xref: /openbmc/qemu/include/standard-headers/drm/drm_fourcc.h (revision 6a094d62ffccad7e2411cc96d6400145e38da13e)
1 /*
2  * Copyright 2011 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #ifndef DRM_FOURCC_H
25 #define DRM_FOURCC_H
26 
27 
28 #if defined(__cplusplus)
29 extern "C" {
30 #endif
31 
32 /**
33  * DOC: overview
34  *
35  * In the DRM subsystem, framebuffer pixel formats are described using the
36  * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
37  * fourcc code, a Format Modifier may optionally be provided, in order to
38  * further describe the buffer's format - for example tiling or compression.
39  *
40  * Format Modifiers
41  * ----------------
42  *
43  * Format modifiers are used in conjunction with a fourcc code, forming a
44  * unique fourcc:modifier pair. This format:modifier pair must fully define the
45  * format and data layout of the buffer, and should be the only way to describe
46  * that particular buffer.
47  *
48  * Having multiple fourcc:modifier pairs which describe the same layout should
49  * be avoided, as such aliases run the risk of different drivers exposing
50  * different names for the same data format, forcing userspace to understand
51  * that they are aliases.
52  *
53  * Format modifiers may change any property of the buffer, including the number
54  * of planes and/or the required allocation size. Format modifiers are
55  * vendor-namespaced, and as such the relationship between a fourcc code and a
56  * modifier is specific to the modifer being used. For example, some modifiers
57  * may preserve meaning - such as number of planes - from the fourcc code,
58  * whereas others may not.
59  *
60  * Modifiers must uniquely encode buffer layout. In other words, a buffer must
61  * match only a single modifier. A modifier must not be a subset of layouts of
62  * another modifier. For instance, it's incorrect to encode pitch alignment in
63  * a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel
64  * aligned modifier. That said, modifiers can have implicit minimal
65  * requirements.
66  *
67  * For modifiers where the combination of fourcc code and modifier can alias,
68  * a canonical pair needs to be defined and used by all drivers. Preferred
69  * combinations are also encouraged where all combinations might lead to
70  * confusion and unnecessarily reduced interoperability. An example for the
71  * latter is AFBC, where the ABGR layouts are preferred over ARGB layouts.
72  *
73  * There are two kinds of modifier users:
74  *
75  * - Kernel and user-space drivers: for drivers it's important that modifiers
76  *   don't alias, otherwise two drivers might support the same format but use
77  *   different aliases, preventing them from sharing buffers in an efficient
78  *   format.
79  * - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users
80  *   see modifiers as opaque tokens they can check for equality and intersect.
81  *   These users musn't need to know to reason about the modifier value
82  *   (i.e. they are not expected to extract information out of the modifier).
83  *
84  * Vendors should document their modifier usage in as much detail as
85  * possible, to ensure maximum compatibility across devices, drivers and
86  * applications.
87  *
88  * The authoritative list of format modifier codes is found in
89  * `include/uapi/drm/drm_fourcc.h`
90  */
91 
92 #define fourcc_code(a, b, c, d) ((uint32_t)(a) | ((uint32_t)(b) << 8) | \
93 				 ((uint32_t)(c) << 16) | ((uint32_t)(d) << 24))
94 
95 #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
96 
97 /* Reserve 0 for the invalid format specifier */
98 #define DRM_FORMAT_INVALID	0
99 
100 /* color index */
101 #define DRM_FORMAT_C8		fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
102 
103 /* 8 bpp Red */
104 #define DRM_FORMAT_R8		fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
105 
106 /* 10 bpp Red */
107 #define DRM_FORMAT_R10		fourcc_code('R', '1', '0', ' ') /* [15:0] x:R 6:10 little endian */
108 
109 /* 12 bpp Red */
110 #define DRM_FORMAT_R12		fourcc_code('R', '1', '2', ' ') /* [15:0] x:R 4:12 little endian */
111 
112 /* 16 bpp Red */
113 #define DRM_FORMAT_R16		fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
114 
115 /* 16 bpp RG */
116 #define DRM_FORMAT_RG88		fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
117 #define DRM_FORMAT_GR88		fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
118 
119 /* 32 bpp RG */
120 #define DRM_FORMAT_RG1616	fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
121 #define DRM_FORMAT_GR1616	fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
122 
123 /* 8 bpp RGB */
124 #define DRM_FORMAT_RGB332	fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
125 #define DRM_FORMAT_BGR233	fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
126 
127 /* 16 bpp RGB */
128 #define DRM_FORMAT_XRGB4444	fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
129 #define DRM_FORMAT_XBGR4444	fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
130 #define DRM_FORMAT_RGBX4444	fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
131 #define DRM_FORMAT_BGRX4444	fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
132 
133 #define DRM_FORMAT_ARGB4444	fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
134 #define DRM_FORMAT_ABGR4444	fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
135 #define DRM_FORMAT_RGBA4444	fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
136 #define DRM_FORMAT_BGRA4444	fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
137 
138 #define DRM_FORMAT_XRGB1555	fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
139 #define DRM_FORMAT_XBGR1555	fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
140 #define DRM_FORMAT_RGBX5551	fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
141 #define DRM_FORMAT_BGRX5551	fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
142 
143 #define DRM_FORMAT_ARGB1555	fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
144 #define DRM_FORMAT_ABGR1555	fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
145 #define DRM_FORMAT_RGBA5551	fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
146 #define DRM_FORMAT_BGRA5551	fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
147 
148 #define DRM_FORMAT_RGB565	fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
149 #define DRM_FORMAT_BGR565	fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
150 
151 /* 24 bpp RGB */
152 #define DRM_FORMAT_RGB888	fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
153 #define DRM_FORMAT_BGR888	fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
154 
155 /* 32 bpp RGB */
156 #define DRM_FORMAT_XRGB8888	fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
157 #define DRM_FORMAT_XBGR8888	fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
158 #define DRM_FORMAT_RGBX8888	fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
159 #define DRM_FORMAT_BGRX8888	fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
160 
161 #define DRM_FORMAT_ARGB8888	fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
162 #define DRM_FORMAT_ABGR8888	fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
163 #define DRM_FORMAT_RGBA8888	fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
164 #define DRM_FORMAT_BGRA8888	fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
165 
166 #define DRM_FORMAT_XRGB2101010	fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
167 #define DRM_FORMAT_XBGR2101010	fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
168 #define DRM_FORMAT_RGBX1010102	fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
169 #define DRM_FORMAT_BGRX1010102	fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
170 
171 #define DRM_FORMAT_ARGB2101010	fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
172 #define DRM_FORMAT_ABGR2101010	fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
173 #define DRM_FORMAT_RGBA1010102	fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
174 #define DRM_FORMAT_BGRA1010102	fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
175 
176 /* 64 bpp RGB */
177 #define DRM_FORMAT_XRGB16161616	fourcc_code('X', 'R', '4', '8') /* [63:0] x:R:G:B 16:16:16:16 little endian */
178 #define DRM_FORMAT_XBGR16161616	fourcc_code('X', 'B', '4', '8') /* [63:0] x:B:G:R 16:16:16:16 little endian */
179 
180 #define DRM_FORMAT_ARGB16161616	fourcc_code('A', 'R', '4', '8') /* [63:0] A:R:G:B 16:16:16:16 little endian */
181 #define DRM_FORMAT_ABGR16161616	fourcc_code('A', 'B', '4', '8') /* [63:0] A:B:G:R 16:16:16:16 little endian */
182 
183 /*
184  * Floating point 64bpp RGB
185  * IEEE 754-2008 binary16 half-precision float
186  * [15:0] sign:exponent:mantissa 1:5:10
187  */
188 #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
189 #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
190 
191 #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
192 #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
193 
194 /*
195  * RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits
196  * of unused padding per component:
197  */
198 #define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 10:6:10:6:10:6:10:6 little endian */
199 
200 /* packed YCbCr */
201 #define DRM_FORMAT_YUYV		fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
202 #define DRM_FORMAT_YVYU		fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
203 #define DRM_FORMAT_UYVY		fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
204 #define DRM_FORMAT_VYUY		fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
205 
206 #define DRM_FORMAT_AYUV		fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
207 #define DRM_FORMAT_XYUV8888	fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
208 #define DRM_FORMAT_VUY888	fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
209 #define DRM_FORMAT_VUY101010	fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
210 
211 /*
212  * packed Y2xx indicate for each component, xx valid data occupy msb
213  * 16-xx padding occupy lsb
214  */
215 #define DRM_FORMAT_Y210         fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
216 #define DRM_FORMAT_Y212         fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
217 #define DRM_FORMAT_Y216         fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
218 
219 /*
220  * packed Y4xx indicate for each component, xx valid data occupy msb
221  * 16-xx padding occupy lsb except Y410
222  */
223 #define DRM_FORMAT_Y410         fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
224 #define DRM_FORMAT_Y412         fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
225 #define DRM_FORMAT_Y416         fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
226 
227 #define DRM_FORMAT_XVYU2101010	fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
228 #define DRM_FORMAT_XVYU12_16161616	fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
229 #define DRM_FORMAT_XVYU16161616	fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
230 
231 /*
232  * packed YCbCr420 2x2 tiled formats
233  * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
234  */
235 /* [63:0]   A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
236 #define DRM_FORMAT_Y0L0		fourcc_code('Y', '0', 'L', '0')
237 /* [63:0]   X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
238 #define DRM_FORMAT_X0L0		fourcc_code('X', '0', 'L', '0')
239 
240 /* [63:0]   A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
241 #define DRM_FORMAT_Y0L2		fourcc_code('Y', '0', 'L', '2')
242 /* [63:0]   X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
243 #define DRM_FORMAT_X0L2		fourcc_code('X', '0', 'L', '2')
244 
245 /*
246  * 1-plane YUV 4:2:0
247  * In these formats, the component ordering is specified (Y, followed by U
248  * then V), but the exact Linear layout is undefined.
249  * These formats can only be used with a non-Linear modifier.
250  */
251 #define DRM_FORMAT_YUV420_8BIT	fourcc_code('Y', 'U', '0', '8')
252 #define DRM_FORMAT_YUV420_10BIT	fourcc_code('Y', 'U', '1', '0')
253 
254 /*
255  * 2 plane RGB + A
256  * index 0 = RGB plane, same format as the corresponding non _A8 format has
257  * index 1 = A plane, [7:0] A
258  */
259 #define DRM_FORMAT_XRGB8888_A8	fourcc_code('X', 'R', 'A', '8')
260 #define DRM_FORMAT_XBGR8888_A8	fourcc_code('X', 'B', 'A', '8')
261 #define DRM_FORMAT_RGBX8888_A8	fourcc_code('R', 'X', 'A', '8')
262 #define DRM_FORMAT_BGRX8888_A8	fourcc_code('B', 'X', 'A', '8')
263 #define DRM_FORMAT_RGB888_A8	fourcc_code('R', '8', 'A', '8')
264 #define DRM_FORMAT_BGR888_A8	fourcc_code('B', '8', 'A', '8')
265 #define DRM_FORMAT_RGB565_A8	fourcc_code('R', '5', 'A', '8')
266 #define DRM_FORMAT_BGR565_A8	fourcc_code('B', '5', 'A', '8')
267 
268 /*
269  * 2 plane YCbCr
270  * index 0 = Y plane, [7:0] Y
271  * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
272  * or
273  * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
274  */
275 #define DRM_FORMAT_NV12		fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
276 #define DRM_FORMAT_NV21		fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
277 #define DRM_FORMAT_NV16		fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
278 #define DRM_FORMAT_NV61		fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
279 #define DRM_FORMAT_NV24		fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
280 #define DRM_FORMAT_NV42		fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
281 /*
282  * 2 plane YCbCr
283  * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian
284  * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
285  */
286 #define DRM_FORMAT_NV15		fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
287 
288 /*
289  * 2 plane YCbCr MSB aligned
290  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
291  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
292  */
293 #define DRM_FORMAT_P210		fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
294 
295 /*
296  * 2 plane YCbCr MSB aligned
297  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
298  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
299  */
300 #define DRM_FORMAT_P010		fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
301 
302 /*
303  * 2 plane YCbCr MSB aligned
304  * index 0 = Y plane, [15:0] Y:x [12:4] little endian
305  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
306  */
307 #define DRM_FORMAT_P012		fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
308 
309 /*
310  * 2 plane YCbCr MSB aligned
311  * index 0 = Y plane, [15:0] Y little endian
312  * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
313  */
314 #define DRM_FORMAT_P016		fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
315 
316 /* 3 plane non-subsampled (444) YCbCr
317  * 16 bits per component, but only 10 bits are used and 6 bits are padded
318  * index 0: Y plane, [15:0] Y:x [10:6] little endian
319  * index 1: Cb plane, [15:0] Cb:x [10:6] little endian
320  * index 2: Cr plane, [15:0] Cr:x [10:6] little endian
321  */
322 #define DRM_FORMAT_Q410		fourcc_code('Q', '4', '1', '0')
323 
324 /* 3 plane non-subsampled (444) YCrCb
325  * 16 bits per component, but only 10 bits are used and 6 bits are padded
326  * index 0: Y plane, [15:0] Y:x [10:6] little endian
327  * index 1: Cr plane, [15:0] Cr:x [10:6] little endian
328  * index 2: Cb plane, [15:0] Cb:x [10:6] little endian
329  */
330 #define DRM_FORMAT_Q401		fourcc_code('Q', '4', '0', '1')
331 
332 /*
333  * 3 plane YCbCr
334  * index 0: Y plane, [7:0] Y
335  * index 1: Cb plane, [7:0] Cb
336  * index 2: Cr plane, [7:0] Cr
337  * or
338  * index 1: Cr plane, [7:0] Cr
339  * index 2: Cb plane, [7:0] Cb
340  */
341 #define DRM_FORMAT_YUV410	fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
342 #define DRM_FORMAT_YVU410	fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
343 #define DRM_FORMAT_YUV411	fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
344 #define DRM_FORMAT_YVU411	fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
345 #define DRM_FORMAT_YUV420	fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
346 #define DRM_FORMAT_YVU420	fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
347 #define DRM_FORMAT_YUV422	fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
348 #define DRM_FORMAT_YVU422	fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
349 #define DRM_FORMAT_YUV444	fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
350 #define DRM_FORMAT_YVU444	fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
351 
352 
353 /*
354  * Format Modifiers:
355  *
356  * Format modifiers describe, typically, a re-ordering or modification
357  * of the data in a plane of an FB.  This can be used to express tiled/
358  * swizzled formats, or compression, or a combination of the two.
359  *
360  * The upper 8 bits of the format modifier are a vendor-id as assigned
361  * below.  The lower 56 bits are assigned as vendor sees fit.
362  */
363 
364 /* Vendor Ids: */
365 #define DRM_FORMAT_MOD_VENDOR_NONE    0
366 #define DRM_FORMAT_MOD_VENDOR_INTEL   0x01
367 #define DRM_FORMAT_MOD_VENDOR_AMD     0x02
368 #define DRM_FORMAT_MOD_VENDOR_NVIDIA  0x03
369 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
370 #define DRM_FORMAT_MOD_VENDOR_QCOM    0x05
371 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
372 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
373 #define DRM_FORMAT_MOD_VENDOR_ARM     0x08
374 #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
375 #define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a
376 
377 /* add more to the end as needed */
378 
379 #define DRM_FORMAT_RESERVED	      ((1ULL << 56) - 1)
380 
381 #define fourcc_mod_get_vendor(modifier) \
382 	(((modifier) >> 56) & 0xff)
383 
384 #define fourcc_mod_is_vendor(modifier, vendor) \
385 	(fourcc_mod_get_vendor(modifier) == DRM_FORMAT_MOD_VENDOR_## vendor)
386 
387 #define fourcc_mod_code(vendor, val) \
388 	((((uint64_t)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
389 
390 /*
391  * Format Modifier tokens:
392  *
393  * When adding a new token please document the layout with a code comment,
394  * similar to the fourcc codes above. drm_fourcc.h is considered the
395  * authoritative source for all of these.
396  *
397  * Generic modifier names:
398  *
399  * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
400  * for layouts which are common across multiple vendors. To preserve
401  * compatibility, in cases where a vendor-specific definition already exists and
402  * a generic name for it is desired, the common name is a purely symbolic alias
403  * and must use the same numerical value as the original definition.
404  *
405  * Note that generic names should only be used for modifiers which describe
406  * generic layouts (such as pixel re-ordering), which may have
407  * independently-developed support across multiple vendors.
408  *
409  * In future cases where a generic layout is identified before merging with a
410  * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
411  * 'NONE' could be considered. This should only be for obvious, exceptional
412  * cases to avoid polluting the 'GENERIC' namespace with modifiers which only
413  * apply to a single vendor.
414  *
415  * Generic names should not be used for cases where multiple hardware vendors
416  * have implementations of the same standardised compression scheme (such as
417  * AFBC). In those cases, all implementations should use the same format
418  * modifier(s), reflecting the vendor of the standard.
419  */
420 
421 #define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE
422 
423 /*
424  * Invalid Modifier
425  *
426  * This modifier can be used as a sentinel to terminate the format modifiers
427  * list, or to initialize a variable with an invalid modifier. It might also be
428  * used to report an error back to userspace for certain APIs.
429  */
430 #define DRM_FORMAT_MOD_INVALID	fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
431 
432 /*
433  * Linear Layout
434  *
435  * Just plain linear layout. Note that this is different from no specifying any
436  * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
437  * which tells the driver to also take driver-internal information into account
438  * and so might actually result in a tiled framebuffer.
439  */
440 #define DRM_FORMAT_MOD_LINEAR	fourcc_mod_code(NONE, 0)
441 
442 /*
443  * Deprecated: use DRM_FORMAT_MOD_LINEAR instead
444  *
445  * The "none" format modifier doesn't actually mean that the modifier is
446  * implicit, instead it means that the layout is linear. Whether modifiers are
447  * used is out-of-band information carried in an API-specific way (e.g. in a
448  * flag for drm_mode_fb_cmd2).
449  */
450 #define DRM_FORMAT_MOD_NONE	0
451 
452 /* Intel framebuffer modifiers */
453 
454 /*
455  * Intel X-tiling layout
456  *
457  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
458  * in row-major layout. Within the tile bytes are laid out row-major, with
459  * a platform-dependent stride. On top of that the memory can apply
460  * platform-depending swizzling of some higher address bits into bit6.
461  *
462  * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
463  * On earlier platforms the is highly platforms specific and not useful for
464  * cross-driver sharing. It exists since on a given platform it does uniquely
465  * identify the layout in a simple way for i915-specific userspace, which
466  * facilitated conversion of userspace to modifiers. Additionally the exact
467  * format on some really old platforms is not known.
468  */
469 #define I915_FORMAT_MOD_X_TILED	fourcc_mod_code(INTEL, 1)
470 
471 /*
472  * Intel Y-tiling layout
473  *
474  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
475  * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
476  * chunks column-major, with a platform-dependent height. On top of that the
477  * memory can apply platform-depending swizzling of some higher address bits
478  * into bit6.
479  *
480  * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
481  * On earlier platforms the is highly platforms specific and not useful for
482  * cross-driver sharing. It exists since on a given platform it does uniquely
483  * identify the layout in a simple way for i915-specific userspace, which
484  * facilitated conversion of userspace to modifiers. Additionally the exact
485  * format on some really old platforms is not known.
486  */
487 #define I915_FORMAT_MOD_Y_TILED	fourcc_mod_code(INTEL, 2)
488 
489 /*
490  * Intel Yf-tiling layout
491  *
492  * This is a tiled layout using 4Kb tiles in row-major layout.
493  * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
494  * are arranged in four groups (two wide, two high) with column-major layout.
495  * Each group therefore consits out of four 256 byte units, which are also laid
496  * out as 2x2 column-major.
497  * 256 byte units are made out of four 64 byte blocks of pixels, producing
498  * either a square block or a 2:1 unit.
499  * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
500  * in pixel depends on the pixel depth.
501  */
502 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
503 
504 /*
505  * Intel color control surface (CCS) for render compression
506  *
507  * The framebuffer format must be one of the 8:8:8:8 RGB formats.
508  * The main surface will be plane index 0 and must be Y/Yf-tiled,
509  * the CCS will be plane index 1.
510  *
511  * Each CCS tile matches a 1024x512 pixel area of the main surface.
512  * To match certain aspects of the 3D hardware the CCS is
513  * considered to be made up of normal 128Bx32 Y tiles, Thus
514  * the CCS pitch must be specified in multiples of 128 bytes.
515  *
516  * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
517  * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
518  * But that fact is not relevant unless the memory is accessed
519  * directly.
520  */
521 #define I915_FORMAT_MOD_Y_TILED_CCS	fourcc_mod_code(INTEL, 4)
522 #define I915_FORMAT_MOD_Yf_TILED_CCS	fourcc_mod_code(INTEL, 5)
523 
524 /*
525  * Intel color control surfaces (CCS) for Gen-12 render compression.
526  *
527  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
528  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
529  * main surface. In other words, 4 bits in CCS map to a main surface cache
530  * line pair. The main surface pitch is required to be a multiple of four
531  * Y-tile widths.
532  */
533 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
534 
535 /*
536  * Intel color control surfaces (CCS) for Gen-12 media compression
537  *
538  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
539  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
540  * main surface. In other words, 4 bits in CCS map to a main surface cache
541  * line pair. The main surface pitch is required to be a multiple of four
542  * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
543  * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
544  * planes 2 and 3 for the respective CCS.
545  */
546 #define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
547 
548 /*
549  * Intel Color Control Surface with Clear Color (CCS) for Gen-12 render
550  * compression.
551  *
552  * The main surface is Y-tiled and is at plane index 0 whereas CCS is linear
553  * and at index 1. The clear color is stored at index 2, and the pitch should
554  * be ignored. The clear color structure is 256 bits. The first 128 bits
555  * represents Raw Clear Color Red, Green, Blue and Alpha color each represented
556  * by 32 bits. The raw clear color is consumed by the 3d engine and generates
557  * the converted clear color of size 64 bits. The first 32 bits store the Lower
558  * Converted Clear Color value and the next 32 bits store the Higher Converted
559  * Clear Color value when applicable. The Converted Clear Color values are
560  * consumed by the DE. The last 64 bits are used to store Color Discard Enable
561  * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
562  * corresponds to an area of 4x1 tiles in the main surface. The main surface
563  * pitch is required to be a multiple of 4 tile widths.
564  */
565 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC fourcc_mod_code(INTEL, 8)
566 
567 /*
568  * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
569  *
570  * Macroblocks are laid in a Z-shape, and each pixel data is following the
571  * standard NV12 style.
572  * As for NV12, an image is the result of two frame buffers: one for Y,
573  * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
574  * Alignment requirements are (for each buffer):
575  * - multiple of 128 pixels for the width
576  * - multiple of  32 pixels for the height
577  *
578  * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
579  */
580 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE	fourcc_mod_code(SAMSUNG, 1)
581 
582 /*
583  * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
584  *
585  * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
586  * layout. For YCbCr formats Cb/Cr components are taken in such a way that
587  * they correspond to their 16x16 luma block.
588  */
589 #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE	fourcc_mod_code(SAMSUNG, 2)
590 
591 /*
592  * Qualcomm Compressed Format
593  *
594  * Refers to a compressed variant of the base format that is compressed.
595  * Implementation may be platform and base-format specific.
596  *
597  * Each macrotile consists of m x n (mostly 4 x 4) tiles.
598  * Pixel data pitch/stride is aligned with macrotile width.
599  * Pixel data height is aligned with macrotile height.
600  * Entire pixel data buffer is aligned with 4k(bytes).
601  */
602 #define DRM_FORMAT_MOD_QCOM_COMPRESSED	fourcc_mod_code(QCOM, 1)
603 
604 /* Vivante framebuffer modifiers */
605 
606 /*
607  * Vivante 4x4 tiling layout
608  *
609  * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
610  * layout.
611  */
612 #define DRM_FORMAT_MOD_VIVANTE_TILED		fourcc_mod_code(VIVANTE, 1)
613 
614 /*
615  * Vivante 64x64 super-tiling layout
616  *
617  * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
618  * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
619  * major layout.
620  *
621  * For more information: see
622  * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
623  */
624 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED	fourcc_mod_code(VIVANTE, 2)
625 
626 /*
627  * Vivante 4x4 tiling layout for dual-pipe
628  *
629  * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
630  * different base address. Offsets from the base addresses are therefore halved
631  * compared to the non-split tiled layout.
632  */
633 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED	fourcc_mod_code(VIVANTE, 3)
634 
635 /*
636  * Vivante 64x64 super-tiling layout for dual-pipe
637  *
638  * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
639  * starts at a different base address. Offsets from the base addresses are
640  * therefore halved compared to the non-split super-tiled layout.
641  */
642 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
643 
644 /* NVIDIA frame buffer modifiers */
645 
646 /*
647  * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
648  *
649  * Pixels are arranged in simple tiles of 16 x 16 bytes.
650  */
651 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
652 
653 /*
654  * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
655  * and Tegra GPUs starting with Tegra K1.
656  *
657  * Pixels are arranged in Groups of Bytes (GOBs).  GOB size and layout varies
658  * based on the architecture generation.  GOBs themselves are then arranged in
659  * 3D blocks, with the block dimensions (in terms of GOBs) always being a power
660  * of two, and hence expressible as their log2 equivalent (E.g., "2" represents
661  * a block depth or height of "4").
662  *
663  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
664  * in full detail.
665  *
666  *       Macro
667  * Bits  Param Description
668  * ----  ----- -----------------------------------------------------------------
669  *
670  *  3:0  h     log2(height) of each block, in GOBs.  Placed here for
671  *             compatibility with the existing
672  *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
673  *
674  *  4:4  -     Must be 1, to indicate block-linear layout.  Necessary for
675  *             compatibility with the existing
676  *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
677  *
678  *  8:5  -     Reserved (To support 3D-surfaces with variable log2(depth) block
679  *             size).  Must be zero.
680  *
681  *             Note there is no log2(width) parameter.  Some portions of the
682  *             hardware support a block width of two gobs, but it is impractical
683  *             to use due to lack of support elsewhere, and has no known
684  *             benefits.
685  *
686  * 11:9  -     Reserved (To support 2D-array textures with variable array stride
687  *             in blocks, specified via log2(tile width in blocks)).  Must be
688  *             zero.
689  *
690  * 19:12 k     Page Kind.  This value directly maps to a field in the page
691  *             tables of all GPUs >= NV50.  It affects the exact layout of bits
692  *             in memory and can be derived from the tuple
693  *
694  *               (format, GPU model, compression type, samples per pixel)
695  *
696  *             Where compression type is defined below.  If GPU model were
697  *             implied by the format modifier, format, or memory buffer, page
698  *             kind would not need to be included in the modifier itself, but
699  *             since the modifier should define the layout of the associated
700  *             memory buffer independent from any device or other context, it
701  *             must be included here.
702  *
703  * 21:20 g     GOB Height and Page Kind Generation.  The height of a GOB changed
704  *             starting with Fermi GPUs.  Additionally, the mapping between page
705  *             kind and bit layout has changed at various points.
706  *
707  *               0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
708  *               1 = Gob Height 4, G80 - GT2XX Page Kind mapping
709  *               2 = Gob Height 8, Turing+ Page Kind mapping
710  *               3 = Reserved for future use.
711  *
712  * 22:22 s     Sector layout.  On Tegra GPUs prior to Xavier, there is a further
713  *             bit remapping step that occurs at an even lower level than the
714  *             page kind and block linear swizzles.  This causes the layout of
715  *             surfaces mapped in those SOC's GPUs to be incompatible with the
716  *             equivalent mapping on other GPUs in the same system.
717  *
718  *               0 = Tegra K1 - Tegra Parker/TX2 Layout.
719  *               1 = Desktop GPU and Tegra Xavier+ Layout
720  *
721  * 25:23 c     Lossless Framebuffer Compression type.
722  *
723  *               0 = none
724  *               1 = ROP/3D, layout 1, exact compression format implied by Page
725  *                   Kind field
726  *               2 = ROP/3D, layout 2, exact compression format implied by Page
727  *                   Kind field
728  *               3 = CDE horizontal
729  *               4 = CDE vertical
730  *               5 = Reserved for future use
731  *               6 = Reserved for future use
732  *               7 = Reserved for future use
733  *
734  * 55:25 -     Reserved for future use.  Must be zero.
735  */
736 #define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \
737 	fourcc_mod_code(NVIDIA, (0x10 | \
738 				 ((h) & 0xf) | \
739 				 (((k) & 0xff) << 12) | \
740 				 (((g) & 0x3) << 20) | \
741 				 (((s) & 0x1) << 22) | \
742 				 (((c) & 0x7) << 23)))
743 
744 /* To grandfather in prior block linear format modifiers to the above layout,
745  * the page kind "0", which corresponds to "pitch/linear" and hence is unusable
746  * with block-linear layouts, is remapped within drivers to the value 0xfe,
747  * which corresponds to the "generic" kind used for simple single-sample
748  * uncompressed color formats on Fermi - Volta GPUs.
749  */
750 static inline uint64_t
751 drm_fourcc_canonicalize_nvidia_format_mod(uint64_t modifier)
752 {
753 	if (!(modifier & 0x10) || (modifier & (0xff << 12)))
754 		return modifier;
755 	else
756 		return modifier | (0xfe << 12);
757 }
758 
759 /*
760  * 16Bx2 Block Linear layout, used by Tegra K1 and later
761  *
762  * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
763  * vertically by a power of 2 (1 to 32 GOBs) to form a block.
764  *
765  * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
766  *
767  * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
768  * Valid values are:
769  *
770  * 0 == ONE_GOB
771  * 1 == TWO_GOBS
772  * 2 == FOUR_GOBS
773  * 3 == EIGHT_GOBS
774  * 4 == SIXTEEN_GOBS
775  * 5 == THIRTYTWO_GOBS
776  *
777  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
778  * in full detail.
779  */
780 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
781 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))
782 
783 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
784 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)
785 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
786 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
787 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
788 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)
789 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
790 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)
791 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
792 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
793 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
794 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)
795 
796 /*
797  * Some Broadcom modifiers take parameters, for example the number of
798  * vertical lines in the image. Reserve the lower 32 bits for modifier
799  * type, and the next 24 bits for parameters. Top 8 bits are the
800  * vendor code.
801  */
802 #define __fourcc_mod_broadcom_param_shift 8
803 #define __fourcc_mod_broadcom_param_bits 48
804 #define fourcc_mod_broadcom_code(val, params) \
805 	fourcc_mod_code(BROADCOM, ((((uint64_t)params) << __fourcc_mod_broadcom_param_shift) | val))
806 #define fourcc_mod_broadcom_param(m) \
807 	((int)(((m) >> __fourcc_mod_broadcom_param_shift) &	\
808 	       ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
809 #define fourcc_mod_broadcom_mod(m) \
810 	((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) <<	\
811 		 __fourcc_mod_broadcom_param_shift))
812 
813 /*
814  * Broadcom VC4 "T" format
815  *
816  * This is the primary layout that the V3D GPU can texture from (it
817  * can't do linear).  The T format has:
818  *
819  * - 64b utiles of pixels in a raster-order grid according to cpp.  It's 4x4
820  *   pixels at 32 bit depth.
821  *
822  * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
823  *   16x16 pixels).
824  *
825  * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels).  On
826  *   even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
827  *   they're (TR, BR, BL, TL), where bottom left is start of memory.
828  *
829  * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
830  *   tiles) or right-to-left (odd rows of 4k tiles).
831  */
832 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
833 
834 /*
835  * Broadcom SAND format
836  *
837  * This is the native format that the H.264 codec block uses.  For VC4
838  * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
839  *
840  * The image can be considered to be split into columns, and the
841  * columns are placed consecutively into memory.  The width of those
842  * columns can be either 32, 64, 128, or 256 pixels, but in practice
843  * only 128 pixel columns are used.
844  *
845  * The pitch between the start of each column is set to optimally
846  * switch between SDRAM banks. This is passed as the number of lines
847  * of column width in the modifier (we can't use the stride value due
848  * to various core checks that look at it , so you should set the
849  * stride to width*cpp).
850  *
851  * Note that the column height for this format modifier is the same
852  * for all of the planes, assuming that each column contains both Y
853  * and UV.  Some SAND-using hardware stores UV in a separate tiled
854  * image from Y to reduce the column height, which is not supported
855  * with these modifiers.
856  */
857 
858 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
859 	fourcc_mod_broadcom_code(2, v)
860 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
861 	fourcc_mod_broadcom_code(3, v)
862 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
863 	fourcc_mod_broadcom_code(4, v)
864 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
865 	fourcc_mod_broadcom_code(5, v)
866 
867 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \
868 	DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
869 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \
870 	DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
871 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \
872 	DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
873 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \
874 	DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
875 
876 /* Broadcom UIF format
877  *
878  * This is the common format for the current Broadcom multimedia
879  * blocks, including V3D 3.x and newer, newer video codecs, and
880  * displays.
881  *
882  * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
883  * and macroblocks (4x4 UIF blocks).  Those 4x4 UIF block groups are
884  * stored in columns, with padding between the columns to ensure that
885  * moving from one column to the next doesn't hit the same SDRAM page
886  * bank.
887  *
888  * To calculate the padding, it is assumed that each hardware block
889  * and the software driving it knows the platform's SDRAM page size,
890  * number of banks, and XOR address, and that it's identical between
891  * all blocks using the format.  This tiling modifier will use XOR as
892  * necessary to reduce the padding.  If a hardware block can't do XOR,
893  * the assumption is that a no-XOR tiling modifier will be created.
894  */
895 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
896 
897 /*
898  * Arm Framebuffer Compression (AFBC) modifiers
899  *
900  * AFBC is a proprietary lossless image compression protocol and format.
901  * It provides fine-grained random access and minimizes the amount of data
902  * transferred between IP blocks.
903  *
904  * AFBC has several features which may be supported and/or used, which are
905  * represented using bits in the modifier. Not all combinations are valid,
906  * and different devices or use-cases may support different combinations.
907  *
908  * Further information on the use of AFBC modifiers can be found in
909  * Documentation/gpu/afbc.rst
910  */
911 
912 /*
913  * The top 4 bits (out of the 56 bits alloted for specifying vendor specific
914  * modifiers) denote the category for modifiers. Currently we have three
915  * categories of modifiers ie AFBC, MISC and AFRC. We can have a maximum of
916  * sixteen different categories.
917  */
918 #define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
919 	fourcc_mod_code(ARM, ((uint64_t)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
920 
921 #define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
922 #define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
923 
924 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
925 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
926 
927 /*
928  * AFBC superblock size
929  *
930  * Indicates the superblock size(s) used for the AFBC buffer. The buffer
931  * size (in pixels) must be aligned to a multiple of the superblock size.
932  * Four lowest significant bits(LSBs) are reserved for block size.
933  *
934  * Where one superblock size is specified, it applies to all planes of the
935  * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
936  * the first applies to the Luma plane and the second applies to the Chroma
937  * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
938  * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
939  */
940 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK      0xf
941 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16     (1ULL)
942 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8      (2ULL)
943 #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4      (3ULL)
944 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
945 
946 /*
947  * AFBC lossless colorspace transform
948  *
949  * Indicates that the buffer makes use of the AFBC lossless colorspace
950  * transform.
951  */
952 #define AFBC_FORMAT_MOD_YTR     (1ULL <<  4)
953 
954 /*
955  * AFBC block-split
956  *
957  * Indicates that the payload of each superblock is split. The second
958  * half of the payload is positioned at a predefined offset from the start
959  * of the superblock payload.
960  */
961 #define AFBC_FORMAT_MOD_SPLIT   (1ULL <<  5)
962 
963 /*
964  * AFBC sparse layout
965  *
966  * This flag indicates that the payload of each superblock must be stored at a
967  * predefined position relative to the other superblocks in the same AFBC
968  * buffer. This order is the same order used by the header buffer. In this mode
969  * each superblock is given the same amount of space as an uncompressed
970  * superblock of the particular format would require, rounding up to the next
971  * multiple of 128 bytes in size.
972  */
973 #define AFBC_FORMAT_MOD_SPARSE  (1ULL <<  6)
974 
975 /*
976  * AFBC copy-block restrict
977  *
978  * Buffers with this flag must obey the copy-block restriction. The restriction
979  * is such that there are no copy-blocks referring across the border of 8x8
980  * blocks. For the subsampled data the 8x8 limitation is also subsampled.
981  */
982 #define AFBC_FORMAT_MOD_CBR     (1ULL <<  7)
983 
984 /*
985  * AFBC tiled layout
986  *
987  * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
988  * superblocks inside a tile are stored together in memory. 8x8 tiles are used
989  * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
990  * larger bpp formats. The order between the tiles is scan line.
991  * When the tiled layout is used, the buffer size (in pixels) must be aligned
992  * to the tile size.
993  */
994 #define AFBC_FORMAT_MOD_TILED   (1ULL <<  8)
995 
996 /*
997  * AFBC solid color blocks
998  *
999  * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
1000  * can be reduced if a whole superblock is a single color.
1001  */
1002 #define AFBC_FORMAT_MOD_SC      (1ULL <<  9)
1003 
1004 /*
1005  * AFBC double-buffer
1006  *
1007  * Indicates that the buffer is allocated in a layout safe for front-buffer
1008  * rendering.
1009  */
1010 #define AFBC_FORMAT_MOD_DB      (1ULL << 10)
1011 
1012 /*
1013  * AFBC buffer content hints
1014  *
1015  * Indicates that the buffer includes per-superblock content hints.
1016  */
1017 #define AFBC_FORMAT_MOD_BCH     (1ULL << 11)
1018 
1019 /* AFBC uncompressed storage mode
1020  *
1021  * Indicates that the buffer is using AFBC uncompressed storage mode.
1022  * In this mode all superblock payloads in the buffer use the uncompressed
1023  * storage mode, which is usually only used for data which cannot be compressed.
1024  * The buffer layout is the same as for AFBC buffers without USM set, this only
1025  * affects the storage mode of the individual superblocks. Note that even a
1026  * buffer without USM set may use uncompressed storage mode for some or all
1027  * superblocks, USM just guarantees it for all.
1028  */
1029 #define AFBC_FORMAT_MOD_USM	(1ULL << 12)
1030 
1031 /*
1032  * Arm Fixed-Rate Compression (AFRC) modifiers
1033  *
1034  * AFRC is a proprietary fixed rate image compression protocol and format,
1035  * designed to provide guaranteed bandwidth and memory footprint
1036  * reductions in graphics and media use-cases.
1037  *
1038  * AFRC buffers consist of one or more planes, with the same components
1039  * and meaning as an uncompressed buffer using the same pixel format.
1040  *
1041  * Within each plane, the pixel/luma/chroma values are grouped into
1042  * "coding unit" blocks which are individually compressed to a
1043  * fixed size (in bytes). All coding units within a given plane of a buffer
1044  * store the same number of values, and have the same compressed size.
1045  *
1046  * The coding unit size is configurable, allowing different rates of compression.
1047  *
1048  * The start of each AFRC buffer plane must be aligned to an alignment granule which
1049  * depends on the coding unit size.
1050  *
1051  * Coding Unit Size   Plane Alignment
1052  * ----------------   ---------------
1053  * 16 bytes           1024 bytes
1054  * 24 bytes           512  bytes
1055  * 32 bytes           2048 bytes
1056  *
1057  * Coding units are grouped into paging tiles. AFRC buffer dimensions must be aligned
1058  * to a multiple of the paging tile dimensions.
1059  * The dimensions of each paging tile depend on whether the buffer is optimised for
1060  * scanline (SCAN layout) or rotated (ROT layout) access.
1061  *
1062  * Layout   Paging Tile Width   Paging Tile Height
1063  * ------   -----------------   ------------------
1064  * SCAN     16 coding units     4 coding units
1065  * ROT      8  coding units     8 coding units
1066  *
1067  * The dimensions of each coding unit depend on the number of components
1068  * in the compressed plane and whether the buffer is optimised for
1069  * scanline (SCAN layout) or rotated (ROT layout) access.
1070  *
1071  * Number of Components in Plane   Layout      Coding Unit Width   Coding Unit Height
1072  * -----------------------------   ---------   -----------------   ------------------
1073  * 1                               SCAN        16 samples          4 samples
1074  * Example: 16x4 luma samples in a 'Y' plane
1075  *          16x4 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1076  * -----------------------------   ---------   -----------------   ------------------
1077  * 1                               ROT         8 samples           8 samples
1078  * Example: 8x8 luma samples in a 'Y' plane
1079  *          8x8 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1080  * -----------------------------   ---------   -----------------   ------------------
1081  * 2                               DONT CARE   8 samples           4 samples
1082  * Example: 8x4 chroma pairs in the 'UV' plane of a semi-planar YUV buffer
1083  * -----------------------------   ---------   -----------------   ------------------
1084  * 3                               DONT CARE   4 samples           4 samples
1085  * Example: 4x4 pixels in an RGB buffer without alpha
1086  * -----------------------------   ---------   -----------------   ------------------
1087  * 4                               DONT CARE   4 samples           4 samples
1088  * Example: 4x4 pixels in an RGB buffer with alpha
1089  */
1090 
1091 #define DRM_FORMAT_MOD_ARM_TYPE_AFRC 0x02
1092 
1093 #define DRM_FORMAT_MOD_ARM_AFRC(__afrc_mode) \
1094 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFRC, __afrc_mode)
1095 
1096 /*
1097  * AFRC coding unit size modifier.
1098  *
1099  * Indicates the number of bytes used to store each compressed coding unit for
1100  * one or more planes in an AFRC encoded buffer. The coding unit size for chrominance
1101  * is the same for both Cb and Cr, which may be stored in separate planes.
1102  *
1103  * AFRC_FORMAT_MOD_CU_SIZE_P0 indicates the number of bytes used to store
1104  * each compressed coding unit in the first plane of the buffer. For RGBA buffers
1105  * this is the only plane, while for semi-planar and fully-planar YUV buffers,
1106  * this corresponds to the luma plane.
1107  *
1108  * AFRC_FORMAT_MOD_CU_SIZE_P12 indicates the number of bytes used to store
1109  * each compressed coding unit in the second and third planes in the buffer.
1110  * For semi-planar and fully-planar YUV buffers, this corresponds to the chroma plane(s).
1111  *
1112  * For single-plane buffers, AFRC_FORMAT_MOD_CU_SIZE_P0 must be specified
1113  * and AFRC_FORMAT_MOD_CU_SIZE_P12 must be zero.
1114  * For semi-planar and fully-planar buffers, both AFRC_FORMAT_MOD_CU_SIZE_P0 and
1115  * AFRC_FORMAT_MOD_CU_SIZE_P12 must be specified.
1116  */
1117 #define AFRC_FORMAT_MOD_CU_SIZE_MASK 0xf
1118 #define AFRC_FORMAT_MOD_CU_SIZE_16 (1ULL)
1119 #define AFRC_FORMAT_MOD_CU_SIZE_24 (2ULL)
1120 #define AFRC_FORMAT_MOD_CU_SIZE_32 (3ULL)
1121 
1122 #define AFRC_FORMAT_MOD_CU_SIZE_P0(__afrc_cu_size) (__afrc_cu_size)
1123 #define AFRC_FORMAT_MOD_CU_SIZE_P12(__afrc_cu_size) ((__afrc_cu_size) << 4)
1124 
1125 /*
1126  * AFRC scanline memory layout.
1127  *
1128  * Indicates if the buffer uses the scanline-optimised layout
1129  * for an AFRC encoded buffer, otherwise, it uses the rotation-optimised layout.
1130  * The memory layout is the same for all planes.
1131  */
1132 #define AFRC_FORMAT_MOD_LAYOUT_SCAN (1ULL << 8)
1133 
1134 /*
1135  * Arm 16x16 Block U-Interleaved modifier
1136  *
1137  * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
1138  * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
1139  * in the block are reordered.
1140  */
1141 #define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
1142 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
1143 
1144 /*
1145  * Allwinner tiled modifier
1146  *
1147  * This tiling mode is implemented by the VPU found on all Allwinner platforms,
1148  * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
1149  * planes.
1150  *
1151  * With this tiling, the luminance samples are disposed in tiles representing
1152  * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
1153  * The pixel order in each tile is linear and the tiles are disposed linearly,
1154  * both in row-major order.
1155  */
1156 #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
1157 
1158 /*
1159  * Amlogic Video Framebuffer Compression modifiers
1160  *
1161  * Amlogic uses a proprietary lossless image compression protocol and format
1162  * for their hardware video codec accelerators, either video decoders or
1163  * video input encoders.
1164  *
1165  * It considerably reduces memory bandwidth while writing and reading
1166  * frames in memory.
1167  *
1168  * The underlying storage is considered to be 3 components, 8bit or 10-bit
1169  * per component YCbCr 420, single plane :
1170  * - DRM_FORMAT_YUV420_8BIT
1171  * - DRM_FORMAT_YUV420_10BIT
1172  *
1173  * The first 8 bits of the mode defines the layout, then the following 8 bits
1174  * defines the options changing the layout.
1175  *
1176  * Not all combinations are valid, and different SoCs may support different
1177  * combinations of layout and options.
1178  */
1179 #define __fourcc_mod_amlogic_layout_mask 0xff
1180 #define __fourcc_mod_amlogic_options_shift 8
1181 #define __fourcc_mod_amlogic_options_mask 0xff
1182 
1183 #define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \
1184 	fourcc_mod_code(AMLOGIC, \
1185 			((__layout) & __fourcc_mod_amlogic_layout_mask) | \
1186 			(((__options) & __fourcc_mod_amlogic_options_mask) \
1187 			 << __fourcc_mod_amlogic_options_shift))
1188 
1189 /* Amlogic FBC Layouts */
1190 
1191 /*
1192  * Amlogic FBC Basic Layout
1193  *
1194  * The basic layout is composed of:
1195  * - a body content organized in 64x32 superblocks with 4096 bytes per
1196  *   superblock in default mode.
1197  * - a 32 bytes per 128x64 header block
1198  *
1199  * This layout is transferrable between Amlogic SoCs supporting this modifier.
1200  */
1201 #define AMLOGIC_FBC_LAYOUT_BASIC		(1ULL)
1202 
1203 /*
1204  * Amlogic FBC Scatter Memory layout
1205  *
1206  * Indicates the header contains IOMMU references to the compressed
1207  * frames content to optimize memory access and layout.
1208  *
1209  * In this mode, only the header memory address is needed, thus the
1210  * content memory organization is tied to the current producer
1211  * execution and cannot be saved/dumped neither transferrable between
1212  * Amlogic SoCs supporting this modifier.
1213  *
1214  * Due to the nature of the layout, these buffers are not expected to
1215  * be accessible by the user-space clients, but only accessible by the
1216  * hardware producers and consumers.
1217  *
1218  * The user-space clients should expect a failure while trying to mmap
1219  * the DMA-BUF handle returned by the producer.
1220  */
1221 #define AMLOGIC_FBC_LAYOUT_SCATTER		(2ULL)
1222 
1223 /* Amlogic FBC Layout Options Bit Mask */
1224 
1225 /*
1226  * Amlogic FBC Memory Saving mode
1227  *
1228  * Indicates the storage is packed when pixel size is multiple of word
1229  * boudaries, i.e. 8bit should be stored in this mode to save allocation
1230  * memory.
1231  *
1232  * This mode reduces body layout to 3072 bytes per 64x32 superblock with
1233  * the basic layout and 3200 bytes per 64x32 superblock combined with
1234  * the scatter layout.
1235  */
1236 #define AMLOGIC_FBC_OPTION_MEM_SAVING		(1ULL << 0)
1237 
1238 /*
1239  * AMD modifiers
1240  *
1241  * Memory layout:
1242  *
1243  * without DCC:
1244  *   - main surface
1245  *
1246  * with DCC & without DCC_RETILE:
1247  *   - main surface in plane 0
1248  *   - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set)
1249  *
1250  * with DCC & DCC_RETILE:
1251  *   - main surface in plane 0
1252  *   - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned)
1253  *   - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned)
1254  *
1255  * For multi-plane formats the above surfaces get merged into one plane for
1256  * each format plane, based on the required alignment only.
1257  *
1258  * Bits  Parameter                Notes
1259  * ----- ------------------------ ---------------------------------------------
1260  *
1261  *   7:0 TILE_VERSION             Values are AMD_FMT_MOD_TILE_VER_*
1262  *  12:8 TILE                     Values are AMD_FMT_MOD_TILE_<version>_*
1263  *    13 DCC
1264  *    14 DCC_RETILE
1265  *    15 DCC_PIPE_ALIGN
1266  *    16 DCC_INDEPENDENT_64B
1267  *    17 DCC_INDEPENDENT_128B
1268  * 19:18 DCC_MAX_COMPRESSED_BLOCK Values are AMD_FMT_MOD_DCC_BLOCK_*
1269  *    20 DCC_CONSTANT_ENCODE
1270  * 23:21 PIPE_XOR_BITS            Only for some chips
1271  * 26:24 BANK_XOR_BITS            Only for some chips
1272  * 29:27 PACKERS                  Only for some chips
1273  * 32:30 RB                       Only for some chips
1274  * 35:33 PIPE                     Only for some chips
1275  * 55:36 -                        Reserved for future use, must be zero
1276  */
1277 #define AMD_FMT_MOD fourcc_mod_code(AMD, 0)
1278 
1279 #define IS_AMD_FMT_MOD(val) (((val) >> 56) == DRM_FORMAT_MOD_VENDOR_AMD)
1280 
1281 /* Reserve 0 for GFX8 and older */
1282 #define AMD_FMT_MOD_TILE_VER_GFX9 1
1283 #define AMD_FMT_MOD_TILE_VER_GFX10 2
1284 #define AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS 3
1285 
1286 /*
1287  * 64K_S is the same for GFX9/GFX10/GFX10_RBPLUS and hence has GFX9 as canonical
1288  * version.
1289  */
1290 #define AMD_FMT_MOD_TILE_GFX9_64K_S 9
1291 
1292 /*
1293  * 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has
1294  * GFX9 as canonical version.
1295  */
1296 #define AMD_FMT_MOD_TILE_GFX9_64K_D 10
1297 #define AMD_FMT_MOD_TILE_GFX9_64K_S_X 25
1298 #define AMD_FMT_MOD_TILE_GFX9_64K_D_X 26
1299 #define AMD_FMT_MOD_TILE_GFX9_64K_R_X 27
1300 
1301 #define AMD_FMT_MOD_DCC_BLOCK_64B 0
1302 #define AMD_FMT_MOD_DCC_BLOCK_128B 1
1303 #define AMD_FMT_MOD_DCC_BLOCK_256B 2
1304 
1305 #define AMD_FMT_MOD_TILE_VERSION_SHIFT 0
1306 #define AMD_FMT_MOD_TILE_VERSION_MASK 0xFF
1307 #define AMD_FMT_MOD_TILE_SHIFT 8
1308 #define AMD_FMT_MOD_TILE_MASK 0x1F
1309 
1310 /* Whether DCC compression is enabled. */
1311 #define AMD_FMT_MOD_DCC_SHIFT 13
1312 #define AMD_FMT_MOD_DCC_MASK 0x1
1313 
1314 /*
1315  * Whether to include two DCC surfaces, one which is rb & pipe aligned, and
1316  * one which is not-aligned.
1317  */
1318 #define AMD_FMT_MOD_DCC_RETILE_SHIFT 14
1319 #define AMD_FMT_MOD_DCC_RETILE_MASK 0x1
1320 
1321 /* Only set if DCC_RETILE = false */
1322 #define AMD_FMT_MOD_DCC_PIPE_ALIGN_SHIFT 15
1323 #define AMD_FMT_MOD_DCC_PIPE_ALIGN_MASK 0x1
1324 
1325 #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_SHIFT 16
1326 #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_MASK 0x1
1327 #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_SHIFT 17
1328 #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_MASK 0x1
1329 #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_SHIFT 18
1330 #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_MASK 0x3
1331 
1332 /*
1333  * DCC supports embedding some clear colors directly in the DCC surface.
1334  * However, on older GPUs the rendering HW ignores the embedded clear color
1335  * and prefers the driver provided color. This necessitates doing a fastclear
1336  * eliminate operation before a process transfers control.
1337  *
1338  * If this bit is set that means the fastclear eliminate is not needed for these
1339  * embeddable colors.
1340  */
1341 #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_SHIFT 20
1342 #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_MASK 0x1
1343 
1344 /*
1345  * The below fields are for accounting for per GPU differences. These are only
1346  * relevant for GFX9 and later and if the tile field is *_X/_T.
1347  *
1348  * PIPE_XOR_BITS = always needed
1349  * BANK_XOR_BITS = only for TILE_VER_GFX9
1350  * PACKERS = only for TILE_VER_GFX10_RBPLUS
1351  * RB = only for TILE_VER_GFX9 & DCC
1352  * PIPE = only for TILE_VER_GFX9 & DCC & (DCC_RETILE | DCC_PIPE_ALIGN)
1353  */
1354 #define AMD_FMT_MOD_PIPE_XOR_BITS_SHIFT 21
1355 #define AMD_FMT_MOD_PIPE_XOR_BITS_MASK 0x7
1356 #define AMD_FMT_MOD_BANK_XOR_BITS_SHIFT 24
1357 #define AMD_FMT_MOD_BANK_XOR_BITS_MASK 0x7
1358 #define AMD_FMT_MOD_PACKERS_SHIFT 27
1359 #define AMD_FMT_MOD_PACKERS_MASK 0x7
1360 #define AMD_FMT_MOD_RB_SHIFT 30
1361 #define AMD_FMT_MOD_RB_MASK 0x7
1362 #define AMD_FMT_MOD_PIPE_SHIFT 33
1363 #define AMD_FMT_MOD_PIPE_MASK 0x7
1364 
1365 #define AMD_FMT_MOD_SET(field, value) \
1366 	((uint64_t)(value) << AMD_FMT_MOD_##field##_SHIFT)
1367 #define AMD_FMT_MOD_GET(field, value) \
1368 	(((value) >> AMD_FMT_MOD_##field##_SHIFT) & AMD_FMT_MOD_##field##_MASK)
1369 #define AMD_FMT_MOD_CLEAR(field) \
1370 	(~((uint64_t)AMD_FMT_MOD_##field##_MASK << AMD_FMT_MOD_##field##_SHIFT))
1371 
1372 #if defined(__cplusplus)
1373 }
1374 #endif
1375 
1376 #endif /* DRM_FOURCC_H */
1377