [__builtin_ctz(ARM_HWCAP_A64_ILRCPC  )] = "ilrcpc",
854     [__builtin_ctz(ARM_HWCAP_A64_FLAGM   )] = "flagm",
855     [__builtin_ctz(ARM_HWCAP_A64_SSBS    )] = "ssbs",
856     [__builtin_ctz(ARM_HWCAP_A64_SB      )] = "sb",
857     [__builtin_ctz(ARM_HWCAP_A64_PACA    )] = "paca",
858     [__builtin_ctz(ARM_HWCAP_A64_PACG    )] = "pacg",
859     };
860 
861     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
862 }
863 
864 const char *elf_hwcap2_str(uint32_t bit)
865 {
866     static const char *hwcap_str[] = {
867     [__builtin_ctz(ARM_HWCAP2_A64_DCPODP       )] = "dcpodp",
868     [__builtin_ctz(ARM_HWCAP2_A64_SVE2         )] = "sve2",
869     [__builtin_ctz(ARM_HWCAP2_A64_SVEAES       )] = "sveaes",
870     [__builtin_ctz(ARM_HWCAP2_A64_SVEPMULL     )] = "svepmull",
871     [__builtin_ctz(ARM_HWCAP2_A64_SVEBITPERM   )] = "svebitperm",
872     [__builtin_ctz(ARM_HWCAP2_A64_SVESHA3      )] = "svesha3",
873     [__builtin_ctz(ARM_HWCAP2_A64_SVESM4       )] = "svesm4",
874     [__builtin_ctz(ARM_HWCAP2_A64_FLAGM2       )] = "flagm2",
875     [__builtin_ctz(ARM_HWCAP2_A64_FRINT        )] = "frint",
876     [__builtin_ctz(ARM_HWCAP2_A64_SVEI8MM      )] = "svei8mm",
877     [__builtin_ctz(ARM_HWCAP2_A64_SVEF32MM     )] = "svef32mm",
878     [__builtin_ctz(ARM_HWCAP2_A64_SVEF64MM     )] = "svef64mm",
879     [__builtin_ctz(ARM_HWCAP2_A64_SVEBF16      )] = "svebf16",
880     [__builtin_ctz(ARM_HWCAP2_A64_I8MM         )] = "i8mm",
881     [__builtin_ctz(ARM_HWCAP2_A64_BF16         )] = "bf16",
882     [__builtin_ctz(ARM_HWCAP2_A64_DGH          )] = "dgh",
883     [__builtin_ctz(ARM_HWCAP2_A64_RNG          )] = "rng",
884     [__builtin_ctz(ARM_HWCAP2_A64_BTI          )] = "bti",
885     [__builtin_ctz(ARM_HWCAP2_A64_MTE          )] = "mte",
886     [__builtin_ctz(ARM_HWCAP2_A64_ECV          )] = "ecv",
887     [__builtin_ctz(ARM_HWCAP2_A64_AFP          )] = "afp",
888     [__builtin_ctz(ARM_HWCAP2_A64_RPRES        )] = "rpres",
889     [__builtin_ctz(ARM_HWCAP2_A64_MTE3         )] = "mte3",
890     [__builtin_ctz(ARM_HWCAP2_A64_SME          )] = "sme",
891     [__builtin_ctz(ARM_HWCAP2_A64_SME_I16I64   )] = "smei16i64",
892     [__builtin_ctz(ARM_HWCAP2_A64_SME_F64F64   )] = "smef64f64",
893     [__builtin_ctz(ARM_HWCAP2_A64_SME_I8I32    )] = "smei8i32",
894     [__builtin_ctz(ARM_HWCAP2_A64_SME_F16F32   )] = "smef16f32",
895     [__builtin_ctz(ARM_HWCAP2_A64_SME_B16F32   )] = "smeb16f32",
896     [__builtin_ctz(ARM_HWCAP2_A64_SME_F32F32   )] = "smef32f32",
897     [__builtin_ctz(ARM_HWCAP2_A64_SME_FA64     )] = "smefa64",
898     [__builtin_ctz(ARM_HWCAP2_A64_WFXT         )] = "wfxt",
899     [__builtin_ctzll(ARM_HWCAP2_A64_EBF16      )] = "ebf16",
900     [__builtin_ctzll(ARM_HWCAP2_A64_SVE_EBF16  )] = "sveebf16",
901     [__builtin_ctzll(ARM_HWCAP2_A64_CSSC       )] = "cssc",
902     [__builtin_ctzll(ARM_HWCAP2_A64_RPRFM      )] = "rprfm",
903     [__builtin_ctzll(ARM_HWCAP2_A64_SVE2P1     )] = "sve2p1",
904     [__builtin_ctzll(ARM_HWCAP2_A64_SME2       )] = "sme2",
905     [__builtin_ctzll(ARM_HWCAP2_A64_SME2P1     )] = "sme2p1",
906     [__builtin_ctzll(ARM_HWCAP2_A64_SME_I16I32 )] = "smei16i32",
907     [__builtin_ctzll(ARM_HWCAP2_A64_SME_BI32I32)] = "smebi32i32",
908     [__builtin_ctzll(ARM_HWCAP2_A64_SME_B16B16 )] = "smeb16b16",
909     [__builtin_ctzll(ARM_HWCAP2_A64_SME_F16F16 )] = "smef16f16",
910     [__builtin_ctzll(ARM_HWCAP2_A64_MOPS       )] = "mops",
911     [__builtin_ctzll(ARM_HWCAP2_A64_HBC        )] = "hbc",
912     };
913 
914     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
915 }
916 
917 #undef GET_FEATURE_ID
918 
919 #endif /* not TARGET_AARCH64 */
920 #endif /* TARGET_ARM */
921 
922 #ifdef TARGET_SPARC
923 #ifdef TARGET_SPARC64
924 
925 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
926                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
927 #ifndef TARGET_ABI32
928 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
929 #else
930 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
931 #endif
932 
933 #define ELF_CLASS   ELFCLASS64
934 #define ELF_ARCH    EM_SPARCV9
935 #else
936 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
937                     | HWCAP_SPARC_MULDIV)
938 #define ELF_CLASS   ELFCLASS32
939 #define ELF_ARCH    EM_SPARC
940 #endif /* TARGET_SPARC64 */
941 
942 static inline void init_thread(struct target_pt_regs *regs,
943                                struct image_info *infop)
944 {
945     /* Note that target_cpu_copy_regs does not read psr/tstate. */
946     regs->pc = infop->entry;
947     regs->npc = regs->pc + 4;
948     regs->y = 0;
949     regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
950                         - TARGET_STACK_BIAS);
951 }
952 #endif /* TARGET_SPARC */
953 
954 #ifdef TARGET_PPC
955 
956 #define ELF_MACHINE    PPC_ELF_MACHINE
957 
958 #if defined(TARGET_PPC64)
959 
960 #define elf_check_arch(x) ( (x) == EM_PPC64 )
961 
962 #define ELF_CLASS       ELFCLASS64
963 
964 #else
965 
966 #define ELF_CLASS       ELFCLASS32
967 #define EXSTACK_DEFAULT true
968 
969 #endif
970 
971 #define ELF_ARCH        EM_PPC
972 
973 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
974    See arch/powerpc/include/asm/cputable.h.  */
975 enum {
976     QEMU_PPC_FEATURE_32 = 0x80000000,
977     QEMU_PPC_FEATURE_64 = 0x40000000,
978     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
979     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
980     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
981     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
982     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
983     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
984     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
985     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
986     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
987     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
988     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
989     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
990     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
991     QEMU_PPC_FEATURE_CELL = 0x00010000,
992     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
993     QEMU_PPC_FEATURE_SMT = 0x00004000,
994     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
995     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
996     QEMU_PPC_FEATURE_PA6T = 0x00000800,
997     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
998     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
999     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
1000     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
1001     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
1002 
1003     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
1004     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
1005 
1006     /* Feature definitions in AT_HWCAP2.  */
1007     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
1008     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
1009     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
1010     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
1011     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
1012     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
1013     QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
1014     QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
1015     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
1016     QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
1017     QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
1018     QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
1019     QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
1020     QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */
1021     QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */
1022 };
1023 
1024 #define ELF_HWCAP get_elf_hwcap()
1025 
1026 static uint32_t get_elf_hwcap(void)
1027 {
1028     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
1029     uint32_t features = 0;
1030 
1031     /* We don't have to be terribly complete here; the high points are
1032        Altivec/FP/SPE support.  Anything else is just a bonus.  */
1033 #define GET_FEATURE(flag, feature)                                      \
1034     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
1035 #define GET_FEATURE2(flags, feature) \
1036     do { \
1037         if ((cpu->env.insns_flags2 & flags) == flags) { \
1038             features |= feature; \
1039         } \
1040     } while (0)
1041     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
1042     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
1043     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
1044     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
1045     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
1046     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
1047     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
1048     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
1049     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
1050     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
1051     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
1052                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
1053                   QEMU_PPC_FEATURE_ARCH_2_06);
1054 #undef GET_FEATURE
1055 #undef GET_FEATURE2
1056 
1057     return features;
1058 }
1059 
1060 #define ELF_HWCAP2 get_elf_hwcap2()
1061 
1062 static uint32_t get_elf_hwcap2(void)
1063 {
1064     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
1065     uint32_t features = 0;
1066 
1067 #define GET_FEATURE(flag, feature)                                      \
1068     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
1069 #define GET_FEATURE2(flag, feature)                                      \
1070     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
1071 
1072     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
1073     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
1074     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
1075                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
1076                   QEMU_PPC_FEATURE2_VEC_CRYPTO);
1077     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
1078                  QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
1079     GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 |
1080                  QEMU_PPC_FEATURE2_MMA);
1081 
1082 #undef GET_FEATURE
1083 #undef GET_FEATURE2
1084 
1085     return features;
1086 }
1087 
1088 /*
1089  * The requirements here are:
1090  * - keep the final alignment of sp (sp & 0xf)
1091  * - make sure the 32-bit value at the first 16 byte aligned position of
1092  *   AUXV is greater than 16 for glibc compatibility.
1093  *   AT_IGNOREPPC is used for that.
1094  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
1095  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
1096  */
1097 #define DLINFO_ARCH_ITEMS       5
1098 #define ARCH_DLINFO                                     \
1099     do {                                                \
1100         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
1101         /*                                              \
1102          * Handle glibc compatibility: these magic entries must \
1103          * be at the lowest addresses in the final auxv.        \
1104          */                                             \
1105         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
1106         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
1107         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
1108         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
1109         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
1110     } while (0)
1111 
1112 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
1113 {
1114     _regs->gpr[1] = infop->start_stack;
1115 #if defined(TARGET_PPC64)
1116     if (get_ppc64_abi(infop) < 2) {
1117         uint64_t val;
1118         get_user_u64(val, infop->entry + 8);
1119         _regs->gpr[2] = val + infop->load_bias;
1120         get_user_u64(val, infop->entry);
1121         infop->entry = val + infop->load_bias;
1122     } else {
1123         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
1124     }
1125 #endif
1126     _regs->nip = infop->entry;
1127 }
1128 
1129 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
1130 #define ELF_NREG 48
1131 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1132 
1133 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
1134 {
1135     int i;
1136     target_ulong ccr = 0;
1137 
1138     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
1139         (*regs)[i] = tswapreg(env->gpr[i]);
1140     }
1141 
1142     (*regs)[32] = tswapreg(env->nip);
1143     (*regs)[33] = tswapreg(env->msr);
1144     (*regs)[35] = tswapreg(env->ctr);
1145     (*regs)[36] = tswapreg(env->lr);
1146     (*regs)[37] = tswapreg(cpu_read_xer(env));
1147 
1148     ccr = ppc_get_cr(env);
1149     (*regs)[38] = tswapreg(ccr);
1150 }
1151 
1152 #define USE_ELF_CORE_DUMP
1153 #define ELF_EXEC_PAGESIZE       4096
1154 
1155 #endif
1156 
1157 #ifdef TARGET_LOONGARCH64
1158 
1159 #define ELF_CLASS   ELFCLASS64
1160 #define ELF_ARCH    EM_LOONGARCH
1161 #define EXSTACK_DEFAULT true
1162 
1163 #define elf_check_arch(x) ((x) == EM_LOONGARCH)
1164 
1165 static inline void init_thread(struct target_pt_regs *regs,
1166                                struct image_info *infop)
1167 {
1168     /*Set crmd PG,DA = 1,0 */
1169     regs->csr.crmd = 2 << 3;
1170     regs->csr.era = infop->entry;
1171     regs->regs[3] = infop->start_stack;
1172 }
1173 
1174 /* See linux kernel: arch/loongarch/include/asm/elf.h */
1175 #define ELF_NREG 45
1176 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1177 
1178 enum {
1179     TARGET_EF_R0 = 0,
1180     TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33,
1181     TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34,
1182 };
1183 
1184 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1185                                const CPULoongArchState *env)
1186 {
1187     int i;
1188 
1189     (*regs)[TARGET_EF_R0] = 0;
1190 
1191     for (i = 1; i < ARRAY_SIZE(env->gpr); i++) {
1192         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]);
1193     }
1194 
1195     (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc);
1196     (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV);
1197 }
1198 
1199 #define USE_ELF_CORE_DUMP
1200 #define ELF_EXEC_PAGESIZE        4096
1201 
1202 #define ELF_HWCAP get_elf_hwcap()
1203 
1204 /* See arch/loongarch/include/uapi/asm/hwcap.h */
1205 enum {
1206     HWCAP_LOONGARCH_CPUCFG   = (1 << 0),
1207     HWCAP_LOONGARCH_LAM      = (1 << 1),
1208     HWCAP_LOONGARCH_UAL      = (1 << 2),
1209     HWCAP_LOONGARCH_FPU      = (1 << 3),
1210     HWCAP_LOONGARCH_LSX      = (1 << 4),
1211     HWCAP_LOONGARCH_LASX     = (1 << 5),
1212     HWCAP_LOONGARCH_CRC32    = (1 << 6),
1213     HWCAP_LOONGARCH_COMPLEX  = (1 << 7),
1214     HWCAP_LOONGARCH_CRYPTO   = (1 << 8),
1215     HWCAP_LOONGARCH_LVZ      = (1 << 9),
1216     HWCAP_LOONGARCH_LBT_X86  = (1 << 10),
1217     HWCAP_LOONGARCH_LBT_ARM  = (1 << 11),
1218     HWCAP_LOONGARCH_LBT_MIPS = (1 << 12),
1219 };
1220 
1221 static uint32_t get_elf_hwcap(void)
1222 {
1223     LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu);
1224     uint32_t hwcaps = 0;
1225 
1226     hwcaps |= HWCAP_LOONGARCH_CRC32;
1227 
1228     if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) {
1229         hwcaps |= HWCAP_LOONGARCH_UAL;
1230     }
1231 
1232     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) {
1233         hwcaps |= HWCAP_LOONGARCH_FPU;
1234     }
1235 
1236     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) {
1237         hwcaps |= HWCAP_LOONGARCH_LAM;
1238     }
1239 
1240     return hwcaps;
1241 }
1242 
1243 #define ELF_PLATFORM "loongarch"
1244 
1245 #endif /* TARGET_LOONGARCH64 */
1246 
1247 #ifdef TARGET_MIPS
1248 
1249 #ifdef TARGET_MIPS64
1250 #define ELF_CLASS   ELFCLASS64
1251 #else
1252 #define ELF_CLASS   ELFCLASS32
1253 #endif
1254 #define ELF_ARCH    EM_MIPS
1255 #define EXSTACK_DEFAULT true
1256 
1257 #ifdef TARGET_ABI_MIPSN32
1258 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
1259 #else
1260 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
1261 #endif
1262 
1263 #define ELF_BASE_PLATFORM get_elf_base_platform()
1264 
1265 #define MATCH_PLATFORM_INSN(_flags, _base_platform)      \
1266     do { if ((cpu->env.insn_flags & (_flags)) == _flags) \
1267     { return _base_platform; } } while (0)
1268 
1269 static const char *get_elf_base_platform(void)
1270 {
1271     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1272 
1273     /* 64 bit ISAs goes first */
1274     MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6");
1275     MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5");
1276     MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2");
1277     MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64");
1278     MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5");
1279     MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4");
1280     MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3");
1281 
1282     /* 32 bit ISAs */
1283     MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6");
1284     MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5");
1285     MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2");
1286     MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32");
1287     MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2");
1288 
1289     /* Fallback */
1290     return "mips";
1291 }
1292 #undef MATCH_PLATFORM_INSN
1293 
1294 static inline void init_thread(struct target_pt_regs *regs,
1295                                struct image_info *infop)
1296 {
1297     regs->cp0_status = 2 << CP0St_KSU;
1298     regs->cp0_epc = infop->entry;
1299     regs->regs[29] = infop->start_stack;
1300 }
1301 
1302 /* See linux kernel: arch/mips/include/asm/elf.h.  */
1303 #define ELF_NREG 45
1304 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1305 
1306 /* See linux kernel: arch/mips/include/asm/reg.h.  */
1307 enum {
1308 #ifdef TARGET_MIPS64
1309     TARGET_EF_R0 = 0,
1310 #else
1311     TARGET_EF_R0 = 6,
1312 #endif
1313     TARGET_EF_R26 = TARGET_EF_R0 + 26,
1314     TARGET_EF_R27 = TARGET_EF_R0 + 27,
1315     TARGET_EF_LO = TARGET_EF_R0 + 32,
1316     TARGET_EF_HI = TARGET_EF_R0 + 33,
1317     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
1318     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
1319     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
1320     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
1321 };
1322 
1323 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1324 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
1325 {
1326     int i;
1327 
1328     for (i = 0; i < TARGET_EF_R0; i++) {
1329         (*regs)[i] = 0;
1330     }
1331     (*regs)[TARGET_EF_R0] = 0;
1332 
1333     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
1334         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
1335     }
1336 
1337     (*regs)[TARGET_EF_R26] = 0;
1338     (*regs)[TARGET_EF_R27] = 0;
1339     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
1340     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
1341     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
1342     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
1343     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
1344     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
1345 }
1346 
1347 #define USE_ELF_CORE_DUMP
1348 #define ELF_EXEC_PAGESIZE        4096
1349 
1350 /* See arch/mips/include/uapi/asm/hwcap.h.  */
1351 enum {
1352     HWCAP_MIPS_R6           = (1 << 0),
1353     HWCAP_MIPS_MSA          = (1 << 1),
1354     HWCAP_MIPS_CRC32        = (1 << 2),
1355     HWCAP_MIPS_MIPS16       = (1 << 3),
1356     HWCAP_MIPS_MDMX         = (1 << 4),
1357     HWCAP_MIPS_MIPS3D       = (1 << 5),
1358     HWCAP_MIPS_SMARTMIPS    = (1 << 6),
1359     HWCAP_MIPS_DSP          = (1 << 7),
1360     HWCAP_MIPS_DSP2         = (1 << 8),
1361     HWCAP_MIPS_DSP3         = (1 << 9),
1362     HWCAP_MIPS_MIPS16E2     = (1 << 10),
1363     HWCAP_LOONGSON_MMI      = (1 << 11),
1364     HWCAP_LOONGSON_EXT      = (1 << 12),
1365     HWCAP_LOONGSON_EXT2     = (1 << 13),
1366     HWCAP_LOONGSON_CPUCFG   = (1 << 14),
1367 };
1368 
1369 #define ELF_HWCAP get_elf_hwcap()
1370 
1371 #define GET_FEATURE_INSN(_flag, _hwcap) \
1372     do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1373 
1374 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1375     do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1376 
1377 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1378     do { \
1379         if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1380             hwcaps |= _hwcap; \
1381         } \
1382     } while (0)
1383 
1384 static uint32_t get_elf_hwcap(void)
1385 {
1386     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1387     uint32_t hwcaps = 0;
1388 
1389     GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1390                         2, HWCAP_MIPS_R6);
1391     GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1392     GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1393     GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1394 
1395     return hwcaps;
1396 }
1397 
1398 #undef GET_FEATURE_REG_EQU
1399 #undef GET_FEATURE_REG_SET
1400 #undef GET_FEATURE_INSN
1401 
1402 #endif /* TARGET_MIPS */
1403 
1404 #ifdef TARGET_MICROBLAZE
1405 
1406 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1407 
1408 #define ELF_CLASS   ELFCLASS32
1409 #define ELF_ARCH    EM_MICROBLAZE
1410 
1411 static inline void init_thread(struct target_pt_regs *regs,
1412                                struct image_info *infop)
1413 {
1414     regs->pc = infop->entry;
1415     regs->r1 = infop->start_stack;
1416 
1417 }
1418 
1419 #define ELF_EXEC_PAGESIZE        4096
1420 
1421 #define USE_ELF_CORE_DUMP
1422 #define ELF_NREG 38
1423 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1424 
1425 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1426 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1427 {
1428     int i, pos = 0;
1429 
1430     for (i = 0; i < 32; i++) {
1431         (*regs)[pos++] = tswapreg(env->regs[i]);
1432     }
1433 
1434     (*regs)[pos++] = tswapreg(env->pc);
1435     (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1436     (*regs)[pos++] = 0;
1437     (*regs)[pos++] = tswapreg(env->ear);
1438     (*regs)[pos++] = 0;
1439     (*regs)[pos++] = tswapreg(env->esr);
1440 }
1441 
1442 #endif /* TARGET_MICROBLAZE */
1443 
1444 #ifdef TARGET_NIOS2
1445 
1446 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1447 
1448 #define ELF_CLASS   ELFCLASS32
1449 #define ELF_ARCH    EM_ALTERA_NIOS2
1450 
1451 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1452 {
1453     regs->ea = infop->entry;
1454     regs->sp = infop->start_stack;
1455 }
1456 
1457 #define LO_COMMPAGE  TARGET_PAGE_SIZE
1458 
1459 static bool init_guest_commpage(void)
1460 {
1461     static const uint8_t kuser_page[4 + 2 * 64] = {
1462         /* __kuser_helper_version */
1463         [0x00] = 0x02, 0x00, 0x00, 0x00,
1464 
1465         /* __kuser_cmpxchg */
1466         [0x04] = 0x3a, 0x6c, 0x3b, 0x00,  /* trap 16 */
1467                  0x3a, 0x28, 0x00, 0xf8,  /* ret */
1468 
1469         /* __kuser_sigtramp */
1470         [0x44] = 0xc4, 0x22, 0x80, 0x00,  /* movi r2, __NR_rt_sigreturn */
1471                  0x3a, 0x68, 0x3b, 0x00,  /* trap 0 */
1472     };
1473 
1474     void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size);
1475     void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
1476                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1477 
1478     if (addr == MAP_FAILED) {
1479         perror("Allocating guest commpage");
1480         exit(EXIT_FAILURE);
1481     }
1482     if (addr != want) {
1483         return false;
1484     }
1485 
1486     memcpy(addr, kuser_page, sizeof(kuser_page));
1487 
1488     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
1489         perror("Protecting guest commpage");
1490         exit(EXIT_FAILURE);
1491     }
1492 
1493     page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
1494                    PAGE_READ | PAGE_EXEC | PAGE_VALID);
1495     return true;
1496 }
1497 
1498 #define ELF_EXEC_PAGESIZE        4096
1499 
1500 #define USE_ELF_CORE_DUMP
1501 #define ELF_NREG 49
1502 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1503 
1504 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1505 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1506                                const CPUNios2State *env)
1507 {
1508     int i;
1509 
1510     (*regs)[0] = -1;
1511     for (i = 1; i < 8; i++)    /* r0-r7 */
1512         (*regs)[i] = tswapreg(env->regs[i + 7]);
1513 
1514     for (i = 8; i < 16; i++)   /* r8-r15 */
1515         (*regs)[i] = tswapreg(env->regs[i - 8]);
1516 
1517     for (i = 16; i < 24; i++)  /* r16-r23 */
1518         (*regs)[i] = tswapreg(env->regs[i + 7]);
1519     (*regs)[24] = -1;    /* R_ET */
1520     (*regs)[25] = -1;    /* R_BT */
1521     (*regs)[26] = tswapreg(env->regs[R_GP]);
1522     (*regs)[27] = tswapreg(env->regs[R_SP]);
1523     (*regs)[28] = tswapreg(env->regs[R_FP]);
1524     (*regs)[29] = tswapreg(env->regs[R_EA]);
1525     (*regs)[30] = -1;    /* R_SSTATUS */
1526     (*regs)[31] = tswapreg(env->regs[R_RA]);
1527 
1528     (*regs)[32] = tswapreg(env->pc);
1529 
1530     (*regs)[33] = -1; /* R_STATUS */
1531     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1532 
1533     for (i = 35; i < 49; i++)    /* ... */
1534         (*regs)[i] = -1;
1535 }
1536 
1537 #endif /* TARGET_NIOS2 */
1538 
1539 #ifdef TARGET_OPENRISC
1540 
1541 #define ELF_ARCH EM_OPENRISC
1542 #define ELF_CLASS ELFCLASS32
1543 #define ELF_DATA  ELFDATA2MSB
1544 
1545 static inline void init_thread(struct target_pt_regs *regs,
1546                                struct image_info *infop)
1547 {
1548     regs->pc = infop->entry;
1549     regs->gpr[1] = infop->start_stack;
1550 }
1551 
1552 #define USE_ELF_CORE_DUMP
1553 #define ELF_EXEC_PAGESIZE 8192
1554 
1555 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1556 #define ELF_NREG 34 /* gprs and pc, sr */
1557 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1558 
1559 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1560                                const CPUOpenRISCState *env)
1561 {
1562     int i;
1563 
1564     for (i = 0; i < 32; i++) {
1565         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1566     }
1567     (*regs)[32] = tswapreg(env->pc);
1568     (*regs)[33] = tswapreg(cpu_get_sr(env));
1569 }
1570 #define ELF_HWCAP 0
1571 #define ELF_PLATFORM NULL
1572 
1573 #endif /* TARGET_OPENRISC */
1574 
1575 #ifdef TARGET_SH4
1576 
1577 #define ELF_CLASS ELFCLASS32
1578 #define ELF_ARCH  EM_SH
1579 
1580 static inline void init_thread(struct target_pt_regs *regs,
1581                                struct image_info *infop)
1582 {
1583     /* Check other registers XXXXX */
1584     regs->pc = infop->entry;
1585     regs->regs[15] = infop->start_stack;
1586 }
1587 
1588 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1589 #define ELF_NREG 23
1590 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1591 
1592 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1593 enum {
1594     TARGET_REG_PC = 16,
1595     TARGET_REG_PR = 17,
1596     TARGET_REG_SR = 18,
1597     TARGET_REG_GBR = 19,
1598     TARGET_REG_MACH = 20,
1599     TARGET_REG_MACL = 21,
1600     TARGET_REG_SYSCALL = 22
1601 };
1602 
1603 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1604                                       const CPUSH4State *env)
1605 {
1606     int i;
1607 
1608     for (i = 0; i < 16; i++) {
1609         (*regs)[i] = tswapreg(env->gregs[i]);
1610     }
1611 
1612     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1613     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1614     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1615     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1616     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1617     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1618     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1619 }
1620 
1621 #define USE_ELF_CORE_DUMP
1622 #define ELF_EXEC_PAGESIZE        4096
1623 
1624 enum {
1625     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1626     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1627     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1628     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1629     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1630     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1631     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1632     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1633     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1634     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1635 };
1636 
1637 #define ELF_HWCAP get_elf_hwcap()
1638 
1639 static uint32_t get_elf_hwcap(void)
1640 {
1641     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1642     uint32_t hwcap = 0;
1643 
1644     hwcap |= SH_CPU_HAS_FPU;
1645 
1646     if (cpu->env.features & SH_FEATURE_SH4A) {
1647         hwcap |= SH_CPU_HAS_LLSC;
1648     }
1649 
1650     return hwcap;
1651 }
1652 
1653 #endif
1654 
1655 #ifdef TARGET_CRIS
1656 
1657 #define ELF_CLASS ELFCLASS32
1658 #define ELF_ARCH  EM_CRIS
1659 
1660 static inline void init_thread(struct target_pt_regs *regs,
1661                                struct image_info *infop)
1662 {
1663     regs->erp = infop->entry;
1664 }
1665 
1666 #define ELF_EXEC_PAGESIZE        8192
1667 
1668 #endif
1669 
1670 #ifdef TARGET_M68K
1671 
1672 #define ELF_CLASS       ELFCLASS32
1673 #define ELF_ARCH        EM_68K
1674 
1675 /* ??? Does this need to do anything?
1676    #define ELF_PLAT_INIT(_r) */
1677 
1678 static inline void init_thread(struct target_pt_regs *regs,
1679                                struct image_info *infop)
1680 {
1681     regs->usp = infop->start_stack;
1682     regs->sr = 0;
1683     regs->pc = infop->entry;
1684 }
1685 
1686 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1687 #define ELF_NREG 20
1688 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1689 
1690 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1691 {
1692     (*regs)[0] = tswapreg(env->dregs[1]);
1693     (*regs)[1] = tswapreg(env->dregs[2]);
1694     (*regs)[2] = tswapreg(env->dregs[3]);
1695     (*regs)[3] = tswapreg(env->dregs[4]);
1696     (*regs)[4] = tswapreg(env->dregs[5]);
1697     (*regs)[5] = tswapreg(env->dregs[6]);
1698     (*regs)[6] = tswapreg(env->dregs[7]);
1699     (*regs)[7] = tswapreg(env->aregs[0]);
1700     (*regs)[8] = tswapreg(env->aregs[1]);
1701     (*regs)[9] = tswapreg(env->aregs[2]);
1702     (*regs)[10] = tswapreg(env->aregs[3]);
1703     (*regs)[11] = tswapreg(env->aregs[4]);
1704     (*regs)[12] = tswapreg(env->aregs[5]);
1705     (*regs)[13] = tswapreg(env->aregs[6]);
1706     (*regs)[14] = tswapreg(env->dregs[0]);
1707     (*regs)[15] = tswapreg(env->aregs[7]);
1708     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1709     (*regs)[17] = tswapreg(env->sr);
1710     (*regs)[18] = tswapreg(env->pc);
1711     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1712 }
1713 
1714 #define USE_ELF_CORE_DUMP
1715 #define ELF_EXEC_PAGESIZE       8192
1716 
1717 #endif
1718 
1719 #ifdef TARGET_ALPHA
1720 
1721 #define ELF_CLASS      ELFCLASS64
1722 #define ELF_ARCH       EM_ALPHA
1723 
1724 static inline void init_thread(struct target_pt_regs *regs,
1725                                struct image_info *infop)
1726 {
1727     regs->pc = infop->entry;
1728     regs->ps = 8;
1729     regs->usp = infop->start_stack;
1730 }
1731 
1732 #define ELF_EXEC_PAGESIZE        8192
1733 
1734 #endif /* TARGET_ALPHA */
1735 
1736 #ifdef TARGET_S390X
1737 
1738 #define ELF_CLASS	ELFCLASS64
1739 #define ELF_DATA	ELFDATA2MSB
1740 #define ELF_ARCH	EM_S390
1741 
1742 #include "elf.h"
1743 
1744 #define ELF_HWCAP get_elf_hwcap()
1745 
1746 #define GET_FEATURE(_feat, _hwcap) \
1747     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1748 
1749 uint32_t get_elf_hwcap(void)
1750 {
1751     /*
1752      * Let's assume we always have esan3 and zarch.
1753      * 31-bit processes can use 64-bit registers (high gprs).
1754      */
1755     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1756 
1757     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1758     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1759     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1760     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1761     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1762         s390_has_feat(S390_FEAT_ETF3_ENH)) {
1763         hwcap |= HWCAP_S390_ETF3EH;
1764     }
1765     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1766     GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
1767     GET_FEATURE(S390_FEAT_VECTOR_ENH2, HWCAP_S390_VXRS_EXT2);
1768 
1769     return hwcap;
1770 }
1771 
1772 const char *elf_hwcap_str(uint32_t bit)
1773 {
1774     static const char *hwcap_str[] = {
1775         [HWCAP_S390_NR_ESAN3]     = "esan3",
1776         [HWCAP_S390_NR_ZARCH]     = "zarch",
1777         [HWCAP_S390_NR_STFLE]     = "stfle",
1778         [HWCAP_S390_NR_MSA]       = "msa",
1779         [HWCAP_S390_NR_LDISP]     = "ldisp",
1780         [HWCAP_S390_NR_EIMM]      = "eimm",
1781         [HWCAP_S390_NR_DFP]       = "dfp",
1782         [HWCAP_S390_NR_HPAGE]     = "edat",
1783         [HWCAP_S390_NR_ETF3EH]    = "etf3eh",
1784         [HWCAP_S390_NR_HIGH_GPRS] = "highgprs",
1785         [HWCAP_S390_NR_TE]        = "te",
1786         [HWCAP_S390_NR_VXRS]      = "vx",
1787         [HWCAP_S390_NR_VXRS_BCD]  = "vxd",
1788         [HWCAP_S390_NR_VXRS_EXT]  = "vxe",
1789         [HWCAP_S390_NR_GS]        = "gs",
1790         [HWCAP_S390_NR_VXRS_EXT2] = "vxe2",
1791         [HWCAP_S390_NR_VXRS_PDE]  = "vxp",
1792         [HWCAP_S390_NR_SORT]      = "sort",
1793         [HWCAP_S390_NR_DFLT]      = "dflt",
1794         [HWCAP_S390_NR_NNPA]      = "nnpa",
1795         [HWCAP_S390_NR_PCI_MIO]   = "pcimio",
1796         [HWCAP_S390_NR_SIE]       = "sie",
1797     };
1798 
1799     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
1800 }
1801 
1802 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1803 {
1804     regs->psw.addr = infop->entry;
1805     regs->psw.mask = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | \
1806                      PSW_MASK_MCHECK | PSW_MASK_PSTATE | PSW_MASK_64 | \
1807                      PSW_MASK_32;
1808     regs->gprs[15] = infop->start_stack;
1809 }
1810 
1811 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs).  */
1812 #define ELF_NREG 27
1813 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1814 
1815 enum {
1816     TARGET_REG_PSWM = 0,
1817     TARGET_REG_PSWA = 1,
1818     TARGET_REG_GPRS = 2,
1819     TARGET_REG_ARS = 18,
1820     TARGET_REG_ORIG_R2 = 26,
1821 };
1822 
1823 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1824                                const CPUS390XState *env)
1825 {
1826     int i;
1827     uint32_t *aregs;
1828 
1829     (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1830     (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1831     for (i = 0; i < 16; i++) {
1832         (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1833     }
1834     aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1835     for (i = 0; i < 16; i++) {
1836         aregs[i] = tswap32(env->aregs[i]);
1837     }
1838     (*regs)[TARGET_REG_ORIG_R2] = 0;
1839 }
1840 
1841 #define USE_ELF_CORE_DUMP
1842 #define ELF_EXEC_PAGESIZE 4096
1843 
1844 #endif /* TARGET_S390X */
1845 
1846 #ifdef TARGET_RISCV
1847 
1848 #define ELF_ARCH  EM_RISCV
1849 
1850 #ifdef TARGET_RISCV32
1851 #define ELF_CLASS ELFCLASS32
1852 #else
1853 #define ELF_CLASS ELFCLASS64
1854 #endif
1855 
1856 #define ELF_HWCAP get_elf_hwcap()
1857 
1858 static uint32_t get_elf_hwcap(void)
1859 {
1860 #define MISA_BIT(EXT) (1 << (EXT - 'A'))
1861     RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1862     uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1863                     | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C')
1864                     | MISA_BIT('V');
1865 
1866     return cpu->env.misa_ext & mask;
1867 #undef MISA_BIT
1868 }
1869 
1870 static inline void init_thread(struct target_pt_regs *regs,
1871                                struct image_info *infop)
1872 {
1873     regs->sepc = infop->entry;
1874     regs->sp = infop->start_stack;
1875 }
1876 
1877 #define ELF_EXEC_PAGESIZE 4096
1878 
1879 #endif /* TARGET_RISCV */
1880 
1881 #ifdef TARGET_HPPA
1882 
1883 #define ELF_CLASS       ELFCLASS32
1884 #define ELF_ARCH        EM_PARISC
1885 #define ELF_PLATFORM    "PARISC"
1886 #define STACK_GROWS_DOWN 0
1887 #define STACK_ALIGNMENT  64
1888 
1889 static inline void init_thread(struct target_pt_regs *regs,
1890                                struct image_info *infop)
1891 {
1892     regs->iaoq[0] = infop->entry;
1893     regs->iaoq[1] = infop->entry + 4;
1894     regs->gr[23] = 0;
1895     regs->gr[24] = infop->argv;
1896     regs->gr[25] = infop->argc;
1897     /* The top-of-stack contains a linkage buffer.  */
1898     regs->gr[30] = infop->start_stack + 64;
1899     regs->gr[31] = infop->entry;
1900 }
1901 
1902 #define LO_COMMPAGE  0
1903 
1904 static bool init_guest_commpage(void)
1905 {
1906     void *want = g2h_untagged(LO_COMMPAGE);
1907     void *addr = mmap(want, qemu_host_page_size, PROT_NONE,
1908                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1909 
1910     if (addr == MAP_FAILED) {
1911         perror("Allocating guest commpage");
1912         exit(EXIT_FAILURE);
1913     }
1914     if (addr != want) {
1915         return false;
1916     }
1917 
1918     /*
1919      * On Linux, page zero is normally marked execute only + gateway.
1920      * Normal read or write is supposed to fail (thus PROT_NONE above),
1921      * but specific offsets have kernel code mapped to raise permissions
1922      * and implement syscalls.  Here, simply mark the page executable.
1923      * Special case the entry points during translation (see do_page_zero).
1924      */
1925     page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
1926                    PAGE_EXEC | PAGE_VALID);
1927     return true;
1928 }
1929 
1930 #endif /* TARGET_HPPA */
1931 
1932 #ifdef TARGET_XTENSA
1933 
1934 #define ELF_CLASS       ELFCLASS32
1935 #define ELF_ARCH        EM_XTENSA
1936 
1937 static inline void init_thread(struct target_pt_regs *regs,
1938                                struct image_info *infop)
1939 {
1940     regs->windowbase = 0;
1941     regs->windowstart = 1;
1942     regs->areg[1] = infop->start_stack;
1943     regs->pc = infop->entry;
1944     if (info_is_fdpic(infop)) {
1945         regs->areg[4] = infop->loadmap_addr;
1946         regs->areg[5] = infop->interpreter_loadmap_addr;
1947         if (infop->interpreter_loadmap_addr) {
1948             regs->areg[6] = infop->interpreter_pt_dynamic_addr;
1949         } else {
1950             regs->areg[6] = infop->pt_dynamic_addr;
1951         }
1952     }
1953 }
1954 
1955 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1956 #define ELF_NREG 128
1957 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1958 
1959 enum {
1960     TARGET_REG_PC,
1961     TARGET_REG_PS,
1962     TARGET_REG_LBEG,
1963     TARGET_REG_LEND,
1964     TARGET_REG_LCOUNT,
1965     TARGET_REG_SAR,
1966     TARGET_REG_WINDOWSTART,
1967     TARGET_REG_WINDOWBASE,
1968     TARGET_REG_THREADPTR,
1969     TARGET_REG_AR0 = 64,
1970 };
1971 
1972 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1973                                const CPUXtensaState *env)
1974 {
1975     unsigned i;
1976 
1977     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1978     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1979     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1980     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1981     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1982     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1983     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1984     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1985     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1986     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1987     for (i = 0; i < env->config->nareg; ++i) {
1988         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1989     }
1990 }
1991 
1992 #define USE_ELF_CORE_DUMP
1993 #define ELF_EXEC_PAGESIZE       4096
1994 
1995 #endif /* TARGET_XTENSA */
1996 
1997 #ifdef TARGET_HEXAGON
1998 
1999 #define ELF_CLASS       ELFCLASS32
2000 #define ELF_ARCH        EM_HEXAGON
2001 
2002 static inline void init_thread(struct target_pt_regs *regs,
2003                                struct image_info *infop)
2004 {
2005     regs->sepc = infop->entry;
2006     regs->sp = infop->start_stack;
2007 }
2008 
2009 #endif /* TARGET_HEXAGON */
2010 
2011 #ifndef ELF_BASE_PLATFORM
2012 #define ELF_BASE_PLATFORM (NULL)
2013 #endif
2014 
2015 #ifndef ELF_PLATFORM
2016 #define ELF_PLATFORM (NULL)
2017 #endif
2018 
2019 #ifndef ELF_MACHINE
2020 #define ELF_MACHINE ELF_ARCH
2021 #endif
2022 
2023 #ifndef elf_check_arch
2024 #define elf_check_arch(x) ((x) == ELF_ARCH)
2025 #endif
2026 
2027 #ifndef elf_check_abi
2028 #define elf_check_abi(x) (1)
2029 #endif
2030 
2031 #ifndef ELF_HWCAP
2032 #define ELF_HWCAP 0
2033 #endif
2034 
2035 #ifndef STACK_GROWS_DOWN
2036 #define STACK_GROWS_DOWN 1
2037 #endif
2038 
2039 #ifndef STACK_ALIGNMENT
2040 #define STACK_ALIGNMENT 16
2041 #endif
2042 
2043 #ifdef TARGET_ABI32
2044 #undef ELF_CLASS
2045 #define ELF_CLASS ELFCLASS32
2046 #undef bswaptls
2047 #define bswaptls(ptr) bswap32s(ptr)
2048 #endif
2049 
2050 #ifndef EXSTACK_DEFAULT
2051 #define EXSTACK_DEFAULT false
2052 #endif
2053 
2054 #include "elf.h"
2055 
2056 /* We must delay the following stanzas until after "elf.h". */
2057 #if defined(TARGET_AARCH64)
2058 
2059 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
2060                                     const uint32_t *data,
2061                                     struct image_info *info,
2062                                     Error **errp)
2063 {
2064     if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
2065         if (pr_datasz != sizeof(uint32_t)) {
2066             error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
2067             return false;
2068         }
2069         /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
2070         info->note_flags = *data;
2071     }
2072     return true;
2073 }
2074 #define ARCH_USE_GNU_PROPERTY 1
2075 
2076 #else
2077 
2078 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
2079                                     const uint32_t *data,
2080                                     struct image_info *info,
2081                                     Error **errp)
2082 {
2083     g_assert_not_reached();
2084 }
2085 #define ARCH_USE_GNU_PROPERTY 0
2086 
2087 #endif
2088 
2089 struct exec
2090 {
2091     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
2092     unsigned int a_text;   /* length of text, in bytes */
2093     unsigned int a_data;   /* length of data, in bytes */
2094     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
2095     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
2096     unsigned int a_entry;  /* start address */
2097     unsigned int a_trsize; /* length of relocation info for text, in bytes */
2098     unsigned int a_drsize; /* length of relocation info for data, in bytes */
2099 };
2100 
2101 
2102 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
2103 #define OMAGIC 0407
2104 #define NMAGIC 0410
2105 #define ZMAGIC 0413
2106 #define QMAGIC 0314
2107 
2108 #define DLINFO_ITEMS 16
2109 
2110 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
2111 {
2112     memcpy(to, from, n);
2113 }
2114 
2115 #ifdef BSWAP_NEEDED
2116 static void bswap_ehdr(struct elfhdr *ehdr)
2117 {
2118     bswap16s(&ehdr->e_type);            /* Object file type */
2119     bswap16s(&ehdr->e_machine);         /* Architecture */
2120     bswap32s(&ehdr->e_version);         /* Object file version */
2121     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
2122     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
2123     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
2124     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
2125     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
2126     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
2127     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
2128     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
2129     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
2130     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
2131 }
2132 
2133 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
2134 {
2135     int i;
2136     for (i = 0; i < phnum; ++i, ++phdr) {
2137         bswap32s(&phdr->p_type);        /* Segment type */
2138         bswap32s(&phdr->p_flags);       /* Segment flags */
2139         bswaptls(&phdr->p_offset);      /* Segment file offset */
2140         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
2141         bswaptls(&phdr->p_paddr);       /* Segment physical address */
2142         bswaptls(&phdr->p_filesz);      /* Segment size in file */
2143         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
2144         bswaptls(&phdr->p_align);       /* Segment alignment */
2145     }
2146 }
2147 
2148 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
2149 {
2150     int i;
2151     for (i = 0; i < shnum; ++i, ++shdr) {
2152         bswap32s(&shdr->sh_name);
2153         bswap32s(&shdr->sh_type);
2154         bswaptls(&shdr->sh_flags);
2155         bswaptls(&shdr->sh_addr);
2156         bswaptls(&shdr->sh_offset);
2157         bswaptls(&shdr->sh_size);
2158         bswap32s(&shdr->sh_link);
2159         bswap32s(&shdr->sh_info);
2160         bswaptls(&shdr->sh_addralign);
2161         bswaptls(&shdr->sh_entsize);
2162     }
2163 }
2164 
2165 static void bswap_sym(struct elf_sym *sym)
2166 {
2167     bswap32s(&sym->st_name);
2168     bswaptls(&sym->st_value);
2169     bswaptls(&sym->st_size);
2170     bswap16s(&sym->st_shndx);
2171 }
2172 
2173 #ifdef TARGET_MIPS
2174 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
2175 {
2176     bswap16s(&abiflags->version);
2177     bswap32s(&abiflags->ases);
2178     bswap32s(&abiflags->isa_ext);
2179     bswap32s(&abiflags->flags1);
2180     bswap32s(&abiflags->flags2);
2181 }
2182 #endif
2183 #else
2184 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
2185 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
2186 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
2187 static inline void bswap_sym(struct elf_sym *sym) { }
2188 #ifdef TARGET_MIPS
2189 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
2190 #endif
2191 #endif
2192 
2193 #ifdef USE_ELF_CORE_DUMP
2194 static int elf_core_dump(int, const CPUArchState *);
2195 #endif /* USE_ELF_CORE_DUMP */
2196 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
2197 
2198 /* Verify the portions of EHDR within E_IDENT for the target.
2199    This can be performed before bswapping the entire header.  */
2200 static bool elf_check_ident(struct elfhdr *ehdr)
2201 {
2202     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
2203             && ehdr->e_ident[EI_MAG1] == ELFMAG1
2204             && ehdr->e_ident[EI_MAG2] == ELFMAG2
2205             && ehdr->e_ident[EI_MAG3] == ELFMAG3
2206             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
2207             && ehdr->e_ident[EI_DATA] == ELF_DATA
2208             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
2209 }
2210 
2211 /* Verify the portions of EHDR outside of E_IDENT for the target.
2212    This has to wait until after bswapping the header.  */
2213 static bool elf_check_ehdr(struct elfhdr *ehdr)
2214 {
2215     return (elf_check_arch(ehdr->e_machine)
2216             && elf_check_abi(ehdr->e_flags)
2217             && ehdr->e_ehsize == sizeof(struct elfhdr)
2218             && ehdr->e_phentsize == sizeof(struct elf_phdr)
2219             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
2220 }
2221 
2222 /*
2223  * 'copy_elf_strings()' copies argument/envelope strings from user
2224  * memory to free pages in kernel mem. These are in a format ready
2225  * to be put directly into the top of new user memory.
2226  *
2227  */
2228 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
2229                                   abi_ulong p, abi_ulong stack_limit)
2230 {
2231     char *tmp;
2232     int len, i;
2233     abi_ulong top = p;
2234 
2235     if (!p) {
2236         return 0;       /* bullet-proofing */
2237     }
2238 
2239     if (STACK_GROWS_DOWN) {
2240         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
2241         for (i = argc - 1; i >= 0; --i) {
2242             tmp = argv[i];
2243             if (!tmp) {
2244                 fprintf(stderr, "VFS: argc is wrong");
2245                 exit(-1);
2246             }
2247             len = strlen(tmp) + 1;
2248             tmp += len;
2249 
2250             if (len > (p - stack_limit)) {
2251                 return 0;
2252             }
2253             while (len) {
2254                 int bytes_to_copy = (len > offset) ? offset : len;
2255                 tmp -= bytes_to_copy;
2256                 p -= bytes_to_copy;
2257                 offset -= bytes_to_copy;
2258                 len -= bytes_to_copy;
2259 
2260                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
2261 
2262                 if (offset == 0) {
2263                     memcpy_to_target(p, scratch, top - p);
2264                     top = p;
2265                     offset = TARGET_PAGE_SIZE;
2266                 }
2267             }
2268         }
2269         if (p != top) {
2270             memcpy_to_target(p, scratch + offset, top - p);
2271         }
2272     } else {
2273         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
2274         for (i = 0; i < argc; ++i) {
2275             tmp = argv[i];
2276             if (!tmp) {
2277                 fprintf(stderr, "VFS: argc is wrong");
2278                 exit(-1);
2279             }
2280             len = strlen(tmp) + 1;
2281             if (len > (stack_limit - p)) {
2282                 return 0;
2283             }
2284             while (len) {
2285                 int bytes_to_copy = (len > remaining) ? remaining : len;
2286 
2287                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
2288 
2289                 tmp += bytes_to_copy;
2290                 remaining -= bytes_to_copy;
2291                 p += bytes_to_copy;
2292                 len -= bytes_to_copy;
2293 
2294                 if (remaining == 0) {
2295                     memcpy_to_target(top, scratch, p - top);
2296                     top = p;
2297                     remaining = TARGET_PAGE_SIZE;
2298                 }
2299             }
2300         }
2301         if (p != top) {
2302             memcpy_to_target(top, scratch, p - top);
2303         }
2304     }
2305 
2306     return p;
2307 }
2308 
2309 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
2310  * argument/environment space. Newer kernels (>2.6.33) allow more,
2311  * dependent on stack size, but guarantee at least 32 pages for
2312  * backwards compatibility.
2313  */
2314 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
2315 
2316 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
2317                                  struct image_info *info)
2318 {
2319     abi_ulong size, error, guard;
2320     int prot;
2321 
2322     size = guest_stack_size;
2323     if (size < STACK_LOWER_LIMIT) {
2324         size = STACK_LOWER_LIMIT;
2325     }
2326 
2327     if (STACK_GROWS_DOWN) {
2328         guard = TARGET_PAGE_SIZE;
2329         if (guard < qemu_real_host_page_size()) {
2330             guard = qemu_real_host_page_size();
2331         }
2332     } else {
2333         /* no guard page for hppa target where stack grows upwards. */
2334         guard = 0;
2335     }
2336 
2337     prot = PROT_READ | PROT_WRITE;
2338     if (info->exec_stack) {
2339         prot |= PROT_EXEC;
2340     }
2341     error = target_mmap(0, size + guard, prot,
2342                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2343     if (error == -1) {
2344         perror("mmap stack");
2345         exit(-1);
2346     }
2347 
2348     /* We reserve one extra page at the top of the stack as guard.  */
2349     if (STACK_GROWS_DOWN) {
2350         target_mprotect(error, guard, PROT_NONE);
2351         info->stack_limit = error + guard;
2352         return info->stack_limit + size - sizeof(void *);
2353     } else {
2354         info->stack_limit = error + size;
2355         return error;
2356     }
2357 }
2358 
2359 /**
2360  * zero_bss:
2361  *
2362  * Map and zero the bss.  We need to explicitly zero any fractional pages
2363  * after the data section (i.e. bss).  Return false on mapping failure.
2364  */
2365 static bool zero_bss(abi_ulong start_bss, abi_ulong end_bss, int prot)
2366 {
2367     abi_ulong align_bss;
2368 
2369     align_bss = TARGET_PAGE_ALIGN(start_bss);
2370     end_bss = TARGET_PAGE_ALIGN(end_bss);
2371 
2372     if (start_bss < align_bss) {
2373         int flags = page_get_flags(start_bss);
2374 
2375         if (!(flags & PAGE_VALID)) {
2376             /* Map the start of the bss. */
2377             align_bss -= TARGET_PAGE_SIZE;
2378         } else if (flags & PAGE_WRITE) {
2379             /* The page is already mapped writable. */
2380             memset(g2h_untagged(start_bss), 0, align_bss - start_bss);
2381         } else {
2382             /* Read-only zeros? */
2383             g_assert_not_reached();
2384         }
2385     }
2386 
2387     return align_bss >= end_bss ||
2388            target_mmap(align_bss, end_bss - align_bss, prot,
2389                        MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) != -1;
2390 }
2391 
2392 #if defined(TARGET_ARM)
2393 static int elf_is_fdpic(struct elfhdr *exec)
2394 {
2395     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
2396 }
2397 #elif defined(TARGET_XTENSA)
2398 static int elf_is_fdpic(struct elfhdr *exec)
2399 {
2400     return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC;
2401 }
2402 #else
2403 /* Default implementation, always false.  */
2404 static int elf_is_fdpic(struct elfhdr *exec)
2405 {
2406     return 0;
2407 }
2408 #endif
2409 
2410 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
2411 {
2412     uint16_t n;
2413     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
2414 
2415     /* elf32_fdpic_loadseg */
2416     n = info->nsegs;
2417     while (n--) {
2418         sp -= 12;
2419         put_user_u32(loadsegs[n].addr, sp+0);
2420         put_user_u32(loadsegs[n].p_vaddr, sp+4);
2421         put_user_u32(loadsegs[n].p_memsz, sp+8);
2422     }
2423 
2424     /* elf32_fdpic_loadmap */
2425     sp -= 4;
2426     put_user_u16(0, sp+0); /* version */
2427     put_user_u16(info->nsegs, sp+2); /* nsegs */
2428 
2429     info->personality = PER_LINUX_FDPIC;
2430     info->loadmap_addr = sp;
2431 
2432     return sp;
2433 }
2434 
2435 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
2436                                    struct elfhdr *exec,
2437                                    struct image_info *info,
2438                                    struct image_info *interp_info)
2439 {
2440     abi_ulong sp;
2441     abi_ulong u_argc, u_argv, u_envp, u_auxv;
2442     int size;
2443     int i;
2444     abi_ulong u_rand_bytes;
2445     uint8_t k_rand_bytes[16];
2446     abi_ulong u_platform, u_base_platform;
2447     const char *k_platform, *k_base_platform;
2448     const int n = sizeof(elf_addr_t);
2449 
2450     sp = p;
2451 
2452     /* Needs to be before we load the env/argc/... */
2453     if (elf_is_fdpic(exec)) {
2454         /* Need 4 byte alignment for these structs */
2455         sp &= ~3;
2456         sp = loader_build_fdpic_loadmap(info, sp);
2457         info->other_info = interp_info;
2458         if (interp_info) {
2459             interp_info->other_info = info;
2460             sp = loader_build_fdpic_loadmap(interp_info, sp);
2461             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2462             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2463         } else {
2464             info->interpreter_loadmap_addr = 0;
2465             info->interpreter_pt_dynamic_addr = 0;
2466         }
2467     }
2468 
2469     u_base_platform = 0;
2470     k_base_platform = ELF_BASE_PLATFORM;
2471     if (k_base_platform) {
2472         size_t len = strlen(k_base_platform) + 1;
2473         if (STACK_GROWS_DOWN) {
2474             sp -= (len + n - 1) & ~(n - 1);
2475             u_base_platform = sp;
2476             /* FIXME - check return value of memcpy_to_target() for failure */
2477             memcpy_to_target(sp, k_base_platform, len);
2478         } else {
2479             memcpy_to_target(sp, k_base_platform, len);
2480             u_base_platform = sp;
2481             sp += len + 1;
2482         }
2483     }
2484 
2485     u_platform = 0;
2486     k_platform = ELF_PLATFORM;
2487     if (k_platform) {
2488         size_t len = strlen(k_platform) + 1;
2489         if (STACK_GROWS_DOWN) {
2490             sp -= (len + n - 1) & ~(n - 1);
2491             u_platform = sp;
2492             /* FIXME - check return value of memcpy_to_target() for failure */
2493             memcpy_to_target(sp, k_platform, len);
2494         } else {
2495             memcpy_to_target(sp, k_platform, len);
2496             u_platform = sp;
2497             sp += len + 1;
2498         }
2499     }
2500 
2501     /* Provide 16 byte alignment for the PRNG, and basic alignment for
2502      * the argv and envp pointers.
2503      */
2504     if (STACK_GROWS_DOWN) {
2505         sp = QEMU_ALIGN_DOWN(sp, 16);
2506     } else {
2507         sp = QEMU_ALIGN_UP(sp, 16);
2508     }
2509 
2510     /*
2511      * Generate 16 random bytes for userspace PRNG seeding.
2512      */
2513     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2514     if (STACK_GROWS_DOWN) {
2515         sp -= 16;
2516         u_rand_bytes = sp;
2517         /* FIXME - check return value of memcpy_to_target() for failure */
2518         memcpy_to_target(sp, k_rand_bytes, 16);
2519     } else {
2520         memcpy_to_target(sp, k_rand_bytes, 16);
2521         u_rand_bytes = sp;
2522         sp += 16;
2523     }
2524 
2525     size = (DLINFO_ITEMS + 1) * 2;
2526     if (k_base_platform)
2527         size += 2;
2528     if (k_platform)
2529         size += 2;
2530 #ifdef DLINFO_ARCH_ITEMS
2531     size += DLINFO_ARCH_ITEMS * 2;
2532 #endif
2533 #ifdef ELF_HWCAP2
2534     size += 2;
2535 #endif
2536     info->auxv_len = size * n;
2537 
2538     size += envc + argc + 2;
2539     size += 1;  /* argc itself */
2540     size *= n;
2541 
2542     /* Allocate space and finalize stack alignment for entry now.  */
2543     if (STACK_GROWS_DOWN) {
2544         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2545         sp = u_argc;
2546     } else {
2547         u_argc = sp;
2548         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2549     }
2550 
2551     u_argv = u_argc + n;
2552     u_envp = u_argv + (argc + 1) * n;
2553     u_auxv = u_envp + (envc + 1) * n;
2554     info->saved_auxv = u_auxv;
2555     info->argc = argc;
2556     info->envc = envc;
2557     info->argv = u_argv;
2558     info->envp = u_envp;
2559 
2560     /* This is correct because Linux defines
2561      * elf_addr_t as Elf32_Off / Elf64_Off
2562      */
2563 #define NEW_AUX_ENT(id, val) do {               \
2564         put_user_ual(id, u_auxv);  u_auxv += n; \
2565         put_user_ual(val, u_auxv); u_auxv += n; \
2566     } while(0)
2567 
2568 #ifdef ARCH_DLINFO
2569     /*
2570      * ARCH_DLINFO must come first so platform specific code can enforce
2571      * special alignment requirements on the AUXV if necessary (eg. PPC).
2572      */
2573     ARCH_DLINFO;
2574 #endif
2575     /* There must be exactly DLINFO_ITEMS entries here, or the assert
2576      * on info->auxv_len will trigger.
2577      */
2578     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2579     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2580     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2581     if ((info->alignment & ~qemu_host_page_mask) != 0) {
2582         /* Target doesn't support host page size alignment */
2583         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2584     } else {
2585         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2586                                                qemu_host_page_size)));
2587     }
2588     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2589     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2590     NEW_AUX_ENT(AT_ENTRY, info->entry);
2591     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2592     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2593     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2594     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2595     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2596     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2597     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2598     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2599     NEW_AUX_ENT(AT_EXECFN, info->file_string);
2600 
2601 #ifdef ELF_HWCAP2
2602     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2603 #endif
2604 
2605     if (u_base_platform) {
2606         NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform);
2607     }
2608     if (u_platform) {
2609         NEW_AUX_ENT(AT_PLATFORM, u_platform);
2610     }
2611     NEW_AUX_ENT (AT_NULL, 0);
2612 #undef NEW_AUX_ENT
2613 
2614     /* Check that our initial calculation of the auxv length matches how much
2615      * we actually put into it.
2616      */
2617     assert(info->auxv_len == u_auxv - info->saved_auxv);
2618 
2619     put_user_ual(argc, u_argc);
2620 
2621     p = info->arg_strings;
2622     for (i = 0; i < argc; ++i) {
2623         put_user_ual(p, u_argv);
2624         u_argv += n;
2625         p += target_strlen(p) + 1;
2626     }
2627     put_user_ual(0, u_argv);
2628 
2629     p = info->env_strings;
2630     for (i = 0; i < envc; ++i) {
2631         put_user_ual(p, u_envp);
2632         u_envp += n;
2633         p += target_strlen(p) + 1;
2634     }
2635     put_user_ual(0, u_envp);
2636 
2637     return sp;
2638 }
2639 
2640 #if defined(HI_COMMPAGE)
2641 #define LO_COMMPAGE -1
2642 #elif defined(LO_COMMPAGE)
2643 #define HI_COMMPAGE 0
2644 #else
2645 #define HI_COMMPAGE 0
2646 #define LO_COMMPAGE -1
2647 #ifndef INIT_GUEST_COMMPAGE
2648 #define init_guest_commpage() true
2649 #endif
2650 #endif
2651 
2652 /**
2653  * pgb_try_mmap:
2654  * @addr: host start address
2655  * @addr_last: host last address
2656  * @keep: do not unmap the probe region
2657  *
2658  * Return 1 if [@addr, @addr_last] is not mapped in the host,
2659  * return 0 if it is not available to map, and -1 on mmap error.
2660  * If @keep, the region is left mapped on success, otherwise unmapped.
2661  */
2662 static int pgb_try_mmap(uintptr_t addr, uintptr_t addr_last, bool keep)
2663 {
2664     size_t size = addr_last - addr + 1;
2665     void *p = mmap((void *)addr, size, PROT_NONE,
2666                    MAP_ANONYMOUS | MAP_PRIVATE |
2667                    MAP_NORESERVE | MAP_FIXED_NOREPLACE, -1, 0);
2668     int ret;
2669 
2670     if (p == MAP_FAILED) {
2671         return errno == EEXIST ? 0 : -1;
2672     }
2673     ret = p == (void *)addr;
2674     if (!keep || !ret) {
2675         munmap(p, size);
2676     }
2677     return ret;
2678 }
2679 
2680 /**
2681  * pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t size, uintptr_t brk)
2682  * @addr: host address
2683  * @addr_last: host last address
2684  * @brk: host brk
2685  *
2686  * Like pgb_try_mmap, but additionally reserve some memory following brk.
2687  */
2688 static int pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t addr_last,
2689                                  uintptr_t brk, bool keep)
2690 {
2691     uintptr_t brk_last = brk + 16 * MiB - 1;
2692 
2693     /* Do not map anything close to the host brk. */
2694     if (addr <= brk_last && brk <= addr_last) {
2695         return 0;
2696     }
2697     return pgb_try_mmap(addr, addr_last, keep);
2698 }
2699 
2700 /**
2701  * pgb_try_mmap_set:
2702  * @ga: set of guest addrs
2703  * @base: guest_base
2704  * @brk: host brk
2705  *
2706  * Return true if all @ga can be mapped by the host at @base.
2707  * On success, retain the mapping at index 0 for reserved_va.
2708  */
2709 
2710 typedef struct PGBAddrs {
2711     uintptr_t bounds[3][2]; /* start/last pairs */
2712     int nbounds;
2713 } PGBAddrs;
2714 
2715 static bool pgb_try_mmap_set(const PGBAddrs *ga, uintptr_t base, uintptr_t brk)
2716 {
2717     for (int i = ga->nbounds - 1; i >= 0; --i) {
2718         if (pgb_try_mmap_skip_brk(ga->bounds[i][0] + base,
2719                                   ga->bounds[i][1] + base,
2720                                   brk, i == 0 && reserved_va) <= 0) {
2721             return false;
2722         }
2723     }
2724     return true;
2725 }
2726 
2727 /**
2728  * pgb_addr_set:
2729  * @ga: output set of guest addrs
2730  * @guest_loaddr: guest image low address
2731  * @guest_loaddr: guest image high address
2732  * @identity: create for identity mapping
2733  *
2734  * Fill in @ga with the image, COMMPAGE and NULL page.
2735  */
2736 static bool pgb_addr_set(PGBAddrs *ga, abi_ulong guest_loaddr,
2737                          abi_ulong guest_hiaddr, bool try_identity)
2738 {
2739     int n;
2740 
2741     /*
2742      * With a low commpage, or a guest mapped very low,
2743      * we may not be able to use the identity map.
2744      */
2745     if (try_identity) {
2746         if (LO_COMMPAGE != -1 && LO_COMMPAGE < mmap_min_addr) {
2747             return false;
2748         }
2749         if (guest_loaddr != 0 && guest_loaddr < mmap_min_addr) {
2750             return false;
2751         }
2752     }
2753 
2754     memset(ga, 0, sizeof(*ga));
2755     n = 0;
2756 
2757     if (reserved_va) {
2758         ga->bounds[n][0] = try_identity ? mmap_min_addr : 0;
2759         ga->bounds[n][1] = reserved_va;
2760         n++;
2761         /* LO_COMMPAGE and NULL handled by reserving from 0. */
2762     } else {
2763         /* Add any LO_COMMPAGE or NULL page. */
2764         if (LO_COMMPAGE != -1) {
2765             ga->bounds[n][0] = 0;
2766             ga->bounds[n][1] = LO_COMMPAGE + TARGET_PAGE_SIZE - 1;
2767             n++;
2768         } else if (!try_identity) {
2769             ga->bounds[n][0] = 0;
2770             ga->bounds[n][1] = TARGET_PAGE_SIZE - 1;
2771             n++;
2772         }
2773 
2774         /* Add the guest image for ET_EXEC. */
2775         if (guest_loaddr) {
2776             ga->bounds[n][0] = guest_loaddr;
2777             ga->bounds[n][1] = guest_hiaddr;
2778             n++;
2779         }
2780     }
2781 
2782     /*
2783      * Temporarily disable
2784      *   "comparison is always false due to limited range of data type"
2785      * due to comparison between unsigned and (possible) 0.
2786      */
2787 #pragma GCC diagnostic push
2788 #pragma GCC diagnostic ignored "-Wtype-limits"
2789 
2790     /* Add any HI_COMMPAGE not covered by reserved_va. */
2791     if (reserved_va < HI_COMMPAGE) {
2792         ga->bounds[n][0] = HI_COMMPAGE & qemu_host_page_mask;
2793         ga->bounds[n][1] = HI_COMMPAGE + TARGET_PAGE_SIZE - 1;
2794         n++;
2795     }
2796 
2797 #pragma GCC diagnostic pop
2798 
2799     ga->nbounds = n;
2800     return true;
2801 }
2802 
2803 static void pgb_fail_in_use(const char *image_name)
2804 {
2805     error_report("%s: requires virtual address space that is in use "
2806                  "(omit the -B option or choose a different value)",
2807                  image_name);
2808     exit(EXIT_FAILURE);
2809 }
2810 
2811 static void pgb_fixed(const char *image_name, uintptr_t guest_loaddr,
2812                       uintptr_t guest_hiaddr, uintptr_t align)
2813 {
2814     PGBAddrs ga;
2815     uintptr_t brk = (uintptr_t)sbrk(0);
2816 
2817     if (!QEMU_IS_ALIGNED(guest_base, align)) {
2818         fprintf(stderr, "Requested guest base %p does not satisfy "
2819                 "host minimum alignment (0x%" PRIxPTR ")\n",
2820                 (void *)guest_base, align);
2821         exit(EXIT_FAILURE);
2822     }
2823 
2824     if (!pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, !guest_base)
2825         || !pgb_try_mmap_set(&ga, guest_base, brk)) {
2826         pgb_fail_in_use(image_name);
2827     }
2828 }
2829 
2830 /**
2831  * pgb_find_fallback:
2832  *
2833  * This is a fallback method for finding holes in the host address space
2834  * if we don't have the benefit of being able to access /proc/self/map.
2835  * It can potentially take a very long time as we can only dumbly iterate
2836  * up the host address space seeing if the allocation would work.
2837  */
2838 static uintptr_t pgb_find_fallback(const PGBAddrs *ga, uintptr_t align,
2839                                    uintptr_t brk)
2840 {
2841     /* TODO: come up with a better estimate of how much to skip. */
2842     uintptr_t skip = sizeof(uintptr_t) == 4 ? MiB : GiB;
2843 
2844     for (uintptr_t base = skip; ; base += skip) {
2845         base = ROUND_UP(base, align);
2846         if (pgb_try_mmap_set(ga, base, brk)) {
2847             return base;
2848         }
2849         if (base >= -skip) {
2850             return -1;
2851         }
2852     }
2853 }
2854 
2855 static uintptr_t pgb_try_itree(const PGBAddrs *ga, uintptr_t base,
2856                                IntervalTreeRoot *root)
2857 {
2858     for (int i = ga->nbounds - 1; i >= 0; --i) {
2859         uintptr_t s = base + ga->bounds[i][0];
2860         uintptr_t l = base + ga->bounds[i][1];
2861         IntervalTreeNode *n;
2862 
2863         if (l < s) {
2864             /* Wraparound. Skip to advance S to mmap_min_addr. */
2865             return mmap_min_addr - s;
2866         }
2867 
2868         n = interval_tree_iter_first(root, s, l);
2869         if (n != NULL) {
2870             /* Conflict.  Skip to advance S to LAST + 1. */
2871             return n->last - s + 1;
2872         }
2873     }
2874     return 0;  /* success */
2875 }
2876 
2877 static uintptr_t pgb_find_itree(const PGBAddrs *ga, IntervalTreeRoot *root,
2878                                 uintptr_t align, uintptr_t brk)
2879 {
2880     uintptr_t last = mmap_min_addr;
2881     uintptr_t base, skip;
2882 
2883     while (true) {
2884         base = ROUND_UP(last, align);
2885         if (base < last) {
2886             return -1;
2887         }
2888 
2889         skip = pgb_try_itree(ga, base, root);
2890         if (skip == 0) {
2891             break;
2892         }
2893 
2894         last = base + skip;
2895         if (last < base) {
2896             return -1;
2897         }
2898     }
2899 
2900     /*
2901      * We've chosen 'base' based on holes in the interval tree,
2902      * but we don't yet know if it is a valid host address.
2903      * Because it is the first matching hole, if the host addresses
2904      * are invalid we know there are no further matches.
2905      */
2906     return pgb_try_mmap_set(ga, base, brk) ? base : -1;
2907 }
2908 
2909 static void pgb_dynamic(const char *image_name, uintptr_t guest_loaddr,
2910                         uintptr_t guest_hiaddr, uintptr_t align)
2911 {
2912     IntervalTreeRoot *root;
2913     uintptr_t brk, ret;
2914     PGBAddrs ga;
2915 
2916     assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2917 
2918     /* Try the identity map first. */
2919     if (pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, true)) {
2920         brk = (uintptr_t)sbrk(0);
2921         if (pgb_try_mmap_set(&ga, 0, brk)) {
2922             guest_base = 0;
2923             return;
2924         }
2925     }
2926 
2927     /*
2928      * Rebuild the address set for non-identity map.
2929      * This differs in the mapping of the guest NULL page.
2930      */
2931     pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, false);
2932 
2933     root = read_self_maps();
2934 
2935     /* Read brk after we've read the maps, which will malloc. */
2936     brk = (uintptr_t)sbrk(0);
2937 
2938     if (!root) {
2939         ret = pgb_find_fallback(&ga, align, brk);
2940     } else {
2941         /*
2942          * Reserve the area close to the host brk.
2943          * This will be freed with the rest of the tree.
2944          */
2945         IntervalTreeNode *b = g_new0(IntervalTreeNode, 1);
2946         b->start = brk;
2947         b->last = brk + 16 * MiB - 1;
2948         interval_tree_insert(b, root);
2949 
2950         ret = pgb_find_itree(&ga, root, align, brk);
2951         free_self_maps(root);
2952     }
2953 
2954     if (ret == -1) {
2955         int w = TARGET_LONG_BITS / 4;
2956 
2957         error_report("%s: Unable to find a guest_base to satisfy all "
2958                      "guest address mapping requirements", image_name);
2959 
2960         for (int i = 0; i < ga.nbounds; ++i) {
2961             error_printf("  %0*" PRIx64 "-%0*" PRIx64 "\n",
2962                          w, (uint64_t)ga.bounds[i][0],
2963                          w, (uint64_t)ga.bounds[i][1]);
2964         }
2965         exit(EXIT_FAILURE);
2966     }
2967     guest_base = ret;
2968 }
2969 
2970 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2971                       abi_ulong guest_hiaddr)
2972 {
2973     /* In order to use host shmat, we must be able to honor SHMLBA.  */
2974     uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2975 
2976     /* Sanity check the guest binary. */
2977     if (reserved_va) {
2978         if (guest_hiaddr > reserved_va) {
2979             error_report("%s: requires more than reserved virtual "
2980                          "address space (0x%" PRIx64 " > 0x%lx)",
2981                          image_name, (uint64_t)guest_hiaddr, reserved_va);
2982             exit(EXIT_FAILURE);
2983         }
2984     } else {
2985         if (guest_hiaddr != (uintptr_t)guest_hiaddr) {
2986             error_report("%s: requires more virtual address space "
2987                          "than the host can provide (0x%" PRIx64 ")",
2988                          image_name, (uint64_t)guest_hiaddr + 1);
2989             exit(EXIT_FAILURE);
2990         }
2991     }
2992 
2993     if (have_guest_base) {
2994         pgb_fixed(image_name, guest_loaddr, guest_hiaddr, align);
2995     } else {
2996         pgb_dynamic(image_name, guest_loaddr, guest_hiaddr, align);
2997     }
2998 
2999     /* Reserve and initialize the commpage. */
3000     if (!init_guest_commpage()) {
3001         /* We have already probed for the commpage being free. */
3002         g_assert_not_reached();
3003     }
3004 
3005     assert(QEMU_IS_ALIGNED(guest_base, align));
3006     qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
3007                   "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
3008 }
3009 
3010 enum {
3011     /* The string "GNU\0" as a magic number. */
3012     GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
3013     NOTE_DATA_SZ = 1 * KiB,
3014     NOTE_NAME_SZ = 4,
3015     ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
3016 };
3017 
3018 /*
3019  * Process a single gnu_property entry.
3020  * Return false for error.
3021  */
3022 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
3023                                struct image_info *info, bool have_prev_type,
3024                                uint32_t *prev_type, Error **errp)
3025 {
3026     uint32_t pr_type, pr_datasz, step;
3027 
3028     if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
3029         goto error_data;
3030     }
3031     datasz -= *off;
3032     data += *off / sizeof(uint32_t);
3033 
3034     if (datasz < 2 * sizeof(uint32_t)) {
3035         goto error_data;
3036     }
3037     pr_type = data[0];
3038     pr_datasz = data[1];
3039     data += 2;
3040     datasz -= 2 * sizeof(uint32_t);
3041     step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
3042     if (step > datasz) {
3043         goto error_data;
3044     }
3045 
3046     /* Properties are supposed to be unique and sorted on pr_type. */
3047     if (have_prev_type && pr_type <= *prev_type) {
3048         if (pr_type == *prev_type) {
3049             error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
3050         } else {
3051             error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
3052         }
3053         return false;
3054     }
3055     *prev_type = pr_type;
3056 
3057     if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
3058         return false;
3059     }
3060 
3061     *off += 2 * sizeof(uint32_t) + step;
3062     return true;
3063 
3064  error_data:
3065     error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
3066     return false;
3067 }
3068 
3069 /* Process NT_GNU_PROPERTY_TYPE_0. */
3070 static bool parse_elf_properties(int image_fd,
3071                                  struct image_info *info,
3072                                  const struct elf_phdr *phdr,
3073                                  char bprm_buf[BPRM_BUF_SIZE],
3074                                  Error **errp)
3075 {
3076     union {
3077         struct elf_note nhdr;
3078         uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
3079     } note;
3080 
3081     int n, off, datasz;
3082     bool have_prev_type;
3083     uint32_t prev_type;
3084 
3085     /* Unless the arch requires properties, ignore them. */
3086     if (!ARCH_USE_GNU_PROPERTY) {
3087         return true;
3088     }
3089 
3090     /* If the properties are crazy large, that's too bad. */
3091     n = phdr->p_filesz;
3092     if (n > sizeof(note)) {
3093         error_setg(errp, "PT_GNU_PROPERTY too large");
3094         return false;
3095     }
3096     if (n < sizeof(note.nhdr)) {
3097         error_setg(errp, "PT_GNU_PROPERTY too small");
3098         return false;
3099     }
3100 
3101     if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
3102         memcpy(&note, bprm_buf + phdr->p_offset, n);
3103     } else {
3104         ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
3105         if (len != n) {
3106             error_setg_errno(errp, errno, "Error reading file header");
3107             return false;
3108         }
3109     }
3110 
3111     /*
3112      * The contents of a valid PT_GNU_PROPERTY is a sequence
3113      * of uint32_t -- swap them all now.
3114      */
3115 #ifdef BSWAP_NEEDED
3116     for (int i = 0; i < n / 4; i++) {
3117         bswap32s(note.data + i);
3118     }
3119 #endif
3120 
3121     /*
3122      * Note that nhdr is 3 words, and that the "name" described by namesz
3123      * immediately follows nhdr and is thus at the 4th word.  Further, all
3124      * of the inputs to the kernel's round_up are multiples of 4.
3125      */
3126     if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
3127         note.nhdr.n_namesz != NOTE_NAME_SZ ||
3128         note.data[3] != GNU0_MAGIC) {
3129         error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
3130         return false;
3131     }
3132     off = sizeof(note.nhdr) + NOTE_NAME_SZ;
3133 
3134     datasz = note.nhdr.n_descsz + off;
3135     if (datasz > n) {
3136         error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
3137         return false;
3138     }
3139 
3140     have_prev_type = false;
3141     prev_type = 0;
3142     while (1) {
3143         if (off == datasz) {
3144             return true;  /* end, exit ok */
3145         }
3146         if (!parse_elf_property(note.data, &off, datasz, info,
3147                                 have_prev_type, &prev_type, errp)) {
3148             return false;
3149         }
3150         have_prev_type = true;
3151     }
3152 }
3153 
3154 /* Load an ELF image into the address space.
3155 
3156    IMAGE_NAME is the filename of the image, to use in error messages.
3157    IMAGE_FD is the open file descriptor for the image.
3158 
3159    BPRM_BUF is a copy of the beginning of the file; this of course
3160    contains the elf file header at offset 0.  It is assumed that this
3161    buffer is sufficiently aligned to present no problems to the host
3162    in accessing data at aligned offsets within the buffer.
3163 
3164    On return: INFO values will be filled in, as necessary or available.  */
3165 
3166 static void load_elf_image(const char *image_name, int image_fd,
3167                            struct image_info *info, char **pinterp_name,
3168                            char bprm_buf[BPRM_BUF_SIZE])
3169 {
3170     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
3171     struct elf_phdr *phdr;
3172     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
3173     int i, retval, prot_exec;
3174     Error *err = NULL;
3175 
3176     /* First of all, some simple consistency checks */
3177     if (!elf_check_ident(ehdr)) {
3178         error_setg(&err, "Invalid ELF image for this architecture");
3179         goto exit_errmsg;
3180     }
3181     bswap_ehdr(ehdr);
3182     if (!elf_check_ehdr(ehdr)) {
3183         error_setg(&err, "Invalid ELF image for this architecture");
3184         goto exit_errmsg;
3185     }
3186 
3187     i = ehdr->e_phnum * sizeof(struct elf_phdr);
3188     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
3189         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
3190     } else {
3191         phdr = (struct elf_phdr *) alloca(i);
3192         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
3193         if (retval != i) {
3194             goto exit_read;
3195         }
3196     }
3197     bswap_phdr(phdr, ehdr->e_phnum);
3198 
3199     info->nsegs = 0;
3200     info->pt_dynamic_addr = 0;
3201 
3202     mmap_lock();
3203 
3204     /*
3205      * Find the maximum size of the image and allocate an appropriate
3206      * amount of memory to handle that.  Locate the interpreter, if any.
3207      */
3208     loaddr = -1, hiaddr = 0;
3209     info->alignment = 0;
3210     info->exec_stack = EXSTACK_DEFAULT;
3211     for (i = 0; i < ehdr->e_phnum; ++i) {
3212         struct elf_phdr *eppnt = phdr + i;
3213         if (eppnt->p_type == PT_LOAD) {
3214             abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
3215             if (a < loaddr) {
3216                 loaddr = a;
3217             }
3218             a = eppnt->p_vaddr + eppnt->p_memsz - 1;
3219             if (a > hiaddr) {
3220                 hiaddr = a;
3221             }
3222             ++info->nsegs;
3223             info->alignment |= eppnt->p_align;
3224         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
3225             g_autofree char *interp_name = NULL;
3226 
3227             if (*pinterp_name) {
3228                 error_setg(&err, "Multiple PT_INTERP entries");
3229                 goto exit_errmsg;
3230             }
3231 
3232             interp_name = g_malloc(eppnt->p_filesz);
3233 
3234             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3235                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
3236                        eppnt->p_filesz);
3237             } else {
3238                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
3239                                eppnt->p_offset);
3240                 if (retval != eppnt->p_filesz) {
3241                     goto exit_read;
3242                 }
3243             }
3244             if (interp_name[eppnt->p_filesz - 1] != 0) {
3245                 error_setg(&err, "Invalid PT_INTERP entry");
3246                 goto exit_errmsg;
3247             }
3248             *pinterp_name = g_steal_pointer(&interp_name);
3249         } else if (eppnt->p_type == PT_GNU_PROPERTY) {
3250             if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
3251                 goto exit_errmsg;
3252             }
3253         } else if (eppnt->p_type == PT_GNU_STACK) {
3254             info->exec_stack = eppnt->p_flags & PF_X;
3255         }
3256     }
3257 
3258     load_addr = loaddr;
3259 
3260     if (pinterp_name != NULL) {
3261         if (ehdr->e_type == ET_EXEC) {
3262             /*
3263              * Make sure that the low address does not conflict with
3264              * MMAP_MIN_ADDR or the QEMU application itself.
3265              */
3266             probe_guest_base(image_name, loaddr, hiaddr);
3267         } else {
3268             abi_ulong align;
3269 
3270             /*
3271              * The binary is dynamic, but we still need to
3272              * select guest_base.  In this case we pass a size.
3273              */
3274             probe_guest_base(image_name, 0, hiaddr - loaddr);
3275 
3276             /*
3277              * Avoid collision with the loader by providing a different
3278              * default load address.
3279              */
3280             load_addr += elf_et_dyn_base;
3281 
3282             /*
3283              * TODO: Better support for mmap alignment is desirable.
3284              * Since we do not have complete control over the guest
3285              * address space, we prefer the kernel to choose some address
3286              * rather than force the use of LOAD_ADDR via MAP_FIXED.
3287              * But without MAP_FIXED we cannot guarantee alignment,
3288              * only suggest it.
3289              */
3290             align = pow2ceil(info->alignment);
3291             if (align) {
3292                 load_addr &= -align;
3293             }
3294         }
3295     }
3296 
3297     /*
3298      * Reserve address space for all of this.
3299      *
3300      * In the case of ET_EXEC, we supply MAP_FIXED_NOREPLACE so that we get
3301      * exactly the address range that is required.  Without reserved_va,
3302      * the guest address space is not isolated.  We have attempted to avoid
3303      * conflict with the host program itself via probe_guest_base, but using
3304      * MAP_FIXED_NOREPLACE instead of MAP_FIXED provides an extra check.
3305      *
3306      * Otherwise this is ET_DYN, and we are searching for a location
3307      * that can hold the memory space required.  If the image is
3308      * pre-linked, LOAD_ADDR will be non-zero, and the kernel should
3309      * honor that address if it happens to be free.
3310      *
3311      * In both cases, we will overwrite pages in this range with mappings
3312      * from the executable.
3313      */
3314     load_addr = target_mmap(load_addr, (size_t)hiaddr - loaddr + 1, PROT_NONE,
3315                             MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
3316                             (ehdr->e_type == ET_EXEC ? MAP_FIXED_NOREPLACE : 0),
3317                             -1, 0);
3318     if (load_addr == -1) {
3319         goto exit_mmap;
3320     }
3321     load_bias = load_addr - loaddr;
3322 
3323     if (elf_is_fdpic(ehdr)) {
3324         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
3325             g_malloc(sizeof(*loadsegs) * info->nsegs);
3326 
3327         for (i = 0; i < ehdr->e_phnum; ++i) {
3328             switch (phdr[i].p_type) {
3329             case PT_DYNAMIC:
3330                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
3331                 break;
3332             case PT_LOAD:
3333                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
3334                 loadsegs->p_vaddr = phdr[i].p_vaddr;
3335                 loadsegs->p_memsz = phdr[i].p_memsz;
3336                 ++loadsegs;
3337                 break;
3338             }
3339         }
3340     }
3341 
3342     info->load_bias = load_bias;
3343     info->code_offset = load_bias;
3344     info->data_offset = load_bias;
3345     info->load_addr = load_addr;
3346     info->entry = ehdr->e_entry + load_bias;
3347     info->start_code = -1;
3348     info->end_code = 0;
3349     info->start_data = -1;
3350     info->end_data = 0;
3351     /* Usual start for brk is after all sections of the main executable. */
3352     info->brk = TARGET_PAGE_ALIGN(hiaddr + load_bias);
3353     info->elf_flags = ehdr->e_flags;
3354 
3355     prot_exec = PROT_EXEC;
3356 #ifdef TARGET_AARCH64
3357     /*
3358      * If the BTI feature is present, this indicates that the executable
3359      * pages of the startup binary should be mapped with PROT_BTI, so that
3360      * branch targets are enforced.
3361      *
3362      * The startup binary is either the interpreter or the static executable.
3363      * The interpreter is responsible for all pages of a dynamic executable.
3364      *
3365      * Elf notes are backward compatible to older cpus.
3366      * Do not enable BTI unless it is supported.
3367      */
3368     if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
3369         && (pinterp_name == NULL || *pinterp_name == 0)
3370         && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
3371         prot_exec |= TARGET_PROT_BTI;
3372     }
3373 #endif
3374 
3375     for (i = 0; i < ehdr->e_phnum; i++) {
3376         struct elf_phdr *eppnt = phdr + i;
3377         if (eppnt->p_type == PT_LOAD) {
3378             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
3379             int elf_prot = 0;
3380 
3381             if (eppnt->p_flags & PF_R) {
3382                 elf_prot |= PROT_READ;
3383             }
3384             if (eppnt->p_flags & PF_W) {
3385                 elf_prot |= PROT_WRITE;
3386             }
3387             if (eppnt->p_flags & PF_X) {
3388                 elf_prot |= prot_exec;
3389             }
3390 
3391             vaddr = load_bias + eppnt->p_vaddr;
3392             vaddr_po = vaddr & ~TARGET_PAGE_MASK;
3393             vaddr_ps = vaddr & TARGET_PAGE_MASK;
3394 
3395             vaddr_ef = vaddr + eppnt->p_filesz;
3396             vaddr_em = vaddr + eppnt->p_memsz;
3397 
3398             /*
3399              * Some segments may be completely empty, with a non-zero p_memsz
3400              * but no backing file segment.
3401              */
3402             if (eppnt->p_filesz != 0) {
3403                 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
3404                                     elf_prot, MAP_PRIVATE | MAP_FIXED,
3405                                     image_fd, eppnt->p_offset - vaddr_po);
3406                 if (error == -1) {
3407                     goto exit_mmap;
3408                 }
3409             }
3410 
3411             /* If the load segment requests extra zeros (e.g. bss), map it. */
3412             if (vaddr_ef < vaddr_em &&
3413                 !zero_bss(vaddr_ef, vaddr_em, elf_prot)) {
3414                 goto exit_mmap;
3415             }
3416 
3417             /* Find the full program boundaries.  */
3418             if (elf_prot & PROT_EXEC) {
3419                 if (vaddr < info->start_code) {
3420                     info->start_code = vaddr;
3421                 }
3422                 if (vaddr_ef > info->end_code) {
3423                     info->end_code = vaddr_ef;
3424                 }
3425             }
3426             if (elf_prot & PROT_WRITE) {
3427                 if (vaddr < info->start_data) {
3428                     info->start_data = vaddr;
3429                 }
3430                 if (vaddr_ef > info->end_data) {
3431                     info->end_data = vaddr_ef;
3432                 }
3433             }
3434 #ifdef TARGET_MIPS
3435         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
3436             Mips_elf_abiflags_v0 abiflags;
3437             if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
3438                 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
3439                 goto exit_errmsg;
3440             }
3441             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3442                 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
3443                        sizeof(Mips_elf_abiflags_v0));
3444             } else {
3445                 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
3446                                eppnt->p_offset);
3447                 if (retval != sizeof(Mips_elf_abiflags_v0)) {
3448                     goto exit_read;
3449                 }
3450             }
3451             bswap_mips_abiflags(&abiflags);
3452             info->fp_abi = abiflags.fp_abi;
3453 #endif
3454         }
3455     }
3456 
3457     if (info->end_data == 0) {
3458         info->start_data = info->end_code;
3459         info->end_data = info->end_code;
3460     }
3461 
3462     if (qemu_log_enabled()) {
3463         load_symbols(ehdr, image_fd, load_bias);
3464     }
3465 
3466     debuginfo_report_elf(image_name, image_fd, load_bias);
3467 
3468     mmap_unlock();
3469 
3470     close(image_fd);
3471     return;
3472 
3473  exit_read:
3474     if (retval >= 0) {
3475         error_setg(&err, "Incomplete read of file header");
3476     } else {
3477         error_setg_errno(&err, errno, "Error reading file header");
3478     }
3479     goto exit_errmsg;
3480  exit_mmap:
3481     error_setg_errno(&err, errno, "Error mapping file");
3482     goto exit_errmsg;
3483  exit_errmsg:
3484     error_reportf_err(err, "%s: ", image_name);
3485     exit(-1);
3486 }
3487 
3488 static void load_elf_interp(const char *filename, struct image_info *info,
3489                             char bprm_buf[BPRM_BUF_SIZE])
3490 {
3491     int fd, retval;
3492     Error *err = NULL;
3493 
3494     fd = open(path(filename), O_RDONLY);
3495     if (fd < 0) {
3496         error_setg_file_open(&err, errno, filename);
3497         error_report_err(err);
3498         exit(-1);
3499     }
3500 
3501     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
3502     if (retval < 0) {
3503         error_setg_errno(&err, errno, "Error reading file header");
3504         error_reportf_err(err, "%s: ", filename);
3505         exit(-1);
3506     }
3507 
3508     if (retval < BPRM_BUF_SIZE) {
3509         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
3510     }
3511 
3512     load_elf_image(filename, fd, info, NULL, bprm_buf);
3513 }
3514 
3515 static int symfind(const void *s0, const void *s1)
3516 {
3517     struct elf_sym *sym = (struct elf_sym *)s1;
3518     __typeof(sym->st_value) addr = *(uint64_t *)s0;
3519     int result = 0;
3520 
3521     if (addr < sym->st_value) {
3522         result = -1;
3523     } else if (addr >= sym->st_value + sym->st_size) {
3524         result = 1;
3525     }
3526     return result;
3527 }
3528 
3529 static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr)
3530 {
3531 #if ELF_CLASS == ELFCLASS32
3532     struct elf_sym *syms = s->disas_symtab.elf32;
3533 #else
3534     struct elf_sym *syms = s->disas_symtab.elf64;
3535 #endif
3536 
3537     // binary search
3538     struct elf_sym *sym;
3539 
3540     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
3541     if (sym != NULL) {
3542         return s->disas_strtab + sym->st_name;
3543     }
3544 
3545     return "";
3546 }
3547 
3548 /* FIXME: This should use elf_ops.h  */
3549 static int symcmp(const void *s0, const void *s1)
3550 {
3551     struct elf_sym *sym0 = (struct elf_sym *)s0;
3552     struct elf_sym *sym1 = (struct elf_sym *)s1;
3553     return (sym0->st_value < sym1->st_value)
3554         ? -1
3555         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3556 }
3557 
3558 /* Best attempt to load symbols from this ELF object. */
3559 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
3560 {
3561     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3562     uint64_t segsz;
3563     struct elf_shdr *shdr;
3564     char *strings = NULL;
3565     struct syminfo *s = NULL;
3566     struct elf_sym *new_syms, *syms = NULL;
3567 
3568     shnum = hdr->e_shnum;
3569     i = shnum * sizeof(struct elf_shdr);
3570     shdr = (struct elf_shdr *)alloca(i);
3571     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
3572         return;
3573     }
3574 
3575     bswap_shdr(shdr, shnum);
3576     for (i = 0; i < shnum; ++i) {
3577         if (shdr[i].sh_type == SHT_SYMTAB) {
3578             sym_idx = i;
3579             str_idx = shdr[i].sh_link;
3580             goto found;
3581         }
3582     }
3583 
3584     /* There will be no symbol table if the file was stripped.  */
3585     return;
3586 
3587  found:
3588     /* Now know where the strtab and symtab are.  Snarf them.  */
3589     s = g_try_new(struct syminfo, 1);
3590     if (!s) {
3591         goto give_up;
3592     }
3593 
3594     segsz = shdr[str_idx].sh_size;
3595     s->disas_strtab = strings = g_try_malloc(segsz);
3596     if (!strings ||
3597         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
3598         goto give_up;
3599     }
3600 
3601     segsz = shdr[sym_idx].sh_size;
3602     syms = g_try_malloc(segsz);
3603     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
3604         goto give_up;
3605     }
3606 
3607     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3608         /* Implausibly large symbol table: give up rather than ploughing
3609          * on with the number of symbols calculation overflowing
3610          */
3611         goto give_up;
3612     }
3613     nsyms = segsz / sizeof(struct elf_sym);
3614     for (i = 0; i < nsyms; ) {
3615         bswap_sym(syms + i);
3616         /* Throw away entries which we do not need.  */
3617         if (syms[i].st_shndx == SHN_UNDEF
3618             || syms[i].st_shndx >= SHN_LORESERVE
3619             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3620             if (i < --nsyms) {
3621                 syms[i] = syms[nsyms];
3622             }
3623         } else {
3624 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3625             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
3626             syms[i].st_value &= ~(target_ulong)1;
3627 #endif
3628             syms[i].st_value += load_bias;
3629             i++;
3630         }
3631     }
3632 
3633     /* No "useful" symbol.  */
3634     if (nsyms == 0) {
3635         goto give_up;
3636     }
3637 
3638     /* Attempt to free the storage associated with the local symbols
3639        that we threw away.  Whether or not this has any effect on the
3640        memory allocation depends on the malloc implementation and how
3641        many symbols we managed to discard.  */
3642     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3643     if (new_syms == NULL) {
3644         goto give_up;
3645     }
3646     syms = new_syms;
3647 
3648     qsort(syms, nsyms, sizeof(*syms), symcmp);
3649 
3650     s->disas_num_syms = nsyms;
3651 #if ELF_CLASS == ELFCLASS32
3652     s->disas_symtab.elf32 = syms;
3653 #else
3654     s->disas_symtab.elf64 = syms;
3655 #endif
3656     s->lookup_symbol = lookup_symbolxx;
3657     s->next = syminfos;
3658     syminfos = s;
3659 
3660     return;
3661 
3662 give_up:
3663     g_free(s);
3664     g_free(strings);
3665     g_free(syms);
3666 }
3667 
3668 uint32_t get_elf_eflags(int fd)
3669 {
3670     struct elfhdr ehdr;
3671     off_t offset;
3672     int ret;
3673 
3674     /* Read ELF header */
3675     offset = lseek(fd, 0, SEEK_SET);
3676     if (offset == (off_t) -1) {
3677         return 0;
3678     }
3679     ret = read(fd, &ehdr, sizeof(ehdr));
3680     if (ret < sizeof(ehdr)) {
3681         return 0;
3682     }
3683     offset = lseek(fd, offset, SEEK_SET);
3684     if (offset == (off_t) -1) {
3685         return 0;
3686     }
3687 
3688     /* Check ELF signature */
3689     if (!elf_check_ident(&ehdr)) {
3690         return 0;
3691     }
3692 
3693     /* check header */
3694     bswap_ehdr(&ehdr);
3695     if (!elf_check_ehdr(&ehdr)) {
3696         return 0;
3697     }
3698 
3699     /* return architecture id */
3700     return ehdr.e_flags;
3701 }
3702 
3703 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3704 {
3705     struct image_info interp_info;
3706     struct elfhdr elf_ex;
3707     char *elf_interpreter = NULL;
3708     char *scratch;
3709 
3710     memset(&interp_info, 0, sizeof(interp_info));
3711 #ifdef TARGET_MIPS
3712     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3713 #endif
3714 
3715     load_elf_image(bprm->filename, bprm->fd, info,
3716                    &elf_interpreter, bprm->buf);
3717 
3718     /* ??? We need a copy of the elf header for passing to create_elf_tables.
3719        If we do nothing, we'll have overwritten this when we re-use bprm->buf
3720        when we load the interpreter.  */
3721     elf_ex = *(struct elfhdr *)bprm->buf;
3722 
3723     /* Do this so that we can load the interpreter, if need be.  We will
3724        change some of these later */
3725     bprm->p = setup_arg_pages(bprm, info);
3726 
3727     scratch = g_new0(char, TARGET_PAGE_SIZE);
3728     if (STACK_GROWS_DOWN) {
3729         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3730                                    bprm->p, info->stack_limit);
3731         info->file_string = bprm->p;
3732         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3733                                    bprm->p, info->stack_limit);
3734         info->env_strings = bprm->p;
3735         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3736                                    bprm->p, info->stack_limit);
3737         info->arg_strings = bprm->p;
3738     } else {
3739         info->arg_strings = bprm->p;
3740         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3741                                    bprm->p, info->stack_limit);
3742         info->env_strings = bprm->p;
3743         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3744                                    bprm->p, info->stack_limit);
3745         info->file_string = bprm->p;
3746         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3747                                    bprm->p, info->stack_limit);
3748     }
3749 
3750     g_free(scratch);
3751 
3752     if (!bprm->p) {
3753         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3754         exit(-1);
3755     }
3756 
3757     if (elf_interpreter) {
3758         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3759 
3760         /*
3761          * While unusual because of ELF_ET_DYN_BASE, if we are unlucky
3762          * with the mappings the interpreter can be loaded above but
3763          * near the main executable, which can leave very little room
3764          * for the heap.
3765          * If the current brk has less than 16MB, use the end of the
3766          * interpreter.
3767          */
3768         if (interp_info.brk > info->brk &&
3769             interp_info.load_bias - info->brk < 16 * MiB)  {
3770             info->brk = interp_info.brk;
3771         }
3772 
3773         /* If the program interpreter is one of these two, then assume
3774            an iBCS2 image.  Otherwise assume a native linux image.  */
3775 
3776         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3777             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3778             info->personality = PER_SVR4;
3779 
3780             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
3781                and some applications "depend" upon this behavior.  Since
3782                we do not have the power to recompile these, we emulate
3783                the SVr4 behavior.  Sigh.  */
3784             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
3785                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3786         }
3787 #ifdef TARGET_MIPS
3788         info->interp_fp_abi = interp_info.fp_abi;
3789 #endif
3790     }
3791 
3792     /*
3793      * TODO: load a vdso, which would also contain the signal trampolines.
3794      * Otherwise, allocate a private page to hold them.
3795      */
3796     if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
3797         abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
3798                                           PROT_READ | PROT_WRITE,
3799                                           MAP_PRIVATE | MAP_ANON, -1, 0);
3800         if (tramp_page == -1) {
3801             return -errno;
3802         }
3803 
3804         setup_sigtramp(tramp_page);
3805         target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
3806     }
3807 
3808     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3809                                 info, (elf_interpreter ? &interp_info : NULL));
3810     info->start_stack = bprm->p;
3811 
3812     /* If we have an interpreter, set that as the program's entry point.
3813        Copy the load_bias as well, to help PPC64 interpret the entry
3814        point as a function descriptor.  Do this after creating elf tables
3815        so that we copy the original program entry point into the AUXV.  */
3816     if (elf_interpreter) {
3817         info->load_bias = interp_info.load_bias;
3818         info->entry = interp_info.entry;
3819         g_free(elf_interpreter);
3820     }
3821 
3822 #ifdef USE_ELF_CORE_DUMP
3823     bprm->core_dump = &elf_core_dump;
3824 #endif
3825 
3826     return 0;
3827 }
3828 
3829 #ifdef USE_ELF_CORE_DUMP
3830 /*
3831  * Definitions to generate Intel SVR4-like core files.
3832  * These mostly have the same names as the SVR4 types with "target_elf_"
3833  * tacked on the front to prevent clashes with linux definitions,
3834  * and the typedef forms have been avoided.  This is mostly like
3835  * the SVR4 structure, but more Linuxy, with things that Linux does
3836  * not support and which gdb doesn't really use excluded.
3837  *
3838  * Fields we don't dump (their contents is zero) in linux-user qemu
3839  * are marked with XXX.
3840  *
3841  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3842  *
3843  * Porting ELF coredump for target is (quite) simple process.  First you
3844  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3845  * the target resides):
3846  *
3847  * #define USE_ELF_CORE_DUMP
3848  *
3849  * Next you define type of register set used for dumping.  ELF specification
3850  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3851  *
3852  * typedef <target_regtype> target_elf_greg_t;
3853  * #define ELF_NREG <number of registers>
3854  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3855  *
3856  * Last step is to implement target specific function that copies registers
3857  * from given cpu into just specified register set.  Prototype is:
3858  *
3859  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3860  *                                const CPUArchState *env);
3861  *
3862  * Parameters:
3863  *     regs - copy register values into here (allocated and zeroed by caller)
3864  *     env - copy registers from here
3865  *
3866  * Example for ARM target is provided in this file.
3867  */
3868 
3869 /* An ELF note in memory */
3870 struct memelfnote {
3871     const char *name;
3872     size_t     namesz;
3873     size_t     namesz_rounded;
3874     int        type;
3875     size_t     datasz;
3876     size_t     datasz_rounded;
3877     void       *data;
3878     size_t     notesz;
3879 };
3880 
3881 struct target_elf_siginfo {
3882     abi_int    si_signo; /* signal number */
3883     abi_int    si_code;  /* extra code */
3884     abi_int    si_errno; /* errno */
3885 };
3886 
3887 struct target_elf_prstatus {
3888     struct target_elf_siginfo pr_info;      /* Info associated with signal */
3889     abi_short          pr_cursig;    /* Current signal */
3890     abi_ulong          pr_sigpend;   /* XXX */
3891     abi_ulong          pr_sighold;   /* XXX */
3892     target_pid_t       pr_pid;
3893     target_pid_t       pr_ppid;
3894     target_pid_t       pr_pgrp;
3895     target_pid_t       pr_sid;
3896     struct target_timeval pr_utime;  /* XXX User time */
3897     struct target_timeval pr_stime;  /* XXX System time */
3898     struct target_timeval pr_cutime; /* XXX Cumulative user time */
3899     struct target_timeval pr_cstime; /* XXX Cumulative system time */
3900     target_elf_gregset_t      pr_reg;       /* GP registers */
3901     abi_int            pr_fpvalid;   /* XXX */
3902 };
3903 
3904 #define ELF_PRARGSZ     (80) /* Number of chars for args */
3905 
3906 struct target_elf_prpsinfo {
3907     char         pr_state;       /* numeric process state */
3908     char         pr_sname;       /* char for pr_state */
3909     char         pr_zomb;        /* zombie */
3910     char         pr_nice;        /* nice val */
3911     abi_ulong    pr_flag;        /* flags */
3912     target_uid_t pr_uid;
3913     target_gid_t pr_gid;
3914     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3915     /* Lots missing */
3916     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3917     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3918 };
3919 
3920 /* Here is the structure in which status of each thread is captured. */
3921 struct elf_thread_status {
3922     QTAILQ_ENTRY(elf_thread_status)  ets_link;
3923     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
3924 #if 0
3925     elf_fpregset_t fpu;             /* NT_PRFPREG */
3926     struct task_struct *thread;
3927     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
3928 #endif
3929     struct memelfnote notes[1];
3930     int num_notes;
3931 };
3932 
3933 struct elf_note_info {
3934     struct memelfnote   *notes;
3935     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
3936     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
3937 
3938     QTAILQ_HEAD(, elf_thread_status) thread_list;
3939 #if 0
3940     /*
3941      * Current version of ELF coredump doesn't support
3942      * dumping fp regs etc.
3943      */
3944     elf_fpregset_t *fpu;
3945     elf_fpxregset_t *xfpu;
3946     int thread_status_size;
3947 #endif
3948     int notes_size;
3949     int numnote;
3950 };
3951 
3952 struct vm_area_struct {
3953     target_ulong   vma_start;  /* start vaddr of memory region */
3954     target_ulong   vma_end;    /* end vaddr of memory region */
3955     abi_ulong      vma_flags;  /* protection etc. flags for the region */
3956     QTAILQ_ENTRY(vm_area_struct) vma_link;
3957 };
3958 
3959 struct mm_struct {
3960     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3961     int mm_count;           /* number of mappings */
3962 };
3963 
3964 static struct mm_struct *vma_init(void);
3965 static void vma_delete(struct mm_struct *);
3966 static int vma_add_mapping(struct mm_struct *, target_ulong,
3967                            target_ulong, abi_ulong);
3968 static int vma_get_mapping_count(const struct mm_struct *);
3969 static struct vm_area_struct *vma_first(const struct mm_struct *);
3970 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3971 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3972 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3973                       unsigned long flags);
3974 
3975 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3976 static void fill_note(struct memelfnote *, const char *, int,
3977                       unsigned int, void *);
3978 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3979 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3980 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3981 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3982 static size_t note_size(const struct memelfnote *);
3983 static void free_note_info(struct elf_note_info *);
3984 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3985 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3986 
3987 static int dump_write(int, const void *, size_t);
3988 static int write_note(struct memelfnote *, int);
3989 static int write_note_info(struct elf_note_info *, int);
3990 
3991 #ifdef BSWAP_NEEDED
3992 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3993 {
3994     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3995     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3996     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3997     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3998     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3999     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
4000     prstatus->pr_pid = tswap32(prstatus->pr_pid);
4001     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
4002     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
4003     prstatus->pr_sid = tswap32(prstatus->pr_sid);
4004     /* cpu times are not filled, so we skip them */
4005     /* regs should be in correct format already */
4006     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
4007 }
4008 
4009 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
4010 {
4011     psinfo->pr_flag = tswapal(psinfo->pr_flag);
4012     psinfo->pr_uid = tswap16(psinfo->pr_uid);
4013     psinfo->pr_gid = tswap16(psinfo->pr_gid);
4014     psinfo->pr_pid = tswap32(psinfo->pr_pid);
4015     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
4016     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
4017     psinfo->pr_sid = tswap32(psinfo->pr_sid);
4018 }
4019 
4020 static void bswap_note(struct elf_note *en)
4021 {
4022     bswap32s(&en->n_namesz);
4023     bswap32s(&en->n_descsz);
4024     bswap32s(&en->n_type);
4025 }
4026 #else
4027 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
4028 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
4029 static inline void bswap_note(struct elf_note *en) { }
4030 #endif /* BSWAP_NEEDED */
4031 
4032 /*
4033  * Minimal support for linux memory regions.  These are needed
4034  * when we are finding out what memory exactly belongs to
4035  * emulated process.  No locks needed here, as long as
4036  * thread that received the signal is stopped.
4037  */
4038 
4039 static struct mm_struct *vma_init(void)
4040 {
4041     struct mm_struct *mm;
4042 
4043     if ((mm = g_malloc(sizeof (*mm))) == NULL)
4044         return (NULL);
4045 
4046     mm->mm_count = 0;
4047     QTAILQ_INIT(&mm->mm_mmap);
4048 
4049     return (mm);
4050 }
4051 
4052 static void vma_delete(struct mm_struct *mm)
4053 {
4054     struct vm_area_struct *vma;
4055 
4056     while ((vma = vma_first(mm)) != NULL) {
4057         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
4058         g_free(vma);
4059     }
4060     g_free(mm);
4061 }
4062 
4063 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
4064                            target_ulong end, abi_ulong flags)
4065 {
4066     struct vm_area_struct *vma;
4067 
4068     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
4069         return (-1);
4070 
4071     vma->vma_start = start;
4072     vma->vma_end = end;
4073     vma->vma_flags = flags;
4074 
4075     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
4076     mm->mm_count++;
4077 
4078     return (0);
4079 }
4080 
4081 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
4082 {
4083     return (QTAILQ_FIRST(&mm->mm_mmap));
4084 }
4085 
4086 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
4087 {
4088     return (QTAILQ_NEXT(vma, vma_link));
4089 }
4090 
4091 static int vma_get_mapping_count(const struct mm_struct *mm)
4092 {
4093     return (mm->mm_count);
4094 }
4095 
4096 /*
4097  * Calculate file (dump) size of given memory region.
4098  */
4099 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
4100 {
4101     /* if we cannot even read the first page, skip it */
4102     if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
4103         return (0);
4104 
4105     /*
4106      * Usually we don't dump executable pages as they contain
4107      * non-writable code that debugger can read directly from
4108      * target library etc.  However, thread stacks are marked
4109      * also executable so we read in first page of given region
4110      * and check whether it contains elf header.  If there is
4111      * no elf header, we dump it.
4112      */
4113     if (vma->vma_flags & PROT_EXEC) {
4114         char page[TARGET_PAGE_SIZE];
4115 
4116         if (copy_from_user(page, vma->vma_start, sizeof (page))) {
4117             return 0;
4118         }
4119         if ((page[EI_MAG0] == ELFMAG0) &&
4120             (page[EI_MAG1] == ELFMAG1) &&
4121             (page[EI_MAG2] == ELFMAG2) &&
4122             (page[EI_MAG3] == ELFMAG3)) {
4123             /*
4124              * Mappings are possibly from ELF binary.  Don't dump
4125              * them.
4126              */
4127             return (0);
4128         }
4129     }
4130 
4131     return (vma->vma_end - vma->vma_start);
4132 }
4133 
4134 static int vma_walker(void *priv, target_ulong start, target_ulong end,
4135                       unsigned long flags)
4136 {
4137     struct mm_struct *mm = (struct mm_struct *)priv;
4138 
4139     vma_add_mapping(mm, start, end, flags);
4140     return (0);
4141 }
4142 
4143 static void fill_note(struct memelfnote *note, const char *name, int type,
4144                       unsigned int sz, void *data)
4145 {
4146     unsigned int namesz;
4147 
4148     namesz = strlen(name) + 1;
4149     note->name = name;
4150     note->namesz = namesz;
4151     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
4152     note->type = type;
4153     note->datasz = sz;
4154     note->datasz_rounded = roundup(sz, sizeof (int32_t));
4155 
4156     note->data = data;
4157 
4158     /*
4159      * We calculate rounded up note size here as specified by
4160      * ELF document.
4161      */
4162     note->notesz = sizeof (struct elf_note) +
4163         note->namesz_rounded + note->datasz_rounded;
4164 }
4165 
4166 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
4167                             uint32_t flags)
4168 {
4169     (void) memset(elf, 0, sizeof(*elf));
4170 
4171     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
4172     elf->e_ident[EI_CLASS] = ELF_CLASS;
4173     elf->e_ident[EI_DATA] = ELF_DATA;
4174     elf->e_ident[EI_VERSION] = EV_CURRENT;
4175     elf->e_ident[EI_OSABI] = ELF_OSABI;
4176 
4177     elf->e_type = ET_CORE;
4178     elf->e_machine = machine;
4179     elf->e_version = EV_CURRENT;
4180     elf->e_phoff = sizeof(struct elfhdr);
4181     elf->e_flags = flags;
4182     elf->e_ehsize = sizeof(struct elfhdr);
4183     elf->e_phentsize = sizeof(struct elf_phdr);
4184     elf->e_phnum = segs;
4185 
4186     bswap_ehdr(elf);
4187 }
4188 
4189 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
4190 {
4191     phdr->p_type = PT_NOTE;
4192     phdr->p_offset = offset;
4193     phdr->p_vaddr = 0;
4194     phdr->p_paddr = 0;
4195     phdr->p_filesz = sz;
4196     phdr->p_memsz = 0;
4197     phdr->p_flags = 0;
4198     phdr->p_align = 0;
4199 
4200     bswap_phdr(phdr, 1);
4201 }
4202 
4203 static size_t note_size(const struct memelfnote *note)
4204 {
4205     return (note->notesz);
4206 }
4207 
4208 static void fill_prstatus(struct target_elf_prstatus *prstatus,
4209                           const TaskState *ts, int signr)
4210 {
4211     (void) memset(prstatus, 0, sizeof (*prstatus));
4212     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
4213     prstatus->pr_pid = ts->ts_tid;
4214     prstatus->pr_ppid = getppid();
4215     prstatus->pr_pgrp = getpgrp();
4216     prstatus->pr_sid = getsid(0);
4217 
4218     bswap_prstatus(prstatus);
4219 }
4220 
4221 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
4222 {
4223     char *base_filename;
4224     unsigned int i, len;
4225 
4226     (void) memset(psinfo, 0, sizeof (*psinfo));
4227 
4228     len = ts->info->env_strings - ts->info->arg_strings;
4229     if (len >= ELF_PRARGSZ)
4230         len = ELF_PRARGSZ - 1;
4231     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
4232         return -EFAULT;
4233     }
4234     for (i = 0; i < len; i++)
4235         if (psinfo->pr_psargs[i] == 0)
4236             psinfo->pr_psargs[i] = ' ';
4237     psinfo->pr_psargs[len] = 0;
4238 
4239     psinfo->pr_pid = getpid();
4240     psinfo->pr_ppid = getppid();
4241     psinfo->pr_pgrp = getpgrp();
4242     psinfo->pr_sid = getsid(0);
4243     psinfo->pr_uid = getuid();
4244     psinfo->pr_gid = getgid();
4245 
4246     base_filename = g_path_get_basename(ts->bprm->filename);
4247     /*
4248      * Using strncpy here is fine: at max-length,
4249      * this field is not NUL-terminated.
4250      */
4251     (void) strncpy(psinfo->pr_fname, base_filename,
4252                    sizeof(psinfo->pr_fname));
4253 
4254     g_free(base_filename);
4255     bswap_psinfo(psinfo);
4256     return (0);
4257 }
4258 
4259 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
4260 {
4261     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
4262     elf_addr_t orig_auxv = auxv;
4263     void *ptr;
4264     int len = ts->info->auxv_len;
4265 
4266     /*
4267      * Auxiliary vector is stored in target process stack.  It contains
4268      * {type, value} pairs that we need to dump into note.  This is not
4269      * strictly necessary but we do it here for sake of completeness.
4270      */
4271 
4272     /* read in whole auxv vector and copy it to memelfnote */
4273     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
4274     if (ptr != NULL) {
4275         fill_note(note, "CORE", NT_AUXV, len, ptr);
4276         unlock_user(ptr, auxv, len);
4277     }
4278 }
4279 
4280 /*
4281  * Constructs name of coredump file.  We have following convention
4282  * for the name:
4283  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
4284  *
4285  * Returns the filename
4286  */
4287 static char *core_dump_filename(const TaskState *ts)
4288 {
4289     g_autoptr(GDateTime) now = g_date_time_new_now_local();
4290     g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
4291     g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
4292 
4293     return g_strdup_printf("qemu_%s_%s_%d.core",
4294                            base_filename, nowstr, (int)getpid());
4295 }
4296 
4297 static int dump_write(int fd, const void *ptr, size_t size)
4298 {
4299     const char *bufp = (const char *)ptr;
4300     ssize_t bytes_written, bytes_left;
4301     struct rlimit dumpsize;
4302     off_t pos;
4303 
4304     bytes_written = 0;
4305     getrlimit(RLIMIT_CORE, &dumpsize);
4306     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
4307         if (errno == ESPIPE) { /* not a seekable stream */
4308             bytes_left = size;
4309         } else {
4310             return pos;
4311         }
4312     } else {
4313         if (dumpsize.rlim_cur <= pos) {
4314             return -1;
4315         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
4316             bytes_left = size;
4317         } else {
4318             size_t limit_left=dumpsize.rlim_cur - pos;
4319             bytes_left = limit_left >= size ? size : limit_left ;
4320         }
4321     }
4322 
4323     /*
4324      * In normal conditions, single write(2) should do but
4325      * in case of socket etc. this mechanism is more portable.
4326      */
4327     do {
4328         bytes_written = write(fd, bufp, bytes_left);
4329         if (bytes_written < 0) {
4330             if (errno == EINTR)
4331                 continue;
4332             return (-1);
4333         } else if (bytes_written == 0) { /* eof */
4334             return (-1);
4335         }
4336         bufp += bytes_written;
4337         bytes_left -= bytes_written;
4338     } while (bytes_left > 0);
4339 
4340     return (0);
4341 }
4342 
4343 static int write_note(struct memelfnote *men, int fd)
4344 {
4345     struct elf_note en;
4346 
4347     en.n_namesz = men->namesz;
4348     en.n_type = men->type;
4349     en.n_descsz = men->datasz;
4350 
4351     bswap_note(&en);
4352 
4353     if (dump_write(fd, &en, sizeof(en)) != 0)
4354         return (-1);
4355     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
4356         return (-1);
4357     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
4358         return (-1);
4359 
4360     return (0);
4361 }
4362 
4363 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
4364 {
4365     CPUState *cpu = env_cpu((CPUArchState *)env);
4366     TaskState *ts = (TaskState *)cpu->opaque;
4367     struct elf_thread_status *ets;
4368 
4369     ets = g_malloc0(sizeof (*ets));
4370     ets->num_notes = 1; /* only prstatus is dumped */
4371     fill_prstatus(&ets->prstatus, ts, 0);
4372     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
4373     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
4374               &ets->prstatus);
4375 
4376     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
4377 
4378     info->notes_size += note_size(&ets->notes[0]);
4379 }
4380 
4381 static void init_note_info(struct elf_note_info *info)
4382 {
4383     /* Initialize the elf_note_info structure so that it is at
4384      * least safe to call free_note_info() on it. Must be
4385      * called before calling fill_note_info().
4386      */
4387     memset(info, 0, sizeof (*info));
4388     QTAILQ_INIT(&info->thread_list);
4389 }
4390 
4391 static int fill_note_info(struct elf_note_info *info,
4392                           long signr, const CPUArchState *env)
4393 {
4394 #define NUMNOTES 3
4395     CPUState *cpu = env_cpu((CPUArchState *)env);
4396     TaskState *ts = (TaskState *)cpu->opaque;
4397     int i;
4398 
4399     info->notes = g_new0(struct memelfnote, NUMNOTES);
4400     if (info->notes == NULL)
4401         return (-ENOMEM);
4402     info->prstatus = g_malloc0(sizeof (*info->prstatus));
4403     if (info->prstatus == NULL)
4404         return (-ENOMEM);
4405     info->psinfo = g_malloc0(sizeof (*info->psinfo));
4406     if (info->prstatus == NULL)
4407         return (-ENOMEM);
4408 
4409     /*
4410      * First fill in status (and registers) of current thread
4411      * including process info & aux vector.
4412      */
4413     fill_prstatus(info->prstatus, ts, signr);
4414     elf_core_copy_regs(&info->prstatus->pr_reg, env);
4415     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
4416               sizeof (*info->prstatus), info->prstatus);
4417     fill_psinfo(info->psinfo, ts);
4418     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
4419               sizeof (*info->psinfo), info->psinfo);
4420     fill_auxv_note(&info->notes[2], ts);
4421     info->numnote = 3;
4422 
4423     info->notes_size = 0;
4424     for (i = 0; i < info->numnote; i++)
4425         info->notes_size += note_size(&info->notes[i]);
4426 
4427     /* read and fill status of all threads */
4428     WITH_QEMU_LOCK_GUARD(&qemu_cpu_list_lock) {
4429         CPU_FOREACH(cpu) {
4430             if (cpu == thread_cpu) {
4431                 continue;
4432             }
4433             fill_thread_info(info, cpu_env(cpu));
4434         }
4435     }
4436 
4437     return (0);
4438 }
4439 
4440 static void free_note_info(struct elf_note_info *info)
4441 {
4442     struct elf_thread_status *ets;
4443 
4444     while (!QTAILQ_EMPTY(&info->thread_list)) {
4445         ets = QTAILQ_FIRST(&info->thread_list);
4446         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
4447         g_free(ets);
4448     }
4449 
4450     g_free(info->prstatus);
4451     g_free(info->psinfo);
4452     g_free(info->notes);
4453 }
4454 
4455 static int write_note_info(struct elf_note_info *info, int fd)
4456 {
4457     struct elf_thread_status *ets;
4458     int i, error = 0;
4459 
4460     /* write prstatus, psinfo and auxv for current thread */
4461     for (i = 0; i < info->numnote; i++)
4462         if ((error = write_note(&info->notes[i], fd)) != 0)
4463             return (error);
4464 
4465     /* write prstatus for each thread */
4466     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
4467         if ((error = write_note(&ets->notes[0], fd)) != 0)
4468             return (error);
4469     }
4470 
4471     return (0);
4472 }
4473 
4474 /*
4475  * Write out ELF coredump.
4476  *
4477  * See documentation of ELF object file format in:
4478  * http://www.caldera.com/developers/devspecs/gabi41.pdf
4479  *
4480  * Coredump format in linux is following:
4481  *
4482  * 0   +----------------------+         \
4483  *     | ELF header           | ET_CORE  |
4484  *     +----------------------+          |
4485  *     | ELF program headers  |          |--- headers
4486  *     | - NOTE section       |          |
4487  *     | - PT_LOAD sections   |          |
4488  *     +----------------------+         /
4489  *     | NOTEs:               |
4490  *     | - NT_PRSTATUS        |
4491  *     | - NT_PRSINFO         |
4492  *     | - NT_AUXV            |
4493  *     +----------------------+ <-- aligned to target page
4494  *     | Process memory dump  |
4495  *     :                      :
4496  *     .                      .
4497  *     :                      :
4498  *     |                      |
4499  *     +----------------------+
4500  *
4501  * NT_PRSTATUS -> struct elf_prstatus (per thread)
4502  * NT_PRSINFO  -> struct elf_prpsinfo
4503  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
4504  *
4505  * Format follows System V format as close as possible.  Current
4506  * version limitations are as follows:
4507  *     - no floating point registers are dumped
4508  *
4509  * Function returns 0 in case of success, negative errno otherwise.
4510  *
4511  * TODO: make this work also during runtime: it should be
4512  * possible to force coredump from running process and then
4513  * continue processing.  For example qemu could set up SIGUSR2
4514  * handler (provided that target process haven't registered
4515  * handler for that) that does the dump when signal is received.
4516  */
4517 static int elf_core_dump(int signr, const CPUArchState *env)
4518 {
4519     const CPUState *cpu = env_cpu((CPUArchState *)env);
4520     const TaskState *ts = (const TaskState *)cpu->opaque;
4521     struct vm_area_struct *vma = NULL;
4522     g_autofree char *corefile = NULL;
4523     struct elf_note_info info;
4524     struct elfhdr elf;
4525     struct elf_phdr phdr;
4526     struct rlimit dumpsize;
4527     struct mm_struct *mm = NULL;
4528     off_t offset = 0, data_offset = 0;
4529     int segs = 0;
4530     int fd = -1;
4531 
4532     init_note_info(&info);
4533 
4534     errno = 0;
4535     getrlimit(RLIMIT_CORE, &dumpsize);
4536     if (dumpsize.rlim_cur == 0)
4537         return 0;
4538 
4539     corefile = core_dump_filename(ts);
4540 
4541     if ((fd = open(corefile, O_WRONLY | O_CREAT,
4542                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
4543         return (-errno);
4544 
4545     /*
4546      * Walk through target process memory mappings and
4547      * set up structure containing this information.  After
4548      * this point vma_xxx functions can be used.
4549      */
4550     if ((mm = vma_init()) == NULL)
4551         goto out;
4552 
4553     walk_memory_regions(mm, vma_walker);
4554     segs = vma_get_mapping_count(mm);
4555 
4556     /*
4557      * Construct valid coredump ELF header.  We also
4558      * add one more segment for notes.
4559      */
4560     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
4561     if (dump_write(fd, &elf, sizeof (elf)) != 0)
4562         goto out;
4563 
4564     /* fill in the in-memory version of notes */
4565     if (fill_note_info(&info, signr, env) < 0)
4566         goto out;
4567 
4568     offset += sizeof (elf);                             /* elf header */
4569     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
4570 
4571     /* write out notes program header */
4572     fill_elf_note_phdr(&phdr, info.notes_size, offset);
4573 
4574     offset += info.notes_size;
4575     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
4576         goto out;
4577 
4578     /*
4579      * ELF specification wants data to start at page boundary so
4580      * we align it here.
4581      */
4582     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
4583 
4584     /*
4585      * Write program headers for memory regions mapped in
4586      * the target process.
4587      */
4588     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4589         (void) memset(&phdr, 0, sizeof (phdr));
4590 
4591         phdr.p_type = PT_LOAD;
4592         phdr.p_offset = offset;
4593         phdr.p_vaddr = vma->vma_start;
4594         phdr.p_paddr = 0;
4595         phdr.p_filesz = vma_dump_size(vma);
4596         offset += phdr.p_filesz;
4597         phdr.p_memsz = vma->vma_end - vma->vma_start;
4598         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4599         if (vma->vma_flags & PROT_WRITE)
4600             phdr.p_flags |= PF_W;
4601         if (vma->vma_flags & PROT_EXEC)
4602             phdr.p_flags |= PF_X;
4603         phdr.p_align = ELF_EXEC_PAGESIZE;
4604 
4605         bswap_phdr(&phdr, 1);
4606         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4607             goto out;
4608         }
4609     }
4610 
4611     /*
4612      * Next we write notes just after program headers.  No
4613      * alignment needed here.
4614      */
4615     if (write_note_info(&info, fd) < 0)
4616         goto out;
4617 
4618     /* align data to page boundary */
4619     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4620         goto out;
4621 
4622     /*
4623      * Finally we can dump process memory into corefile as well.
4624      */
4625     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4626         abi_ulong addr;
4627         abi_ulong end;
4628 
4629         end = vma->vma_start + vma_dump_size(vma);
4630 
4631         for (addr = vma->vma_start; addr < end;
4632              addr += TARGET_PAGE_SIZE) {
4633             char page[TARGET_PAGE_SIZE];
4634             int error;
4635 
4636             /*
4637              *  Read in page from target process memory and
4638              *  write it to coredump file.
4639              */
4640             error = copy_from_user(page, addr, sizeof (page));
4641             if (error != 0) {
4642                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
4643                                addr);
4644                 errno = -error;
4645                 goto out;
4646             }
4647             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4648                 goto out;
4649         }
4650     }
4651 
4652  out:
4653     free_note_info(&info);
4654     if (mm != NULL)
4655         vma_delete(mm);
4656     (void) close(fd);
4657 
4658     if (errno != 0)
4659         return (-errno);
4660     return (0);
4661 }
4662 #endif /* USE_ELF_CORE_DUMP */
4663 
4664 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4665 {
4666     init_thread(regs, infop);
4667 }
4668