xref: /openbmc/qemu/linux-user/elfload.c (revision 22d2e5351a18aff5a9c7e3984b50ecce61ff8975)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7 
8 #include "qemu.h"
9 #include "user-internals.h"
10 #include "signal-common.h"
11 #include "loader.h"
12 #include "user-mmap.h"
13 #include "disas/disas.h"
14 #include "qemu/bitops.h"
15 #include "qemu/path.h"
16 #include "qemu/queue.h"
17 #include "qemu/guest-random.h"
18 #include "qemu/units.h"
19 #include "qemu/selfmap.h"
20 #include "qemu/lockable.h"
21 #include "qapi/error.h"
22 #include "qemu/error-report.h"
23 #include "target_signal.h"
24 #include "accel/tcg/debuginfo.h"
25 
26 #ifdef _ARCH_PPC64
27 #undef ARCH_DLINFO
28 #undef ELF_PLATFORM
29 #undef ELF_HWCAP
30 #undef ELF_HWCAP2
31 #undef ELF_CLASS
32 #undef ELF_DATA
33 #undef ELF_ARCH
34 #endif
35 
36 #define ELF_OSABI   ELFOSABI_SYSV
37 
38 /* from personality.h */
39 
40 /*
41  * Flags for bug emulation.
42  *
43  * These occupy the top three bytes.
44  */
45 enum {
46     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
47     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
48                                            descriptors (signal handling) */
49     MMAP_PAGE_ZERO =    0x0100000,
50     ADDR_COMPAT_LAYOUT = 0x0200000,
51     READ_IMPLIES_EXEC = 0x0400000,
52     ADDR_LIMIT_32BIT =  0x0800000,
53     SHORT_INODE =       0x1000000,
54     WHOLE_SECONDS =     0x2000000,
55     STICKY_TIMEOUTS =   0x4000000,
56     ADDR_LIMIT_3GB =    0x8000000,
57 };
58 
59 /*
60  * Personality types.
61  *
62  * These go in the low byte.  Avoid using the top bit, it will
63  * conflict with error returns.
64  */
65 enum {
66     PER_LINUX =         0x0000,
67     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
68     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
69     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
70     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
71     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
72     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
73     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
74     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
75     PER_BSD =           0x0006,
76     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
77     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
78     PER_LINUX32 =       0x0008,
79     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
80     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
81     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
82     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
83     PER_RISCOS =        0x000c,
84     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
85     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
86     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
87     PER_HPUX =          0x0010,
88     PER_MASK =          0x00ff,
89 };
90 
91 /*
92  * Return the base personality without flags.
93  */
94 #define personality(pers)       (pers & PER_MASK)
95 
96 int info_is_fdpic(struct image_info *info)
97 {
98     return info->personality == PER_LINUX_FDPIC;
99 }
100 
101 /* this flag is uneffective under linux too, should be deleted */
102 #ifndef MAP_DENYWRITE
103 #define MAP_DENYWRITE 0
104 #endif
105 
106 /* should probably go in elf.h */
107 #ifndef ELIBBAD
108 #define ELIBBAD 80
109 #endif
110 
111 #if TARGET_BIG_ENDIAN
112 #define ELF_DATA        ELFDATA2MSB
113 #else
114 #define ELF_DATA        ELFDATA2LSB
115 #endif
116 
117 #ifdef TARGET_ABI_MIPSN32
118 typedef abi_ullong      target_elf_greg_t;
119 #define tswapreg(ptr)   tswap64(ptr)
120 #else
121 typedef abi_ulong       target_elf_greg_t;
122 #define tswapreg(ptr)   tswapal(ptr)
123 #endif
124 
125 #ifdef USE_UID16
126 typedef abi_ushort      target_uid_t;
127 typedef abi_ushort      target_gid_t;
128 #else
129 typedef abi_uint        target_uid_t;
130 typedef abi_uint        target_gid_t;
131 #endif
132 typedef abi_int         target_pid_t;
133 
134 #ifdef TARGET_I386
135 
136 #define ELF_HWCAP get_elf_hwcap()
137 
138 static uint32_t get_elf_hwcap(void)
139 {
140     X86CPU *cpu = X86_CPU(thread_cpu);
141 
142     return cpu->env.features[FEAT_1_EDX];
143 }
144 
145 #ifdef TARGET_X86_64
146 #define ELF_START_MMAP 0x2aaaaab000ULL
147 
148 #define ELF_CLASS      ELFCLASS64
149 #define ELF_ARCH       EM_X86_64
150 
151 #define ELF_PLATFORM   "x86_64"
152 
153 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
154 {
155     regs->rax = 0;
156     regs->rsp = infop->start_stack;
157     regs->rip = infop->entry;
158 }
159 
160 #define ELF_NREG    27
161 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
162 
163 /*
164  * Note that ELF_NREG should be 29 as there should be place for
165  * TRAPNO and ERR "registers" as well but linux doesn't dump
166  * those.
167  *
168  * See linux kernel: arch/x86/include/asm/elf.h
169  */
170 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
171 {
172     (*regs)[0] = tswapreg(env->regs[15]);
173     (*regs)[1] = tswapreg(env->regs[14]);
174     (*regs)[2] = tswapreg(env->regs[13]);
175     (*regs)[3] = tswapreg(env->regs[12]);
176     (*regs)[4] = tswapreg(env->regs[R_EBP]);
177     (*regs)[5] = tswapreg(env->regs[R_EBX]);
178     (*regs)[6] = tswapreg(env->regs[11]);
179     (*regs)[7] = tswapreg(env->regs[10]);
180     (*regs)[8] = tswapreg(env->regs[9]);
181     (*regs)[9] = tswapreg(env->regs[8]);
182     (*regs)[10] = tswapreg(env->regs[R_EAX]);
183     (*regs)[11] = tswapreg(env->regs[R_ECX]);
184     (*regs)[12] = tswapreg(env->regs[R_EDX]);
185     (*regs)[13] = tswapreg(env->regs[R_ESI]);
186     (*regs)[14] = tswapreg(env->regs[R_EDI]);
187     (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
188     (*regs)[16] = tswapreg(env->eip);
189     (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
190     (*regs)[18] = tswapreg(env->eflags);
191     (*regs)[19] = tswapreg(env->regs[R_ESP]);
192     (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
193     (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
194     (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
195     (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
196     (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
197     (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
198     (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
199 }
200 
201 #if ULONG_MAX > UINT32_MAX
202 #define INIT_GUEST_COMMPAGE
203 static bool init_guest_commpage(void)
204 {
205     /*
206      * The vsyscall page is at a high negative address aka kernel space,
207      * which means that we cannot actually allocate it with target_mmap.
208      * We still should be able to use page_set_flags, unless the user
209      * has specified -R reserved_va, which would trigger an assert().
210      */
211     if (reserved_va != 0 &&
212         TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) {
213         error_report("Cannot allocate vsyscall page");
214         exit(EXIT_FAILURE);
215     }
216     page_set_flags(TARGET_VSYSCALL_PAGE,
217                    TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK,
218                    PAGE_EXEC | PAGE_VALID);
219     return true;
220 }
221 #endif
222 #else
223 
224 #define ELF_START_MMAP 0x80000000
225 
226 /*
227  * This is used to ensure we don't load something for the wrong architecture.
228  */
229 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
230 
231 /*
232  * These are used to set parameters in the core dumps.
233  */
234 #define ELF_CLASS       ELFCLASS32
235 #define ELF_ARCH        EM_386
236 
237 #define ELF_PLATFORM get_elf_platform()
238 #define EXSTACK_DEFAULT true
239 
240 static const char *get_elf_platform(void)
241 {
242     static char elf_platform[] = "i386";
243     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
244     if (family > 6) {
245         family = 6;
246     }
247     if (family >= 3) {
248         elf_platform[1] = '0' + family;
249     }
250     return elf_platform;
251 }
252 
253 static inline void init_thread(struct target_pt_regs *regs,
254                                struct image_info *infop)
255 {
256     regs->esp = infop->start_stack;
257     regs->eip = infop->entry;
258 
259     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
260        starts %edx contains a pointer to a function which might be
261        registered using `atexit'.  This provides a mean for the
262        dynamic linker to call DT_FINI functions for shared libraries
263        that have been loaded before the code runs.
264 
265        A value of 0 tells we have no such handler.  */
266     regs->edx = 0;
267 }
268 
269 #define ELF_NREG    17
270 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
271 
272 /*
273  * Note that ELF_NREG should be 19 as there should be place for
274  * TRAPNO and ERR "registers" as well but linux doesn't dump
275  * those.
276  *
277  * See linux kernel: arch/x86/include/asm/elf.h
278  */
279 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
280 {
281     (*regs)[0] = tswapreg(env->regs[R_EBX]);
282     (*regs)[1] = tswapreg(env->regs[R_ECX]);
283     (*regs)[2] = tswapreg(env->regs[R_EDX]);
284     (*regs)[3] = tswapreg(env->regs[R_ESI]);
285     (*regs)[4] = tswapreg(env->regs[R_EDI]);
286     (*regs)[5] = tswapreg(env->regs[R_EBP]);
287     (*regs)[6] = tswapreg(env->regs[R_EAX]);
288     (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
289     (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
290     (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
291     (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
292     (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
293     (*regs)[12] = tswapreg(env->eip);
294     (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
295     (*regs)[14] = tswapreg(env->eflags);
296     (*regs)[15] = tswapreg(env->regs[R_ESP]);
297     (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
298 }
299 #endif
300 
301 #define USE_ELF_CORE_DUMP
302 #define ELF_EXEC_PAGESIZE       4096
303 
304 #endif
305 
306 #ifdef TARGET_ARM
307 
308 #ifndef TARGET_AARCH64
309 /* 32 bit ARM definitions */
310 
311 #define ELF_START_MMAP 0x80000000
312 
313 #define ELF_ARCH        EM_ARM
314 #define ELF_CLASS       ELFCLASS32
315 #define EXSTACK_DEFAULT true
316 
317 static inline void init_thread(struct target_pt_regs *regs,
318                                struct image_info *infop)
319 {
320     abi_long stack = infop->start_stack;
321     memset(regs, 0, sizeof(*regs));
322 
323     regs->uregs[16] = ARM_CPU_MODE_USR;
324     if (infop->entry & 1) {
325         regs->uregs[16] |= CPSR_T;
326     }
327     regs->uregs[15] = infop->entry & 0xfffffffe;
328     regs->uregs[13] = infop->start_stack;
329     /* FIXME - what to for failure of get_user()? */
330     get_user_ual(regs->uregs[2], stack + 8); /* envp */
331     get_user_ual(regs->uregs[1], stack + 4); /* envp */
332     /* XXX: it seems that r0 is zeroed after ! */
333     regs->uregs[0] = 0;
334     /* For uClinux PIC binaries.  */
335     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
336     regs->uregs[10] = infop->start_data;
337 
338     /* Support ARM FDPIC.  */
339     if (info_is_fdpic(infop)) {
340         /* As described in the ABI document, r7 points to the loadmap info
341          * prepared by the kernel. If an interpreter is needed, r8 points
342          * to the interpreter loadmap and r9 points to the interpreter
343          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
344          * r9 points to the main program PT_DYNAMIC info.
345          */
346         regs->uregs[7] = infop->loadmap_addr;
347         if (infop->interpreter_loadmap_addr) {
348             /* Executable is dynamically loaded.  */
349             regs->uregs[8] = infop->interpreter_loadmap_addr;
350             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
351         } else {
352             regs->uregs[8] = 0;
353             regs->uregs[9] = infop->pt_dynamic_addr;
354         }
355     }
356 }
357 
358 #define ELF_NREG    18
359 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
360 
361 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
362 {
363     (*regs)[0] = tswapreg(env->regs[0]);
364     (*regs)[1] = tswapreg(env->regs[1]);
365     (*regs)[2] = tswapreg(env->regs[2]);
366     (*regs)[3] = tswapreg(env->regs[3]);
367     (*regs)[4] = tswapreg(env->regs[4]);
368     (*regs)[5] = tswapreg(env->regs[5]);
369     (*regs)[6] = tswapreg(env->regs[6]);
370     (*regs)[7] = tswapreg(env->regs[7]);
371     (*regs)[8] = tswapreg(env->regs[8]);
372     (*regs)[9] = tswapreg(env->regs[9]);
373     (*regs)[10] = tswapreg(env->regs[10]);
374     (*regs)[11] = tswapreg(env->regs[11]);
375     (*regs)[12] = tswapreg(env->regs[12]);
376     (*regs)[13] = tswapreg(env->regs[13]);
377     (*regs)[14] = tswapreg(env->regs[14]);
378     (*regs)[15] = tswapreg(env->regs[15]);
379 
380     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
381     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
382 }
383 
384 #define USE_ELF_CORE_DUMP
385 #define ELF_EXEC_PAGESIZE       4096
386 
387 enum
388 {
389     ARM_HWCAP_ARM_SWP       = 1 << 0,
390     ARM_HWCAP_ARM_HALF      = 1 << 1,
391     ARM_HWCAP_ARM_THUMB     = 1 << 2,
392     ARM_HWCAP_ARM_26BIT     = 1 << 3,
393     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
394     ARM_HWCAP_ARM_FPA       = 1 << 5,
395     ARM_HWCAP_ARM_VFP       = 1 << 6,
396     ARM_HWCAP_ARM_EDSP      = 1 << 7,
397     ARM_HWCAP_ARM_JAVA      = 1 << 8,
398     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
399     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
400     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
401     ARM_HWCAP_ARM_NEON      = 1 << 12,
402     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
403     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
404     ARM_HWCAP_ARM_TLS       = 1 << 15,
405     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
406     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
407     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
408     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
409     ARM_HWCAP_ARM_LPAE      = 1 << 20,
410     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
411 };
412 
413 enum {
414     ARM_HWCAP2_ARM_AES      = 1 << 0,
415     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
416     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
417     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
418     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
419 };
420 
421 /* The commpage only exists for 32 bit kernels */
422 
423 #define HI_COMMPAGE (intptr_t)0xffff0f00u
424 
425 static bool init_guest_commpage(void)
426 {
427     ARMCPU *cpu = ARM_CPU(thread_cpu);
428     abi_ptr commpage;
429     void *want;
430     void *addr;
431 
432     /*
433      * M-profile allocates maximum of 2GB address space, so can never
434      * allocate the commpage.  Skip it.
435      */
436     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
437         return true;
438     }
439 
440     commpage = HI_COMMPAGE & -qemu_host_page_size;
441     want = g2h_untagged(commpage);
442     addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
443                 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
444 
445     if (addr == MAP_FAILED) {
446         perror("Allocating guest commpage");
447         exit(EXIT_FAILURE);
448     }
449     if (addr != want) {
450         return false;
451     }
452 
453     /* Set kernel helper versions; rest of page is 0.  */
454     __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
455 
456     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
457         perror("Protecting guest commpage");
458         exit(EXIT_FAILURE);
459     }
460 
461     page_set_flags(commpage, commpage | ~qemu_host_page_mask,
462                    PAGE_READ | PAGE_EXEC | PAGE_VALID);
463     return true;
464 }
465 
466 #define ELF_HWCAP get_elf_hwcap()
467 #define ELF_HWCAP2 get_elf_hwcap2()
468 
469 static uint32_t get_elf_hwcap(void)
470 {
471     ARMCPU *cpu = ARM_CPU(thread_cpu);
472     uint32_t hwcaps = 0;
473 
474     hwcaps |= ARM_HWCAP_ARM_SWP;
475     hwcaps |= ARM_HWCAP_ARM_HALF;
476     hwcaps |= ARM_HWCAP_ARM_THUMB;
477     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
478 
479     /* probe for the extra features */
480 #define GET_FEATURE(feat, hwcap) \
481     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
482 
483 #define GET_FEATURE_ID(feat, hwcap) \
484     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
485 
486     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
487     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
488     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
489     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
490     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
491     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
492     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
493     GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
494     GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
495     GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
496 
497     if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
498         cpu_isar_feature(aa32_fpdp_v3, cpu)) {
499         hwcaps |= ARM_HWCAP_ARM_VFPv3;
500         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
501             hwcaps |= ARM_HWCAP_ARM_VFPD32;
502         } else {
503             hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
504         }
505     }
506     GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
507 
508     return hwcaps;
509 }
510 
511 static uint32_t get_elf_hwcap2(void)
512 {
513     ARMCPU *cpu = ARM_CPU(thread_cpu);
514     uint32_t hwcaps = 0;
515 
516     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
517     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
518     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
519     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
520     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
521     return hwcaps;
522 }
523 
524 #undef GET_FEATURE
525 #undef GET_FEATURE_ID
526 
527 #define ELF_PLATFORM get_elf_platform()
528 
529 static const char *get_elf_platform(void)
530 {
531     CPUARMState *env = thread_cpu->env_ptr;
532 
533 #if TARGET_BIG_ENDIAN
534 # define END  "b"
535 #else
536 # define END  "l"
537 #endif
538 
539     if (arm_feature(env, ARM_FEATURE_V8)) {
540         return "v8" END;
541     } else if (arm_feature(env, ARM_FEATURE_V7)) {
542         if (arm_feature(env, ARM_FEATURE_M)) {
543             return "v7m" END;
544         } else {
545             return "v7" END;
546         }
547     } else if (arm_feature(env, ARM_FEATURE_V6)) {
548         return "v6" END;
549     } else if (arm_feature(env, ARM_FEATURE_V5)) {
550         return "v5" END;
551     } else {
552         return "v4" END;
553     }
554 
555 #undef END
556 }
557 
558 #else
559 /* 64 bit ARM definitions */
560 #define ELF_START_MMAP 0x80000000
561 
562 #define ELF_ARCH        EM_AARCH64
563 #define ELF_CLASS       ELFCLASS64
564 #if TARGET_BIG_ENDIAN
565 # define ELF_PLATFORM    "aarch64_be"
566 #else
567 # define ELF_PLATFORM    "aarch64"
568 #endif
569 
570 static inline void init_thread(struct target_pt_regs *regs,
571                                struct image_info *infop)
572 {
573     abi_long stack = infop->start_stack;
574     memset(regs, 0, sizeof(*regs));
575 
576     regs->pc = infop->entry & ~0x3ULL;
577     regs->sp = stack;
578 }
579 
580 #define ELF_NREG    34
581 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
582 
583 static void elf_core_copy_regs(target_elf_gregset_t *regs,
584                                const CPUARMState *env)
585 {
586     int i;
587 
588     for (i = 0; i < 32; i++) {
589         (*regs)[i] = tswapreg(env->xregs[i]);
590     }
591     (*regs)[32] = tswapreg(env->pc);
592     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
593 }
594 
595 #define USE_ELF_CORE_DUMP
596 #define ELF_EXEC_PAGESIZE       4096
597 
598 enum {
599     ARM_HWCAP_A64_FP            = 1 << 0,
600     ARM_HWCAP_A64_ASIMD         = 1 << 1,
601     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
602     ARM_HWCAP_A64_AES           = 1 << 3,
603     ARM_HWCAP_A64_PMULL         = 1 << 4,
604     ARM_HWCAP_A64_SHA1          = 1 << 5,
605     ARM_HWCAP_A64_SHA2          = 1 << 6,
606     ARM_HWCAP_A64_CRC32         = 1 << 7,
607     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
608     ARM_HWCAP_A64_FPHP          = 1 << 9,
609     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
610     ARM_HWCAP_A64_CPUID         = 1 << 11,
611     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
612     ARM_HWCAP_A64_JSCVT         = 1 << 13,
613     ARM_HWCAP_A64_FCMA          = 1 << 14,
614     ARM_HWCAP_A64_LRCPC         = 1 << 15,
615     ARM_HWCAP_A64_DCPOP         = 1 << 16,
616     ARM_HWCAP_A64_SHA3          = 1 << 17,
617     ARM_HWCAP_A64_SM3           = 1 << 18,
618     ARM_HWCAP_A64_SM4           = 1 << 19,
619     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
620     ARM_HWCAP_A64_SHA512        = 1 << 21,
621     ARM_HWCAP_A64_SVE           = 1 << 22,
622     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
623     ARM_HWCAP_A64_DIT           = 1 << 24,
624     ARM_HWCAP_A64_USCAT         = 1 << 25,
625     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
626     ARM_HWCAP_A64_FLAGM         = 1 << 27,
627     ARM_HWCAP_A64_SSBS          = 1 << 28,
628     ARM_HWCAP_A64_SB            = 1 << 29,
629     ARM_HWCAP_A64_PACA          = 1 << 30,
630     ARM_HWCAP_A64_PACG          = 1UL << 31,
631 
632     ARM_HWCAP2_A64_DCPODP       = 1 << 0,
633     ARM_HWCAP2_A64_SVE2         = 1 << 1,
634     ARM_HWCAP2_A64_SVEAES       = 1 << 2,
635     ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
636     ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
637     ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
638     ARM_HWCAP2_A64_SVESM4       = 1 << 6,
639     ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
640     ARM_HWCAP2_A64_FRINT        = 1 << 8,
641     ARM_HWCAP2_A64_SVEI8MM      = 1 << 9,
642     ARM_HWCAP2_A64_SVEF32MM     = 1 << 10,
643     ARM_HWCAP2_A64_SVEF64MM     = 1 << 11,
644     ARM_HWCAP2_A64_SVEBF16      = 1 << 12,
645     ARM_HWCAP2_A64_I8MM         = 1 << 13,
646     ARM_HWCAP2_A64_BF16         = 1 << 14,
647     ARM_HWCAP2_A64_DGH          = 1 << 15,
648     ARM_HWCAP2_A64_RNG          = 1 << 16,
649     ARM_HWCAP2_A64_BTI          = 1 << 17,
650     ARM_HWCAP2_A64_MTE          = 1 << 18,
651     ARM_HWCAP2_A64_ECV          = 1 << 19,
652     ARM_HWCAP2_A64_AFP          = 1 << 20,
653     ARM_HWCAP2_A64_RPRES        = 1 << 21,
654     ARM_HWCAP2_A64_MTE3         = 1 << 22,
655     ARM_HWCAP2_A64_SME          = 1 << 23,
656     ARM_HWCAP2_A64_SME_I16I64   = 1 << 24,
657     ARM_HWCAP2_A64_SME_F64F64   = 1 << 25,
658     ARM_HWCAP2_A64_SME_I8I32    = 1 << 26,
659     ARM_HWCAP2_A64_SME_F16F32   = 1 << 27,
660     ARM_HWCAP2_A64_SME_B16F32   = 1 << 28,
661     ARM_HWCAP2_A64_SME_F32F32   = 1 << 29,
662     ARM_HWCAP2_A64_SME_FA64     = 1 << 30,
663 };
664 
665 #define ELF_HWCAP   get_elf_hwcap()
666 #define ELF_HWCAP2  get_elf_hwcap2()
667 
668 #define GET_FEATURE_ID(feat, hwcap) \
669     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
670 
671 static uint32_t get_elf_hwcap(void)
672 {
673     ARMCPU *cpu = ARM_CPU(thread_cpu);
674     uint32_t hwcaps = 0;
675 
676     hwcaps |= ARM_HWCAP_A64_FP;
677     hwcaps |= ARM_HWCAP_A64_ASIMD;
678     hwcaps |= ARM_HWCAP_A64_CPUID;
679 
680     /* probe for the extra features */
681 
682     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
683     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
684     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
685     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
686     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
687     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
688     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
689     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
690     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
691     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
692     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
693     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
694     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
695     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
696     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
697     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
698     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
699     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
700     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
701     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
702     GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
703     GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
704     GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
705 
706     return hwcaps;
707 }
708 
709 static uint32_t get_elf_hwcap2(void)
710 {
711     ARMCPU *cpu = ARM_CPU(thread_cpu);
712     uint32_t hwcaps = 0;
713 
714     GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
715     GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
716     GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
717     GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
718     GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
719     GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
720     GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
721     GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
722     GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
723     GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
724     GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
725     GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
726     GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
727     GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
728     GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
729     GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
730     GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
731     GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
732     GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME |
733                               ARM_HWCAP2_A64_SME_F32F32 |
734                               ARM_HWCAP2_A64_SME_B16F32 |
735                               ARM_HWCAP2_A64_SME_F16F32 |
736                               ARM_HWCAP2_A64_SME_I8I32));
737     GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64);
738     GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64);
739     GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64);
740 
741     return hwcaps;
742 }
743 
744 #undef GET_FEATURE_ID
745 
746 #endif /* not TARGET_AARCH64 */
747 #endif /* TARGET_ARM */
748 
749 #ifdef TARGET_SPARC
750 #ifdef TARGET_SPARC64
751 
752 #define ELF_START_MMAP 0x80000000
753 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
754                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
755 #ifndef TARGET_ABI32
756 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
757 #else
758 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
759 #endif
760 
761 #define ELF_CLASS   ELFCLASS64
762 #define ELF_ARCH    EM_SPARCV9
763 #else
764 #define ELF_START_MMAP 0x80000000
765 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
766                     | HWCAP_SPARC_MULDIV)
767 #define ELF_CLASS   ELFCLASS32
768 #define ELF_ARCH    EM_SPARC
769 #endif /* TARGET_SPARC64 */
770 
771 static inline void init_thread(struct target_pt_regs *regs,
772                                struct image_info *infop)
773 {
774     /* Note that target_cpu_copy_regs does not read psr/tstate. */
775     regs->pc = infop->entry;
776     regs->npc = regs->pc + 4;
777     regs->y = 0;
778     regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
779                         - TARGET_STACK_BIAS);
780 }
781 #endif /* TARGET_SPARC */
782 
783 #ifdef TARGET_PPC
784 
785 #define ELF_MACHINE    PPC_ELF_MACHINE
786 #define ELF_START_MMAP 0x80000000
787 
788 #if defined(TARGET_PPC64)
789 
790 #define elf_check_arch(x) ( (x) == EM_PPC64 )
791 
792 #define ELF_CLASS       ELFCLASS64
793 
794 #else
795 
796 #define ELF_CLASS       ELFCLASS32
797 #define EXSTACK_DEFAULT true
798 
799 #endif
800 
801 #define ELF_ARCH        EM_PPC
802 
803 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
804    See arch/powerpc/include/asm/cputable.h.  */
805 enum {
806     QEMU_PPC_FEATURE_32 = 0x80000000,
807     QEMU_PPC_FEATURE_64 = 0x40000000,
808     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
809     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
810     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
811     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
812     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
813     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
814     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
815     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
816     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
817     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
818     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
819     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
820     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
821     QEMU_PPC_FEATURE_CELL = 0x00010000,
822     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
823     QEMU_PPC_FEATURE_SMT = 0x00004000,
824     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
825     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
826     QEMU_PPC_FEATURE_PA6T = 0x00000800,
827     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
828     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
829     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
830     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
831     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
832 
833     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
834     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
835 
836     /* Feature definitions in AT_HWCAP2.  */
837     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
838     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
839     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
840     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
841     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
842     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
843     QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
844     QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
845     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
846     QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
847     QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
848     QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
849     QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
850     QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */
851     QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */
852 };
853 
854 #define ELF_HWCAP get_elf_hwcap()
855 
856 static uint32_t get_elf_hwcap(void)
857 {
858     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
859     uint32_t features = 0;
860 
861     /* We don't have to be terribly complete here; the high points are
862        Altivec/FP/SPE support.  Anything else is just a bonus.  */
863 #define GET_FEATURE(flag, feature)                                      \
864     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
865 #define GET_FEATURE2(flags, feature) \
866     do { \
867         if ((cpu->env.insns_flags2 & flags) == flags) { \
868             features |= feature; \
869         } \
870     } while (0)
871     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
872     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
873     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
874     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
875     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
876     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
877     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
878     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
879     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
880     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
881     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
882                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
883                   QEMU_PPC_FEATURE_ARCH_2_06);
884 #undef GET_FEATURE
885 #undef GET_FEATURE2
886 
887     return features;
888 }
889 
890 #define ELF_HWCAP2 get_elf_hwcap2()
891 
892 static uint32_t get_elf_hwcap2(void)
893 {
894     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
895     uint32_t features = 0;
896 
897 #define GET_FEATURE(flag, feature)                                      \
898     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
899 #define GET_FEATURE2(flag, feature)                                      \
900     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
901 
902     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
903     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
904     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
905                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
906                   QEMU_PPC_FEATURE2_VEC_CRYPTO);
907     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
908                  QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
909     GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 |
910                  QEMU_PPC_FEATURE2_MMA);
911 
912 #undef GET_FEATURE
913 #undef GET_FEATURE2
914 
915     return features;
916 }
917 
918 /*
919  * The requirements here are:
920  * - keep the final alignment of sp (sp & 0xf)
921  * - make sure the 32-bit value at the first 16 byte aligned position of
922  *   AUXV is greater than 16 for glibc compatibility.
923  *   AT_IGNOREPPC is used for that.
924  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
925  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
926  */
927 #define DLINFO_ARCH_ITEMS       5
928 #define ARCH_DLINFO                                     \
929     do {                                                \
930         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
931         /*                                              \
932          * Handle glibc compatibility: these magic entries must \
933          * be at the lowest addresses in the final auxv.        \
934          */                                             \
935         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
936         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
937         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
938         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
939         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
940     } while (0)
941 
942 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
943 {
944     _regs->gpr[1] = infop->start_stack;
945 #if defined(TARGET_PPC64)
946     if (get_ppc64_abi(infop) < 2) {
947         uint64_t val;
948         get_user_u64(val, infop->entry + 8);
949         _regs->gpr[2] = val + infop->load_bias;
950         get_user_u64(val, infop->entry);
951         infop->entry = val + infop->load_bias;
952     } else {
953         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
954     }
955 #endif
956     _regs->nip = infop->entry;
957 }
958 
959 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
960 #define ELF_NREG 48
961 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
962 
963 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
964 {
965     int i;
966     target_ulong ccr = 0;
967 
968     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
969         (*regs)[i] = tswapreg(env->gpr[i]);
970     }
971 
972     (*regs)[32] = tswapreg(env->nip);
973     (*regs)[33] = tswapreg(env->msr);
974     (*regs)[35] = tswapreg(env->ctr);
975     (*regs)[36] = tswapreg(env->lr);
976     (*regs)[37] = tswapreg(cpu_read_xer(env));
977 
978     ccr = ppc_get_cr(env);
979     (*regs)[38] = tswapreg(ccr);
980 }
981 
982 #define USE_ELF_CORE_DUMP
983 #define ELF_EXEC_PAGESIZE       4096
984 
985 #endif
986 
987 #ifdef TARGET_LOONGARCH64
988 
989 #define ELF_START_MMAP 0x80000000
990 
991 #define ELF_CLASS   ELFCLASS64
992 #define ELF_ARCH    EM_LOONGARCH
993 #define EXSTACK_DEFAULT true
994 
995 #define elf_check_arch(x) ((x) == EM_LOONGARCH)
996 
997 static inline void init_thread(struct target_pt_regs *regs,
998                                struct image_info *infop)
999 {
1000     /*Set crmd PG,DA = 1,0 */
1001     regs->csr.crmd = 2 << 3;
1002     regs->csr.era = infop->entry;
1003     regs->regs[3] = infop->start_stack;
1004 }
1005 
1006 /* See linux kernel: arch/loongarch/include/asm/elf.h */
1007 #define ELF_NREG 45
1008 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1009 
1010 enum {
1011     TARGET_EF_R0 = 0,
1012     TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33,
1013     TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34,
1014 };
1015 
1016 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1017                                const CPULoongArchState *env)
1018 {
1019     int i;
1020 
1021     (*regs)[TARGET_EF_R0] = 0;
1022 
1023     for (i = 1; i < ARRAY_SIZE(env->gpr); i++) {
1024         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]);
1025     }
1026 
1027     (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc);
1028     (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV);
1029 }
1030 
1031 #define USE_ELF_CORE_DUMP
1032 #define ELF_EXEC_PAGESIZE        4096
1033 
1034 #define ELF_HWCAP get_elf_hwcap()
1035 
1036 /* See arch/loongarch/include/uapi/asm/hwcap.h */
1037 enum {
1038     HWCAP_LOONGARCH_CPUCFG   = (1 << 0),
1039     HWCAP_LOONGARCH_LAM      = (1 << 1),
1040     HWCAP_LOONGARCH_UAL      = (1 << 2),
1041     HWCAP_LOONGARCH_FPU      = (1 << 3),
1042     HWCAP_LOONGARCH_LSX      = (1 << 4),
1043     HWCAP_LOONGARCH_LASX     = (1 << 5),
1044     HWCAP_LOONGARCH_CRC32    = (1 << 6),
1045     HWCAP_LOONGARCH_COMPLEX  = (1 << 7),
1046     HWCAP_LOONGARCH_CRYPTO   = (1 << 8),
1047     HWCAP_LOONGARCH_LVZ      = (1 << 9),
1048     HWCAP_LOONGARCH_LBT_X86  = (1 << 10),
1049     HWCAP_LOONGARCH_LBT_ARM  = (1 << 11),
1050     HWCAP_LOONGARCH_LBT_MIPS = (1 << 12),
1051 };
1052 
1053 static uint32_t get_elf_hwcap(void)
1054 {
1055     LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu);
1056     uint32_t hwcaps = 0;
1057 
1058     hwcaps |= HWCAP_LOONGARCH_CRC32;
1059 
1060     if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) {
1061         hwcaps |= HWCAP_LOONGARCH_UAL;
1062     }
1063 
1064     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) {
1065         hwcaps |= HWCAP_LOONGARCH_FPU;
1066     }
1067 
1068     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) {
1069         hwcaps |= HWCAP_LOONGARCH_LAM;
1070     }
1071 
1072     return hwcaps;
1073 }
1074 
1075 #define ELF_PLATFORM "loongarch"
1076 
1077 #endif /* TARGET_LOONGARCH64 */
1078 
1079 #ifdef TARGET_MIPS
1080 
1081 #define ELF_START_MMAP 0x80000000
1082 
1083 #ifdef TARGET_MIPS64
1084 #define ELF_CLASS   ELFCLASS64
1085 #else
1086 #define ELF_CLASS   ELFCLASS32
1087 #endif
1088 #define ELF_ARCH    EM_MIPS
1089 #define EXSTACK_DEFAULT true
1090 
1091 #ifdef TARGET_ABI_MIPSN32
1092 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
1093 #else
1094 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
1095 #endif
1096 
1097 #define ELF_BASE_PLATFORM get_elf_base_platform()
1098 
1099 #define MATCH_PLATFORM_INSN(_flags, _base_platform)      \
1100     do { if ((cpu->env.insn_flags & (_flags)) == _flags) \
1101     { return _base_platform; } } while (0)
1102 
1103 static const char *get_elf_base_platform(void)
1104 {
1105     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1106 
1107     /* 64 bit ISAs goes first */
1108     MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6");
1109     MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5");
1110     MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2");
1111     MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64");
1112     MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5");
1113     MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4");
1114     MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3");
1115 
1116     /* 32 bit ISAs */
1117     MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6");
1118     MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5");
1119     MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2");
1120     MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32");
1121     MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2");
1122 
1123     /* Fallback */
1124     return "mips";
1125 }
1126 #undef MATCH_PLATFORM_INSN
1127 
1128 static inline void init_thread(struct target_pt_regs *regs,
1129                                struct image_info *infop)
1130 {
1131     regs->cp0_status = 2 << CP0St_KSU;
1132     regs->cp0_epc = infop->entry;
1133     regs->regs[29] = infop->start_stack;
1134 }
1135 
1136 /* See linux kernel: arch/mips/include/asm/elf.h.  */
1137 #define ELF_NREG 45
1138 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1139 
1140 /* See linux kernel: arch/mips/include/asm/reg.h.  */
1141 enum {
1142 #ifdef TARGET_MIPS64
1143     TARGET_EF_R0 = 0,
1144 #else
1145     TARGET_EF_R0 = 6,
1146 #endif
1147     TARGET_EF_R26 = TARGET_EF_R0 + 26,
1148     TARGET_EF_R27 = TARGET_EF_R0 + 27,
1149     TARGET_EF_LO = TARGET_EF_R0 + 32,
1150     TARGET_EF_HI = TARGET_EF_R0 + 33,
1151     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
1152     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
1153     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
1154     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
1155 };
1156 
1157 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1158 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
1159 {
1160     int i;
1161 
1162     for (i = 0; i < TARGET_EF_R0; i++) {
1163         (*regs)[i] = 0;
1164     }
1165     (*regs)[TARGET_EF_R0] = 0;
1166 
1167     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
1168         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
1169     }
1170 
1171     (*regs)[TARGET_EF_R26] = 0;
1172     (*regs)[TARGET_EF_R27] = 0;
1173     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
1174     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
1175     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
1176     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
1177     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
1178     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
1179 }
1180 
1181 #define USE_ELF_CORE_DUMP
1182 #define ELF_EXEC_PAGESIZE        4096
1183 
1184 /* See arch/mips/include/uapi/asm/hwcap.h.  */
1185 enum {
1186     HWCAP_MIPS_R6           = (1 << 0),
1187     HWCAP_MIPS_MSA          = (1 << 1),
1188     HWCAP_MIPS_CRC32        = (1 << 2),
1189     HWCAP_MIPS_MIPS16       = (1 << 3),
1190     HWCAP_MIPS_MDMX         = (1 << 4),
1191     HWCAP_MIPS_MIPS3D       = (1 << 5),
1192     HWCAP_MIPS_SMARTMIPS    = (1 << 6),
1193     HWCAP_MIPS_DSP          = (1 << 7),
1194     HWCAP_MIPS_DSP2         = (1 << 8),
1195     HWCAP_MIPS_DSP3         = (1 << 9),
1196     HWCAP_MIPS_MIPS16E2     = (1 << 10),
1197     HWCAP_LOONGSON_MMI      = (1 << 11),
1198     HWCAP_LOONGSON_EXT      = (1 << 12),
1199     HWCAP_LOONGSON_EXT2     = (1 << 13),
1200     HWCAP_LOONGSON_CPUCFG   = (1 << 14),
1201 };
1202 
1203 #define ELF_HWCAP get_elf_hwcap()
1204 
1205 #define GET_FEATURE_INSN(_flag, _hwcap) \
1206     do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1207 
1208 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1209     do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1210 
1211 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1212     do { \
1213         if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1214             hwcaps |= _hwcap; \
1215         } \
1216     } while (0)
1217 
1218 static uint32_t get_elf_hwcap(void)
1219 {
1220     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1221     uint32_t hwcaps = 0;
1222 
1223     GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1224                         2, HWCAP_MIPS_R6);
1225     GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1226     GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1227     GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1228 
1229     return hwcaps;
1230 }
1231 
1232 #undef GET_FEATURE_REG_EQU
1233 #undef GET_FEATURE_REG_SET
1234 #undef GET_FEATURE_INSN
1235 
1236 #endif /* TARGET_MIPS */
1237 
1238 #ifdef TARGET_MICROBLAZE
1239 
1240 #define ELF_START_MMAP 0x80000000
1241 
1242 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1243 
1244 #define ELF_CLASS   ELFCLASS32
1245 #define ELF_ARCH    EM_MICROBLAZE
1246 
1247 static inline void init_thread(struct target_pt_regs *regs,
1248                                struct image_info *infop)
1249 {
1250     regs->pc = infop->entry;
1251     regs->r1 = infop->start_stack;
1252 
1253 }
1254 
1255 #define ELF_EXEC_PAGESIZE        4096
1256 
1257 #define USE_ELF_CORE_DUMP
1258 #define ELF_NREG 38
1259 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1260 
1261 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1262 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1263 {
1264     int i, pos = 0;
1265 
1266     for (i = 0; i < 32; i++) {
1267         (*regs)[pos++] = tswapreg(env->regs[i]);
1268     }
1269 
1270     (*regs)[pos++] = tswapreg(env->pc);
1271     (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1272     (*regs)[pos++] = 0;
1273     (*regs)[pos++] = tswapreg(env->ear);
1274     (*regs)[pos++] = 0;
1275     (*regs)[pos++] = tswapreg(env->esr);
1276 }
1277 
1278 #endif /* TARGET_MICROBLAZE */
1279 
1280 #ifdef TARGET_NIOS2
1281 
1282 #define ELF_START_MMAP 0x80000000
1283 
1284 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1285 
1286 #define ELF_CLASS   ELFCLASS32
1287 #define ELF_ARCH    EM_ALTERA_NIOS2
1288 
1289 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1290 {
1291     regs->ea = infop->entry;
1292     regs->sp = infop->start_stack;
1293 }
1294 
1295 #define LO_COMMPAGE  TARGET_PAGE_SIZE
1296 
1297 static bool init_guest_commpage(void)
1298 {
1299     static const uint8_t kuser_page[4 + 2 * 64] = {
1300         /* __kuser_helper_version */
1301         [0x00] = 0x02, 0x00, 0x00, 0x00,
1302 
1303         /* __kuser_cmpxchg */
1304         [0x04] = 0x3a, 0x6c, 0x3b, 0x00,  /* trap 16 */
1305                  0x3a, 0x28, 0x00, 0xf8,  /* ret */
1306 
1307         /* __kuser_sigtramp */
1308         [0x44] = 0xc4, 0x22, 0x80, 0x00,  /* movi r2, __NR_rt_sigreturn */
1309                  0x3a, 0x68, 0x3b, 0x00,  /* trap 0 */
1310     };
1311 
1312     void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size);
1313     void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
1314                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1315 
1316     if (addr == MAP_FAILED) {
1317         perror("Allocating guest commpage");
1318         exit(EXIT_FAILURE);
1319     }
1320     if (addr != want) {
1321         return false;
1322     }
1323 
1324     memcpy(addr, kuser_page, sizeof(kuser_page));
1325 
1326     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
1327         perror("Protecting guest commpage");
1328         exit(EXIT_FAILURE);
1329     }
1330 
1331     page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
1332                    PAGE_READ | PAGE_EXEC | PAGE_VALID);
1333     return true;
1334 }
1335 
1336 #define ELF_EXEC_PAGESIZE        4096
1337 
1338 #define USE_ELF_CORE_DUMP
1339 #define ELF_NREG 49
1340 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1341 
1342 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1343 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1344                                const CPUNios2State *env)
1345 {
1346     int i;
1347 
1348     (*regs)[0] = -1;
1349     for (i = 1; i < 8; i++)    /* r0-r7 */
1350         (*regs)[i] = tswapreg(env->regs[i + 7]);
1351 
1352     for (i = 8; i < 16; i++)   /* r8-r15 */
1353         (*regs)[i] = tswapreg(env->regs[i - 8]);
1354 
1355     for (i = 16; i < 24; i++)  /* r16-r23 */
1356         (*regs)[i] = tswapreg(env->regs[i + 7]);
1357     (*regs)[24] = -1;    /* R_ET */
1358     (*regs)[25] = -1;    /* R_BT */
1359     (*regs)[26] = tswapreg(env->regs[R_GP]);
1360     (*regs)[27] = tswapreg(env->regs[R_SP]);
1361     (*regs)[28] = tswapreg(env->regs[R_FP]);
1362     (*regs)[29] = tswapreg(env->regs[R_EA]);
1363     (*regs)[30] = -1;    /* R_SSTATUS */
1364     (*regs)[31] = tswapreg(env->regs[R_RA]);
1365 
1366     (*regs)[32] = tswapreg(env->pc);
1367 
1368     (*regs)[33] = -1; /* R_STATUS */
1369     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1370 
1371     for (i = 35; i < 49; i++)    /* ... */
1372         (*regs)[i] = -1;
1373 }
1374 
1375 #endif /* TARGET_NIOS2 */
1376 
1377 #ifdef TARGET_OPENRISC
1378 
1379 #define ELF_START_MMAP 0x08000000
1380 
1381 #define ELF_ARCH EM_OPENRISC
1382 #define ELF_CLASS ELFCLASS32
1383 #define ELF_DATA  ELFDATA2MSB
1384 
1385 static inline void init_thread(struct target_pt_regs *regs,
1386                                struct image_info *infop)
1387 {
1388     regs->pc = infop->entry;
1389     regs->gpr[1] = infop->start_stack;
1390 }
1391 
1392 #define USE_ELF_CORE_DUMP
1393 #define ELF_EXEC_PAGESIZE 8192
1394 
1395 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1396 #define ELF_NREG 34 /* gprs and pc, sr */
1397 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1398 
1399 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1400                                const CPUOpenRISCState *env)
1401 {
1402     int i;
1403 
1404     for (i = 0; i < 32; i++) {
1405         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1406     }
1407     (*regs)[32] = tswapreg(env->pc);
1408     (*regs)[33] = tswapreg(cpu_get_sr(env));
1409 }
1410 #define ELF_HWCAP 0
1411 #define ELF_PLATFORM NULL
1412 
1413 #endif /* TARGET_OPENRISC */
1414 
1415 #ifdef TARGET_SH4
1416 
1417 #define ELF_START_MMAP 0x80000000
1418 
1419 #define ELF_CLASS ELFCLASS32
1420 #define ELF_ARCH  EM_SH
1421 
1422 static inline void init_thread(struct target_pt_regs *regs,
1423                                struct image_info *infop)
1424 {
1425     /* Check other registers XXXXX */
1426     regs->pc = infop->entry;
1427     regs->regs[15] = infop->start_stack;
1428 }
1429 
1430 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1431 #define ELF_NREG 23
1432 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1433 
1434 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1435 enum {
1436     TARGET_REG_PC = 16,
1437     TARGET_REG_PR = 17,
1438     TARGET_REG_SR = 18,
1439     TARGET_REG_GBR = 19,
1440     TARGET_REG_MACH = 20,
1441     TARGET_REG_MACL = 21,
1442     TARGET_REG_SYSCALL = 22
1443 };
1444 
1445 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1446                                       const CPUSH4State *env)
1447 {
1448     int i;
1449 
1450     for (i = 0; i < 16; i++) {
1451         (*regs)[i] = tswapreg(env->gregs[i]);
1452     }
1453 
1454     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1455     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1456     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1457     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1458     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1459     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1460     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1461 }
1462 
1463 #define USE_ELF_CORE_DUMP
1464 #define ELF_EXEC_PAGESIZE        4096
1465 
1466 enum {
1467     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1468     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1469     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1470     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1471     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1472     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1473     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1474     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1475     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1476     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1477 };
1478 
1479 #define ELF_HWCAP get_elf_hwcap()
1480 
1481 static uint32_t get_elf_hwcap(void)
1482 {
1483     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1484     uint32_t hwcap = 0;
1485 
1486     hwcap |= SH_CPU_HAS_FPU;
1487 
1488     if (cpu->env.features & SH_FEATURE_SH4A) {
1489         hwcap |= SH_CPU_HAS_LLSC;
1490     }
1491 
1492     return hwcap;
1493 }
1494 
1495 #endif
1496 
1497 #ifdef TARGET_CRIS
1498 
1499 #define ELF_START_MMAP 0x80000000
1500 
1501 #define ELF_CLASS ELFCLASS32
1502 #define ELF_ARCH  EM_CRIS
1503 
1504 static inline void init_thread(struct target_pt_regs *regs,
1505                                struct image_info *infop)
1506 {
1507     regs->erp = infop->entry;
1508 }
1509 
1510 #define ELF_EXEC_PAGESIZE        8192
1511 
1512 #endif
1513 
1514 #ifdef TARGET_M68K
1515 
1516 #define ELF_START_MMAP 0x80000000
1517 
1518 #define ELF_CLASS       ELFCLASS32
1519 #define ELF_ARCH        EM_68K
1520 
1521 /* ??? Does this need to do anything?
1522    #define ELF_PLAT_INIT(_r) */
1523 
1524 static inline void init_thread(struct target_pt_regs *regs,
1525                                struct image_info *infop)
1526 {
1527     regs->usp = infop->start_stack;
1528     regs->sr = 0;
1529     regs->pc = infop->entry;
1530 }
1531 
1532 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1533 #define ELF_NREG 20
1534 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1535 
1536 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1537 {
1538     (*regs)[0] = tswapreg(env->dregs[1]);
1539     (*regs)[1] = tswapreg(env->dregs[2]);
1540     (*regs)[2] = tswapreg(env->dregs[3]);
1541     (*regs)[3] = tswapreg(env->dregs[4]);
1542     (*regs)[4] = tswapreg(env->dregs[5]);
1543     (*regs)[5] = tswapreg(env->dregs[6]);
1544     (*regs)[6] = tswapreg(env->dregs[7]);
1545     (*regs)[7] = tswapreg(env->aregs[0]);
1546     (*regs)[8] = tswapreg(env->aregs[1]);
1547     (*regs)[9] = tswapreg(env->aregs[2]);
1548     (*regs)[10] = tswapreg(env->aregs[3]);
1549     (*regs)[11] = tswapreg(env->aregs[4]);
1550     (*regs)[12] = tswapreg(env->aregs[5]);
1551     (*regs)[13] = tswapreg(env->aregs[6]);
1552     (*regs)[14] = tswapreg(env->dregs[0]);
1553     (*regs)[15] = tswapreg(env->aregs[7]);
1554     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1555     (*regs)[17] = tswapreg(env->sr);
1556     (*regs)[18] = tswapreg(env->pc);
1557     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1558 }
1559 
1560 #define USE_ELF_CORE_DUMP
1561 #define ELF_EXEC_PAGESIZE       8192
1562 
1563 #endif
1564 
1565 #ifdef TARGET_ALPHA
1566 
1567 #define ELF_START_MMAP (0x30000000000ULL)
1568 
1569 #define ELF_CLASS      ELFCLASS64
1570 #define ELF_ARCH       EM_ALPHA
1571 
1572 static inline void init_thread(struct target_pt_regs *regs,
1573                                struct image_info *infop)
1574 {
1575     regs->pc = infop->entry;
1576     regs->ps = 8;
1577     regs->usp = infop->start_stack;
1578 }
1579 
1580 #define ELF_EXEC_PAGESIZE        8192
1581 
1582 #endif /* TARGET_ALPHA */
1583 
1584 #ifdef TARGET_S390X
1585 
1586 #define ELF_START_MMAP (0x20000000000ULL)
1587 
1588 #define ELF_CLASS	ELFCLASS64
1589 #define ELF_DATA	ELFDATA2MSB
1590 #define ELF_ARCH	EM_S390
1591 
1592 #include "elf.h"
1593 
1594 #define ELF_HWCAP get_elf_hwcap()
1595 
1596 #define GET_FEATURE(_feat, _hwcap) \
1597     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1598 
1599 uint32_t get_elf_hwcap(void)
1600 {
1601     /*
1602      * Let's assume we always have esan3 and zarch.
1603      * 31-bit processes can use 64-bit registers (high gprs).
1604      */
1605     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1606 
1607     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1608     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1609     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1610     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1611     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1612         s390_has_feat(S390_FEAT_ETF3_ENH)) {
1613         hwcap |= HWCAP_S390_ETF3EH;
1614     }
1615     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1616     GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
1617 
1618     return hwcap;
1619 }
1620 
1621 const char *elf_hwcap_str(uint32_t bit)
1622 {
1623     static const char *hwcap_str[] = {
1624         [HWCAP_S390_NR_ESAN3]     = "esan3",
1625         [HWCAP_S390_NR_ZARCH]     = "zarch",
1626         [HWCAP_S390_NR_STFLE]     = "stfle",
1627         [HWCAP_S390_NR_MSA]       = "msa",
1628         [HWCAP_S390_NR_LDISP]     = "ldisp",
1629         [HWCAP_S390_NR_EIMM]      = "eimm",
1630         [HWCAP_S390_NR_DFP]       = "dfp",
1631         [HWCAP_S390_NR_HPAGE]     = "edat",
1632         [HWCAP_S390_NR_ETF3EH]    = "etf3eh",
1633         [HWCAP_S390_NR_HIGH_GPRS] = "highgprs",
1634         [HWCAP_S390_NR_TE]        = "te",
1635         [HWCAP_S390_NR_VXRS]      = "vx",
1636         [HWCAP_S390_NR_VXRS_BCD]  = "vxd",
1637         [HWCAP_S390_NR_VXRS_EXT]  = "vxe",
1638         [HWCAP_S390_NR_GS]        = "gs",
1639         [HWCAP_S390_NR_VXRS_EXT2] = "vxe2",
1640         [HWCAP_S390_NR_VXRS_PDE]  = "vxp",
1641         [HWCAP_S390_NR_SORT]      = "sort",
1642         [HWCAP_S390_NR_DFLT]      = "dflt",
1643         [HWCAP_S390_NR_NNPA]      = "nnpa",
1644         [HWCAP_S390_NR_PCI_MIO]   = "pcimio",
1645         [HWCAP_S390_NR_SIE]       = "sie",
1646     };
1647 
1648     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
1649 }
1650 
1651 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1652 {
1653     regs->psw.addr = infop->entry;
1654     regs->psw.mask = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | \
1655                      PSW_MASK_MCHECK | PSW_MASK_PSTATE | PSW_MASK_64 | \
1656                      PSW_MASK_32;
1657     regs->gprs[15] = infop->start_stack;
1658 }
1659 
1660 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs).  */
1661 #define ELF_NREG 27
1662 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1663 
1664 enum {
1665     TARGET_REG_PSWM = 0,
1666     TARGET_REG_PSWA = 1,
1667     TARGET_REG_GPRS = 2,
1668     TARGET_REG_ARS = 18,
1669     TARGET_REG_ORIG_R2 = 26,
1670 };
1671 
1672 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1673                                const CPUS390XState *env)
1674 {
1675     int i;
1676     uint32_t *aregs;
1677 
1678     (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1679     (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1680     for (i = 0; i < 16; i++) {
1681         (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1682     }
1683     aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1684     for (i = 0; i < 16; i++) {
1685         aregs[i] = tswap32(env->aregs[i]);
1686     }
1687     (*regs)[TARGET_REG_ORIG_R2] = 0;
1688 }
1689 
1690 #define USE_ELF_CORE_DUMP
1691 #define ELF_EXEC_PAGESIZE 4096
1692 
1693 #endif /* TARGET_S390X */
1694 
1695 #ifdef TARGET_RISCV
1696 
1697 #define ELF_START_MMAP 0x80000000
1698 #define ELF_ARCH  EM_RISCV
1699 
1700 #ifdef TARGET_RISCV32
1701 #define ELF_CLASS ELFCLASS32
1702 #else
1703 #define ELF_CLASS ELFCLASS64
1704 #endif
1705 
1706 #define ELF_HWCAP get_elf_hwcap()
1707 
1708 static uint32_t get_elf_hwcap(void)
1709 {
1710 #define MISA_BIT(EXT) (1 << (EXT - 'A'))
1711     RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1712     uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1713                     | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C');
1714 
1715     return cpu->env.misa_ext & mask;
1716 #undef MISA_BIT
1717 }
1718 
1719 static inline void init_thread(struct target_pt_regs *regs,
1720                                struct image_info *infop)
1721 {
1722     regs->sepc = infop->entry;
1723     regs->sp = infop->start_stack;
1724 }
1725 
1726 #define ELF_EXEC_PAGESIZE 4096
1727 
1728 #endif /* TARGET_RISCV */
1729 
1730 #ifdef TARGET_HPPA
1731 
1732 #define ELF_START_MMAP  0x80000000
1733 #define ELF_CLASS       ELFCLASS32
1734 #define ELF_ARCH        EM_PARISC
1735 #define ELF_PLATFORM    "PARISC"
1736 #define STACK_GROWS_DOWN 0
1737 #define STACK_ALIGNMENT  64
1738 
1739 static inline void init_thread(struct target_pt_regs *regs,
1740                                struct image_info *infop)
1741 {
1742     regs->iaoq[0] = infop->entry;
1743     regs->iaoq[1] = infop->entry + 4;
1744     regs->gr[23] = 0;
1745     regs->gr[24] = infop->argv;
1746     regs->gr[25] = infop->argc;
1747     /* The top-of-stack contains a linkage buffer.  */
1748     regs->gr[30] = infop->start_stack + 64;
1749     regs->gr[31] = infop->entry;
1750 }
1751 
1752 #define LO_COMMPAGE  0
1753 
1754 static bool init_guest_commpage(void)
1755 {
1756     void *want = g2h_untagged(LO_COMMPAGE);
1757     void *addr = mmap(want, qemu_host_page_size, PROT_NONE,
1758                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1759 
1760     if (addr == MAP_FAILED) {
1761         perror("Allocating guest commpage");
1762         exit(EXIT_FAILURE);
1763     }
1764     if (addr != want) {
1765         return false;
1766     }
1767 
1768     /*
1769      * On Linux, page zero is normally marked execute only + gateway.
1770      * Normal read or write is supposed to fail (thus PROT_NONE above),
1771      * but specific offsets have kernel code mapped to raise permissions
1772      * and implement syscalls.  Here, simply mark the page executable.
1773      * Special case the entry points during translation (see do_page_zero).
1774      */
1775     page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
1776                    PAGE_EXEC | PAGE_VALID);
1777     return true;
1778 }
1779 
1780 #endif /* TARGET_HPPA */
1781 
1782 #ifdef TARGET_XTENSA
1783 
1784 #define ELF_START_MMAP 0x20000000
1785 
1786 #define ELF_CLASS       ELFCLASS32
1787 #define ELF_ARCH        EM_XTENSA
1788 
1789 static inline void init_thread(struct target_pt_regs *regs,
1790                                struct image_info *infop)
1791 {
1792     regs->windowbase = 0;
1793     regs->windowstart = 1;
1794     regs->areg[1] = infop->start_stack;
1795     regs->pc = infop->entry;
1796     if (info_is_fdpic(infop)) {
1797         regs->areg[4] = infop->loadmap_addr;
1798         regs->areg[5] = infop->interpreter_loadmap_addr;
1799         if (infop->interpreter_loadmap_addr) {
1800             regs->areg[6] = infop->interpreter_pt_dynamic_addr;
1801         } else {
1802             regs->areg[6] = infop->pt_dynamic_addr;
1803         }
1804     }
1805 }
1806 
1807 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1808 #define ELF_NREG 128
1809 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1810 
1811 enum {
1812     TARGET_REG_PC,
1813     TARGET_REG_PS,
1814     TARGET_REG_LBEG,
1815     TARGET_REG_LEND,
1816     TARGET_REG_LCOUNT,
1817     TARGET_REG_SAR,
1818     TARGET_REG_WINDOWSTART,
1819     TARGET_REG_WINDOWBASE,
1820     TARGET_REG_THREADPTR,
1821     TARGET_REG_AR0 = 64,
1822 };
1823 
1824 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1825                                const CPUXtensaState *env)
1826 {
1827     unsigned i;
1828 
1829     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1830     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1831     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1832     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1833     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1834     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1835     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1836     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1837     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1838     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1839     for (i = 0; i < env->config->nareg; ++i) {
1840         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1841     }
1842 }
1843 
1844 #define USE_ELF_CORE_DUMP
1845 #define ELF_EXEC_PAGESIZE       4096
1846 
1847 #endif /* TARGET_XTENSA */
1848 
1849 #ifdef TARGET_HEXAGON
1850 
1851 #define ELF_START_MMAP 0x20000000
1852 
1853 #define ELF_CLASS       ELFCLASS32
1854 #define ELF_ARCH        EM_HEXAGON
1855 
1856 static inline void init_thread(struct target_pt_regs *regs,
1857                                struct image_info *infop)
1858 {
1859     regs->sepc = infop->entry;
1860     regs->sp = infop->start_stack;
1861 }
1862 
1863 #endif /* TARGET_HEXAGON */
1864 
1865 #ifndef ELF_BASE_PLATFORM
1866 #define ELF_BASE_PLATFORM (NULL)
1867 #endif
1868 
1869 #ifndef ELF_PLATFORM
1870 #define ELF_PLATFORM (NULL)
1871 #endif
1872 
1873 #ifndef ELF_MACHINE
1874 #define ELF_MACHINE ELF_ARCH
1875 #endif
1876 
1877 #ifndef elf_check_arch
1878 #define elf_check_arch(x) ((x) == ELF_ARCH)
1879 #endif
1880 
1881 #ifndef elf_check_abi
1882 #define elf_check_abi(x) (1)
1883 #endif
1884 
1885 #ifndef ELF_HWCAP
1886 #define ELF_HWCAP 0
1887 #endif
1888 
1889 #ifndef STACK_GROWS_DOWN
1890 #define STACK_GROWS_DOWN 1
1891 #endif
1892 
1893 #ifndef STACK_ALIGNMENT
1894 #define STACK_ALIGNMENT 16
1895 #endif
1896 
1897 #ifdef TARGET_ABI32
1898 #undef ELF_CLASS
1899 #define ELF_CLASS ELFCLASS32
1900 #undef bswaptls
1901 #define bswaptls(ptr) bswap32s(ptr)
1902 #endif
1903 
1904 #ifndef EXSTACK_DEFAULT
1905 #define EXSTACK_DEFAULT false
1906 #endif
1907 
1908 #include "elf.h"
1909 
1910 /* We must delay the following stanzas until after "elf.h". */
1911 #if defined(TARGET_AARCH64)
1912 
1913 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1914                                     const uint32_t *data,
1915                                     struct image_info *info,
1916                                     Error **errp)
1917 {
1918     if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1919         if (pr_datasz != sizeof(uint32_t)) {
1920             error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1921             return false;
1922         }
1923         /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1924         info->note_flags = *data;
1925     }
1926     return true;
1927 }
1928 #define ARCH_USE_GNU_PROPERTY 1
1929 
1930 #else
1931 
1932 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1933                                     const uint32_t *data,
1934                                     struct image_info *info,
1935                                     Error **errp)
1936 {
1937     g_assert_not_reached();
1938 }
1939 #define ARCH_USE_GNU_PROPERTY 0
1940 
1941 #endif
1942 
1943 struct exec
1944 {
1945     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1946     unsigned int a_text;   /* length of text, in bytes */
1947     unsigned int a_data;   /* length of data, in bytes */
1948     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1949     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1950     unsigned int a_entry;  /* start address */
1951     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1952     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1953 };
1954 
1955 
1956 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1957 #define OMAGIC 0407
1958 #define NMAGIC 0410
1959 #define ZMAGIC 0413
1960 #define QMAGIC 0314
1961 
1962 /* Necessary parameters */
1963 #define TARGET_ELF_EXEC_PAGESIZE \
1964         (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1965          TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1966 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1967 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1968                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1969 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1970 
1971 #define DLINFO_ITEMS 16
1972 
1973 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1974 {
1975     memcpy(to, from, n);
1976 }
1977 
1978 #ifdef BSWAP_NEEDED
1979 static void bswap_ehdr(struct elfhdr *ehdr)
1980 {
1981     bswap16s(&ehdr->e_type);            /* Object file type */
1982     bswap16s(&ehdr->e_machine);         /* Architecture */
1983     bswap32s(&ehdr->e_version);         /* Object file version */
1984     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1985     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1986     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1987     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1988     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1989     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1990     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1991     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1992     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1993     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1994 }
1995 
1996 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1997 {
1998     int i;
1999     for (i = 0; i < phnum; ++i, ++phdr) {
2000         bswap32s(&phdr->p_type);        /* Segment type */
2001         bswap32s(&phdr->p_flags);       /* Segment flags */
2002         bswaptls(&phdr->p_offset);      /* Segment file offset */
2003         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
2004         bswaptls(&phdr->p_paddr);       /* Segment physical address */
2005         bswaptls(&phdr->p_filesz);      /* Segment size in file */
2006         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
2007         bswaptls(&phdr->p_align);       /* Segment alignment */
2008     }
2009 }
2010 
2011 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
2012 {
2013     int i;
2014     for (i = 0; i < shnum; ++i, ++shdr) {
2015         bswap32s(&shdr->sh_name);
2016         bswap32s(&shdr->sh_type);
2017         bswaptls(&shdr->sh_flags);
2018         bswaptls(&shdr->sh_addr);
2019         bswaptls(&shdr->sh_offset);
2020         bswaptls(&shdr->sh_size);
2021         bswap32s(&shdr->sh_link);
2022         bswap32s(&shdr->sh_info);
2023         bswaptls(&shdr->sh_addralign);
2024         bswaptls(&shdr->sh_entsize);
2025     }
2026 }
2027 
2028 static void bswap_sym(struct elf_sym *sym)
2029 {
2030     bswap32s(&sym->st_name);
2031     bswaptls(&sym->st_value);
2032     bswaptls(&sym->st_size);
2033     bswap16s(&sym->st_shndx);
2034 }
2035 
2036 #ifdef TARGET_MIPS
2037 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
2038 {
2039     bswap16s(&abiflags->version);
2040     bswap32s(&abiflags->ases);
2041     bswap32s(&abiflags->isa_ext);
2042     bswap32s(&abiflags->flags1);
2043     bswap32s(&abiflags->flags2);
2044 }
2045 #endif
2046 #else
2047 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
2048 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
2049 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
2050 static inline void bswap_sym(struct elf_sym *sym) { }
2051 #ifdef TARGET_MIPS
2052 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
2053 #endif
2054 #endif
2055 
2056 #ifdef USE_ELF_CORE_DUMP
2057 static int elf_core_dump(int, const CPUArchState *);
2058 #endif /* USE_ELF_CORE_DUMP */
2059 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
2060 
2061 /* Verify the portions of EHDR within E_IDENT for the target.
2062    This can be performed before bswapping the entire header.  */
2063 static bool elf_check_ident(struct elfhdr *ehdr)
2064 {
2065     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
2066             && ehdr->e_ident[EI_MAG1] == ELFMAG1
2067             && ehdr->e_ident[EI_MAG2] == ELFMAG2
2068             && ehdr->e_ident[EI_MAG3] == ELFMAG3
2069             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
2070             && ehdr->e_ident[EI_DATA] == ELF_DATA
2071             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
2072 }
2073 
2074 /* Verify the portions of EHDR outside of E_IDENT for the target.
2075    This has to wait until after bswapping the header.  */
2076 static bool elf_check_ehdr(struct elfhdr *ehdr)
2077 {
2078     return (elf_check_arch(ehdr->e_machine)
2079             && elf_check_abi(ehdr->e_flags)
2080             && ehdr->e_ehsize == sizeof(struct elfhdr)
2081             && ehdr->e_phentsize == sizeof(struct elf_phdr)
2082             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
2083 }
2084 
2085 /*
2086  * 'copy_elf_strings()' copies argument/envelope strings from user
2087  * memory to free pages in kernel mem. These are in a format ready
2088  * to be put directly into the top of new user memory.
2089  *
2090  */
2091 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
2092                                   abi_ulong p, abi_ulong stack_limit)
2093 {
2094     char *tmp;
2095     int len, i;
2096     abi_ulong top = p;
2097 
2098     if (!p) {
2099         return 0;       /* bullet-proofing */
2100     }
2101 
2102     if (STACK_GROWS_DOWN) {
2103         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
2104         for (i = argc - 1; i >= 0; --i) {
2105             tmp = argv[i];
2106             if (!tmp) {
2107                 fprintf(stderr, "VFS: argc is wrong");
2108                 exit(-1);
2109             }
2110             len = strlen(tmp) + 1;
2111             tmp += len;
2112 
2113             if (len > (p - stack_limit)) {
2114                 return 0;
2115             }
2116             while (len) {
2117                 int bytes_to_copy = (len > offset) ? offset : len;
2118                 tmp -= bytes_to_copy;
2119                 p -= bytes_to_copy;
2120                 offset -= bytes_to_copy;
2121                 len -= bytes_to_copy;
2122 
2123                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
2124 
2125                 if (offset == 0) {
2126                     memcpy_to_target(p, scratch, top - p);
2127                     top = p;
2128                     offset = TARGET_PAGE_SIZE;
2129                 }
2130             }
2131         }
2132         if (p != top) {
2133             memcpy_to_target(p, scratch + offset, top - p);
2134         }
2135     } else {
2136         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
2137         for (i = 0; i < argc; ++i) {
2138             tmp = argv[i];
2139             if (!tmp) {
2140                 fprintf(stderr, "VFS: argc is wrong");
2141                 exit(-1);
2142             }
2143             len = strlen(tmp) + 1;
2144             if (len > (stack_limit - p)) {
2145                 return 0;
2146             }
2147             while (len) {
2148                 int bytes_to_copy = (len > remaining) ? remaining : len;
2149 
2150                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
2151 
2152                 tmp += bytes_to_copy;
2153                 remaining -= bytes_to_copy;
2154                 p += bytes_to_copy;
2155                 len -= bytes_to_copy;
2156 
2157                 if (remaining == 0) {
2158                     memcpy_to_target(top, scratch, p - top);
2159                     top = p;
2160                     remaining = TARGET_PAGE_SIZE;
2161                 }
2162             }
2163         }
2164         if (p != top) {
2165             memcpy_to_target(top, scratch, p - top);
2166         }
2167     }
2168 
2169     return p;
2170 }
2171 
2172 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
2173  * argument/environment space. Newer kernels (>2.6.33) allow more,
2174  * dependent on stack size, but guarantee at least 32 pages for
2175  * backwards compatibility.
2176  */
2177 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
2178 
2179 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
2180                                  struct image_info *info)
2181 {
2182     abi_ulong size, error, guard;
2183     int prot;
2184 
2185     size = guest_stack_size;
2186     if (size < STACK_LOWER_LIMIT) {
2187         size = STACK_LOWER_LIMIT;
2188     }
2189 
2190     if (STACK_GROWS_DOWN) {
2191         guard = TARGET_PAGE_SIZE;
2192         if (guard < qemu_real_host_page_size()) {
2193             guard = qemu_real_host_page_size();
2194         }
2195     } else {
2196         /* no guard page for hppa target where stack grows upwards. */
2197         guard = 0;
2198     }
2199 
2200     prot = PROT_READ | PROT_WRITE;
2201     if (info->exec_stack) {
2202         prot |= PROT_EXEC;
2203     }
2204     error = target_mmap(0, size + guard, prot,
2205                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2206     if (error == -1) {
2207         perror("mmap stack");
2208         exit(-1);
2209     }
2210 
2211     /* We reserve one extra page at the top of the stack as guard.  */
2212     if (STACK_GROWS_DOWN) {
2213         target_mprotect(error, guard, PROT_NONE);
2214         info->stack_limit = error + guard;
2215         return info->stack_limit + size - sizeof(void *);
2216     } else {
2217         info->stack_limit = error + size;
2218         return error;
2219     }
2220 }
2221 
2222 /* Map and zero the bss.  We need to explicitly zero any fractional pages
2223    after the data section (i.e. bss).  */
2224 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
2225 {
2226     uintptr_t host_start, host_map_start, host_end;
2227 
2228     last_bss = TARGET_PAGE_ALIGN(last_bss);
2229 
2230     /* ??? There is confusion between qemu_real_host_page_size and
2231        qemu_host_page_size here and elsewhere in target_mmap, which
2232        may lead to the end of the data section mapping from the file
2233        not being mapped.  At least there was an explicit test and
2234        comment for that here, suggesting that "the file size must
2235        be known".  The comment probably pre-dates the introduction
2236        of the fstat system call in target_mmap which does in fact
2237        find out the size.  What isn't clear is if the workaround
2238        here is still actually needed.  For now, continue with it,
2239        but merge it with the "normal" mmap that would allocate the bss.  */
2240 
2241     host_start = (uintptr_t) g2h_untagged(elf_bss);
2242     host_end = (uintptr_t) g2h_untagged(last_bss);
2243     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
2244 
2245     if (host_map_start < host_end) {
2246         void *p = mmap((void *)host_map_start, host_end - host_map_start,
2247                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2248         if (p == MAP_FAILED) {
2249             perror("cannot mmap brk");
2250             exit(-1);
2251         }
2252     }
2253 
2254     /* Ensure that the bss page(s) are valid */
2255     if ((page_get_flags(last_bss-1) & prot) != prot) {
2256         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss - 1,
2257                        prot | PAGE_VALID);
2258     }
2259 
2260     if (host_start < host_map_start) {
2261         memset((void *)host_start, 0, host_map_start - host_start);
2262     }
2263 }
2264 
2265 #if defined(TARGET_ARM)
2266 static int elf_is_fdpic(struct elfhdr *exec)
2267 {
2268     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
2269 }
2270 #elif defined(TARGET_XTENSA)
2271 static int elf_is_fdpic(struct elfhdr *exec)
2272 {
2273     return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC;
2274 }
2275 #else
2276 /* Default implementation, always false.  */
2277 static int elf_is_fdpic(struct elfhdr *exec)
2278 {
2279     return 0;
2280 }
2281 #endif
2282 
2283 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
2284 {
2285     uint16_t n;
2286     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
2287 
2288     /* elf32_fdpic_loadseg */
2289     n = info->nsegs;
2290     while (n--) {
2291         sp -= 12;
2292         put_user_u32(loadsegs[n].addr, sp+0);
2293         put_user_u32(loadsegs[n].p_vaddr, sp+4);
2294         put_user_u32(loadsegs[n].p_memsz, sp+8);
2295     }
2296 
2297     /* elf32_fdpic_loadmap */
2298     sp -= 4;
2299     put_user_u16(0, sp+0); /* version */
2300     put_user_u16(info->nsegs, sp+2); /* nsegs */
2301 
2302     info->personality = PER_LINUX_FDPIC;
2303     info->loadmap_addr = sp;
2304 
2305     return sp;
2306 }
2307 
2308 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
2309                                    struct elfhdr *exec,
2310                                    struct image_info *info,
2311                                    struct image_info *interp_info)
2312 {
2313     abi_ulong sp;
2314     abi_ulong u_argc, u_argv, u_envp, u_auxv;
2315     int size;
2316     int i;
2317     abi_ulong u_rand_bytes;
2318     uint8_t k_rand_bytes[16];
2319     abi_ulong u_platform, u_base_platform;
2320     const char *k_platform, *k_base_platform;
2321     const int n = sizeof(elf_addr_t);
2322 
2323     sp = p;
2324 
2325     /* Needs to be before we load the env/argc/... */
2326     if (elf_is_fdpic(exec)) {
2327         /* Need 4 byte alignment for these structs */
2328         sp &= ~3;
2329         sp = loader_build_fdpic_loadmap(info, sp);
2330         info->other_info = interp_info;
2331         if (interp_info) {
2332             interp_info->other_info = info;
2333             sp = loader_build_fdpic_loadmap(interp_info, sp);
2334             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2335             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2336         } else {
2337             info->interpreter_loadmap_addr = 0;
2338             info->interpreter_pt_dynamic_addr = 0;
2339         }
2340     }
2341 
2342     u_base_platform = 0;
2343     k_base_platform = ELF_BASE_PLATFORM;
2344     if (k_base_platform) {
2345         size_t len = strlen(k_base_platform) + 1;
2346         if (STACK_GROWS_DOWN) {
2347             sp -= (len + n - 1) & ~(n - 1);
2348             u_base_platform = sp;
2349             /* FIXME - check return value of memcpy_to_target() for failure */
2350             memcpy_to_target(sp, k_base_platform, len);
2351         } else {
2352             memcpy_to_target(sp, k_base_platform, len);
2353             u_base_platform = sp;
2354             sp += len + 1;
2355         }
2356     }
2357 
2358     u_platform = 0;
2359     k_platform = ELF_PLATFORM;
2360     if (k_platform) {
2361         size_t len = strlen(k_platform) + 1;
2362         if (STACK_GROWS_DOWN) {
2363             sp -= (len + n - 1) & ~(n - 1);
2364             u_platform = sp;
2365             /* FIXME - check return value of memcpy_to_target() for failure */
2366             memcpy_to_target(sp, k_platform, len);
2367         } else {
2368             memcpy_to_target(sp, k_platform, len);
2369             u_platform = sp;
2370             sp += len + 1;
2371         }
2372     }
2373 
2374     /* Provide 16 byte alignment for the PRNG, and basic alignment for
2375      * the argv and envp pointers.
2376      */
2377     if (STACK_GROWS_DOWN) {
2378         sp = QEMU_ALIGN_DOWN(sp, 16);
2379     } else {
2380         sp = QEMU_ALIGN_UP(sp, 16);
2381     }
2382 
2383     /*
2384      * Generate 16 random bytes for userspace PRNG seeding.
2385      */
2386     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2387     if (STACK_GROWS_DOWN) {
2388         sp -= 16;
2389         u_rand_bytes = sp;
2390         /* FIXME - check return value of memcpy_to_target() for failure */
2391         memcpy_to_target(sp, k_rand_bytes, 16);
2392     } else {
2393         memcpy_to_target(sp, k_rand_bytes, 16);
2394         u_rand_bytes = sp;
2395         sp += 16;
2396     }
2397 
2398     size = (DLINFO_ITEMS + 1) * 2;
2399     if (k_base_platform)
2400         size += 2;
2401     if (k_platform)
2402         size += 2;
2403 #ifdef DLINFO_ARCH_ITEMS
2404     size += DLINFO_ARCH_ITEMS * 2;
2405 #endif
2406 #ifdef ELF_HWCAP2
2407     size += 2;
2408 #endif
2409     info->auxv_len = size * n;
2410 
2411     size += envc + argc + 2;
2412     size += 1;  /* argc itself */
2413     size *= n;
2414 
2415     /* Allocate space and finalize stack alignment for entry now.  */
2416     if (STACK_GROWS_DOWN) {
2417         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2418         sp = u_argc;
2419     } else {
2420         u_argc = sp;
2421         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2422     }
2423 
2424     u_argv = u_argc + n;
2425     u_envp = u_argv + (argc + 1) * n;
2426     u_auxv = u_envp + (envc + 1) * n;
2427     info->saved_auxv = u_auxv;
2428     info->argc = argc;
2429     info->envc = envc;
2430     info->argv = u_argv;
2431     info->envp = u_envp;
2432 
2433     /* This is correct because Linux defines
2434      * elf_addr_t as Elf32_Off / Elf64_Off
2435      */
2436 #define NEW_AUX_ENT(id, val) do {               \
2437         put_user_ual(id, u_auxv);  u_auxv += n; \
2438         put_user_ual(val, u_auxv); u_auxv += n; \
2439     } while(0)
2440 
2441 #ifdef ARCH_DLINFO
2442     /*
2443      * ARCH_DLINFO must come first so platform specific code can enforce
2444      * special alignment requirements on the AUXV if necessary (eg. PPC).
2445      */
2446     ARCH_DLINFO;
2447 #endif
2448     /* There must be exactly DLINFO_ITEMS entries here, or the assert
2449      * on info->auxv_len will trigger.
2450      */
2451     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2452     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2453     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2454     if ((info->alignment & ~qemu_host_page_mask) != 0) {
2455         /* Target doesn't support host page size alignment */
2456         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2457     } else {
2458         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2459                                                qemu_host_page_size)));
2460     }
2461     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2462     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2463     NEW_AUX_ENT(AT_ENTRY, info->entry);
2464     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2465     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2466     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2467     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2468     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2469     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2470     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2471     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2472     NEW_AUX_ENT(AT_EXECFN, info->file_string);
2473 
2474 #ifdef ELF_HWCAP2
2475     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2476 #endif
2477 
2478     if (u_base_platform) {
2479         NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform);
2480     }
2481     if (u_platform) {
2482         NEW_AUX_ENT(AT_PLATFORM, u_platform);
2483     }
2484     NEW_AUX_ENT (AT_NULL, 0);
2485 #undef NEW_AUX_ENT
2486 
2487     /* Check that our initial calculation of the auxv length matches how much
2488      * we actually put into it.
2489      */
2490     assert(info->auxv_len == u_auxv - info->saved_auxv);
2491 
2492     put_user_ual(argc, u_argc);
2493 
2494     p = info->arg_strings;
2495     for (i = 0; i < argc; ++i) {
2496         put_user_ual(p, u_argv);
2497         u_argv += n;
2498         p += target_strlen(p) + 1;
2499     }
2500     put_user_ual(0, u_argv);
2501 
2502     p = info->env_strings;
2503     for (i = 0; i < envc; ++i) {
2504         put_user_ual(p, u_envp);
2505         u_envp += n;
2506         p += target_strlen(p) + 1;
2507     }
2508     put_user_ual(0, u_envp);
2509 
2510     return sp;
2511 }
2512 
2513 #if defined(HI_COMMPAGE)
2514 #define LO_COMMPAGE -1
2515 #elif defined(LO_COMMPAGE)
2516 #define HI_COMMPAGE 0
2517 #else
2518 #define HI_COMMPAGE 0
2519 #define LO_COMMPAGE -1
2520 #ifndef INIT_GUEST_COMMPAGE
2521 #define init_guest_commpage() true
2522 #endif
2523 #endif
2524 
2525 static void pgb_fail_in_use(const char *image_name)
2526 {
2527     error_report("%s: requires virtual address space that is in use "
2528                  "(omit the -B option or choose a different value)",
2529                  image_name);
2530     exit(EXIT_FAILURE);
2531 }
2532 
2533 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2534                                 abi_ulong guest_hiaddr, long align)
2535 {
2536     const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2537     void *addr, *test;
2538 
2539     if (!QEMU_IS_ALIGNED(guest_base, align)) {
2540         fprintf(stderr, "Requested guest base %p does not satisfy "
2541                 "host minimum alignment (0x%lx)\n",
2542                 (void *)guest_base, align);
2543         exit(EXIT_FAILURE);
2544     }
2545 
2546     /* Sanity check the guest binary. */
2547     if (reserved_va) {
2548         if (guest_hiaddr > reserved_va) {
2549             error_report("%s: requires more than reserved virtual "
2550                          "address space (0x%" PRIx64 " > 0x%lx)",
2551                          image_name, (uint64_t)guest_hiaddr, reserved_va);
2552             exit(EXIT_FAILURE);
2553         }
2554     } else {
2555 #if HOST_LONG_BITS < TARGET_ABI_BITS
2556         if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2557             error_report("%s: requires more virtual address space "
2558                          "than the host can provide (0x%" PRIx64 ")",
2559                          image_name, (uint64_t)guest_hiaddr + 1 - guest_base);
2560             exit(EXIT_FAILURE);
2561         }
2562 #endif
2563     }
2564 
2565     /*
2566      * Expand the allocation to the entire reserved_va.
2567      * Exclude the mmap_min_addr hole.
2568      */
2569     if (reserved_va) {
2570         guest_loaddr = (guest_base >= mmap_min_addr ? 0
2571                         : mmap_min_addr - guest_base);
2572         guest_hiaddr = reserved_va;
2573     }
2574 
2575     /* Reserve the address space for the binary, or reserved_va. */
2576     test = g2h_untagged(guest_loaddr);
2577     addr = mmap(test, guest_hiaddr - guest_loaddr + 1, PROT_NONE, flags, -1, 0);
2578     if (test != addr) {
2579         pgb_fail_in_use(image_name);
2580     }
2581     qemu_log_mask(CPU_LOG_PAGE,
2582                   "%s: base @ %p for %" PRIu64 " bytes\n",
2583                   __func__, addr, (uint64_t)guest_hiaddr - guest_loaddr + 1);
2584 }
2585 
2586 /**
2587  * pgd_find_hole_fallback: potential mmap address
2588  * @guest_size: size of available space
2589  * @brk: location of break
2590  * @align: memory alignment
2591  *
2592  * This is a fallback method for finding a hole in the host address
2593  * space if we don't have the benefit of being able to access
2594  * /proc/self/map. It can potentially take a very long time as we can
2595  * only dumbly iterate up the host address space seeing if the
2596  * allocation would work.
2597  */
2598 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2599                                         long align, uintptr_t offset)
2600 {
2601     uintptr_t base;
2602 
2603     /* Start (aligned) at the bottom and work our way up */
2604     base = ROUND_UP(mmap_min_addr, align);
2605 
2606     while (true) {
2607         uintptr_t align_start, end;
2608         align_start = ROUND_UP(base, align);
2609         end = align_start + guest_size + offset;
2610 
2611         /* if brk is anywhere in the range give ourselves some room to grow. */
2612         if (align_start <= brk && brk < end) {
2613             base = brk + (16 * MiB);
2614             continue;
2615         } else if (align_start + guest_size < align_start) {
2616             /* we have run out of space */
2617             return -1;
2618         } else {
2619             int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2620                 MAP_FIXED_NOREPLACE;
2621             void * mmap_start = mmap((void *) align_start, guest_size,
2622                                      PROT_NONE, flags, -1, 0);
2623             if (mmap_start != MAP_FAILED) {
2624                 munmap(mmap_start, guest_size);
2625                 if (mmap_start == (void *) align_start) {
2626                     qemu_log_mask(CPU_LOG_PAGE,
2627                                   "%s: base @ %p for %" PRIdPTR" bytes\n",
2628                                   __func__, mmap_start + offset, guest_size);
2629                     return (uintptr_t) mmap_start + offset;
2630                 }
2631             }
2632             base += qemu_host_page_size;
2633         }
2634     }
2635 }
2636 
2637 /* Return value for guest_base, or -1 if no hole found. */
2638 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
2639                                long align, uintptr_t offset)
2640 {
2641     GSList *maps, *iter;
2642     uintptr_t this_start, this_end, next_start, brk;
2643     intptr_t ret = -1;
2644 
2645     assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2646 
2647     maps = read_self_maps();
2648 
2649     /* Read brk after we've read the maps, which will malloc. */
2650     brk = (uintptr_t)sbrk(0);
2651 
2652     if (!maps) {
2653         return pgd_find_hole_fallback(guest_size, brk, align, offset);
2654     }
2655 
2656     /* The first hole is before the first map entry. */
2657     this_start = mmap_min_addr;
2658 
2659     for (iter = maps; iter;
2660          this_start = next_start, iter = g_slist_next(iter)) {
2661         uintptr_t align_start, hole_size;
2662 
2663         this_end = ((MapInfo *)iter->data)->start;
2664         next_start = ((MapInfo *)iter->data)->end;
2665         align_start = ROUND_UP(this_start + offset, align);
2666 
2667         /* Skip holes that are too small. */
2668         if (align_start >= this_end) {
2669             continue;
2670         }
2671         hole_size = this_end - align_start;
2672         if (hole_size < guest_size) {
2673             continue;
2674         }
2675 
2676         /* If this hole contains brk, give ourselves some room to grow. */
2677         if (this_start <= brk && brk < this_end) {
2678             hole_size -= guest_size;
2679             if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2680                 align_start += 1 * GiB;
2681             } else if (hole_size >= 16 * MiB) {
2682                 align_start += 16 * MiB;
2683             } else {
2684                 align_start = (this_end - guest_size) & -align;
2685                 if (align_start < this_start) {
2686                     continue;
2687                 }
2688             }
2689         }
2690 
2691         /* Record the lowest successful match. */
2692         if (ret < 0) {
2693             ret = align_start;
2694         }
2695         /* If this hole contains the identity map, select it. */
2696         if (align_start <= guest_loaddr &&
2697             guest_loaddr + guest_size <= this_end) {
2698             ret = 0;
2699         }
2700         /* If this hole ends above the identity map, stop looking. */
2701         if (this_end >= guest_loaddr) {
2702             break;
2703         }
2704     }
2705     free_self_maps(maps);
2706 
2707     if (ret != -1) {
2708         qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %" PRIxPTR
2709                       " for %" PRIuPTR " bytes\n",
2710                       __func__, ret, guest_size);
2711     }
2712 
2713     return ret;
2714 }
2715 
2716 static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2717                        abi_ulong orig_hiaddr, long align)
2718 {
2719     uintptr_t loaddr = orig_loaddr;
2720     uintptr_t hiaddr = orig_hiaddr;
2721     uintptr_t offset = 0;
2722     uintptr_t addr;
2723 
2724     if (hiaddr != orig_hiaddr) {
2725         error_report("%s: requires virtual address space that the "
2726                      "host cannot provide (0x%" PRIx64 ")",
2727                      image_name, (uint64_t)orig_hiaddr + 1);
2728         exit(EXIT_FAILURE);
2729     }
2730 
2731     loaddr &= -align;
2732     if (HI_COMMPAGE) {
2733         /*
2734          * Extend the allocation to include the commpage.
2735          * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2736          * need to ensure there is space bellow the guest_base so we
2737          * can map the commpage in the place needed when the address
2738          * arithmetic wraps around.
2739          */
2740         if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
2741             hiaddr = UINT32_MAX;
2742         } else {
2743             offset = -(HI_COMMPAGE & -align);
2744         }
2745     } else if (LO_COMMPAGE != -1) {
2746         loaddr = MIN(loaddr, LO_COMMPAGE & -align);
2747     }
2748 
2749     addr = pgb_find_hole(loaddr, hiaddr - loaddr + 1, align, offset);
2750     if (addr == -1) {
2751         /*
2752          * If HI_COMMPAGE, there *might* be a non-consecutive allocation
2753          * that can satisfy both.  But as the normal arm32 link base address
2754          * is ~32k, and we extend down to include the commpage, making the
2755          * overhead only ~96k, this is unlikely.
2756          */
2757         error_report("%s: Unable to allocate %#zx bytes of "
2758                      "virtual address space", image_name,
2759                      (size_t)(hiaddr - loaddr));
2760         exit(EXIT_FAILURE);
2761     }
2762 
2763     guest_base = addr;
2764 
2765     qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %"PRIxPTR" for %" PRIuPTR" bytes\n",
2766                   __func__, addr, hiaddr - loaddr);
2767 }
2768 
2769 static void pgb_dynamic(const char *image_name, long align)
2770 {
2771     /*
2772      * The executable is dynamic and does not require a fixed address.
2773      * All we need is a commpage that satisfies align.
2774      * If we do not need a commpage, leave guest_base == 0.
2775      */
2776     if (HI_COMMPAGE) {
2777         uintptr_t addr, commpage;
2778 
2779         /* 64-bit hosts should have used reserved_va. */
2780         assert(sizeof(uintptr_t) == 4);
2781 
2782         /*
2783          * By putting the commpage at the first hole, that puts guest_base
2784          * just above that, and maximises the positive guest addresses.
2785          */
2786         commpage = HI_COMMPAGE & -align;
2787         addr = pgb_find_hole(commpage, -commpage, align, 0);
2788         assert(addr != -1);
2789         guest_base = addr;
2790     }
2791 }
2792 
2793 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2794                             abi_ulong guest_hiaddr, long align)
2795 {
2796     int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2797     void *addr, *test;
2798 
2799     if (guest_hiaddr > reserved_va) {
2800         error_report("%s: requires more than reserved virtual "
2801                      "address space (0x%" PRIx64 " > 0x%lx)",
2802                      image_name, (uint64_t)guest_hiaddr, reserved_va);
2803         exit(EXIT_FAILURE);
2804     }
2805 
2806     /* Widen the "image" to the entire reserved address space. */
2807     pgb_static(image_name, 0, reserved_va, align);
2808 
2809     /* osdep.h defines this as 0 if it's missing */
2810     flags |= MAP_FIXED_NOREPLACE;
2811 
2812     /* Reserve the memory on the host. */
2813     assert(guest_base != 0);
2814     test = g2h_untagged(0);
2815     addr = mmap(test, reserved_va + 1, PROT_NONE, flags, -1, 0);
2816     if (addr == MAP_FAILED || addr != test) {
2817         error_report("Unable to reserve 0x%lx bytes of virtual address "
2818                      "space at %p (%s) for use as guest address space (check your "
2819                      "virtual memory ulimit setting, mmap_min_addr or reserve less "
2820                      "using qemu-user's -R option)",
2821                      reserved_va + 1, test, strerror(errno));
2822         exit(EXIT_FAILURE);
2823     }
2824 
2825     qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %p for %lu bytes\n",
2826                   __func__, addr, reserved_va + 1);
2827 }
2828 
2829 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2830                       abi_ulong guest_hiaddr)
2831 {
2832     /* In order to use host shmat, we must be able to honor SHMLBA.  */
2833     uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2834 
2835     if (have_guest_base) {
2836         pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2837     } else if (reserved_va) {
2838         pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2839     } else if (guest_loaddr) {
2840         pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2841     } else {
2842         pgb_dynamic(image_name, align);
2843     }
2844 
2845     /* Reserve and initialize the commpage. */
2846     if (!init_guest_commpage()) {
2847         /*
2848          * With have_guest_base, the user has selected the address and
2849          * we are trying to work with that.  Otherwise, we have selected
2850          * free space and init_guest_commpage must succeeded.
2851          */
2852         assert(have_guest_base);
2853         pgb_fail_in_use(image_name);
2854     }
2855 
2856     assert(QEMU_IS_ALIGNED(guest_base, align));
2857     qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2858                   "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2859 }
2860 
2861 enum {
2862     /* The string "GNU\0" as a magic number. */
2863     GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2864     NOTE_DATA_SZ = 1 * KiB,
2865     NOTE_NAME_SZ = 4,
2866     ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2867 };
2868 
2869 /*
2870  * Process a single gnu_property entry.
2871  * Return false for error.
2872  */
2873 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2874                                struct image_info *info, bool have_prev_type,
2875                                uint32_t *prev_type, Error **errp)
2876 {
2877     uint32_t pr_type, pr_datasz, step;
2878 
2879     if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2880         goto error_data;
2881     }
2882     datasz -= *off;
2883     data += *off / sizeof(uint32_t);
2884 
2885     if (datasz < 2 * sizeof(uint32_t)) {
2886         goto error_data;
2887     }
2888     pr_type = data[0];
2889     pr_datasz = data[1];
2890     data += 2;
2891     datasz -= 2 * sizeof(uint32_t);
2892     step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2893     if (step > datasz) {
2894         goto error_data;
2895     }
2896 
2897     /* Properties are supposed to be unique and sorted on pr_type. */
2898     if (have_prev_type && pr_type <= *prev_type) {
2899         if (pr_type == *prev_type) {
2900             error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2901         } else {
2902             error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2903         }
2904         return false;
2905     }
2906     *prev_type = pr_type;
2907 
2908     if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2909         return false;
2910     }
2911 
2912     *off += 2 * sizeof(uint32_t) + step;
2913     return true;
2914 
2915  error_data:
2916     error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2917     return false;
2918 }
2919 
2920 /* Process NT_GNU_PROPERTY_TYPE_0. */
2921 static bool parse_elf_properties(int image_fd,
2922                                  struct image_info *info,
2923                                  const struct elf_phdr *phdr,
2924                                  char bprm_buf[BPRM_BUF_SIZE],
2925                                  Error **errp)
2926 {
2927     union {
2928         struct elf_note nhdr;
2929         uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2930     } note;
2931 
2932     int n, off, datasz;
2933     bool have_prev_type;
2934     uint32_t prev_type;
2935 
2936     /* Unless the arch requires properties, ignore them. */
2937     if (!ARCH_USE_GNU_PROPERTY) {
2938         return true;
2939     }
2940 
2941     /* If the properties are crazy large, that's too bad. */
2942     n = phdr->p_filesz;
2943     if (n > sizeof(note)) {
2944         error_setg(errp, "PT_GNU_PROPERTY too large");
2945         return false;
2946     }
2947     if (n < sizeof(note.nhdr)) {
2948         error_setg(errp, "PT_GNU_PROPERTY too small");
2949         return false;
2950     }
2951 
2952     if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2953         memcpy(&note, bprm_buf + phdr->p_offset, n);
2954     } else {
2955         ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2956         if (len != n) {
2957             error_setg_errno(errp, errno, "Error reading file header");
2958             return false;
2959         }
2960     }
2961 
2962     /*
2963      * The contents of a valid PT_GNU_PROPERTY is a sequence
2964      * of uint32_t -- swap them all now.
2965      */
2966 #ifdef BSWAP_NEEDED
2967     for (int i = 0; i < n / 4; i++) {
2968         bswap32s(note.data + i);
2969     }
2970 #endif
2971 
2972     /*
2973      * Note that nhdr is 3 words, and that the "name" described by namesz
2974      * immediately follows nhdr and is thus at the 4th word.  Further, all
2975      * of the inputs to the kernel's round_up are multiples of 4.
2976      */
2977     if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2978         note.nhdr.n_namesz != NOTE_NAME_SZ ||
2979         note.data[3] != GNU0_MAGIC) {
2980         error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2981         return false;
2982     }
2983     off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2984 
2985     datasz = note.nhdr.n_descsz + off;
2986     if (datasz > n) {
2987         error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2988         return false;
2989     }
2990 
2991     have_prev_type = false;
2992     prev_type = 0;
2993     while (1) {
2994         if (off == datasz) {
2995             return true;  /* end, exit ok */
2996         }
2997         if (!parse_elf_property(note.data, &off, datasz, info,
2998                                 have_prev_type, &prev_type, errp)) {
2999             return false;
3000         }
3001         have_prev_type = true;
3002     }
3003 }
3004 
3005 /* Load an ELF image into the address space.
3006 
3007    IMAGE_NAME is the filename of the image, to use in error messages.
3008    IMAGE_FD is the open file descriptor for the image.
3009 
3010    BPRM_BUF is a copy of the beginning of the file; this of course
3011    contains the elf file header at offset 0.  It is assumed that this
3012    buffer is sufficiently aligned to present no problems to the host
3013    in accessing data at aligned offsets within the buffer.
3014 
3015    On return: INFO values will be filled in, as necessary or available.  */
3016 
3017 static void load_elf_image(const char *image_name, int image_fd,
3018                            struct image_info *info, char **pinterp_name,
3019                            char bprm_buf[BPRM_BUF_SIZE])
3020 {
3021     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
3022     struct elf_phdr *phdr;
3023     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
3024     int i, retval, prot_exec;
3025     Error *err = NULL;
3026 
3027     /* First of all, some simple consistency checks */
3028     if (!elf_check_ident(ehdr)) {
3029         error_setg(&err, "Invalid ELF image for this architecture");
3030         goto exit_errmsg;
3031     }
3032     bswap_ehdr(ehdr);
3033     if (!elf_check_ehdr(ehdr)) {
3034         error_setg(&err, "Invalid ELF image for this architecture");
3035         goto exit_errmsg;
3036     }
3037 
3038     i = ehdr->e_phnum * sizeof(struct elf_phdr);
3039     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
3040         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
3041     } else {
3042         phdr = (struct elf_phdr *) alloca(i);
3043         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
3044         if (retval != i) {
3045             goto exit_read;
3046         }
3047     }
3048     bswap_phdr(phdr, ehdr->e_phnum);
3049 
3050     info->nsegs = 0;
3051     info->pt_dynamic_addr = 0;
3052 
3053     mmap_lock();
3054 
3055     /*
3056      * Find the maximum size of the image and allocate an appropriate
3057      * amount of memory to handle that.  Locate the interpreter, if any.
3058      */
3059     loaddr = -1, hiaddr = 0;
3060     info->alignment = 0;
3061     info->exec_stack = EXSTACK_DEFAULT;
3062     for (i = 0; i < ehdr->e_phnum; ++i) {
3063         struct elf_phdr *eppnt = phdr + i;
3064         if (eppnt->p_type == PT_LOAD) {
3065             abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
3066             if (a < loaddr) {
3067                 loaddr = a;
3068             }
3069             a = eppnt->p_vaddr + eppnt->p_memsz - 1;
3070             if (a > hiaddr) {
3071                 hiaddr = a;
3072             }
3073             ++info->nsegs;
3074             info->alignment |= eppnt->p_align;
3075         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
3076             g_autofree char *interp_name = NULL;
3077 
3078             if (*pinterp_name) {
3079                 error_setg(&err, "Multiple PT_INTERP entries");
3080                 goto exit_errmsg;
3081             }
3082 
3083             interp_name = g_malloc(eppnt->p_filesz);
3084 
3085             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3086                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
3087                        eppnt->p_filesz);
3088             } else {
3089                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
3090                                eppnt->p_offset);
3091                 if (retval != eppnt->p_filesz) {
3092                     goto exit_read;
3093                 }
3094             }
3095             if (interp_name[eppnt->p_filesz - 1] != 0) {
3096                 error_setg(&err, "Invalid PT_INTERP entry");
3097                 goto exit_errmsg;
3098             }
3099             *pinterp_name = g_steal_pointer(&interp_name);
3100         } else if (eppnt->p_type == PT_GNU_PROPERTY) {
3101             if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
3102                 goto exit_errmsg;
3103             }
3104         } else if (eppnt->p_type == PT_GNU_STACK) {
3105             info->exec_stack = eppnt->p_flags & PF_X;
3106         }
3107     }
3108 
3109     if (pinterp_name != NULL) {
3110         /*
3111          * This is the main executable.
3112          *
3113          * Reserve extra space for brk.
3114          * We hold on to this space while placing the interpreter
3115          * and the stack, lest they be placed immediately after
3116          * the data segment and block allocation from the brk.
3117          *
3118          * 16MB is chosen as "large enough" without being so large as
3119          * to allow the result to not fit with a 32-bit guest on a
3120          * 32-bit host. However some 64 bit guests (e.g. s390x)
3121          * attempt to place their heap further ahead and currently
3122          * nothing stops them smashing into QEMUs address space.
3123          */
3124 #if TARGET_LONG_BITS == 64
3125         info->reserve_brk = 32 * MiB;
3126 #else
3127         info->reserve_brk = 16 * MiB;
3128 #endif
3129         hiaddr += info->reserve_brk;
3130 
3131         if (ehdr->e_type == ET_EXEC) {
3132             /*
3133              * Make sure that the low address does not conflict with
3134              * MMAP_MIN_ADDR or the QEMU application itself.
3135              */
3136             probe_guest_base(image_name, loaddr, hiaddr);
3137         } else {
3138             /*
3139              * The binary is dynamic, but we still need to
3140              * select guest_base.  In this case we pass a size.
3141              */
3142             probe_guest_base(image_name, 0, hiaddr - loaddr);
3143         }
3144     }
3145 
3146     /*
3147      * Reserve address space for all of this.
3148      *
3149      * In the case of ET_EXEC, we supply MAP_FIXED so that we get
3150      * exactly the address range that is required.
3151      *
3152      * Otherwise this is ET_DYN, and we are searching for a location
3153      * that can hold the memory space required.  If the image is
3154      * pre-linked, LOADDR will be non-zero, and the kernel should
3155      * honor that address if it happens to be free.
3156      *
3157      * In both cases, we will overwrite pages in this range with mappings
3158      * from the executable.
3159      */
3160     load_addr = target_mmap(loaddr, (size_t)hiaddr - loaddr + 1, PROT_NONE,
3161                             MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
3162                             (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
3163                             -1, 0);
3164     if (load_addr == -1) {
3165         goto exit_mmap;
3166     }
3167     load_bias = load_addr - loaddr;
3168 
3169     if (elf_is_fdpic(ehdr)) {
3170         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
3171             g_malloc(sizeof(*loadsegs) * info->nsegs);
3172 
3173         for (i = 0; i < ehdr->e_phnum; ++i) {
3174             switch (phdr[i].p_type) {
3175             case PT_DYNAMIC:
3176                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
3177                 break;
3178             case PT_LOAD:
3179                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
3180                 loadsegs->p_vaddr = phdr[i].p_vaddr;
3181                 loadsegs->p_memsz = phdr[i].p_memsz;
3182                 ++loadsegs;
3183                 break;
3184             }
3185         }
3186     }
3187 
3188     info->load_bias = load_bias;
3189     info->code_offset = load_bias;
3190     info->data_offset = load_bias;
3191     info->load_addr = load_addr;
3192     info->entry = ehdr->e_entry + load_bias;
3193     info->start_code = -1;
3194     info->end_code = 0;
3195     info->start_data = -1;
3196     info->end_data = 0;
3197     info->brk = 0;
3198     info->elf_flags = ehdr->e_flags;
3199 
3200     prot_exec = PROT_EXEC;
3201 #ifdef TARGET_AARCH64
3202     /*
3203      * If the BTI feature is present, this indicates that the executable
3204      * pages of the startup binary should be mapped with PROT_BTI, so that
3205      * branch targets are enforced.
3206      *
3207      * The startup binary is either the interpreter or the static executable.
3208      * The interpreter is responsible for all pages of a dynamic executable.
3209      *
3210      * Elf notes are backward compatible to older cpus.
3211      * Do not enable BTI unless it is supported.
3212      */
3213     if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
3214         && (pinterp_name == NULL || *pinterp_name == 0)
3215         && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
3216         prot_exec |= TARGET_PROT_BTI;
3217     }
3218 #endif
3219 
3220     for (i = 0; i < ehdr->e_phnum; i++) {
3221         struct elf_phdr *eppnt = phdr + i;
3222         if (eppnt->p_type == PT_LOAD) {
3223             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
3224             int elf_prot = 0;
3225 
3226             if (eppnt->p_flags & PF_R) {
3227                 elf_prot |= PROT_READ;
3228             }
3229             if (eppnt->p_flags & PF_W) {
3230                 elf_prot |= PROT_WRITE;
3231             }
3232             if (eppnt->p_flags & PF_X) {
3233                 elf_prot |= prot_exec;
3234             }
3235 
3236             vaddr = load_bias + eppnt->p_vaddr;
3237             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
3238             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
3239 
3240             vaddr_ef = vaddr + eppnt->p_filesz;
3241             vaddr_em = vaddr + eppnt->p_memsz;
3242 
3243             /*
3244              * Some segments may be completely empty, with a non-zero p_memsz
3245              * but no backing file segment.
3246              */
3247             if (eppnt->p_filesz != 0) {
3248                 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
3249                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
3250                                     MAP_PRIVATE | MAP_FIXED,
3251                                     image_fd, eppnt->p_offset - vaddr_po);
3252 
3253                 if (error == -1) {
3254                     goto exit_mmap;
3255                 }
3256 
3257                 /*
3258                  * If the load segment requests extra zeros (e.g. bss), map it.
3259                  */
3260                 if (eppnt->p_filesz < eppnt->p_memsz) {
3261                     zero_bss(vaddr_ef, vaddr_em, elf_prot);
3262                 }
3263             } else if (eppnt->p_memsz != 0) {
3264                 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po);
3265                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
3266                                     MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
3267                                     -1, 0);
3268 
3269                 if (error == -1) {
3270                     goto exit_mmap;
3271                 }
3272             }
3273 
3274             /* Find the full program boundaries.  */
3275             if (elf_prot & PROT_EXEC) {
3276                 if (vaddr < info->start_code) {
3277                     info->start_code = vaddr;
3278                 }
3279                 if (vaddr_ef > info->end_code) {
3280                     info->end_code = vaddr_ef;
3281                 }
3282             }
3283             if (elf_prot & PROT_WRITE) {
3284                 if (vaddr < info->start_data) {
3285                     info->start_data = vaddr;
3286                 }
3287                 if (vaddr_ef > info->end_data) {
3288                     info->end_data = vaddr_ef;
3289                 }
3290             }
3291             if (vaddr_em > info->brk) {
3292                 info->brk = vaddr_em;
3293             }
3294 #ifdef TARGET_MIPS
3295         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
3296             Mips_elf_abiflags_v0 abiflags;
3297             if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
3298                 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
3299                 goto exit_errmsg;
3300             }
3301             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3302                 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
3303                        sizeof(Mips_elf_abiflags_v0));
3304             } else {
3305                 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
3306                                eppnt->p_offset);
3307                 if (retval != sizeof(Mips_elf_abiflags_v0)) {
3308                     goto exit_read;
3309                 }
3310             }
3311             bswap_mips_abiflags(&abiflags);
3312             info->fp_abi = abiflags.fp_abi;
3313 #endif
3314         }
3315     }
3316 
3317     if (info->end_data == 0) {
3318         info->start_data = info->end_code;
3319         info->end_data = info->end_code;
3320     }
3321 
3322     if (qemu_log_enabled()) {
3323         load_symbols(ehdr, image_fd, load_bias);
3324     }
3325 
3326     debuginfo_report_elf(image_name, image_fd, load_bias);
3327 
3328     mmap_unlock();
3329 
3330     close(image_fd);
3331     return;
3332 
3333  exit_read:
3334     if (retval >= 0) {
3335         error_setg(&err, "Incomplete read of file header");
3336     } else {
3337         error_setg_errno(&err, errno, "Error reading file header");
3338     }
3339     goto exit_errmsg;
3340  exit_mmap:
3341     error_setg_errno(&err, errno, "Error mapping file");
3342     goto exit_errmsg;
3343  exit_errmsg:
3344     error_reportf_err(err, "%s: ", image_name);
3345     exit(-1);
3346 }
3347 
3348 static void load_elf_interp(const char *filename, struct image_info *info,
3349                             char bprm_buf[BPRM_BUF_SIZE])
3350 {
3351     int fd, retval;
3352     Error *err = NULL;
3353 
3354     fd = open(path(filename), O_RDONLY);
3355     if (fd < 0) {
3356         error_setg_file_open(&err, errno, filename);
3357         error_report_err(err);
3358         exit(-1);
3359     }
3360 
3361     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
3362     if (retval < 0) {
3363         error_setg_errno(&err, errno, "Error reading file header");
3364         error_reportf_err(err, "%s: ", filename);
3365         exit(-1);
3366     }
3367 
3368     if (retval < BPRM_BUF_SIZE) {
3369         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
3370     }
3371 
3372     load_elf_image(filename, fd, info, NULL, bprm_buf);
3373 }
3374 
3375 static int symfind(const void *s0, const void *s1)
3376 {
3377     struct elf_sym *sym = (struct elf_sym *)s1;
3378     __typeof(sym->st_value) addr = *(uint64_t *)s0;
3379     int result = 0;
3380 
3381     if (addr < sym->st_value) {
3382         result = -1;
3383     } else if (addr >= sym->st_value + sym->st_size) {
3384         result = 1;
3385     }
3386     return result;
3387 }
3388 
3389 static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr)
3390 {
3391 #if ELF_CLASS == ELFCLASS32
3392     struct elf_sym *syms = s->disas_symtab.elf32;
3393 #else
3394     struct elf_sym *syms = s->disas_symtab.elf64;
3395 #endif
3396 
3397     // binary search
3398     struct elf_sym *sym;
3399 
3400     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
3401     if (sym != NULL) {
3402         return s->disas_strtab + sym->st_name;
3403     }
3404 
3405     return "";
3406 }
3407 
3408 /* FIXME: This should use elf_ops.h  */
3409 static int symcmp(const void *s0, const void *s1)
3410 {
3411     struct elf_sym *sym0 = (struct elf_sym *)s0;
3412     struct elf_sym *sym1 = (struct elf_sym *)s1;
3413     return (sym0->st_value < sym1->st_value)
3414         ? -1
3415         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3416 }
3417 
3418 /* Best attempt to load symbols from this ELF object. */
3419 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
3420 {
3421     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3422     uint64_t segsz;
3423     struct elf_shdr *shdr;
3424     char *strings = NULL;
3425     struct syminfo *s = NULL;
3426     struct elf_sym *new_syms, *syms = NULL;
3427 
3428     shnum = hdr->e_shnum;
3429     i = shnum * sizeof(struct elf_shdr);
3430     shdr = (struct elf_shdr *)alloca(i);
3431     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
3432         return;
3433     }
3434 
3435     bswap_shdr(shdr, shnum);
3436     for (i = 0; i < shnum; ++i) {
3437         if (shdr[i].sh_type == SHT_SYMTAB) {
3438             sym_idx = i;
3439             str_idx = shdr[i].sh_link;
3440             goto found;
3441         }
3442     }
3443 
3444     /* There will be no symbol table if the file was stripped.  */
3445     return;
3446 
3447  found:
3448     /* Now know where the strtab and symtab are.  Snarf them.  */
3449     s = g_try_new(struct syminfo, 1);
3450     if (!s) {
3451         goto give_up;
3452     }
3453 
3454     segsz = shdr[str_idx].sh_size;
3455     s->disas_strtab = strings = g_try_malloc(segsz);
3456     if (!strings ||
3457         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
3458         goto give_up;
3459     }
3460 
3461     segsz = shdr[sym_idx].sh_size;
3462     syms = g_try_malloc(segsz);
3463     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
3464         goto give_up;
3465     }
3466 
3467     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3468         /* Implausibly large symbol table: give up rather than ploughing
3469          * on with the number of symbols calculation overflowing
3470          */
3471         goto give_up;
3472     }
3473     nsyms = segsz / sizeof(struct elf_sym);
3474     for (i = 0; i < nsyms; ) {
3475         bswap_sym(syms + i);
3476         /* Throw away entries which we do not need.  */
3477         if (syms[i].st_shndx == SHN_UNDEF
3478             || syms[i].st_shndx >= SHN_LORESERVE
3479             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3480             if (i < --nsyms) {
3481                 syms[i] = syms[nsyms];
3482             }
3483         } else {
3484 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3485             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
3486             syms[i].st_value &= ~(target_ulong)1;
3487 #endif
3488             syms[i].st_value += load_bias;
3489             i++;
3490         }
3491     }
3492 
3493     /* No "useful" symbol.  */
3494     if (nsyms == 0) {
3495         goto give_up;
3496     }
3497 
3498     /* Attempt to free the storage associated with the local symbols
3499        that we threw away.  Whether or not this has any effect on the
3500        memory allocation depends on the malloc implementation and how
3501        many symbols we managed to discard.  */
3502     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3503     if (new_syms == NULL) {
3504         goto give_up;
3505     }
3506     syms = new_syms;
3507 
3508     qsort(syms, nsyms, sizeof(*syms), symcmp);
3509 
3510     s->disas_num_syms = nsyms;
3511 #if ELF_CLASS == ELFCLASS32
3512     s->disas_symtab.elf32 = syms;
3513 #else
3514     s->disas_symtab.elf64 = syms;
3515 #endif
3516     s->lookup_symbol = lookup_symbolxx;
3517     s->next = syminfos;
3518     syminfos = s;
3519 
3520     return;
3521 
3522 give_up:
3523     g_free(s);
3524     g_free(strings);
3525     g_free(syms);
3526 }
3527 
3528 uint32_t get_elf_eflags(int fd)
3529 {
3530     struct elfhdr ehdr;
3531     off_t offset;
3532     int ret;
3533 
3534     /* Read ELF header */
3535     offset = lseek(fd, 0, SEEK_SET);
3536     if (offset == (off_t) -1) {
3537         return 0;
3538     }
3539     ret = read(fd, &ehdr, sizeof(ehdr));
3540     if (ret < sizeof(ehdr)) {
3541         return 0;
3542     }
3543     offset = lseek(fd, offset, SEEK_SET);
3544     if (offset == (off_t) -1) {
3545         return 0;
3546     }
3547 
3548     /* Check ELF signature */
3549     if (!elf_check_ident(&ehdr)) {
3550         return 0;
3551     }
3552 
3553     /* check header */
3554     bswap_ehdr(&ehdr);
3555     if (!elf_check_ehdr(&ehdr)) {
3556         return 0;
3557     }
3558 
3559     /* return architecture id */
3560     return ehdr.e_flags;
3561 }
3562 
3563 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3564 {
3565     struct image_info interp_info;
3566     struct elfhdr elf_ex;
3567     char *elf_interpreter = NULL;
3568     char *scratch;
3569 
3570     memset(&interp_info, 0, sizeof(interp_info));
3571 #ifdef TARGET_MIPS
3572     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3573 #endif
3574 
3575     info->start_mmap = (abi_ulong)ELF_START_MMAP;
3576 
3577     load_elf_image(bprm->filename, bprm->fd, info,
3578                    &elf_interpreter, bprm->buf);
3579 
3580     /* ??? We need a copy of the elf header for passing to create_elf_tables.
3581        If we do nothing, we'll have overwritten this when we re-use bprm->buf
3582        when we load the interpreter.  */
3583     elf_ex = *(struct elfhdr *)bprm->buf;
3584 
3585     /* Do this so that we can load the interpreter, if need be.  We will
3586        change some of these later */
3587     bprm->p = setup_arg_pages(bprm, info);
3588 
3589     scratch = g_new0(char, TARGET_PAGE_SIZE);
3590     if (STACK_GROWS_DOWN) {
3591         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3592                                    bprm->p, info->stack_limit);
3593         info->file_string = bprm->p;
3594         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3595                                    bprm->p, info->stack_limit);
3596         info->env_strings = bprm->p;
3597         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3598                                    bprm->p, info->stack_limit);
3599         info->arg_strings = bprm->p;
3600     } else {
3601         info->arg_strings = bprm->p;
3602         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3603                                    bprm->p, info->stack_limit);
3604         info->env_strings = bprm->p;
3605         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3606                                    bprm->p, info->stack_limit);
3607         info->file_string = bprm->p;
3608         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3609                                    bprm->p, info->stack_limit);
3610     }
3611 
3612     g_free(scratch);
3613 
3614     if (!bprm->p) {
3615         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3616         exit(-1);
3617     }
3618 
3619     if (elf_interpreter) {
3620         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3621         /*
3622          * adjust brk address if the interpreter was loaded above the main
3623          * executable, e.g. happens with static binaries on armhf
3624          */
3625         if (interp_info.brk > info->brk) {
3626             info->brk = interp_info.brk;
3627         }
3628 
3629         /* If the program interpreter is one of these two, then assume
3630            an iBCS2 image.  Otherwise assume a native linux image.  */
3631 
3632         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3633             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3634             info->personality = PER_SVR4;
3635 
3636             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
3637                and some applications "depend" upon this behavior.  Since
3638                we do not have the power to recompile these, we emulate
3639                the SVr4 behavior.  Sigh.  */
3640             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
3641                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3642         }
3643 #ifdef TARGET_MIPS
3644         info->interp_fp_abi = interp_info.fp_abi;
3645 #endif
3646     }
3647 
3648     /*
3649      * TODO: load a vdso, which would also contain the signal trampolines.
3650      * Otherwise, allocate a private page to hold them.
3651      */
3652     if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
3653         abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
3654                                           PROT_READ | PROT_WRITE,
3655                                           MAP_PRIVATE | MAP_ANON, -1, 0);
3656         if (tramp_page == -1) {
3657             return -errno;
3658         }
3659 
3660         setup_sigtramp(tramp_page);
3661         target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
3662     }
3663 
3664     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3665                                 info, (elf_interpreter ? &interp_info : NULL));
3666     info->start_stack = bprm->p;
3667 
3668     /* If we have an interpreter, set that as the program's entry point.
3669        Copy the load_bias as well, to help PPC64 interpret the entry
3670        point as a function descriptor.  Do this after creating elf tables
3671        so that we copy the original program entry point into the AUXV.  */
3672     if (elf_interpreter) {
3673         info->load_bias = interp_info.load_bias;
3674         info->entry = interp_info.entry;
3675         g_free(elf_interpreter);
3676     }
3677 
3678 #ifdef USE_ELF_CORE_DUMP
3679     bprm->core_dump = &elf_core_dump;
3680 #endif
3681 
3682     /*
3683      * If we reserved extra space for brk, release it now.
3684      * The implementation of do_brk in syscalls.c expects to be able
3685      * to mmap pages in this space.
3686      */
3687     if (info->reserve_brk) {
3688         abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
3689         abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
3690         target_munmap(start_brk, end_brk - start_brk);
3691     }
3692 
3693     return 0;
3694 }
3695 
3696 #ifdef USE_ELF_CORE_DUMP
3697 /*
3698  * Definitions to generate Intel SVR4-like core files.
3699  * These mostly have the same names as the SVR4 types with "target_elf_"
3700  * tacked on the front to prevent clashes with linux definitions,
3701  * and the typedef forms have been avoided.  This is mostly like
3702  * the SVR4 structure, but more Linuxy, with things that Linux does
3703  * not support and which gdb doesn't really use excluded.
3704  *
3705  * Fields we don't dump (their contents is zero) in linux-user qemu
3706  * are marked with XXX.
3707  *
3708  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3709  *
3710  * Porting ELF coredump for target is (quite) simple process.  First you
3711  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3712  * the target resides):
3713  *
3714  * #define USE_ELF_CORE_DUMP
3715  *
3716  * Next you define type of register set used for dumping.  ELF specification
3717  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3718  *
3719  * typedef <target_regtype> target_elf_greg_t;
3720  * #define ELF_NREG <number of registers>
3721  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3722  *
3723  * Last step is to implement target specific function that copies registers
3724  * from given cpu into just specified register set.  Prototype is:
3725  *
3726  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3727  *                                const CPUArchState *env);
3728  *
3729  * Parameters:
3730  *     regs - copy register values into here (allocated and zeroed by caller)
3731  *     env - copy registers from here
3732  *
3733  * Example for ARM target is provided in this file.
3734  */
3735 
3736 /* An ELF note in memory */
3737 struct memelfnote {
3738     const char *name;
3739     size_t     namesz;
3740     size_t     namesz_rounded;
3741     int        type;
3742     size_t     datasz;
3743     size_t     datasz_rounded;
3744     void       *data;
3745     size_t     notesz;
3746 };
3747 
3748 struct target_elf_siginfo {
3749     abi_int    si_signo; /* signal number */
3750     abi_int    si_code;  /* extra code */
3751     abi_int    si_errno; /* errno */
3752 };
3753 
3754 struct target_elf_prstatus {
3755     struct target_elf_siginfo pr_info;      /* Info associated with signal */
3756     abi_short          pr_cursig;    /* Current signal */
3757     abi_ulong          pr_sigpend;   /* XXX */
3758     abi_ulong          pr_sighold;   /* XXX */
3759     target_pid_t       pr_pid;
3760     target_pid_t       pr_ppid;
3761     target_pid_t       pr_pgrp;
3762     target_pid_t       pr_sid;
3763     struct target_timeval pr_utime;  /* XXX User time */
3764     struct target_timeval pr_stime;  /* XXX System time */
3765     struct target_timeval pr_cutime; /* XXX Cumulative user time */
3766     struct target_timeval pr_cstime; /* XXX Cumulative system time */
3767     target_elf_gregset_t      pr_reg;       /* GP registers */
3768     abi_int            pr_fpvalid;   /* XXX */
3769 };
3770 
3771 #define ELF_PRARGSZ     (80) /* Number of chars for args */
3772 
3773 struct target_elf_prpsinfo {
3774     char         pr_state;       /* numeric process state */
3775     char         pr_sname;       /* char for pr_state */
3776     char         pr_zomb;        /* zombie */
3777     char         pr_nice;        /* nice val */
3778     abi_ulong    pr_flag;        /* flags */
3779     target_uid_t pr_uid;
3780     target_gid_t pr_gid;
3781     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3782     /* Lots missing */
3783     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3784     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3785 };
3786 
3787 /* Here is the structure in which status of each thread is captured. */
3788 struct elf_thread_status {
3789     QTAILQ_ENTRY(elf_thread_status)  ets_link;
3790     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
3791 #if 0
3792     elf_fpregset_t fpu;             /* NT_PRFPREG */
3793     struct task_struct *thread;
3794     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
3795 #endif
3796     struct memelfnote notes[1];
3797     int num_notes;
3798 };
3799 
3800 struct elf_note_info {
3801     struct memelfnote   *notes;
3802     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
3803     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
3804 
3805     QTAILQ_HEAD(, elf_thread_status) thread_list;
3806 #if 0
3807     /*
3808      * Current version of ELF coredump doesn't support
3809      * dumping fp regs etc.
3810      */
3811     elf_fpregset_t *fpu;
3812     elf_fpxregset_t *xfpu;
3813     int thread_status_size;
3814 #endif
3815     int notes_size;
3816     int numnote;
3817 };
3818 
3819 struct vm_area_struct {
3820     target_ulong   vma_start;  /* start vaddr of memory region */
3821     target_ulong   vma_end;    /* end vaddr of memory region */
3822     abi_ulong      vma_flags;  /* protection etc. flags for the region */
3823     QTAILQ_ENTRY(vm_area_struct) vma_link;
3824 };
3825 
3826 struct mm_struct {
3827     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3828     int mm_count;           /* number of mappings */
3829 };
3830 
3831 static struct mm_struct *vma_init(void);
3832 static void vma_delete(struct mm_struct *);
3833 static int vma_add_mapping(struct mm_struct *, target_ulong,
3834                            target_ulong, abi_ulong);
3835 static int vma_get_mapping_count(const struct mm_struct *);
3836 static struct vm_area_struct *vma_first(const struct mm_struct *);
3837 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3838 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3839 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3840                       unsigned long flags);
3841 
3842 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3843 static void fill_note(struct memelfnote *, const char *, int,
3844                       unsigned int, void *);
3845 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3846 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3847 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3848 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3849 static size_t note_size(const struct memelfnote *);
3850 static void free_note_info(struct elf_note_info *);
3851 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3852 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3853 
3854 static int dump_write(int, const void *, size_t);
3855 static int write_note(struct memelfnote *, int);
3856 static int write_note_info(struct elf_note_info *, int);
3857 
3858 #ifdef BSWAP_NEEDED
3859 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3860 {
3861     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3862     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3863     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3864     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3865     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3866     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3867     prstatus->pr_pid = tswap32(prstatus->pr_pid);
3868     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3869     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3870     prstatus->pr_sid = tswap32(prstatus->pr_sid);
3871     /* cpu times are not filled, so we skip them */
3872     /* regs should be in correct format already */
3873     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3874 }
3875 
3876 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3877 {
3878     psinfo->pr_flag = tswapal(psinfo->pr_flag);
3879     psinfo->pr_uid = tswap16(psinfo->pr_uid);
3880     psinfo->pr_gid = tswap16(psinfo->pr_gid);
3881     psinfo->pr_pid = tswap32(psinfo->pr_pid);
3882     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3883     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3884     psinfo->pr_sid = tswap32(psinfo->pr_sid);
3885 }
3886 
3887 static void bswap_note(struct elf_note *en)
3888 {
3889     bswap32s(&en->n_namesz);
3890     bswap32s(&en->n_descsz);
3891     bswap32s(&en->n_type);
3892 }
3893 #else
3894 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3895 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3896 static inline void bswap_note(struct elf_note *en) { }
3897 #endif /* BSWAP_NEEDED */
3898 
3899 /*
3900  * Minimal support for linux memory regions.  These are needed
3901  * when we are finding out what memory exactly belongs to
3902  * emulated process.  No locks needed here, as long as
3903  * thread that received the signal is stopped.
3904  */
3905 
3906 static struct mm_struct *vma_init(void)
3907 {
3908     struct mm_struct *mm;
3909 
3910     if ((mm = g_malloc(sizeof (*mm))) == NULL)
3911         return (NULL);
3912 
3913     mm->mm_count = 0;
3914     QTAILQ_INIT(&mm->mm_mmap);
3915 
3916     return (mm);
3917 }
3918 
3919 static void vma_delete(struct mm_struct *mm)
3920 {
3921     struct vm_area_struct *vma;
3922 
3923     while ((vma = vma_first(mm)) != NULL) {
3924         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3925         g_free(vma);
3926     }
3927     g_free(mm);
3928 }
3929 
3930 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3931                            target_ulong end, abi_ulong flags)
3932 {
3933     struct vm_area_struct *vma;
3934 
3935     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3936         return (-1);
3937 
3938     vma->vma_start = start;
3939     vma->vma_end = end;
3940     vma->vma_flags = flags;
3941 
3942     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3943     mm->mm_count++;
3944 
3945     return (0);
3946 }
3947 
3948 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3949 {
3950     return (QTAILQ_FIRST(&mm->mm_mmap));
3951 }
3952 
3953 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3954 {
3955     return (QTAILQ_NEXT(vma, vma_link));
3956 }
3957 
3958 static int vma_get_mapping_count(const struct mm_struct *mm)
3959 {
3960     return (mm->mm_count);
3961 }
3962 
3963 /*
3964  * Calculate file (dump) size of given memory region.
3965  */
3966 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3967 {
3968     /* if we cannot even read the first page, skip it */
3969     if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3970         return (0);
3971 
3972     /*
3973      * Usually we don't dump executable pages as they contain
3974      * non-writable code that debugger can read directly from
3975      * target library etc.  However, thread stacks are marked
3976      * also executable so we read in first page of given region
3977      * and check whether it contains elf header.  If there is
3978      * no elf header, we dump it.
3979      */
3980     if (vma->vma_flags & PROT_EXEC) {
3981         char page[TARGET_PAGE_SIZE];
3982 
3983         if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3984             return 0;
3985         }
3986         if ((page[EI_MAG0] == ELFMAG0) &&
3987             (page[EI_MAG1] == ELFMAG1) &&
3988             (page[EI_MAG2] == ELFMAG2) &&
3989             (page[EI_MAG3] == ELFMAG3)) {
3990             /*
3991              * Mappings are possibly from ELF binary.  Don't dump
3992              * them.
3993              */
3994             return (0);
3995         }
3996     }
3997 
3998     return (vma->vma_end - vma->vma_start);
3999 }
4000 
4001 static int vma_walker(void *priv, target_ulong start, target_ulong end,
4002                       unsigned long flags)
4003 {
4004     struct mm_struct *mm = (struct mm_struct *)priv;
4005 
4006     vma_add_mapping(mm, start, end, flags);
4007     return (0);
4008 }
4009 
4010 static void fill_note(struct memelfnote *note, const char *name, int type,
4011                       unsigned int sz, void *data)
4012 {
4013     unsigned int namesz;
4014 
4015     namesz = strlen(name) + 1;
4016     note->name = name;
4017     note->namesz = namesz;
4018     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
4019     note->type = type;
4020     note->datasz = sz;
4021     note->datasz_rounded = roundup(sz, sizeof (int32_t));
4022 
4023     note->data = data;
4024 
4025     /*
4026      * We calculate rounded up note size here as specified by
4027      * ELF document.
4028      */
4029     note->notesz = sizeof (struct elf_note) +
4030         note->namesz_rounded + note->datasz_rounded;
4031 }
4032 
4033 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
4034                             uint32_t flags)
4035 {
4036     (void) memset(elf, 0, sizeof(*elf));
4037 
4038     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
4039     elf->e_ident[EI_CLASS] = ELF_CLASS;
4040     elf->e_ident[EI_DATA] = ELF_DATA;
4041     elf->e_ident[EI_VERSION] = EV_CURRENT;
4042     elf->e_ident[EI_OSABI] = ELF_OSABI;
4043 
4044     elf->e_type = ET_CORE;
4045     elf->e_machine = machine;
4046     elf->e_version = EV_CURRENT;
4047     elf->e_phoff = sizeof(struct elfhdr);
4048     elf->e_flags = flags;
4049     elf->e_ehsize = sizeof(struct elfhdr);
4050     elf->e_phentsize = sizeof(struct elf_phdr);
4051     elf->e_phnum = segs;
4052 
4053     bswap_ehdr(elf);
4054 }
4055 
4056 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
4057 {
4058     phdr->p_type = PT_NOTE;
4059     phdr->p_offset = offset;
4060     phdr->p_vaddr = 0;
4061     phdr->p_paddr = 0;
4062     phdr->p_filesz = sz;
4063     phdr->p_memsz = 0;
4064     phdr->p_flags = 0;
4065     phdr->p_align = 0;
4066 
4067     bswap_phdr(phdr, 1);
4068 }
4069 
4070 static size_t note_size(const struct memelfnote *note)
4071 {
4072     return (note->notesz);
4073 }
4074 
4075 static void fill_prstatus(struct target_elf_prstatus *prstatus,
4076                           const TaskState *ts, int signr)
4077 {
4078     (void) memset(prstatus, 0, sizeof (*prstatus));
4079     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
4080     prstatus->pr_pid = ts->ts_tid;
4081     prstatus->pr_ppid = getppid();
4082     prstatus->pr_pgrp = getpgrp();
4083     prstatus->pr_sid = getsid(0);
4084 
4085     bswap_prstatus(prstatus);
4086 }
4087 
4088 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
4089 {
4090     char *base_filename;
4091     unsigned int i, len;
4092 
4093     (void) memset(psinfo, 0, sizeof (*psinfo));
4094 
4095     len = ts->info->env_strings - ts->info->arg_strings;
4096     if (len >= ELF_PRARGSZ)
4097         len = ELF_PRARGSZ - 1;
4098     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
4099         return -EFAULT;
4100     }
4101     for (i = 0; i < len; i++)
4102         if (psinfo->pr_psargs[i] == 0)
4103             psinfo->pr_psargs[i] = ' ';
4104     psinfo->pr_psargs[len] = 0;
4105 
4106     psinfo->pr_pid = getpid();
4107     psinfo->pr_ppid = getppid();
4108     psinfo->pr_pgrp = getpgrp();
4109     psinfo->pr_sid = getsid(0);
4110     psinfo->pr_uid = getuid();
4111     psinfo->pr_gid = getgid();
4112 
4113     base_filename = g_path_get_basename(ts->bprm->filename);
4114     /*
4115      * Using strncpy here is fine: at max-length,
4116      * this field is not NUL-terminated.
4117      */
4118     (void) strncpy(psinfo->pr_fname, base_filename,
4119                    sizeof(psinfo->pr_fname));
4120 
4121     g_free(base_filename);
4122     bswap_psinfo(psinfo);
4123     return (0);
4124 }
4125 
4126 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
4127 {
4128     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
4129     elf_addr_t orig_auxv = auxv;
4130     void *ptr;
4131     int len = ts->info->auxv_len;
4132 
4133     /*
4134      * Auxiliary vector is stored in target process stack.  It contains
4135      * {type, value} pairs that we need to dump into note.  This is not
4136      * strictly necessary but we do it here for sake of completeness.
4137      */
4138 
4139     /* read in whole auxv vector and copy it to memelfnote */
4140     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
4141     if (ptr != NULL) {
4142         fill_note(note, "CORE", NT_AUXV, len, ptr);
4143         unlock_user(ptr, auxv, len);
4144     }
4145 }
4146 
4147 /*
4148  * Constructs name of coredump file.  We have following convention
4149  * for the name:
4150  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
4151  *
4152  * Returns the filename
4153  */
4154 static char *core_dump_filename(const TaskState *ts)
4155 {
4156     g_autoptr(GDateTime) now = g_date_time_new_now_local();
4157     g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
4158     g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
4159 
4160     return g_strdup_printf("qemu_%s_%s_%d.core",
4161                            base_filename, nowstr, (int)getpid());
4162 }
4163 
4164 static int dump_write(int fd, const void *ptr, size_t size)
4165 {
4166     const char *bufp = (const char *)ptr;
4167     ssize_t bytes_written, bytes_left;
4168     struct rlimit dumpsize;
4169     off_t pos;
4170 
4171     bytes_written = 0;
4172     getrlimit(RLIMIT_CORE, &dumpsize);
4173     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
4174         if (errno == ESPIPE) { /* not a seekable stream */
4175             bytes_left = size;
4176         } else {
4177             return pos;
4178         }
4179     } else {
4180         if (dumpsize.rlim_cur <= pos) {
4181             return -1;
4182         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
4183             bytes_left = size;
4184         } else {
4185             size_t limit_left=dumpsize.rlim_cur - pos;
4186             bytes_left = limit_left >= size ? size : limit_left ;
4187         }
4188     }
4189 
4190     /*
4191      * In normal conditions, single write(2) should do but
4192      * in case of socket etc. this mechanism is more portable.
4193      */
4194     do {
4195         bytes_written = write(fd, bufp, bytes_left);
4196         if (bytes_written < 0) {
4197             if (errno == EINTR)
4198                 continue;
4199             return (-1);
4200         } else if (bytes_written == 0) { /* eof */
4201             return (-1);
4202         }
4203         bufp += bytes_written;
4204         bytes_left -= bytes_written;
4205     } while (bytes_left > 0);
4206 
4207     return (0);
4208 }
4209 
4210 static int write_note(struct memelfnote *men, int fd)
4211 {
4212     struct elf_note en;
4213 
4214     en.n_namesz = men->namesz;
4215     en.n_type = men->type;
4216     en.n_descsz = men->datasz;
4217 
4218     bswap_note(&en);
4219 
4220     if (dump_write(fd, &en, sizeof(en)) != 0)
4221         return (-1);
4222     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
4223         return (-1);
4224     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
4225         return (-1);
4226 
4227     return (0);
4228 }
4229 
4230 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
4231 {
4232     CPUState *cpu = env_cpu((CPUArchState *)env);
4233     TaskState *ts = (TaskState *)cpu->opaque;
4234     struct elf_thread_status *ets;
4235 
4236     ets = g_malloc0(sizeof (*ets));
4237     ets->num_notes = 1; /* only prstatus is dumped */
4238     fill_prstatus(&ets->prstatus, ts, 0);
4239     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
4240     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
4241               &ets->prstatus);
4242 
4243     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
4244 
4245     info->notes_size += note_size(&ets->notes[0]);
4246 }
4247 
4248 static void init_note_info(struct elf_note_info *info)
4249 {
4250     /* Initialize the elf_note_info structure so that it is at
4251      * least safe to call free_note_info() on it. Must be
4252      * called before calling fill_note_info().
4253      */
4254     memset(info, 0, sizeof (*info));
4255     QTAILQ_INIT(&info->thread_list);
4256 }
4257 
4258 static int fill_note_info(struct elf_note_info *info,
4259                           long signr, const CPUArchState *env)
4260 {
4261 #define NUMNOTES 3
4262     CPUState *cpu = env_cpu((CPUArchState *)env);
4263     TaskState *ts = (TaskState *)cpu->opaque;
4264     int i;
4265 
4266     info->notes = g_new0(struct memelfnote, NUMNOTES);
4267     if (info->notes == NULL)
4268         return (-ENOMEM);
4269     info->prstatus = g_malloc0(sizeof (*info->prstatus));
4270     if (info->prstatus == NULL)
4271         return (-ENOMEM);
4272     info->psinfo = g_malloc0(sizeof (*info->psinfo));
4273     if (info->prstatus == NULL)
4274         return (-ENOMEM);
4275 
4276     /*
4277      * First fill in status (and registers) of current thread
4278      * including process info & aux vector.
4279      */
4280     fill_prstatus(info->prstatus, ts, signr);
4281     elf_core_copy_regs(&info->prstatus->pr_reg, env);
4282     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
4283               sizeof (*info->prstatus), info->prstatus);
4284     fill_psinfo(info->psinfo, ts);
4285     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
4286               sizeof (*info->psinfo), info->psinfo);
4287     fill_auxv_note(&info->notes[2], ts);
4288     info->numnote = 3;
4289 
4290     info->notes_size = 0;
4291     for (i = 0; i < info->numnote; i++)
4292         info->notes_size += note_size(&info->notes[i]);
4293 
4294     /* read and fill status of all threads */
4295     WITH_QEMU_LOCK_GUARD(&qemu_cpu_list_lock) {
4296         CPU_FOREACH(cpu) {
4297             if (cpu == thread_cpu) {
4298                 continue;
4299             }
4300             fill_thread_info(info, cpu->env_ptr);
4301         }
4302     }
4303 
4304     return (0);
4305 }
4306 
4307 static void free_note_info(struct elf_note_info *info)
4308 {
4309     struct elf_thread_status *ets;
4310 
4311     while (!QTAILQ_EMPTY(&info->thread_list)) {
4312         ets = QTAILQ_FIRST(&info->thread_list);
4313         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
4314         g_free(ets);
4315     }
4316 
4317     g_free(info->prstatus);
4318     g_free(info->psinfo);
4319     g_free(info->notes);
4320 }
4321 
4322 static int write_note_info(struct elf_note_info *info, int fd)
4323 {
4324     struct elf_thread_status *ets;
4325     int i, error = 0;
4326 
4327     /* write prstatus, psinfo and auxv for current thread */
4328     for (i = 0; i < info->numnote; i++)
4329         if ((error = write_note(&info->notes[i], fd)) != 0)
4330             return (error);
4331 
4332     /* write prstatus for each thread */
4333     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
4334         if ((error = write_note(&ets->notes[0], fd)) != 0)
4335             return (error);
4336     }
4337 
4338     return (0);
4339 }
4340 
4341 /*
4342  * Write out ELF coredump.
4343  *
4344  * See documentation of ELF object file format in:
4345  * http://www.caldera.com/developers/devspecs/gabi41.pdf
4346  *
4347  * Coredump format in linux is following:
4348  *
4349  * 0   +----------------------+         \
4350  *     | ELF header           | ET_CORE  |
4351  *     +----------------------+          |
4352  *     | ELF program headers  |          |--- headers
4353  *     | - NOTE section       |          |
4354  *     | - PT_LOAD sections   |          |
4355  *     +----------------------+         /
4356  *     | NOTEs:               |
4357  *     | - NT_PRSTATUS        |
4358  *     | - NT_PRSINFO         |
4359  *     | - NT_AUXV            |
4360  *     +----------------------+ <-- aligned to target page
4361  *     | Process memory dump  |
4362  *     :                      :
4363  *     .                      .
4364  *     :                      :
4365  *     |                      |
4366  *     +----------------------+
4367  *
4368  * NT_PRSTATUS -> struct elf_prstatus (per thread)
4369  * NT_PRSINFO  -> struct elf_prpsinfo
4370  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
4371  *
4372  * Format follows System V format as close as possible.  Current
4373  * version limitations are as follows:
4374  *     - no floating point registers are dumped
4375  *
4376  * Function returns 0 in case of success, negative errno otherwise.
4377  *
4378  * TODO: make this work also during runtime: it should be
4379  * possible to force coredump from running process and then
4380  * continue processing.  For example qemu could set up SIGUSR2
4381  * handler (provided that target process haven't registered
4382  * handler for that) that does the dump when signal is received.
4383  */
4384 static int elf_core_dump(int signr, const CPUArchState *env)
4385 {
4386     const CPUState *cpu = env_cpu((CPUArchState *)env);
4387     const TaskState *ts = (const TaskState *)cpu->opaque;
4388     struct vm_area_struct *vma = NULL;
4389     g_autofree char *corefile = NULL;
4390     struct elf_note_info info;
4391     struct elfhdr elf;
4392     struct elf_phdr phdr;
4393     struct rlimit dumpsize;
4394     struct mm_struct *mm = NULL;
4395     off_t offset = 0, data_offset = 0;
4396     int segs = 0;
4397     int fd = -1;
4398 
4399     init_note_info(&info);
4400 
4401     errno = 0;
4402     getrlimit(RLIMIT_CORE, &dumpsize);
4403     if (dumpsize.rlim_cur == 0)
4404         return 0;
4405 
4406     corefile = core_dump_filename(ts);
4407 
4408     if ((fd = open(corefile, O_WRONLY | O_CREAT,
4409                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
4410         return (-errno);
4411 
4412     /*
4413      * Walk through target process memory mappings and
4414      * set up structure containing this information.  After
4415      * this point vma_xxx functions can be used.
4416      */
4417     if ((mm = vma_init()) == NULL)
4418         goto out;
4419 
4420     walk_memory_regions(mm, vma_walker);
4421     segs = vma_get_mapping_count(mm);
4422 
4423     /*
4424      * Construct valid coredump ELF header.  We also
4425      * add one more segment for notes.
4426      */
4427     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
4428     if (dump_write(fd, &elf, sizeof (elf)) != 0)
4429         goto out;
4430 
4431     /* fill in the in-memory version of notes */
4432     if (fill_note_info(&info, signr, env) < 0)
4433         goto out;
4434 
4435     offset += sizeof (elf);                             /* elf header */
4436     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
4437 
4438     /* write out notes program header */
4439     fill_elf_note_phdr(&phdr, info.notes_size, offset);
4440 
4441     offset += info.notes_size;
4442     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
4443         goto out;
4444 
4445     /*
4446      * ELF specification wants data to start at page boundary so
4447      * we align it here.
4448      */
4449     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
4450 
4451     /*
4452      * Write program headers for memory regions mapped in
4453      * the target process.
4454      */
4455     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4456         (void) memset(&phdr, 0, sizeof (phdr));
4457 
4458         phdr.p_type = PT_LOAD;
4459         phdr.p_offset = offset;
4460         phdr.p_vaddr = vma->vma_start;
4461         phdr.p_paddr = 0;
4462         phdr.p_filesz = vma_dump_size(vma);
4463         offset += phdr.p_filesz;
4464         phdr.p_memsz = vma->vma_end - vma->vma_start;
4465         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4466         if (vma->vma_flags & PROT_WRITE)
4467             phdr.p_flags |= PF_W;
4468         if (vma->vma_flags & PROT_EXEC)
4469             phdr.p_flags |= PF_X;
4470         phdr.p_align = ELF_EXEC_PAGESIZE;
4471 
4472         bswap_phdr(&phdr, 1);
4473         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4474             goto out;
4475         }
4476     }
4477 
4478     /*
4479      * Next we write notes just after program headers.  No
4480      * alignment needed here.
4481      */
4482     if (write_note_info(&info, fd) < 0)
4483         goto out;
4484 
4485     /* align data to page boundary */
4486     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4487         goto out;
4488 
4489     /*
4490      * Finally we can dump process memory into corefile as well.
4491      */
4492     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4493         abi_ulong addr;
4494         abi_ulong end;
4495 
4496         end = vma->vma_start + vma_dump_size(vma);
4497 
4498         for (addr = vma->vma_start; addr < end;
4499              addr += TARGET_PAGE_SIZE) {
4500             char page[TARGET_PAGE_SIZE];
4501             int error;
4502 
4503             /*
4504              *  Read in page from target process memory and
4505              *  write it to coredump file.
4506              */
4507             error = copy_from_user(page, addr, sizeof (page));
4508             if (error != 0) {
4509                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
4510                                addr);
4511                 errno = -error;
4512                 goto out;
4513             }
4514             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4515                 goto out;
4516         }
4517     }
4518 
4519  out:
4520     free_note_info(&info);
4521     if (mm != NULL)
4522         vma_delete(mm);
4523     (void) close(fd);
4524 
4525     if (errno != 0)
4526         return (-errno);
4527     return (0);
4528 }
4529 #endif /* USE_ELF_CORE_DUMP */
4530 
4531 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4532 {
4533     init_thread(regs, infop);
4534 }
4535