xref: /openbmc/qemu/linux-user/elfload.c (revision 95c9e2209cc09453cfd49e91321df254ccbf466f)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/prctl.h>
6 #include <sys/resource.h>
7 #include <sys/shm.h>
8 
9 #include "qemu.h"
10 #include "user/tswap-target.h"
11 #include "exec/page-protection.h"
12 #include "user/guest-base.h"
13 #include "user-internals.h"
14 #include "signal-common.h"
15 #include "loader.h"
16 #include "user-mmap.h"
17 #include "disas/disas.h"
18 #include "qemu/bitops.h"
19 #include "qemu/path.h"
20 #include "qemu/queue.h"
21 #include "qemu/guest-random.h"
22 #include "qemu/units.h"
23 #include "qemu/selfmap.h"
24 #include "qemu/lockable.h"
25 #include "qapi/error.h"
26 #include "qemu/error-report.h"
27 #include "target_signal.h"
28 #include "tcg/debuginfo.h"
29 
30 #ifdef TARGET_ARM
31 #include "target/arm/cpu-features.h"
32 #endif
33 
34 #ifdef _ARCH_PPC64
35 #undef ARCH_DLINFO
36 #undef ELF_PLATFORM
37 #undef ELF_HWCAP
38 #undef ELF_HWCAP2
39 #undef ELF_CLASS
40 #undef ELF_DATA
41 #undef ELF_ARCH
42 #endif
43 
44 #ifndef TARGET_ARCH_HAS_SIGTRAMP_PAGE
45 #define TARGET_ARCH_HAS_SIGTRAMP_PAGE 0
46 #endif
47 
48 typedef struct {
49     const uint8_t *image;
50     const uint32_t *relocs;
51     unsigned image_size;
52     unsigned reloc_count;
53     unsigned sigreturn_ofs;
54     unsigned rt_sigreturn_ofs;
55 } VdsoImageInfo;
56 
57 #define ELF_OSABI   ELFOSABI_SYSV
58 
59 /* from personality.h */
60 
61 /*
62  * Flags for bug emulation.
63  *
64  * These occupy the top three bytes.
65  */
66 enum {
67     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
68     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
69                                            descriptors (signal handling) */
70     MMAP_PAGE_ZERO =    0x0100000,
71     ADDR_COMPAT_LAYOUT = 0x0200000,
72     READ_IMPLIES_EXEC = 0x0400000,
73     ADDR_LIMIT_32BIT =  0x0800000,
74     SHORT_INODE =       0x1000000,
75     WHOLE_SECONDS =     0x2000000,
76     STICKY_TIMEOUTS =   0x4000000,
77     ADDR_LIMIT_3GB =    0x8000000,
78 };
79 
80 /*
81  * Personality types.
82  *
83  * These go in the low byte.  Avoid using the top bit, it will
84  * conflict with error returns.
85  */
86 enum {
87     PER_LINUX =         0x0000,
88     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
89     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
90     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
91     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
92     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
93     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
94     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
95     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
96     PER_BSD =           0x0006,
97     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
98     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
99     PER_LINUX32 =       0x0008,
100     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
101     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
102     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
103     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
104     PER_RISCOS =        0x000c,
105     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
106     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
107     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
108     PER_HPUX =          0x0010,
109     PER_MASK =          0x00ff,
110 };
111 
112 /*
113  * Return the base personality without flags.
114  */
115 #define personality(pers)       (pers & PER_MASK)
116 
117 int info_is_fdpic(struct image_info *info)
118 {
119     return info->personality == PER_LINUX_FDPIC;
120 }
121 
122 /* this flag is uneffective under linux too, should be deleted */
123 #ifndef MAP_DENYWRITE
124 #define MAP_DENYWRITE 0
125 #endif
126 
127 /* should probably go in elf.h */
128 #ifndef ELIBBAD
129 #define ELIBBAD 80
130 #endif
131 
132 #if TARGET_BIG_ENDIAN
133 #define ELF_DATA        ELFDATA2MSB
134 #else
135 #define ELF_DATA        ELFDATA2LSB
136 #endif
137 
138 #ifdef TARGET_ABI_MIPSN32
139 typedef abi_ullong      target_elf_greg_t;
140 #define tswapreg(ptr)   tswap64(ptr)
141 #else
142 typedef abi_ulong       target_elf_greg_t;
143 #define tswapreg(ptr)   tswapal(ptr)
144 #endif
145 
146 #ifdef USE_UID16
147 typedef abi_ushort      target_uid_t;
148 typedef abi_ushort      target_gid_t;
149 #else
150 typedef abi_uint        target_uid_t;
151 typedef abi_uint        target_gid_t;
152 #endif
153 typedef abi_int         target_pid_t;
154 
155 #ifdef TARGET_I386
156 
157 #define ELF_HWCAP get_elf_hwcap()
158 
159 static uint32_t get_elf_hwcap(void)
160 {
161     X86CPU *cpu = X86_CPU(thread_cpu);
162 
163     return cpu->env.features[FEAT_1_EDX];
164 }
165 
166 #ifdef TARGET_X86_64
167 #define ELF_CLASS      ELFCLASS64
168 #define ELF_ARCH       EM_X86_64
169 
170 #define ELF_PLATFORM   "x86_64"
171 
172 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
173 {
174     regs->rax = 0;
175     regs->rsp = infop->start_stack;
176     regs->rip = infop->entry;
177 }
178 
179 #define ELF_NREG    27
180 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
181 
182 /*
183  * Note that ELF_NREG should be 29 as there should be place for
184  * TRAPNO and ERR "registers" as well but linux doesn't dump
185  * those.
186  *
187  * See linux kernel: arch/x86/include/asm/elf.h
188  */
189 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
190 {
191     (*regs)[0] = tswapreg(env->regs[15]);
192     (*regs)[1] = tswapreg(env->regs[14]);
193     (*regs)[2] = tswapreg(env->regs[13]);
194     (*regs)[3] = tswapreg(env->regs[12]);
195     (*regs)[4] = tswapreg(env->regs[R_EBP]);
196     (*regs)[5] = tswapreg(env->regs[R_EBX]);
197     (*regs)[6] = tswapreg(env->regs[11]);
198     (*regs)[7] = tswapreg(env->regs[10]);
199     (*regs)[8] = tswapreg(env->regs[9]);
200     (*regs)[9] = tswapreg(env->regs[8]);
201     (*regs)[10] = tswapreg(env->regs[R_EAX]);
202     (*regs)[11] = tswapreg(env->regs[R_ECX]);
203     (*regs)[12] = tswapreg(env->regs[R_EDX]);
204     (*regs)[13] = tswapreg(env->regs[R_ESI]);
205     (*regs)[14] = tswapreg(env->regs[R_EDI]);
206     (*regs)[15] = tswapreg(get_task_state(env_cpu_const(env))->orig_ax);
207     (*regs)[16] = tswapreg(env->eip);
208     (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
209     (*regs)[18] = tswapreg(env->eflags);
210     (*regs)[19] = tswapreg(env->regs[R_ESP]);
211     (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
212     (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
213     (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
214     (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
215     (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
216     (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
217     (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
218 }
219 
220 #if ULONG_MAX > UINT32_MAX
221 #define INIT_GUEST_COMMPAGE
222 static bool init_guest_commpage(void)
223 {
224     /*
225      * The vsyscall page is at a high negative address aka kernel space,
226      * which means that we cannot actually allocate it with target_mmap.
227      * We still should be able to use page_set_flags, unless the user
228      * has specified -R reserved_va, which would trigger an assert().
229      */
230     if (reserved_va != 0 &&
231         TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) {
232         error_report("Cannot allocate vsyscall page");
233         exit(EXIT_FAILURE);
234     }
235     page_set_flags(TARGET_VSYSCALL_PAGE,
236                    TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK,
237                    PAGE_EXEC | PAGE_VALID);
238     return true;
239 }
240 #endif
241 #else
242 
243 /*
244  * This is used to ensure we don't load something for the wrong architecture.
245  */
246 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
247 
248 /*
249  * These are used to set parameters in the core dumps.
250  */
251 #define ELF_CLASS       ELFCLASS32
252 #define ELF_ARCH        EM_386
253 
254 #define ELF_PLATFORM get_elf_platform()
255 #define EXSTACK_DEFAULT true
256 
257 static const char *get_elf_platform(void)
258 {
259     static char elf_platform[] = "i386";
260     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
261     if (family > 6) {
262         family = 6;
263     }
264     if (family >= 3) {
265         elf_platform[1] = '0' + family;
266     }
267     return elf_platform;
268 }
269 
270 static inline void init_thread(struct target_pt_regs *regs,
271                                struct image_info *infop)
272 {
273     regs->esp = infop->start_stack;
274     regs->eip = infop->entry;
275 
276     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
277        starts %edx contains a pointer to a function which might be
278        registered using `atexit'.  This provides a mean for the
279        dynamic linker to call DT_FINI functions for shared libraries
280        that have been loaded before the code runs.
281 
282        A value of 0 tells we have no such handler.  */
283     regs->edx = 0;
284 }
285 
286 #define ELF_NREG    17
287 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
288 
289 /*
290  * Note that ELF_NREG should be 19 as there should be place for
291  * TRAPNO and ERR "registers" as well but linux doesn't dump
292  * those.
293  *
294  * See linux kernel: arch/x86/include/asm/elf.h
295  */
296 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
297 {
298     (*regs)[0] = tswapreg(env->regs[R_EBX]);
299     (*regs)[1] = tswapreg(env->regs[R_ECX]);
300     (*regs)[2] = tswapreg(env->regs[R_EDX]);
301     (*regs)[3] = tswapreg(env->regs[R_ESI]);
302     (*regs)[4] = tswapreg(env->regs[R_EDI]);
303     (*regs)[5] = tswapreg(env->regs[R_EBP]);
304     (*regs)[6] = tswapreg(env->regs[R_EAX]);
305     (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
306     (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
307     (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
308     (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
309     (*regs)[11] = tswapreg(get_task_state(env_cpu_const(env))->orig_ax);
310     (*regs)[12] = tswapreg(env->eip);
311     (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
312     (*regs)[14] = tswapreg(env->eflags);
313     (*regs)[15] = tswapreg(env->regs[R_ESP]);
314     (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
315 }
316 
317 /*
318  * i386 is the only target which supplies AT_SYSINFO for the vdso.
319  * All others only supply AT_SYSINFO_EHDR.
320  */
321 #define DLINFO_ARCH_ITEMS (vdso_info != NULL)
322 #define ARCH_DLINFO                                     \
323     do {                                                \
324         if (vdso_info) {                                \
325             NEW_AUX_ENT(AT_SYSINFO, vdso_info->entry);  \
326         }                                               \
327     } while (0)
328 
329 #endif /* TARGET_X86_64 */
330 
331 #define VDSO_HEADER "vdso.c.inc"
332 
333 #define USE_ELF_CORE_DUMP
334 #define ELF_EXEC_PAGESIZE       4096
335 
336 #endif /* TARGET_I386 */
337 
338 #ifdef TARGET_ARM
339 
340 #ifndef TARGET_AARCH64
341 /* 32 bit ARM definitions */
342 
343 #define ELF_ARCH        EM_ARM
344 #define ELF_CLASS       ELFCLASS32
345 #define EXSTACK_DEFAULT true
346 
347 static inline void init_thread(struct target_pt_regs *regs,
348                                struct image_info *infop)
349 {
350     abi_long stack = infop->start_stack;
351     memset(regs, 0, sizeof(*regs));
352 
353     regs->uregs[16] = ARM_CPU_MODE_USR;
354     if (infop->entry & 1) {
355         regs->uregs[16] |= CPSR_T;
356     }
357     regs->uregs[15] = infop->entry & 0xfffffffe;
358     regs->uregs[13] = infop->start_stack;
359     /* FIXME - what to for failure of get_user()? */
360     get_user_ual(regs->uregs[2], stack + 8); /* envp */
361     get_user_ual(regs->uregs[1], stack + 4); /* envp */
362     /* XXX: it seems that r0 is zeroed after ! */
363     regs->uregs[0] = 0;
364     /* For uClinux PIC binaries.  */
365     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
366     regs->uregs[10] = infop->start_data;
367 
368     /* Support ARM FDPIC.  */
369     if (info_is_fdpic(infop)) {
370         /* As described in the ABI document, r7 points to the loadmap info
371          * prepared by the kernel. If an interpreter is needed, r8 points
372          * to the interpreter loadmap and r9 points to the interpreter
373          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
374          * r9 points to the main program PT_DYNAMIC info.
375          */
376         regs->uregs[7] = infop->loadmap_addr;
377         if (infop->interpreter_loadmap_addr) {
378             /* Executable is dynamically loaded.  */
379             regs->uregs[8] = infop->interpreter_loadmap_addr;
380             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
381         } else {
382             regs->uregs[8] = 0;
383             regs->uregs[9] = infop->pt_dynamic_addr;
384         }
385     }
386 }
387 
388 #define ELF_NREG    18
389 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
390 
391 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
392 {
393     (*regs)[0] = tswapreg(env->regs[0]);
394     (*regs)[1] = tswapreg(env->regs[1]);
395     (*regs)[2] = tswapreg(env->regs[2]);
396     (*regs)[3] = tswapreg(env->regs[3]);
397     (*regs)[4] = tswapreg(env->regs[4]);
398     (*regs)[5] = tswapreg(env->regs[5]);
399     (*regs)[6] = tswapreg(env->regs[6]);
400     (*regs)[7] = tswapreg(env->regs[7]);
401     (*regs)[8] = tswapreg(env->regs[8]);
402     (*regs)[9] = tswapreg(env->regs[9]);
403     (*regs)[10] = tswapreg(env->regs[10]);
404     (*regs)[11] = tswapreg(env->regs[11]);
405     (*regs)[12] = tswapreg(env->regs[12]);
406     (*regs)[13] = tswapreg(env->regs[13]);
407     (*regs)[14] = tswapreg(env->regs[14]);
408     (*regs)[15] = tswapreg(env->regs[15]);
409 
410     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
411     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
412 }
413 
414 #define USE_ELF_CORE_DUMP
415 #define ELF_EXEC_PAGESIZE       4096
416 
417 enum
418 {
419     ARM_HWCAP_ARM_SWP       = 1 << 0,
420     ARM_HWCAP_ARM_HALF      = 1 << 1,
421     ARM_HWCAP_ARM_THUMB     = 1 << 2,
422     ARM_HWCAP_ARM_26BIT     = 1 << 3,
423     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
424     ARM_HWCAP_ARM_FPA       = 1 << 5,
425     ARM_HWCAP_ARM_VFP       = 1 << 6,
426     ARM_HWCAP_ARM_EDSP      = 1 << 7,
427     ARM_HWCAP_ARM_JAVA      = 1 << 8,
428     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
429     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
430     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
431     ARM_HWCAP_ARM_NEON      = 1 << 12,
432     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
433     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
434     ARM_HWCAP_ARM_TLS       = 1 << 15,
435     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
436     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
437     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
438     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
439     ARM_HWCAP_ARM_LPAE      = 1 << 20,
440     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
441     ARM_HWCAP_ARM_FPHP      = 1 << 22,
442     ARM_HWCAP_ARM_ASIMDHP   = 1 << 23,
443     ARM_HWCAP_ARM_ASIMDDP   = 1 << 24,
444     ARM_HWCAP_ARM_ASIMDFHM  = 1 << 25,
445     ARM_HWCAP_ARM_ASIMDBF16 = 1 << 26,
446     ARM_HWCAP_ARM_I8MM      = 1 << 27,
447 };
448 
449 enum {
450     ARM_HWCAP2_ARM_AES      = 1 << 0,
451     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
452     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
453     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
454     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
455     ARM_HWCAP2_ARM_SB       = 1 << 5,
456     ARM_HWCAP2_ARM_SSBS     = 1 << 6,
457 };
458 
459 /* The commpage only exists for 32 bit kernels */
460 
461 #define HI_COMMPAGE (intptr_t)0xffff0f00u
462 
463 static bool init_guest_commpage(void)
464 {
465     ARMCPU *cpu = ARM_CPU(thread_cpu);
466     int host_page_size = qemu_real_host_page_size();
467     abi_ptr commpage;
468     void *want;
469     void *addr;
470 
471     /*
472      * M-profile allocates maximum of 2GB address space, so can never
473      * allocate the commpage.  Skip it.
474      */
475     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
476         return true;
477     }
478 
479     commpage = HI_COMMPAGE & -host_page_size;
480     want = g2h_untagged(commpage);
481     addr = mmap(want, host_page_size, PROT_READ | PROT_WRITE,
482                 MAP_ANONYMOUS | MAP_PRIVATE |
483                 (commpage < reserved_va ? MAP_FIXED : MAP_FIXED_NOREPLACE),
484                 -1, 0);
485 
486     if (addr == MAP_FAILED) {
487         perror("Allocating guest commpage");
488         exit(EXIT_FAILURE);
489     }
490     if (addr != want) {
491         return false;
492     }
493 
494     /* Set kernel helper versions; rest of page is 0.  */
495     __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
496 
497     if (mprotect(addr, host_page_size, PROT_READ)) {
498         perror("Protecting guest commpage");
499         exit(EXIT_FAILURE);
500     }
501 
502     page_set_flags(commpage, commpage | (host_page_size - 1),
503                    PAGE_READ | PAGE_EXEC | PAGE_VALID);
504     return true;
505 }
506 
507 #define ELF_HWCAP get_elf_hwcap()
508 #define ELF_HWCAP2 get_elf_hwcap2()
509 
510 uint32_t get_elf_hwcap(void)
511 {
512     ARMCPU *cpu = ARM_CPU(thread_cpu);
513     uint32_t hwcaps = 0;
514 
515     hwcaps |= ARM_HWCAP_ARM_SWP;
516     hwcaps |= ARM_HWCAP_ARM_HALF;
517     hwcaps |= ARM_HWCAP_ARM_THUMB;
518     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
519 
520     /* probe for the extra features */
521 #define GET_FEATURE(feat, hwcap) \
522     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
523 
524 #define GET_FEATURE_ID(feat, hwcap) \
525     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
526 
527     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
528     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
529     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
530     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
531     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
532     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
533     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
534     GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
535     GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
536     GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
537 
538     if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
539         cpu_isar_feature(aa32_fpdp_v3, cpu)) {
540         hwcaps |= ARM_HWCAP_ARM_VFPv3;
541         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
542             hwcaps |= ARM_HWCAP_ARM_VFPD32;
543         } else {
544             hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
545         }
546     }
547     GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
548     /*
549      * MVFR1.FPHP and .SIMDHP must be in sync, and QEMU uses the same
550      * isar_feature function for both. The kernel reports them as two hwcaps.
551      */
552     GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_FPHP);
553     GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_ASIMDHP);
554     GET_FEATURE_ID(aa32_dp, ARM_HWCAP_ARM_ASIMDDP);
555     GET_FEATURE_ID(aa32_fhm, ARM_HWCAP_ARM_ASIMDFHM);
556     GET_FEATURE_ID(aa32_bf16, ARM_HWCAP_ARM_ASIMDBF16);
557     GET_FEATURE_ID(aa32_i8mm, ARM_HWCAP_ARM_I8MM);
558 
559     return hwcaps;
560 }
561 
562 uint64_t get_elf_hwcap2(void)
563 {
564     ARMCPU *cpu = ARM_CPU(thread_cpu);
565     uint64_t hwcaps = 0;
566 
567     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
568     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
569     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
570     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
571     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
572     GET_FEATURE_ID(aa32_sb, ARM_HWCAP2_ARM_SB);
573     GET_FEATURE_ID(aa32_ssbs, ARM_HWCAP2_ARM_SSBS);
574     return hwcaps;
575 }
576 
577 const char *elf_hwcap_str(uint32_t bit)
578 {
579     static const char *hwcap_str[] = {
580     [__builtin_ctz(ARM_HWCAP_ARM_SWP      )] = "swp",
581     [__builtin_ctz(ARM_HWCAP_ARM_HALF     )] = "half",
582     [__builtin_ctz(ARM_HWCAP_ARM_THUMB    )] = "thumb",
583     [__builtin_ctz(ARM_HWCAP_ARM_26BIT    )] = "26bit",
584     [__builtin_ctz(ARM_HWCAP_ARM_FAST_MULT)] = "fast_mult",
585     [__builtin_ctz(ARM_HWCAP_ARM_FPA      )] = "fpa",
586     [__builtin_ctz(ARM_HWCAP_ARM_VFP      )] = "vfp",
587     [__builtin_ctz(ARM_HWCAP_ARM_EDSP     )] = "edsp",
588     [__builtin_ctz(ARM_HWCAP_ARM_JAVA     )] = "java",
589     [__builtin_ctz(ARM_HWCAP_ARM_IWMMXT   )] = "iwmmxt",
590     [__builtin_ctz(ARM_HWCAP_ARM_CRUNCH   )] = "crunch",
591     [__builtin_ctz(ARM_HWCAP_ARM_THUMBEE  )] = "thumbee",
592     [__builtin_ctz(ARM_HWCAP_ARM_NEON     )] = "neon",
593     [__builtin_ctz(ARM_HWCAP_ARM_VFPv3    )] = "vfpv3",
594     [__builtin_ctz(ARM_HWCAP_ARM_VFPv3D16 )] = "vfpv3d16",
595     [__builtin_ctz(ARM_HWCAP_ARM_TLS      )] = "tls",
596     [__builtin_ctz(ARM_HWCAP_ARM_VFPv4    )] = "vfpv4",
597     [__builtin_ctz(ARM_HWCAP_ARM_IDIVA    )] = "idiva",
598     [__builtin_ctz(ARM_HWCAP_ARM_IDIVT    )] = "idivt",
599     [__builtin_ctz(ARM_HWCAP_ARM_VFPD32   )] = "vfpd32",
600     [__builtin_ctz(ARM_HWCAP_ARM_LPAE     )] = "lpae",
601     [__builtin_ctz(ARM_HWCAP_ARM_EVTSTRM  )] = "evtstrm",
602     [__builtin_ctz(ARM_HWCAP_ARM_FPHP     )] = "fphp",
603     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDHP  )] = "asimdhp",
604     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDDP  )] = "asimddp",
605     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDFHM )] = "asimdfhm",
606     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDBF16)] = "asimdbf16",
607     [__builtin_ctz(ARM_HWCAP_ARM_I8MM     )] = "i8mm",
608     };
609 
610     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
611 }
612 
613 const char *elf_hwcap2_str(uint32_t bit)
614 {
615     static const char *hwcap_str[] = {
616     [__builtin_ctz(ARM_HWCAP2_ARM_AES  )] = "aes",
617     [__builtin_ctz(ARM_HWCAP2_ARM_PMULL)] = "pmull",
618     [__builtin_ctz(ARM_HWCAP2_ARM_SHA1 )] = "sha1",
619     [__builtin_ctz(ARM_HWCAP2_ARM_SHA2 )] = "sha2",
620     [__builtin_ctz(ARM_HWCAP2_ARM_CRC32)] = "crc32",
621     [__builtin_ctz(ARM_HWCAP2_ARM_SB   )] = "sb",
622     [__builtin_ctz(ARM_HWCAP2_ARM_SSBS )] = "ssbs",
623     };
624 
625     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
626 }
627 
628 #undef GET_FEATURE
629 #undef GET_FEATURE_ID
630 
631 #define ELF_PLATFORM get_elf_platform()
632 
633 static const char *get_elf_platform(void)
634 {
635     CPUARMState *env = cpu_env(thread_cpu);
636 
637 #if TARGET_BIG_ENDIAN
638 # define END  "b"
639 #else
640 # define END  "l"
641 #endif
642 
643     if (arm_feature(env, ARM_FEATURE_V8)) {
644         return "v8" END;
645     } else if (arm_feature(env, ARM_FEATURE_V7)) {
646         if (arm_feature(env, ARM_FEATURE_M)) {
647             return "v7m" END;
648         } else {
649             return "v7" END;
650         }
651     } else if (arm_feature(env, ARM_FEATURE_V6)) {
652         return "v6" END;
653     } else if (arm_feature(env, ARM_FEATURE_V5)) {
654         return "v5" END;
655     } else {
656         return "v4" END;
657     }
658 
659 #undef END
660 }
661 
662 #if TARGET_BIG_ENDIAN
663 #include "elf.h"
664 #include "vdso-be8.c.inc"
665 #include "vdso-be32.c.inc"
666 
667 static const VdsoImageInfo *vdso_image_info(uint32_t elf_flags)
668 {
669     return (EF_ARM_EABI_VERSION(elf_flags) >= EF_ARM_EABI_VER4
670             && (elf_flags & EF_ARM_BE8)
671             ? &vdso_be8_image_info
672             : &vdso_be32_image_info);
673 }
674 #define vdso_image_info vdso_image_info
675 #else
676 # define VDSO_HEADER  "vdso-le.c.inc"
677 #endif
678 
679 #else
680 /* 64 bit ARM definitions */
681 
682 #define ELF_ARCH        EM_AARCH64
683 #define ELF_CLASS       ELFCLASS64
684 #if TARGET_BIG_ENDIAN
685 # define ELF_PLATFORM    "aarch64_be"
686 #else
687 # define ELF_PLATFORM    "aarch64"
688 #endif
689 
690 static inline void init_thread(struct target_pt_regs *regs,
691                                struct image_info *infop)
692 {
693     abi_long stack = infop->start_stack;
694     memset(regs, 0, sizeof(*regs));
695 
696     regs->pc = infop->entry & ~0x3ULL;
697     regs->sp = stack;
698 }
699 
700 #define ELF_NREG    34
701 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
702 
703 static void elf_core_copy_regs(target_elf_gregset_t *regs,
704                                const CPUARMState *env)
705 {
706     int i;
707 
708     for (i = 0; i < 32; i++) {
709         (*regs)[i] = tswapreg(env->xregs[i]);
710     }
711     (*regs)[32] = tswapreg(env->pc);
712     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
713 }
714 
715 #define USE_ELF_CORE_DUMP
716 #define ELF_EXEC_PAGESIZE       4096
717 
718 enum {
719     ARM_HWCAP_A64_FP            = 1 << 0,
720     ARM_HWCAP_A64_ASIMD         = 1 << 1,
721     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
722     ARM_HWCAP_A64_AES           = 1 << 3,
723     ARM_HWCAP_A64_PMULL         = 1 << 4,
724     ARM_HWCAP_A64_SHA1          = 1 << 5,
725     ARM_HWCAP_A64_SHA2          = 1 << 6,
726     ARM_HWCAP_A64_CRC32         = 1 << 7,
727     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
728     ARM_HWCAP_A64_FPHP          = 1 << 9,
729     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
730     ARM_HWCAP_A64_CPUID         = 1 << 11,
731     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
732     ARM_HWCAP_A64_JSCVT         = 1 << 13,
733     ARM_HWCAP_A64_FCMA          = 1 << 14,
734     ARM_HWCAP_A64_LRCPC         = 1 << 15,
735     ARM_HWCAP_A64_DCPOP         = 1 << 16,
736     ARM_HWCAP_A64_SHA3          = 1 << 17,
737     ARM_HWCAP_A64_SM3           = 1 << 18,
738     ARM_HWCAP_A64_SM4           = 1 << 19,
739     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
740     ARM_HWCAP_A64_SHA512        = 1 << 21,
741     ARM_HWCAP_A64_SVE           = 1 << 22,
742     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
743     ARM_HWCAP_A64_DIT           = 1 << 24,
744     ARM_HWCAP_A64_USCAT         = 1 << 25,
745     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
746     ARM_HWCAP_A64_FLAGM         = 1 << 27,
747     ARM_HWCAP_A64_SSBS          = 1 << 28,
748     ARM_HWCAP_A64_SB            = 1 << 29,
749     ARM_HWCAP_A64_PACA          = 1 << 30,
750     ARM_HWCAP_A64_PACG          = 1UL << 31,
751 
752     ARM_HWCAP2_A64_DCPODP       = 1 << 0,
753     ARM_HWCAP2_A64_SVE2         = 1 << 1,
754     ARM_HWCAP2_A64_SVEAES       = 1 << 2,
755     ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
756     ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
757     ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
758     ARM_HWCAP2_A64_SVESM4       = 1 << 6,
759     ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
760     ARM_HWCAP2_A64_FRINT        = 1 << 8,
761     ARM_HWCAP2_A64_SVEI8MM      = 1 << 9,
762     ARM_HWCAP2_A64_SVEF32MM     = 1 << 10,
763     ARM_HWCAP2_A64_SVEF64MM     = 1 << 11,
764     ARM_HWCAP2_A64_SVEBF16      = 1 << 12,
765     ARM_HWCAP2_A64_I8MM         = 1 << 13,
766     ARM_HWCAP2_A64_BF16         = 1 << 14,
767     ARM_HWCAP2_A64_DGH          = 1 << 15,
768     ARM_HWCAP2_A64_RNG          = 1 << 16,
769     ARM_HWCAP2_A64_BTI          = 1 << 17,
770     ARM_HWCAP2_A64_MTE          = 1 << 18,
771     ARM_HWCAP2_A64_ECV          = 1 << 19,
772     ARM_HWCAP2_A64_AFP          = 1 << 20,
773     ARM_HWCAP2_A64_RPRES        = 1 << 21,
774     ARM_HWCAP2_A64_MTE3         = 1 << 22,
775     ARM_HWCAP2_A64_SME          = 1 << 23,
776     ARM_HWCAP2_A64_SME_I16I64   = 1 << 24,
777     ARM_HWCAP2_A64_SME_F64F64   = 1 << 25,
778     ARM_HWCAP2_A64_SME_I8I32    = 1 << 26,
779     ARM_HWCAP2_A64_SME_F16F32   = 1 << 27,
780     ARM_HWCAP2_A64_SME_B16F32   = 1 << 28,
781     ARM_HWCAP2_A64_SME_F32F32   = 1 << 29,
782     ARM_HWCAP2_A64_SME_FA64     = 1 << 30,
783     ARM_HWCAP2_A64_WFXT         = 1ULL << 31,
784     ARM_HWCAP2_A64_EBF16        = 1ULL << 32,
785     ARM_HWCAP2_A64_SVE_EBF16    = 1ULL << 33,
786     ARM_HWCAP2_A64_CSSC         = 1ULL << 34,
787     ARM_HWCAP2_A64_RPRFM        = 1ULL << 35,
788     ARM_HWCAP2_A64_SVE2P1       = 1ULL << 36,
789     ARM_HWCAP2_A64_SME2         = 1ULL << 37,
790     ARM_HWCAP2_A64_SME2P1       = 1ULL << 38,
791     ARM_HWCAP2_A64_SME_I16I32   = 1ULL << 39,
792     ARM_HWCAP2_A64_SME_BI32I32  = 1ULL << 40,
793     ARM_HWCAP2_A64_SME_B16B16   = 1ULL << 41,
794     ARM_HWCAP2_A64_SME_F16F16   = 1ULL << 42,
795     ARM_HWCAP2_A64_MOPS         = 1ULL << 43,
796     ARM_HWCAP2_A64_HBC          = 1ULL << 44,
797 };
798 
799 #define ELF_HWCAP   get_elf_hwcap()
800 #define ELF_HWCAP2  get_elf_hwcap2()
801 
802 #define GET_FEATURE_ID(feat, hwcap) \
803     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
804 
805 uint32_t get_elf_hwcap(void)
806 {
807     ARMCPU *cpu = ARM_CPU(thread_cpu);
808     uint32_t hwcaps = 0;
809 
810     hwcaps |= ARM_HWCAP_A64_FP;
811     hwcaps |= ARM_HWCAP_A64_ASIMD;
812     hwcaps |= ARM_HWCAP_A64_CPUID;
813 
814     /* probe for the extra features */
815 
816     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
817     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
818     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
819     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
820     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
821     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
822     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
823     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
824     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
825     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
826     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
827     GET_FEATURE_ID(aa64_lse2, ARM_HWCAP_A64_USCAT);
828     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
829     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
830     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
831     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
832     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
833     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
834     GET_FEATURE_ID(aa64_dit, ARM_HWCAP_A64_DIT);
835     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
836     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
837     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
838     GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
839     GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
840     GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
841 
842     return hwcaps;
843 }
844 
845 uint64_t get_elf_hwcap2(void)
846 {
847     ARMCPU *cpu = ARM_CPU(thread_cpu);
848     uint64_t hwcaps = 0;
849 
850     GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
851     GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
852     GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
853     GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
854     GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
855     GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
856     GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
857     GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
858     GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
859     GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
860     GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
861     GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
862     GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
863     GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
864     GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
865     GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
866     GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
867     GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
868     GET_FEATURE_ID(aa64_mte3, ARM_HWCAP2_A64_MTE3);
869     GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME |
870                               ARM_HWCAP2_A64_SME_F32F32 |
871                               ARM_HWCAP2_A64_SME_B16F32 |
872                               ARM_HWCAP2_A64_SME_F16F32 |
873                               ARM_HWCAP2_A64_SME_I8I32));
874     GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64);
875     GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64);
876     GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64);
877     GET_FEATURE_ID(aa64_hbc, ARM_HWCAP2_A64_HBC);
878     GET_FEATURE_ID(aa64_mops, ARM_HWCAP2_A64_MOPS);
879 
880     return hwcaps;
881 }
882 
883 const char *elf_hwcap_str(uint32_t bit)
884 {
885     static const char *hwcap_str[] = {
886     [__builtin_ctz(ARM_HWCAP_A64_FP      )] = "fp",
887     [__builtin_ctz(ARM_HWCAP_A64_ASIMD   )] = "asimd",
888     [__builtin_ctz(ARM_HWCAP_A64_EVTSTRM )] = "evtstrm",
889     [__builtin_ctz(ARM_HWCAP_A64_AES     )] = "aes",
890     [__builtin_ctz(ARM_HWCAP_A64_PMULL   )] = "pmull",
891     [__builtin_ctz(ARM_HWCAP_A64_SHA1    )] = "sha1",
892     [__builtin_ctz(ARM_HWCAP_A64_SHA2    )] = "sha2",
893     [__builtin_ctz(ARM_HWCAP_A64_CRC32   )] = "crc32",
894     [__builtin_ctz(ARM_HWCAP_A64_ATOMICS )] = "atomics",
895     [__builtin_ctz(ARM_HWCAP_A64_FPHP    )] = "fphp",
896     [__builtin_ctz(ARM_HWCAP_A64_ASIMDHP )] = "asimdhp",
897     [__builtin_ctz(ARM_HWCAP_A64_CPUID   )] = "cpuid",
898     [__builtin_ctz(ARM_HWCAP_A64_ASIMDRDM)] = "asimdrdm",
899     [__builtin_ctz(ARM_HWCAP_A64_JSCVT   )] = "jscvt",
900     [__builtin_ctz(ARM_HWCAP_A64_FCMA    )] = "fcma",
901     [__builtin_ctz(ARM_HWCAP_A64_LRCPC   )] = "lrcpc",
902     [__builtin_ctz(ARM_HWCAP_A64_DCPOP   )] = "dcpop",
903     [__builtin_ctz(ARM_HWCAP_A64_SHA3    )] = "sha3",
904     [__builtin_ctz(ARM_HWCAP_A64_SM3     )] = "sm3",
905     [__builtin_ctz(ARM_HWCAP_A64_SM4     )] = "sm4",
906     [__builtin_ctz(ARM_HWCAP_A64_ASIMDDP )] = "asimddp",
907     [__builtin_ctz(ARM_HWCAP_A64_SHA512  )] = "sha512",
908     [__builtin_ctz(ARM_HWCAP_A64_SVE     )] = "sve",
909     [__builtin_ctz(ARM_HWCAP_A64_ASIMDFHM)] = "asimdfhm",
910     [__builtin_ctz(ARM_HWCAP_A64_DIT     )] = "dit",
911     [__builtin_ctz(ARM_HWCAP_A64_USCAT   )] = "uscat",
912     [__builtin_ctz(ARM_HWCAP_A64_ILRCPC  )] = "ilrcpc",
913     [__builtin_ctz(ARM_HWCAP_A64_FLAGM   )] = "flagm",
914     [__builtin_ctz(ARM_HWCAP_A64_SSBS    )] = "ssbs",
915     [__builtin_ctz(ARM_HWCAP_A64_SB      )] = "sb",
916     [__builtin_ctz(ARM_HWCAP_A64_PACA    )] = "paca",
917     [__builtin_ctz(ARM_HWCAP_A64_PACG    )] = "pacg",
918     };
919 
920     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
921 }
922 
923 const char *elf_hwcap2_str(uint32_t bit)
924 {
925     static const char *hwcap_str[] = {
926     [__builtin_ctz(ARM_HWCAP2_A64_DCPODP       )] = "dcpodp",
927     [__builtin_ctz(ARM_HWCAP2_A64_SVE2         )] = "sve2",
928     [__builtin_ctz(ARM_HWCAP2_A64_SVEAES       )] = "sveaes",
929     [__builtin_ctz(ARM_HWCAP2_A64_SVEPMULL     )] = "svepmull",
930     [__builtin_ctz(ARM_HWCAP2_A64_SVEBITPERM   )] = "svebitperm",
931     [__builtin_ctz(ARM_HWCAP2_A64_SVESHA3      )] = "svesha3",
932     [__builtin_ctz(ARM_HWCAP2_A64_SVESM4       )] = "svesm4",
933     [__builtin_ctz(ARM_HWCAP2_A64_FLAGM2       )] = "flagm2",
934     [__builtin_ctz(ARM_HWCAP2_A64_FRINT        )] = "frint",
935     [__builtin_ctz(ARM_HWCAP2_A64_SVEI8MM      )] = "svei8mm",
936     [__builtin_ctz(ARM_HWCAP2_A64_SVEF32MM     )] = "svef32mm",
937     [__builtin_ctz(ARM_HWCAP2_A64_SVEF64MM     )] = "svef64mm",
938     [__builtin_ctz(ARM_HWCAP2_A64_SVEBF16      )] = "svebf16",
939     [__builtin_ctz(ARM_HWCAP2_A64_I8MM         )] = "i8mm",
940     [__builtin_ctz(ARM_HWCAP2_A64_BF16         )] = "bf16",
941     [__builtin_ctz(ARM_HWCAP2_A64_DGH          )] = "dgh",
942     [__builtin_ctz(ARM_HWCAP2_A64_RNG          )] = "rng",
943     [__builtin_ctz(ARM_HWCAP2_A64_BTI          )] = "bti",
944     [__builtin_ctz(ARM_HWCAP2_A64_MTE          )] = "mte",
945     [__builtin_ctz(ARM_HWCAP2_A64_ECV          )] = "ecv",
946     [__builtin_ctz(ARM_HWCAP2_A64_AFP          )] = "afp",
947     [__builtin_ctz(ARM_HWCAP2_A64_RPRES        )] = "rpres",
948     [__builtin_ctz(ARM_HWCAP2_A64_MTE3         )] = "mte3",
949     [__builtin_ctz(ARM_HWCAP2_A64_SME          )] = "sme",
950     [__builtin_ctz(ARM_HWCAP2_A64_SME_I16I64   )] = "smei16i64",
951     [__builtin_ctz(ARM_HWCAP2_A64_SME_F64F64   )] = "smef64f64",
952     [__builtin_ctz(ARM_HWCAP2_A64_SME_I8I32    )] = "smei8i32",
953     [__builtin_ctz(ARM_HWCAP2_A64_SME_F16F32   )] = "smef16f32",
954     [__builtin_ctz(ARM_HWCAP2_A64_SME_B16F32   )] = "smeb16f32",
955     [__builtin_ctz(ARM_HWCAP2_A64_SME_F32F32   )] = "smef32f32",
956     [__builtin_ctz(ARM_HWCAP2_A64_SME_FA64     )] = "smefa64",
957     [__builtin_ctz(ARM_HWCAP2_A64_WFXT         )] = "wfxt",
958     [__builtin_ctzll(ARM_HWCAP2_A64_EBF16      )] = "ebf16",
959     [__builtin_ctzll(ARM_HWCAP2_A64_SVE_EBF16  )] = "sveebf16",
960     [__builtin_ctzll(ARM_HWCAP2_A64_CSSC       )] = "cssc",
961     [__builtin_ctzll(ARM_HWCAP2_A64_RPRFM      )] = "rprfm",
962     [__builtin_ctzll(ARM_HWCAP2_A64_SVE2P1     )] = "sve2p1",
963     [__builtin_ctzll(ARM_HWCAP2_A64_SME2       )] = "sme2",
964     [__builtin_ctzll(ARM_HWCAP2_A64_SME2P1     )] = "sme2p1",
965     [__builtin_ctzll(ARM_HWCAP2_A64_SME_I16I32 )] = "smei16i32",
966     [__builtin_ctzll(ARM_HWCAP2_A64_SME_BI32I32)] = "smebi32i32",
967     [__builtin_ctzll(ARM_HWCAP2_A64_SME_B16B16 )] = "smeb16b16",
968     [__builtin_ctzll(ARM_HWCAP2_A64_SME_F16F16 )] = "smef16f16",
969     [__builtin_ctzll(ARM_HWCAP2_A64_MOPS       )] = "mops",
970     [__builtin_ctzll(ARM_HWCAP2_A64_HBC        )] = "hbc",
971     };
972 
973     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
974 }
975 
976 #undef GET_FEATURE_ID
977 
978 #if TARGET_BIG_ENDIAN
979 # define VDSO_HEADER  "vdso-be.c.inc"
980 #else
981 # define VDSO_HEADER  "vdso-le.c.inc"
982 #endif
983 
984 #endif /* not TARGET_AARCH64 */
985 
986 #endif /* TARGET_ARM */
987 
988 #ifdef TARGET_SPARC
989 
990 #ifndef TARGET_SPARC64
991 # define ELF_CLASS  ELFCLASS32
992 # define ELF_ARCH   EM_SPARC
993 #elif defined(TARGET_ABI32)
994 # define ELF_CLASS  ELFCLASS32
995 # define elf_check_arch(x) ((x) == EM_SPARC32PLUS || (x) == EM_SPARC)
996 #else
997 # define ELF_CLASS  ELFCLASS64
998 # define ELF_ARCH   EM_SPARCV9
999 #endif
1000 
1001 #include "elf.h"
1002 
1003 #define ELF_HWCAP get_elf_hwcap()
1004 
1005 static uint32_t get_elf_hwcap(void)
1006 {
1007     /* There are not many sparc32 hwcap bits -- we have all of them. */
1008     uint32_t r = HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR |
1009                  HWCAP_SPARC_SWAP | HWCAP_SPARC_MULDIV;
1010 
1011 #ifdef TARGET_SPARC64
1012     CPUSPARCState *env = cpu_env(thread_cpu);
1013     uint32_t features = env->def.features;
1014 
1015     r |= HWCAP_SPARC_V9 | HWCAP_SPARC_V8PLUS;
1016     /* 32x32 multiply and divide are efficient. */
1017     r |= HWCAP_SPARC_MUL32 | HWCAP_SPARC_DIV32;
1018     /* We don't have an internal feature bit for this. */
1019     r |= HWCAP_SPARC_POPC;
1020     r |= features & CPU_FEATURE_FSMULD ? HWCAP_SPARC_FSMULD : 0;
1021     r |= features & CPU_FEATURE_VIS1 ? HWCAP_SPARC_VIS : 0;
1022     r |= features & CPU_FEATURE_VIS2 ? HWCAP_SPARC_VIS2 : 0;
1023     r |= features & CPU_FEATURE_FMAF ? HWCAP_SPARC_FMAF : 0;
1024     r |= features & CPU_FEATURE_VIS3 ? HWCAP_SPARC_VIS3 : 0;
1025     r |= features & CPU_FEATURE_IMA ? HWCAP_SPARC_IMA : 0;
1026 #endif
1027 
1028     return r;
1029 }
1030 
1031 static inline void init_thread(struct target_pt_regs *regs,
1032                                struct image_info *infop)
1033 {
1034     /* Note that target_cpu_copy_regs does not read psr/tstate. */
1035     regs->pc = infop->entry;
1036     regs->npc = regs->pc + 4;
1037     regs->y = 0;
1038     regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
1039                         - TARGET_STACK_BIAS);
1040 }
1041 #endif /* TARGET_SPARC */
1042 
1043 #ifdef TARGET_PPC
1044 
1045 #define ELF_MACHINE    PPC_ELF_MACHINE
1046 
1047 #if defined(TARGET_PPC64)
1048 
1049 #define elf_check_arch(x) ( (x) == EM_PPC64 )
1050 
1051 #define ELF_CLASS       ELFCLASS64
1052 
1053 #else
1054 
1055 #define ELF_CLASS       ELFCLASS32
1056 #define EXSTACK_DEFAULT true
1057 
1058 #endif
1059 
1060 #define ELF_ARCH        EM_PPC
1061 
1062 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
1063    See arch/powerpc/include/asm/cputable.h.  */
1064 enum {
1065     QEMU_PPC_FEATURE_32 = 0x80000000,
1066     QEMU_PPC_FEATURE_64 = 0x40000000,
1067     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
1068     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
1069     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
1070     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
1071     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
1072     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
1073     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
1074     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
1075     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
1076     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
1077     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
1078     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
1079     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
1080     QEMU_PPC_FEATURE_CELL = 0x00010000,
1081     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
1082     QEMU_PPC_FEATURE_SMT = 0x00004000,
1083     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
1084     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
1085     QEMU_PPC_FEATURE_PA6T = 0x00000800,
1086     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
1087     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
1088     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
1089     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
1090     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
1091 
1092     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
1093     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
1094 
1095     /* Feature definitions in AT_HWCAP2.  */
1096     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
1097     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
1098     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
1099     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
1100     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
1101     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
1102     QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
1103     QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
1104     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
1105     QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
1106     QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
1107     QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
1108     QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
1109     QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */
1110     QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */
1111 };
1112 
1113 #define ELF_HWCAP get_elf_hwcap()
1114 
1115 static uint32_t get_elf_hwcap(void)
1116 {
1117     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
1118     uint32_t features = 0;
1119 
1120     /* We don't have to be terribly complete here; the high points are
1121        Altivec/FP/SPE support.  Anything else is just a bonus.  */
1122 #define GET_FEATURE(flag, feature)                                      \
1123     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
1124 #define GET_FEATURE2(flags, feature) \
1125     do { \
1126         if ((cpu->env.insns_flags2 & flags) == flags) { \
1127             features |= feature; \
1128         } \
1129     } while (0)
1130     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
1131     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
1132     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
1133     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
1134     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
1135     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
1136     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
1137     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
1138     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
1139     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
1140     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
1141                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
1142                   QEMU_PPC_FEATURE_ARCH_2_06);
1143 #undef GET_FEATURE
1144 #undef GET_FEATURE2
1145 
1146     return features;
1147 }
1148 
1149 #define ELF_HWCAP2 get_elf_hwcap2()
1150 
1151 static uint32_t get_elf_hwcap2(void)
1152 {
1153     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
1154     uint32_t features = 0;
1155 
1156 #define GET_FEATURE(flag, feature)                                      \
1157     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
1158 #define GET_FEATURE2(flag, feature)                                      \
1159     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
1160 
1161     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
1162     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
1163     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
1164                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
1165                   QEMU_PPC_FEATURE2_VEC_CRYPTO);
1166     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
1167                  QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
1168     GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 |
1169                  QEMU_PPC_FEATURE2_MMA);
1170 
1171 #undef GET_FEATURE
1172 #undef GET_FEATURE2
1173 
1174     return features;
1175 }
1176 
1177 /*
1178  * The requirements here are:
1179  * - keep the final alignment of sp (sp & 0xf)
1180  * - make sure the 32-bit value at the first 16 byte aligned position of
1181  *   AUXV is greater than 16 for glibc compatibility.
1182  *   AT_IGNOREPPC is used for that.
1183  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
1184  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
1185  */
1186 #define DLINFO_ARCH_ITEMS       5
1187 #define ARCH_DLINFO                                     \
1188     do {                                                \
1189         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
1190         /*                                              \
1191          * Handle glibc compatibility: these magic entries must \
1192          * be at the lowest addresses in the final auxv.        \
1193          */                                             \
1194         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
1195         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
1196         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
1197         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
1198         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
1199     } while (0)
1200 
1201 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
1202 {
1203     _regs->gpr[1] = infop->start_stack;
1204 #if defined(TARGET_PPC64)
1205     if (get_ppc64_abi(infop) < 2) {
1206         uint64_t val;
1207         get_user_u64(val, infop->entry + 8);
1208         _regs->gpr[2] = val + infop->load_bias;
1209         get_user_u64(val, infop->entry);
1210         infop->entry = val + infop->load_bias;
1211     } else {
1212         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
1213     }
1214 #endif
1215     _regs->nip = infop->entry;
1216 }
1217 
1218 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
1219 #define ELF_NREG 48
1220 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1221 
1222 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
1223 {
1224     int i;
1225     target_ulong ccr = 0;
1226 
1227     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
1228         (*regs)[i] = tswapreg(env->gpr[i]);
1229     }
1230 
1231     (*regs)[32] = tswapreg(env->nip);
1232     (*regs)[33] = tswapreg(env->msr);
1233     (*regs)[35] = tswapreg(env->ctr);
1234     (*regs)[36] = tswapreg(env->lr);
1235     (*regs)[37] = tswapreg(cpu_read_xer(env));
1236 
1237     ccr = ppc_get_cr(env);
1238     (*regs)[38] = tswapreg(ccr);
1239 }
1240 
1241 #define USE_ELF_CORE_DUMP
1242 #define ELF_EXEC_PAGESIZE       4096
1243 
1244 #ifndef TARGET_PPC64
1245 # define VDSO_HEADER  "vdso-32.c.inc"
1246 #elif TARGET_BIG_ENDIAN
1247 # define VDSO_HEADER  "vdso-64.c.inc"
1248 #else
1249 # define VDSO_HEADER  "vdso-64le.c.inc"
1250 #endif
1251 
1252 #endif
1253 
1254 #ifdef TARGET_LOONGARCH64
1255 
1256 #define ELF_CLASS   ELFCLASS64
1257 #define ELF_ARCH    EM_LOONGARCH
1258 #define EXSTACK_DEFAULT true
1259 
1260 #define elf_check_arch(x) ((x) == EM_LOONGARCH)
1261 
1262 #define VDSO_HEADER "vdso.c.inc"
1263 
1264 static inline void init_thread(struct target_pt_regs *regs,
1265                                struct image_info *infop)
1266 {
1267     /*Set crmd PG,DA = 1,0 */
1268     regs->csr.crmd = 2 << 3;
1269     regs->csr.era = infop->entry;
1270     regs->regs[3] = infop->start_stack;
1271 }
1272 
1273 /* See linux kernel: arch/loongarch/include/asm/elf.h */
1274 #define ELF_NREG 45
1275 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1276 
1277 enum {
1278     TARGET_EF_R0 = 0,
1279     TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33,
1280     TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34,
1281 };
1282 
1283 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1284                                const CPULoongArchState *env)
1285 {
1286     int i;
1287 
1288     (*regs)[TARGET_EF_R0] = 0;
1289 
1290     for (i = 1; i < ARRAY_SIZE(env->gpr); i++) {
1291         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]);
1292     }
1293 
1294     (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc);
1295     (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV);
1296 }
1297 
1298 #define USE_ELF_CORE_DUMP
1299 #define ELF_EXEC_PAGESIZE        4096
1300 
1301 #define ELF_HWCAP get_elf_hwcap()
1302 
1303 /* See arch/loongarch/include/uapi/asm/hwcap.h */
1304 enum {
1305     HWCAP_LOONGARCH_CPUCFG   = (1 << 0),
1306     HWCAP_LOONGARCH_LAM      = (1 << 1),
1307     HWCAP_LOONGARCH_UAL      = (1 << 2),
1308     HWCAP_LOONGARCH_FPU      = (1 << 3),
1309     HWCAP_LOONGARCH_LSX      = (1 << 4),
1310     HWCAP_LOONGARCH_LASX     = (1 << 5),
1311     HWCAP_LOONGARCH_CRC32    = (1 << 6),
1312     HWCAP_LOONGARCH_COMPLEX  = (1 << 7),
1313     HWCAP_LOONGARCH_CRYPTO   = (1 << 8),
1314     HWCAP_LOONGARCH_LVZ      = (1 << 9),
1315     HWCAP_LOONGARCH_LBT_X86  = (1 << 10),
1316     HWCAP_LOONGARCH_LBT_ARM  = (1 << 11),
1317     HWCAP_LOONGARCH_LBT_MIPS = (1 << 12),
1318 };
1319 
1320 static uint32_t get_elf_hwcap(void)
1321 {
1322     LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu);
1323     uint32_t hwcaps = 0;
1324 
1325     hwcaps |= HWCAP_LOONGARCH_CRC32;
1326 
1327     if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) {
1328         hwcaps |= HWCAP_LOONGARCH_UAL;
1329     }
1330 
1331     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) {
1332         hwcaps |= HWCAP_LOONGARCH_FPU;
1333     }
1334 
1335     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) {
1336         hwcaps |= HWCAP_LOONGARCH_LAM;
1337     }
1338 
1339     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LSX)) {
1340         hwcaps |= HWCAP_LOONGARCH_LSX;
1341     }
1342 
1343     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LASX)) {
1344         hwcaps |= HWCAP_LOONGARCH_LASX;
1345     }
1346 
1347     return hwcaps;
1348 }
1349 
1350 #define ELF_PLATFORM "loongarch"
1351 
1352 #endif /* TARGET_LOONGARCH64 */
1353 
1354 #ifdef TARGET_MIPS
1355 
1356 #ifdef TARGET_MIPS64
1357 #define ELF_CLASS   ELFCLASS64
1358 #else
1359 #define ELF_CLASS   ELFCLASS32
1360 #endif
1361 #define ELF_ARCH    EM_MIPS
1362 #define EXSTACK_DEFAULT true
1363 
1364 #ifdef TARGET_ABI_MIPSN32
1365 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
1366 #else
1367 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
1368 #endif
1369 
1370 #define ELF_BASE_PLATFORM get_elf_base_platform()
1371 
1372 #define MATCH_PLATFORM_INSN(_flags, _base_platform)      \
1373     do { if ((cpu->env.insn_flags & (_flags)) == _flags) \
1374     { return _base_platform; } } while (0)
1375 
1376 static const char *get_elf_base_platform(void)
1377 {
1378     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1379 
1380     /* 64 bit ISAs goes first */
1381     MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6");
1382     MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5");
1383     MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2");
1384     MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64");
1385     MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5");
1386     MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4");
1387     MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3");
1388 
1389     /* 32 bit ISAs */
1390     MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6");
1391     MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5");
1392     MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2");
1393     MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32");
1394     MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2");
1395 
1396     /* Fallback */
1397     return "mips";
1398 }
1399 #undef MATCH_PLATFORM_INSN
1400 
1401 static inline void init_thread(struct target_pt_regs *regs,
1402                                struct image_info *infop)
1403 {
1404     regs->cp0_status = 2 << CP0St_KSU;
1405     regs->cp0_epc = infop->entry;
1406     regs->regs[29] = infop->start_stack;
1407 }
1408 
1409 /* See linux kernel: arch/mips/include/asm/elf.h.  */
1410 #define ELF_NREG 45
1411 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1412 
1413 /* See linux kernel: arch/mips/include/asm/reg.h.  */
1414 enum {
1415 #ifdef TARGET_MIPS64
1416     TARGET_EF_R0 = 0,
1417 #else
1418     TARGET_EF_R0 = 6,
1419 #endif
1420     TARGET_EF_R26 = TARGET_EF_R0 + 26,
1421     TARGET_EF_R27 = TARGET_EF_R0 + 27,
1422     TARGET_EF_LO = TARGET_EF_R0 + 32,
1423     TARGET_EF_HI = TARGET_EF_R0 + 33,
1424     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
1425     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
1426     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
1427     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
1428 };
1429 
1430 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1431 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
1432 {
1433     int i;
1434 
1435     for (i = 0; i < TARGET_EF_R0; i++) {
1436         (*regs)[i] = 0;
1437     }
1438     (*regs)[TARGET_EF_R0] = 0;
1439 
1440     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
1441         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
1442     }
1443 
1444     (*regs)[TARGET_EF_R26] = 0;
1445     (*regs)[TARGET_EF_R27] = 0;
1446     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
1447     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
1448     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
1449     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
1450     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
1451     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
1452 }
1453 
1454 #define USE_ELF_CORE_DUMP
1455 #define ELF_EXEC_PAGESIZE        4096
1456 
1457 /* See arch/mips/include/uapi/asm/hwcap.h.  */
1458 enum {
1459     HWCAP_MIPS_R6           = (1 << 0),
1460     HWCAP_MIPS_MSA          = (1 << 1),
1461     HWCAP_MIPS_CRC32        = (1 << 2),
1462     HWCAP_MIPS_MIPS16       = (1 << 3),
1463     HWCAP_MIPS_MDMX         = (1 << 4),
1464     HWCAP_MIPS_MIPS3D       = (1 << 5),
1465     HWCAP_MIPS_SMARTMIPS    = (1 << 6),
1466     HWCAP_MIPS_DSP          = (1 << 7),
1467     HWCAP_MIPS_DSP2         = (1 << 8),
1468     HWCAP_MIPS_DSP3         = (1 << 9),
1469     HWCAP_MIPS_MIPS16E2     = (1 << 10),
1470     HWCAP_LOONGSON_MMI      = (1 << 11),
1471     HWCAP_LOONGSON_EXT      = (1 << 12),
1472     HWCAP_LOONGSON_EXT2     = (1 << 13),
1473     HWCAP_LOONGSON_CPUCFG   = (1 << 14),
1474 };
1475 
1476 #define ELF_HWCAP get_elf_hwcap()
1477 
1478 #define GET_FEATURE_INSN(_flag, _hwcap) \
1479     do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1480 
1481 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1482     do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1483 
1484 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1485     do { \
1486         if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1487             hwcaps |= _hwcap; \
1488         } \
1489     } while (0)
1490 
1491 static uint32_t get_elf_hwcap(void)
1492 {
1493     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1494     uint32_t hwcaps = 0;
1495 
1496     GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1497                         2, HWCAP_MIPS_R6);
1498     GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1499     GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1500     GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1501 
1502     return hwcaps;
1503 }
1504 
1505 #undef GET_FEATURE_REG_EQU
1506 #undef GET_FEATURE_REG_SET
1507 #undef GET_FEATURE_INSN
1508 
1509 #endif /* TARGET_MIPS */
1510 
1511 #ifdef TARGET_MICROBLAZE
1512 
1513 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1514 
1515 #define ELF_CLASS   ELFCLASS32
1516 #define ELF_ARCH    EM_MICROBLAZE
1517 
1518 static inline void init_thread(struct target_pt_regs *regs,
1519                                struct image_info *infop)
1520 {
1521     regs->pc = infop->entry;
1522     regs->r1 = infop->start_stack;
1523 
1524 }
1525 
1526 #define ELF_EXEC_PAGESIZE        4096
1527 
1528 #define USE_ELF_CORE_DUMP
1529 #define ELF_NREG 38
1530 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1531 
1532 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1533 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1534 {
1535     int i, pos = 0;
1536 
1537     for (i = 0; i < 32; i++) {
1538         (*regs)[pos++] = tswapreg(env->regs[i]);
1539     }
1540 
1541     (*regs)[pos++] = tswapreg(env->pc);
1542     (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1543     (*regs)[pos++] = 0;
1544     (*regs)[pos++] = tswapreg(env->ear);
1545     (*regs)[pos++] = 0;
1546     (*regs)[pos++] = tswapreg(env->esr);
1547 }
1548 
1549 #endif /* TARGET_MICROBLAZE */
1550 
1551 #ifdef TARGET_OPENRISC
1552 
1553 #define ELF_ARCH EM_OPENRISC
1554 #define ELF_CLASS ELFCLASS32
1555 #define ELF_DATA  ELFDATA2MSB
1556 
1557 static inline void init_thread(struct target_pt_regs *regs,
1558                                struct image_info *infop)
1559 {
1560     regs->pc = infop->entry;
1561     regs->gpr[1] = infop->start_stack;
1562 }
1563 
1564 #define USE_ELF_CORE_DUMP
1565 #define ELF_EXEC_PAGESIZE 8192
1566 
1567 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1568 #define ELF_NREG 34 /* gprs and pc, sr */
1569 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1570 
1571 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1572                                const CPUOpenRISCState *env)
1573 {
1574     int i;
1575 
1576     for (i = 0; i < 32; i++) {
1577         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1578     }
1579     (*regs)[32] = tswapreg(env->pc);
1580     (*regs)[33] = tswapreg(cpu_get_sr(env));
1581 }
1582 #define ELF_HWCAP 0
1583 #define ELF_PLATFORM NULL
1584 
1585 #endif /* TARGET_OPENRISC */
1586 
1587 #ifdef TARGET_SH4
1588 
1589 #define ELF_CLASS ELFCLASS32
1590 #define ELF_ARCH  EM_SH
1591 
1592 static inline void init_thread(struct target_pt_regs *regs,
1593                                struct image_info *infop)
1594 {
1595     /* Check other registers XXXXX */
1596     regs->pc = infop->entry;
1597     regs->regs[15] = infop->start_stack;
1598 }
1599 
1600 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1601 #define ELF_NREG 23
1602 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1603 
1604 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1605 enum {
1606     TARGET_REG_PC = 16,
1607     TARGET_REG_PR = 17,
1608     TARGET_REG_SR = 18,
1609     TARGET_REG_GBR = 19,
1610     TARGET_REG_MACH = 20,
1611     TARGET_REG_MACL = 21,
1612     TARGET_REG_SYSCALL = 22
1613 };
1614 
1615 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1616                                       const CPUSH4State *env)
1617 {
1618     int i;
1619 
1620     for (i = 0; i < 16; i++) {
1621         (*regs)[i] = tswapreg(env->gregs[i]);
1622     }
1623 
1624     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1625     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1626     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1627     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1628     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1629     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1630     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1631 }
1632 
1633 #define USE_ELF_CORE_DUMP
1634 #define ELF_EXEC_PAGESIZE        4096
1635 
1636 enum {
1637     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1638     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1639     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1640     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1641     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1642     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1643     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1644     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1645     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1646     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1647 };
1648 
1649 #define ELF_HWCAP get_elf_hwcap()
1650 
1651 static uint32_t get_elf_hwcap(void)
1652 {
1653     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1654     uint32_t hwcap = 0;
1655 
1656     hwcap |= SH_CPU_HAS_FPU;
1657 
1658     if (cpu->env.features & SH_FEATURE_SH4A) {
1659         hwcap |= SH_CPU_HAS_LLSC;
1660     }
1661 
1662     return hwcap;
1663 }
1664 
1665 #endif
1666 
1667 #ifdef TARGET_M68K
1668 
1669 #define ELF_CLASS       ELFCLASS32
1670 #define ELF_ARCH        EM_68K
1671 
1672 /* ??? Does this need to do anything?
1673    #define ELF_PLAT_INIT(_r) */
1674 
1675 static inline void init_thread(struct target_pt_regs *regs,
1676                                struct image_info *infop)
1677 {
1678     regs->usp = infop->start_stack;
1679     regs->sr = 0;
1680     regs->pc = infop->entry;
1681 }
1682 
1683 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1684 #define ELF_NREG 20
1685 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1686 
1687 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1688 {
1689     (*regs)[0] = tswapreg(env->dregs[1]);
1690     (*regs)[1] = tswapreg(env->dregs[2]);
1691     (*regs)[2] = tswapreg(env->dregs[3]);
1692     (*regs)[3] = tswapreg(env->dregs[4]);
1693     (*regs)[4] = tswapreg(env->dregs[5]);
1694     (*regs)[5] = tswapreg(env->dregs[6]);
1695     (*regs)[6] = tswapreg(env->dregs[7]);
1696     (*regs)[7] = tswapreg(env->aregs[0]);
1697     (*regs)[8] = tswapreg(env->aregs[1]);
1698     (*regs)[9] = tswapreg(env->aregs[2]);
1699     (*regs)[10] = tswapreg(env->aregs[3]);
1700     (*regs)[11] = tswapreg(env->aregs[4]);
1701     (*regs)[12] = tswapreg(env->aregs[5]);
1702     (*regs)[13] = tswapreg(env->aregs[6]);
1703     (*regs)[14] = tswapreg(env->dregs[0]);
1704     (*regs)[15] = tswapreg(env->aregs[7]);
1705     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1706     (*regs)[17] = tswapreg(env->sr);
1707     (*regs)[18] = tswapreg(env->pc);
1708     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1709 }
1710 
1711 #define USE_ELF_CORE_DUMP
1712 #define ELF_EXEC_PAGESIZE       8192
1713 
1714 #endif
1715 
1716 #ifdef TARGET_ALPHA
1717 
1718 #define ELF_CLASS      ELFCLASS64
1719 #define ELF_ARCH       EM_ALPHA
1720 
1721 static inline void init_thread(struct target_pt_regs *regs,
1722                                struct image_info *infop)
1723 {
1724     regs->pc = infop->entry;
1725     regs->ps = 8;
1726     regs->usp = infop->start_stack;
1727 }
1728 
1729 #define ELF_EXEC_PAGESIZE        8192
1730 
1731 #endif /* TARGET_ALPHA */
1732 
1733 #ifdef TARGET_S390X
1734 
1735 #define ELF_CLASS	ELFCLASS64
1736 #define ELF_DATA	ELFDATA2MSB
1737 #define ELF_ARCH	EM_S390
1738 
1739 #include "elf.h"
1740 
1741 #define ELF_HWCAP get_elf_hwcap()
1742 
1743 #define GET_FEATURE(_feat, _hwcap) \
1744     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1745 
1746 uint32_t get_elf_hwcap(void)
1747 {
1748     /*
1749      * Let's assume we always have esan3 and zarch.
1750      * 31-bit processes can use 64-bit registers (high gprs).
1751      */
1752     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1753 
1754     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1755     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1756     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1757     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1758     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1759         s390_has_feat(S390_FEAT_ETF3_ENH)) {
1760         hwcap |= HWCAP_S390_ETF3EH;
1761     }
1762     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1763     GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
1764     GET_FEATURE(S390_FEAT_VECTOR_ENH2, HWCAP_S390_VXRS_EXT2);
1765 
1766     return hwcap;
1767 }
1768 
1769 const char *elf_hwcap_str(uint32_t bit)
1770 {
1771     static const char *hwcap_str[] = {
1772         [HWCAP_S390_NR_ESAN3]     = "esan3",
1773         [HWCAP_S390_NR_ZARCH]     = "zarch",
1774         [HWCAP_S390_NR_STFLE]     = "stfle",
1775         [HWCAP_S390_NR_MSA]       = "msa",
1776         [HWCAP_S390_NR_LDISP]     = "ldisp",
1777         [HWCAP_S390_NR_EIMM]      = "eimm",
1778         [HWCAP_S390_NR_DFP]       = "dfp",
1779         [HWCAP_S390_NR_HPAGE]     = "edat",
1780         [HWCAP_S390_NR_ETF3EH]    = "etf3eh",
1781         [HWCAP_S390_NR_HIGH_GPRS] = "highgprs",
1782         [HWCAP_S390_NR_TE]        = "te",
1783         [HWCAP_S390_NR_VXRS]      = "vx",
1784         [HWCAP_S390_NR_VXRS_BCD]  = "vxd",
1785         [HWCAP_S390_NR_VXRS_EXT]  = "vxe",
1786         [HWCAP_S390_NR_GS]        = "gs",
1787         [HWCAP_S390_NR_VXRS_EXT2] = "vxe2",
1788         [HWCAP_S390_NR_VXRS_PDE]  = "vxp",
1789         [HWCAP_S390_NR_SORT]      = "sort",
1790         [HWCAP_S390_NR_DFLT]      = "dflt",
1791         [HWCAP_S390_NR_NNPA]      = "nnpa",
1792         [HWCAP_S390_NR_PCI_MIO]   = "pcimio",
1793         [HWCAP_S390_NR_SIE]       = "sie",
1794     };
1795 
1796     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
1797 }
1798 
1799 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1800 {
1801     regs->psw.addr = infop->entry;
1802     regs->psw.mask = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | \
1803                      PSW_MASK_MCHECK | PSW_MASK_PSTATE | PSW_MASK_64 | \
1804                      PSW_MASK_32;
1805     regs->gprs[15] = infop->start_stack;
1806 }
1807 
1808 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs).  */
1809 #define ELF_NREG 27
1810 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1811 
1812 enum {
1813     TARGET_REG_PSWM = 0,
1814     TARGET_REG_PSWA = 1,
1815     TARGET_REG_GPRS = 2,
1816     TARGET_REG_ARS = 18,
1817     TARGET_REG_ORIG_R2 = 26,
1818 };
1819 
1820 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1821                                const CPUS390XState *env)
1822 {
1823     int i;
1824     uint32_t *aregs;
1825 
1826     (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1827     (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1828     for (i = 0; i < 16; i++) {
1829         (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1830     }
1831     aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1832     for (i = 0; i < 16; i++) {
1833         aregs[i] = tswap32(env->aregs[i]);
1834     }
1835     (*regs)[TARGET_REG_ORIG_R2] = 0;
1836 }
1837 
1838 #define USE_ELF_CORE_DUMP
1839 #define ELF_EXEC_PAGESIZE 4096
1840 
1841 #define VDSO_HEADER "vdso.c.inc"
1842 
1843 #endif /* TARGET_S390X */
1844 
1845 #ifdef TARGET_RISCV
1846 
1847 #define ELF_ARCH  EM_RISCV
1848 
1849 #ifdef TARGET_RISCV32
1850 #define ELF_CLASS ELFCLASS32
1851 #define VDSO_HEADER "vdso-32.c.inc"
1852 #else
1853 #define ELF_CLASS ELFCLASS64
1854 #define VDSO_HEADER "vdso-64.c.inc"
1855 #endif
1856 
1857 #define ELF_HWCAP get_elf_hwcap()
1858 
1859 static uint32_t get_elf_hwcap(void)
1860 {
1861 #define MISA_BIT(EXT) (1 << (EXT - 'A'))
1862     RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1863     uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1864                     | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C')
1865                     | MISA_BIT('V');
1866 
1867     return cpu->env.misa_ext & mask;
1868 #undef MISA_BIT
1869 }
1870 
1871 static inline void init_thread(struct target_pt_regs *regs,
1872                                struct image_info *infop)
1873 {
1874     regs->sepc = infop->entry;
1875     regs->sp = infop->start_stack;
1876 }
1877 
1878 #define ELF_EXEC_PAGESIZE 4096
1879 
1880 #endif /* TARGET_RISCV */
1881 
1882 #ifdef TARGET_HPPA
1883 
1884 #define ELF_CLASS       ELFCLASS32
1885 #define ELF_ARCH        EM_PARISC
1886 #define ELF_PLATFORM    "PARISC"
1887 #define STACK_GROWS_DOWN 0
1888 #define STACK_ALIGNMENT  64
1889 
1890 #define VDSO_HEADER "vdso.c.inc"
1891 
1892 static inline void init_thread(struct target_pt_regs *regs,
1893                                struct image_info *infop)
1894 {
1895     regs->iaoq[0] = infop->entry | PRIV_USER;
1896     regs->iaoq[1] = regs->iaoq[0] + 4;
1897     regs->gr[23] = 0;
1898     regs->gr[24] = infop->argv;
1899     regs->gr[25] = infop->argc;
1900     /* The top-of-stack contains a linkage buffer.  */
1901     regs->gr[30] = infop->start_stack + 64;
1902     regs->gr[31] = infop->entry;
1903 }
1904 
1905 #define LO_COMMPAGE  0
1906 
1907 static bool init_guest_commpage(void)
1908 {
1909     /* If reserved_va, then we have already mapped 0 page on the host. */
1910     if (!reserved_va) {
1911         void *want, *addr;
1912 
1913         want = g2h_untagged(LO_COMMPAGE);
1914         addr = mmap(want, TARGET_PAGE_SIZE, PROT_NONE,
1915                     MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED_NOREPLACE, -1, 0);
1916         if (addr == MAP_FAILED) {
1917             perror("Allocating guest commpage");
1918             exit(EXIT_FAILURE);
1919         }
1920         if (addr != want) {
1921             return false;
1922         }
1923     }
1924 
1925     /*
1926      * On Linux, page zero is normally marked execute only + gateway.
1927      * Normal read or write is supposed to fail (thus PROT_NONE above),
1928      * but specific offsets have kernel code mapped to raise permissions
1929      * and implement syscalls.  Here, simply mark the page executable.
1930      * Special case the entry points during translation (see do_page_zero).
1931      */
1932     page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
1933                    PAGE_EXEC | PAGE_VALID);
1934     return true;
1935 }
1936 
1937 #endif /* TARGET_HPPA */
1938 
1939 #ifdef TARGET_XTENSA
1940 
1941 #define ELF_CLASS       ELFCLASS32
1942 #define ELF_ARCH        EM_XTENSA
1943 
1944 static inline void init_thread(struct target_pt_regs *regs,
1945                                struct image_info *infop)
1946 {
1947     regs->windowbase = 0;
1948     regs->windowstart = 1;
1949     regs->areg[1] = infop->start_stack;
1950     regs->pc = infop->entry;
1951     if (info_is_fdpic(infop)) {
1952         regs->areg[4] = infop->loadmap_addr;
1953         regs->areg[5] = infop->interpreter_loadmap_addr;
1954         if (infop->interpreter_loadmap_addr) {
1955             regs->areg[6] = infop->interpreter_pt_dynamic_addr;
1956         } else {
1957             regs->areg[6] = infop->pt_dynamic_addr;
1958         }
1959     }
1960 }
1961 
1962 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1963 #define ELF_NREG 128
1964 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1965 
1966 enum {
1967     TARGET_REG_PC,
1968     TARGET_REG_PS,
1969     TARGET_REG_LBEG,
1970     TARGET_REG_LEND,
1971     TARGET_REG_LCOUNT,
1972     TARGET_REG_SAR,
1973     TARGET_REG_WINDOWSTART,
1974     TARGET_REG_WINDOWBASE,
1975     TARGET_REG_THREADPTR,
1976     TARGET_REG_AR0 = 64,
1977 };
1978 
1979 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1980                                const CPUXtensaState *env)
1981 {
1982     unsigned i;
1983 
1984     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1985     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1986     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1987     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1988     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1989     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1990     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1991     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1992     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1993     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1994     for (i = 0; i < env->config->nareg; ++i) {
1995         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1996     }
1997 }
1998 
1999 #define USE_ELF_CORE_DUMP
2000 #define ELF_EXEC_PAGESIZE       4096
2001 
2002 #endif /* TARGET_XTENSA */
2003 
2004 #ifdef TARGET_HEXAGON
2005 
2006 #define ELF_CLASS       ELFCLASS32
2007 #define ELF_ARCH        EM_HEXAGON
2008 
2009 static inline void init_thread(struct target_pt_regs *regs,
2010                                struct image_info *infop)
2011 {
2012     regs->sepc = infop->entry;
2013     regs->sp = infop->start_stack;
2014 }
2015 
2016 #endif /* TARGET_HEXAGON */
2017 
2018 #ifndef ELF_BASE_PLATFORM
2019 #define ELF_BASE_PLATFORM (NULL)
2020 #endif
2021 
2022 #ifndef ELF_PLATFORM
2023 #define ELF_PLATFORM (NULL)
2024 #endif
2025 
2026 #ifndef ELF_MACHINE
2027 #define ELF_MACHINE ELF_ARCH
2028 #endif
2029 
2030 #ifndef elf_check_arch
2031 #define elf_check_arch(x) ((x) == ELF_ARCH)
2032 #endif
2033 
2034 #ifndef elf_check_abi
2035 #define elf_check_abi(x) (1)
2036 #endif
2037 
2038 #ifndef ELF_HWCAP
2039 #define ELF_HWCAP 0
2040 #endif
2041 
2042 #ifndef STACK_GROWS_DOWN
2043 #define STACK_GROWS_DOWN 1
2044 #endif
2045 
2046 #ifndef STACK_ALIGNMENT
2047 #define STACK_ALIGNMENT 16
2048 #endif
2049 
2050 #ifdef TARGET_ABI32
2051 #undef ELF_CLASS
2052 #define ELF_CLASS ELFCLASS32
2053 #undef bswaptls
2054 #define bswaptls(ptr) bswap32s(ptr)
2055 #endif
2056 
2057 #ifndef EXSTACK_DEFAULT
2058 #define EXSTACK_DEFAULT false
2059 #endif
2060 
2061 #include "elf.h"
2062 
2063 /* We must delay the following stanzas until after "elf.h". */
2064 #if defined(TARGET_AARCH64)
2065 
2066 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
2067                                     const uint32_t *data,
2068                                     struct image_info *info,
2069                                     Error **errp)
2070 {
2071     if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
2072         if (pr_datasz != sizeof(uint32_t)) {
2073             error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
2074             return false;
2075         }
2076         /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
2077         info->note_flags = *data;
2078     }
2079     return true;
2080 }
2081 #define ARCH_USE_GNU_PROPERTY 1
2082 
2083 #else
2084 
2085 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
2086                                     const uint32_t *data,
2087                                     struct image_info *info,
2088                                     Error **errp)
2089 {
2090     g_assert_not_reached();
2091 }
2092 #define ARCH_USE_GNU_PROPERTY 0
2093 
2094 #endif
2095 
2096 struct exec
2097 {
2098     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
2099     unsigned int a_text;   /* length of text, in bytes */
2100     unsigned int a_data;   /* length of data, in bytes */
2101     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
2102     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
2103     unsigned int a_entry;  /* start address */
2104     unsigned int a_trsize; /* length of relocation info for text, in bytes */
2105     unsigned int a_drsize; /* length of relocation info for data, in bytes */
2106 };
2107 
2108 
2109 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
2110 #define OMAGIC 0407
2111 #define NMAGIC 0410
2112 #define ZMAGIC 0413
2113 #define QMAGIC 0314
2114 
2115 #define DLINFO_ITEMS 16
2116 
2117 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
2118 {
2119     memcpy(to, from, n);
2120 }
2121 
2122 #ifdef BSWAP_NEEDED
2123 static void bswap_ehdr(struct elfhdr *ehdr)
2124 {
2125     bswap16s(&ehdr->e_type);            /* Object file type */
2126     bswap16s(&ehdr->e_machine);         /* Architecture */
2127     bswap32s(&ehdr->e_version);         /* Object file version */
2128     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
2129     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
2130     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
2131     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
2132     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
2133     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
2134     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
2135     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
2136     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
2137     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
2138 }
2139 
2140 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
2141 {
2142     int i;
2143     for (i = 0; i < phnum; ++i, ++phdr) {
2144         bswap32s(&phdr->p_type);        /* Segment type */
2145         bswap32s(&phdr->p_flags);       /* Segment flags */
2146         bswaptls(&phdr->p_offset);      /* Segment file offset */
2147         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
2148         bswaptls(&phdr->p_paddr);       /* Segment physical address */
2149         bswaptls(&phdr->p_filesz);      /* Segment size in file */
2150         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
2151         bswaptls(&phdr->p_align);       /* Segment alignment */
2152     }
2153 }
2154 
2155 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
2156 {
2157     int i;
2158     for (i = 0; i < shnum; ++i, ++shdr) {
2159         bswap32s(&shdr->sh_name);
2160         bswap32s(&shdr->sh_type);
2161         bswaptls(&shdr->sh_flags);
2162         bswaptls(&shdr->sh_addr);
2163         bswaptls(&shdr->sh_offset);
2164         bswaptls(&shdr->sh_size);
2165         bswap32s(&shdr->sh_link);
2166         bswap32s(&shdr->sh_info);
2167         bswaptls(&shdr->sh_addralign);
2168         bswaptls(&shdr->sh_entsize);
2169     }
2170 }
2171 
2172 static void bswap_sym(struct elf_sym *sym)
2173 {
2174     bswap32s(&sym->st_name);
2175     bswaptls(&sym->st_value);
2176     bswaptls(&sym->st_size);
2177     bswap16s(&sym->st_shndx);
2178 }
2179 
2180 #ifdef TARGET_MIPS
2181 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
2182 {
2183     bswap16s(&abiflags->version);
2184     bswap32s(&abiflags->ases);
2185     bswap32s(&abiflags->isa_ext);
2186     bswap32s(&abiflags->flags1);
2187     bswap32s(&abiflags->flags2);
2188 }
2189 #endif
2190 #else
2191 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
2192 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
2193 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
2194 static inline void bswap_sym(struct elf_sym *sym) { }
2195 #ifdef TARGET_MIPS
2196 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
2197 #endif
2198 #endif
2199 
2200 #ifdef USE_ELF_CORE_DUMP
2201 static int elf_core_dump(int, const CPUArchState *);
2202 #endif /* USE_ELF_CORE_DUMP */
2203 static void load_symbols(struct elfhdr *hdr, const ImageSource *src,
2204                          abi_ulong load_bias);
2205 
2206 /* Verify the portions of EHDR within E_IDENT for the target.
2207    This can be performed before bswapping the entire header.  */
2208 static bool elf_check_ident(struct elfhdr *ehdr)
2209 {
2210     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
2211             && ehdr->e_ident[EI_MAG1] == ELFMAG1
2212             && ehdr->e_ident[EI_MAG2] == ELFMAG2
2213             && ehdr->e_ident[EI_MAG3] == ELFMAG3
2214             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
2215             && ehdr->e_ident[EI_DATA] == ELF_DATA
2216             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
2217 }
2218 
2219 /* Verify the portions of EHDR outside of E_IDENT for the target.
2220    This has to wait until after bswapping the header.  */
2221 static bool elf_check_ehdr(struct elfhdr *ehdr)
2222 {
2223     return (elf_check_arch(ehdr->e_machine)
2224             && elf_check_abi(ehdr->e_flags)
2225             && ehdr->e_ehsize == sizeof(struct elfhdr)
2226             && ehdr->e_phentsize == sizeof(struct elf_phdr)
2227             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
2228 }
2229 
2230 /*
2231  * 'copy_elf_strings()' copies argument/envelope strings from user
2232  * memory to free pages in kernel mem. These are in a format ready
2233  * to be put directly into the top of new user memory.
2234  *
2235  */
2236 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
2237                                   abi_ulong p, abi_ulong stack_limit)
2238 {
2239     char *tmp;
2240     int len, i;
2241     abi_ulong top = p;
2242 
2243     if (!p) {
2244         return 0;       /* bullet-proofing */
2245     }
2246 
2247     if (STACK_GROWS_DOWN) {
2248         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
2249         for (i = argc - 1; i >= 0; --i) {
2250             tmp = argv[i];
2251             if (!tmp) {
2252                 fprintf(stderr, "VFS: argc is wrong");
2253                 exit(-1);
2254             }
2255             len = strlen(tmp) + 1;
2256             tmp += len;
2257 
2258             if (len > (p - stack_limit)) {
2259                 return 0;
2260             }
2261             while (len) {
2262                 int bytes_to_copy = (len > offset) ? offset : len;
2263                 tmp -= bytes_to_copy;
2264                 p -= bytes_to_copy;
2265                 offset -= bytes_to_copy;
2266                 len -= bytes_to_copy;
2267 
2268                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
2269 
2270                 if (offset == 0) {
2271                     memcpy_to_target(p, scratch, top - p);
2272                     top = p;
2273                     offset = TARGET_PAGE_SIZE;
2274                 }
2275             }
2276         }
2277         if (p != top) {
2278             memcpy_to_target(p, scratch + offset, top - p);
2279         }
2280     } else {
2281         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
2282         for (i = 0; i < argc; ++i) {
2283             tmp = argv[i];
2284             if (!tmp) {
2285                 fprintf(stderr, "VFS: argc is wrong");
2286                 exit(-1);
2287             }
2288             len = strlen(tmp) + 1;
2289             if (len > (stack_limit - p)) {
2290                 return 0;
2291             }
2292             while (len) {
2293                 int bytes_to_copy = (len > remaining) ? remaining : len;
2294 
2295                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
2296 
2297                 tmp += bytes_to_copy;
2298                 remaining -= bytes_to_copy;
2299                 p += bytes_to_copy;
2300                 len -= bytes_to_copy;
2301 
2302                 if (remaining == 0) {
2303                     memcpy_to_target(top, scratch, p - top);
2304                     top = p;
2305                     remaining = TARGET_PAGE_SIZE;
2306                 }
2307             }
2308         }
2309         if (p != top) {
2310             memcpy_to_target(top, scratch, p - top);
2311         }
2312     }
2313 
2314     return p;
2315 }
2316 
2317 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
2318  * argument/environment space. Newer kernels (>2.6.33) allow more,
2319  * dependent on stack size, but guarantee at least 32 pages for
2320  * backwards compatibility.
2321  */
2322 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
2323 
2324 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
2325                                  struct image_info *info)
2326 {
2327     abi_ulong size, error, guard;
2328     int prot;
2329 
2330     size = guest_stack_size;
2331     if (size < STACK_LOWER_LIMIT) {
2332         size = STACK_LOWER_LIMIT;
2333     }
2334 
2335     if (STACK_GROWS_DOWN) {
2336         guard = TARGET_PAGE_SIZE;
2337         if (guard < qemu_real_host_page_size()) {
2338             guard = qemu_real_host_page_size();
2339         }
2340     } else {
2341         /* no guard page for hppa target where stack grows upwards. */
2342         guard = 0;
2343     }
2344 
2345     prot = PROT_READ | PROT_WRITE;
2346     if (info->exec_stack) {
2347         prot |= PROT_EXEC;
2348     }
2349     error = target_mmap(0, size + guard, prot,
2350                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2351     if (error == -1) {
2352         perror("mmap stack");
2353         exit(-1);
2354     }
2355 
2356     /* We reserve one extra page at the top of the stack as guard.  */
2357     if (STACK_GROWS_DOWN) {
2358         target_mprotect(error, guard, PROT_NONE);
2359         info->stack_limit = error + guard;
2360         return info->stack_limit + size - sizeof(void *);
2361     } else {
2362         info->stack_limit = error + size;
2363         return error;
2364     }
2365 }
2366 
2367 /**
2368  * zero_bss:
2369  *
2370  * Map and zero the bss.  We need to explicitly zero any fractional pages
2371  * after the data section (i.e. bss).  Return false on mapping failure.
2372  */
2373 static bool zero_bss(abi_ulong start_bss, abi_ulong end_bss,
2374                      int prot, Error **errp)
2375 {
2376     abi_ulong align_bss;
2377 
2378     /* We only expect writable bss; the code segment shouldn't need this. */
2379     if (!(prot & PROT_WRITE)) {
2380         error_setg(errp, "PT_LOAD with non-writable bss");
2381         return false;
2382     }
2383 
2384     align_bss = TARGET_PAGE_ALIGN(start_bss);
2385     end_bss = TARGET_PAGE_ALIGN(end_bss);
2386 
2387     if (start_bss < align_bss) {
2388         int flags = page_get_flags(start_bss);
2389 
2390         if (!(flags & PAGE_RWX)) {
2391             /*
2392              * The whole address space of the executable was reserved
2393              * at the start, therefore all pages will be VALID.
2394              * But assuming there are no PROT_NONE PT_LOAD segments,
2395              * a PROT_NONE page means no data all bss, and we can
2396              * simply extend the new anon mapping back to the start
2397              * of the page of bss.
2398              */
2399             align_bss -= TARGET_PAGE_SIZE;
2400         } else {
2401             /*
2402              * The start of the bss shares a page with something.
2403              * The only thing that we expect is the data section,
2404              * which would already be marked writable.
2405              * Overlapping the RX code segment seems malformed.
2406              */
2407             if (!(flags & PAGE_WRITE)) {
2408                 error_setg(errp, "PT_LOAD with bss overlapping "
2409                            "non-writable page");
2410                 return false;
2411             }
2412 
2413             /* The page is already mapped and writable. */
2414             memset(g2h_untagged(start_bss), 0, align_bss - start_bss);
2415         }
2416     }
2417 
2418     if (align_bss < end_bss &&
2419         target_mmap(align_bss, end_bss - align_bss, prot,
2420                     MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) == -1) {
2421         error_setg_errno(errp, errno, "Error mapping bss");
2422         return false;
2423     }
2424     return true;
2425 }
2426 
2427 #if defined(TARGET_ARM)
2428 static int elf_is_fdpic(struct elfhdr *exec)
2429 {
2430     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
2431 }
2432 #elif defined(TARGET_XTENSA)
2433 static int elf_is_fdpic(struct elfhdr *exec)
2434 {
2435     return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC;
2436 }
2437 #else
2438 /* Default implementation, always false.  */
2439 static int elf_is_fdpic(struct elfhdr *exec)
2440 {
2441     return 0;
2442 }
2443 #endif
2444 
2445 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
2446 {
2447     uint16_t n;
2448     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
2449 
2450     /* elf32_fdpic_loadseg */
2451     n = info->nsegs;
2452     while (n--) {
2453         sp -= 12;
2454         put_user_u32(loadsegs[n].addr, sp+0);
2455         put_user_u32(loadsegs[n].p_vaddr, sp+4);
2456         put_user_u32(loadsegs[n].p_memsz, sp+8);
2457     }
2458 
2459     /* elf32_fdpic_loadmap */
2460     sp -= 4;
2461     put_user_u16(0, sp+0); /* version */
2462     put_user_u16(info->nsegs, sp+2); /* nsegs */
2463 
2464     info->personality = PER_LINUX_FDPIC;
2465     info->loadmap_addr = sp;
2466 
2467     return sp;
2468 }
2469 
2470 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
2471                                    struct elfhdr *exec,
2472                                    struct image_info *info,
2473                                    struct image_info *interp_info,
2474                                    struct image_info *vdso_info)
2475 {
2476     abi_ulong sp;
2477     abi_ulong u_argc, u_argv, u_envp, u_auxv;
2478     int size;
2479     int i;
2480     abi_ulong u_rand_bytes;
2481     uint8_t k_rand_bytes[16];
2482     abi_ulong u_platform, u_base_platform;
2483     const char *k_platform, *k_base_platform;
2484     const int n = sizeof(elf_addr_t);
2485 
2486     sp = p;
2487 
2488     /* Needs to be before we load the env/argc/... */
2489     if (elf_is_fdpic(exec)) {
2490         /* Need 4 byte alignment for these structs */
2491         sp &= ~3;
2492         sp = loader_build_fdpic_loadmap(info, sp);
2493         info->other_info = interp_info;
2494         if (interp_info) {
2495             interp_info->other_info = info;
2496             sp = loader_build_fdpic_loadmap(interp_info, sp);
2497             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2498             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2499         } else {
2500             info->interpreter_loadmap_addr = 0;
2501             info->interpreter_pt_dynamic_addr = 0;
2502         }
2503     }
2504 
2505     u_base_platform = 0;
2506     k_base_platform = ELF_BASE_PLATFORM;
2507     if (k_base_platform) {
2508         size_t len = strlen(k_base_platform) + 1;
2509         if (STACK_GROWS_DOWN) {
2510             sp -= (len + n - 1) & ~(n - 1);
2511             u_base_platform = sp;
2512             /* FIXME - check return value of memcpy_to_target() for failure */
2513             memcpy_to_target(sp, k_base_platform, len);
2514         } else {
2515             memcpy_to_target(sp, k_base_platform, len);
2516             u_base_platform = sp;
2517             sp += len + 1;
2518         }
2519     }
2520 
2521     u_platform = 0;
2522     k_platform = ELF_PLATFORM;
2523     if (k_platform) {
2524         size_t len = strlen(k_platform) + 1;
2525         if (STACK_GROWS_DOWN) {
2526             sp -= (len + n - 1) & ~(n - 1);
2527             u_platform = sp;
2528             /* FIXME - check return value of memcpy_to_target() for failure */
2529             memcpy_to_target(sp, k_platform, len);
2530         } else {
2531             memcpy_to_target(sp, k_platform, len);
2532             u_platform = sp;
2533             sp += len + 1;
2534         }
2535     }
2536 
2537     /* Provide 16 byte alignment for the PRNG, and basic alignment for
2538      * the argv and envp pointers.
2539      */
2540     if (STACK_GROWS_DOWN) {
2541         sp = QEMU_ALIGN_DOWN(sp, 16);
2542     } else {
2543         sp = QEMU_ALIGN_UP(sp, 16);
2544     }
2545 
2546     /*
2547      * Generate 16 random bytes for userspace PRNG seeding.
2548      */
2549     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2550     if (STACK_GROWS_DOWN) {
2551         sp -= 16;
2552         u_rand_bytes = sp;
2553         /* FIXME - check return value of memcpy_to_target() for failure */
2554         memcpy_to_target(sp, k_rand_bytes, 16);
2555     } else {
2556         memcpy_to_target(sp, k_rand_bytes, 16);
2557         u_rand_bytes = sp;
2558         sp += 16;
2559     }
2560 
2561     size = (DLINFO_ITEMS + 1) * 2;
2562     if (k_base_platform) {
2563         size += 2;
2564     }
2565     if (k_platform) {
2566         size += 2;
2567     }
2568     if (vdso_info) {
2569         size += 2;
2570     }
2571 #ifdef DLINFO_ARCH_ITEMS
2572     size += DLINFO_ARCH_ITEMS * 2;
2573 #endif
2574 #ifdef ELF_HWCAP2
2575     size += 2;
2576 #endif
2577     info->auxv_len = size * n;
2578 
2579     size += envc + argc + 2;
2580     size += 1;  /* argc itself */
2581     size *= n;
2582 
2583     /* Allocate space and finalize stack alignment for entry now.  */
2584     if (STACK_GROWS_DOWN) {
2585         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2586         sp = u_argc;
2587     } else {
2588         u_argc = sp;
2589         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2590     }
2591 
2592     u_argv = u_argc + n;
2593     u_envp = u_argv + (argc + 1) * n;
2594     u_auxv = u_envp + (envc + 1) * n;
2595     info->saved_auxv = u_auxv;
2596     info->argc = argc;
2597     info->envc = envc;
2598     info->argv = u_argv;
2599     info->envp = u_envp;
2600 
2601     /* This is correct because Linux defines
2602      * elf_addr_t as Elf32_Off / Elf64_Off
2603      */
2604 #define NEW_AUX_ENT(id, val) do {               \
2605         put_user_ual(id, u_auxv);  u_auxv += n; \
2606         put_user_ual(val, u_auxv); u_auxv += n; \
2607     } while(0)
2608 
2609 #ifdef ARCH_DLINFO
2610     /*
2611      * ARCH_DLINFO must come first so platform specific code can enforce
2612      * special alignment requirements on the AUXV if necessary (eg. PPC).
2613      */
2614     ARCH_DLINFO;
2615 #endif
2616     /* There must be exactly DLINFO_ITEMS entries here, or the assert
2617      * on info->auxv_len will trigger.
2618      */
2619     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2620     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2621     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2622     NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2623     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2624     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2625     NEW_AUX_ENT(AT_ENTRY, info->entry);
2626     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2627     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2628     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2629     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2630     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2631     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2632     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2633     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2634     NEW_AUX_ENT(AT_EXECFN, info->file_string);
2635 
2636 #ifdef ELF_HWCAP2
2637     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2638 #endif
2639 
2640     if (u_base_platform) {
2641         NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform);
2642     }
2643     if (u_platform) {
2644         NEW_AUX_ENT(AT_PLATFORM, u_platform);
2645     }
2646     if (vdso_info) {
2647         NEW_AUX_ENT(AT_SYSINFO_EHDR, vdso_info->load_addr);
2648     }
2649     NEW_AUX_ENT (AT_NULL, 0);
2650 #undef NEW_AUX_ENT
2651 
2652     /* Check that our initial calculation of the auxv length matches how much
2653      * we actually put into it.
2654      */
2655     assert(info->auxv_len == u_auxv - info->saved_auxv);
2656 
2657     put_user_ual(argc, u_argc);
2658 
2659     p = info->arg_strings;
2660     for (i = 0; i < argc; ++i) {
2661         put_user_ual(p, u_argv);
2662         u_argv += n;
2663         p += target_strlen(p) + 1;
2664     }
2665     put_user_ual(0, u_argv);
2666 
2667     p = info->env_strings;
2668     for (i = 0; i < envc; ++i) {
2669         put_user_ual(p, u_envp);
2670         u_envp += n;
2671         p += target_strlen(p) + 1;
2672     }
2673     put_user_ual(0, u_envp);
2674 
2675     return sp;
2676 }
2677 
2678 #if defined(HI_COMMPAGE)
2679 #define LO_COMMPAGE -1
2680 #elif defined(LO_COMMPAGE)
2681 #define HI_COMMPAGE 0
2682 #else
2683 #define HI_COMMPAGE 0
2684 #define LO_COMMPAGE -1
2685 #ifndef INIT_GUEST_COMMPAGE
2686 #define init_guest_commpage() true
2687 #endif
2688 #endif
2689 
2690 /**
2691  * pgb_try_mmap:
2692  * @addr: host start address
2693  * @addr_last: host last address
2694  * @keep: do not unmap the probe region
2695  *
2696  * Return 1 if [@addr, @addr_last] is not mapped in the host,
2697  * return 0 if it is not available to map, and -1 on mmap error.
2698  * If @keep, the region is left mapped on success, otherwise unmapped.
2699  */
2700 static int pgb_try_mmap(uintptr_t addr, uintptr_t addr_last, bool keep)
2701 {
2702     size_t size = addr_last - addr + 1;
2703     void *p = mmap((void *)addr, size, PROT_NONE,
2704                    MAP_ANONYMOUS | MAP_PRIVATE |
2705                    MAP_NORESERVE | MAP_FIXED_NOREPLACE, -1, 0);
2706     int ret;
2707 
2708     if (p == MAP_FAILED) {
2709         return errno == EEXIST ? 0 : -1;
2710     }
2711     ret = p == (void *)addr;
2712     if (!keep || !ret) {
2713         munmap(p, size);
2714     }
2715     return ret;
2716 }
2717 
2718 /**
2719  * pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t size, uintptr_t brk)
2720  * @addr: host address
2721  * @addr_last: host last address
2722  * @brk: host brk
2723  *
2724  * Like pgb_try_mmap, but additionally reserve some memory following brk.
2725  */
2726 static int pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t addr_last,
2727                                  uintptr_t brk, bool keep)
2728 {
2729     uintptr_t brk_last = brk + 16 * MiB - 1;
2730 
2731     /* Do not map anything close to the host brk. */
2732     if (addr <= brk_last && brk <= addr_last) {
2733         return 0;
2734     }
2735     return pgb_try_mmap(addr, addr_last, keep);
2736 }
2737 
2738 /**
2739  * pgb_try_mmap_set:
2740  * @ga: set of guest addrs
2741  * @base: guest_base
2742  * @brk: host brk
2743  *
2744  * Return true if all @ga can be mapped by the host at @base.
2745  * On success, retain the mapping at index 0 for reserved_va.
2746  */
2747 
2748 typedef struct PGBAddrs {
2749     uintptr_t bounds[3][2]; /* start/last pairs */
2750     int nbounds;
2751 } PGBAddrs;
2752 
2753 static bool pgb_try_mmap_set(const PGBAddrs *ga, uintptr_t base, uintptr_t brk)
2754 {
2755     for (int i = ga->nbounds - 1; i >= 0; --i) {
2756         if (pgb_try_mmap_skip_brk(ga->bounds[i][0] + base,
2757                                   ga->bounds[i][1] + base,
2758                                   brk, i == 0 && reserved_va) <= 0) {
2759             return false;
2760         }
2761     }
2762     return true;
2763 }
2764 
2765 /**
2766  * pgb_addr_set:
2767  * @ga: output set of guest addrs
2768  * @guest_loaddr: guest image low address
2769  * @guest_loaddr: guest image high address
2770  * @identity: create for identity mapping
2771  *
2772  * Fill in @ga with the image, COMMPAGE and NULL page.
2773  */
2774 static bool pgb_addr_set(PGBAddrs *ga, abi_ulong guest_loaddr,
2775                          abi_ulong guest_hiaddr, bool try_identity)
2776 {
2777     int n;
2778 
2779     /*
2780      * With a low commpage, or a guest mapped very low,
2781      * we may not be able to use the identity map.
2782      */
2783     if (try_identity) {
2784         if (LO_COMMPAGE != -1 && LO_COMMPAGE < mmap_min_addr) {
2785             return false;
2786         }
2787         if (guest_loaddr != 0 && guest_loaddr < mmap_min_addr) {
2788             return false;
2789         }
2790     }
2791 
2792     memset(ga, 0, sizeof(*ga));
2793     n = 0;
2794 
2795     if (reserved_va) {
2796         ga->bounds[n][0] = try_identity ? mmap_min_addr : 0;
2797         ga->bounds[n][1] = reserved_va;
2798         n++;
2799         /* LO_COMMPAGE and NULL handled by reserving from 0. */
2800     } else {
2801         /* Add any LO_COMMPAGE or NULL page. */
2802         if (LO_COMMPAGE != -1) {
2803             ga->bounds[n][0] = 0;
2804             ga->bounds[n][1] = LO_COMMPAGE + TARGET_PAGE_SIZE - 1;
2805             n++;
2806         } else if (!try_identity) {
2807             ga->bounds[n][0] = 0;
2808             ga->bounds[n][1] = TARGET_PAGE_SIZE - 1;
2809             n++;
2810         }
2811 
2812         /* Add the guest image for ET_EXEC. */
2813         if (guest_loaddr) {
2814             ga->bounds[n][0] = guest_loaddr;
2815             ga->bounds[n][1] = guest_hiaddr;
2816             n++;
2817         }
2818     }
2819 
2820     /*
2821      * Temporarily disable
2822      *   "comparison is always false due to limited range of data type"
2823      * due to comparison between unsigned and (possible) 0.
2824      */
2825 #pragma GCC diagnostic push
2826 #pragma GCC diagnostic ignored "-Wtype-limits"
2827 
2828     /* Add any HI_COMMPAGE not covered by reserved_va. */
2829     if (reserved_va < HI_COMMPAGE) {
2830         ga->bounds[n][0] = HI_COMMPAGE & qemu_real_host_page_mask();
2831         ga->bounds[n][1] = HI_COMMPAGE + TARGET_PAGE_SIZE - 1;
2832         n++;
2833     }
2834 
2835 #pragma GCC diagnostic pop
2836 
2837     ga->nbounds = n;
2838     return true;
2839 }
2840 
2841 static void pgb_fail_in_use(const char *image_name)
2842 {
2843     error_report("%s: requires virtual address space that is in use "
2844                  "(omit the -B option or choose a different value)",
2845                  image_name);
2846     exit(EXIT_FAILURE);
2847 }
2848 
2849 static void pgb_fixed(const char *image_name, uintptr_t guest_loaddr,
2850                       uintptr_t guest_hiaddr, uintptr_t align)
2851 {
2852     PGBAddrs ga;
2853     uintptr_t brk = (uintptr_t)sbrk(0);
2854 
2855     if (!QEMU_IS_ALIGNED(guest_base, align)) {
2856         fprintf(stderr, "Requested guest base %p does not satisfy "
2857                 "host minimum alignment (0x%" PRIxPTR ")\n",
2858                 (void *)guest_base, align);
2859         exit(EXIT_FAILURE);
2860     }
2861 
2862     if (!pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, !guest_base)
2863         || !pgb_try_mmap_set(&ga, guest_base, brk)) {
2864         pgb_fail_in_use(image_name);
2865     }
2866 }
2867 
2868 /**
2869  * pgb_find_fallback:
2870  *
2871  * This is a fallback method for finding holes in the host address space
2872  * if we don't have the benefit of being able to access /proc/self/map.
2873  * It can potentially take a very long time as we can only dumbly iterate
2874  * up the host address space seeing if the allocation would work.
2875  */
2876 static uintptr_t pgb_find_fallback(const PGBAddrs *ga, uintptr_t align,
2877                                    uintptr_t brk)
2878 {
2879     /* TODO: come up with a better estimate of how much to skip. */
2880     uintptr_t skip = sizeof(uintptr_t) == 4 ? MiB : GiB;
2881 
2882     for (uintptr_t base = skip; ; base += skip) {
2883         base = ROUND_UP(base, align);
2884         if (pgb_try_mmap_set(ga, base, brk)) {
2885             return base;
2886         }
2887         if (base >= -skip) {
2888             return -1;
2889         }
2890     }
2891 }
2892 
2893 static uintptr_t pgb_try_itree(const PGBAddrs *ga, uintptr_t base,
2894                                IntervalTreeRoot *root)
2895 {
2896     for (int i = ga->nbounds - 1; i >= 0; --i) {
2897         uintptr_t s = base + ga->bounds[i][0];
2898         uintptr_t l = base + ga->bounds[i][1];
2899         IntervalTreeNode *n;
2900 
2901         if (l < s) {
2902             /* Wraparound. Skip to advance S to mmap_min_addr. */
2903             return mmap_min_addr - s;
2904         }
2905 
2906         n = interval_tree_iter_first(root, s, l);
2907         if (n != NULL) {
2908             /* Conflict.  Skip to advance S to LAST + 1. */
2909             return n->last - s + 1;
2910         }
2911     }
2912     return 0;  /* success */
2913 }
2914 
2915 static uintptr_t pgb_find_itree(const PGBAddrs *ga, IntervalTreeRoot *root,
2916                                 uintptr_t align, uintptr_t brk)
2917 {
2918     uintptr_t last = sizeof(uintptr_t) == 4 ? MiB : GiB;
2919     uintptr_t base, skip;
2920 
2921     while (true) {
2922         base = ROUND_UP(last, align);
2923         if (base < last) {
2924             return -1;
2925         }
2926 
2927         skip = pgb_try_itree(ga, base, root);
2928         if (skip == 0) {
2929             break;
2930         }
2931 
2932         last = base + skip;
2933         if (last < base) {
2934             return -1;
2935         }
2936     }
2937 
2938     /*
2939      * We've chosen 'base' based on holes in the interval tree,
2940      * but we don't yet know if it is a valid host address.
2941      * Because it is the first matching hole, if the host addresses
2942      * are invalid we know there are no further matches.
2943      */
2944     return pgb_try_mmap_set(ga, base, brk) ? base : -1;
2945 }
2946 
2947 static void pgb_dynamic(const char *image_name, uintptr_t guest_loaddr,
2948                         uintptr_t guest_hiaddr, uintptr_t align)
2949 {
2950     IntervalTreeRoot *root;
2951     uintptr_t brk, ret;
2952     PGBAddrs ga;
2953 
2954     /* Try the identity map first. */
2955     if (pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, true)) {
2956         brk = (uintptr_t)sbrk(0);
2957         if (pgb_try_mmap_set(&ga, 0, brk)) {
2958             guest_base = 0;
2959             return;
2960         }
2961     }
2962 
2963     /*
2964      * Rebuild the address set for non-identity map.
2965      * This differs in the mapping of the guest NULL page.
2966      */
2967     pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, false);
2968 
2969     root = read_self_maps();
2970 
2971     /* Read brk after we've read the maps, which will malloc. */
2972     brk = (uintptr_t)sbrk(0);
2973 
2974     if (!root) {
2975         ret = pgb_find_fallback(&ga, align, brk);
2976     } else {
2977         /*
2978          * Reserve the area close to the host brk.
2979          * This will be freed with the rest of the tree.
2980          */
2981         IntervalTreeNode *b = g_new0(IntervalTreeNode, 1);
2982         b->start = brk;
2983         b->last = brk + 16 * MiB - 1;
2984         interval_tree_insert(b, root);
2985 
2986         ret = pgb_find_itree(&ga, root, align, brk);
2987         free_self_maps(root);
2988     }
2989 
2990     if (ret == -1) {
2991         int w = TARGET_LONG_BITS / 4;
2992 
2993         error_report("%s: Unable to find a guest_base to satisfy all "
2994                      "guest address mapping requirements", image_name);
2995 
2996         for (int i = 0; i < ga.nbounds; ++i) {
2997             error_printf("  %0*" PRIx64 "-%0*" PRIx64 "\n",
2998                          w, (uint64_t)ga.bounds[i][0],
2999                          w, (uint64_t)ga.bounds[i][1]);
3000         }
3001         exit(EXIT_FAILURE);
3002     }
3003     guest_base = ret;
3004 }
3005 
3006 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
3007                       abi_ulong guest_hiaddr)
3008 {
3009     /* In order to use host shmat, we must be able to honor SHMLBA.  */
3010     uintptr_t align = MAX(SHMLBA, TARGET_PAGE_SIZE);
3011 
3012     /* Sanity check the guest binary. */
3013     if (reserved_va) {
3014         if (guest_hiaddr > reserved_va) {
3015             error_report("%s: requires more than reserved virtual "
3016                          "address space (0x%" PRIx64 " > 0x%lx)",
3017                          image_name, (uint64_t)guest_hiaddr, reserved_va);
3018             exit(EXIT_FAILURE);
3019         }
3020     } else {
3021         if (guest_hiaddr != (uintptr_t)guest_hiaddr) {
3022             error_report("%s: requires more virtual address space "
3023                          "than the host can provide (0x%" PRIx64 ")",
3024                          image_name, (uint64_t)guest_hiaddr + 1);
3025             exit(EXIT_FAILURE);
3026         }
3027     }
3028 
3029     if (have_guest_base) {
3030         pgb_fixed(image_name, guest_loaddr, guest_hiaddr, align);
3031     } else {
3032         pgb_dynamic(image_name, guest_loaddr, guest_hiaddr, align);
3033     }
3034 
3035     /* Reserve and initialize the commpage. */
3036     if (!init_guest_commpage()) {
3037         /* We have already probed for the commpage being free. */
3038         g_assert_not_reached();
3039     }
3040 
3041     assert(QEMU_IS_ALIGNED(guest_base, align));
3042     qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
3043                   "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
3044 }
3045 
3046 enum {
3047     /* The string "GNU\0" as a magic number. */
3048     GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
3049     NOTE_DATA_SZ = 1 * KiB,
3050     NOTE_NAME_SZ = 4,
3051     ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
3052 };
3053 
3054 /*
3055  * Process a single gnu_property entry.
3056  * Return false for error.
3057  */
3058 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
3059                                struct image_info *info, bool have_prev_type,
3060                                uint32_t *prev_type, Error **errp)
3061 {
3062     uint32_t pr_type, pr_datasz, step;
3063 
3064     if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
3065         goto error_data;
3066     }
3067     datasz -= *off;
3068     data += *off / sizeof(uint32_t);
3069 
3070     if (datasz < 2 * sizeof(uint32_t)) {
3071         goto error_data;
3072     }
3073     pr_type = data[0];
3074     pr_datasz = data[1];
3075     data += 2;
3076     datasz -= 2 * sizeof(uint32_t);
3077     step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
3078     if (step > datasz) {
3079         goto error_data;
3080     }
3081 
3082     /* Properties are supposed to be unique and sorted on pr_type. */
3083     if (have_prev_type && pr_type <= *prev_type) {
3084         if (pr_type == *prev_type) {
3085             error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
3086         } else {
3087             error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
3088         }
3089         return false;
3090     }
3091     *prev_type = pr_type;
3092 
3093     if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
3094         return false;
3095     }
3096 
3097     *off += 2 * sizeof(uint32_t) + step;
3098     return true;
3099 
3100  error_data:
3101     error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
3102     return false;
3103 }
3104 
3105 /* Process NT_GNU_PROPERTY_TYPE_0. */
3106 static bool parse_elf_properties(const ImageSource *src,
3107                                  struct image_info *info,
3108                                  const struct elf_phdr *phdr,
3109                                  Error **errp)
3110 {
3111     union {
3112         struct elf_note nhdr;
3113         uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
3114     } note;
3115 
3116     int n, off, datasz;
3117     bool have_prev_type;
3118     uint32_t prev_type;
3119 
3120     /* Unless the arch requires properties, ignore them. */
3121     if (!ARCH_USE_GNU_PROPERTY) {
3122         return true;
3123     }
3124 
3125     /* If the properties are crazy large, that's too bad. */
3126     n = phdr->p_filesz;
3127     if (n > sizeof(note)) {
3128         error_setg(errp, "PT_GNU_PROPERTY too large");
3129         return false;
3130     }
3131     if (n < sizeof(note.nhdr)) {
3132         error_setg(errp, "PT_GNU_PROPERTY too small");
3133         return false;
3134     }
3135 
3136     if (!imgsrc_read(&note, phdr->p_offset, n, src, errp)) {
3137         return false;
3138     }
3139 
3140     /*
3141      * The contents of a valid PT_GNU_PROPERTY is a sequence of uint32_t.
3142      * Swap most of them now, beyond the header and namesz.
3143      */
3144 #ifdef BSWAP_NEEDED
3145     for (int i = 4; i < n / 4; i++) {
3146         bswap32s(note.data + i);
3147     }
3148 #endif
3149 
3150     /*
3151      * Note that nhdr is 3 words, and that the "name" described by namesz
3152      * immediately follows nhdr and is thus at the 4th word.  Further, all
3153      * of the inputs to the kernel's round_up are multiples of 4.
3154      */
3155     if (tswap32(note.nhdr.n_type) != NT_GNU_PROPERTY_TYPE_0 ||
3156         tswap32(note.nhdr.n_namesz) != NOTE_NAME_SZ ||
3157         note.data[3] != GNU0_MAGIC) {
3158         error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
3159         return false;
3160     }
3161     off = sizeof(note.nhdr) + NOTE_NAME_SZ;
3162 
3163     datasz = tswap32(note.nhdr.n_descsz) + off;
3164     if (datasz > n) {
3165         error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
3166         return false;
3167     }
3168 
3169     have_prev_type = false;
3170     prev_type = 0;
3171     while (1) {
3172         if (off == datasz) {
3173             return true;  /* end, exit ok */
3174         }
3175         if (!parse_elf_property(note.data, &off, datasz, info,
3176                                 have_prev_type, &prev_type, errp)) {
3177             return false;
3178         }
3179         have_prev_type = true;
3180     }
3181 }
3182 
3183 /**
3184  * load_elf_image: Load an ELF image into the address space.
3185  * @image_name: the filename of the image, to use in error messages.
3186  * @src: the ImageSource from which to read.
3187  * @info: info collected from the loaded image.
3188  * @ehdr: the ELF header, not yet bswapped.
3189  * @pinterp_name: record any PT_INTERP string found.
3190  *
3191  * On return: @info values will be filled in, as necessary or available.
3192  */
3193 
3194 static void load_elf_image(const char *image_name, const ImageSource *src,
3195                            struct image_info *info, struct elfhdr *ehdr,
3196                            char **pinterp_name)
3197 {
3198     g_autofree struct elf_phdr *phdr = NULL;
3199     abi_ulong load_addr, load_bias, loaddr, hiaddr, error, align;
3200     size_t reserve_size, align_size;
3201     int i, prot_exec;
3202     Error *err = NULL;
3203 
3204     /*
3205      * First of all, some simple consistency checks.
3206      * Note that we rely on the bswapped ehdr staying in bprm_buf,
3207      * for later use by load_elf_binary and create_elf_tables.
3208      */
3209     if (!imgsrc_read(ehdr, 0, sizeof(*ehdr), src, &err)) {
3210         goto exit_errmsg;
3211     }
3212     if (!elf_check_ident(ehdr)) {
3213         error_setg(&err, "Invalid ELF image for this architecture");
3214         goto exit_errmsg;
3215     }
3216     bswap_ehdr(ehdr);
3217     if (!elf_check_ehdr(ehdr)) {
3218         error_setg(&err, "Invalid ELF image for this architecture");
3219         goto exit_errmsg;
3220     }
3221 
3222     phdr = imgsrc_read_alloc(ehdr->e_phoff,
3223                              ehdr->e_phnum * sizeof(struct elf_phdr),
3224                              src, &err);
3225     if (phdr == NULL) {
3226         goto exit_errmsg;
3227     }
3228     bswap_phdr(phdr, ehdr->e_phnum);
3229 
3230     info->nsegs = 0;
3231     info->pt_dynamic_addr = 0;
3232 
3233     mmap_lock();
3234 
3235     /*
3236      * Find the maximum size of the image and allocate an appropriate
3237      * amount of memory to handle that.  Locate the interpreter, if any.
3238      */
3239     loaddr = -1, hiaddr = 0;
3240     align = 0;
3241     info->exec_stack = EXSTACK_DEFAULT;
3242     for (i = 0; i < ehdr->e_phnum; ++i) {
3243         struct elf_phdr *eppnt = phdr + i;
3244         if (eppnt->p_type == PT_LOAD) {
3245             abi_ulong a = eppnt->p_vaddr & TARGET_PAGE_MASK;
3246             if (a < loaddr) {
3247                 loaddr = a;
3248             }
3249             a = eppnt->p_vaddr + eppnt->p_memsz - 1;
3250             if (a > hiaddr) {
3251                 hiaddr = a;
3252             }
3253             ++info->nsegs;
3254             align |= eppnt->p_align;
3255         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
3256             g_autofree char *interp_name = NULL;
3257 
3258             if (*pinterp_name) {
3259                 error_setg(&err, "Multiple PT_INTERP entries");
3260                 goto exit_errmsg;
3261             }
3262 
3263             interp_name = imgsrc_read_alloc(eppnt->p_offset, eppnt->p_filesz,
3264                                             src, &err);
3265             if (interp_name == NULL) {
3266                 goto exit_errmsg;
3267             }
3268             if (interp_name[eppnt->p_filesz - 1] != 0) {
3269                 error_setg(&err, "Invalid PT_INTERP entry");
3270                 goto exit_errmsg;
3271             }
3272             *pinterp_name = g_steal_pointer(&interp_name);
3273         } else if (eppnt->p_type == PT_GNU_PROPERTY) {
3274             if (!parse_elf_properties(src, info, eppnt, &err)) {
3275                 goto exit_errmsg;
3276             }
3277         } else if (eppnt->p_type == PT_GNU_STACK) {
3278             info->exec_stack = eppnt->p_flags & PF_X;
3279         }
3280     }
3281 
3282     load_addr = loaddr;
3283 
3284     align = pow2ceil(align);
3285 
3286     if (pinterp_name != NULL) {
3287         if (ehdr->e_type == ET_EXEC) {
3288             /*
3289              * Make sure that the low address does not conflict with
3290              * MMAP_MIN_ADDR or the QEMU application itself.
3291              */
3292             probe_guest_base(image_name, loaddr, hiaddr);
3293         } else {
3294             /*
3295              * The binary is dynamic, but we still need to
3296              * select guest_base.  In this case we pass a size.
3297              */
3298             probe_guest_base(image_name, 0, hiaddr - loaddr);
3299 
3300             /*
3301              * Avoid collision with the loader by providing a different
3302              * default load address.
3303              */
3304             load_addr += elf_et_dyn_base;
3305 
3306             /*
3307              * TODO: Better support for mmap alignment is desirable.
3308              * Since we do not have complete control over the guest
3309              * address space, we prefer the kernel to choose some address
3310              * rather than force the use of LOAD_ADDR via MAP_FIXED.
3311              */
3312             if (align) {
3313                 load_addr &= -align;
3314             }
3315         }
3316     }
3317 
3318     /*
3319      * Reserve address space for all of this.
3320      *
3321      * In the case of ET_EXEC, we supply MAP_FIXED_NOREPLACE so that we get
3322      * exactly the address range that is required.  Without reserved_va,
3323      * the guest address space is not isolated.  We have attempted to avoid
3324      * conflict with the host program itself via probe_guest_base, but using
3325      * MAP_FIXED_NOREPLACE instead of MAP_FIXED provides an extra check.
3326      *
3327      * Otherwise this is ET_DYN, and we are searching for a location
3328      * that can hold the memory space required.  If the image is
3329      * pre-linked, LOAD_ADDR will be non-zero, and the kernel should
3330      * honor that address if it happens to be free.
3331      *
3332      * In both cases, we will overwrite pages in this range with mappings
3333      * from the executable.
3334      */
3335     reserve_size = (size_t)hiaddr - loaddr + 1;
3336     align_size = reserve_size;
3337 
3338     if (ehdr->e_type != ET_EXEC && align > qemu_real_host_page_size()) {
3339         align_size += align - 1;
3340     }
3341 
3342     load_addr = target_mmap(load_addr, align_size, PROT_NONE,
3343                             MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
3344                             (ehdr->e_type == ET_EXEC ? MAP_FIXED_NOREPLACE : 0),
3345                             -1, 0);
3346     if (load_addr == -1) {
3347         goto exit_mmap;
3348     }
3349 
3350     if (align_size != reserve_size) {
3351         abi_ulong align_addr = ROUND_UP(load_addr, align);
3352         abi_ulong align_end = align_addr + reserve_size;
3353         abi_ulong load_end = load_addr + align_size;
3354 
3355         if (align_addr != load_addr) {
3356             target_munmap(load_addr, align_addr - load_addr);
3357         }
3358         if (align_end != load_end) {
3359             target_munmap(align_end, load_end - align_end);
3360         }
3361         load_addr = align_addr;
3362     }
3363 
3364     load_bias = load_addr - loaddr;
3365 
3366     if (elf_is_fdpic(ehdr)) {
3367         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
3368             g_malloc(sizeof(*loadsegs) * info->nsegs);
3369 
3370         for (i = 0; i < ehdr->e_phnum; ++i) {
3371             switch (phdr[i].p_type) {
3372             case PT_DYNAMIC:
3373                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
3374                 break;
3375             case PT_LOAD:
3376                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
3377                 loadsegs->p_vaddr = phdr[i].p_vaddr;
3378                 loadsegs->p_memsz = phdr[i].p_memsz;
3379                 ++loadsegs;
3380                 break;
3381             }
3382         }
3383     }
3384 
3385     info->load_bias = load_bias;
3386     info->code_offset = load_bias;
3387     info->data_offset = load_bias;
3388     info->load_addr = load_addr;
3389     info->entry = ehdr->e_entry + load_bias;
3390     info->start_code = -1;
3391     info->end_code = 0;
3392     info->start_data = -1;
3393     info->end_data = 0;
3394     /* Usual start for brk is after all sections of the main executable. */
3395     info->brk = TARGET_PAGE_ALIGN(hiaddr + load_bias);
3396     info->elf_flags = ehdr->e_flags;
3397 
3398     prot_exec = PROT_EXEC;
3399 #ifdef TARGET_AARCH64
3400     /*
3401      * If the BTI feature is present, this indicates that the executable
3402      * pages of the startup binary should be mapped with PROT_BTI, so that
3403      * branch targets are enforced.
3404      *
3405      * The startup binary is either the interpreter or the static executable.
3406      * The interpreter is responsible for all pages of a dynamic executable.
3407      *
3408      * Elf notes are backward compatible to older cpus.
3409      * Do not enable BTI unless it is supported.
3410      */
3411     if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
3412         && (pinterp_name == NULL || *pinterp_name == 0)
3413         && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
3414         prot_exec |= TARGET_PROT_BTI;
3415     }
3416 #endif
3417 
3418     for (i = 0; i < ehdr->e_phnum; i++) {
3419         struct elf_phdr *eppnt = phdr + i;
3420         if (eppnt->p_type == PT_LOAD) {
3421             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
3422             int elf_prot = 0;
3423 
3424             if (eppnt->p_flags & PF_R) {
3425                 elf_prot |= PROT_READ;
3426             }
3427             if (eppnt->p_flags & PF_W) {
3428                 elf_prot |= PROT_WRITE;
3429             }
3430             if (eppnt->p_flags & PF_X) {
3431                 elf_prot |= prot_exec;
3432             }
3433 
3434             vaddr = load_bias + eppnt->p_vaddr;
3435             vaddr_po = vaddr & ~TARGET_PAGE_MASK;
3436             vaddr_ps = vaddr & TARGET_PAGE_MASK;
3437 
3438             vaddr_ef = vaddr + eppnt->p_filesz;
3439             vaddr_em = vaddr + eppnt->p_memsz;
3440 
3441             /*
3442              * Some segments may be completely empty, with a non-zero p_memsz
3443              * but no backing file segment.
3444              */
3445             if (eppnt->p_filesz != 0) {
3446                 error = imgsrc_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
3447                                     elf_prot, MAP_PRIVATE | MAP_FIXED,
3448                                     src, eppnt->p_offset - vaddr_po);
3449                 if (error == -1) {
3450                     goto exit_mmap;
3451                 }
3452             }
3453 
3454             /* If the load segment requests extra zeros (e.g. bss), map it. */
3455             if (vaddr_ef < vaddr_em &&
3456                 !zero_bss(vaddr_ef, vaddr_em, elf_prot, &err)) {
3457                 goto exit_errmsg;
3458             }
3459 
3460             /* Find the full program boundaries.  */
3461             if (elf_prot & PROT_EXEC) {
3462                 if (vaddr < info->start_code) {
3463                     info->start_code = vaddr;
3464                 }
3465                 if (vaddr_ef > info->end_code) {
3466                     info->end_code = vaddr_ef;
3467                 }
3468             }
3469             if (elf_prot & PROT_WRITE) {
3470                 if (vaddr < info->start_data) {
3471                     info->start_data = vaddr;
3472                 }
3473                 if (vaddr_ef > info->end_data) {
3474                     info->end_data = vaddr_ef;
3475                 }
3476             }
3477 #ifdef TARGET_MIPS
3478         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
3479             Mips_elf_abiflags_v0 abiflags;
3480 
3481             if (!imgsrc_read(&abiflags, eppnt->p_offset, sizeof(abiflags),
3482                              src, &err)) {
3483                 goto exit_errmsg;
3484             }
3485             bswap_mips_abiflags(&abiflags);
3486             info->fp_abi = abiflags.fp_abi;
3487 #endif
3488         }
3489     }
3490 
3491     if (info->end_data == 0) {
3492         info->start_data = info->end_code;
3493         info->end_data = info->end_code;
3494     }
3495 
3496     if (qemu_log_enabled()) {
3497         load_symbols(ehdr, src, load_bias);
3498     }
3499 
3500     debuginfo_report_elf(image_name, src->fd, load_bias);
3501 
3502     mmap_unlock();
3503 
3504     close(src->fd);
3505     return;
3506 
3507  exit_mmap:
3508     error_setg_errno(&err, errno, "Error mapping file");
3509     goto exit_errmsg;
3510  exit_errmsg:
3511     error_reportf_err(err, "%s: ", image_name);
3512     exit(-1);
3513 }
3514 
3515 static void load_elf_interp(const char *filename, struct image_info *info,
3516                             char bprm_buf[BPRM_BUF_SIZE])
3517 {
3518     struct elfhdr ehdr;
3519     ImageSource src;
3520     int fd, retval;
3521     Error *err = NULL;
3522 
3523     fd = open(path(filename), O_RDONLY);
3524     if (fd < 0) {
3525         error_setg_file_open(&err, errno, filename);
3526         error_report_err(err);
3527         exit(-1);
3528     }
3529 
3530     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
3531     if (retval < 0) {
3532         error_setg_errno(&err, errno, "Error reading file header");
3533         error_reportf_err(err, "%s: ", filename);
3534         exit(-1);
3535     }
3536 
3537     src.fd = fd;
3538     src.cache = bprm_buf;
3539     src.cache_size = retval;
3540 
3541     load_elf_image(filename, &src, info, &ehdr, NULL);
3542 }
3543 
3544 #ifndef vdso_image_info
3545 #ifdef VDSO_HEADER
3546 #include VDSO_HEADER
3547 #define  vdso_image_info(flags)  &vdso_image_info
3548 #else
3549 #define  vdso_image_info(flags)  NULL
3550 #endif /* VDSO_HEADER */
3551 #endif /* vdso_image_info */
3552 
3553 static void load_elf_vdso(struct image_info *info, const VdsoImageInfo *vdso)
3554 {
3555     ImageSource src;
3556     struct elfhdr ehdr;
3557     abi_ulong load_bias, load_addr;
3558 
3559     src.fd = -1;
3560     src.cache = vdso->image;
3561     src.cache_size = vdso->image_size;
3562 
3563     load_elf_image("<internal-vdso>", &src, info, &ehdr, NULL);
3564     load_addr = info->load_addr;
3565     load_bias = info->load_bias;
3566 
3567     /*
3568      * We need to relocate the VDSO image.  The one built into the kernel
3569      * is built for a fixed address.  The one built for QEMU is not, since
3570      * that requires close control of the guest address space.
3571      * We pre-processed the image to locate all of the addresses that need
3572      * to be updated.
3573      */
3574     for (unsigned i = 0, n = vdso->reloc_count; i < n; i++) {
3575         abi_ulong *addr = g2h_untagged(load_addr + vdso->relocs[i]);
3576         *addr = tswapal(tswapal(*addr) + load_bias);
3577     }
3578 
3579     /* Install signal trampolines, if present. */
3580     if (vdso->sigreturn_ofs) {
3581         default_sigreturn = load_addr + vdso->sigreturn_ofs;
3582     }
3583     if (vdso->rt_sigreturn_ofs) {
3584         default_rt_sigreturn = load_addr + vdso->rt_sigreturn_ofs;
3585     }
3586 
3587     /* Remove write from VDSO segment. */
3588     target_mprotect(info->start_data, info->end_data - info->start_data,
3589                     PROT_READ | PROT_EXEC);
3590 }
3591 
3592 static int symfind(const void *s0, const void *s1)
3593 {
3594     struct elf_sym *sym = (struct elf_sym *)s1;
3595     __typeof(sym->st_value) addr = *(uint64_t *)s0;
3596     int result = 0;
3597 
3598     if (addr < sym->st_value) {
3599         result = -1;
3600     } else if (addr >= sym->st_value + sym->st_size) {
3601         result = 1;
3602     }
3603     return result;
3604 }
3605 
3606 static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr)
3607 {
3608 #if ELF_CLASS == ELFCLASS32
3609     struct elf_sym *syms = s->disas_symtab.elf32;
3610 #else
3611     struct elf_sym *syms = s->disas_symtab.elf64;
3612 #endif
3613 
3614     // binary search
3615     struct elf_sym *sym;
3616 
3617     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
3618     if (sym != NULL) {
3619         return s->disas_strtab + sym->st_name;
3620     }
3621 
3622     return "";
3623 }
3624 
3625 /* FIXME: This should use elf_ops.h.inc  */
3626 static int symcmp(const void *s0, const void *s1)
3627 {
3628     struct elf_sym *sym0 = (struct elf_sym *)s0;
3629     struct elf_sym *sym1 = (struct elf_sym *)s1;
3630     return (sym0->st_value < sym1->st_value)
3631         ? -1
3632         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3633 }
3634 
3635 /* Best attempt to load symbols from this ELF object. */
3636 static void load_symbols(struct elfhdr *hdr, const ImageSource *src,
3637                          abi_ulong load_bias)
3638 {
3639     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3640     g_autofree struct elf_shdr *shdr = NULL;
3641     char *strings = NULL;
3642     struct elf_sym *syms = NULL;
3643     struct elf_sym *new_syms;
3644     uint64_t segsz;
3645 
3646     shnum = hdr->e_shnum;
3647     shdr = imgsrc_read_alloc(hdr->e_shoff, shnum * sizeof(struct elf_shdr),
3648                              src, NULL);
3649     if (shdr == NULL) {
3650         return;
3651     }
3652 
3653     bswap_shdr(shdr, shnum);
3654     for (i = 0; i < shnum; ++i) {
3655         if (shdr[i].sh_type == SHT_SYMTAB) {
3656             sym_idx = i;
3657             str_idx = shdr[i].sh_link;
3658             goto found;
3659         }
3660     }
3661 
3662     /* There will be no symbol table if the file was stripped.  */
3663     return;
3664 
3665  found:
3666     /* Now know where the strtab and symtab are.  Snarf them.  */
3667 
3668     segsz = shdr[str_idx].sh_size;
3669     strings = g_try_malloc(segsz);
3670     if (!strings) {
3671         goto give_up;
3672     }
3673     if (!imgsrc_read(strings, shdr[str_idx].sh_offset, segsz, src, NULL)) {
3674         goto give_up;
3675     }
3676 
3677     segsz = shdr[sym_idx].sh_size;
3678     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3679         /*
3680          * Implausibly large symbol table: give up rather than ploughing
3681          * on with the number of symbols calculation overflowing.
3682          */
3683         goto give_up;
3684     }
3685     nsyms = segsz / sizeof(struct elf_sym);
3686     syms = g_try_malloc(segsz);
3687     if (!syms) {
3688         goto give_up;
3689     }
3690     if (!imgsrc_read(syms, shdr[sym_idx].sh_offset, segsz, src, NULL)) {
3691         goto give_up;
3692     }
3693 
3694     for (i = 0; i < nsyms; ) {
3695         bswap_sym(syms + i);
3696         /* Throw away entries which we do not need.  */
3697         if (syms[i].st_shndx == SHN_UNDEF
3698             || syms[i].st_shndx >= SHN_LORESERVE
3699             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3700             if (i < --nsyms) {
3701                 syms[i] = syms[nsyms];
3702             }
3703         } else {
3704 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3705             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
3706             syms[i].st_value &= ~(target_ulong)1;
3707 #endif
3708             syms[i].st_value += load_bias;
3709             i++;
3710         }
3711     }
3712 
3713     /* No "useful" symbol.  */
3714     if (nsyms == 0) {
3715         goto give_up;
3716     }
3717 
3718     /*
3719      * Attempt to free the storage associated with the local symbols
3720      * that we threw away.  Whether or not this has any effect on the
3721      * memory allocation depends on the malloc implementation and how
3722      * many symbols we managed to discard.
3723      */
3724     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3725     if (new_syms == NULL) {
3726         goto give_up;
3727     }
3728     syms = new_syms;
3729 
3730     qsort(syms, nsyms, sizeof(*syms), symcmp);
3731 
3732     {
3733         struct syminfo *s = g_new(struct syminfo, 1);
3734 
3735         s->disas_strtab = strings;
3736         s->disas_num_syms = nsyms;
3737 #if ELF_CLASS == ELFCLASS32
3738         s->disas_symtab.elf32 = syms;
3739 #else
3740         s->disas_symtab.elf64 = syms;
3741 #endif
3742         s->lookup_symbol = lookup_symbolxx;
3743         s->next = syminfos;
3744         syminfos = s;
3745     }
3746     return;
3747 
3748  give_up:
3749     g_free(strings);
3750     g_free(syms);
3751 }
3752 
3753 uint32_t get_elf_eflags(int fd)
3754 {
3755     struct elfhdr ehdr;
3756     off_t offset;
3757     int ret;
3758 
3759     /* Read ELF header */
3760     offset = lseek(fd, 0, SEEK_SET);
3761     if (offset == (off_t) -1) {
3762         return 0;
3763     }
3764     ret = read(fd, &ehdr, sizeof(ehdr));
3765     if (ret < sizeof(ehdr)) {
3766         return 0;
3767     }
3768     offset = lseek(fd, offset, SEEK_SET);
3769     if (offset == (off_t) -1) {
3770         return 0;
3771     }
3772 
3773     /* Check ELF signature */
3774     if (!elf_check_ident(&ehdr)) {
3775         return 0;
3776     }
3777 
3778     /* check header */
3779     bswap_ehdr(&ehdr);
3780     if (!elf_check_ehdr(&ehdr)) {
3781         return 0;
3782     }
3783 
3784     /* return architecture id */
3785     return ehdr.e_flags;
3786 }
3787 
3788 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3789 {
3790     /*
3791      * We need a copy of the elf header for passing to create_elf_tables.
3792      * We will have overwritten the original when we re-use bprm->buf
3793      * while loading the interpreter.  Allocate the storage for this now
3794      * and let elf_load_image do any swapping that may be required.
3795      */
3796     struct elfhdr ehdr;
3797     struct image_info interp_info, vdso_info;
3798     char *elf_interpreter = NULL;
3799     char *scratch;
3800 
3801     memset(&interp_info, 0, sizeof(interp_info));
3802 #ifdef TARGET_MIPS
3803     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3804 #endif
3805 
3806     load_elf_image(bprm->filename, &bprm->src, info, &ehdr, &elf_interpreter);
3807 
3808     /* Do this so that we can load the interpreter, if need be.  We will
3809        change some of these later */
3810     bprm->p = setup_arg_pages(bprm, info);
3811 
3812     scratch = g_new0(char, TARGET_PAGE_SIZE);
3813     if (STACK_GROWS_DOWN) {
3814         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3815                                    bprm->p, info->stack_limit);
3816         info->file_string = bprm->p;
3817         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3818                                    bprm->p, info->stack_limit);
3819         info->env_strings = bprm->p;
3820         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3821                                    bprm->p, info->stack_limit);
3822         info->arg_strings = bprm->p;
3823     } else {
3824         info->arg_strings = bprm->p;
3825         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3826                                    bprm->p, info->stack_limit);
3827         info->env_strings = bprm->p;
3828         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3829                                    bprm->p, info->stack_limit);
3830         info->file_string = bprm->p;
3831         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3832                                    bprm->p, info->stack_limit);
3833     }
3834 
3835     g_free(scratch);
3836 
3837     if (!bprm->p) {
3838         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3839         exit(-1);
3840     }
3841 
3842     if (elf_interpreter) {
3843         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3844 
3845         /*
3846          * While unusual because of ELF_ET_DYN_BASE, if we are unlucky
3847          * with the mappings the interpreter can be loaded above but
3848          * near the main executable, which can leave very little room
3849          * for the heap.
3850          * If the current brk has less than 16MB, use the end of the
3851          * interpreter.
3852          */
3853         if (interp_info.brk > info->brk &&
3854             interp_info.load_bias - info->brk < 16 * MiB)  {
3855             info->brk = interp_info.brk;
3856         }
3857 
3858         /* If the program interpreter is one of these two, then assume
3859            an iBCS2 image.  Otherwise assume a native linux image.  */
3860 
3861         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3862             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3863             info->personality = PER_SVR4;
3864 
3865             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
3866                and some applications "depend" upon this behavior.  Since
3867                we do not have the power to recompile these, we emulate
3868                the SVr4 behavior.  Sigh.  */
3869             target_mmap(0, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC,
3870                         MAP_FIXED_NOREPLACE | MAP_PRIVATE | MAP_ANONYMOUS,
3871                         -1, 0);
3872         }
3873 #ifdef TARGET_MIPS
3874         info->interp_fp_abi = interp_info.fp_abi;
3875 #endif
3876     }
3877 
3878     /*
3879      * Load a vdso if available, which will amongst other things contain the
3880      * signal trampolines.  Otherwise, allocate a separate page for them.
3881      */
3882     const VdsoImageInfo *vdso = vdso_image_info(info->elf_flags);
3883     if (vdso) {
3884         load_elf_vdso(&vdso_info, vdso);
3885         info->vdso = vdso_info.load_bias;
3886     } else if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
3887         abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
3888                                           PROT_READ | PROT_WRITE,
3889                                           MAP_PRIVATE | MAP_ANON, -1, 0);
3890         if (tramp_page == -1) {
3891             return -errno;
3892         }
3893 
3894         setup_sigtramp(tramp_page);
3895         target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
3896     }
3897 
3898     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &ehdr, info,
3899                                 elf_interpreter ? &interp_info : NULL,
3900                                 vdso ? &vdso_info : NULL);
3901     info->start_stack = bprm->p;
3902 
3903     /* If we have an interpreter, set that as the program's entry point.
3904        Copy the load_bias as well, to help PPC64 interpret the entry
3905        point as a function descriptor.  Do this after creating elf tables
3906        so that we copy the original program entry point into the AUXV.  */
3907     if (elf_interpreter) {
3908         info->load_bias = interp_info.load_bias;
3909         info->entry = interp_info.entry;
3910         g_free(elf_interpreter);
3911     }
3912 
3913 #ifdef USE_ELF_CORE_DUMP
3914     bprm->core_dump = &elf_core_dump;
3915 #endif
3916 
3917     return 0;
3918 }
3919 
3920 #ifdef USE_ELF_CORE_DUMP
3921 #include "exec/translate-all.h"
3922 
3923 /*
3924  * Definitions to generate Intel SVR4-like core files.
3925  * These mostly have the same names as the SVR4 types with "target_elf_"
3926  * tacked on the front to prevent clashes with linux definitions,
3927  * and the typedef forms have been avoided.  This is mostly like
3928  * the SVR4 structure, but more Linuxy, with things that Linux does
3929  * not support and which gdb doesn't really use excluded.
3930  *
3931  * Fields we don't dump (their contents is zero) in linux-user qemu
3932  * are marked with XXX.
3933  *
3934  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3935  *
3936  * Porting ELF coredump for target is (quite) simple process.  First you
3937  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3938  * the target resides):
3939  *
3940  * #define USE_ELF_CORE_DUMP
3941  *
3942  * Next you define type of register set used for dumping.  ELF specification
3943  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3944  *
3945  * typedef <target_regtype> target_elf_greg_t;
3946  * #define ELF_NREG <number of registers>
3947  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3948  *
3949  * Last step is to implement target specific function that copies registers
3950  * from given cpu into just specified register set.  Prototype is:
3951  *
3952  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3953  *                                const CPUArchState *env);
3954  *
3955  * Parameters:
3956  *     regs - copy register values into here (allocated and zeroed by caller)
3957  *     env - copy registers from here
3958  *
3959  * Example for ARM target is provided in this file.
3960  */
3961 
3962 struct target_elf_siginfo {
3963     abi_int    si_signo; /* signal number */
3964     abi_int    si_code;  /* extra code */
3965     abi_int    si_errno; /* errno */
3966 };
3967 
3968 struct target_elf_prstatus {
3969     struct target_elf_siginfo pr_info;      /* Info associated with signal */
3970     abi_short          pr_cursig;    /* Current signal */
3971     abi_ulong          pr_sigpend;   /* XXX */
3972     abi_ulong          pr_sighold;   /* XXX */
3973     target_pid_t       pr_pid;
3974     target_pid_t       pr_ppid;
3975     target_pid_t       pr_pgrp;
3976     target_pid_t       pr_sid;
3977     struct target_timeval pr_utime;  /* XXX User time */
3978     struct target_timeval pr_stime;  /* XXX System time */
3979     struct target_timeval pr_cutime; /* XXX Cumulative user time */
3980     struct target_timeval pr_cstime; /* XXX Cumulative system time */
3981     target_elf_gregset_t      pr_reg;       /* GP registers */
3982     abi_int            pr_fpvalid;   /* XXX */
3983 };
3984 
3985 #define ELF_PRARGSZ     (80) /* Number of chars for args */
3986 
3987 struct target_elf_prpsinfo {
3988     char         pr_state;       /* numeric process state */
3989     char         pr_sname;       /* char for pr_state */
3990     char         pr_zomb;        /* zombie */
3991     char         pr_nice;        /* nice val */
3992     abi_ulong    pr_flag;        /* flags */
3993     target_uid_t pr_uid;
3994     target_gid_t pr_gid;
3995     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3996     /* Lots missing */
3997     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3998     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3999 };
4000 
4001 #ifdef BSWAP_NEEDED
4002 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
4003 {
4004     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
4005     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
4006     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
4007     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
4008     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
4009     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
4010     prstatus->pr_pid = tswap32(prstatus->pr_pid);
4011     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
4012     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
4013     prstatus->pr_sid = tswap32(prstatus->pr_sid);
4014     /* cpu times are not filled, so we skip them */
4015     /* regs should be in correct format already */
4016     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
4017 }
4018 
4019 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
4020 {
4021     psinfo->pr_flag = tswapal(psinfo->pr_flag);
4022     psinfo->pr_uid = tswap16(psinfo->pr_uid);
4023     psinfo->pr_gid = tswap16(psinfo->pr_gid);
4024     psinfo->pr_pid = tswap32(psinfo->pr_pid);
4025     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
4026     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
4027     psinfo->pr_sid = tswap32(psinfo->pr_sid);
4028 }
4029 
4030 static void bswap_note(struct elf_note *en)
4031 {
4032     bswap32s(&en->n_namesz);
4033     bswap32s(&en->n_descsz);
4034     bswap32s(&en->n_type);
4035 }
4036 #else
4037 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
4038 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
4039 static inline void bswap_note(struct elf_note *en) { }
4040 #endif /* BSWAP_NEEDED */
4041 
4042 /*
4043  * Calculate file (dump) size of given memory region.
4044  */
4045 static size_t vma_dump_size(target_ulong start, target_ulong end,
4046                             unsigned long flags)
4047 {
4048     /* The area must be readable. */
4049     if (!(flags & PAGE_READ)) {
4050         return 0;
4051     }
4052 
4053     /*
4054      * Usually we don't dump executable pages as they contain
4055      * non-writable code that debugger can read directly from
4056      * target library etc. If there is no elf header, we dump it.
4057      */
4058     if (!(flags & PAGE_WRITE_ORG) &&
4059         (flags & PAGE_EXEC) &&
4060         memcmp(g2h_untagged(start), ELFMAG, SELFMAG) == 0) {
4061         return 0;
4062     }
4063 
4064     return end - start;
4065 }
4066 
4067 static size_t size_note(const char *name, size_t datasz)
4068 {
4069     size_t namesz = strlen(name) + 1;
4070 
4071     namesz = ROUND_UP(namesz, 4);
4072     datasz = ROUND_UP(datasz, 4);
4073 
4074     return sizeof(struct elf_note) + namesz + datasz;
4075 }
4076 
4077 static void *fill_note(void **pptr, int type, const char *name, size_t datasz)
4078 {
4079     void *ptr = *pptr;
4080     struct elf_note *n = ptr;
4081     size_t namesz = strlen(name) + 1;
4082 
4083     n->n_namesz = namesz;
4084     n->n_descsz = datasz;
4085     n->n_type = type;
4086     bswap_note(n);
4087 
4088     ptr += sizeof(*n);
4089     memcpy(ptr, name, namesz);
4090 
4091     namesz = ROUND_UP(namesz, 4);
4092     datasz = ROUND_UP(datasz, 4);
4093 
4094     *pptr = ptr + namesz + datasz;
4095     return ptr + namesz;
4096 }
4097 
4098 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
4099                             uint32_t flags)
4100 {
4101     memcpy(elf->e_ident, ELFMAG, SELFMAG);
4102 
4103     elf->e_ident[EI_CLASS] = ELF_CLASS;
4104     elf->e_ident[EI_DATA] = ELF_DATA;
4105     elf->e_ident[EI_VERSION] = EV_CURRENT;
4106     elf->e_ident[EI_OSABI] = ELF_OSABI;
4107 
4108     elf->e_type = ET_CORE;
4109     elf->e_machine = machine;
4110     elf->e_version = EV_CURRENT;
4111     elf->e_phoff = sizeof(struct elfhdr);
4112     elf->e_flags = flags;
4113     elf->e_ehsize = sizeof(struct elfhdr);
4114     elf->e_phentsize = sizeof(struct elf_phdr);
4115     elf->e_phnum = segs;
4116 
4117     bswap_ehdr(elf);
4118 }
4119 
4120 static void fill_elf_note_phdr(struct elf_phdr *phdr, size_t sz, off_t offset)
4121 {
4122     phdr->p_type = PT_NOTE;
4123     phdr->p_offset = offset;
4124     phdr->p_filesz = sz;
4125 
4126     bswap_phdr(phdr, 1);
4127 }
4128 
4129 static void fill_prstatus_note(void *data, CPUState *cpu, int signr)
4130 {
4131     /*
4132      * Because note memory is only aligned to 4, and target_elf_prstatus
4133      * may well have higher alignment requirements, fill locally and
4134      * memcpy to the destination afterward.
4135      */
4136     struct target_elf_prstatus prstatus = {
4137         .pr_info.si_signo = signr,
4138         .pr_cursig = signr,
4139         .pr_pid = get_task_state(cpu)->ts_tid,
4140         .pr_ppid = getppid(),
4141         .pr_pgrp = getpgrp(),
4142         .pr_sid = getsid(0),
4143     };
4144 
4145     elf_core_copy_regs(&prstatus.pr_reg, cpu_env(cpu));
4146     bswap_prstatus(&prstatus);
4147     memcpy(data, &prstatus, sizeof(prstatus));
4148 }
4149 
4150 static void fill_prpsinfo_note(void *data, const TaskState *ts)
4151 {
4152     /*
4153      * Because note memory is only aligned to 4, and target_elf_prpsinfo
4154      * may well have higher alignment requirements, fill locally and
4155      * memcpy to the destination afterward.
4156      */
4157     struct target_elf_prpsinfo psinfo = {
4158         .pr_pid = getpid(),
4159         .pr_ppid = getppid(),
4160         .pr_pgrp = getpgrp(),
4161         .pr_sid = getsid(0),
4162         .pr_uid = getuid(),
4163         .pr_gid = getgid(),
4164     };
4165     char *base_filename;
4166     size_t len;
4167 
4168     len = ts->info->env_strings - ts->info->arg_strings;
4169     len = MIN(len, ELF_PRARGSZ);
4170     memcpy(&psinfo.pr_psargs, g2h_untagged(ts->info->arg_strings), len);
4171     for (size_t i = 0; i < len; i++) {
4172         if (psinfo.pr_psargs[i] == 0) {
4173             psinfo.pr_psargs[i] = ' ';
4174         }
4175     }
4176 
4177     base_filename = g_path_get_basename(ts->bprm->filename);
4178     /*
4179      * Using strncpy here is fine: at max-length,
4180      * this field is not NUL-terminated.
4181      */
4182     strncpy(psinfo.pr_fname, base_filename, sizeof(psinfo.pr_fname));
4183     g_free(base_filename);
4184 
4185     bswap_psinfo(&psinfo);
4186     memcpy(data, &psinfo, sizeof(psinfo));
4187 }
4188 
4189 static void fill_auxv_note(void *data, const TaskState *ts)
4190 {
4191     memcpy(data, g2h_untagged(ts->info->saved_auxv), ts->info->auxv_len);
4192 }
4193 
4194 /*
4195  * Constructs name of coredump file.  We have following convention
4196  * for the name:
4197  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
4198  *
4199  * Returns the filename
4200  */
4201 static char *core_dump_filename(const TaskState *ts)
4202 {
4203     g_autoptr(GDateTime) now = g_date_time_new_now_local();
4204     g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
4205     g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
4206 
4207     return g_strdup_printf("qemu_%s_%s_%d.core",
4208                            base_filename, nowstr, (int)getpid());
4209 }
4210 
4211 static int dump_write(int fd, const void *ptr, size_t size)
4212 {
4213     const char *bufp = (const char *)ptr;
4214     ssize_t bytes_written, bytes_left;
4215 
4216     bytes_written = 0;
4217     bytes_left = size;
4218 
4219     /*
4220      * In normal conditions, single write(2) should do but
4221      * in case of socket etc. this mechanism is more portable.
4222      */
4223     do {
4224         bytes_written = write(fd, bufp, bytes_left);
4225         if (bytes_written < 0) {
4226             if (errno == EINTR)
4227                 continue;
4228             return (-1);
4229         } else if (bytes_written == 0) { /* eof */
4230             return (-1);
4231         }
4232         bufp += bytes_written;
4233         bytes_left -= bytes_written;
4234     } while (bytes_left > 0);
4235 
4236     return (0);
4237 }
4238 
4239 static int wmr_page_unprotect_regions(void *opaque, target_ulong start,
4240                                       target_ulong end, unsigned long flags)
4241 {
4242     if ((flags & (PAGE_WRITE | PAGE_WRITE_ORG)) == PAGE_WRITE_ORG) {
4243         size_t step = MAX(TARGET_PAGE_SIZE, qemu_real_host_page_size());
4244 
4245         while (1) {
4246             page_unprotect(start, 0);
4247             if (end - start <= step) {
4248                 break;
4249             }
4250             start += step;
4251         }
4252     }
4253     return 0;
4254 }
4255 
4256 typedef struct {
4257     unsigned count;
4258     size_t size;
4259 } CountAndSizeRegions;
4260 
4261 static int wmr_count_and_size_regions(void *opaque, target_ulong start,
4262                                       target_ulong end, unsigned long flags)
4263 {
4264     CountAndSizeRegions *css = opaque;
4265 
4266     css->count++;
4267     css->size += vma_dump_size(start, end, flags);
4268     return 0;
4269 }
4270 
4271 typedef struct {
4272     struct elf_phdr *phdr;
4273     off_t offset;
4274 } FillRegionPhdr;
4275 
4276 static int wmr_fill_region_phdr(void *opaque, target_ulong start,
4277                                 target_ulong end, unsigned long flags)
4278 {
4279     FillRegionPhdr *d = opaque;
4280     struct elf_phdr *phdr = d->phdr;
4281 
4282     phdr->p_type = PT_LOAD;
4283     phdr->p_vaddr = start;
4284     phdr->p_paddr = 0;
4285     phdr->p_filesz = vma_dump_size(start, end, flags);
4286     phdr->p_offset = d->offset;
4287     d->offset += phdr->p_filesz;
4288     phdr->p_memsz = end - start;
4289     phdr->p_flags = (flags & PAGE_READ ? PF_R : 0)
4290                   | (flags & PAGE_WRITE_ORG ? PF_W : 0)
4291                   | (flags & PAGE_EXEC ? PF_X : 0);
4292     phdr->p_align = ELF_EXEC_PAGESIZE;
4293 
4294     bswap_phdr(phdr, 1);
4295     d->phdr = phdr + 1;
4296     return 0;
4297 }
4298 
4299 static int wmr_write_region(void *opaque, target_ulong start,
4300                             target_ulong end, unsigned long flags)
4301 {
4302     int fd = *(int *)opaque;
4303     size_t size = vma_dump_size(start, end, flags);
4304 
4305     if (!size) {
4306         return 0;
4307     }
4308     return dump_write(fd, g2h_untagged(start), size);
4309 }
4310 
4311 /*
4312  * Write out ELF coredump.
4313  *
4314  * See documentation of ELF object file format in:
4315  * http://www.caldera.com/developers/devspecs/gabi41.pdf
4316  *
4317  * Coredump format in linux is following:
4318  *
4319  * 0   +----------------------+         \
4320  *     | ELF header           | ET_CORE  |
4321  *     +----------------------+          |
4322  *     | ELF program headers  |          |--- headers
4323  *     | - NOTE section       |          |
4324  *     | - PT_LOAD sections   |          |
4325  *     +----------------------+         /
4326  *     | NOTEs:               |
4327  *     | - NT_PRSTATUS        |
4328  *     | - NT_PRSINFO         |
4329  *     | - NT_AUXV            |
4330  *     +----------------------+ <-- aligned to target page
4331  *     | Process memory dump  |
4332  *     :                      :
4333  *     .                      .
4334  *     :                      :
4335  *     |                      |
4336  *     +----------------------+
4337  *
4338  * NT_PRSTATUS -> struct elf_prstatus (per thread)
4339  * NT_PRSINFO  -> struct elf_prpsinfo
4340  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
4341  *
4342  * Format follows System V format as close as possible.  Current
4343  * version limitations are as follows:
4344  *     - no floating point registers are dumped
4345  *
4346  * Function returns 0 in case of success, negative errno otherwise.
4347  *
4348  * TODO: make this work also during runtime: it should be
4349  * possible to force coredump from running process and then
4350  * continue processing.  For example qemu could set up SIGUSR2
4351  * handler (provided that target process haven't registered
4352  * handler for that) that does the dump when signal is received.
4353  */
4354 static int elf_core_dump(int signr, const CPUArchState *env)
4355 {
4356     const CPUState *cpu = env_cpu_const(env);
4357     const TaskState *ts = (const TaskState *)get_task_state((CPUState *)cpu);
4358     struct rlimit dumpsize;
4359     CountAndSizeRegions css;
4360     off_t offset, note_offset, data_offset;
4361     size_t note_size;
4362     int cpus, ret;
4363     int fd = -1;
4364     CPUState *cpu_iter;
4365 
4366     if (prctl(PR_GET_DUMPABLE) == 0) {
4367         return 0;
4368     }
4369 
4370     if (getrlimit(RLIMIT_CORE, &dumpsize) < 0 || dumpsize.rlim_cur == 0) {
4371         return 0;
4372     }
4373 
4374     cpu_list_lock();
4375     mmap_lock();
4376 
4377     /* By unprotecting, we merge vmas that might be split. */
4378     walk_memory_regions(NULL, wmr_page_unprotect_regions);
4379 
4380     /*
4381      * Walk through target process memory mappings and
4382      * set up structure containing this information.
4383      */
4384     memset(&css, 0, sizeof(css));
4385     walk_memory_regions(&css, wmr_count_and_size_regions);
4386 
4387     cpus = 0;
4388     CPU_FOREACH(cpu_iter) {
4389         cpus++;
4390     }
4391 
4392     offset = sizeof(struct elfhdr);
4393     offset += (css.count + 1) * sizeof(struct elf_phdr);
4394     note_offset = offset;
4395 
4396     offset += size_note("CORE", ts->info->auxv_len);
4397     offset += size_note("CORE", sizeof(struct target_elf_prpsinfo));
4398     offset += size_note("CORE", sizeof(struct target_elf_prstatus)) * cpus;
4399     note_size = offset - note_offset;
4400     data_offset = ROUND_UP(offset, ELF_EXEC_PAGESIZE);
4401 
4402     /* Do not dump if the corefile size exceeds the limit. */
4403     if (dumpsize.rlim_cur != RLIM_INFINITY
4404         && dumpsize.rlim_cur < data_offset + css.size) {
4405         errno = 0;
4406         goto out;
4407     }
4408 
4409     {
4410         g_autofree char *corefile = core_dump_filename(ts);
4411         fd = open(corefile, O_WRONLY | O_CREAT | O_TRUNC,
4412                   S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH);
4413     }
4414     if (fd < 0) {
4415         goto out;
4416     }
4417 
4418     /*
4419      * There is a fair amount of alignment padding within the notes
4420      * as well as preceeding the process memory.  Allocate a zeroed
4421      * block to hold it all.  Write all of the headers directly into
4422      * this buffer and then write it out as a block.
4423      */
4424     {
4425         g_autofree void *header = g_malloc0(data_offset);
4426         FillRegionPhdr frp;
4427         void *hptr, *dptr;
4428 
4429         /* Create elf file header. */
4430         hptr = header;
4431         fill_elf_header(hptr, css.count + 1, ELF_MACHINE, 0);
4432         hptr += sizeof(struct elfhdr);
4433 
4434         /* Create elf program headers. */
4435         fill_elf_note_phdr(hptr, note_size, note_offset);
4436         hptr += sizeof(struct elf_phdr);
4437 
4438         frp.phdr = hptr;
4439         frp.offset = data_offset;
4440         walk_memory_regions(&frp, wmr_fill_region_phdr);
4441         hptr = frp.phdr;
4442 
4443         /* Create the notes. */
4444         dptr = fill_note(&hptr, NT_AUXV, "CORE", ts->info->auxv_len);
4445         fill_auxv_note(dptr, ts);
4446 
4447         dptr = fill_note(&hptr, NT_PRPSINFO, "CORE",
4448                          sizeof(struct target_elf_prpsinfo));
4449         fill_prpsinfo_note(dptr, ts);
4450 
4451         CPU_FOREACH(cpu_iter) {
4452             dptr = fill_note(&hptr, NT_PRSTATUS, "CORE",
4453                              sizeof(struct target_elf_prstatus));
4454             fill_prstatus_note(dptr, cpu_iter, cpu_iter == cpu ? signr : 0);
4455         }
4456 
4457         if (dump_write(fd, header, data_offset) < 0) {
4458             goto out;
4459         }
4460     }
4461 
4462     /*
4463      * Finally write process memory into the corefile as well.
4464      */
4465     if (walk_memory_regions(&fd, wmr_write_region) < 0) {
4466         goto out;
4467     }
4468     errno = 0;
4469 
4470  out:
4471     ret = -errno;
4472     mmap_unlock();
4473     cpu_list_unlock();
4474     if (fd >= 0) {
4475         close(fd);
4476     }
4477     return ret;
4478 }
4479 #endif /* USE_ELF_CORE_DUMP */
4480 
4481 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4482 {
4483     init_thread(regs, infop);
4484 }
4485