xref: /openbmc/qemu/include/standard-headers/drm/drm_fourcc.h (revision 0b8f74488e50f98b04e63157f85fde8a13f8d6aa)
1 /*
2  * Copyright 2011 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #ifndef DRM_FOURCC_H
25 #define DRM_FOURCC_H
26 
27 
28 #if defined(__cplusplus)
29 extern "C" {
30 #endif
31 
32 #define fourcc_code(a, b, c, d) ((uint32_t)(a) | ((uint32_t)(b) << 8) | \
33 				 ((uint32_t)(c) << 16) | ((uint32_t)(d) << 24))
34 
35 #define DRM_FORMAT_BIG_ENDIAN (1<<31) /* format is big endian instead of little endian */
36 
37 /* color index */
38 #define DRM_FORMAT_C8		fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
39 
40 /* 8 bpp Red */
41 #define DRM_FORMAT_R8		fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
42 
43 /* 16 bpp Red */
44 #define DRM_FORMAT_R16		fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
45 
46 /* 16 bpp RG */
47 #define DRM_FORMAT_RG88		fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
48 #define DRM_FORMAT_GR88		fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
49 
50 /* 32 bpp RG */
51 #define DRM_FORMAT_RG1616	fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
52 #define DRM_FORMAT_GR1616	fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
53 
54 /* 8 bpp RGB */
55 #define DRM_FORMAT_RGB332	fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
56 #define DRM_FORMAT_BGR233	fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
57 
58 /* 16 bpp RGB */
59 #define DRM_FORMAT_XRGB4444	fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
60 #define DRM_FORMAT_XBGR4444	fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
61 #define DRM_FORMAT_RGBX4444	fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
62 #define DRM_FORMAT_BGRX4444	fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
63 
64 #define DRM_FORMAT_ARGB4444	fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
65 #define DRM_FORMAT_ABGR4444	fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
66 #define DRM_FORMAT_RGBA4444	fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
67 #define DRM_FORMAT_BGRA4444	fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
68 
69 #define DRM_FORMAT_XRGB1555	fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
70 #define DRM_FORMAT_XBGR1555	fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
71 #define DRM_FORMAT_RGBX5551	fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
72 #define DRM_FORMAT_BGRX5551	fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
73 
74 #define DRM_FORMAT_ARGB1555	fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
75 #define DRM_FORMAT_ABGR1555	fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
76 #define DRM_FORMAT_RGBA5551	fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
77 #define DRM_FORMAT_BGRA5551	fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
78 
79 #define DRM_FORMAT_RGB565	fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
80 #define DRM_FORMAT_BGR565	fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
81 
82 /* 24 bpp RGB */
83 #define DRM_FORMAT_RGB888	fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
84 #define DRM_FORMAT_BGR888	fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
85 
86 /* 32 bpp RGB */
87 #define DRM_FORMAT_XRGB8888	fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
88 #define DRM_FORMAT_XBGR8888	fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
89 #define DRM_FORMAT_RGBX8888	fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
90 #define DRM_FORMAT_BGRX8888	fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
91 
92 #define DRM_FORMAT_ARGB8888	fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
93 #define DRM_FORMAT_ABGR8888	fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
94 #define DRM_FORMAT_RGBA8888	fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
95 #define DRM_FORMAT_BGRA8888	fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
96 
97 #define DRM_FORMAT_XRGB2101010	fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
98 #define DRM_FORMAT_XBGR2101010	fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
99 #define DRM_FORMAT_RGBX1010102	fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
100 #define DRM_FORMAT_BGRX1010102	fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
101 
102 #define DRM_FORMAT_ARGB2101010	fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
103 #define DRM_FORMAT_ABGR2101010	fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
104 #define DRM_FORMAT_RGBA1010102	fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
105 #define DRM_FORMAT_BGRA1010102	fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
106 
107 /* packed YCbCr */
108 #define DRM_FORMAT_YUYV		fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
109 #define DRM_FORMAT_YVYU		fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
110 #define DRM_FORMAT_UYVY		fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
111 #define DRM_FORMAT_VYUY		fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
112 
113 #define DRM_FORMAT_AYUV		fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
114 
115 /*
116  * 2 plane RGB + A
117  * index 0 = RGB plane, same format as the corresponding non _A8 format has
118  * index 1 = A plane, [7:0] A
119  */
120 #define DRM_FORMAT_XRGB8888_A8	fourcc_code('X', 'R', 'A', '8')
121 #define DRM_FORMAT_XBGR8888_A8	fourcc_code('X', 'B', 'A', '8')
122 #define DRM_FORMAT_RGBX8888_A8	fourcc_code('R', 'X', 'A', '8')
123 #define DRM_FORMAT_BGRX8888_A8	fourcc_code('B', 'X', 'A', '8')
124 #define DRM_FORMAT_RGB888_A8	fourcc_code('R', '8', 'A', '8')
125 #define DRM_FORMAT_BGR888_A8	fourcc_code('B', '8', 'A', '8')
126 #define DRM_FORMAT_RGB565_A8	fourcc_code('R', '5', 'A', '8')
127 #define DRM_FORMAT_BGR565_A8	fourcc_code('B', '5', 'A', '8')
128 
129 /*
130  * 2 plane YCbCr
131  * index 0 = Y plane, [7:0] Y
132  * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
133  * or
134  * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
135  */
136 #define DRM_FORMAT_NV12		fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
137 #define DRM_FORMAT_NV21		fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
138 #define DRM_FORMAT_NV16		fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
139 #define DRM_FORMAT_NV61		fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
140 #define DRM_FORMAT_NV24		fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
141 #define DRM_FORMAT_NV42		fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
142 
143 /*
144  * 3 plane YCbCr
145  * index 0: Y plane, [7:0] Y
146  * index 1: Cb plane, [7:0] Cb
147  * index 2: Cr plane, [7:0] Cr
148  * or
149  * index 1: Cr plane, [7:0] Cr
150  * index 2: Cb plane, [7:0] Cb
151  */
152 #define DRM_FORMAT_YUV410	fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
153 #define DRM_FORMAT_YVU410	fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
154 #define DRM_FORMAT_YUV411	fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
155 #define DRM_FORMAT_YVU411	fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
156 #define DRM_FORMAT_YUV420	fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
157 #define DRM_FORMAT_YVU420	fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
158 #define DRM_FORMAT_YUV422	fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
159 #define DRM_FORMAT_YVU422	fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
160 #define DRM_FORMAT_YUV444	fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
161 #define DRM_FORMAT_YVU444	fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
162 
163 
164 /*
165  * Format Modifiers:
166  *
167  * Format modifiers describe, typically, a re-ordering or modification
168  * of the data in a plane of an FB.  This can be used to express tiled/
169  * swizzled formats, or compression, or a combination of the two.
170  *
171  * The upper 8 bits of the format modifier are a vendor-id as assigned
172  * below.  The lower 56 bits are assigned as vendor sees fit.
173  */
174 
175 /* Vendor Ids: */
176 #define DRM_FORMAT_MOD_NONE           0
177 #define DRM_FORMAT_MOD_VENDOR_NONE    0
178 #define DRM_FORMAT_MOD_VENDOR_INTEL   0x01
179 #define DRM_FORMAT_MOD_VENDOR_AMD     0x02
180 #define DRM_FORMAT_MOD_VENDOR_NVIDIA  0x03
181 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
182 #define DRM_FORMAT_MOD_VENDOR_QCOM    0x05
183 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
184 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
185 #define DRM_FORMAT_MOD_VENDOR_ARM     0x08
186 /* add more to the end as needed */
187 
188 #define DRM_FORMAT_RESERVED	      ((1ULL << 56) - 1)
189 
190 #define fourcc_mod_code(vendor, val) \
191 	((((uint64_t)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
192 
193 /*
194  * Format Modifier tokens:
195  *
196  * When adding a new token please document the layout with a code comment,
197  * similar to the fourcc codes above. drm_fourcc.h is considered the
198  * authoritative source for all of these.
199  */
200 
201 /*
202  * Invalid Modifier
203  *
204  * This modifier can be used as a sentinel to terminate the format modifiers
205  * list, or to initialize a variable with an invalid modifier. It might also be
206  * used to report an error back to userspace for certain APIs.
207  */
208 #define DRM_FORMAT_MOD_INVALID	fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
209 
210 /*
211  * Linear Layout
212  *
213  * Just plain linear layout. Note that this is different from no specifying any
214  * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
215  * which tells the driver to also take driver-internal information into account
216  * and so might actually result in a tiled framebuffer.
217  */
218 #define DRM_FORMAT_MOD_LINEAR	fourcc_mod_code(NONE, 0)
219 
220 /* Intel framebuffer modifiers */
221 
222 /*
223  * Intel X-tiling layout
224  *
225  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
226  * in row-major layout. Within the tile bytes are laid out row-major, with
227  * a platform-dependent stride. On top of that the memory can apply
228  * platform-depending swizzling of some higher address bits into bit6.
229  *
230  * This format is highly platforms specific and not useful for cross-driver
231  * sharing. It exists since on a given platform it does uniquely identify the
232  * layout in a simple way for i915-specific userspace.
233  */
234 #define I915_FORMAT_MOD_X_TILED	fourcc_mod_code(INTEL, 1)
235 
236 /*
237  * Intel Y-tiling layout
238  *
239  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
240  * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
241  * chunks column-major, with a platform-dependent height. On top of that the
242  * memory can apply platform-depending swizzling of some higher address bits
243  * into bit6.
244  *
245  * This format is highly platforms specific and not useful for cross-driver
246  * sharing. It exists since on a given platform it does uniquely identify the
247  * layout in a simple way for i915-specific userspace.
248  */
249 #define I915_FORMAT_MOD_Y_TILED	fourcc_mod_code(INTEL, 2)
250 
251 /*
252  * Intel Yf-tiling layout
253  *
254  * This is a tiled layout using 4Kb tiles in row-major layout.
255  * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
256  * are arranged in four groups (two wide, two high) with column-major layout.
257  * Each group therefore consits out of four 256 byte units, which are also laid
258  * out as 2x2 column-major.
259  * 256 byte units are made out of four 64 byte blocks of pixels, producing
260  * either a square block or a 2:1 unit.
261  * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
262  * in pixel depends on the pixel depth.
263  */
264 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
265 
266 /*
267  * Intel color control surface (CCS) for render compression
268  *
269  * The framebuffer format must be one of the 8:8:8:8 RGB formats.
270  * The main surface will be plane index 0 and must be Y/Yf-tiled,
271  * the CCS will be plane index 1.
272  *
273  * Each CCS tile matches a 1024x512 pixel area of the main surface.
274  * To match certain aspects of the 3D hardware the CCS is
275  * considered to be made up of normal 128Bx32 Y tiles, Thus
276  * the CCS pitch must be specified in multiples of 128 bytes.
277  *
278  * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
279  * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
280  * But that fact is not relevant unless the memory is accessed
281  * directly.
282  */
283 #define I915_FORMAT_MOD_Y_TILED_CCS	fourcc_mod_code(INTEL, 4)
284 #define I915_FORMAT_MOD_Yf_TILED_CCS	fourcc_mod_code(INTEL, 5)
285 
286 /*
287  * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
288  *
289  * Macroblocks are laid in a Z-shape, and each pixel data is following the
290  * standard NV12 style.
291  * As for NV12, an image is the result of two frame buffers: one for Y,
292  * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
293  * Alignment requirements are (for each buffer):
294  * - multiple of 128 pixels for the width
295  * - multiple of  32 pixels for the height
296  *
297  * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
298  */
299 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE	fourcc_mod_code(SAMSUNG, 1)
300 
301 /*
302  * Qualcomm Compressed Format
303  *
304  * Refers to a compressed variant of the base format that is compressed.
305  * Implementation may be platform and base-format specific.
306  *
307  * Each macrotile consists of m x n (mostly 4 x 4) tiles.
308  * Pixel data pitch/stride is aligned with macrotile width.
309  * Pixel data height is aligned with macrotile height.
310  * Entire pixel data buffer is aligned with 4k(bytes).
311  */
312 #define DRM_FORMAT_MOD_QCOM_COMPRESSED	fourcc_mod_code(QCOM, 1)
313 
314 /* Vivante framebuffer modifiers */
315 
316 /*
317  * Vivante 4x4 tiling layout
318  *
319  * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
320  * layout.
321  */
322 #define DRM_FORMAT_MOD_VIVANTE_TILED		fourcc_mod_code(VIVANTE, 1)
323 
324 /*
325  * Vivante 64x64 super-tiling layout
326  *
327  * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
328  * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
329  * major layout.
330  *
331  * For more information: see
332  * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
333  */
334 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED	fourcc_mod_code(VIVANTE, 2)
335 
336 /*
337  * Vivante 4x4 tiling layout for dual-pipe
338  *
339  * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
340  * different base address. Offsets from the base addresses are therefore halved
341  * compared to the non-split tiled layout.
342  */
343 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED	fourcc_mod_code(VIVANTE, 3)
344 
345 /*
346  * Vivante 64x64 super-tiling layout for dual-pipe
347  *
348  * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
349  * starts at a different base address. Offsets from the base addresses are
350  * therefore halved compared to the non-split super-tiled layout.
351  */
352 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
353 
354 /* NVIDIA frame buffer modifiers */
355 
356 /*
357  * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
358  *
359  * Pixels are arranged in simple tiles of 16 x 16 bytes.
360  */
361 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
362 
363 /*
364  * 16Bx2 Block Linear layout, used by desktop GPUs, and Tegra K1 and later
365  *
366  * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
367  * vertically by a power of 2 (1 to 32 GOBs) to form a block.
368  *
369  * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
370  *
371  * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
372  * Valid values are:
373  *
374  * 0 == ONE_GOB
375  * 1 == TWO_GOBS
376  * 2 == FOUR_GOBS
377  * 3 == EIGHT_GOBS
378  * 4 == SIXTEEN_GOBS
379  * 5 == THIRTYTWO_GOBS
380  *
381  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
382  * in full detail.
383  */
384 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
385 	fourcc_mod_code(NVIDIA, 0x10 | ((v) & 0xf))
386 
387 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
388 	fourcc_mod_code(NVIDIA, 0x10)
389 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
390 	fourcc_mod_code(NVIDIA, 0x11)
391 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
392 	fourcc_mod_code(NVIDIA, 0x12)
393 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
394 	fourcc_mod_code(NVIDIA, 0x13)
395 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
396 	fourcc_mod_code(NVIDIA, 0x14)
397 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
398 	fourcc_mod_code(NVIDIA, 0x15)
399 
400 /*
401  * Some Broadcom modifiers take parameters, for example the number of
402  * vertical lines in the image. Reserve the lower 32 bits for modifier
403  * type, and the next 24 bits for parameters. Top 8 bits are the
404  * vendor code.
405  */
406 #define __fourcc_mod_broadcom_param_shift 8
407 #define __fourcc_mod_broadcom_param_bits 48
408 #define fourcc_mod_broadcom_code(val, params) \
409 	fourcc_mod_code(BROADCOM, ((((uint64_t)params) << __fourcc_mod_broadcom_param_shift) | val))
410 #define fourcc_mod_broadcom_param(m) \
411 	((int)(((m) >> __fourcc_mod_broadcom_param_shift) &	\
412 	       ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
413 #define fourcc_mod_broadcom_mod(m) \
414 	((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) <<	\
415 		 __fourcc_mod_broadcom_param_shift))
416 
417 /*
418  * Broadcom VC4 "T" format
419  *
420  * This is the primary layout that the V3D GPU can texture from (it
421  * can't do linear).  The T format has:
422  *
423  * - 64b utiles of pixels in a raster-order grid according to cpp.  It's 4x4
424  *   pixels at 32 bit depth.
425  *
426  * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
427  *   16x16 pixels).
428  *
429  * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels).  On
430  *   even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
431  *   they're (TR, BR, BL, TL), where bottom left is start of memory.
432  *
433  * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
434  *   tiles) or right-to-left (odd rows of 4k tiles).
435  */
436 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
437 
438 /*
439  * Broadcom SAND format
440  *
441  * This is the native format that the H.264 codec block uses.  For VC4
442  * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
443  *
444  * The image can be considered to be split into columns, and the
445  * columns are placed consecutively into memory.  The width of those
446  * columns can be either 32, 64, 128, or 256 pixels, but in practice
447  * only 128 pixel columns are used.
448  *
449  * The pitch between the start of each column is set to optimally
450  * switch between SDRAM banks. This is passed as the number of lines
451  * of column width in the modifier (we can't use the stride value due
452  * to various core checks that look at it , so you should set the
453  * stride to width*cpp).
454  *
455  * Note that the column height for this format modifier is the same
456  * for all of the planes, assuming that each column contains both Y
457  * and UV.  Some SAND-using hardware stores UV in a separate tiled
458  * image from Y to reduce the column height, which is not supported
459  * with these modifiers.
460  */
461 
462 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
463 	fourcc_mod_broadcom_code(2, v)
464 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
465 	fourcc_mod_broadcom_code(3, v)
466 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
467 	fourcc_mod_broadcom_code(4, v)
468 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
469 	fourcc_mod_broadcom_code(5, v)
470 
471 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \
472 	DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
473 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \
474 	DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
475 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \
476 	DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
477 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \
478 	DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
479 
480 /* Broadcom UIF format
481  *
482  * This is the common format for the current Broadcom multimedia
483  * blocks, including V3D 3.x and newer, newer video codecs, and
484  * displays.
485  *
486  * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
487  * and macroblocks (4x4 UIF blocks).  Those 4x4 UIF block groups are
488  * stored in columns, with padding between the columns to ensure that
489  * moving from one column to the next doesn't hit the same SDRAM page
490  * bank.
491  *
492  * To calculate the padding, it is assumed that each hardware block
493  * and the software driving it knows the platform's SDRAM page size,
494  * number of banks, and XOR address, and that it's identical between
495  * all blocks using the format.  This tiling modifier will use XOR as
496  * necessary to reduce the padding.  If a hardware block can't do XOR,
497  * the assumption is that a no-XOR tiling modifier will be created.
498  */
499 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
500 
501 /*
502  * Arm Framebuffer Compression (AFBC) modifiers
503  *
504  * AFBC is a proprietary lossless image compression protocol and format.
505  * It provides fine-grained random access and minimizes the amount of data
506  * transferred between IP blocks.
507  *
508  * AFBC has several features which may be supported and/or used, which are
509  * represented using bits in the modifier. Not all combinations are valid,
510  * and different devices or use-cases may support different combinations.
511  */
512 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode)	fourcc_mod_code(ARM, __afbc_mode)
513 
514 /*
515  * AFBC superblock size
516  *
517  * Indicates the superblock size(s) used for the AFBC buffer. The buffer
518  * size (in pixels) must be aligned to a multiple of the superblock size.
519  * Four lowest significant bits(LSBs) are reserved for block size.
520  */
521 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK      0xf
522 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16     (1ULL)
523 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8      (2ULL)
524 
525 /*
526  * AFBC lossless colorspace transform
527  *
528  * Indicates that the buffer makes use of the AFBC lossless colorspace
529  * transform.
530  */
531 #define AFBC_FORMAT_MOD_YTR     (1ULL <<  4)
532 
533 /*
534  * AFBC block-split
535  *
536  * Indicates that the payload of each superblock is split. The second
537  * half of the payload is positioned at a predefined offset from the start
538  * of the superblock payload.
539  */
540 #define AFBC_FORMAT_MOD_SPLIT   (1ULL <<  5)
541 
542 /*
543  * AFBC sparse layout
544  *
545  * This flag indicates that the payload of each superblock must be stored at a
546  * predefined position relative to the other superblocks in the same AFBC
547  * buffer. This order is the same order used by the header buffer. In this mode
548  * each superblock is given the same amount of space as an uncompressed
549  * superblock of the particular format would require, rounding up to the next
550  * multiple of 128 bytes in size.
551  */
552 #define AFBC_FORMAT_MOD_SPARSE  (1ULL <<  6)
553 
554 /*
555  * AFBC copy-block restrict
556  *
557  * Buffers with this flag must obey the copy-block restriction. The restriction
558  * is such that there are no copy-blocks referring across the border of 8x8
559  * blocks. For the subsampled data the 8x8 limitation is also subsampled.
560  */
561 #define AFBC_FORMAT_MOD_CBR     (1ULL <<  7)
562 
563 /*
564  * AFBC tiled layout
565  *
566  * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
567  * superblocks inside a tile are stored together in memory. 8x8 tiles are used
568  * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
569  * larger bpp formats. The order between the tiles is scan line.
570  * When the tiled layout is used, the buffer size (in pixels) must be aligned
571  * to the tile size.
572  */
573 #define AFBC_FORMAT_MOD_TILED   (1ULL <<  8)
574 
575 /*
576  * AFBC solid color blocks
577  *
578  * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
579  * can be reduced if a whole superblock is a single color.
580  */
581 #define AFBC_FORMAT_MOD_SC      (1ULL <<  9)
582 
583 #if defined(__cplusplus)
584 }
585 #endif
586 
587 #endif /* DRM_FOURCC_H */
588