xref: /openbmc/qemu/linux-user/elfload.c (revision 200280af0e19bfaeb9431eb0ee1ee2d8bf8d3a0a)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 
7 #include "qemu.h"
8 #include "disas/disas.h"
9 #include "qemu/path.h"
10 
11 #ifdef _ARCH_PPC64
12 #undef ARCH_DLINFO
13 #undef ELF_PLATFORM
14 #undef ELF_HWCAP
15 #undef ELF_HWCAP2
16 #undef ELF_CLASS
17 #undef ELF_DATA
18 #undef ELF_ARCH
19 #endif
20 
21 #define ELF_OSABI   ELFOSABI_SYSV
22 
23 /* from personality.h */
24 
25 /*
26  * Flags for bug emulation.
27  *
28  * These occupy the top three bytes.
29  */
30 enum {
31     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
32     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
33                                            descriptors (signal handling) */
34     MMAP_PAGE_ZERO =    0x0100000,
35     ADDR_COMPAT_LAYOUT = 0x0200000,
36     READ_IMPLIES_EXEC = 0x0400000,
37     ADDR_LIMIT_32BIT =  0x0800000,
38     SHORT_INODE =       0x1000000,
39     WHOLE_SECONDS =     0x2000000,
40     STICKY_TIMEOUTS =   0x4000000,
41     ADDR_LIMIT_3GB =    0x8000000,
42 };
43 
44 /*
45  * Personality types.
46  *
47  * These go in the low byte.  Avoid using the top bit, it will
48  * conflict with error returns.
49  */
50 enum {
51     PER_LINUX =         0x0000,
52     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
53     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
54     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
60     PER_BSD =           0x0006,
61     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
62     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63     PER_LINUX32 =       0x0008,
64     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
65     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68     PER_RISCOS =        0x000c,
69     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
70     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
72     PER_HPUX =          0x0010,
73     PER_MASK =          0x00ff,
74 };
75 
76 /*
77  * Return the base personality without flags.
78  */
79 #define personality(pers)       (pers & PER_MASK)
80 
81 int info_is_fdpic(struct image_info *info)
82 {
83     return info->personality == PER_LINUX_FDPIC;
84 }
85 
86 /* this flag is uneffective under linux too, should be deleted */
87 #ifndef MAP_DENYWRITE
88 #define MAP_DENYWRITE 0
89 #endif
90 
91 /* should probably go in elf.h */
92 #ifndef ELIBBAD
93 #define ELIBBAD 80
94 #endif
95 
96 #ifdef TARGET_WORDS_BIGENDIAN
97 #define ELF_DATA        ELFDATA2MSB
98 #else
99 #define ELF_DATA        ELFDATA2LSB
100 #endif
101 
102 #ifdef TARGET_ABI_MIPSN32
103 typedef abi_ullong      target_elf_greg_t;
104 #define tswapreg(ptr)   tswap64(ptr)
105 #else
106 typedef abi_ulong       target_elf_greg_t;
107 #define tswapreg(ptr)   tswapal(ptr)
108 #endif
109 
110 #ifdef USE_UID16
111 typedef abi_ushort      target_uid_t;
112 typedef abi_ushort      target_gid_t;
113 #else
114 typedef abi_uint        target_uid_t;
115 typedef abi_uint        target_gid_t;
116 #endif
117 typedef abi_int         target_pid_t;
118 
119 #ifdef TARGET_I386
120 
121 #define ELF_PLATFORM get_elf_platform()
122 
123 static const char *get_elf_platform(void)
124 {
125     static char elf_platform[] = "i386";
126     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
127     if (family > 6)
128         family = 6;
129     if (family >= 3)
130         elf_platform[1] = '0' + family;
131     return elf_platform;
132 }
133 
134 #define ELF_HWCAP get_elf_hwcap()
135 
136 static uint32_t get_elf_hwcap(void)
137 {
138     X86CPU *cpu = X86_CPU(thread_cpu);
139 
140     return cpu->env.features[FEAT_1_EDX];
141 }
142 
143 #ifdef TARGET_X86_64
144 #define ELF_START_MMAP 0x2aaaaab000ULL
145 
146 #define ELF_CLASS      ELFCLASS64
147 #define ELF_ARCH       EM_X86_64
148 
149 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
150 {
151     regs->rax = 0;
152     regs->rsp = infop->start_stack;
153     regs->rip = infop->entry;
154 }
155 
156 #define ELF_NREG    27
157 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
158 
159 /*
160  * Note that ELF_NREG should be 29 as there should be place for
161  * TRAPNO and ERR "registers" as well but linux doesn't dump
162  * those.
163  *
164  * See linux kernel: arch/x86/include/asm/elf.h
165  */
166 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
167 {
168     (*regs)[0] = env->regs[15];
169     (*regs)[1] = env->regs[14];
170     (*regs)[2] = env->regs[13];
171     (*regs)[3] = env->regs[12];
172     (*regs)[4] = env->regs[R_EBP];
173     (*regs)[5] = env->regs[R_EBX];
174     (*regs)[6] = env->regs[11];
175     (*regs)[7] = env->regs[10];
176     (*regs)[8] = env->regs[9];
177     (*regs)[9] = env->regs[8];
178     (*regs)[10] = env->regs[R_EAX];
179     (*regs)[11] = env->regs[R_ECX];
180     (*regs)[12] = env->regs[R_EDX];
181     (*regs)[13] = env->regs[R_ESI];
182     (*regs)[14] = env->regs[R_EDI];
183     (*regs)[15] = env->regs[R_EAX]; /* XXX */
184     (*regs)[16] = env->eip;
185     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
186     (*regs)[18] = env->eflags;
187     (*regs)[19] = env->regs[R_ESP];
188     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
189     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
190     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
191     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
192     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
193     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
194     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
195 }
196 
197 #else
198 
199 #define ELF_START_MMAP 0x80000000
200 
201 /*
202  * This is used to ensure we don't load something for the wrong architecture.
203  */
204 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
205 
206 /*
207  * These are used to set parameters in the core dumps.
208  */
209 #define ELF_CLASS       ELFCLASS32
210 #define ELF_ARCH        EM_386
211 
212 static inline void init_thread(struct target_pt_regs *regs,
213                                struct image_info *infop)
214 {
215     regs->esp = infop->start_stack;
216     regs->eip = infop->entry;
217 
218     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
219        starts %edx contains a pointer to a function which might be
220        registered using `atexit'.  This provides a mean for the
221        dynamic linker to call DT_FINI functions for shared libraries
222        that have been loaded before the code runs.
223 
224        A value of 0 tells we have no such handler.  */
225     regs->edx = 0;
226 }
227 
228 #define ELF_NREG    17
229 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
230 
231 /*
232  * Note that ELF_NREG should be 19 as there should be place for
233  * TRAPNO and ERR "registers" as well but linux doesn't dump
234  * those.
235  *
236  * See linux kernel: arch/x86/include/asm/elf.h
237  */
238 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
239 {
240     (*regs)[0] = env->regs[R_EBX];
241     (*regs)[1] = env->regs[R_ECX];
242     (*regs)[2] = env->regs[R_EDX];
243     (*regs)[3] = env->regs[R_ESI];
244     (*regs)[4] = env->regs[R_EDI];
245     (*regs)[5] = env->regs[R_EBP];
246     (*regs)[6] = env->regs[R_EAX];
247     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
248     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
249     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
250     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
251     (*regs)[11] = env->regs[R_EAX]; /* XXX */
252     (*regs)[12] = env->eip;
253     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
254     (*regs)[14] = env->eflags;
255     (*regs)[15] = env->regs[R_ESP];
256     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
257 }
258 #endif
259 
260 #define USE_ELF_CORE_DUMP
261 #define ELF_EXEC_PAGESIZE       4096
262 
263 #endif
264 
265 #ifdef TARGET_ARM
266 
267 #ifndef TARGET_AARCH64
268 /* 32 bit ARM definitions */
269 
270 #define ELF_START_MMAP 0x80000000
271 
272 #define ELF_ARCH        EM_ARM
273 #define ELF_CLASS       ELFCLASS32
274 
275 static inline void init_thread(struct target_pt_regs *regs,
276                                struct image_info *infop)
277 {
278     abi_long stack = infop->start_stack;
279     memset(regs, 0, sizeof(*regs));
280 
281     regs->uregs[16] = ARM_CPU_MODE_USR;
282     if (infop->entry & 1) {
283         regs->uregs[16] |= CPSR_T;
284     }
285     regs->uregs[15] = infop->entry & 0xfffffffe;
286     regs->uregs[13] = infop->start_stack;
287     /* FIXME - what to for failure of get_user()? */
288     get_user_ual(regs->uregs[2], stack + 8); /* envp */
289     get_user_ual(regs->uregs[1], stack + 4); /* envp */
290     /* XXX: it seems that r0 is zeroed after ! */
291     regs->uregs[0] = 0;
292     /* For uClinux PIC binaries.  */
293     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
294     regs->uregs[10] = infop->start_data;
295 
296     /* Support ARM FDPIC.  */
297     if (info_is_fdpic(infop)) {
298         /* As described in the ABI document, r7 points to the loadmap info
299          * prepared by the kernel. If an interpreter is needed, r8 points
300          * to the interpreter loadmap and r9 points to the interpreter
301          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
302          * r9 points to the main program PT_DYNAMIC info.
303          */
304         regs->uregs[7] = infop->loadmap_addr;
305         if (infop->interpreter_loadmap_addr) {
306             /* Executable is dynamically loaded.  */
307             regs->uregs[8] = infop->interpreter_loadmap_addr;
308             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
309         } else {
310             regs->uregs[8] = 0;
311             regs->uregs[9] = infop->pt_dynamic_addr;
312         }
313     }
314 }
315 
316 #define ELF_NREG    18
317 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
318 
319 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
320 {
321     (*regs)[0] = tswapreg(env->regs[0]);
322     (*regs)[1] = tswapreg(env->regs[1]);
323     (*regs)[2] = tswapreg(env->regs[2]);
324     (*regs)[3] = tswapreg(env->regs[3]);
325     (*regs)[4] = tswapreg(env->regs[4]);
326     (*regs)[5] = tswapreg(env->regs[5]);
327     (*regs)[6] = tswapreg(env->regs[6]);
328     (*regs)[7] = tswapreg(env->regs[7]);
329     (*regs)[8] = tswapreg(env->regs[8]);
330     (*regs)[9] = tswapreg(env->regs[9]);
331     (*regs)[10] = tswapreg(env->regs[10]);
332     (*regs)[11] = tswapreg(env->regs[11]);
333     (*regs)[12] = tswapreg(env->regs[12]);
334     (*regs)[13] = tswapreg(env->regs[13]);
335     (*regs)[14] = tswapreg(env->regs[14]);
336     (*regs)[15] = tswapreg(env->regs[15]);
337 
338     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
339     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
340 }
341 
342 #define USE_ELF_CORE_DUMP
343 #define ELF_EXEC_PAGESIZE       4096
344 
345 enum
346 {
347     ARM_HWCAP_ARM_SWP       = 1 << 0,
348     ARM_HWCAP_ARM_HALF      = 1 << 1,
349     ARM_HWCAP_ARM_THUMB     = 1 << 2,
350     ARM_HWCAP_ARM_26BIT     = 1 << 3,
351     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
352     ARM_HWCAP_ARM_FPA       = 1 << 5,
353     ARM_HWCAP_ARM_VFP       = 1 << 6,
354     ARM_HWCAP_ARM_EDSP      = 1 << 7,
355     ARM_HWCAP_ARM_JAVA      = 1 << 8,
356     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
357     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
358     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
359     ARM_HWCAP_ARM_NEON      = 1 << 12,
360     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
361     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
362     ARM_HWCAP_ARM_TLS       = 1 << 15,
363     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
364     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
365     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
366     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
367     ARM_HWCAP_ARM_LPAE      = 1 << 20,
368     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
369 };
370 
371 enum {
372     ARM_HWCAP2_ARM_AES      = 1 << 0,
373     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
374     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
375     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
376     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
377 };
378 
379 /* The commpage only exists for 32 bit kernels */
380 
381 /* Return 1 if the proposed guest space is suitable for the guest.
382  * Return 0 if the proposed guest space isn't suitable, but another
383  * address space should be tried.
384  * Return -1 if there is no way the proposed guest space can be
385  * valid regardless of the base.
386  * The guest code may leave a page mapped and populate it if the
387  * address is suitable.
388  */
389 static int init_guest_commpage(unsigned long guest_base,
390                                unsigned long guest_size)
391 {
392     unsigned long real_start, test_page_addr;
393 
394     /* We need to check that we can force a fault on access to the
395      * commpage at 0xffff0fxx
396      */
397     test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
398 
399     /* If the commpage lies within the already allocated guest space,
400      * then there is no way we can allocate it.
401      *
402      * You may be thinking that that this check is redundant because
403      * we already validated the guest size against MAX_RESERVED_VA;
404      * but if qemu_host_page_mask is unusually large, then
405      * test_page_addr may be lower.
406      */
407     if (test_page_addr >= guest_base
408         && test_page_addr < (guest_base + guest_size)) {
409         return -1;
410     }
411 
412     /* Note it needs to be writeable to let us initialise it */
413     real_start = (unsigned long)
414                  mmap((void *)test_page_addr, qemu_host_page_size,
415                      PROT_READ | PROT_WRITE,
416                      MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
417 
418     /* If we can't map it then try another address */
419     if (real_start == -1ul) {
420         return 0;
421     }
422 
423     if (real_start != test_page_addr) {
424         /* OS didn't put the page where we asked - unmap and reject */
425         munmap((void *)real_start, qemu_host_page_size);
426         return 0;
427     }
428 
429     /* Leave the page mapped
430      * Populate it (mmap should have left it all 0'd)
431      */
432 
433     /* Kernel helper versions */
434     __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
435 
436     /* Now it's populated make it RO */
437     if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
438         perror("Protecting guest commpage");
439         exit(-1);
440     }
441 
442     return 1; /* All good */
443 }
444 
445 #define ELF_HWCAP get_elf_hwcap()
446 #define ELF_HWCAP2 get_elf_hwcap2()
447 
448 static uint32_t get_elf_hwcap(void)
449 {
450     ARMCPU *cpu = ARM_CPU(thread_cpu);
451     uint32_t hwcaps = 0;
452 
453     hwcaps |= ARM_HWCAP_ARM_SWP;
454     hwcaps |= ARM_HWCAP_ARM_HALF;
455     hwcaps |= ARM_HWCAP_ARM_THUMB;
456     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
457 
458     /* probe for the extra features */
459 #define GET_FEATURE(feat, hwcap) \
460     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
461 
462 #define GET_FEATURE_ID(feat, hwcap) \
463     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
464 
465     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
466     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
467     GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
468     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
469     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
470     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
471     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
472     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
473     GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
474     GET_FEATURE_ID(arm_div, ARM_HWCAP_ARM_IDIVA);
475     GET_FEATURE_ID(thumb_div, ARM_HWCAP_ARM_IDIVT);
476     /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
477      * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
478      * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
479      * to our VFP_FP16 feature bit.
480      */
481     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
482     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
483 
484     return hwcaps;
485 }
486 
487 static uint32_t get_elf_hwcap2(void)
488 {
489     ARMCPU *cpu = ARM_CPU(thread_cpu);
490     uint32_t hwcaps = 0;
491 
492     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
493     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
494     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
495     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
496     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
497     return hwcaps;
498 }
499 
500 #undef GET_FEATURE
501 #undef GET_FEATURE_ID
502 
503 #else
504 /* 64 bit ARM definitions */
505 #define ELF_START_MMAP 0x80000000
506 
507 #define ELF_ARCH        EM_AARCH64
508 #define ELF_CLASS       ELFCLASS64
509 #define ELF_PLATFORM    "aarch64"
510 
511 static inline void init_thread(struct target_pt_regs *regs,
512                                struct image_info *infop)
513 {
514     abi_long stack = infop->start_stack;
515     memset(regs, 0, sizeof(*regs));
516 
517     regs->pc = infop->entry & ~0x3ULL;
518     regs->sp = stack;
519 }
520 
521 #define ELF_NREG    34
522 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
523 
524 static void elf_core_copy_regs(target_elf_gregset_t *regs,
525                                const CPUARMState *env)
526 {
527     int i;
528 
529     for (i = 0; i < 32; i++) {
530         (*regs)[i] = tswapreg(env->xregs[i]);
531     }
532     (*regs)[32] = tswapreg(env->pc);
533     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
534 }
535 
536 #define USE_ELF_CORE_DUMP
537 #define ELF_EXEC_PAGESIZE       4096
538 
539 enum {
540     ARM_HWCAP_A64_FP            = 1 << 0,
541     ARM_HWCAP_A64_ASIMD         = 1 << 1,
542     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
543     ARM_HWCAP_A64_AES           = 1 << 3,
544     ARM_HWCAP_A64_PMULL         = 1 << 4,
545     ARM_HWCAP_A64_SHA1          = 1 << 5,
546     ARM_HWCAP_A64_SHA2          = 1 << 6,
547     ARM_HWCAP_A64_CRC32         = 1 << 7,
548     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
549     ARM_HWCAP_A64_FPHP          = 1 << 9,
550     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
551     ARM_HWCAP_A64_CPUID         = 1 << 11,
552     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
553     ARM_HWCAP_A64_JSCVT         = 1 << 13,
554     ARM_HWCAP_A64_FCMA          = 1 << 14,
555     ARM_HWCAP_A64_LRCPC         = 1 << 15,
556     ARM_HWCAP_A64_DCPOP         = 1 << 16,
557     ARM_HWCAP_A64_SHA3          = 1 << 17,
558     ARM_HWCAP_A64_SM3           = 1 << 18,
559     ARM_HWCAP_A64_SM4           = 1 << 19,
560     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
561     ARM_HWCAP_A64_SHA512        = 1 << 21,
562     ARM_HWCAP_A64_SVE           = 1 << 22,
563     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
564     ARM_HWCAP_A64_DIT           = 1 << 24,
565     ARM_HWCAP_A64_USCAT         = 1 << 25,
566     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
567     ARM_HWCAP_A64_FLAGM         = 1 << 27,
568     ARM_HWCAP_A64_SSBS          = 1 << 28,
569     ARM_HWCAP_A64_SB            = 1 << 29,
570     ARM_HWCAP_A64_PACA          = 1 << 30,
571     ARM_HWCAP_A64_PACG          = 1UL << 31,
572 };
573 
574 #define ELF_HWCAP get_elf_hwcap()
575 
576 static uint32_t get_elf_hwcap(void)
577 {
578     ARMCPU *cpu = ARM_CPU(thread_cpu);
579     uint32_t hwcaps = 0;
580 
581     hwcaps |= ARM_HWCAP_A64_FP;
582     hwcaps |= ARM_HWCAP_A64_ASIMD;
583 
584     /* probe for the extra features */
585 #define GET_FEATURE_ID(feat, hwcap) \
586     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
587 
588     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
589     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
590     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
591     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
592     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
593     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
594     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
595     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
596     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
597     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
598     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
599     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
600     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
601     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
602     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
603     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
604 
605 #undef GET_FEATURE_ID
606 
607     return hwcaps;
608 }
609 
610 #endif /* not TARGET_AARCH64 */
611 #endif /* TARGET_ARM */
612 
613 #ifdef TARGET_SPARC
614 #ifdef TARGET_SPARC64
615 
616 #define ELF_START_MMAP 0x80000000
617 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
618                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
619 #ifndef TARGET_ABI32
620 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
621 #else
622 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
623 #endif
624 
625 #define ELF_CLASS   ELFCLASS64
626 #define ELF_ARCH    EM_SPARCV9
627 
628 #define STACK_BIAS              2047
629 
630 static inline void init_thread(struct target_pt_regs *regs,
631                                struct image_info *infop)
632 {
633 #ifndef TARGET_ABI32
634     regs->tstate = 0;
635 #endif
636     regs->pc = infop->entry;
637     regs->npc = regs->pc + 4;
638     regs->y = 0;
639 #ifdef TARGET_ABI32
640     regs->u_regs[14] = infop->start_stack - 16 * 4;
641 #else
642     if (personality(infop->personality) == PER_LINUX32)
643         regs->u_regs[14] = infop->start_stack - 16 * 4;
644     else
645         regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
646 #endif
647 }
648 
649 #else
650 #define ELF_START_MMAP 0x80000000
651 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
652                     | HWCAP_SPARC_MULDIV)
653 
654 #define ELF_CLASS   ELFCLASS32
655 #define ELF_ARCH    EM_SPARC
656 
657 static inline void init_thread(struct target_pt_regs *regs,
658                                struct image_info *infop)
659 {
660     regs->psr = 0;
661     regs->pc = infop->entry;
662     regs->npc = regs->pc + 4;
663     regs->y = 0;
664     regs->u_regs[14] = infop->start_stack - 16 * 4;
665 }
666 
667 #endif
668 #endif
669 
670 #ifdef TARGET_PPC
671 
672 #define ELF_MACHINE    PPC_ELF_MACHINE
673 #define ELF_START_MMAP 0x80000000
674 
675 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
676 
677 #define elf_check_arch(x) ( (x) == EM_PPC64 )
678 
679 #define ELF_CLASS       ELFCLASS64
680 
681 #else
682 
683 #define ELF_CLASS       ELFCLASS32
684 
685 #endif
686 
687 #define ELF_ARCH        EM_PPC
688 
689 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
690    See arch/powerpc/include/asm/cputable.h.  */
691 enum {
692     QEMU_PPC_FEATURE_32 = 0x80000000,
693     QEMU_PPC_FEATURE_64 = 0x40000000,
694     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
695     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
696     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
697     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
698     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
699     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
700     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
701     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
702     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
703     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
704     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
705     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
706     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
707     QEMU_PPC_FEATURE_CELL = 0x00010000,
708     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
709     QEMU_PPC_FEATURE_SMT = 0x00004000,
710     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
711     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
712     QEMU_PPC_FEATURE_PA6T = 0x00000800,
713     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
714     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
715     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
716     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
717     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
718 
719     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
720     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
721 
722     /* Feature definitions in AT_HWCAP2.  */
723     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
724     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
725     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
726     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
727     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
728     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
729     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
730 };
731 
732 #define ELF_HWCAP get_elf_hwcap()
733 
734 static uint32_t get_elf_hwcap(void)
735 {
736     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
737     uint32_t features = 0;
738 
739     /* We don't have to be terribly complete here; the high points are
740        Altivec/FP/SPE support.  Anything else is just a bonus.  */
741 #define GET_FEATURE(flag, feature)                                      \
742     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
743 #define GET_FEATURE2(flags, feature) \
744     do { \
745         if ((cpu->env.insns_flags2 & flags) == flags) { \
746             features |= feature; \
747         } \
748     } while (0)
749     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
750     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
751     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
752     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
753     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
754     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
755     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
756     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
757     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
758     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
759     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
760                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
761                   QEMU_PPC_FEATURE_ARCH_2_06);
762 #undef GET_FEATURE
763 #undef GET_FEATURE2
764 
765     return features;
766 }
767 
768 #define ELF_HWCAP2 get_elf_hwcap2()
769 
770 static uint32_t get_elf_hwcap2(void)
771 {
772     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
773     uint32_t features = 0;
774 
775 #define GET_FEATURE(flag, feature)                                      \
776     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
777 #define GET_FEATURE2(flag, feature)                                      \
778     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
779 
780     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
781     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
782     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
783                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
784     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00);
785 
786 #undef GET_FEATURE
787 #undef GET_FEATURE2
788 
789     return features;
790 }
791 
792 /*
793  * The requirements here are:
794  * - keep the final alignment of sp (sp & 0xf)
795  * - make sure the 32-bit value at the first 16 byte aligned position of
796  *   AUXV is greater than 16 for glibc compatibility.
797  *   AT_IGNOREPPC is used for that.
798  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
799  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
800  */
801 #define DLINFO_ARCH_ITEMS       5
802 #define ARCH_DLINFO                                     \
803     do {                                                \
804         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
805         /*                                              \
806          * Handle glibc compatibility: these magic entries must \
807          * be at the lowest addresses in the final auxv.        \
808          */                                             \
809         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
810         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
811         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
812         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
813         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
814     } while (0)
815 
816 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
817 {
818     _regs->gpr[1] = infop->start_stack;
819 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
820     if (get_ppc64_abi(infop) < 2) {
821         uint64_t val;
822         get_user_u64(val, infop->entry + 8);
823         _regs->gpr[2] = val + infop->load_bias;
824         get_user_u64(val, infop->entry);
825         infop->entry = val + infop->load_bias;
826     } else {
827         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
828     }
829 #endif
830     _regs->nip = infop->entry;
831 }
832 
833 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
834 #define ELF_NREG 48
835 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
836 
837 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
838 {
839     int i;
840     target_ulong ccr = 0;
841 
842     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
843         (*regs)[i] = tswapreg(env->gpr[i]);
844     }
845 
846     (*regs)[32] = tswapreg(env->nip);
847     (*regs)[33] = tswapreg(env->msr);
848     (*regs)[35] = tswapreg(env->ctr);
849     (*regs)[36] = tswapreg(env->lr);
850     (*regs)[37] = tswapreg(env->xer);
851 
852     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
853         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
854     }
855     (*regs)[38] = tswapreg(ccr);
856 }
857 
858 #define USE_ELF_CORE_DUMP
859 #define ELF_EXEC_PAGESIZE       4096
860 
861 #endif
862 
863 #ifdef TARGET_MIPS
864 
865 #define ELF_START_MMAP 0x80000000
866 
867 #ifdef TARGET_MIPS64
868 #define ELF_CLASS   ELFCLASS64
869 #else
870 #define ELF_CLASS   ELFCLASS32
871 #endif
872 #define ELF_ARCH    EM_MIPS
873 
874 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
875 
876 static inline void init_thread(struct target_pt_regs *regs,
877                                struct image_info *infop)
878 {
879     regs->cp0_status = 2 << CP0St_KSU;
880     regs->cp0_epc = infop->entry;
881     regs->regs[29] = infop->start_stack;
882 }
883 
884 /* See linux kernel: arch/mips/include/asm/elf.h.  */
885 #define ELF_NREG 45
886 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
887 
888 /* See linux kernel: arch/mips/include/asm/reg.h.  */
889 enum {
890 #ifdef TARGET_MIPS64
891     TARGET_EF_R0 = 0,
892 #else
893     TARGET_EF_R0 = 6,
894 #endif
895     TARGET_EF_R26 = TARGET_EF_R0 + 26,
896     TARGET_EF_R27 = TARGET_EF_R0 + 27,
897     TARGET_EF_LO = TARGET_EF_R0 + 32,
898     TARGET_EF_HI = TARGET_EF_R0 + 33,
899     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
900     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
901     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
902     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
903 };
904 
905 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
906 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
907 {
908     int i;
909 
910     for (i = 0; i < TARGET_EF_R0; i++) {
911         (*regs)[i] = 0;
912     }
913     (*regs)[TARGET_EF_R0] = 0;
914 
915     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
916         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
917     }
918 
919     (*regs)[TARGET_EF_R26] = 0;
920     (*regs)[TARGET_EF_R27] = 0;
921     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
922     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
923     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
924     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
925     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
926     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
927 }
928 
929 #define USE_ELF_CORE_DUMP
930 #define ELF_EXEC_PAGESIZE        4096
931 
932 /* See arch/mips/include/uapi/asm/hwcap.h.  */
933 enum {
934     HWCAP_MIPS_R6           = (1 << 0),
935     HWCAP_MIPS_MSA          = (1 << 1),
936 };
937 
938 #define ELF_HWCAP get_elf_hwcap()
939 
940 static uint32_t get_elf_hwcap(void)
941 {
942     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
943     uint32_t hwcaps = 0;
944 
945 #define GET_FEATURE(flag, hwcap) \
946     do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
947 
948     GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
949     GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
950 
951 #undef GET_FEATURE
952 
953     return hwcaps;
954 }
955 
956 #endif /* TARGET_MIPS */
957 
958 #ifdef TARGET_MICROBLAZE
959 
960 #define ELF_START_MMAP 0x80000000
961 
962 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
963 
964 #define ELF_CLASS   ELFCLASS32
965 #define ELF_ARCH    EM_MICROBLAZE
966 
967 static inline void init_thread(struct target_pt_regs *regs,
968                                struct image_info *infop)
969 {
970     regs->pc = infop->entry;
971     regs->r1 = infop->start_stack;
972 
973 }
974 
975 #define ELF_EXEC_PAGESIZE        4096
976 
977 #define USE_ELF_CORE_DUMP
978 #define ELF_NREG 38
979 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
980 
981 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
982 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
983 {
984     int i, pos = 0;
985 
986     for (i = 0; i < 32; i++) {
987         (*regs)[pos++] = tswapreg(env->regs[i]);
988     }
989 
990     for (i = 0; i < 6; i++) {
991         (*regs)[pos++] = tswapreg(env->sregs[i]);
992     }
993 }
994 
995 #endif /* TARGET_MICROBLAZE */
996 
997 #ifdef TARGET_NIOS2
998 
999 #define ELF_START_MMAP 0x80000000
1000 
1001 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1002 
1003 #define ELF_CLASS   ELFCLASS32
1004 #define ELF_ARCH    EM_ALTERA_NIOS2
1005 
1006 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1007 {
1008     regs->ea = infop->entry;
1009     regs->sp = infop->start_stack;
1010     regs->estatus = 0x3;
1011 }
1012 
1013 #define ELF_EXEC_PAGESIZE        4096
1014 
1015 #define USE_ELF_CORE_DUMP
1016 #define ELF_NREG 49
1017 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1018 
1019 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1020 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1021                                const CPUNios2State *env)
1022 {
1023     int i;
1024 
1025     (*regs)[0] = -1;
1026     for (i = 1; i < 8; i++)    /* r0-r7 */
1027         (*regs)[i] = tswapreg(env->regs[i + 7]);
1028 
1029     for (i = 8; i < 16; i++)   /* r8-r15 */
1030         (*regs)[i] = tswapreg(env->regs[i - 8]);
1031 
1032     for (i = 16; i < 24; i++)  /* r16-r23 */
1033         (*regs)[i] = tswapreg(env->regs[i + 7]);
1034     (*regs)[24] = -1;    /* R_ET */
1035     (*regs)[25] = -1;    /* R_BT */
1036     (*regs)[26] = tswapreg(env->regs[R_GP]);
1037     (*regs)[27] = tswapreg(env->regs[R_SP]);
1038     (*regs)[28] = tswapreg(env->regs[R_FP]);
1039     (*regs)[29] = tswapreg(env->regs[R_EA]);
1040     (*regs)[30] = -1;    /* R_SSTATUS */
1041     (*regs)[31] = tswapreg(env->regs[R_RA]);
1042 
1043     (*regs)[32] = tswapreg(env->regs[R_PC]);
1044 
1045     (*regs)[33] = -1; /* R_STATUS */
1046     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1047 
1048     for (i = 35; i < 49; i++)    /* ... */
1049         (*regs)[i] = -1;
1050 }
1051 
1052 #endif /* TARGET_NIOS2 */
1053 
1054 #ifdef TARGET_OPENRISC
1055 
1056 #define ELF_START_MMAP 0x08000000
1057 
1058 #define ELF_ARCH EM_OPENRISC
1059 #define ELF_CLASS ELFCLASS32
1060 #define ELF_DATA  ELFDATA2MSB
1061 
1062 static inline void init_thread(struct target_pt_regs *regs,
1063                                struct image_info *infop)
1064 {
1065     regs->pc = infop->entry;
1066     regs->gpr[1] = infop->start_stack;
1067 }
1068 
1069 #define USE_ELF_CORE_DUMP
1070 #define ELF_EXEC_PAGESIZE 8192
1071 
1072 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1073 #define ELF_NREG 34 /* gprs and pc, sr */
1074 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1075 
1076 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1077                                const CPUOpenRISCState *env)
1078 {
1079     int i;
1080 
1081     for (i = 0; i < 32; i++) {
1082         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1083     }
1084     (*regs)[32] = tswapreg(env->pc);
1085     (*regs)[33] = tswapreg(cpu_get_sr(env));
1086 }
1087 #define ELF_HWCAP 0
1088 #define ELF_PLATFORM NULL
1089 
1090 #endif /* TARGET_OPENRISC */
1091 
1092 #ifdef TARGET_SH4
1093 
1094 #define ELF_START_MMAP 0x80000000
1095 
1096 #define ELF_CLASS ELFCLASS32
1097 #define ELF_ARCH  EM_SH
1098 
1099 static inline void init_thread(struct target_pt_regs *regs,
1100                                struct image_info *infop)
1101 {
1102     /* Check other registers XXXXX */
1103     regs->pc = infop->entry;
1104     regs->regs[15] = infop->start_stack;
1105 }
1106 
1107 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1108 #define ELF_NREG 23
1109 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1110 
1111 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1112 enum {
1113     TARGET_REG_PC = 16,
1114     TARGET_REG_PR = 17,
1115     TARGET_REG_SR = 18,
1116     TARGET_REG_GBR = 19,
1117     TARGET_REG_MACH = 20,
1118     TARGET_REG_MACL = 21,
1119     TARGET_REG_SYSCALL = 22
1120 };
1121 
1122 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1123                                       const CPUSH4State *env)
1124 {
1125     int i;
1126 
1127     for (i = 0; i < 16; i++) {
1128         (*regs)[i] = tswapreg(env->gregs[i]);
1129     }
1130 
1131     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1132     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1133     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1134     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1135     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1136     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1137     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1138 }
1139 
1140 #define USE_ELF_CORE_DUMP
1141 #define ELF_EXEC_PAGESIZE        4096
1142 
1143 enum {
1144     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1145     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1146     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1147     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1148     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1149     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1150     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1151     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1152     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1153     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1154 };
1155 
1156 #define ELF_HWCAP get_elf_hwcap()
1157 
1158 static uint32_t get_elf_hwcap(void)
1159 {
1160     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1161     uint32_t hwcap = 0;
1162 
1163     hwcap |= SH_CPU_HAS_FPU;
1164 
1165     if (cpu->env.features & SH_FEATURE_SH4A) {
1166         hwcap |= SH_CPU_HAS_LLSC;
1167     }
1168 
1169     return hwcap;
1170 }
1171 
1172 #endif
1173 
1174 #ifdef TARGET_CRIS
1175 
1176 #define ELF_START_MMAP 0x80000000
1177 
1178 #define ELF_CLASS ELFCLASS32
1179 #define ELF_ARCH  EM_CRIS
1180 
1181 static inline void init_thread(struct target_pt_regs *regs,
1182                                struct image_info *infop)
1183 {
1184     regs->erp = infop->entry;
1185 }
1186 
1187 #define ELF_EXEC_PAGESIZE        8192
1188 
1189 #endif
1190 
1191 #ifdef TARGET_M68K
1192 
1193 #define ELF_START_MMAP 0x80000000
1194 
1195 #define ELF_CLASS       ELFCLASS32
1196 #define ELF_ARCH        EM_68K
1197 
1198 /* ??? Does this need to do anything?
1199    #define ELF_PLAT_INIT(_r) */
1200 
1201 static inline void init_thread(struct target_pt_regs *regs,
1202                                struct image_info *infop)
1203 {
1204     regs->usp = infop->start_stack;
1205     regs->sr = 0;
1206     regs->pc = infop->entry;
1207 }
1208 
1209 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1210 #define ELF_NREG 20
1211 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1212 
1213 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1214 {
1215     (*regs)[0] = tswapreg(env->dregs[1]);
1216     (*regs)[1] = tswapreg(env->dregs[2]);
1217     (*regs)[2] = tswapreg(env->dregs[3]);
1218     (*regs)[3] = tswapreg(env->dregs[4]);
1219     (*regs)[4] = tswapreg(env->dregs[5]);
1220     (*regs)[5] = tswapreg(env->dregs[6]);
1221     (*regs)[6] = tswapreg(env->dregs[7]);
1222     (*regs)[7] = tswapreg(env->aregs[0]);
1223     (*regs)[8] = tswapreg(env->aregs[1]);
1224     (*regs)[9] = tswapreg(env->aregs[2]);
1225     (*regs)[10] = tswapreg(env->aregs[3]);
1226     (*regs)[11] = tswapreg(env->aregs[4]);
1227     (*regs)[12] = tswapreg(env->aregs[5]);
1228     (*regs)[13] = tswapreg(env->aregs[6]);
1229     (*regs)[14] = tswapreg(env->dregs[0]);
1230     (*regs)[15] = tswapreg(env->aregs[7]);
1231     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1232     (*regs)[17] = tswapreg(env->sr);
1233     (*regs)[18] = tswapreg(env->pc);
1234     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1235 }
1236 
1237 #define USE_ELF_CORE_DUMP
1238 #define ELF_EXEC_PAGESIZE       8192
1239 
1240 #endif
1241 
1242 #ifdef TARGET_ALPHA
1243 
1244 #define ELF_START_MMAP (0x30000000000ULL)
1245 
1246 #define ELF_CLASS      ELFCLASS64
1247 #define ELF_ARCH       EM_ALPHA
1248 
1249 static inline void init_thread(struct target_pt_regs *regs,
1250                                struct image_info *infop)
1251 {
1252     regs->pc = infop->entry;
1253     regs->ps = 8;
1254     regs->usp = infop->start_stack;
1255 }
1256 
1257 #define ELF_EXEC_PAGESIZE        8192
1258 
1259 #endif /* TARGET_ALPHA */
1260 
1261 #ifdef TARGET_S390X
1262 
1263 #define ELF_START_MMAP (0x20000000000ULL)
1264 
1265 #define ELF_CLASS	ELFCLASS64
1266 #define ELF_DATA	ELFDATA2MSB
1267 #define ELF_ARCH	EM_S390
1268 
1269 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1270 {
1271     regs->psw.addr = infop->entry;
1272     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1273     regs->gprs[15] = infop->start_stack;
1274 }
1275 
1276 #endif /* TARGET_S390X */
1277 
1278 #ifdef TARGET_TILEGX
1279 
1280 /* 42 bits real used address, a half for user mode */
1281 #define ELF_START_MMAP (0x00000020000000000ULL)
1282 
1283 #define elf_check_arch(x) ((x) == EM_TILEGX)
1284 
1285 #define ELF_CLASS   ELFCLASS64
1286 #define ELF_DATA    ELFDATA2LSB
1287 #define ELF_ARCH    EM_TILEGX
1288 
1289 static inline void init_thread(struct target_pt_regs *regs,
1290                                struct image_info *infop)
1291 {
1292     regs->pc = infop->entry;
1293     regs->sp = infop->start_stack;
1294 
1295 }
1296 
1297 #define ELF_EXEC_PAGESIZE        65536 /* TILE-Gx page size is 64KB */
1298 
1299 #endif /* TARGET_TILEGX */
1300 
1301 #ifdef TARGET_RISCV
1302 
1303 #define ELF_START_MMAP 0x80000000
1304 #define ELF_ARCH  EM_RISCV
1305 
1306 #ifdef TARGET_RISCV32
1307 #define ELF_CLASS ELFCLASS32
1308 #else
1309 #define ELF_CLASS ELFCLASS64
1310 #endif
1311 
1312 static inline void init_thread(struct target_pt_regs *regs,
1313                                struct image_info *infop)
1314 {
1315     regs->sepc = infop->entry;
1316     regs->sp = infop->start_stack;
1317 }
1318 
1319 #define ELF_EXEC_PAGESIZE 4096
1320 
1321 #endif /* TARGET_RISCV */
1322 
1323 #ifdef TARGET_HPPA
1324 
1325 #define ELF_START_MMAP  0x80000000
1326 #define ELF_CLASS       ELFCLASS32
1327 #define ELF_ARCH        EM_PARISC
1328 #define ELF_PLATFORM    "PARISC"
1329 #define STACK_GROWS_DOWN 0
1330 #define STACK_ALIGNMENT  64
1331 
1332 static inline void init_thread(struct target_pt_regs *regs,
1333                                struct image_info *infop)
1334 {
1335     regs->iaoq[0] = infop->entry;
1336     regs->iaoq[1] = infop->entry + 4;
1337     regs->gr[23] = 0;
1338     regs->gr[24] = infop->arg_start;
1339     regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1340     /* The top-of-stack contains a linkage buffer.  */
1341     regs->gr[30] = infop->start_stack + 64;
1342     regs->gr[31] = infop->entry;
1343 }
1344 
1345 #endif /* TARGET_HPPA */
1346 
1347 #ifdef TARGET_XTENSA
1348 
1349 #define ELF_START_MMAP 0x20000000
1350 
1351 #define ELF_CLASS       ELFCLASS32
1352 #define ELF_ARCH        EM_XTENSA
1353 
1354 static inline void init_thread(struct target_pt_regs *regs,
1355                                struct image_info *infop)
1356 {
1357     regs->windowbase = 0;
1358     regs->windowstart = 1;
1359     regs->areg[1] = infop->start_stack;
1360     regs->pc = infop->entry;
1361 }
1362 
1363 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1364 #define ELF_NREG 128
1365 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1366 
1367 enum {
1368     TARGET_REG_PC,
1369     TARGET_REG_PS,
1370     TARGET_REG_LBEG,
1371     TARGET_REG_LEND,
1372     TARGET_REG_LCOUNT,
1373     TARGET_REG_SAR,
1374     TARGET_REG_WINDOWSTART,
1375     TARGET_REG_WINDOWBASE,
1376     TARGET_REG_THREADPTR,
1377     TARGET_REG_AR0 = 64,
1378 };
1379 
1380 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1381                                const CPUXtensaState *env)
1382 {
1383     unsigned i;
1384 
1385     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1386     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1387     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1388     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1389     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1390     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1391     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1392     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1393     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1394     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1395     for (i = 0; i < env->config->nareg; ++i) {
1396         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1397     }
1398 }
1399 
1400 #define USE_ELF_CORE_DUMP
1401 #define ELF_EXEC_PAGESIZE       4096
1402 
1403 #endif /* TARGET_XTENSA */
1404 
1405 #ifndef ELF_PLATFORM
1406 #define ELF_PLATFORM (NULL)
1407 #endif
1408 
1409 #ifndef ELF_MACHINE
1410 #define ELF_MACHINE ELF_ARCH
1411 #endif
1412 
1413 #ifndef elf_check_arch
1414 #define elf_check_arch(x) ((x) == ELF_ARCH)
1415 #endif
1416 
1417 #ifndef ELF_HWCAP
1418 #define ELF_HWCAP 0
1419 #endif
1420 
1421 #ifndef STACK_GROWS_DOWN
1422 #define STACK_GROWS_DOWN 1
1423 #endif
1424 
1425 #ifndef STACK_ALIGNMENT
1426 #define STACK_ALIGNMENT 16
1427 #endif
1428 
1429 #ifdef TARGET_ABI32
1430 #undef ELF_CLASS
1431 #define ELF_CLASS ELFCLASS32
1432 #undef bswaptls
1433 #define bswaptls(ptr) bswap32s(ptr)
1434 #endif
1435 
1436 #include "elf.h"
1437 
1438 struct exec
1439 {
1440     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1441     unsigned int a_text;   /* length of text, in bytes */
1442     unsigned int a_data;   /* length of data, in bytes */
1443     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1444     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1445     unsigned int a_entry;  /* start address */
1446     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1447     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1448 };
1449 
1450 
1451 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1452 #define OMAGIC 0407
1453 #define NMAGIC 0410
1454 #define ZMAGIC 0413
1455 #define QMAGIC 0314
1456 
1457 /* Necessary parameters */
1458 #define TARGET_ELF_EXEC_PAGESIZE \
1459         (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1460          TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1461 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1462 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1463                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1464 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1465 
1466 #define DLINFO_ITEMS 15
1467 
1468 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1469 {
1470     memcpy(to, from, n);
1471 }
1472 
1473 #ifdef BSWAP_NEEDED
1474 static void bswap_ehdr(struct elfhdr *ehdr)
1475 {
1476     bswap16s(&ehdr->e_type);            /* Object file type */
1477     bswap16s(&ehdr->e_machine);         /* Architecture */
1478     bswap32s(&ehdr->e_version);         /* Object file version */
1479     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1480     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1481     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1482     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1483     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1484     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1485     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1486     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1487     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1488     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1489 }
1490 
1491 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1492 {
1493     int i;
1494     for (i = 0; i < phnum; ++i, ++phdr) {
1495         bswap32s(&phdr->p_type);        /* Segment type */
1496         bswap32s(&phdr->p_flags);       /* Segment flags */
1497         bswaptls(&phdr->p_offset);      /* Segment file offset */
1498         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1499         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1500         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1501         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1502         bswaptls(&phdr->p_align);       /* Segment alignment */
1503     }
1504 }
1505 
1506 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1507 {
1508     int i;
1509     for (i = 0; i < shnum; ++i, ++shdr) {
1510         bswap32s(&shdr->sh_name);
1511         bswap32s(&shdr->sh_type);
1512         bswaptls(&shdr->sh_flags);
1513         bswaptls(&shdr->sh_addr);
1514         bswaptls(&shdr->sh_offset);
1515         bswaptls(&shdr->sh_size);
1516         bswap32s(&shdr->sh_link);
1517         bswap32s(&shdr->sh_info);
1518         bswaptls(&shdr->sh_addralign);
1519         bswaptls(&shdr->sh_entsize);
1520     }
1521 }
1522 
1523 static void bswap_sym(struct elf_sym *sym)
1524 {
1525     bswap32s(&sym->st_name);
1526     bswaptls(&sym->st_value);
1527     bswaptls(&sym->st_size);
1528     bswap16s(&sym->st_shndx);
1529 }
1530 
1531 #ifdef TARGET_MIPS
1532 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1533 {
1534     bswap16s(&abiflags->version);
1535     bswap32s(&abiflags->ases);
1536     bswap32s(&abiflags->isa_ext);
1537     bswap32s(&abiflags->flags1);
1538     bswap32s(&abiflags->flags2);
1539 }
1540 #endif
1541 #else
1542 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1543 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1544 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1545 static inline void bswap_sym(struct elf_sym *sym) { }
1546 #ifdef TARGET_MIPS
1547 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1548 #endif
1549 #endif
1550 
1551 #ifdef USE_ELF_CORE_DUMP
1552 static int elf_core_dump(int, const CPUArchState *);
1553 #endif /* USE_ELF_CORE_DUMP */
1554 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1555 
1556 /* Verify the portions of EHDR within E_IDENT for the target.
1557    This can be performed before bswapping the entire header.  */
1558 static bool elf_check_ident(struct elfhdr *ehdr)
1559 {
1560     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1561             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1562             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1563             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1564             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1565             && ehdr->e_ident[EI_DATA] == ELF_DATA
1566             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1567 }
1568 
1569 /* Verify the portions of EHDR outside of E_IDENT for the target.
1570    This has to wait until after bswapping the header.  */
1571 static bool elf_check_ehdr(struct elfhdr *ehdr)
1572 {
1573     return (elf_check_arch(ehdr->e_machine)
1574             && ehdr->e_ehsize == sizeof(struct elfhdr)
1575             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1576             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1577 }
1578 
1579 /*
1580  * 'copy_elf_strings()' copies argument/envelope strings from user
1581  * memory to free pages in kernel mem. These are in a format ready
1582  * to be put directly into the top of new user memory.
1583  *
1584  */
1585 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1586                                   abi_ulong p, abi_ulong stack_limit)
1587 {
1588     char *tmp;
1589     int len, i;
1590     abi_ulong top = p;
1591 
1592     if (!p) {
1593         return 0;       /* bullet-proofing */
1594     }
1595 
1596     if (STACK_GROWS_DOWN) {
1597         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1598         for (i = argc - 1; i >= 0; --i) {
1599             tmp = argv[i];
1600             if (!tmp) {
1601                 fprintf(stderr, "VFS: argc is wrong");
1602                 exit(-1);
1603             }
1604             len = strlen(tmp) + 1;
1605             tmp += len;
1606 
1607             if (len > (p - stack_limit)) {
1608                 return 0;
1609             }
1610             while (len) {
1611                 int bytes_to_copy = (len > offset) ? offset : len;
1612                 tmp -= bytes_to_copy;
1613                 p -= bytes_to_copy;
1614                 offset -= bytes_to_copy;
1615                 len -= bytes_to_copy;
1616 
1617                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1618 
1619                 if (offset == 0) {
1620                     memcpy_to_target(p, scratch, top - p);
1621                     top = p;
1622                     offset = TARGET_PAGE_SIZE;
1623                 }
1624             }
1625         }
1626         if (p != top) {
1627             memcpy_to_target(p, scratch + offset, top - p);
1628         }
1629     } else {
1630         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1631         for (i = 0; i < argc; ++i) {
1632             tmp = argv[i];
1633             if (!tmp) {
1634                 fprintf(stderr, "VFS: argc is wrong");
1635                 exit(-1);
1636             }
1637             len = strlen(tmp) + 1;
1638             if (len > (stack_limit - p)) {
1639                 return 0;
1640             }
1641             while (len) {
1642                 int bytes_to_copy = (len > remaining) ? remaining : len;
1643 
1644                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1645 
1646                 tmp += bytes_to_copy;
1647                 remaining -= bytes_to_copy;
1648                 p += bytes_to_copy;
1649                 len -= bytes_to_copy;
1650 
1651                 if (remaining == 0) {
1652                     memcpy_to_target(top, scratch, p - top);
1653                     top = p;
1654                     remaining = TARGET_PAGE_SIZE;
1655                 }
1656             }
1657         }
1658         if (p != top) {
1659             memcpy_to_target(top, scratch, p - top);
1660         }
1661     }
1662 
1663     return p;
1664 }
1665 
1666 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1667  * argument/environment space. Newer kernels (>2.6.33) allow more,
1668  * dependent on stack size, but guarantee at least 32 pages for
1669  * backwards compatibility.
1670  */
1671 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1672 
1673 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1674                                  struct image_info *info)
1675 {
1676     abi_ulong size, error, guard;
1677 
1678     size = guest_stack_size;
1679     if (size < STACK_LOWER_LIMIT) {
1680         size = STACK_LOWER_LIMIT;
1681     }
1682     guard = TARGET_PAGE_SIZE;
1683     if (guard < qemu_real_host_page_size) {
1684         guard = qemu_real_host_page_size;
1685     }
1686 
1687     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1688                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1689     if (error == -1) {
1690         perror("mmap stack");
1691         exit(-1);
1692     }
1693 
1694     /* We reserve one extra page at the top of the stack as guard.  */
1695     if (STACK_GROWS_DOWN) {
1696         target_mprotect(error, guard, PROT_NONE);
1697         info->stack_limit = error + guard;
1698         return info->stack_limit + size - sizeof(void *);
1699     } else {
1700         target_mprotect(error + size, guard, PROT_NONE);
1701         info->stack_limit = error + size;
1702         return error;
1703     }
1704 }
1705 
1706 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1707    after the data section (i.e. bss).  */
1708 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1709 {
1710     uintptr_t host_start, host_map_start, host_end;
1711 
1712     last_bss = TARGET_PAGE_ALIGN(last_bss);
1713 
1714     /* ??? There is confusion between qemu_real_host_page_size and
1715        qemu_host_page_size here and elsewhere in target_mmap, which
1716        may lead to the end of the data section mapping from the file
1717        not being mapped.  At least there was an explicit test and
1718        comment for that here, suggesting that "the file size must
1719        be known".  The comment probably pre-dates the introduction
1720        of the fstat system call in target_mmap which does in fact
1721        find out the size.  What isn't clear is if the workaround
1722        here is still actually needed.  For now, continue with it,
1723        but merge it with the "normal" mmap that would allocate the bss.  */
1724 
1725     host_start = (uintptr_t) g2h(elf_bss);
1726     host_end = (uintptr_t) g2h(last_bss);
1727     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1728 
1729     if (host_map_start < host_end) {
1730         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1731                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1732         if (p == MAP_FAILED) {
1733             perror("cannot mmap brk");
1734             exit(-1);
1735         }
1736     }
1737 
1738     /* Ensure that the bss page(s) are valid */
1739     if ((page_get_flags(last_bss-1) & prot) != prot) {
1740         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1741     }
1742 
1743     if (host_start < host_map_start) {
1744         memset((void *)host_start, 0, host_map_start - host_start);
1745     }
1746 }
1747 
1748 #ifdef TARGET_ARM
1749 static int elf_is_fdpic(struct elfhdr *exec)
1750 {
1751     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1752 }
1753 #else
1754 /* Default implementation, always false.  */
1755 static int elf_is_fdpic(struct elfhdr *exec)
1756 {
1757     return 0;
1758 }
1759 #endif
1760 
1761 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1762 {
1763     uint16_t n;
1764     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1765 
1766     /* elf32_fdpic_loadseg */
1767     n = info->nsegs;
1768     while (n--) {
1769         sp -= 12;
1770         put_user_u32(loadsegs[n].addr, sp+0);
1771         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1772         put_user_u32(loadsegs[n].p_memsz, sp+8);
1773     }
1774 
1775     /* elf32_fdpic_loadmap */
1776     sp -= 4;
1777     put_user_u16(0, sp+0); /* version */
1778     put_user_u16(info->nsegs, sp+2); /* nsegs */
1779 
1780     info->personality = PER_LINUX_FDPIC;
1781     info->loadmap_addr = sp;
1782 
1783     return sp;
1784 }
1785 
1786 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1787                                    struct elfhdr *exec,
1788                                    struct image_info *info,
1789                                    struct image_info *interp_info)
1790 {
1791     abi_ulong sp;
1792     abi_ulong u_argc, u_argv, u_envp, u_auxv;
1793     int size;
1794     int i;
1795     abi_ulong u_rand_bytes;
1796     uint8_t k_rand_bytes[16];
1797     abi_ulong u_platform;
1798     const char *k_platform;
1799     const int n = sizeof(elf_addr_t);
1800 
1801     sp = p;
1802 
1803     /* Needs to be before we load the env/argc/... */
1804     if (elf_is_fdpic(exec)) {
1805         /* Need 4 byte alignment for these structs */
1806         sp &= ~3;
1807         sp = loader_build_fdpic_loadmap(info, sp);
1808         info->other_info = interp_info;
1809         if (interp_info) {
1810             interp_info->other_info = info;
1811             sp = loader_build_fdpic_loadmap(interp_info, sp);
1812             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1813             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1814         } else {
1815             info->interpreter_loadmap_addr = 0;
1816             info->interpreter_pt_dynamic_addr = 0;
1817         }
1818     }
1819 
1820     u_platform = 0;
1821     k_platform = ELF_PLATFORM;
1822     if (k_platform) {
1823         size_t len = strlen(k_platform) + 1;
1824         if (STACK_GROWS_DOWN) {
1825             sp -= (len + n - 1) & ~(n - 1);
1826             u_platform = sp;
1827             /* FIXME - check return value of memcpy_to_target() for failure */
1828             memcpy_to_target(sp, k_platform, len);
1829         } else {
1830             memcpy_to_target(sp, k_platform, len);
1831             u_platform = sp;
1832             sp += len + 1;
1833         }
1834     }
1835 
1836     /* Provide 16 byte alignment for the PRNG, and basic alignment for
1837      * the argv and envp pointers.
1838      */
1839     if (STACK_GROWS_DOWN) {
1840         sp = QEMU_ALIGN_DOWN(sp, 16);
1841     } else {
1842         sp = QEMU_ALIGN_UP(sp, 16);
1843     }
1844 
1845     /*
1846      * Generate 16 random bytes for userspace PRNG seeding (not
1847      * cryptically secure but it's not the aim of QEMU).
1848      */
1849     for (i = 0; i < 16; i++) {
1850         k_rand_bytes[i] = rand();
1851     }
1852     if (STACK_GROWS_DOWN) {
1853         sp -= 16;
1854         u_rand_bytes = sp;
1855         /* FIXME - check return value of memcpy_to_target() for failure */
1856         memcpy_to_target(sp, k_rand_bytes, 16);
1857     } else {
1858         memcpy_to_target(sp, k_rand_bytes, 16);
1859         u_rand_bytes = sp;
1860         sp += 16;
1861     }
1862 
1863     size = (DLINFO_ITEMS + 1) * 2;
1864     if (k_platform)
1865         size += 2;
1866 #ifdef DLINFO_ARCH_ITEMS
1867     size += DLINFO_ARCH_ITEMS * 2;
1868 #endif
1869 #ifdef ELF_HWCAP2
1870     size += 2;
1871 #endif
1872     info->auxv_len = size * n;
1873 
1874     size += envc + argc + 2;
1875     size += 1;  /* argc itself */
1876     size *= n;
1877 
1878     /* Allocate space and finalize stack alignment for entry now.  */
1879     if (STACK_GROWS_DOWN) {
1880         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1881         sp = u_argc;
1882     } else {
1883         u_argc = sp;
1884         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1885     }
1886 
1887     u_argv = u_argc + n;
1888     u_envp = u_argv + (argc + 1) * n;
1889     u_auxv = u_envp + (envc + 1) * n;
1890     info->saved_auxv = u_auxv;
1891     info->arg_start = u_argv;
1892     info->arg_end = u_argv + argc * n;
1893 
1894     /* This is correct because Linux defines
1895      * elf_addr_t as Elf32_Off / Elf64_Off
1896      */
1897 #define NEW_AUX_ENT(id, val) do {               \
1898         put_user_ual(id, u_auxv);  u_auxv += n; \
1899         put_user_ual(val, u_auxv); u_auxv += n; \
1900     } while(0)
1901 
1902 #ifdef ARCH_DLINFO
1903     /*
1904      * ARCH_DLINFO must come first so platform specific code can enforce
1905      * special alignment requirements on the AUXV if necessary (eg. PPC).
1906      */
1907     ARCH_DLINFO;
1908 #endif
1909     /* There must be exactly DLINFO_ITEMS entries here, or the assert
1910      * on info->auxv_len will trigger.
1911      */
1912     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1913     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1914     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1915     if ((info->alignment & ~qemu_host_page_mask) != 0) {
1916         /* Target doesn't support host page size alignment */
1917         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1918     } else {
1919         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
1920                                                qemu_host_page_size)));
1921     }
1922     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1923     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1924     NEW_AUX_ENT(AT_ENTRY, info->entry);
1925     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1926     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1927     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1928     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1929     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1930     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1931     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1932     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
1933 
1934 #ifdef ELF_HWCAP2
1935     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1936 #endif
1937 
1938     if (u_platform) {
1939         NEW_AUX_ENT(AT_PLATFORM, u_platform);
1940     }
1941     NEW_AUX_ENT (AT_NULL, 0);
1942 #undef NEW_AUX_ENT
1943 
1944     /* Check that our initial calculation of the auxv length matches how much
1945      * we actually put into it.
1946      */
1947     assert(info->auxv_len == u_auxv - info->saved_auxv);
1948 
1949     put_user_ual(argc, u_argc);
1950 
1951     p = info->arg_strings;
1952     for (i = 0; i < argc; ++i) {
1953         put_user_ual(p, u_argv);
1954         u_argv += n;
1955         p += target_strlen(p) + 1;
1956     }
1957     put_user_ual(0, u_argv);
1958 
1959     p = info->env_strings;
1960     for (i = 0; i < envc; ++i) {
1961         put_user_ual(p, u_envp);
1962         u_envp += n;
1963         p += target_strlen(p) + 1;
1964     }
1965     put_user_ual(0, u_envp);
1966 
1967     return sp;
1968 }
1969 
1970 unsigned long init_guest_space(unsigned long host_start,
1971                                unsigned long host_size,
1972                                unsigned long guest_start,
1973                                bool fixed)
1974 {
1975     unsigned long current_start, aligned_start;
1976     int flags;
1977 
1978     assert(host_start || host_size);
1979 
1980     /* If just a starting address is given, then just verify that
1981      * address.  */
1982     if (host_start && !host_size) {
1983 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1984         if (init_guest_commpage(host_start, host_size) != 1) {
1985             return (unsigned long)-1;
1986         }
1987 #endif
1988         return host_start;
1989     }
1990 
1991     /* Setup the initial flags and start address.  */
1992     current_start = host_start & qemu_host_page_mask;
1993     flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1994     if (fixed) {
1995         flags |= MAP_FIXED;
1996     }
1997 
1998     /* Otherwise, a non-zero size region of memory needs to be mapped
1999      * and validated.  */
2000 
2001 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2002     /* On 32-bit ARM, we need to map not just the usable memory, but
2003      * also the commpage.  Try to find a suitable place by allocating
2004      * a big chunk for all of it.  If host_start, then the naive
2005      * strategy probably does good enough.
2006      */
2007     if (!host_start) {
2008         unsigned long guest_full_size, host_full_size, real_start;
2009 
2010         guest_full_size =
2011             (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size;
2012         host_full_size = guest_full_size - guest_start;
2013         real_start = (unsigned long)
2014             mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0);
2015         if (real_start == (unsigned long)-1) {
2016             if (host_size < host_full_size - qemu_host_page_size) {
2017                 /* We failed to map a continous segment, but we're
2018                  * allowed to have a gap between the usable memory and
2019                  * the commpage where other things can be mapped.
2020                  * This sparseness gives us more flexibility to find
2021                  * an address range.
2022                  */
2023                 goto naive;
2024             }
2025             return (unsigned long)-1;
2026         }
2027         munmap((void *)real_start, host_full_size);
2028         if (real_start & ~qemu_host_page_mask) {
2029             /* The same thing again, but with an extra qemu_host_page_size
2030              * so that we can shift around alignment.
2031              */
2032             unsigned long real_size = host_full_size + qemu_host_page_size;
2033             real_start = (unsigned long)
2034                 mmap(NULL, real_size, PROT_NONE, flags, -1, 0);
2035             if (real_start == (unsigned long)-1) {
2036                 if (host_size < host_full_size - qemu_host_page_size) {
2037                     goto naive;
2038                 }
2039                 return (unsigned long)-1;
2040             }
2041             munmap((void *)real_start, real_size);
2042             real_start = HOST_PAGE_ALIGN(real_start);
2043         }
2044         current_start = real_start;
2045     }
2046  naive:
2047 #endif
2048 
2049     while (1) {
2050         unsigned long real_start, real_size, aligned_size;
2051         aligned_size = real_size = host_size;
2052 
2053         /* Do not use mmap_find_vma here because that is limited to the
2054          * guest address space.  We are going to make the
2055          * guest address space fit whatever we're given.
2056          */
2057         real_start = (unsigned long)
2058             mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
2059         if (real_start == (unsigned long)-1) {
2060             return (unsigned long)-1;
2061         }
2062 
2063         /* Check to see if the address is valid.  */
2064         if (host_start && real_start != current_start) {
2065             goto try_again;
2066         }
2067 
2068         /* Ensure the address is properly aligned.  */
2069         if (real_start & ~qemu_host_page_mask) {
2070             /* Ideally, we adjust like
2071              *
2072              *    pages: [  ][  ][  ][  ][  ]
2073              *      old:   [   real   ]
2074              *             [ aligned  ]
2075              *      new:   [     real     ]
2076              *               [ aligned  ]
2077              *
2078              * But if there is something else mapped right after it,
2079              * then obviously it won't have room to grow, and the
2080              * kernel will put the new larger real someplace else with
2081              * unknown alignment (if we made it to here, then
2082              * fixed=false).  Which is why we grow real by a full page
2083              * size, instead of by part of one; so that even if we get
2084              * moved, we can still guarantee alignment.  But this does
2085              * mean that there is a padding of < 1 page both before
2086              * and after the aligned range; the "after" could could
2087              * cause problems for ARM emulation where it could butt in
2088              * to where we need to put the commpage.
2089              */
2090             munmap((void *)real_start, host_size);
2091             real_size = aligned_size + qemu_host_page_size;
2092             real_start = (unsigned long)
2093                 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
2094             if (real_start == (unsigned long)-1) {
2095                 return (unsigned long)-1;
2096             }
2097             aligned_start = HOST_PAGE_ALIGN(real_start);
2098         } else {
2099             aligned_start = real_start;
2100         }
2101 
2102 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2103         /* On 32-bit ARM, we need to also be able to map the commpage.  */
2104         int valid = init_guest_commpage(aligned_start - guest_start,
2105                                         aligned_size + guest_start);
2106         if (valid == -1) {
2107             munmap((void *)real_start, real_size);
2108             return (unsigned long)-1;
2109         } else if (valid == 0) {
2110             goto try_again;
2111         }
2112 #endif
2113 
2114         /* If nothing has said `return -1` or `goto try_again` yet,
2115          * then the address we have is good.
2116          */
2117         break;
2118 
2119     try_again:
2120         /* That address didn't work.  Unmap and try a different one.
2121          * The address the host picked because is typically right at
2122          * the top of the host address space and leaves the guest with
2123          * no usable address space.  Resort to a linear search.  We
2124          * already compensated for mmap_min_addr, so this should not
2125          * happen often.  Probably means we got unlucky and host
2126          * address space randomization put a shared library somewhere
2127          * inconvenient.
2128          *
2129          * This is probably a good strategy if host_start, but is
2130          * probably a bad strategy if not, which means we got here
2131          * because of trouble with ARM commpage setup.
2132          */
2133         munmap((void *)real_start, real_size);
2134         current_start += qemu_host_page_size;
2135         if (host_start == current_start) {
2136             /* Theoretically possible if host doesn't have any suitably
2137              * aligned areas.  Normally the first mmap will fail.
2138              */
2139             return (unsigned long)-1;
2140         }
2141     }
2142 
2143     qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
2144 
2145     return aligned_start;
2146 }
2147 
2148 static void probe_guest_base(const char *image_name,
2149                              abi_ulong loaddr, abi_ulong hiaddr)
2150 {
2151     /* Probe for a suitable guest base address, if the user has not set
2152      * it explicitly, and set guest_base appropriately.
2153      * In case of error we will print a suitable message and exit.
2154      */
2155     const char *errmsg;
2156     if (!have_guest_base && !reserved_va) {
2157         unsigned long host_start, real_start, host_size;
2158 
2159         /* Round addresses to page boundaries.  */
2160         loaddr &= qemu_host_page_mask;
2161         hiaddr = HOST_PAGE_ALIGN(hiaddr);
2162 
2163         if (loaddr < mmap_min_addr) {
2164             host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2165         } else {
2166             host_start = loaddr;
2167             if (host_start != loaddr) {
2168                 errmsg = "Address overflow loading ELF binary";
2169                 goto exit_errmsg;
2170             }
2171         }
2172         host_size = hiaddr - loaddr;
2173 
2174         /* Setup the initial guest memory space with ranges gleaned from
2175          * the ELF image that is being loaded.
2176          */
2177         real_start = init_guest_space(host_start, host_size, loaddr, false);
2178         if (real_start == (unsigned long)-1) {
2179             errmsg = "Unable to find space for application";
2180             goto exit_errmsg;
2181         }
2182         guest_base = real_start - loaddr;
2183 
2184         qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2185                       TARGET_ABI_FMT_lx " to 0x%lx\n",
2186                       loaddr, real_start);
2187     }
2188     return;
2189 
2190 exit_errmsg:
2191     fprintf(stderr, "%s: %s\n", image_name, errmsg);
2192     exit(-1);
2193 }
2194 
2195 
2196 /* Load an ELF image into the address space.
2197 
2198    IMAGE_NAME is the filename of the image, to use in error messages.
2199    IMAGE_FD is the open file descriptor for the image.
2200 
2201    BPRM_BUF is a copy of the beginning of the file; this of course
2202    contains the elf file header at offset 0.  It is assumed that this
2203    buffer is sufficiently aligned to present no problems to the host
2204    in accessing data at aligned offsets within the buffer.
2205 
2206    On return: INFO values will be filled in, as necessary or available.  */
2207 
2208 static void load_elf_image(const char *image_name, int image_fd,
2209                            struct image_info *info, char **pinterp_name,
2210                            char bprm_buf[BPRM_BUF_SIZE])
2211 {
2212     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2213     struct elf_phdr *phdr;
2214     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2215     int i, retval;
2216     const char *errmsg;
2217 
2218     /* First of all, some simple consistency checks */
2219     errmsg = "Invalid ELF image for this architecture";
2220     if (!elf_check_ident(ehdr)) {
2221         goto exit_errmsg;
2222     }
2223     bswap_ehdr(ehdr);
2224     if (!elf_check_ehdr(ehdr)) {
2225         goto exit_errmsg;
2226     }
2227 
2228     i = ehdr->e_phnum * sizeof(struct elf_phdr);
2229     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2230         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2231     } else {
2232         phdr = (struct elf_phdr *) alloca(i);
2233         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2234         if (retval != i) {
2235             goto exit_read;
2236         }
2237     }
2238     bswap_phdr(phdr, ehdr->e_phnum);
2239 
2240     info->nsegs = 0;
2241     info->pt_dynamic_addr = 0;
2242 
2243     mmap_lock();
2244 
2245     /* Find the maximum size of the image and allocate an appropriate
2246        amount of memory to handle that.  */
2247     loaddr = -1, hiaddr = 0;
2248     info->alignment = 0;
2249     for (i = 0; i < ehdr->e_phnum; ++i) {
2250         if (phdr[i].p_type == PT_LOAD) {
2251             abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2252             if (a < loaddr) {
2253                 loaddr = a;
2254             }
2255             a = phdr[i].p_vaddr + phdr[i].p_memsz;
2256             if (a > hiaddr) {
2257                 hiaddr = a;
2258             }
2259             ++info->nsegs;
2260             info->alignment |= phdr[i].p_align;
2261         }
2262     }
2263 
2264     load_addr = loaddr;
2265     if (ehdr->e_type == ET_DYN) {
2266         /* The image indicates that it can be loaded anywhere.  Find a
2267            location that can hold the memory space required.  If the
2268            image is pre-linked, LOADDR will be non-zero.  Since we do
2269            not supply MAP_FIXED here we'll use that address if and
2270            only if it remains available.  */
2271         load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2272                                 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2273                                 -1, 0);
2274         if (load_addr == -1) {
2275             goto exit_perror;
2276         }
2277     } else if (pinterp_name != NULL) {
2278         /* This is the main executable.  Make sure that the low
2279            address does not conflict with MMAP_MIN_ADDR or the
2280            QEMU application itself.  */
2281         probe_guest_base(image_name, loaddr, hiaddr);
2282     }
2283     load_bias = load_addr - loaddr;
2284 
2285     if (elf_is_fdpic(ehdr)) {
2286         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2287             g_malloc(sizeof(*loadsegs) * info->nsegs);
2288 
2289         for (i = 0; i < ehdr->e_phnum; ++i) {
2290             switch (phdr[i].p_type) {
2291             case PT_DYNAMIC:
2292                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2293                 break;
2294             case PT_LOAD:
2295                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2296                 loadsegs->p_vaddr = phdr[i].p_vaddr;
2297                 loadsegs->p_memsz = phdr[i].p_memsz;
2298                 ++loadsegs;
2299                 break;
2300             }
2301         }
2302     }
2303 
2304     info->load_bias = load_bias;
2305     info->load_addr = load_addr;
2306     info->entry = ehdr->e_entry + load_bias;
2307     info->start_code = -1;
2308     info->end_code = 0;
2309     info->start_data = -1;
2310     info->end_data = 0;
2311     info->brk = 0;
2312     info->elf_flags = ehdr->e_flags;
2313 
2314     for (i = 0; i < ehdr->e_phnum; i++) {
2315         struct elf_phdr *eppnt = phdr + i;
2316         if (eppnt->p_type == PT_LOAD) {
2317             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2318             int elf_prot = 0;
2319 
2320             if (eppnt->p_flags & PF_R) elf_prot =  PROT_READ;
2321             if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2322             if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2323 
2324             vaddr = load_bias + eppnt->p_vaddr;
2325             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2326             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2327             vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2328 
2329             error = target_mmap(vaddr_ps, vaddr_len,
2330                                 elf_prot, MAP_PRIVATE | MAP_FIXED,
2331                                 image_fd, eppnt->p_offset - vaddr_po);
2332             if (error == -1) {
2333                 goto exit_perror;
2334             }
2335 
2336             vaddr_ef = vaddr + eppnt->p_filesz;
2337             vaddr_em = vaddr + eppnt->p_memsz;
2338 
2339             /* If the load segment requests extra zeros (e.g. bss), map it.  */
2340             if (vaddr_ef < vaddr_em) {
2341                 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2342             }
2343 
2344             /* Find the full program boundaries.  */
2345             if (elf_prot & PROT_EXEC) {
2346                 if (vaddr < info->start_code) {
2347                     info->start_code = vaddr;
2348                 }
2349                 if (vaddr_ef > info->end_code) {
2350                     info->end_code = vaddr_ef;
2351                 }
2352             }
2353             if (elf_prot & PROT_WRITE) {
2354                 if (vaddr < info->start_data) {
2355                     info->start_data = vaddr;
2356                 }
2357                 if (vaddr_ef > info->end_data) {
2358                     info->end_data = vaddr_ef;
2359                 }
2360                 if (vaddr_em > info->brk) {
2361                     info->brk = vaddr_em;
2362                 }
2363             }
2364         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2365             char *interp_name;
2366 
2367             if (*pinterp_name) {
2368                 errmsg = "Multiple PT_INTERP entries";
2369                 goto exit_errmsg;
2370             }
2371             interp_name = malloc(eppnt->p_filesz);
2372             if (!interp_name) {
2373                 goto exit_perror;
2374             }
2375 
2376             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2377                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2378                        eppnt->p_filesz);
2379             } else {
2380                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2381                                eppnt->p_offset);
2382                 if (retval != eppnt->p_filesz) {
2383                     goto exit_perror;
2384                 }
2385             }
2386             if (interp_name[eppnt->p_filesz - 1] != 0) {
2387                 errmsg = "Invalid PT_INTERP entry";
2388                 goto exit_errmsg;
2389             }
2390             *pinterp_name = interp_name;
2391 #ifdef TARGET_MIPS
2392         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2393             Mips_elf_abiflags_v0 abiflags;
2394             if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2395                 errmsg = "Invalid PT_MIPS_ABIFLAGS entry";
2396                 goto exit_errmsg;
2397             }
2398             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2399                 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2400                        sizeof(Mips_elf_abiflags_v0));
2401             } else {
2402                 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2403                                eppnt->p_offset);
2404                 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2405                     goto exit_perror;
2406                 }
2407             }
2408             bswap_mips_abiflags(&abiflags);
2409             info->fp_abi = abiflags.fp_abi;
2410 #endif
2411         }
2412     }
2413 
2414     if (info->end_data == 0) {
2415         info->start_data = info->end_code;
2416         info->end_data = info->end_code;
2417         info->brk = info->end_code;
2418     }
2419 
2420     if (qemu_log_enabled()) {
2421         load_symbols(ehdr, image_fd, load_bias);
2422     }
2423 
2424     mmap_unlock();
2425 
2426     close(image_fd);
2427     return;
2428 
2429  exit_read:
2430     if (retval >= 0) {
2431         errmsg = "Incomplete read of file header";
2432         goto exit_errmsg;
2433     }
2434  exit_perror:
2435     errmsg = strerror(errno);
2436  exit_errmsg:
2437     fprintf(stderr, "%s: %s\n", image_name, errmsg);
2438     exit(-1);
2439 }
2440 
2441 static void load_elf_interp(const char *filename, struct image_info *info,
2442                             char bprm_buf[BPRM_BUF_SIZE])
2443 {
2444     int fd, retval;
2445 
2446     fd = open(path(filename), O_RDONLY);
2447     if (fd < 0) {
2448         goto exit_perror;
2449     }
2450 
2451     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2452     if (retval < 0) {
2453         goto exit_perror;
2454     }
2455     if (retval < BPRM_BUF_SIZE) {
2456         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2457     }
2458 
2459     load_elf_image(filename, fd, info, NULL, bprm_buf);
2460     return;
2461 
2462  exit_perror:
2463     fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2464     exit(-1);
2465 }
2466 
2467 static int symfind(const void *s0, const void *s1)
2468 {
2469     target_ulong addr = *(target_ulong *)s0;
2470     struct elf_sym *sym = (struct elf_sym *)s1;
2471     int result = 0;
2472     if (addr < sym->st_value) {
2473         result = -1;
2474     } else if (addr >= sym->st_value + sym->st_size) {
2475         result = 1;
2476     }
2477     return result;
2478 }
2479 
2480 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2481 {
2482 #if ELF_CLASS == ELFCLASS32
2483     struct elf_sym *syms = s->disas_symtab.elf32;
2484 #else
2485     struct elf_sym *syms = s->disas_symtab.elf64;
2486 #endif
2487 
2488     // binary search
2489     struct elf_sym *sym;
2490 
2491     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2492     if (sym != NULL) {
2493         return s->disas_strtab + sym->st_name;
2494     }
2495 
2496     return "";
2497 }
2498 
2499 /* FIXME: This should use elf_ops.h  */
2500 static int symcmp(const void *s0, const void *s1)
2501 {
2502     struct elf_sym *sym0 = (struct elf_sym *)s0;
2503     struct elf_sym *sym1 = (struct elf_sym *)s1;
2504     return (sym0->st_value < sym1->st_value)
2505         ? -1
2506         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2507 }
2508 
2509 /* Best attempt to load symbols from this ELF object. */
2510 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2511 {
2512     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2513     uint64_t segsz;
2514     struct elf_shdr *shdr;
2515     char *strings = NULL;
2516     struct syminfo *s = NULL;
2517     struct elf_sym *new_syms, *syms = NULL;
2518 
2519     shnum = hdr->e_shnum;
2520     i = shnum * sizeof(struct elf_shdr);
2521     shdr = (struct elf_shdr *)alloca(i);
2522     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2523         return;
2524     }
2525 
2526     bswap_shdr(shdr, shnum);
2527     for (i = 0; i < shnum; ++i) {
2528         if (shdr[i].sh_type == SHT_SYMTAB) {
2529             sym_idx = i;
2530             str_idx = shdr[i].sh_link;
2531             goto found;
2532         }
2533     }
2534 
2535     /* There will be no symbol table if the file was stripped.  */
2536     return;
2537 
2538  found:
2539     /* Now know where the strtab and symtab are.  Snarf them.  */
2540     s = g_try_new(struct syminfo, 1);
2541     if (!s) {
2542         goto give_up;
2543     }
2544 
2545     segsz = shdr[str_idx].sh_size;
2546     s->disas_strtab = strings = g_try_malloc(segsz);
2547     if (!strings ||
2548         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2549         goto give_up;
2550     }
2551 
2552     segsz = shdr[sym_idx].sh_size;
2553     syms = g_try_malloc(segsz);
2554     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2555         goto give_up;
2556     }
2557 
2558     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2559         /* Implausibly large symbol table: give up rather than ploughing
2560          * on with the number of symbols calculation overflowing
2561          */
2562         goto give_up;
2563     }
2564     nsyms = segsz / sizeof(struct elf_sym);
2565     for (i = 0; i < nsyms; ) {
2566         bswap_sym(syms + i);
2567         /* Throw away entries which we do not need.  */
2568         if (syms[i].st_shndx == SHN_UNDEF
2569             || syms[i].st_shndx >= SHN_LORESERVE
2570             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2571             if (i < --nsyms) {
2572                 syms[i] = syms[nsyms];
2573             }
2574         } else {
2575 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2576             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
2577             syms[i].st_value &= ~(target_ulong)1;
2578 #endif
2579             syms[i].st_value += load_bias;
2580             i++;
2581         }
2582     }
2583 
2584     /* No "useful" symbol.  */
2585     if (nsyms == 0) {
2586         goto give_up;
2587     }
2588 
2589     /* Attempt to free the storage associated with the local symbols
2590        that we threw away.  Whether or not this has any effect on the
2591        memory allocation depends on the malloc implementation and how
2592        many symbols we managed to discard.  */
2593     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2594     if (new_syms == NULL) {
2595         goto give_up;
2596     }
2597     syms = new_syms;
2598 
2599     qsort(syms, nsyms, sizeof(*syms), symcmp);
2600 
2601     s->disas_num_syms = nsyms;
2602 #if ELF_CLASS == ELFCLASS32
2603     s->disas_symtab.elf32 = syms;
2604 #else
2605     s->disas_symtab.elf64 = syms;
2606 #endif
2607     s->lookup_symbol = lookup_symbolxx;
2608     s->next = syminfos;
2609     syminfos = s;
2610 
2611     return;
2612 
2613 give_up:
2614     g_free(s);
2615     g_free(strings);
2616     g_free(syms);
2617 }
2618 
2619 uint32_t get_elf_eflags(int fd)
2620 {
2621     struct elfhdr ehdr;
2622     off_t offset;
2623     int ret;
2624 
2625     /* Read ELF header */
2626     offset = lseek(fd, 0, SEEK_SET);
2627     if (offset == (off_t) -1) {
2628         return 0;
2629     }
2630     ret = read(fd, &ehdr, sizeof(ehdr));
2631     if (ret < sizeof(ehdr)) {
2632         return 0;
2633     }
2634     offset = lseek(fd, offset, SEEK_SET);
2635     if (offset == (off_t) -1) {
2636         return 0;
2637     }
2638 
2639     /* Check ELF signature */
2640     if (!elf_check_ident(&ehdr)) {
2641         return 0;
2642     }
2643 
2644     /* check header */
2645     bswap_ehdr(&ehdr);
2646     if (!elf_check_ehdr(&ehdr)) {
2647         return 0;
2648     }
2649 
2650     /* return architecture id */
2651     return ehdr.e_flags;
2652 }
2653 
2654 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2655 {
2656     struct image_info interp_info;
2657     struct elfhdr elf_ex;
2658     char *elf_interpreter = NULL;
2659     char *scratch;
2660 
2661     info->start_mmap = (abi_ulong)ELF_START_MMAP;
2662 
2663     load_elf_image(bprm->filename, bprm->fd, info,
2664                    &elf_interpreter, bprm->buf);
2665 
2666     /* ??? We need a copy of the elf header for passing to create_elf_tables.
2667        If we do nothing, we'll have overwritten this when we re-use bprm->buf
2668        when we load the interpreter.  */
2669     elf_ex = *(struct elfhdr *)bprm->buf;
2670 
2671     /* Do this so that we can load the interpreter, if need be.  We will
2672        change some of these later */
2673     bprm->p = setup_arg_pages(bprm, info);
2674 
2675     scratch = g_new0(char, TARGET_PAGE_SIZE);
2676     if (STACK_GROWS_DOWN) {
2677         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2678                                    bprm->p, info->stack_limit);
2679         info->file_string = bprm->p;
2680         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2681                                    bprm->p, info->stack_limit);
2682         info->env_strings = bprm->p;
2683         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2684                                    bprm->p, info->stack_limit);
2685         info->arg_strings = bprm->p;
2686     } else {
2687         info->arg_strings = bprm->p;
2688         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2689                                    bprm->p, info->stack_limit);
2690         info->env_strings = bprm->p;
2691         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2692                                    bprm->p, info->stack_limit);
2693         info->file_string = bprm->p;
2694         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2695                                    bprm->p, info->stack_limit);
2696     }
2697 
2698     g_free(scratch);
2699 
2700     if (!bprm->p) {
2701         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2702         exit(-1);
2703     }
2704 
2705     if (elf_interpreter) {
2706         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2707 
2708         /* If the program interpreter is one of these two, then assume
2709            an iBCS2 image.  Otherwise assume a native linux image.  */
2710 
2711         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2712             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2713             info->personality = PER_SVR4;
2714 
2715             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
2716                and some applications "depend" upon this behavior.  Since
2717                we do not have the power to recompile these, we emulate
2718                the SVr4 behavior.  Sigh.  */
2719             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2720                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2721         }
2722 #ifdef TARGET_MIPS
2723         info->interp_fp_abi = interp_info.fp_abi;
2724 #endif
2725     }
2726 
2727     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2728                                 info, (elf_interpreter ? &interp_info : NULL));
2729     info->start_stack = bprm->p;
2730 
2731     /* If we have an interpreter, set that as the program's entry point.
2732        Copy the load_bias as well, to help PPC64 interpret the entry
2733        point as a function descriptor.  Do this after creating elf tables
2734        so that we copy the original program entry point into the AUXV.  */
2735     if (elf_interpreter) {
2736         info->load_bias = interp_info.load_bias;
2737         info->entry = interp_info.entry;
2738         free(elf_interpreter);
2739     }
2740 
2741 #ifdef USE_ELF_CORE_DUMP
2742     bprm->core_dump = &elf_core_dump;
2743 #endif
2744 
2745     return 0;
2746 }
2747 
2748 #ifdef USE_ELF_CORE_DUMP
2749 /*
2750  * Definitions to generate Intel SVR4-like core files.
2751  * These mostly have the same names as the SVR4 types with "target_elf_"
2752  * tacked on the front to prevent clashes with linux definitions,
2753  * and the typedef forms have been avoided.  This is mostly like
2754  * the SVR4 structure, but more Linuxy, with things that Linux does
2755  * not support and which gdb doesn't really use excluded.
2756  *
2757  * Fields we don't dump (their contents is zero) in linux-user qemu
2758  * are marked with XXX.
2759  *
2760  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2761  *
2762  * Porting ELF coredump for target is (quite) simple process.  First you
2763  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2764  * the target resides):
2765  *
2766  * #define USE_ELF_CORE_DUMP
2767  *
2768  * Next you define type of register set used for dumping.  ELF specification
2769  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2770  *
2771  * typedef <target_regtype> target_elf_greg_t;
2772  * #define ELF_NREG <number of registers>
2773  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2774  *
2775  * Last step is to implement target specific function that copies registers
2776  * from given cpu into just specified register set.  Prototype is:
2777  *
2778  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2779  *                                const CPUArchState *env);
2780  *
2781  * Parameters:
2782  *     regs - copy register values into here (allocated and zeroed by caller)
2783  *     env - copy registers from here
2784  *
2785  * Example for ARM target is provided in this file.
2786  */
2787 
2788 /* An ELF note in memory */
2789 struct memelfnote {
2790     const char *name;
2791     size_t     namesz;
2792     size_t     namesz_rounded;
2793     int        type;
2794     size_t     datasz;
2795     size_t     datasz_rounded;
2796     void       *data;
2797     size_t     notesz;
2798 };
2799 
2800 struct target_elf_siginfo {
2801     abi_int    si_signo; /* signal number */
2802     abi_int    si_code;  /* extra code */
2803     abi_int    si_errno; /* errno */
2804 };
2805 
2806 struct target_elf_prstatus {
2807     struct target_elf_siginfo pr_info;      /* Info associated with signal */
2808     abi_short          pr_cursig;    /* Current signal */
2809     abi_ulong          pr_sigpend;   /* XXX */
2810     abi_ulong          pr_sighold;   /* XXX */
2811     target_pid_t       pr_pid;
2812     target_pid_t       pr_ppid;
2813     target_pid_t       pr_pgrp;
2814     target_pid_t       pr_sid;
2815     struct target_timeval pr_utime;  /* XXX User time */
2816     struct target_timeval pr_stime;  /* XXX System time */
2817     struct target_timeval pr_cutime; /* XXX Cumulative user time */
2818     struct target_timeval pr_cstime; /* XXX Cumulative system time */
2819     target_elf_gregset_t      pr_reg;       /* GP registers */
2820     abi_int            pr_fpvalid;   /* XXX */
2821 };
2822 
2823 #define ELF_PRARGSZ     (80) /* Number of chars for args */
2824 
2825 struct target_elf_prpsinfo {
2826     char         pr_state;       /* numeric process state */
2827     char         pr_sname;       /* char for pr_state */
2828     char         pr_zomb;        /* zombie */
2829     char         pr_nice;        /* nice val */
2830     abi_ulong    pr_flag;        /* flags */
2831     target_uid_t pr_uid;
2832     target_gid_t pr_gid;
2833     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2834     /* Lots missing */
2835     char    pr_fname[16];           /* filename of executable */
2836     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2837 };
2838 
2839 /* Here is the structure in which status of each thread is captured. */
2840 struct elf_thread_status {
2841     QTAILQ_ENTRY(elf_thread_status)  ets_link;
2842     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
2843 #if 0
2844     elf_fpregset_t fpu;             /* NT_PRFPREG */
2845     struct task_struct *thread;
2846     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
2847 #endif
2848     struct memelfnote notes[1];
2849     int num_notes;
2850 };
2851 
2852 struct elf_note_info {
2853     struct memelfnote   *notes;
2854     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
2855     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
2856 
2857     QTAILQ_HEAD(, elf_thread_status) thread_list;
2858 #if 0
2859     /*
2860      * Current version of ELF coredump doesn't support
2861      * dumping fp regs etc.
2862      */
2863     elf_fpregset_t *fpu;
2864     elf_fpxregset_t *xfpu;
2865     int thread_status_size;
2866 #endif
2867     int notes_size;
2868     int numnote;
2869 };
2870 
2871 struct vm_area_struct {
2872     target_ulong   vma_start;  /* start vaddr of memory region */
2873     target_ulong   vma_end;    /* end vaddr of memory region */
2874     abi_ulong      vma_flags;  /* protection etc. flags for the region */
2875     QTAILQ_ENTRY(vm_area_struct) vma_link;
2876 };
2877 
2878 struct mm_struct {
2879     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2880     int mm_count;           /* number of mappings */
2881 };
2882 
2883 static struct mm_struct *vma_init(void);
2884 static void vma_delete(struct mm_struct *);
2885 static int vma_add_mapping(struct mm_struct *, target_ulong,
2886                            target_ulong, abi_ulong);
2887 static int vma_get_mapping_count(const struct mm_struct *);
2888 static struct vm_area_struct *vma_first(const struct mm_struct *);
2889 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2890 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2891 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2892                       unsigned long flags);
2893 
2894 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2895 static void fill_note(struct memelfnote *, const char *, int,
2896                       unsigned int, void *);
2897 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2898 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2899 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2900 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2901 static size_t note_size(const struct memelfnote *);
2902 static void free_note_info(struct elf_note_info *);
2903 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2904 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2905 static int core_dump_filename(const TaskState *, char *, size_t);
2906 
2907 static int dump_write(int, const void *, size_t);
2908 static int write_note(struct memelfnote *, int);
2909 static int write_note_info(struct elf_note_info *, int);
2910 
2911 #ifdef BSWAP_NEEDED
2912 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2913 {
2914     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2915     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2916     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2917     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2918     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2919     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2920     prstatus->pr_pid = tswap32(prstatus->pr_pid);
2921     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2922     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2923     prstatus->pr_sid = tswap32(prstatus->pr_sid);
2924     /* cpu times are not filled, so we skip them */
2925     /* regs should be in correct format already */
2926     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2927 }
2928 
2929 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2930 {
2931     psinfo->pr_flag = tswapal(psinfo->pr_flag);
2932     psinfo->pr_uid = tswap16(psinfo->pr_uid);
2933     psinfo->pr_gid = tswap16(psinfo->pr_gid);
2934     psinfo->pr_pid = tswap32(psinfo->pr_pid);
2935     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2936     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2937     psinfo->pr_sid = tswap32(psinfo->pr_sid);
2938 }
2939 
2940 static void bswap_note(struct elf_note *en)
2941 {
2942     bswap32s(&en->n_namesz);
2943     bswap32s(&en->n_descsz);
2944     bswap32s(&en->n_type);
2945 }
2946 #else
2947 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2948 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2949 static inline void bswap_note(struct elf_note *en) { }
2950 #endif /* BSWAP_NEEDED */
2951 
2952 /*
2953  * Minimal support for linux memory regions.  These are needed
2954  * when we are finding out what memory exactly belongs to
2955  * emulated process.  No locks needed here, as long as
2956  * thread that received the signal is stopped.
2957  */
2958 
2959 static struct mm_struct *vma_init(void)
2960 {
2961     struct mm_struct *mm;
2962 
2963     if ((mm = g_malloc(sizeof (*mm))) == NULL)
2964         return (NULL);
2965 
2966     mm->mm_count = 0;
2967     QTAILQ_INIT(&mm->mm_mmap);
2968 
2969     return (mm);
2970 }
2971 
2972 static void vma_delete(struct mm_struct *mm)
2973 {
2974     struct vm_area_struct *vma;
2975 
2976     while ((vma = vma_first(mm)) != NULL) {
2977         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2978         g_free(vma);
2979     }
2980     g_free(mm);
2981 }
2982 
2983 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2984                            target_ulong end, abi_ulong flags)
2985 {
2986     struct vm_area_struct *vma;
2987 
2988     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2989         return (-1);
2990 
2991     vma->vma_start = start;
2992     vma->vma_end = end;
2993     vma->vma_flags = flags;
2994 
2995     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2996     mm->mm_count++;
2997 
2998     return (0);
2999 }
3000 
3001 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3002 {
3003     return (QTAILQ_FIRST(&mm->mm_mmap));
3004 }
3005 
3006 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3007 {
3008     return (QTAILQ_NEXT(vma, vma_link));
3009 }
3010 
3011 static int vma_get_mapping_count(const struct mm_struct *mm)
3012 {
3013     return (mm->mm_count);
3014 }
3015 
3016 /*
3017  * Calculate file (dump) size of given memory region.
3018  */
3019 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3020 {
3021     /* if we cannot even read the first page, skip it */
3022     if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3023         return (0);
3024 
3025     /*
3026      * Usually we don't dump executable pages as they contain
3027      * non-writable code that debugger can read directly from
3028      * target library etc.  However, thread stacks are marked
3029      * also executable so we read in first page of given region
3030      * and check whether it contains elf header.  If there is
3031      * no elf header, we dump it.
3032      */
3033     if (vma->vma_flags & PROT_EXEC) {
3034         char page[TARGET_PAGE_SIZE];
3035 
3036         copy_from_user(page, vma->vma_start, sizeof (page));
3037         if ((page[EI_MAG0] == ELFMAG0) &&
3038             (page[EI_MAG1] == ELFMAG1) &&
3039             (page[EI_MAG2] == ELFMAG2) &&
3040             (page[EI_MAG3] == ELFMAG3)) {
3041             /*
3042              * Mappings are possibly from ELF binary.  Don't dump
3043              * them.
3044              */
3045             return (0);
3046         }
3047     }
3048 
3049     return (vma->vma_end - vma->vma_start);
3050 }
3051 
3052 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3053                       unsigned long flags)
3054 {
3055     struct mm_struct *mm = (struct mm_struct *)priv;
3056 
3057     vma_add_mapping(mm, start, end, flags);
3058     return (0);
3059 }
3060 
3061 static void fill_note(struct memelfnote *note, const char *name, int type,
3062                       unsigned int sz, void *data)
3063 {
3064     unsigned int namesz;
3065 
3066     namesz = strlen(name) + 1;
3067     note->name = name;
3068     note->namesz = namesz;
3069     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3070     note->type = type;
3071     note->datasz = sz;
3072     note->datasz_rounded = roundup(sz, sizeof (int32_t));
3073 
3074     note->data = data;
3075 
3076     /*
3077      * We calculate rounded up note size here as specified by
3078      * ELF document.
3079      */
3080     note->notesz = sizeof (struct elf_note) +
3081         note->namesz_rounded + note->datasz_rounded;
3082 }
3083 
3084 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3085                             uint32_t flags)
3086 {
3087     (void) memset(elf, 0, sizeof(*elf));
3088 
3089     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3090     elf->e_ident[EI_CLASS] = ELF_CLASS;
3091     elf->e_ident[EI_DATA] = ELF_DATA;
3092     elf->e_ident[EI_VERSION] = EV_CURRENT;
3093     elf->e_ident[EI_OSABI] = ELF_OSABI;
3094 
3095     elf->e_type = ET_CORE;
3096     elf->e_machine = machine;
3097     elf->e_version = EV_CURRENT;
3098     elf->e_phoff = sizeof(struct elfhdr);
3099     elf->e_flags = flags;
3100     elf->e_ehsize = sizeof(struct elfhdr);
3101     elf->e_phentsize = sizeof(struct elf_phdr);
3102     elf->e_phnum = segs;
3103 
3104     bswap_ehdr(elf);
3105 }
3106 
3107 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3108 {
3109     phdr->p_type = PT_NOTE;
3110     phdr->p_offset = offset;
3111     phdr->p_vaddr = 0;
3112     phdr->p_paddr = 0;
3113     phdr->p_filesz = sz;
3114     phdr->p_memsz = 0;
3115     phdr->p_flags = 0;
3116     phdr->p_align = 0;
3117 
3118     bswap_phdr(phdr, 1);
3119 }
3120 
3121 static size_t note_size(const struct memelfnote *note)
3122 {
3123     return (note->notesz);
3124 }
3125 
3126 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3127                           const TaskState *ts, int signr)
3128 {
3129     (void) memset(prstatus, 0, sizeof (*prstatus));
3130     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3131     prstatus->pr_pid = ts->ts_tid;
3132     prstatus->pr_ppid = getppid();
3133     prstatus->pr_pgrp = getpgrp();
3134     prstatus->pr_sid = getsid(0);
3135 
3136     bswap_prstatus(prstatus);
3137 }
3138 
3139 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3140 {
3141     char *base_filename;
3142     unsigned int i, len;
3143 
3144     (void) memset(psinfo, 0, sizeof (*psinfo));
3145 
3146     len = ts->info->arg_end - ts->info->arg_start;
3147     if (len >= ELF_PRARGSZ)
3148         len = ELF_PRARGSZ - 1;
3149     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3150         return -EFAULT;
3151     for (i = 0; i < len; i++)
3152         if (psinfo->pr_psargs[i] == 0)
3153             psinfo->pr_psargs[i] = ' ';
3154     psinfo->pr_psargs[len] = 0;
3155 
3156     psinfo->pr_pid = getpid();
3157     psinfo->pr_ppid = getppid();
3158     psinfo->pr_pgrp = getpgrp();
3159     psinfo->pr_sid = getsid(0);
3160     psinfo->pr_uid = getuid();
3161     psinfo->pr_gid = getgid();
3162 
3163     base_filename = g_path_get_basename(ts->bprm->filename);
3164     /*
3165      * Using strncpy here is fine: at max-length,
3166      * this field is not NUL-terminated.
3167      */
3168     (void) strncpy(psinfo->pr_fname, base_filename,
3169                    sizeof(psinfo->pr_fname));
3170 
3171     g_free(base_filename);
3172     bswap_psinfo(psinfo);
3173     return (0);
3174 }
3175 
3176 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3177 {
3178     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3179     elf_addr_t orig_auxv = auxv;
3180     void *ptr;
3181     int len = ts->info->auxv_len;
3182 
3183     /*
3184      * Auxiliary vector is stored in target process stack.  It contains
3185      * {type, value} pairs that we need to dump into note.  This is not
3186      * strictly necessary but we do it here for sake of completeness.
3187      */
3188 
3189     /* read in whole auxv vector and copy it to memelfnote */
3190     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3191     if (ptr != NULL) {
3192         fill_note(note, "CORE", NT_AUXV, len, ptr);
3193         unlock_user(ptr, auxv, len);
3194     }
3195 }
3196 
3197 /*
3198  * Constructs name of coredump file.  We have following convention
3199  * for the name:
3200  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3201  *
3202  * Returns 0 in case of success, -1 otherwise (errno is set).
3203  */
3204 static int core_dump_filename(const TaskState *ts, char *buf,
3205                               size_t bufsize)
3206 {
3207     char timestamp[64];
3208     char *base_filename = NULL;
3209     struct timeval tv;
3210     struct tm tm;
3211 
3212     assert(bufsize >= PATH_MAX);
3213 
3214     if (gettimeofday(&tv, NULL) < 0) {
3215         (void) fprintf(stderr, "unable to get current timestamp: %s",
3216                        strerror(errno));
3217         return (-1);
3218     }
3219 
3220     base_filename = g_path_get_basename(ts->bprm->filename);
3221     (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3222                     localtime_r(&tv.tv_sec, &tm));
3223     (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3224                     base_filename, timestamp, (int)getpid());
3225     g_free(base_filename);
3226 
3227     return (0);
3228 }
3229 
3230 static int dump_write(int fd, const void *ptr, size_t size)
3231 {
3232     const char *bufp = (const char *)ptr;
3233     ssize_t bytes_written, bytes_left;
3234     struct rlimit dumpsize;
3235     off_t pos;
3236 
3237     bytes_written = 0;
3238     getrlimit(RLIMIT_CORE, &dumpsize);
3239     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3240         if (errno == ESPIPE) { /* not a seekable stream */
3241             bytes_left = size;
3242         } else {
3243             return pos;
3244         }
3245     } else {
3246         if (dumpsize.rlim_cur <= pos) {
3247             return -1;
3248         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3249             bytes_left = size;
3250         } else {
3251             size_t limit_left=dumpsize.rlim_cur - pos;
3252             bytes_left = limit_left >= size ? size : limit_left ;
3253         }
3254     }
3255 
3256     /*
3257      * In normal conditions, single write(2) should do but
3258      * in case of socket etc. this mechanism is more portable.
3259      */
3260     do {
3261         bytes_written = write(fd, bufp, bytes_left);
3262         if (bytes_written < 0) {
3263             if (errno == EINTR)
3264                 continue;
3265             return (-1);
3266         } else if (bytes_written == 0) { /* eof */
3267             return (-1);
3268         }
3269         bufp += bytes_written;
3270         bytes_left -= bytes_written;
3271     } while (bytes_left > 0);
3272 
3273     return (0);
3274 }
3275 
3276 static int write_note(struct memelfnote *men, int fd)
3277 {
3278     struct elf_note en;
3279 
3280     en.n_namesz = men->namesz;
3281     en.n_type = men->type;
3282     en.n_descsz = men->datasz;
3283 
3284     bswap_note(&en);
3285 
3286     if (dump_write(fd, &en, sizeof(en)) != 0)
3287         return (-1);
3288     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3289         return (-1);
3290     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3291         return (-1);
3292 
3293     return (0);
3294 }
3295 
3296 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3297 {
3298     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3299     TaskState *ts = (TaskState *)cpu->opaque;
3300     struct elf_thread_status *ets;
3301 
3302     ets = g_malloc0(sizeof (*ets));
3303     ets->num_notes = 1; /* only prstatus is dumped */
3304     fill_prstatus(&ets->prstatus, ts, 0);
3305     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3306     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3307               &ets->prstatus);
3308 
3309     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3310 
3311     info->notes_size += note_size(&ets->notes[0]);
3312 }
3313 
3314 static void init_note_info(struct elf_note_info *info)
3315 {
3316     /* Initialize the elf_note_info structure so that it is at
3317      * least safe to call free_note_info() on it. Must be
3318      * called before calling fill_note_info().
3319      */
3320     memset(info, 0, sizeof (*info));
3321     QTAILQ_INIT(&info->thread_list);
3322 }
3323 
3324 static int fill_note_info(struct elf_note_info *info,
3325                           long signr, const CPUArchState *env)
3326 {
3327 #define NUMNOTES 3
3328     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3329     TaskState *ts = (TaskState *)cpu->opaque;
3330     int i;
3331 
3332     info->notes = g_new0(struct memelfnote, NUMNOTES);
3333     if (info->notes == NULL)
3334         return (-ENOMEM);
3335     info->prstatus = g_malloc0(sizeof (*info->prstatus));
3336     if (info->prstatus == NULL)
3337         return (-ENOMEM);
3338     info->psinfo = g_malloc0(sizeof (*info->psinfo));
3339     if (info->prstatus == NULL)
3340         return (-ENOMEM);
3341 
3342     /*
3343      * First fill in status (and registers) of current thread
3344      * including process info & aux vector.
3345      */
3346     fill_prstatus(info->prstatus, ts, signr);
3347     elf_core_copy_regs(&info->prstatus->pr_reg, env);
3348     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3349               sizeof (*info->prstatus), info->prstatus);
3350     fill_psinfo(info->psinfo, ts);
3351     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3352               sizeof (*info->psinfo), info->psinfo);
3353     fill_auxv_note(&info->notes[2], ts);
3354     info->numnote = 3;
3355 
3356     info->notes_size = 0;
3357     for (i = 0; i < info->numnote; i++)
3358         info->notes_size += note_size(&info->notes[i]);
3359 
3360     /* read and fill status of all threads */
3361     cpu_list_lock();
3362     CPU_FOREACH(cpu) {
3363         if (cpu == thread_cpu) {
3364             continue;
3365         }
3366         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3367     }
3368     cpu_list_unlock();
3369 
3370     return (0);
3371 }
3372 
3373 static void free_note_info(struct elf_note_info *info)
3374 {
3375     struct elf_thread_status *ets;
3376 
3377     while (!QTAILQ_EMPTY(&info->thread_list)) {
3378         ets = QTAILQ_FIRST(&info->thread_list);
3379         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3380         g_free(ets);
3381     }
3382 
3383     g_free(info->prstatus);
3384     g_free(info->psinfo);
3385     g_free(info->notes);
3386 }
3387 
3388 static int write_note_info(struct elf_note_info *info, int fd)
3389 {
3390     struct elf_thread_status *ets;
3391     int i, error = 0;
3392 
3393     /* write prstatus, psinfo and auxv for current thread */
3394     for (i = 0; i < info->numnote; i++)
3395         if ((error = write_note(&info->notes[i], fd)) != 0)
3396             return (error);
3397 
3398     /* write prstatus for each thread */
3399     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3400         if ((error = write_note(&ets->notes[0], fd)) != 0)
3401             return (error);
3402     }
3403 
3404     return (0);
3405 }
3406 
3407 /*
3408  * Write out ELF coredump.
3409  *
3410  * See documentation of ELF object file format in:
3411  * http://www.caldera.com/developers/devspecs/gabi41.pdf
3412  *
3413  * Coredump format in linux is following:
3414  *
3415  * 0   +----------------------+         \
3416  *     | ELF header           | ET_CORE  |
3417  *     +----------------------+          |
3418  *     | ELF program headers  |          |--- headers
3419  *     | - NOTE section       |          |
3420  *     | - PT_LOAD sections   |          |
3421  *     +----------------------+         /
3422  *     | NOTEs:               |
3423  *     | - NT_PRSTATUS        |
3424  *     | - NT_PRSINFO         |
3425  *     | - NT_AUXV            |
3426  *     +----------------------+ <-- aligned to target page
3427  *     | Process memory dump  |
3428  *     :                      :
3429  *     .                      .
3430  *     :                      :
3431  *     |                      |
3432  *     +----------------------+
3433  *
3434  * NT_PRSTATUS -> struct elf_prstatus (per thread)
3435  * NT_PRSINFO  -> struct elf_prpsinfo
3436  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3437  *
3438  * Format follows System V format as close as possible.  Current
3439  * version limitations are as follows:
3440  *     - no floating point registers are dumped
3441  *
3442  * Function returns 0 in case of success, negative errno otherwise.
3443  *
3444  * TODO: make this work also during runtime: it should be
3445  * possible to force coredump from running process and then
3446  * continue processing.  For example qemu could set up SIGUSR2
3447  * handler (provided that target process haven't registered
3448  * handler for that) that does the dump when signal is received.
3449  */
3450 static int elf_core_dump(int signr, const CPUArchState *env)
3451 {
3452     const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3453     const TaskState *ts = (const TaskState *)cpu->opaque;
3454     struct vm_area_struct *vma = NULL;
3455     char corefile[PATH_MAX];
3456     struct elf_note_info info;
3457     struct elfhdr elf;
3458     struct elf_phdr phdr;
3459     struct rlimit dumpsize;
3460     struct mm_struct *mm = NULL;
3461     off_t offset = 0, data_offset = 0;
3462     int segs = 0;
3463     int fd = -1;
3464 
3465     init_note_info(&info);
3466 
3467     errno = 0;
3468     getrlimit(RLIMIT_CORE, &dumpsize);
3469     if (dumpsize.rlim_cur == 0)
3470         return 0;
3471 
3472     if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3473         return (-errno);
3474 
3475     if ((fd = open(corefile, O_WRONLY | O_CREAT,
3476                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3477         return (-errno);
3478 
3479     /*
3480      * Walk through target process memory mappings and
3481      * set up structure containing this information.  After
3482      * this point vma_xxx functions can be used.
3483      */
3484     if ((mm = vma_init()) == NULL)
3485         goto out;
3486 
3487     walk_memory_regions(mm, vma_walker);
3488     segs = vma_get_mapping_count(mm);
3489 
3490     /*
3491      * Construct valid coredump ELF header.  We also
3492      * add one more segment for notes.
3493      */
3494     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3495     if (dump_write(fd, &elf, sizeof (elf)) != 0)
3496         goto out;
3497 
3498     /* fill in the in-memory version of notes */
3499     if (fill_note_info(&info, signr, env) < 0)
3500         goto out;
3501 
3502     offset += sizeof (elf);                             /* elf header */
3503     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
3504 
3505     /* write out notes program header */
3506     fill_elf_note_phdr(&phdr, info.notes_size, offset);
3507 
3508     offset += info.notes_size;
3509     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3510         goto out;
3511 
3512     /*
3513      * ELF specification wants data to start at page boundary so
3514      * we align it here.
3515      */
3516     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3517 
3518     /*
3519      * Write program headers for memory regions mapped in
3520      * the target process.
3521      */
3522     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3523         (void) memset(&phdr, 0, sizeof (phdr));
3524 
3525         phdr.p_type = PT_LOAD;
3526         phdr.p_offset = offset;
3527         phdr.p_vaddr = vma->vma_start;
3528         phdr.p_paddr = 0;
3529         phdr.p_filesz = vma_dump_size(vma);
3530         offset += phdr.p_filesz;
3531         phdr.p_memsz = vma->vma_end - vma->vma_start;
3532         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3533         if (vma->vma_flags & PROT_WRITE)
3534             phdr.p_flags |= PF_W;
3535         if (vma->vma_flags & PROT_EXEC)
3536             phdr.p_flags |= PF_X;
3537         phdr.p_align = ELF_EXEC_PAGESIZE;
3538 
3539         bswap_phdr(&phdr, 1);
3540         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3541             goto out;
3542         }
3543     }
3544 
3545     /*
3546      * Next we write notes just after program headers.  No
3547      * alignment needed here.
3548      */
3549     if (write_note_info(&info, fd) < 0)
3550         goto out;
3551 
3552     /* align data to page boundary */
3553     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3554         goto out;
3555 
3556     /*
3557      * Finally we can dump process memory into corefile as well.
3558      */
3559     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3560         abi_ulong addr;
3561         abi_ulong end;
3562 
3563         end = vma->vma_start + vma_dump_size(vma);
3564 
3565         for (addr = vma->vma_start; addr < end;
3566              addr += TARGET_PAGE_SIZE) {
3567             char page[TARGET_PAGE_SIZE];
3568             int error;
3569 
3570             /*
3571              *  Read in page from target process memory and
3572              *  write it to coredump file.
3573              */
3574             error = copy_from_user(page, addr, sizeof (page));
3575             if (error != 0) {
3576                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3577                                addr);
3578                 errno = -error;
3579                 goto out;
3580             }
3581             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3582                 goto out;
3583         }
3584     }
3585 
3586  out:
3587     free_note_info(&info);
3588     if (mm != NULL)
3589         vma_delete(mm);
3590     (void) close(fd);
3591 
3592     if (errno != 0)
3593         return (-errno);
3594     return (0);
3595 }
3596 #endif /* USE_ELF_CORE_DUMP */
3597 
3598 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3599 {
3600     init_thread(regs, infop);
3601 }
3602