xref: /openbmc/qemu/include/qom/object.h (revision ed799805d00ccdda45eb8441c7d929624d9e98a6)
1 /*
2  * QEMU Object Model
3  *
4  * Copyright IBM, Corp. 2011
5  *
6  * Authors:
7  *  Anthony Liguori   <aliguori@us.ibm.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef QEMU_OBJECT_H
15 #define QEMU_OBJECT_H
16 
17 #include "qapi/qapi-builtin-types.h"
18 #include "qemu/module.h"
19 #include "qom/object.h"
20 
21 struct TypeImpl;
22 typedef struct TypeImpl *Type;
23 
24 typedef struct TypeInfo TypeInfo;
25 
26 typedef struct InterfaceClass InterfaceClass;
27 typedef struct InterfaceInfo InterfaceInfo;
28 
29 #define TYPE_OBJECT "object"
30 
31 /**
32  * DOC:
33  *
34  * The QEMU Object Model provides a framework for registering user creatable
35  * types and instantiating objects from those types.  QOM provides the following
36  * features:
37  *
38  *  - System for dynamically registering types
39  *  - Support for single-inheritance of types
40  *  - Multiple inheritance of stateless interfaces
41  *
42  * <example>
43  *   <title>Creating a minimal type</title>
44  *   <programlisting>
45  * #include "qdev.h"
46  *
47  * #define TYPE_MY_DEVICE "my-device"
48  *
49  * // No new virtual functions: we can reuse the typedef for the
50  * // superclass.
51  * typedef DeviceClass MyDeviceClass;
52  * typedef struct MyDevice
53  * {
54  *     DeviceState parent;
55  *
56  *     int reg0, reg1, reg2;
57  * } MyDevice;
58  *
59  * static const TypeInfo my_device_info = {
60  *     .name = TYPE_MY_DEVICE,
61  *     .parent = TYPE_DEVICE,
62  *     .instance_size = sizeof(MyDevice),
63  * };
64  *
65  * static void my_device_register_types(void)
66  * {
67  *     type_register_static(&my_device_info);
68  * }
69  *
70  * type_init(my_device_register_types)
71  *   </programlisting>
72  * </example>
73  *
74  * In the above example, we create a simple type that is described by #TypeInfo.
75  * #TypeInfo describes information about the type including what it inherits
76  * from, the instance and class size, and constructor/destructor hooks.
77  *
78  * Alternatively several static types could be registered using helper macro
79  * DEFINE_TYPES()
80  *
81  * <example>
82  *   <programlisting>
83  * static const TypeInfo device_types_info[] = {
84  *     {
85  *         .name = TYPE_MY_DEVICE_A,
86  *         .parent = TYPE_DEVICE,
87  *         .instance_size = sizeof(MyDeviceA),
88  *     },
89  *     {
90  *         .name = TYPE_MY_DEVICE_B,
91  *         .parent = TYPE_DEVICE,
92  *         .instance_size = sizeof(MyDeviceB),
93  *     },
94  * };
95  *
96  * DEFINE_TYPES(device_types_info)
97  *   </programlisting>
98  * </example>
99  *
100  * Every type has an #ObjectClass associated with it.  #ObjectClass derivatives
101  * are instantiated dynamically but there is only ever one instance for any
102  * given type.  The #ObjectClass typically holds a table of function pointers
103  * for the virtual methods implemented by this type.
104  *
105  * Using object_new(), a new #Object derivative will be instantiated.  You can
106  * cast an #Object to a subclass (or base-class) type using
107  * object_dynamic_cast().  You typically want to define macro wrappers around
108  * OBJECT_CHECK() and OBJECT_CLASS_CHECK() to make it easier to convert to a
109  * specific type:
110  *
111  * <example>
112  *   <title>Typecasting macros</title>
113  *   <programlisting>
114  *    #define MY_DEVICE_GET_CLASS(obj) \
115  *       OBJECT_GET_CLASS(MyDeviceClass, obj, TYPE_MY_DEVICE)
116  *    #define MY_DEVICE_CLASS(klass) \
117  *       OBJECT_CLASS_CHECK(MyDeviceClass, klass, TYPE_MY_DEVICE)
118  *    #define MY_DEVICE(obj) \
119  *       OBJECT_CHECK(MyDevice, obj, TYPE_MY_DEVICE)
120  *   </programlisting>
121  * </example>
122  *
123  * # Class Initialization #
124  *
125  * Before an object is initialized, the class for the object must be
126  * initialized.  There is only one class object for all instance objects
127  * that is created lazily.
128  *
129  * Classes are initialized by first initializing any parent classes (if
130  * necessary).  After the parent class object has initialized, it will be
131  * copied into the current class object and any additional storage in the
132  * class object is zero filled.
133  *
134  * The effect of this is that classes automatically inherit any virtual
135  * function pointers that the parent class has already initialized.  All
136  * other fields will be zero filled.
137  *
138  * Once all of the parent classes have been initialized, #TypeInfo::class_init
139  * is called to let the class being instantiated provide default initialize for
140  * its virtual functions.  Here is how the above example might be modified
141  * to introduce an overridden virtual function:
142  *
143  * <example>
144  *   <title>Overriding a virtual function</title>
145  *   <programlisting>
146  * #include "qdev.h"
147  *
148  * void my_device_class_init(ObjectClass *klass, void *class_data)
149  * {
150  *     DeviceClass *dc = DEVICE_CLASS(klass);
151  *     dc->reset = my_device_reset;
152  * }
153  *
154  * static const TypeInfo my_device_info = {
155  *     .name = TYPE_MY_DEVICE,
156  *     .parent = TYPE_DEVICE,
157  *     .instance_size = sizeof(MyDevice),
158  *     .class_init = my_device_class_init,
159  * };
160  *   </programlisting>
161  * </example>
162  *
163  * Introducing new virtual methods requires a class to define its own
164  * struct and to add a .class_size member to the #TypeInfo.  Each method
165  * will also have a wrapper function to call it easily:
166  *
167  * <example>
168  *   <title>Defining an abstract class</title>
169  *   <programlisting>
170  * #include "qdev.h"
171  *
172  * typedef struct MyDeviceClass
173  * {
174  *     DeviceClass parent;
175  *
176  *     void (*frobnicate) (MyDevice *obj);
177  * } MyDeviceClass;
178  *
179  * static const TypeInfo my_device_info = {
180  *     .name = TYPE_MY_DEVICE,
181  *     .parent = TYPE_DEVICE,
182  *     .instance_size = sizeof(MyDevice),
183  *     .abstract = true, // or set a default in my_device_class_init
184  *     .class_size = sizeof(MyDeviceClass),
185  * };
186  *
187  * void my_device_frobnicate(MyDevice *obj)
188  * {
189  *     MyDeviceClass *klass = MY_DEVICE_GET_CLASS(obj);
190  *
191  *     klass->frobnicate(obj);
192  * }
193  *   </programlisting>
194  * </example>
195  *
196  * # Interfaces #
197  *
198  * Interfaces allow a limited form of multiple inheritance.  Instances are
199  * similar to normal types except for the fact that are only defined by
200  * their classes and never carry any state.  As a consequence, a pointer to
201  * an interface instance should always be of incomplete type in order to be
202  * sure it cannot be dereferenced.  That is, you should define the
203  * 'typedef struct SomethingIf SomethingIf' so that you can pass around
204  * ``SomethingIf *si`` arguments, but not define a ``struct SomethingIf { ... }``.
205  * The only things you can validly do with a ``SomethingIf *`` are to pass it as
206  * an argument to a method on its corresponding SomethingIfClass, or to
207  * dynamically cast it to an object that implements the interface.
208  *
209  * # Methods #
210  *
211  * A <emphasis>method</emphasis> is a function within the namespace scope of
212  * a class. It usually operates on the object instance by passing it as a
213  * strongly-typed first argument.
214  * If it does not operate on an object instance, it is dubbed
215  * <emphasis>class method</emphasis>.
216  *
217  * Methods cannot be overloaded. That is, the #ObjectClass and method name
218  * uniquely identity the function to be called; the signature does not vary
219  * except for trailing varargs.
220  *
221  * Methods are always <emphasis>virtual</emphasis>. Overriding a method in
222  * #TypeInfo.class_init of a subclass leads to any user of the class obtained
223  * via OBJECT_GET_CLASS() accessing the overridden function.
224  * The original function is not automatically invoked. It is the responsibility
225  * of the overriding class to determine whether and when to invoke the method
226  * being overridden.
227  *
228  * To invoke the method being overridden, the preferred solution is to store
229  * the original value in the overriding class before overriding the method.
230  * This corresponds to |[ {super,base}.method(...) ]| in Java and C#
231  * respectively; this frees the overriding class from hardcoding its parent
232  * class, which someone might choose to change at some point.
233  *
234  * <example>
235  *   <title>Overriding a virtual method</title>
236  *   <programlisting>
237  * typedef struct MyState MyState;
238  *
239  * typedef void (*MyDoSomething)(MyState *obj);
240  *
241  * typedef struct MyClass {
242  *     ObjectClass parent_class;
243  *
244  *     MyDoSomething do_something;
245  * } MyClass;
246  *
247  * static void my_do_something(MyState *obj)
248  * {
249  *     // do something
250  * }
251  *
252  * static void my_class_init(ObjectClass *oc, void *data)
253  * {
254  *     MyClass *mc = MY_CLASS(oc);
255  *
256  *     mc->do_something = my_do_something;
257  * }
258  *
259  * static const TypeInfo my_type_info = {
260  *     .name = TYPE_MY,
261  *     .parent = TYPE_OBJECT,
262  *     .instance_size = sizeof(MyState),
263  *     .class_size = sizeof(MyClass),
264  *     .class_init = my_class_init,
265  * };
266  *
267  * typedef struct DerivedClass {
268  *     MyClass parent_class;
269  *
270  *     MyDoSomething parent_do_something;
271  * } DerivedClass;
272  *
273  * static void derived_do_something(MyState *obj)
274  * {
275  *     DerivedClass *dc = DERIVED_GET_CLASS(obj);
276  *
277  *     // do something here
278  *     dc->parent_do_something(obj);
279  *     // do something else here
280  * }
281  *
282  * static void derived_class_init(ObjectClass *oc, void *data)
283  * {
284  *     MyClass *mc = MY_CLASS(oc);
285  *     DerivedClass *dc = DERIVED_CLASS(oc);
286  *
287  *     dc->parent_do_something = mc->do_something;
288  *     mc->do_something = derived_do_something;
289  * }
290  *
291  * static const TypeInfo derived_type_info = {
292  *     .name = TYPE_DERIVED,
293  *     .parent = TYPE_MY,
294  *     .class_size = sizeof(DerivedClass),
295  *     .class_init = derived_class_init,
296  * };
297  *   </programlisting>
298  * </example>
299  *
300  * Alternatively, object_class_by_name() can be used to obtain the class and
301  * its non-overridden methods for a specific type. This would correspond to
302  * ``MyClass::method(...)`` in C++.
303  *
304  * The first example of such a QOM method was #CPUClass.reset,
305  * another example is #DeviceClass.realize.
306  *
307  * # Standard type declaration and definition macros #
308  *
309  * A lot of the code outlined above follows a standard pattern and naming
310  * convention. To reduce the amount of boilerplate code that needs to be
311  * written for a new type there are two sets of macros to generate the
312  * common parts in a standard format.
313  *
314  * A type is declared using the OBJECT_DECLARE macro family. In types
315  * which do not require any virtual functions in the class, the
316  * OBJECT_DECLARE_SIMPLE_TYPE macro is suitable, and is commonly placed
317  * in the header file:
318  *
319  * <example>
320  *   <title>Declaring a simple type</title>
321  *   <programlisting>
322  *     OBJECT_DECLARE_SIMPLE_TYPE(MyDevice, my_device, MY_DEVICE, DEVICE)
323  *   </programlisting>
324  * </example>
325  *
326  * This is equivalent to the following:
327  *
328  * <example>
329  *   <title>Expansion from declaring a simple type</title>
330  *   <programlisting>
331  *     typedef struct MyDevice MyDevice;
332  *     typedef struct MyDeviceClass MyDeviceClass;
333  *
334  *     G_DEFINE_AUTOPTR_CLEANUP_FUNC(MyDeviceClass, object_unref)
335  *
336  *     #define MY_DEVICE_GET_CLASS(void *obj) \
337  *             OBJECT_GET_CLASS(MyDeviceClass, obj, TYPE_MY_DEVICE)
338  *     #define MY_DEVICE_CLASS(void *klass) \
339  *             OBJECT_CLASS_CHECK(MyDeviceClass, klass, TYPE_MY_DEVICE)
340  *     #define MY_DEVICE(void *obj)
341  *             OBJECT_CHECK(MyDevice, obj, TYPE_MY_DEVICE)
342  *
343  *     struct MyDeviceClass {
344  *         DeviceClass parent_class;
345  *     };
346  *   </programlisting>
347  * </example>
348  *
349  * The 'struct MyDevice' needs to be declared separately.
350  * If the type requires virtual functions to be declared in the class
351  * struct, then the alternative OBJECT_DECLARE_TYPE() macro can be
352  * used. This does the same as OBJECT_DECLARE_SIMPLE_TYPE(), but without
353  * the 'struct MyDeviceClass' definition.
354  *
355  * To implement the type, the OBJECT_DEFINE macro family is available.
356  * In the simple case the OBJECT_DEFINE_TYPE macro is suitable:
357  *
358  * <example>
359  *   <title>Defining a simple type</title>
360  *   <programlisting>
361  *     OBJECT_DEFINE_TYPE(MyDevice, my_device, MY_DEVICE, DEVICE)
362  *   </programlisting>
363  * </example>
364  *
365  * This is equivalent to the following:
366  *
367  * <example>
368  *   <title>Expansion from defining a simple type</title>
369  *   <programlisting>
370  *     static void my_device_finalize(Object *obj);
371  *     static void my_device_class_init(ObjectClass *oc, void *data);
372  *     static void my_device_init(Object *obj);
373  *
374  *     static const TypeInfo my_device_info = {
375  *         .parent = TYPE_DEVICE,
376  *         .name = TYPE_MY_DEVICE,
377  *         .instance_size = sizeof(MyDevice),
378  *         .instance_init = my_device_init,
379  *         .instance_finalize = my_device_finalize,
380  *         .class_size = sizeof(MyDeviceClass),
381  *         .class_init = my_device_class_init,
382  *     };
383  *
384  *     static void
385  *     my_device_register_types(void)
386  *     {
387  *         type_register_static(&my_device_info);
388  *     }
389  *     type_init(my_device_register_types);
390  *   </programlisting>
391  * </example>
392  *
393  * This is sufficient to get the type registered with the type
394  * system, and the three standard methods now need to be implemented
395  * along with any other logic required for the type.
396  *
397  * If the type needs to implement one or more interfaces, then the
398  * OBJECT_DEFINE_TYPE_WITH_INTERFACES() macro can be used instead.
399  * This accepts an array of interface type names.
400  *
401  * <example>
402  *   <title>Defining a simple type implementing interfaces</title>
403  *   <programlisting>
404  *     OBJECT_DEFINE_TYPE_WITH_INTERFACES(MyDevice, my_device,
405  *                                        MY_DEVICE, DEVICE,
406  *                                        { TYPE_USER_CREATABLE }, { NULL })
407  *   </programlisting>
408  * </example>
409  *
410  * If the type is not intended to be instantiated, then then
411  * the OBJECT_DEFINE_ABSTRACT_TYPE() macro can be used instead:
412  *
413  * <example>
414  *   <title>Defining a simple type</title>
415  *   <programlisting>
416  *     OBJECT_DEFINE_ABSTRACT_TYPE(MyDevice, my_device, MY_DEVICE, DEVICE)
417  *   </programlisting>
418  * </example>
419  */
420 
421 
422 typedef struct ObjectProperty ObjectProperty;
423 
424 /**
425  * ObjectPropertyAccessor:
426  * @obj: the object that owns the property
427  * @v: the visitor that contains the property data
428  * @name: the name of the property
429  * @opaque: the object property opaque
430  * @errp: a pointer to an Error that is filled if getting/setting fails.
431  *
432  * Called when trying to get/set a property.
433  */
434 typedef void (ObjectPropertyAccessor)(Object *obj,
435                                       Visitor *v,
436                                       const char *name,
437                                       void *opaque,
438                                       Error **errp);
439 
440 /**
441  * ObjectPropertyResolve:
442  * @obj: the object that owns the property
443  * @opaque: the opaque registered with the property
444  * @part: the name of the property
445  *
446  * Resolves the #Object corresponding to property @part.
447  *
448  * The returned object can also be used as a starting point
449  * to resolve a relative path starting with "@part".
450  *
451  * Returns: If @path is the path that led to @obj, the function
452  * returns the #Object corresponding to "@path/@part".
453  * If "@path/@part" is not a valid object path, it returns #NULL.
454  */
455 typedef Object *(ObjectPropertyResolve)(Object *obj,
456                                         void *opaque,
457                                         const char *part);
458 
459 /**
460  * ObjectPropertyRelease:
461  * @obj: the object that owns the property
462  * @name: the name of the property
463  * @opaque: the opaque registered with the property
464  *
465  * Called when a property is removed from a object.
466  */
467 typedef void (ObjectPropertyRelease)(Object *obj,
468                                      const char *name,
469                                      void *opaque);
470 
471 /**
472  * ObjectPropertyInit:
473  * @obj: the object that owns the property
474  * @prop: the property to set
475  *
476  * Called when a property is initialized.
477  */
478 typedef void (ObjectPropertyInit)(Object *obj, ObjectProperty *prop);
479 
480 struct ObjectProperty
481 {
482     char *name;
483     char *type;
484     char *description;
485     ObjectPropertyAccessor *get;
486     ObjectPropertyAccessor *set;
487     ObjectPropertyResolve *resolve;
488     ObjectPropertyRelease *release;
489     ObjectPropertyInit *init;
490     void *opaque;
491     QObject *defval;
492 };
493 
494 /**
495  * ObjectUnparent:
496  * @obj: the object that is being removed from the composition tree
497  *
498  * Called when an object is being removed from the QOM composition tree.
499  * The function should remove any backlinks from children objects to @obj.
500  */
501 typedef void (ObjectUnparent)(Object *obj);
502 
503 /**
504  * ObjectFree:
505  * @obj: the object being freed
506  *
507  * Called when an object's last reference is removed.
508  */
509 typedef void (ObjectFree)(void *obj);
510 
511 #define OBJECT_CLASS_CAST_CACHE 4
512 
513 /**
514  * ObjectClass:
515  *
516  * The base for all classes.  The only thing that #ObjectClass contains is an
517  * integer type handle.
518  */
519 struct ObjectClass
520 {
521     /* private: */
522     Type type;
523     GSList *interfaces;
524 
525     const char *object_cast_cache[OBJECT_CLASS_CAST_CACHE];
526     const char *class_cast_cache[OBJECT_CLASS_CAST_CACHE];
527 
528     ObjectUnparent *unparent;
529 
530     GHashTable *properties;
531 };
532 
533 /**
534  * Object:
535  *
536  * The base for all objects.  The first member of this object is a pointer to
537  * a #ObjectClass.  Since C guarantees that the first member of a structure
538  * always begins at byte 0 of that structure, as long as any sub-object places
539  * its parent as the first member, we can cast directly to a #Object.
540  *
541  * As a result, #Object contains a reference to the objects type as its
542  * first member.  This allows identification of the real type of the object at
543  * run time.
544  */
545 struct Object
546 {
547     /* private: */
548     ObjectClass *class;
549     ObjectFree *free;
550     GHashTable *properties;
551     uint32_t ref;
552     Object *parent;
553 };
554 
555 /**
556  * DECLARE_INSTANCE_CHECKER:
557  * @InstanceType: instance struct name
558  * @OBJ_NAME: the object name in uppercase with underscore separators
559  * @TYPENAME: type name
560  *
561  * Direct usage of this macro should be avoided, and the complete
562  * OBJECT_DECLARE_TYPE macro is recommended instead.
563  *
564  * This macro will provide the three standard type cast functions for a
565  * QOM type.
566  */
567 #define DECLARE_INSTANCE_CHECKER(InstanceType, OBJ_NAME, TYPENAME) \
568     static inline G_GNUC_UNUSED InstanceType * \
569     OBJ_NAME(const void *obj) \
570     { return OBJECT_CHECK(InstanceType, obj, TYPENAME); }
571 
572 /**
573  * DECLARE_CLASS_CHECKERS:
574  * @ClassType: class struct name
575  * @OBJ_NAME: the object name in uppercase with underscore separators
576  * @TYPENAME: type name
577  *
578  * Direct usage of this macro should be avoided, and the complete
579  * OBJECT_DECLARE_TYPE macro is recommended instead.
580  *
581  * This macro will provide the three standard type cast functions for a
582  * QOM type.
583  */
584 #define DECLARE_CLASS_CHECKERS(ClassType, OBJ_NAME, TYPENAME) \
585     static inline G_GNUC_UNUSED ClassType * \
586     OBJ_NAME##_GET_CLASS(const void *obj) \
587     { return OBJECT_GET_CLASS(ClassType, obj, TYPENAME); } \
588     \
589     static inline G_GNUC_UNUSED ClassType * \
590     OBJ_NAME##_CLASS(const void *klass) \
591     { return OBJECT_CLASS_CHECK(ClassType, klass, TYPENAME); }
592 
593 /**
594  * DECLARE_OBJ_CHECKERS:
595  * @InstanceType: instance struct name
596  * @ClassType: class struct name
597  * @OBJ_NAME: the object name in uppercase with underscore separators
598  * @TYPENAME: type name
599  *
600  * Direct usage of this macro should be avoided, and the complete
601  * OBJECT_DECLARE_TYPE macro is recommended instead.
602  *
603  * This macro will provide the three standard type cast functions for a
604  * QOM type.
605  */
606 #define DECLARE_OBJ_CHECKERS(InstanceType, ClassType, OBJ_NAME, TYPENAME) \
607     DECLARE_INSTANCE_CHECKER(InstanceType, OBJ_NAME, TYPENAME) \
608     \
609     DECLARE_CLASS_CHECKERS(ClassType, OBJ_NAME, TYPENAME)
610 
611 /**
612  * OBJECT_DECLARE_TYPE:
613  * @InstanceType: instance struct name
614  * @ClassType: class struct name
615  * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators
616  *
617  * This macro is typically used in a header file, and will:
618  *
619  *   - create the typedefs for the object and class structs
620  *   - register the type for use with g_autoptr
621  *   - provide three standard type cast functions
622  *
623  * The object struct and class struct need to be declared manually.
624  */
625 #define OBJECT_DECLARE_TYPE(InstanceType, ClassType, MODULE_OBJ_NAME) \
626     typedef struct InstanceType InstanceType; \
627     typedef struct ClassType ClassType; \
628     \
629     G_DEFINE_AUTOPTR_CLEANUP_FUNC(InstanceType, object_unref) \
630     \
631     DECLARE_OBJ_CHECKERS(InstanceType, ClassType, \
632                          MODULE_OBJ_NAME, TYPE_##MODULE_OBJ_NAME)
633 
634 /**
635  * OBJECT_DECLARE_SIMPLE_TYPE:
636  * @InstanceType: instance struct name
637  * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators
638  *
639  * This does the same as OBJECT_DECLARE_TYPE(), but with no class struct
640  * declared.
641  *
642  * This macro should be used unless the class struct needs to have
643  * virtual methods declared.
644  */
645 #define OBJECT_DECLARE_SIMPLE_TYPE(InstanceType, MODULE_OBJ_NAME) \
646     typedef struct InstanceType InstanceType; \
647     \
648     G_DEFINE_AUTOPTR_CLEANUP_FUNC(InstanceType, object_unref) \
649     \
650     DECLARE_INSTANCE_CHECKER(InstanceType, MODULE_OBJ_NAME, TYPE_##MODULE_OBJ_NAME)
651 
652 
653 /**
654  * OBJECT_DEFINE_TYPE_EXTENDED:
655  * @ModuleObjName: the object name with initial caps
656  * @module_obj_name: the object name in lowercase with underscore separators
657  * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators
658  * @PARENT_MODULE_OBJ_NAME: the parent object name in uppercase with underscore
659  *                          separators
660  * @ABSTRACT: boolean flag to indicate whether the object can be instantiated
661  * @...: list of initializers for "InterfaceInfo" to declare implemented interfaces
662  *
663  * This macro is typically used in a source file, and will:
664  *
665  *   - declare prototypes for _finalize, _class_init and _init methods
666  *   - declare the TypeInfo struct instance
667  *   - provide the constructor to register the type
668  *
669  * After using this macro, implementations of the _finalize, _class_init,
670  * and _init methods need to be written. Any of these can be zero-line
671  * no-op impls if no special logic is required for a given type.
672  *
673  * This macro should rarely be used, instead one of the more specialized
674  * macros is usually a better choice.
675  */
676 #define OBJECT_DEFINE_TYPE_EXTENDED(ModuleObjName, module_obj_name, \
677                                     MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME, \
678                                     ABSTRACT, ...) \
679     static void \
680     module_obj_name##_finalize(Object *obj); \
681     static void \
682     module_obj_name##_class_init(ObjectClass *oc, void *data); \
683     static void \
684     module_obj_name##_init(Object *obj); \
685     \
686     static const TypeInfo module_obj_name##_info = { \
687         .parent = TYPE_##PARENT_MODULE_OBJ_NAME, \
688         .name = TYPE_##MODULE_OBJ_NAME, \
689         .instance_size = sizeof(ModuleObjName), \
690         .instance_align = __alignof__(ModuleObjName), \
691         .instance_init = module_obj_name##_init, \
692         .instance_finalize = module_obj_name##_finalize, \
693         .class_size = sizeof(ModuleObjName##Class), \
694         .class_init = module_obj_name##_class_init, \
695         .abstract = ABSTRACT, \
696         .interfaces = (InterfaceInfo[]) { __VA_ARGS__ } , \
697     }; \
698     \
699     static void \
700     module_obj_name##_register_types(void) \
701     { \
702         type_register_static(&module_obj_name##_info); \
703     } \
704     type_init(module_obj_name##_register_types);
705 
706 /**
707  * OBJECT_DEFINE_TYPE:
708  * @ModuleObjName: the object name with initial caps
709  * @module_obj_name: the object name in lowercase with underscore separators
710  * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators
711  * @PARENT_MODULE_OBJ_NAME: the parent object name in uppercase with underscore
712  *                          separators
713  *
714  * This is a specialization of OBJECT_DEFINE_TYPE_EXTENDED, which is suitable
715  * for the common case of a non-abstract type, without any interfaces.
716  */
717 #define OBJECT_DEFINE_TYPE(ModuleObjName, module_obj_name, MODULE_OBJ_NAME, \
718                            PARENT_MODULE_OBJ_NAME) \
719     OBJECT_DEFINE_TYPE_EXTENDED(ModuleObjName, module_obj_name, \
720                                 MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME, \
721                                 false, { NULL })
722 
723 /**
724  * OBJECT_DEFINE_TYPE_WITH_INTERFACES:
725  * @ModuleObjName: the object name with initial caps
726  * @module_obj_name: the object name in lowercase with underscore separators
727  * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators
728  * @PARENT_MODULE_OBJ_NAME: the parent object name in uppercase with underscore
729  *                          separators
730  * @...: list of initializers for "InterfaceInfo" to declare implemented interfaces
731  *
732  * This is a specialization of OBJECT_DEFINE_TYPE_EXTENDED, which is suitable
733  * for the common case of a non-abstract type, with one or more implemented
734  * interfaces.
735  *
736  * Note when passing the list of interfaces, be sure to include the final
737  * NULL entry, e.g.  { TYPE_USER_CREATABLE }, { NULL }
738  */
739 #define OBJECT_DEFINE_TYPE_WITH_INTERFACES(ModuleObjName, module_obj_name, \
740                                            MODULE_OBJ_NAME, \
741                                            PARENT_MODULE_OBJ_NAME, ...) \
742     OBJECT_DEFINE_TYPE_EXTENDED(ModuleObjName, module_obj_name, \
743                                 MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME, \
744                                 false, __VA_ARGS__)
745 
746 /**
747  * OBJECT_DEFINE_ABSTRACT_TYPE:
748  * @ModuleObjName: the object name with initial caps
749  * @module_obj_name: the object name in lowercase with underscore separators
750  * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators
751  * @PARENT_MODULE_OBJ_NAME: the parent object name in uppercase with underscore
752  *                          separators
753  *
754  * This is a specialization of OBJECT_DEFINE_TYPE_EXTENDED, which is suitable
755  * for defining an abstract type, without any interfaces.
756  */
757 #define OBJECT_DEFINE_ABSTRACT_TYPE(ModuleObjName, module_obj_name, \
758                                     MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME) \
759     OBJECT_DEFINE_TYPE_EXTENDED(ModuleObjName, module_obj_name, \
760                                 MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME, \
761                                 true, { NULL })
762 
763 /**
764  * TypeInfo:
765  * @name: The name of the type.
766  * @parent: The name of the parent type.
767  * @instance_size: The size of the object (derivative of #Object).  If
768  *   @instance_size is 0, then the size of the object will be the size of the
769  *   parent object.
770  * @instance_align: The required alignment of the object.  If @instance_align
771  *   is 0, then normal malloc alignment is sufficient; if non-zero, then we
772  *   must use qemu_memalign for allocation.
773  * @instance_init: This function is called to initialize an object.  The parent
774  *   class will have already been initialized so the type is only responsible
775  *   for initializing its own members.
776  * @instance_post_init: This function is called to finish initialization of
777  *   an object, after all @instance_init functions were called.
778  * @instance_finalize: This function is called during object destruction.  This
779  *   is called before the parent @instance_finalize function has been called.
780  *   An object should only free the members that are unique to its type in this
781  *   function.
782  * @abstract: If this field is true, then the class is considered abstract and
783  *   cannot be directly instantiated.
784  * @class_size: The size of the class object (derivative of #ObjectClass)
785  *   for this object.  If @class_size is 0, then the size of the class will be
786  *   assumed to be the size of the parent class.  This allows a type to avoid
787  *   implementing an explicit class type if they are not adding additional
788  *   virtual functions.
789  * @class_init: This function is called after all parent class initialization
790  *   has occurred to allow a class to set its default virtual method pointers.
791  *   This is also the function to use to override virtual methods from a parent
792  *   class.
793  * @class_base_init: This function is called for all base classes after all
794  *   parent class initialization has occurred, but before the class itself
795  *   is initialized.  This is the function to use to undo the effects of
796  *   memcpy from the parent class to the descendants.
797  * @class_data: Data to pass to the @class_init,
798  *   @class_base_init. This can be useful when building dynamic
799  *   classes.
800  * @interfaces: The list of interfaces associated with this type.  This
801  *   should point to a static array that's terminated with a zero filled
802  *   element.
803  */
804 struct TypeInfo
805 {
806     const char *name;
807     const char *parent;
808 
809     size_t instance_size;
810     size_t instance_align;
811     void (*instance_init)(Object *obj);
812     void (*instance_post_init)(Object *obj);
813     void (*instance_finalize)(Object *obj);
814 
815     bool abstract;
816     size_t class_size;
817 
818     void (*class_init)(ObjectClass *klass, void *data);
819     void (*class_base_init)(ObjectClass *klass, void *data);
820     void *class_data;
821 
822     InterfaceInfo *interfaces;
823 };
824 
825 /**
826  * OBJECT:
827  * @obj: A derivative of #Object
828  *
829  * Converts an object to a #Object.  Since all objects are #Objects,
830  * this function will always succeed.
831  */
832 #define OBJECT(obj) \
833     ((Object *)(obj))
834 
835 /**
836  * OBJECT_CLASS:
837  * @class: A derivative of #ObjectClass.
838  *
839  * Converts a class to an #ObjectClass.  Since all objects are #Objects,
840  * this function will always succeed.
841  */
842 #define OBJECT_CLASS(class) \
843     ((ObjectClass *)(class))
844 
845 /**
846  * OBJECT_CHECK:
847  * @type: The C type to use for the return value.
848  * @obj: A derivative of @type to cast.
849  * @name: The QOM typename of @type
850  *
851  * A type safe version of @object_dynamic_cast_assert.  Typically each class
852  * will define a macro based on this type to perform type safe dynamic_casts to
853  * this object type.
854  *
855  * If an invalid object is passed to this function, a run time assert will be
856  * generated.
857  */
858 #define OBJECT_CHECK(type, obj, name) \
859     ((type *)object_dynamic_cast_assert(OBJECT(obj), (name), \
860                                         __FILE__, __LINE__, __func__))
861 
862 /**
863  * OBJECT_CLASS_CHECK:
864  * @class_type: The C type to use for the return value.
865  * @class: A derivative class of @class_type to cast.
866  * @name: the QOM typename of @class_type.
867  *
868  * A type safe version of @object_class_dynamic_cast_assert.  This macro is
869  * typically wrapped by each type to perform type safe casts of a class to a
870  * specific class type.
871  */
872 #define OBJECT_CLASS_CHECK(class_type, class, name) \
873     ((class_type *)object_class_dynamic_cast_assert(OBJECT_CLASS(class), (name), \
874                                                __FILE__, __LINE__, __func__))
875 
876 /**
877  * OBJECT_GET_CLASS:
878  * @class: The C type to use for the return value.
879  * @obj: The object to obtain the class for.
880  * @name: The QOM typename of @obj.
881  *
882  * This function will return a specific class for a given object.  Its generally
883  * used by each type to provide a type safe macro to get a specific class type
884  * from an object.
885  */
886 #define OBJECT_GET_CLASS(class, obj, name) \
887     OBJECT_CLASS_CHECK(class, object_get_class(OBJECT(obj)), name)
888 
889 /**
890  * InterfaceInfo:
891  * @type: The name of the interface.
892  *
893  * The information associated with an interface.
894  */
895 struct InterfaceInfo {
896     const char *type;
897 };
898 
899 /**
900  * InterfaceClass:
901  * @parent_class: the base class
902  *
903  * The class for all interfaces.  Subclasses of this class should only add
904  * virtual methods.
905  */
906 struct InterfaceClass
907 {
908     ObjectClass parent_class;
909     /* private: */
910     ObjectClass *concrete_class;
911     Type interface_type;
912 };
913 
914 #define TYPE_INTERFACE "interface"
915 
916 /**
917  * INTERFACE_CLASS:
918  * @klass: class to cast from
919  * Returns: An #InterfaceClass or raise an error if cast is invalid
920  */
921 #define INTERFACE_CLASS(klass) \
922     OBJECT_CLASS_CHECK(InterfaceClass, klass, TYPE_INTERFACE)
923 
924 /**
925  * INTERFACE_CHECK:
926  * @interface: the type to return
927  * @obj: the object to convert to an interface
928  * @name: the interface type name
929  *
930  * Returns: @obj casted to @interface if cast is valid, otherwise raise error.
931  */
932 #define INTERFACE_CHECK(interface, obj, name) \
933     ((interface *)object_dynamic_cast_assert(OBJECT((obj)), (name), \
934                                              __FILE__, __LINE__, __func__))
935 
936 /**
937  * object_new_with_class:
938  * @klass: The class to instantiate.
939  *
940  * This function will initialize a new object using heap allocated memory.
941  * The returned object has a reference count of 1, and will be freed when
942  * the last reference is dropped.
943  *
944  * Returns: The newly allocated and instantiated object.
945  */
946 Object *object_new_with_class(ObjectClass *klass);
947 
948 /**
949  * object_new:
950  * @typename: The name of the type of the object to instantiate.
951  *
952  * This function will initialize a new object using heap allocated memory.
953  * The returned object has a reference count of 1, and will be freed when
954  * the last reference is dropped.
955  *
956  * Returns: The newly allocated and instantiated object.
957  */
958 Object *object_new(const char *typename);
959 
960 /**
961  * object_new_with_props:
962  * @typename:  The name of the type of the object to instantiate.
963  * @parent: the parent object
964  * @id: The unique ID of the object
965  * @errp: pointer to error object
966  * @...: list of property names and values
967  *
968  * This function will initialize a new object using heap allocated memory.
969  * The returned object has a reference count of 1, and will be freed when
970  * the last reference is dropped.
971  *
972  * The @id parameter will be used when registering the object as a
973  * child of @parent in the composition tree.
974  *
975  * The variadic parameters are a list of pairs of (propname, propvalue)
976  * strings. The propname of %NULL indicates the end of the property
977  * list. If the object implements the user creatable interface, the
978  * object will be marked complete once all the properties have been
979  * processed.
980  *
981  * <example>
982  *   <title>Creating an object with properties</title>
983  *   <programlisting>
984  *   Error *err = NULL;
985  *   Object *obj;
986  *
987  *   obj = object_new_with_props(TYPE_MEMORY_BACKEND_FILE,
988  *                               object_get_objects_root(),
989  *                               "hostmem0",
990  *                               &err,
991  *                               "share", "yes",
992  *                               "mem-path", "/dev/shm/somefile",
993  *                               "prealloc", "yes",
994  *                               "size", "1048576",
995  *                               NULL);
996  *
997  *   if (!obj) {
998  *     error_reportf_err(err, "Cannot create memory backend: ");
999  *   }
1000  *   </programlisting>
1001  * </example>
1002  *
1003  * The returned object will have one stable reference maintained
1004  * for as long as it is present in the object hierarchy.
1005  *
1006  * Returns: The newly allocated, instantiated & initialized object.
1007  */
1008 Object *object_new_with_props(const char *typename,
1009                               Object *parent,
1010                               const char *id,
1011                               Error **errp,
1012                               ...) QEMU_SENTINEL;
1013 
1014 /**
1015  * object_new_with_propv:
1016  * @typename:  The name of the type of the object to instantiate.
1017  * @parent: the parent object
1018  * @id: The unique ID of the object
1019  * @errp: pointer to error object
1020  * @vargs: list of property names and values
1021  *
1022  * See object_new_with_props() for documentation.
1023  */
1024 Object *object_new_with_propv(const char *typename,
1025                               Object *parent,
1026                               const char *id,
1027                               Error **errp,
1028                               va_list vargs);
1029 
1030 bool object_apply_global_props(Object *obj, const GPtrArray *props,
1031                                Error **errp);
1032 void object_set_machine_compat_props(GPtrArray *compat_props);
1033 void object_set_accelerator_compat_props(GPtrArray *compat_props);
1034 void object_register_sugar_prop(const char *driver, const char *prop, const char *value);
1035 void object_apply_compat_props(Object *obj);
1036 
1037 /**
1038  * object_set_props:
1039  * @obj: the object instance to set properties on
1040  * @errp: pointer to error object
1041  * @...: list of property names and values
1042  *
1043  * This function will set a list of properties on an existing object
1044  * instance.
1045  *
1046  * The variadic parameters are a list of pairs of (propname, propvalue)
1047  * strings. The propname of %NULL indicates the end of the property
1048  * list.
1049  *
1050  * <example>
1051  *   <title>Update an object's properties</title>
1052  *   <programlisting>
1053  *   Error *err = NULL;
1054  *   Object *obj = ...get / create object...;
1055  *
1056  *   if (!object_set_props(obj,
1057  *                         &err,
1058  *                         "share", "yes",
1059  *                         "mem-path", "/dev/shm/somefile",
1060  *                         "prealloc", "yes",
1061  *                         "size", "1048576",
1062  *                         NULL)) {
1063  *     error_reportf_err(err, "Cannot set properties: ");
1064  *   }
1065  *   </programlisting>
1066  * </example>
1067  *
1068  * The returned object will have one stable reference maintained
1069  * for as long as it is present in the object hierarchy.
1070  *
1071  * Returns: %true on success, %false on error.
1072  */
1073 bool object_set_props(Object *obj, Error **errp, ...) QEMU_SENTINEL;
1074 
1075 /**
1076  * object_set_propv:
1077  * @obj: the object instance to set properties on
1078  * @errp: pointer to error object
1079  * @vargs: list of property names and values
1080  *
1081  * See object_set_props() for documentation.
1082  *
1083  * Returns: %true on success, %false on error.
1084  */
1085 bool object_set_propv(Object *obj, Error **errp, va_list vargs);
1086 
1087 /**
1088  * object_initialize:
1089  * @obj: A pointer to the memory to be used for the object.
1090  * @size: The maximum size available at @obj for the object.
1091  * @typename: The name of the type of the object to instantiate.
1092  *
1093  * This function will initialize an object.  The memory for the object should
1094  * have already been allocated.  The returned object has a reference count of 1,
1095  * and will be finalized when the last reference is dropped.
1096  */
1097 void object_initialize(void *obj, size_t size, const char *typename);
1098 
1099 /**
1100  * object_initialize_child_with_props:
1101  * @parentobj: The parent object to add a property to
1102  * @propname: The name of the property
1103  * @childobj: A pointer to the memory to be used for the object.
1104  * @size: The maximum size available at @childobj for the object.
1105  * @type: The name of the type of the object to instantiate.
1106  * @errp: If an error occurs, a pointer to an area to store the error
1107  * @...: list of property names and values
1108  *
1109  * This function will initialize an object. The memory for the object should
1110  * have already been allocated. The object will then be added as child property
1111  * to a parent with object_property_add_child() function. The returned object
1112  * has a reference count of 1 (for the "child<...>" property from the parent),
1113  * so the object will be finalized automatically when the parent gets removed.
1114  *
1115  * The variadic parameters are a list of pairs of (propname, propvalue)
1116  * strings. The propname of %NULL indicates the end of the property list.
1117  * If the object implements the user creatable interface, the object will
1118  * be marked complete once all the properties have been processed.
1119  *
1120  * Returns: %true on success, %false on failure.
1121  */
1122 bool object_initialize_child_with_props(Object *parentobj,
1123                              const char *propname,
1124                              void *childobj, size_t size, const char *type,
1125                              Error **errp, ...) QEMU_SENTINEL;
1126 
1127 /**
1128  * object_initialize_child_with_propsv:
1129  * @parentobj: The parent object to add a property to
1130  * @propname: The name of the property
1131  * @childobj: A pointer to the memory to be used for the object.
1132  * @size: The maximum size available at @childobj for the object.
1133  * @type: The name of the type of the object to instantiate.
1134  * @errp: If an error occurs, a pointer to an area to store the error
1135  * @vargs: list of property names and values
1136  *
1137  * See object_initialize_child() for documentation.
1138  *
1139  * Returns: %true on success, %false on failure.
1140  */
1141 bool object_initialize_child_with_propsv(Object *parentobj,
1142                               const char *propname,
1143                               void *childobj, size_t size, const char *type,
1144                               Error **errp, va_list vargs);
1145 
1146 /**
1147  * object_initialize_child:
1148  * @parent: The parent object to add a property to
1149  * @propname: The name of the property
1150  * @child: A precisely typed pointer to the memory to be used for the
1151  * object.
1152  * @type: The name of the type of the object to instantiate.
1153  *
1154  * This is like
1155  * object_initialize_child_with_props(parent, propname,
1156  *                                    child, sizeof(*child), type,
1157  *                                    &error_abort, NULL)
1158  */
1159 #define object_initialize_child(parent, propname, child, type)          \
1160     object_initialize_child_internal((parent), (propname),              \
1161                                      (child), sizeof(*(child)), (type))
1162 void object_initialize_child_internal(Object *parent, const char *propname,
1163                                       void *child, size_t size,
1164                                       const char *type);
1165 
1166 /**
1167  * object_dynamic_cast:
1168  * @obj: The object to cast.
1169  * @typename: The @typename to cast to.
1170  *
1171  * This function will determine if @obj is-a @typename.  @obj can refer to an
1172  * object or an interface associated with an object.
1173  *
1174  * Returns: This function returns @obj on success or #NULL on failure.
1175  */
1176 Object *object_dynamic_cast(Object *obj, const char *typename);
1177 
1178 /**
1179  * object_dynamic_cast_assert:
1180  * @obj: The object to cast.
1181  * @typename: The @typename to cast to.
1182  * @file: Source code file where function was called
1183  * @line: Source code line where function was called
1184  * @func: Name of function where this function was called
1185  *
1186  * See object_dynamic_cast() for a description of the parameters of this
1187  * function.  The only difference in behavior is that this function asserts
1188  * instead of returning #NULL on failure if QOM cast debugging is enabled.
1189  * This function is not meant to be called directly, but only through
1190  * the wrapper macro OBJECT_CHECK.
1191  */
1192 Object *object_dynamic_cast_assert(Object *obj, const char *typename,
1193                                    const char *file, int line, const char *func);
1194 
1195 /**
1196  * object_get_class:
1197  * @obj: A derivative of #Object
1198  *
1199  * Returns: The #ObjectClass of the type associated with @obj.
1200  */
1201 ObjectClass *object_get_class(Object *obj);
1202 
1203 /**
1204  * object_get_typename:
1205  * @obj: A derivative of #Object.
1206  *
1207  * Returns: The QOM typename of @obj.
1208  */
1209 const char *object_get_typename(const Object *obj);
1210 
1211 /**
1212  * type_register_static:
1213  * @info: The #TypeInfo of the new type.
1214  *
1215  * @info and all of the strings it points to should exist for the life time
1216  * that the type is registered.
1217  *
1218  * Returns: the new #Type.
1219  */
1220 Type type_register_static(const TypeInfo *info);
1221 
1222 /**
1223  * type_register:
1224  * @info: The #TypeInfo of the new type
1225  *
1226  * Unlike type_register_static(), this call does not require @info or its
1227  * string members to continue to exist after the call returns.
1228  *
1229  * Returns: the new #Type.
1230  */
1231 Type type_register(const TypeInfo *info);
1232 
1233 /**
1234  * type_register_static_array:
1235  * @infos: The array of the new type #TypeInfo structures.
1236  * @nr_infos: number of entries in @infos
1237  *
1238  * @infos and all of the strings it points to should exist for the life time
1239  * that the type is registered.
1240  */
1241 void type_register_static_array(const TypeInfo *infos, int nr_infos);
1242 
1243 /**
1244  * DEFINE_TYPES:
1245  * @type_array: The array containing #TypeInfo structures to register
1246  *
1247  * @type_array should be static constant that exists for the life time
1248  * that the type is registered.
1249  */
1250 #define DEFINE_TYPES(type_array)                                            \
1251 static void do_qemu_init_ ## type_array(void)                               \
1252 {                                                                           \
1253     type_register_static_array(type_array, ARRAY_SIZE(type_array));         \
1254 }                                                                           \
1255 type_init(do_qemu_init_ ## type_array)
1256 
1257 /**
1258  * object_class_dynamic_cast_assert:
1259  * @klass: The #ObjectClass to attempt to cast.
1260  * @typename: The QOM typename of the class to cast to.
1261  * @file: Source code file where function was called
1262  * @line: Source code line where function was called
1263  * @func: Name of function where this function was called
1264  *
1265  * See object_class_dynamic_cast() for a description of the parameters
1266  * of this function.  The only difference in behavior is that this function
1267  * asserts instead of returning #NULL on failure if QOM cast debugging is
1268  * enabled.  This function is not meant to be called directly, but only through
1269  * the wrapper macro OBJECT_CLASS_CHECK.
1270  */
1271 ObjectClass *object_class_dynamic_cast_assert(ObjectClass *klass,
1272                                               const char *typename,
1273                                               const char *file, int line,
1274                                               const char *func);
1275 
1276 /**
1277  * object_class_dynamic_cast:
1278  * @klass: The #ObjectClass to attempt to cast.
1279  * @typename: The QOM typename of the class to cast to.
1280  *
1281  * Returns: If @typename is a class, this function returns @klass if
1282  * @typename is a subtype of @klass, else returns #NULL.
1283  *
1284  * If @typename is an interface, this function returns the interface
1285  * definition for @klass if @klass implements it unambiguously; #NULL
1286  * is returned if @klass does not implement the interface or if multiple
1287  * classes or interfaces on the hierarchy leading to @klass implement
1288  * it.  (FIXME: perhaps this can be detected at type definition time?)
1289  */
1290 ObjectClass *object_class_dynamic_cast(ObjectClass *klass,
1291                                        const char *typename);
1292 
1293 /**
1294  * object_class_get_parent:
1295  * @klass: The class to obtain the parent for.
1296  *
1297  * Returns: The parent for @klass or %NULL if none.
1298  */
1299 ObjectClass *object_class_get_parent(ObjectClass *klass);
1300 
1301 /**
1302  * object_class_get_name:
1303  * @klass: The class to obtain the QOM typename for.
1304  *
1305  * Returns: The QOM typename for @klass.
1306  */
1307 const char *object_class_get_name(ObjectClass *klass);
1308 
1309 /**
1310  * object_class_is_abstract:
1311  * @klass: The class to obtain the abstractness for.
1312  *
1313  * Returns: %true if @klass is abstract, %false otherwise.
1314  */
1315 bool object_class_is_abstract(ObjectClass *klass);
1316 
1317 /**
1318  * object_class_by_name:
1319  * @typename: The QOM typename to obtain the class for.
1320  *
1321  * Returns: The class for @typename or %NULL if not found.
1322  */
1323 ObjectClass *object_class_by_name(const char *typename);
1324 
1325 /**
1326  * module_object_class_by_name:
1327  * @typename: The QOM typename to obtain the class for.
1328  *
1329  * For objects which might be provided by a module.  Behaves like
1330  * object_class_by_name, but additionally tries to load the module
1331  * needed in case the class is not available.
1332  *
1333  * Returns: The class for @typename or %NULL if not found.
1334  */
1335 ObjectClass *module_object_class_by_name(const char *typename);
1336 
1337 void object_class_foreach(void (*fn)(ObjectClass *klass, void *opaque),
1338                           const char *implements_type, bool include_abstract,
1339                           void *opaque);
1340 
1341 /**
1342  * object_class_get_list:
1343  * @implements_type: The type to filter for, including its derivatives.
1344  * @include_abstract: Whether to include abstract classes.
1345  *
1346  * Returns: A singly-linked list of the classes in reverse hashtable order.
1347  */
1348 GSList *object_class_get_list(const char *implements_type,
1349                               bool include_abstract);
1350 
1351 /**
1352  * object_class_get_list_sorted:
1353  * @implements_type: The type to filter for, including its derivatives.
1354  * @include_abstract: Whether to include abstract classes.
1355  *
1356  * Returns: A singly-linked list of the classes in alphabetical
1357  * case-insensitive order.
1358  */
1359 GSList *object_class_get_list_sorted(const char *implements_type,
1360                               bool include_abstract);
1361 
1362 /**
1363  * object_ref:
1364  * @obj: the object
1365  *
1366  * Increase the reference count of a object.  A object cannot be freed as long
1367  * as its reference count is greater than zero.
1368  * Returns: @obj
1369  */
1370 Object *object_ref(void *obj);
1371 
1372 /**
1373  * object_unref:
1374  * @obj: the object
1375  *
1376  * Decrease the reference count of a object.  A object cannot be freed as long
1377  * as its reference count is greater than zero.
1378  */
1379 void object_unref(void *obj);
1380 
1381 /**
1382  * object_property_try_add:
1383  * @obj: the object to add a property to
1384  * @name: the name of the property.  This can contain any character except for
1385  *  a forward slash.  In general, you should use hyphens '-' instead of
1386  *  underscores '_' when naming properties.
1387  * @type: the type name of the property.  This namespace is pretty loosely
1388  *   defined.  Sub namespaces are constructed by using a prefix and then
1389  *   to angle brackets.  For instance, the type 'virtio-net-pci' in the
1390  *   'link' namespace would be 'link<virtio-net-pci>'.
1391  * @get: The getter to be called to read a property.  If this is NULL, then
1392  *   the property cannot be read.
1393  * @set: the setter to be called to write a property.  If this is NULL,
1394  *   then the property cannot be written.
1395  * @release: called when the property is removed from the object.  This is
1396  *   meant to allow a property to free its opaque upon object
1397  *   destruction.  This may be NULL.
1398  * @opaque: an opaque pointer to pass to the callbacks for the property
1399  * @errp: pointer to error object
1400  *
1401  * Returns: The #ObjectProperty; this can be used to set the @resolve
1402  * callback for child and link properties.
1403  */
1404 ObjectProperty *object_property_try_add(Object *obj, const char *name,
1405                                         const char *type,
1406                                         ObjectPropertyAccessor *get,
1407                                         ObjectPropertyAccessor *set,
1408                                         ObjectPropertyRelease *release,
1409                                         void *opaque, Error **errp);
1410 
1411 /**
1412  * object_property_add:
1413  * Same as object_property_try_add() with @errp hardcoded to
1414  * &error_abort.
1415  *
1416  * @obj: the object to add a property to
1417  * @name: the name of the property.  This can contain any character except for
1418  *  a forward slash.  In general, you should use hyphens '-' instead of
1419  *  underscores '_' when naming properties.
1420  * @type: the type name of the property.  This namespace is pretty loosely
1421  *   defined.  Sub namespaces are constructed by using a prefix and then
1422  *   to angle brackets.  For instance, the type 'virtio-net-pci' in the
1423  *   'link' namespace would be 'link<virtio-net-pci>'.
1424  * @get: The getter to be called to read a property.  If this is NULL, then
1425  *   the property cannot be read.
1426  * @set: the setter to be called to write a property.  If this is NULL,
1427  *   then the property cannot be written.
1428  * @release: called when the property is removed from the object.  This is
1429  *   meant to allow a property to free its opaque upon object
1430  *   destruction.  This may be NULL.
1431  * @opaque: an opaque pointer to pass to the callbacks for the property
1432  */
1433 ObjectProperty *object_property_add(Object *obj, const char *name,
1434                                     const char *type,
1435                                     ObjectPropertyAccessor *get,
1436                                     ObjectPropertyAccessor *set,
1437                                     ObjectPropertyRelease *release,
1438                                     void *opaque);
1439 
1440 void object_property_del(Object *obj, const char *name);
1441 
1442 ObjectProperty *object_class_property_add(ObjectClass *klass, const char *name,
1443                                           const char *type,
1444                                           ObjectPropertyAccessor *get,
1445                                           ObjectPropertyAccessor *set,
1446                                           ObjectPropertyRelease *release,
1447                                           void *opaque);
1448 
1449 /**
1450  * object_property_set_default_bool:
1451  * @prop: the property to set
1452  * @value: the value to be written to the property
1453  *
1454  * Set the property default value.
1455  */
1456 void object_property_set_default_bool(ObjectProperty *prop, bool value);
1457 
1458 /**
1459  * object_property_set_default_str:
1460  * @prop: the property to set
1461  * @value: the value to be written to the property
1462  *
1463  * Set the property default value.
1464  */
1465 void object_property_set_default_str(ObjectProperty *prop, const char *value);
1466 
1467 /**
1468  * object_property_set_default_int:
1469  * @prop: the property to set
1470  * @value: the value to be written to the property
1471  *
1472  * Set the property default value.
1473  */
1474 void object_property_set_default_int(ObjectProperty *prop, int64_t value);
1475 
1476 /**
1477  * object_property_set_default_uint:
1478  * @prop: the property to set
1479  * @value: the value to be written to the property
1480  *
1481  * Set the property default value.
1482  */
1483 void object_property_set_default_uint(ObjectProperty *prop, uint64_t value);
1484 
1485 /**
1486  * object_property_find:
1487  * @obj: the object
1488  * @name: the name of the property
1489  *
1490  * Look up a property for an object.
1491  *
1492  * Return its #ObjectProperty if found, or NULL.
1493  */
1494 ObjectProperty *object_property_find(Object *obj, const char *name);
1495 
1496 /**
1497  * object_property_find_err:
1498  * @obj: the object
1499  * @name: the name of the property
1500  * @errp: returns an error if this function fails
1501  *
1502  * Look up a property for an object.
1503  *
1504  * Return its #ObjectProperty if found, or NULL.
1505  */
1506 ObjectProperty *object_property_find_err(Object *obj,
1507                                          const char *name,
1508                                          Error **errp);
1509 
1510 /**
1511  * object_class_property_find:
1512  * @klass: the object class
1513  * @name: the name of the property
1514  *
1515  * Look up a property for an object class.
1516  *
1517  * Return its #ObjectProperty if found, or NULL.
1518  */
1519 ObjectProperty *object_class_property_find(ObjectClass *klass,
1520                                            const char *name);
1521 
1522 /**
1523  * object_class_property_find_err:
1524  * @klass: the object class
1525  * @name: the name of the property
1526  * @errp: returns an error if this function fails
1527  *
1528  * Look up a property for an object class.
1529  *
1530  * Return its #ObjectProperty if found, or NULL.
1531  */
1532 ObjectProperty *object_class_property_find_err(ObjectClass *klass,
1533                                                const char *name,
1534                                                Error **errp);
1535 
1536 typedef struct ObjectPropertyIterator {
1537     ObjectClass *nextclass;
1538     GHashTableIter iter;
1539 } ObjectPropertyIterator;
1540 
1541 /**
1542  * object_property_iter_init:
1543  * @iter: the iterator instance
1544  * @obj: the object
1545  *
1546  * Initializes an iterator for traversing all properties
1547  * registered against an object instance, its class and all parent classes.
1548  *
1549  * It is forbidden to modify the property list while iterating,
1550  * whether removing or adding properties.
1551  *
1552  * Typical usage pattern would be
1553  *
1554  * <example>
1555  *   <title>Using object property iterators</title>
1556  *   <programlisting>
1557  *   ObjectProperty *prop;
1558  *   ObjectPropertyIterator iter;
1559  *
1560  *   object_property_iter_init(&iter, obj);
1561  *   while ((prop = object_property_iter_next(&iter))) {
1562  *     ... do something with prop ...
1563  *   }
1564  *   </programlisting>
1565  * </example>
1566  */
1567 void object_property_iter_init(ObjectPropertyIterator *iter,
1568                                Object *obj);
1569 
1570 /**
1571  * object_class_property_iter_init:
1572  * @iter: the iterator instance
1573  * @klass: the class
1574  *
1575  * Initializes an iterator for traversing all properties
1576  * registered against an object class and all parent classes.
1577  *
1578  * It is forbidden to modify the property list while iterating,
1579  * whether removing or adding properties.
1580  *
1581  * This can be used on abstract classes as it does not create a temporary
1582  * instance.
1583  */
1584 void object_class_property_iter_init(ObjectPropertyIterator *iter,
1585                                      ObjectClass *klass);
1586 
1587 /**
1588  * object_property_iter_next:
1589  * @iter: the iterator instance
1590  *
1591  * Return the next available property. If no further properties
1592  * are available, a %NULL value will be returned and the @iter
1593  * pointer should not be used again after this point without
1594  * re-initializing it.
1595  *
1596  * Returns: the next property, or %NULL when all properties
1597  * have been traversed.
1598  */
1599 ObjectProperty *object_property_iter_next(ObjectPropertyIterator *iter);
1600 
1601 void object_unparent(Object *obj);
1602 
1603 /**
1604  * object_property_get:
1605  * @obj: the object
1606  * @name: the name of the property
1607  * @v: the visitor that will receive the property value.  This should be an
1608  *   Output visitor and the data will be written with @name as the name.
1609  * @errp: returns an error if this function fails
1610  *
1611  * Reads a property from a object.
1612  *
1613  * Returns: %true on success, %false on failure.
1614  */
1615 bool object_property_get(Object *obj, const char *name, Visitor *v,
1616                          Error **errp);
1617 
1618 /**
1619  * object_property_set_str:
1620  * @obj: the object
1621  * @name: the name of the property
1622  * @value: the value to be written to the property
1623  * @errp: returns an error if this function fails
1624  *
1625  * Writes a string value to a property.
1626  *
1627  * Returns: %true on success, %false on failure.
1628  */
1629 bool object_property_set_str(Object *obj, const char *name,
1630                              const char *value, Error **errp);
1631 
1632 /**
1633  * object_property_get_str:
1634  * @obj: the object
1635  * @name: the name of the property
1636  * @errp: returns an error if this function fails
1637  *
1638  * Returns: the value of the property, converted to a C string, or NULL if
1639  * an error occurs (including when the property value is not a string).
1640  * The caller should free the string.
1641  */
1642 char *object_property_get_str(Object *obj, const char *name,
1643                               Error **errp);
1644 
1645 /**
1646  * object_property_set_link:
1647  * @obj: the object
1648  * @name: the name of the property
1649  * @value: the value to be written to the property
1650  * @errp: returns an error if this function fails
1651  *
1652  * Writes an object's canonical path to a property.
1653  *
1654  * If the link property was created with
1655  * <code>OBJ_PROP_LINK_STRONG</code> bit, the old target object is
1656  * unreferenced, and a reference is added to the new target object.
1657  *
1658  * Returns: %true on success, %false on failure.
1659  */
1660 bool object_property_set_link(Object *obj, const char *name,
1661                               Object *value, Error **errp);
1662 
1663 /**
1664  * object_property_get_link:
1665  * @obj: the object
1666  * @name: the name of the property
1667  * @errp: returns an error if this function fails
1668  *
1669  * Returns: the value of the property, resolved from a path to an Object,
1670  * or NULL if an error occurs (including when the property value is not a
1671  * string or not a valid object path).
1672  */
1673 Object *object_property_get_link(Object *obj, const char *name,
1674                                  Error **errp);
1675 
1676 /**
1677  * object_property_set_bool:
1678  * @obj: the object
1679  * @name: the name of the property
1680  * @value: the value to be written to the property
1681  * @errp: returns an error if this function fails
1682  *
1683  * Writes a bool value to a property.
1684  *
1685  * Returns: %true on success, %false on failure.
1686  */
1687 bool object_property_set_bool(Object *obj, const char *name,
1688                               bool value, Error **errp);
1689 
1690 /**
1691  * object_property_get_bool:
1692  * @obj: the object
1693  * @name: the name of the property
1694  * @errp: returns an error if this function fails
1695  *
1696  * Returns: the value of the property, converted to a boolean, or false if
1697  * an error occurs (including when the property value is not a bool).
1698  */
1699 bool object_property_get_bool(Object *obj, const char *name,
1700                               Error **errp);
1701 
1702 /**
1703  * object_property_set_int:
1704  * @obj: the object
1705  * @name: the name of the property
1706  * @value: the value to be written to the property
1707  * @errp: returns an error if this function fails
1708  *
1709  * Writes an integer value to a property.
1710  *
1711  * Returns: %true on success, %false on failure.
1712  */
1713 bool object_property_set_int(Object *obj, const char *name,
1714                              int64_t value, Error **errp);
1715 
1716 /**
1717  * object_property_get_int:
1718  * @obj: the object
1719  * @name: the name of the property
1720  * @errp: returns an error if this function fails
1721  *
1722  * Returns: the value of the property, converted to an integer, or -1 if
1723  * an error occurs (including when the property value is not an integer).
1724  */
1725 int64_t object_property_get_int(Object *obj, const char *name,
1726                                 Error **errp);
1727 
1728 /**
1729  * object_property_set_uint:
1730  * @obj: the object
1731  * @name: the name of the property
1732  * @value: the value to be written to the property
1733  * @errp: returns an error if this function fails
1734  *
1735  * Writes an unsigned integer value to a property.
1736  *
1737  * Returns: %true on success, %false on failure.
1738  */
1739 bool object_property_set_uint(Object *obj, const char *name,
1740                               uint64_t value, Error **errp);
1741 
1742 /**
1743  * object_property_get_uint:
1744  * @obj: the object
1745  * @name: the name of the property
1746  * @errp: returns an error if this function fails
1747  *
1748  * Returns: the value of the property, converted to an unsigned integer, or 0
1749  * an error occurs (including when the property value is not an integer).
1750  */
1751 uint64_t object_property_get_uint(Object *obj, const char *name,
1752                                   Error **errp);
1753 
1754 /**
1755  * object_property_get_enum:
1756  * @obj: the object
1757  * @name: the name of the property
1758  * @typename: the name of the enum data type
1759  * @errp: returns an error if this function fails
1760  *
1761  * Returns: the value of the property, converted to an integer (which
1762  * can't be negative), or -1 on error (including when the property
1763  * value is not an enum).
1764  */
1765 int object_property_get_enum(Object *obj, const char *name,
1766                              const char *typename, Error **errp);
1767 
1768 /**
1769  * object_property_set:
1770  * @obj: the object
1771  * @name: the name of the property
1772  * @v: the visitor that will be used to write the property value.  This should
1773  *   be an Input visitor and the data will be first read with @name as the
1774  *   name and then written as the property value.
1775  * @errp: returns an error if this function fails
1776  *
1777  * Writes a property to a object.
1778  *
1779  * Returns: %true on success, %false on failure.
1780  */
1781 bool object_property_set(Object *obj, const char *name, Visitor *v,
1782                          Error **errp);
1783 
1784 /**
1785  * object_property_parse:
1786  * @obj: the object
1787  * @name: the name of the property
1788  * @string: the string that will be used to parse the property value.
1789  * @errp: returns an error if this function fails
1790  *
1791  * Parses a string and writes the result into a property of an object.
1792  *
1793  * Returns: %true on success, %false on failure.
1794  */
1795 bool object_property_parse(Object *obj, const char *name,
1796                            const char *string, Error **errp);
1797 
1798 /**
1799  * object_property_print:
1800  * @obj: the object
1801  * @name: the name of the property
1802  * @human: if true, print for human consumption
1803  * @errp: returns an error if this function fails
1804  *
1805  * Returns a string representation of the value of the property.  The
1806  * caller shall free the string.
1807  */
1808 char *object_property_print(Object *obj, const char *name, bool human,
1809                             Error **errp);
1810 
1811 /**
1812  * object_property_get_type:
1813  * @obj: the object
1814  * @name: the name of the property
1815  * @errp: returns an error if this function fails
1816  *
1817  * Returns:  The type name of the property.
1818  */
1819 const char *object_property_get_type(Object *obj, const char *name,
1820                                      Error **errp);
1821 
1822 /**
1823  * object_get_root:
1824  *
1825  * Returns: the root object of the composition tree
1826  */
1827 Object *object_get_root(void);
1828 
1829 
1830 /**
1831  * object_get_objects_root:
1832  *
1833  * Get the container object that holds user created
1834  * object instances. This is the object at path
1835  * "/objects"
1836  *
1837  * Returns: the user object container
1838  */
1839 Object *object_get_objects_root(void);
1840 
1841 /**
1842  * object_get_internal_root:
1843  *
1844  * Get the container object that holds internally used object
1845  * instances.  Any object which is put into this container must not be
1846  * user visible, and it will not be exposed in the QOM tree.
1847  *
1848  * Returns: the internal object container
1849  */
1850 Object *object_get_internal_root(void);
1851 
1852 /**
1853  * object_get_canonical_path_component:
1854  * @obj: the object
1855  *
1856  * Returns: The final component in the object's canonical path.  The canonical
1857  * path is the path within the composition tree starting from the root.
1858  * %NULL if the object doesn't have a parent (and thus a canonical path).
1859  */
1860 const char *object_get_canonical_path_component(const Object *obj);
1861 
1862 /**
1863  * object_get_canonical_path:
1864  * @obj: the object
1865  *
1866  * Returns: The canonical path for a object, newly allocated.  This is
1867  * the path within the composition tree starting from the root.  Use
1868  * g_free() to free it.
1869  */
1870 char *object_get_canonical_path(const Object *obj);
1871 
1872 /**
1873  * object_resolve_path:
1874  * @path: the path to resolve
1875  * @ambiguous: returns true if the path resolution failed because of an
1876  *   ambiguous match
1877  *
1878  * There are two types of supported paths--absolute paths and partial paths.
1879  *
1880  * Absolute paths are derived from the root object and can follow child<> or
1881  * link<> properties.  Since they can follow link<> properties, they can be
1882  * arbitrarily long.  Absolute paths look like absolute filenames and are
1883  * prefixed with a leading slash.
1884  *
1885  * Partial paths look like relative filenames.  They do not begin with a
1886  * prefix.  The matching rules for partial paths are subtle but designed to make
1887  * specifying objects easy.  At each level of the composition tree, the partial
1888  * path is matched as an absolute path.  The first match is not returned.  At
1889  * least two matches are searched for.  A successful result is only returned if
1890  * only one match is found.  If more than one match is found, a flag is
1891  * returned to indicate that the match was ambiguous.
1892  *
1893  * Returns: The matched object or NULL on path lookup failure.
1894  */
1895 Object *object_resolve_path(const char *path, bool *ambiguous);
1896 
1897 /**
1898  * object_resolve_path_type:
1899  * @path: the path to resolve
1900  * @typename: the type to look for.
1901  * @ambiguous: returns true if the path resolution failed because of an
1902  *   ambiguous match
1903  *
1904  * This is similar to object_resolve_path.  However, when looking for a
1905  * partial path only matches that implement the given type are considered.
1906  * This restricts the search and avoids spuriously flagging matches as
1907  * ambiguous.
1908  *
1909  * For both partial and absolute paths, the return value goes through
1910  * a dynamic cast to @typename.  This is important if either the link,
1911  * or the typename itself are of interface types.
1912  *
1913  * Returns: The matched object or NULL on path lookup failure.
1914  */
1915 Object *object_resolve_path_type(const char *path, const char *typename,
1916                                  bool *ambiguous);
1917 
1918 /**
1919  * object_resolve_path_component:
1920  * @parent: the object in which to resolve the path
1921  * @part: the component to resolve.
1922  *
1923  * This is similar to object_resolve_path with an absolute path, but it
1924  * only resolves one element (@part) and takes the others from @parent.
1925  *
1926  * Returns: The resolved object or NULL on path lookup failure.
1927  */
1928 Object *object_resolve_path_component(Object *parent, const char *part);
1929 
1930 /**
1931  * object_property_try_add_child:
1932  * @obj: the object to add a property to
1933  * @name: the name of the property
1934  * @child: the child object
1935  * @errp: pointer to error object
1936  *
1937  * Child properties form the composition tree.  All objects need to be a child
1938  * of another object.  Objects can only be a child of one object.
1939  *
1940  * There is no way for a child to determine what its parent is.  It is not
1941  * a bidirectional relationship.  This is by design.
1942  *
1943  * The value of a child property as a C string will be the child object's
1944  * canonical path. It can be retrieved using object_property_get_str().
1945  * The child object itself can be retrieved using object_property_get_link().
1946  *
1947  * Returns: The newly added property on success, or %NULL on failure.
1948  */
1949 ObjectProperty *object_property_try_add_child(Object *obj, const char *name,
1950                                               Object *child, Error **errp);
1951 
1952 /**
1953  * object_property_add_child:
1954  * @obj: the object to add a property to
1955  * @name: the name of the property
1956  * @child: the child object
1957  *
1958  * Same as object_property_try_add_child() with @errp hardcoded to
1959  * &error_abort
1960  */
1961 ObjectProperty *object_property_add_child(Object *obj, const char *name,
1962                                           Object *child);
1963 
1964 typedef enum {
1965     /* Unref the link pointer when the property is deleted */
1966     OBJ_PROP_LINK_STRONG = 0x1,
1967 
1968     /* private */
1969     OBJ_PROP_LINK_DIRECT = 0x2,
1970     OBJ_PROP_LINK_CLASS = 0x4,
1971 } ObjectPropertyLinkFlags;
1972 
1973 /**
1974  * object_property_allow_set_link:
1975  * @obj: the object to add a property to
1976  * @name: the name of the property
1977  * @child: the child object
1978  * @errp: pointer to error object
1979  *
1980  * The default implementation of the object_property_add_link() check()
1981  * callback function.  It allows the link property to be set and never returns
1982  * an error.
1983  */
1984 void object_property_allow_set_link(const Object *obj, const char *name,
1985                                     Object *child, Error **errp);
1986 
1987 /**
1988  * object_property_add_link:
1989  * @obj: the object to add a property to
1990  * @name: the name of the property
1991  * @type: the qobj type of the link
1992  * @targetp: a pointer to where the link object reference is stored
1993  * @check: callback to veto setting or NULL if the property is read-only
1994  * @flags: additional options for the link
1995  *
1996  * Links establish relationships between objects.  Links are unidirectional
1997  * although two links can be combined to form a bidirectional relationship
1998  * between objects.
1999  *
2000  * Links form the graph in the object model.
2001  *
2002  * The <code>@check()</code> callback is invoked when
2003  * object_property_set_link() is called and can raise an error to prevent the
2004  * link being set.  If <code>@check</code> is NULL, the property is read-only
2005  * and cannot be set.
2006  *
2007  * Ownership of the pointer that @child points to is transferred to the
2008  * link property.  The reference count for <code>*@child</code> is
2009  * managed by the property from after the function returns till the
2010  * property is deleted with object_property_del().  If the
2011  * <code>@flags</code> <code>OBJ_PROP_LINK_STRONG</code> bit is set,
2012  * the reference count is decremented when the property is deleted or
2013  * modified.
2014  *
2015  * Returns: The newly added property on success, or %NULL on failure.
2016  */
2017 ObjectProperty *object_property_add_link(Object *obj, const char *name,
2018                               const char *type, Object **targetp,
2019                               void (*check)(const Object *obj, const char *name,
2020                                             Object *val, Error **errp),
2021                               ObjectPropertyLinkFlags flags);
2022 
2023 ObjectProperty *object_class_property_add_link(ObjectClass *oc,
2024                               const char *name,
2025                               const char *type, ptrdiff_t offset,
2026                               void (*check)(const Object *obj, const char *name,
2027                                             Object *val, Error **errp),
2028                               ObjectPropertyLinkFlags flags);
2029 
2030 /**
2031  * object_property_add_str:
2032  * @obj: the object to add a property to
2033  * @name: the name of the property
2034  * @get: the getter or NULL if the property is write-only.  This function must
2035  *   return a string to be freed by g_free().
2036  * @set: the setter or NULL if the property is read-only
2037  *
2038  * Add a string property using getters/setters.  This function will add a
2039  * property of type 'string'.
2040  *
2041  * Returns: The newly added property on success, or %NULL on failure.
2042  */
2043 ObjectProperty *object_property_add_str(Object *obj, const char *name,
2044                              char *(*get)(Object *, Error **),
2045                              void (*set)(Object *, const char *, Error **));
2046 
2047 ObjectProperty *object_class_property_add_str(ObjectClass *klass,
2048                                    const char *name,
2049                                    char *(*get)(Object *, Error **),
2050                                    void (*set)(Object *, const char *,
2051                                                Error **));
2052 
2053 /**
2054  * object_property_add_bool:
2055  * @obj: the object to add a property to
2056  * @name: the name of the property
2057  * @get: the getter or NULL if the property is write-only.
2058  * @set: the setter or NULL if the property is read-only
2059  *
2060  * Add a bool property using getters/setters.  This function will add a
2061  * property of type 'bool'.
2062  *
2063  * Returns: The newly added property on success, or %NULL on failure.
2064  */
2065 ObjectProperty *object_property_add_bool(Object *obj, const char *name,
2066                               bool (*get)(Object *, Error **),
2067                               void (*set)(Object *, bool, Error **));
2068 
2069 ObjectProperty *object_class_property_add_bool(ObjectClass *klass,
2070                                     const char *name,
2071                                     bool (*get)(Object *, Error **),
2072                                     void (*set)(Object *, bool, Error **));
2073 
2074 /**
2075  * object_property_add_enum:
2076  * @obj: the object to add a property to
2077  * @name: the name of the property
2078  * @typename: the name of the enum data type
2079  * @lookup: enum value namelookup table
2080  * @get: the getter or %NULL if the property is write-only.
2081  * @set: the setter or %NULL if the property is read-only
2082  *
2083  * Add an enum property using getters/setters.  This function will add a
2084  * property of type '@typename'.
2085  *
2086  * Returns: The newly added property on success, or %NULL on failure.
2087  */
2088 ObjectProperty *object_property_add_enum(Object *obj, const char *name,
2089                               const char *typename,
2090                               const QEnumLookup *lookup,
2091                               int (*get)(Object *, Error **),
2092                               void (*set)(Object *, int, Error **));
2093 
2094 ObjectProperty *object_class_property_add_enum(ObjectClass *klass,
2095                                     const char *name,
2096                                     const char *typename,
2097                                     const QEnumLookup *lookup,
2098                                     int (*get)(Object *, Error **),
2099                                     void (*set)(Object *, int, Error **));
2100 
2101 /**
2102  * object_property_add_tm:
2103  * @obj: the object to add a property to
2104  * @name: the name of the property
2105  * @get: the getter or NULL if the property is write-only.
2106  *
2107  * Add a read-only struct tm valued property using a getter function.
2108  * This function will add a property of type 'struct tm'.
2109  *
2110  * Returns: The newly added property on success, or %NULL on failure.
2111  */
2112 ObjectProperty *object_property_add_tm(Object *obj, const char *name,
2113                             void (*get)(Object *, struct tm *, Error **));
2114 
2115 ObjectProperty *object_class_property_add_tm(ObjectClass *klass,
2116                             const char *name,
2117                             void (*get)(Object *, struct tm *, Error **));
2118 
2119 typedef enum {
2120     /* Automatically add a getter to the property */
2121     OBJ_PROP_FLAG_READ = 1 << 0,
2122     /* Automatically add a setter to the property */
2123     OBJ_PROP_FLAG_WRITE = 1 << 1,
2124     /* Automatically add a getter and a setter to the property */
2125     OBJ_PROP_FLAG_READWRITE = (OBJ_PROP_FLAG_READ | OBJ_PROP_FLAG_WRITE),
2126 } ObjectPropertyFlags;
2127 
2128 /**
2129  * object_property_add_uint8_ptr:
2130  * @obj: the object to add a property to
2131  * @name: the name of the property
2132  * @v: pointer to value
2133  * @flags: bitwise-or'd ObjectPropertyFlags
2134  *
2135  * Add an integer property in memory.  This function will add a
2136  * property of type 'uint8'.
2137  *
2138  * Returns: The newly added property on success, or %NULL on failure.
2139  */
2140 ObjectProperty *object_property_add_uint8_ptr(Object *obj, const char *name,
2141                                               const uint8_t *v,
2142                                               ObjectPropertyFlags flags);
2143 
2144 ObjectProperty *object_class_property_add_uint8_ptr(ObjectClass *klass,
2145                                          const char *name,
2146                                          const uint8_t *v,
2147                                          ObjectPropertyFlags flags);
2148 
2149 /**
2150  * object_property_add_uint16_ptr:
2151  * @obj: the object to add a property to
2152  * @name: the name of the property
2153  * @v: pointer to value
2154  * @flags: bitwise-or'd ObjectPropertyFlags
2155  *
2156  * Add an integer property in memory.  This function will add a
2157  * property of type 'uint16'.
2158  *
2159  * Returns: The newly added property on success, or %NULL on failure.
2160  */
2161 ObjectProperty *object_property_add_uint16_ptr(Object *obj, const char *name,
2162                                     const uint16_t *v,
2163                                     ObjectPropertyFlags flags);
2164 
2165 ObjectProperty *object_class_property_add_uint16_ptr(ObjectClass *klass,
2166                                           const char *name,
2167                                           const uint16_t *v,
2168                                           ObjectPropertyFlags flags);
2169 
2170 /**
2171  * object_property_add_uint32_ptr:
2172  * @obj: the object to add a property to
2173  * @name: the name of the property
2174  * @v: pointer to value
2175  * @flags: bitwise-or'd ObjectPropertyFlags
2176  *
2177  * Add an integer property in memory.  This function will add a
2178  * property of type 'uint32'.
2179  *
2180  * Returns: The newly added property on success, or %NULL on failure.
2181  */
2182 ObjectProperty *object_property_add_uint32_ptr(Object *obj, const char *name,
2183                                     const uint32_t *v,
2184                                     ObjectPropertyFlags flags);
2185 
2186 ObjectProperty *object_class_property_add_uint32_ptr(ObjectClass *klass,
2187                                           const char *name,
2188                                           const uint32_t *v,
2189                                           ObjectPropertyFlags flags);
2190 
2191 /**
2192  * object_property_add_uint64_ptr:
2193  * @obj: the object to add a property to
2194  * @name: the name of the property
2195  * @v: pointer to value
2196  * @flags: bitwise-or'd ObjectPropertyFlags
2197  *
2198  * Add an integer property in memory.  This function will add a
2199  * property of type 'uint64'.
2200  *
2201  * Returns: The newly added property on success, or %NULL on failure.
2202  */
2203 ObjectProperty *object_property_add_uint64_ptr(Object *obj, const char *name,
2204                                     const uint64_t *v,
2205                                     ObjectPropertyFlags flags);
2206 
2207 ObjectProperty *object_class_property_add_uint64_ptr(ObjectClass *klass,
2208                                           const char *name,
2209                                           const uint64_t *v,
2210                                           ObjectPropertyFlags flags);
2211 
2212 /**
2213  * object_property_add_alias:
2214  * @obj: the object to add a property to
2215  * @name: the name of the property
2216  * @target_obj: the object to forward property access to
2217  * @target_name: the name of the property on the forwarded object
2218  *
2219  * Add an alias for a property on an object.  This function will add a property
2220  * of the same type as the forwarded property.
2221  *
2222  * The caller must ensure that <code>@target_obj</code> stays alive as long as
2223  * this property exists.  In the case of a child object or an alias on the same
2224  * object this will be the case.  For aliases to other objects the caller is
2225  * responsible for taking a reference.
2226  *
2227  * Returns: The newly added property on success, or %NULL on failure.
2228  */
2229 ObjectProperty *object_property_add_alias(Object *obj, const char *name,
2230                                Object *target_obj, const char *target_name);
2231 
2232 /**
2233  * object_property_add_const_link:
2234  * @obj: the object to add a property to
2235  * @name: the name of the property
2236  * @target: the object to be referred by the link
2237  *
2238  * Add an unmodifiable link for a property on an object.  This function will
2239  * add a property of type link<TYPE> where TYPE is the type of @target.
2240  *
2241  * The caller must ensure that @target stays alive as long as
2242  * this property exists.  In the case @target is a child of @obj,
2243  * this will be the case.  Otherwise, the caller is responsible for
2244  * taking a reference.
2245  *
2246  * Returns: The newly added property on success, or %NULL on failure.
2247  */
2248 ObjectProperty *object_property_add_const_link(Object *obj, const char *name,
2249                                                Object *target);
2250 
2251 /**
2252  * object_property_set_description:
2253  * @obj: the object owning the property
2254  * @name: the name of the property
2255  * @description: the description of the property on the object
2256  *
2257  * Set an object property's description.
2258  *
2259  * Returns: %true on success, %false on failure.
2260  */
2261 void object_property_set_description(Object *obj, const char *name,
2262                                      const char *description);
2263 void object_class_property_set_description(ObjectClass *klass, const char *name,
2264                                            const char *description);
2265 
2266 /**
2267  * object_child_foreach:
2268  * @obj: the object whose children will be navigated
2269  * @fn: the iterator function to be called
2270  * @opaque: an opaque value that will be passed to the iterator
2271  *
2272  * Call @fn passing each child of @obj and @opaque to it, until @fn returns
2273  * non-zero.
2274  *
2275  * It is forbidden to add or remove children from @obj from the @fn
2276  * callback.
2277  *
2278  * Returns: The last value returned by @fn, or 0 if there is no child.
2279  */
2280 int object_child_foreach(Object *obj, int (*fn)(Object *child, void *opaque),
2281                          void *opaque);
2282 
2283 /**
2284  * object_child_foreach_recursive:
2285  * @obj: the object whose children will be navigated
2286  * @fn: the iterator function to be called
2287  * @opaque: an opaque value that will be passed to the iterator
2288  *
2289  * Call @fn passing each child of @obj and @opaque to it, until @fn returns
2290  * non-zero. Calls recursively, all child nodes of @obj will also be passed
2291  * all the way down to the leaf nodes of the tree. Depth first ordering.
2292  *
2293  * It is forbidden to add or remove children from @obj (or its
2294  * child nodes) from the @fn callback.
2295  *
2296  * Returns: The last value returned by @fn, or 0 if there is no child.
2297  */
2298 int object_child_foreach_recursive(Object *obj,
2299                                    int (*fn)(Object *child, void *opaque),
2300                                    void *opaque);
2301 /**
2302  * container_get:
2303  * @root: root of the #path, e.g., object_get_root()
2304  * @path: path to the container
2305  *
2306  * Return a container object whose path is @path.  Create more containers
2307  * along the path if necessary.
2308  *
2309  * Returns: the container object.
2310  */
2311 Object *container_get(Object *root, const char *path);
2312 
2313 /**
2314  * object_type_get_instance_size:
2315  * @typename: Name of the Type whose instance_size is required
2316  *
2317  * Returns the instance_size of the given @typename.
2318  */
2319 size_t object_type_get_instance_size(const char *typename);
2320 
2321 /**
2322  * object_property_help:
2323  * @name: the name of the property
2324  * @type: the type of the property
2325  * @defval: the default value
2326  * @description: description of the property
2327  *
2328  * Returns: a user-friendly formatted string describing the property
2329  * for help purposes.
2330  */
2331 char *object_property_help(const char *name, const char *type,
2332                            QObject *defval, const char *description);
2333 
2334 G_DEFINE_AUTOPTR_CLEANUP_FUNC(Object, object_unref)
2335 
2336 #endif
2337