xref: /openbmc/qemu/include/qom/object.h (revision ad09bed1cfc554d919f3a1a71985801b9988a0ad)
1 /*
2  * QEMU Object Model
3  *
4  * Copyright IBM, Corp. 2011
5  *
6  * Authors:
7  *  Anthony Liguori   <aliguori@us.ibm.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef QEMU_OBJECT_H
15 #define QEMU_OBJECT_H
16 
17 #include "qapi/qapi-builtin-types.h"
18 #include "qemu/module.h"
19 
20 struct TypeImpl;
21 typedef struct TypeImpl *Type;
22 
23 typedef struct TypeInfo TypeInfo;
24 
25 typedef struct InterfaceClass InterfaceClass;
26 typedef struct InterfaceInfo InterfaceInfo;
27 
28 #define TYPE_OBJECT "object"
29 
30 /**
31  * SECTION:object.h
32  * @title:Base Object Type System
33  * @short_description: interfaces for creating new types and objects
34  *
35  * The QEMU Object Model provides a framework for registering user creatable
36  * types and instantiating objects from those types.  QOM provides the following
37  * features:
38  *
39  *  - System for dynamically registering types
40  *  - Support for single-inheritance of types
41  *  - Multiple inheritance of stateless interfaces
42  *
43  * <example>
44  *   <title>Creating a minimal type</title>
45  *   <programlisting>
46  * #include "qdev.h"
47  *
48  * #define TYPE_MY_DEVICE "my-device"
49  *
50  * // No new virtual functions: we can reuse the typedef for the
51  * // superclass.
52  * typedef DeviceClass MyDeviceClass;
53  * typedef struct MyDevice
54  * {
55  *     DeviceState parent;
56  *
57  *     int reg0, reg1, reg2;
58  * } MyDevice;
59  *
60  * static const TypeInfo my_device_info = {
61  *     .name = TYPE_MY_DEVICE,
62  *     .parent = TYPE_DEVICE,
63  *     .instance_size = sizeof(MyDevice),
64  * };
65  *
66  * static void my_device_register_types(void)
67  * {
68  *     type_register_static(&my_device_info);
69  * }
70  *
71  * type_init(my_device_register_types)
72  *   </programlisting>
73  * </example>
74  *
75  * In the above example, we create a simple type that is described by #TypeInfo.
76  * #TypeInfo describes information about the type including what it inherits
77  * from, the instance and class size, and constructor/destructor hooks.
78  *
79  * Alternatively several static types could be registered using helper macro
80  * DEFINE_TYPES()
81  *
82  * <example>
83  *   <programlisting>
84  * static const TypeInfo device_types_info[] = {
85  *     {
86  *         .name = TYPE_MY_DEVICE_A,
87  *         .parent = TYPE_DEVICE,
88  *         .instance_size = sizeof(MyDeviceA),
89  *     },
90  *     {
91  *         .name = TYPE_MY_DEVICE_B,
92  *         .parent = TYPE_DEVICE,
93  *         .instance_size = sizeof(MyDeviceB),
94  *     },
95  * };
96  *
97  * DEFINE_TYPES(device_types_info)
98  *   </programlisting>
99  * </example>
100  *
101  * Every type has an #ObjectClass associated with it.  #ObjectClass derivatives
102  * are instantiated dynamically but there is only ever one instance for any
103  * given type.  The #ObjectClass typically holds a table of function pointers
104  * for the virtual methods implemented by this type.
105  *
106  * Using object_new(), a new #Object derivative will be instantiated.  You can
107  * cast an #Object to a subclass (or base-class) type using
108  * object_dynamic_cast().  You typically want to define macro wrappers around
109  * OBJECT_CHECK() and OBJECT_CLASS_CHECK() to make it easier to convert to a
110  * specific type:
111  *
112  * <example>
113  *   <title>Typecasting macros</title>
114  *   <programlisting>
115  *    #define MY_DEVICE_GET_CLASS(obj) \
116  *       OBJECT_GET_CLASS(MyDeviceClass, obj, TYPE_MY_DEVICE)
117  *    #define MY_DEVICE_CLASS(klass) \
118  *       OBJECT_CLASS_CHECK(MyDeviceClass, klass, TYPE_MY_DEVICE)
119  *    #define MY_DEVICE(obj) \
120  *       OBJECT_CHECK(MyDevice, obj, TYPE_MY_DEVICE)
121  *   </programlisting>
122  * </example>
123  *
124  * # Class Initialization #
125  *
126  * Before an object is initialized, the class for the object must be
127  * initialized.  There is only one class object for all instance objects
128  * that is created lazily.
129  *
130  * Classes are initialized by first initializing any parent classes (if
131  * necessary).  After the parent class object has initialized, it will be
132  * copied into the current class object and any additional storage in the
133  * class object is zero filled.
134  *
135  * The effect of this is that classes automatically inherit any virtual
136  * function pointers that the parent class has already initialized.  All
137  * other fields will be zero filled.
138  *
139  * Once all of the parent classes have been initialized, #TypeInfo::class_init
140  * is called to let the class being instantiated provide default initialize for
141  * its virtual functions.  Here is how the above example might be modified
142  * to introduce an overridden virtual function:
143  *
144  * <example>
145  *   <title>Overriding a virtual function</title>
146  *   <programlisting>
147  * #include "qdev.h"
148  *
149  * void my_device_class_init(ObjectClass *klass, void *class_data)
150  * {
151  *     DeviceClass *dc = DEVICE_CLASS(klass);
152  *     dc->reset = my_device_reset;
153  * }
154  *
155  * static const TypeInfo my_device_info = {
156  *     .name = TYPE_MY_DEVICE,
157  *     .parent = TYPE_DEVICE,
158  *     .instance_size = sizeof(MyDevice),
159  *     .class_init = my_device_class_init,
160  * };
161  *   </programlisting>
162  * </example>
163  *
164  * Introducing new virtual methods requires a class to define its own
165  * struct and to add a .class_size member to the #TypeInfo.  Each method
166  * will also have a wrapper function to call it easily:
167  *
168  * <example>
169  *   <title>Defining an abstract class</title>
170  *   <programlisting>
171  * #include "qdev.h"
172  *
173  * typedef struct MyDeviceClass
174  * {
175  *     DeviceClass parent;
176  *
177  *     void (*frobnicate) (MyDevice *obj);
178  * } MyDeviceClass;
179  *
180  * static const TypeInfo my_device_info = {
181  *     .name = TYPE_MY_DEVICE,
182  *     .parent = TYPE_DEVICE,
183  *     .instance_size = sizeof(MyDevice),
184  *     .abstract = true, // or set a default in my_device_class_init
185  *     .class_size = sizeof(MyDeviceClass),
186  * };
187  *
188  * void my_device_frobnicate(MyDevice *obj)
189  * {
190  *     MyDeviceClass *klass = MY_DEVICE_GET_CLASS(obj);
191  *
192  *     klass->frobnicate(obj);
193  * }
194  *   </programlisting>
195  * </example>
196  *
197  * # Interfaces #
198  *
199  * Interfaces allow a limited form of multiple inheritance.  Instances are
200  * similar to normal types except for the fact that are only defined by
201  * their classes and never carry any state.  As a consequence, a pointer to
202  * an interface instance should always be of incomplete type in order to be
203  * sure it cannot be dereferenced.  That is, you should define the
204  * 'typedef struct SomethingIf SomethingIf' so that you can pass around
205  * 'SomethingIf *si' arguments, but not define a 'struct SomethingIf { ... }'.
206  * The only things you can validly do with a 'SomethingIf *' are to pass it as
207  * an argument to a method on its corresponding SomethingIfClass, or to
208  * dynamically cast it to an object that implements the interface.
209  *
210  * # Methods #
211  *
212  * A <emphasis>method</emphasis> is a function within the namespace scope of
213  * a class. It usually operates on the object instance by passing it as a
214  * strongly-typed first argument.
215  * If it does not operate on an object instance, it is dubbed
216  * <emphasis>class method</emphasis>.
217  *
218  * Methods cannot be overloaded. That is, the #ObjectClass and method name
219  * uniquely identity the function to be called; the signature does not vary
220  * except for trailing varargs.
221  *
222  * Methods are always <emphasis>virtual</emphasis>. Overriding a method in
223  * #TypeInfo.class_init of a subclass leads to any user of the class obtained
224  * via OBJECT_GET_CLASS() accessing the overridden function.
225  * The original function is not automatically invoked. It is the responsibility
226  * of the overriding class to determine whether and when to invoke the method
227  * being overridden.
228  *
229  * To invoke the method being overridden, the preferred solution is to store
230  * the original value in the overriding class before overriding the method.
231  * This corresponds to |[ {super,base}.method(...) ]| in Java and C#
232  * respectively; this frees the overriding class from hardcoding its parent
233  * class, which someone might choose to change at some point.
234  *
235  * <example>
236  *   <title>Overriding a virtual method</title>
237  *   <programlisting>
238  * typedef struct MyState MyState;
239  *
240  * typedef void (*MyDoSomething)(MyState *obj);
241  *
242  * typedef struct MyClass {
243  *     ObjectClass parent_class;
244  *
245  *     MyDoSomething do_something;
246  * } MyClass;
247  *
248  * static void my_do_something(MyState *obj)
249  * {
250  *     // do something
251  * }
252  *
253  * static void my_class_init(ObjectClass *oc, void *data)
254  * {
255  *     MyClass *mc = MY_CLASS(oc);
256  *
257  *     mc->do_something = my_do_something;
258  * }
259  *
260  * static const TypeInfo my_type_info = {
261  *     .name = TYPE_MY,
262  *     .parent = TYPE_OBJECT,
263  *     .instance_size = sizeof(MyState),
264  *     .class_size = sizeof(MyClass),
265  *     .class_init = my_class_init,
266  * };
267  *
268  * typedef struct DerivedClass {
269  *     MyClass parent_class;
270  *
271  *     MyDoSomething parent_do_something;
272  * } DerivedClass;
273  *
274  * static void derived_do_something(MyState *obj)
275  * {
276  *     DerivedClass *dc = DERIVED_GET_CLASS(obj);
277  *
278  *     // do something here
279  *     dc->parent_do_something(obj);
280  *     // do something else here
281  * }
282  *
283  * static void derived_class_init(ObjectClass *oc, void *data)
284  * {
285  *     MyClass *mc = MY_CLASS(oc);
286  *     DerivedClass *dc = DERIVED_CLASS(oc);
287  *
288  *     dc->parent_do_something = mc->do_something;
289  *     mc->do_something = derived_do_something;
290  * }
291  *
292  * static const TypeInfo derived_type_info = {
293  *     .name = TYPE_DERIVED,
294  *     .parent = TYPE_MY,
295  *     .class_size = sizeof(DerivedClass),
296  *     .class_init = derived_class_init,
297  * };
298  *   </programlisting>
299  * </example>
300  *
301  * Alternatively, object_class_by_name() can be used to obtain the class and
302  * its non-overridden methods for a specific type. This would correspond to
303  * |[ MyClass::method(...) ]| in C++.
304  *
305  * The first example of such a QOM method was #CPUClass.reset,
306  * another example is #DeviceClass.realize.
307  *
308  * # Standard type declaration and definition macros #
309  *
310  * A lot of the code outlined above follows a standard pattern and naming
311  * convention. To reduce the amount of boilerplate code that needs to be
312  * written for a new type there are two sets of macros to generate the
313  * common parts in a standard format.
314  *
315  * A type is declared using the OBJECT_DECLARE macro family. In types
316  * which do not require any virtual functions in the class, the
317  * OBJECT_DECLARE_SIMPLE_TYPE macro is suitable, and is commonly placed
318  * in the header file:
319  *
320  * <example>
321  *   <title>Declaring a simple type</title>
322  *   <programlisting>
323  *     OBJECT_DECLARE_SIMPLE_TYPE(MyDevice, my_device, MY_DEVICE, DEVICE)
324  *   </programlisting>
325  * </example>
326  *
327  * This is equivalent to the following:
328  *
329  * <example>
330  *   <title>Expansion from declaring a simple type</title>
331  *   <programlisting>
332  *     typedef struct MyDevice MyDevice;
333  *     typedef struct MyDeviceClass MyDeviceClass;
334  *
335  *     G_DEFINE_AUTOPTR_CLEANUP_FUNC(MyDeviceClass, object_unref)
336  *
337  *     #define MY_DEVICE_GET_CLASS(void *obj) \
338  *             OBJECT_GET_CLASS(MyDeviceClass, obj, TYPE_MY_DEVICE)
339  *     #define MY_DEVICE_CLASS(void *klass) \
340  *             OBJECT_CLASS_CHECK(MyDeviceClass, klass, TYPE_MY_DEVICE)
341  *     #define MY_DEVICE(void *obj)
342  *             OBJECT_CHECK(MyDevice, obj, TYPE_MY_DEVICE)
343  *
344  *     struct MyDeviceClass {
345  *         DeviceClass parent_class;
346  *     };
347  *   </programlisting>
348  * </example>
349  *
350  * The 'struct MyDevice' needs to be declared separately.
351  * If the type requires virtual functions to be declared in the class
352  * struct, then the alternative OBJECT_DECLARE_TYPE() macro can be
353  * used. This does the same as OBJECT_DECLARE_SIMPLE_TYPE(), but without
354  * the 'struct MyDeviceClass' definition.
355  *
356  * To implement the type, the OBJECT_DEFINE macro family is available.
357  * In the simple case the OBJECT_DEFINE_TYPE macro is suitable:
358  *
359  * <example>
360  *   <title>Defining a simple type</title>
361  *   <programlisting>
362  *     OBJECT_DEFINE_TYPE(MyDevice, my_device, MY_DEVICE, DEVICE)
363  *   </programlisting>
364  * </example>
365  *
366  * This is equivalent to the following:
367  *
368  * <example>
369  *   <title>Expansion from defining a simple type</title>
370  *   <programlisting>
371  *     static void my_device_finalize(Object *obj);
372  *     static void my_device_class_init(ObjectClass *oc, void *data);
373  *     static void my_device_init(Object *obj);
374  *
375  *     static const TypeInfo my_device_info = {
376  *         .parent = TYPE_DEVICE,
377  *         .name = TYPE_MY_DEVICE,
378  *         .instance_size = sizeof(MyDevice),
379  *         .instance_init = my_device_init,
380  *         .instance_finalize = my_device_finalize,
381  *         .class_size = sizeof(MyDeviceClass),
382  *         .class_init = my_device_class_init,
383  *     };
384  *
385  *     static void
386  *     my_device_register_types(void)
387  *     {
388  *         type_register_static(&my_device_info);
389  *     }
390  *     type_init(my_device_register_types);
391  *   </programlisting>
392  * </example>
393  *
394  * This is sufficient to get the type registered with the type
395  * system, and the three standard methods now need to be implemented
396  * along with any other logic required for the type.
397  *
398  * If the type needs to implement one or more interfaces, then the
399  * OBJECT_DEFINE_TYPE_WITH_INTERFACES() macro can be used instead.
400  * This accepts an array of interface type names.
401  *
402  * <example>
403  *   <title>Defining a simple type implementing interfaces</title>
404  *   <programlisting>
405  *     OBJECT_DEFINE_TYPE_WITH_INTERFACES(MyDevice, my_device,
406  *                                        MY_DEVICE, DEVICE,
407  *                                        { TYPE_USER_CREATABLE }, { NULL })
408  *   </programlisting>
409  * </example>
410  *
411  * If the type is not intended to be instantiated, then then
412  * the OBJECT_DEFINE_ABSTRACT_TYPE() macro can be used instead:
413  *
414  * <example>
415  *   <title>Defining a simple type</title>
416  *   <programlisting>
417  *     OBJECT_DEFINE_ABSTRACT_TYPE(MyDevice, my_device, MY_DEVICE, DEVICE)
418  *   </programlisting>
419  * </example>
420  */
421 
422 
423 typedef struct ObjectProperty ObjectProperty;
424 
425 /**
426  * ObjectPropertyAccessor:
427  * @obj: the object that owns the property
428  * @v: the visitor that contains the property data
429  * @name: the name of the property
430  * @opaque: the object property opaque
431  * @errp: a pointer to an Error that is filled if getting/setting fails.
432  *
433  * Called when trying to get/set a property.
434  */
435 typedef void (ObjectPropertyAccessor)(Object *obj,
436                                       Visitor *v,
437                                       const char *name,
438                                       void *opaque,
439                                       Error **errp);
440 
441 /**
442  * ObjectPropertyResolve:
443  * @obj: the object that owns the property
444  * @opaque: the opaque registered with the property
445  * @part: the name of the property
446  *
447  * Resolves the #Object corresponding to property @part.
448  *
449  * The returned object can also be used as a starting point
450  * to resolve a relative path starting with "@part".
451  *
452  * Returns: If @path is the path that led to @obj, the function
453  * returns the #Object corresponding to "@path/@part".
454  * If "@path/@part" is not a valid object path, it returns #NULL.
455  */
456 typedef Object *(ObjectPropertyResolve)(Object *obj,
457                                         void *opaque,
458                                         const char *part);
459 
460 /**
461  * ObjectPropertyRelease:
462  * @obj: the object that owns the property
463  * @name: the name of the property
464  * @opaque: the opaque registered with the property
465  *
466  * Called when a property is removed from a object.
467  */
468 typedef void (ObjectPropertyRelease)(Object *obj,
469                                      const char *name,
470                                      void *opaque);
471 
472 /**
473  * ObjectPropertyInit:
474  * @obj: the object that owns the property
475  * @prop: the property to set
476  *
477  * Called when a property is initialized.
478  */
479 typedef void (ObjectPropertyInit)(Object *obj, ObjectProperty *prop);
480 
481 struct ObjectProperty
482 {
483     char *name;
484     char *type;
485     char *description;
486     ObjectPropertyAccessor *get;
487     ObjectPropertyAccessor *set;
488     ObjectPropertyResolve *resolve;
489     ObjectPropertyRelease *release;
490     ObjectPropertyInit *init;
491     void *opaque;
492     QObject *defval;
493 };
494 
495 /**
496  * ObjectUnparent:
497  * @obj: the object that is being removed from the composition tree
498  *
499  * Called when an object is being removed from the QOM composition tree.
500  * The function should remove any backlinks from children objects to @obj.
501  */
502 typedef void (ObjectUnparent)(Object *obj);
503 
504 /**
505  * ObjectFree:
506  * @obj: the object being freed
507  *
508  * Called when an object's last reference is removed.
509  */
510 typedef void (ObjectFree)(void *obj);
511 
512 #define OBJECT_CLASS_CAST_CACHE 4
513 
514 /**
515  * ObjectClass:
516  *
517  * The base for all classes.  The only thing that #ObjectClass contains is an
518  * integer type handle.
519  */
520 struct ObjectClass
521 {
522     /*< private >*/
523     Type type;
524     GSList *interfaces;
525 
526     const char *object_cast_cache[OBJECT_CLASS_CAST_CACHE];
527     const char *class_cast_cache[OBJECT_CLASS_CAST_CACHE];
528 
529     ObjectUnparent *unparent;
530 
531     GHashTable *properties;
532 };
533 
534 /**
535  * Object:
536  *
537  * The base for all objects.  The first member of this object is a pointer to
538  * a #ObjectClass.  Since C guarantees that the first member of a structure
539  * always begins at byte 0 of that structure, as long as any sub-object places
540  * its parent as the first member, we can cast directly to a #Object.
541  *
542  * As a result, #Object contains a reference to the objects type as its
543  * first member.  This allows identification of the real type of the object at
544  * run time.
545  */
546 struct Object
547 {
548     /*< private >*/
549     ObjectClass *class;
550     ObjectFree *free;
551     GHashTable *properties;
552     uint32_t ref;
553     Object *parent;
554 };
555 
556 /**
557  * DECLARE_INSTANCE_CHECKER:
558  * @InstanceType: instance struct name
559  * @OBJ_NAME: the object name in uppercase with underscore separators
560  * @TYPENAME: type name
561  *
562  * Direct usage of this macro should be avoided, and the complete
563  * OBJECT_DECLARE_TYPE macro is recommended instead.
564  *
565  * This macro will provide the three standard type cast functions for a
566  * QOM type.
567  */
568 #define DECLARE_INSTANCE_CHECKER(InstanceType, OBJ_NAME, TYPENAME) \
569     static inline G_GNUC_UNUSED InstanceType * \
570     OBJ_NAME(const void *obj) \
571     { return OBJECT_CHECK(InstanceType, obj, TYPENAME); }
572 
573 /**
574  * DECLARE_CLASS_CHECKERS:
575  * @ClassType: class struct name
576  * @OBJ_NAME: the object name in uppercase with underscore separators
577  * @TYPENAME: type name
578  *
579  * Direct usage of this macro should be avoided, and the complete
580  * OBJECT_DECLARE_TYPE macro is recommended instead.
581  *
582  * This macro will provide the three standard type cast functions for a
583  * QOM type.
584  */
585 #define DECLARE_CLASS_CHECKERS(ClassType, OBJ_NAME, TYPENAME) \
586     static inline G_GNUC_UNUSED ClassType * \
587     OBJ_NAME##_GET_CLASS(const void *obj) \
588     { return OBJECT_GET_CLASS(ClassType, obj, TYPENAME); } \
589     \
590     static inline G_GNUC_UNUSED ClassType * \
591     OBJ_NAME##_CLASS(const void *klass) \
592     { return OBJECT_CLASS_CHECK(ClassType, klass, TYPENAME); }
593 
594 /**
595  * DECLARE_OBJ_CHECKERS:
596  * @InstanceType: instance struct name
597  * @ClassType: class struct name
598  * @OBJ_NAME: the object name in uppercase with underscore separators
599  * @TYPENAME: type name
600  *
601  * Direct usage of this macro should be avoided, and the complete
602  * OBJECT_DECLARE_TYPE macro is recommended instead.
603  *
604  * This macro will provide the three standard type cast functions for a
605  * QOM type.
606  */
607 #define DECLARE_OBJ_CHECKERS(InstanceType, ClassType, OBJ_NAME, TYPENAME) \
608     DECLARE_INSTANCE_CHECKER(InstanceType, OBJ_NAME, TYPENAME) \
609     \
610     DECLARE_CLASS_CHECKERS(ClassType, OBJ_NAME, TYPENAME)
611 
612 /**
613  * OBJECT_DECLARE_TYPE:
614  * @InstanceType: instance struct name
615  * @ClassType: class struct name
616  * @module_obj_name: the object name in lowercase with underscore separators
617  * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators
618  *
619  * This macro is typically used in a header file, and will:
620  *
621  *   - create the typedefs for the object and class structs
622  *   - register the type for use with g_autoptr
623  *   - provide three standard type cast functions
624  *
625  * The object struct and class struct need to be declared manually.
626  */
627 #define OBJECT_DECLARE_TYPE(InstanceType, ClassType, module_obj_name, MODULE_OBJ_NAME) \
628     typedef struct InstanceType InstanceType; \
629     typedef struct ClassType ClassType; \
630     \
631     G_DEFINE_AUTOPTR_CLEANUP_FUNC(InstanceType, object_unref) \
632     \
633     DECLARE_OBJ_CHECKERS(InstanceType, ClassType, \
634                          MODULE_OBJ_NAME, TYPE_##MODULE_OBJ_NAME)
635 
636 /**
637  * OBJECT_DECLARE_SIMPLE_TYPE:
638  * @InstanceType: instance struct name
639  * @module_obj_name: the object name in lowercase with underscore separators
640  * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators
641  * @ParentClassType: class struct name of parent type
642  *
643  * This does the same as OBJECT_DECLARE_TYPE(), but also declares
644  * the class struct, thus only the object struct needs to be declare
645  * manually.
646  *
647  * This macro should be used unless the class struct needs to have
648  * virtual methods declared.
649  */
650 #define OBJECT_DECLARE_SIMPLE_TYPE(InstanceType, module_obj_name, \
651                                    MODULE_OBJ_NAME, ParentClassType) \
652     OBJECT_DECLARE_TYPE(InstanceType, InstanceType##Class, module_obj_name, MODULE_OBJ_NAME) \
653     struct InstanceType##Class { ParentClassType parent_class; };
654 
655 
656 /**
657  * OBJECT_DEFINE_TYPE_EXTENDED:
658  * @ModuleObjName: the object name with initial caps
659  * @module_obj_name: the object name in lowercase with underscore separators
660  * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators
661  * @PARENT_MODULE_OBJ_NAME: the parent object name in uppercase with underscore
662  *                          separators
663  * @ABSTRACT: boolean flag to indicate whether the object can be instantiated
664  * @...: list of initializers for "InterfaceInfo" to declare implemented interfaces
665  *
666  * This macro is typically used in a source file, and will:
667  *
668  *   - declare prototypes for _finalize, _class_init and _init methods
669  *   - declare the TypeInfo struct instance
670  *   - provide the constructor to register the type
671  *
672  * After using this macro, implementations of the _finalize, _class_init,
673  * and _init methods need to be written. Any of these can be zero-line
674  * no-op impls if no special logic is required for a given type.
675  *
676  * This macro should rarely be used, instead one of the more specialized
677  * macros is usually a better choice.
678  */
679 #define OBJECT_DEFINE_TYPE_EXTENDED(ModuleObjName, module_obj_name, \
680                                     MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME, \
681                                     ABSTRACT, ...) \
682     static void \
683     module_obj_name##_finalize(Object *obj); \
684     static void \
685     module_obj_name##_class_init(ObjectClass *oc, void *data); \
686     static void \
687     module_obj_name##_init(Object *obj); \
688     \
689     static const TypeInfo module_obj_name##_info = { \
690         .parent = TYPE_##PARENT_MODULE_OBJ_NAME, \
691         .name = TYPE_##MODULE_OBJ_NAME, \
692         .instance_size = sizeof(ModuleObjName), \
693         .instance_init = module_obj_name##_init, \
694         .instance_finalize = module_obj_name##_finalize, \
695         .class_size = sizeof(ModuleObjName##Class), \
696         .class_init = module_obj_name##_class_init, \
697         .abstract = ABSTRACT, \
698         .interfaces = (InterfaceInfo[]) { __VA_ARGS__ } , \
699     }; \
700     \
701     static void \
702     module_obj_name##_register_types(void) \
703     { \
704         type_register_static(&module_obj_name##_info); \
705     } \
706     type_init(module_obj_name##_register_types);
707 
708 /**
709  * OBJECT_DEFINE_TYPE:
710  * @ModuleObjName: the object name with initial caps
711  * @module_obj_name: the object name in lowercase with underscore separators
712  * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators
713  * @PARENT_MODULE_OBJ_NAME: the parent object name in uppercase with underscore
714  *                          separators
715  *
716  * This is a specialization of OBJECT_DEFINE_TYPE_EXTENDED, which is suitable
717  * for the common case of a non-abstract type, without any interfaces.
718  */
719 #define OBJECT_DEFINE_TYPE(ModuleObjName, module_obj_name, MODULE_OBJ_NAME, \
720                            PARENT_MODULE_OBJ_NAME) \
721     OBJECT_DEFINE_TYPE_EXTENDED(ModuleObjName, module_obj_name, \
722                                 MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME, \
723                                 false, { NULL })
724 
725 /**
726  * OBJECT_DEFINE_TYPE_WITH_INTERFACES:
727  * @ModuleObjName: the object name with initial caps
728  * @module_obj_name: the object name in lowercase with underscore separators
729  * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators
730  * @PARENT_MODULE_OBJ_NAME: the parent object name in uppercase with underscore
731  *                          separators
732  * @...: list of initializers for "InterfaceInfo" to declare implemented interfaces
733  *
734  * This is a specialization of OBJECT_DEFINE_TYPE_EXTENDED, which is suitable
735  * for the common case of a non-abstract type, with one or more implemented
736  * interfaces.
737  *
738  * Note when passing the list of interfaces, be sure to include the final
739  * NULL entry, e.g.  { TYPE_USER_CREATABLE }, { NULL }
740  */
741 #define OBJECT_DEFINE_TYPE_WITH_INTERFACES(ModuleObjName, module_obj_name, \
742                                            MODULE_OBJ_NAME, \
743                                            PARENT_MODULE_OBJ_NAME, ...) \
744     OBJECT_DEFINE_TYPE_EXTENDED(ModuleObjName, module_obj_name, \
745                                 MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME, \
746                                 false, __VA_ARGS__)
747 
748 /**
749  * OBJECT_DEFINE_ABSTRACT_TYPE:
750  * @ModuleObjName: the object name with initial caps
751  * @module_obj_name: the object name in lowercase with underscore separators
752  * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators
753  * @PARENT_MODULE_OBJ_NAME: the parent object name in uppercase with underscore
754  *                          separators
755  *
756  * This is a specialization of OBJECT_DEFINE_TYPE_EXTENDED, which is suitable
757  * for defining an abstract type, without any interfaces.
758  */
759 #define OBJECT_DEFINE_ABSTRACT_TYPE(ModuleObjName, module_obj_name, \
760                                     MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME) \
761     OBJECT_DEFINE_TYPE_EXTENDED(ModuleObjName, module_obj_name, \
762                                 MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME, \
763                                 true, { NULL })
764 
765 /**
766  * TypeInfo:
767  * @name: The name of the type.
768  * @parent: The name of the parent type.
769  * @instance_size: The size of the object (derivative of #Object).  If
770  *   @instance_size is 0, then the size of the object will be the size of the
771  *   parent object.
772  * @instance_init: This function is called to initialize an object.  The parent
773  *   class will have already been initialized so the type is only responsible
774  *   for initializing its own members.
775  * @instance_post_init: This function is called to finish initialization of
776  *   an object, after all @instance_init functions were called.
777  * @instance_finalize: This function is called during object destruction.  This
778  *   is called before the parent @instance_finalize function has been called.
779  *   An object should only free the members that are unique to its type in this
780  *   function.
781  * @abstract: If this field is true, then the class is considered abstract and
782  *   cannot be directly instantiated.
783  * @class_size: The size of the class object (derivative of #ObjectClass)
784  *   for this object.  If @class_size is 0, then the size of the class will be
785  *   assumed to be the size of the parent class.  This allows a type to avoid
786  *   implementing an explicit class type if they are not adding additional
787  *   virtual functions.
788  * @class_init: This function is called after all parent class initialization
789  *   has occurred to allow a class to set its default virtual method pointers.
790  *   This is also the function to use to override virtual methods from a parent
791  *   class.
792  * @class_base_init: This function is called for all base classes after all
793  *   parent class initialization has occurred, but before the class itself
794  *   is initialized.  This is the function to use to undo the effects of
795  *   memcpy from the parent class to the descendants.
796  * @class_data: Data to pass to the @class_init,
797  *   @class_base_init. This can be useful when building dynamic
798  *   classes.
799  * @interfaces: The list of interfaces associated with this type.  This
800  *   should point to a static array that's terminated with a zero filled
801  *   element.
802  */
803 struct TypeInfo
804 {
805     const char *name;
806     const char *parent;
807 
808     size_t instance_size;
809     void (*instance_init)(Object *obj);
810     void (*instance_post_init)(Object *obj);
811     void (*instance_finalize)(Object *obj);
812 
813     bool abstract;
814     size_t class_size;
815 
816     void (*class_init)(ObjectClass *klass, void *data);
817     void (*class_base_init)(ObjectClass *klass, void *data);
818     void *class_data;
819 
820     InterfaceInfo *interfaces;
821 };
822 
823 /**
824  * OBJECT:
825  * @obj: A derivative of #Object
826  *
827  * Converts an object to a #Object.  Since all objects are #Objects,
828  * this function will always succeed.
829  */
830 #define OBJECT(obj) \
831     ((Object *)(obj))
832 
833 /**
834  * OBJECT_CLASS:
835  * @class: A derivative of #ObjectClass.
836  *
837  * Converts a class to an #ObjectClass.  Since all objects are #Objects,
838  * this function will always succeed.
839  */
840 #define OBJECT_CLASS(class) \
841     ((ObjectClass *)(class))
842 
843 /**
844  * OBJECT_CHECK:
845  * @type: The C type to use for the return value.
846  * @obj: A derivative of @type to cast.
847  * @name: The QOM typename of @type
848  *
849  * A type safe version of @object_dynamic_cast_assert.  Typically each class
850  * will define a macro based on this type to perform type safe dynamic_casts to
851  * this object type.
852  *
853  * If an invalid object is passed to this function, a run time assert will be
854  * generated.
855  */
856 #define OBJECT_CHECK(type, obj, name) \
857     ((type *)object_dynamic_cast_assert(OBJECT(obj), (name), \
858                                         __FILE__, __LINE__, __func__))
859 
860 /**
861  * OBJECT_CLASS_CHECK:
862  * @class_type: The C type to use for the return value.
863  * @class: A derivative class of @class_type to cast.
864  * @name: the QOM typename of @class_type.
865  *
866  * A type safe version of @object_class_dynamic_cast_assert.  This macro is
867  * typically wrapped by each type to perform type safe casts of a class to a
868  * specific class type.
869  */
870 #define OBJECT_CLASS_CHECK(class_type, class, name) \
871     ((class_type *)object_class_dynamic_cast_assert(OBJECT_CLASS(class), (name), \
872                                                __FILE__, __LINE__, __func__))
873 
874 /**
875  * OBJECT_GET_CLASS:
876  * @class: The C type to use for the return value.
877  * @obj: The object to obtain the class for.
878  * @name: The QOM typename of @obj.
879  *
880  * This function will return a specific class for a given object.  Its generally
881  * used by each type to provide a type safe macro to get a specific class type
882  * from an object.
883  */
884 #define OBJECT_GET_CLASS(class, obj, name) \
885     OBJECT_CLASS_CHECK(class, object_get_class(OBJECT(obj)), name)
886 
887 /**
888  * InterfaceInfo:
889  * @type: The name of the interface.
890  *
891  * The information associated with an interface.
892  */
893 struct InterfaceInfo {
894     const char *type;
895 };
896 
897 /**
898  * InterfaceClass:
899  * @parent_class: the base class
900  *
901  * The class for all interfaces.  Subclasses of this class should only add
902  * virtual methods.
903  */
904 struct InterfaceClass
905 {
906     ObjectClass parent_class;
907     /*< private >*/
908     ObjectClass *concrete_class;
909     Type interface_type;
910 };
911 
912 #define TYPE_INTERFACE "interface"
913 
914 /**
915  * INTERFACE_CLASS:
916  * @klass: class to cast from
917  * Returns: An #InterfaceClass or raise an error if cast is invalid
918  */
919 #define INTERFACE_CLASS(klass) \
920     OBJECT_CLASS_CHECK(InterfaceClass, klass, TYPE_INTERFACE)
921 
922 /**
923  * INTERFACE_CHECK:
924  * @interface: the type to return
925  * @obj: the object to convert to an interface
926  * @name: the interface type name
927  *
928  * Returns: @obj casted to @interface if cast is valid, otherwise raise error.
929  */
930 #define INTERFACE_CHECK(interface, obj, name) \
931     ((interface *)object_dynamic_cast_assert(OBJECT((obj)), (name), \
932                                              __FILE__, __LINE__, __func__))
933 
934 /**
935  * object_new_with_class:
936  * @klass: The class to instantiate.
937  *
938  * This function will initialize a new object using heap allocated memory.
939  * The returned object has a reference count of 1, and will be freed when
940  * the last reference is dropped.
941  *
942  * Returns: The newly allocated and instantiated object.
943  */
944 Object *object_new_with_class(ObjectClass *klass);
945 
946 /**
947  * object_new:
948  * @typename: The name of the type of the object to instantiate.
949  *
950  * This function will initialize a new object using heap allocated memory.
951  * The returned object has a reference count of 1, and will be freed when
952  * the last reference is dropped.
953  *
954  * Returns: The newly allocated and instantiated object.
955  */
956 Object *object_new(const char *typename);
957 
958 /**
959  * object_new_with_props:
960  * @typename:  The name of the type of the object to instantiate.
961  * @parent: the parent object
962  * @id: The unique ID of the object
963  * @errp: pointer to error object
964  * @...: list of property names and values
965  *
966  * This function will initialize a new object using heap allocated memory.
967  * The returned object has a reference count of 1, and will be freed when
968  * the last reference is dropped.
969  *
970  * The @id parameter will be used when registering the object as a
971  * child of @parent in the composition tree.
972  *
973  * The variadic parameters are a list of pairs of (propname, propvalue)
974  * strings. The propname of %NULL indicates the end of the property
975  * list. If the object implements the user creatable interface, the
976  * object will be marked complete once all the properties have been
977  * processed.
978  *
979  * <example>
980  *   <title>Creating an object with properties</title>
981  *   <programlisting>
982  *   Error *err = NULL;
983  *   Object *obj;
984  *
985  *   obj = object_new_with_props(TYPE_MEMORY_BACKEND_FILE,
986  *                               object_get_objects_root(),
987  *                               "hostmem0",
988  *                               &err,
989  *                               "share", "yes",
990  *                               "mem-path", "/dev/shm/somefile",
991  *                               "prealloc", "yes",
992  *                               "size", "1048576",
993  *                               NULL);
994  *
995  *   if (!obj) {
996  *     error_reportf_err(err, "Cannot create memory backend: ");
997  *   }
998  *   </programlisting>
999  * </example>
1000  *
1001  * The returned object will have one stable reference maintained
1002  * for as long as it is present in the object hierarchy.
1003  *
1004  * Returns: The newly allocated, instantiated & initialized object.
1005  */
1006 Object *object_new_with_props(const char *typename,
1007                               Object *parent,
1008                               const char *id,
1009                               Error **errp,
1010                               ...) QEMU_SENTINEL;
1011 
1012 /**
1013  * object_new_with_propv:
1014  * @typename:  The name of the type of the object to instantiate.
1015  * @parent: the parent object
1016  * @id: The unique ID of the object
1017  * @errp: pointer to error object
1018  * @vargs: list of property names and values
1019  *
1020  * See object_new_with_props() for documentation.
1021  */
1022 Object *object_new_with_propv(const char *typename,
1023                               Object *parent,
1024                               const char *id,
1025                               Error **errp,
1026                               va_list vargs);
1027 
1028 bool object_apply_global_props(Object *obj, const GPtrArray *props,
1029                                Error **errp);
1030 void object_set_machine_compat_props(GPtrArray *compat_props);
1031 void object_set_accelerator_compat_props(GPtrArray *compat_props);
1032 void object_register_sugar_prop(const char *driver, const char *prop, const char *value);
1033 void object_apply_compat_props(Object *obj);
1034 
1035 /**
1036  * object_set_props:
1037  * @obj: the object instance to set properties on
1038  * @errp: pointer to error object
1039  * @...: list of property names and values
1040  *
1041  * This function will set a list of properties on an existing object
1042  * instance.
1043  *
1044  * The variadic parameters are a list of pairs of (propname, propvalue)
1045  * strings. The propname of %NULL indicates the end of the property
1046  * list.
1047  *
1048  * <example>
1049  *   <title>Update an object's properties</title>
1050  *   <programlisting>
1051  *   Error *err = NULL;
1052  *   Object *obj = ...get / create object...;
1053  *
1054  *   if (!object_set_props(obj,
1055  *                         &err,
1056  *                         "share", "yes",
1057  *                         "mem-path", "/dev/shm/somefile",
1058  *                         "prealloc", "yes",
1059  *                         "size", "1048576",
1060  *                         NULL)) {
1061  *     error_reportf_err(err, "Cannot set properties: ");
1062  *   }
1063  *   </programlisting>
1064  * </example>
1065  *
1066  * The returned object will have one stable reference maintained
1067  * for as long as it is present in the object hierarchy.
1068  *
1069  * Returns: %true on success, %false on error.
1070  */
1071 bool object_set_props(Object *obj, Error **errp, ...) QEMU_SENTINEL;
1072 
1073 /**
1074  * object_set_propv:
1075  * @obj: the object instance to set properties on
1076  * @errp: pointer to error object
1077  * @vargs: list of property names and values
1078  *
1079  * See object_set_props() for documentation.
1080  *
1081  * Returns: %true on success, %false on error.
1082  */
1083 bool object_set_propv(Object *obj, Error **errp, va_list vargs);
1084 
1085 /**
1086  * object_initialize:
1087  * @obj: A pointer to the memory to be used for the object.
1088  * @size: The maximum size available at @obj for the object.
1089  * @typename: The name of the type of the object to instantiate.
1090  *
1091  * This function will initialize an object.  The memory for the object should
1092  * have already been allocated.  The returned object has a reference count of 1,
1093  * and will be finalized when the last reference is dropped.
1094  */
1095 void object_initialize(void *obj, size_t size, const char *typename);
1096 
1097 /**
1098  * object_initialize_child_with_props:
1099  * @parentobj: The parent object to add a property to
1100  * @propname: The name of the property
1101  * @childobj: A pointer to the memory to be used for the object.
1102  * @size: The maximum size available at @childobj for the object.
1103  * @type: The name of the type of the object to instantiate.
1104  * @errp: If an error occurs, a pointer to an area to store the error
1105  * @...: list of property names and values
1106  *
1107  * This function will initialize an object. The memory for the object should
1108  * have already been allocated. The object will then be added as child property
1109  * to a parent with object_property_add_child() function. The returned object
1110  * has a reference count of 1 (for the "child<...>" property from the parent),
1111  * so the object will be finalized automatically when the parent gets removed.
1112  *
1113  * The variadic parameters are a list of pairs of (propname, propvalue)
1114  * strings. The propname of %NULL indicates the end of the property list.
1115  * If the object implements the user creatable interface, the object will
1116  * be marked complete once all the properties have been processed.
1117  *
1118  * Returns: %true on success, %false on failure.
1119  */
1120 bool object_initialize_child_with_props(Object *parentobj,
1121                              const char *propname,
1122                              void *childobj, size_t size, const char *type,
1123                              Error **errp, ...) QEMU_SENTINEL;
1124 
1125 /**
1126  * object_initialize_child_with_propsv:
1127  * @parentobj: The parent object to add a property to
1128  * @propname: The name of the property
1129  * @childobj: A pointer to the memory to be used for the object.
1130  * @size: The maximum size available at @childobj for the object.
1131  * @type: The name of the type of the object to instantiate.
1132  * @errp: If an error occurs, a pointer to an area to store the error
1133  * @vargs: list of property names and values
1134  *
1135  * See object_initialize_child() for documentation.
1136  *
1137  * Returns: %true on success, %false on failure.
1138  */
1139 bool object_initialize_child_with_propsv(Object *parentobj,
1140                               const char *propname,
1141                               void *childobj, size_t size, const char *type,
1142                               Error **errp, va_list vargs);
1143 
1144 /**
1145  * object_initialize_child:
1146  * @parent: The parent object to add a property to
1147  * @propname: The name of the property
1148  * @child: A precisely typed pointer to the memory to be used for the
1149  * object.
1150  * @type: The name of the type of the object to instantiate.
1151  *
1152  * This is like
1153  * object_initialize_child_with_props(parent, propname,
1154  *                                    child, sizeof(*child), type,
1155  *                                    &error_abort, NULL)
1156  */
1157 #define object_initialize_child(parent, propname, child, type)          \
1158     object_initialize_child_internal((parent), (propname),              \
1159                                      (child), sizeof(*(child)), (type))
1160 void object_initialize_child_internal(Object *parent, const char *propname,
1161                                       void *child, size_t size,
1162                                       const char *type);
1163 
1164 /**
1165  * object_dynamic_cast:
1166  * @obj: The object to cast.
1167  * @typename: The @typename to cast to.
1168  *
1169  * This function will determine if @obj is-a @typename.  @obj can refer to an
1170  * object or an interface associated with an object.
1171  *
1172  * Returns: This function returns @obj on success or #NULL on failure.
1173  */
1174 Object *object_dynamic_cast(Object *obj, const char *typename);
1175 
1176 /**
1177  * object_dynamic_cast_assert:
1178  *
1179  * See object_dynamic_cast() for a description of the parameters of this
1180  * function.  The only difference in behavior is that this function asserts
1181  * instead of returning #NULL on failure if QOM cast debugging is enabled.
1182  * This function is not meant to be called directly, but only through
1183  * the wrapper macro OBJECT_CHECK.
1184  */
1185 Object *object_dynamic_cast_assert(Object *obj, const char *typename,
1186                                    const char *file, int line, const char *func);
1187 
1188 /**
1189  * object_get_class:
1190  * @obj: A derivative of #Object
1191  *
1192  * Returns: The #ObjectClass of the type associated with @obj.
1193  */
1194 ObjectClass *object_get_class(Object *obj);
1195 
1196 /**
1197  * object_get_typename:
1198  * @obj: A derivative of #Object.
1199  *
1200  * Returns: The QOM typename of @obj.
1201  */
1202 const char *object_get_typename(const Object *obj);
1203 
1204 /**
1205  * type_register_static:
1206  * @info: The #TypeInfo of the new type.
1207  *
1208  * @info and all of the strings it points to should exist for the life time
1209  * that the type is registered.
1210  *
1211  * Returns: the new #Type.
1212  */
1213 Type type_register_static(const TypeInfo *info);
1214 
1215 /**
1216  * type_register:
1217  * @info: The #TypeInfo of the new type
1218  *
1219  * Unlike type_register_static(), this call does not require @info or its
1220  * string members to continue to exist after the call returns.
1221  *
1222  * Returns: the new #Type.
1223  */
1224 Type type_register(const TypeInfo *info);
1225 
1226 /**
1227  * type_register_static_array:
1228  * @infos: The array of the new type #TypeInfo structures.
1229  * @nr_infos: number of entries in @infos
1230  *
1231  * @infos and all of the strings it points to should exist for the life time
1232  * that the type is registered.
1233  */
1234 void type_register_static_array(const TypeInfo *infos, int nr_infos);
1235 
1236 /**
1237  * DEFINE_TYPES:
1238  * @type_array: The array containing #TypeInfo structures to register
1239  *
1240  * @type_array should be static constant that exists for the life time
1241  * that the type is registered.
1242  */
1243 #define DEFINE_TYPES(type_array)                                            \
1244 static void do_qemu_init_ ## type_array(void)                               \
1245 {                                                                           \
1246     type_register_static_array(type_array, ARRAY_SIZE(type_array));         \
1247 }                                                                           \
1248 type_init(do_qemu_init_ ## type_array)
1249 
1250 /**
1251  * object_class_dynamic_cast_assert:
1252  * @klass: The #ObjectClass to attempt to cast.
1253  * @typename: The QOM typename of the class to cast to.
1254  *
1255  * See object_class_dynamic_cast() for a description of the parameters
1256  * of this function.  The only difference in behavior is that this function
1257  * asserts instead of returning #NULL on failure if QOM cast debugging is
1258  * enabled.  This function is not meant to be called directly, but only through
1259  * the wrapper macros OBJECT_CLASS_CHECK and INTERFACE_CHECK.
1260  */
1261 ObjectClass *object_class_dynamic_cast_assert(ObjectClass *klass,
1262                                               const char *typename,
1263                                               const char *file, int line,
1264                                               const char *func);
1265 
1266 /**
1267  * object_class_dynamic_cast:
1268  * @klass: The #ObjectClass to attempt to cast.
1269  * @typename: The QOM typename of the class to cast to.
1270  *
1271  * Returns: If @typename is a class, this function returns @klass if
1272  * @typename is a subtype of @klass, else returns #NULL.
1273  *
1274  * If @typename is an interface, this function returns the interface
1275  * definition for @klass if @klass implements it unambiguously; #NULL
1276  * is returned if @klass does not implement the interface or if multiple
1277  * classes or interfaces on the hierarchy leading to @klass implement
1278  * it.  (FIXME: perhaps this can be detected at type definition time?)
1279  */
1280 ObjectClass *object_class_dynamic_cast(ObjectClass *klass,
1281                                        const char *typename);
1282 
1283 /**
1284  * object_class_get_parent:
1285  * @klass: The class to obtain the parent for.
1286  *
1287  * Returns: The parent for @klass or %NULL if none.
1288  */
1289 ObjectClass *object_class_get_parent(ObjectClass *klass);
1290 
1291 /**
1292  * object_class_get_name:
1293  * @klass: The class to obtain the QOM typename for.
1294  *
1295  * Returns: The QOM typename for @klass.
1296  */
1297 const char *object_class_get_name(ObjectClass *klass);
1298 
1299 /**
1300  * object_class_is_abstract:
1301  * @klass: The class to obtain the abstractness for.
1302  *
1303  * Returns: %true if @klass is abstract, %false otherwise.
1304  */
1305 bool object_class_is_abstract(ObjectClass *klass);
1306 
1307 /**
1308  * object_class_by_name:
1309  * @typename: The QOM typename to obtain the class for.
1310  *
1311  * Returns: The class for @typename or %NULL if not found.
1312  */
1313 ObjectClass *object_class_by_name(const char *typename);
1314 
1315 /**
1316  * module_object_class_by_name:
1317  * @typename: The QOM typename to obtain the class for.
1318  *
1319  * For objects which might be provided by a module.  Behaves like
1320  * object_class_by_name, but additionally tries to load the module
1321  * needed in case the class is not available.
1322  *
1323  * Returns: The class for @typename or %NULL if not found.
1324  */
1325 ObjectClass *module_object_class_by_name(const char *typename);
1326 
1327 void object_class_foreach(void (*fn)(ObjectClass *klass, void *opaque),
1328                           const char *implements_type, bool include_abstract,
1329                           void *opaque);
1330 
1331 /**
1332  * object_class_get_list:
1333  * @implements_type: The type to filter for, including its derivatives.
1334  * @include_abstract: Whether to include abstract classes.
1335  *
1336  * Returns: A singly-linked list of the classes in reverse hashtable order.
1337  */
1338 GSList *object_class_get_list(const char *implements_type,
1339                               bool include_abstract);
1340 
1341 /**
1342  * object_class_get_list_sorted:
1343  * @implements_type: The type to filter for, including its derivatives.
1344  * @include_abstract: Whether to include abstract classes.
1345  *
1346  * Returns: A singly-linked list of the classes in alphabetical
1347  * case-insensitive order.
1348  */
1349 GSList *object_class_get_list_sorted(const char *implements_type,
1350                               bool include_abstract);
1351 
1352 /**
1353  * object_ref:
1354  * @obj: the object
1355  *
1356  * Increase the reference count of a object.  A object cannot be freed as long
1357  * as its reference count is greater than zero.
1358  * Returns: @obj
1359  */
1360 Object *object_ref(void *obj);
1361 
1362 /**
1363  * object_unref:
1364  * @obj: the object
1365  *
1366  * Decrease the reference count of a object.  A object cannot be freed as long
1367  * as its reference count is greater than zero.
1368  */
1369 void object_unref(void *obj);
1370 
1371 /**
1372  * object_property_try_add:
1373  * @obj: the object to add a property to
1374  * @name: the name of the property.  This can contain any character except for
1375  *  a forward slash.  In general, you should use hyphens '-' instead of
1376  *  underscores '_' when naming properties.
1377  * @type: the type name of the property.  This namespace is pretty loosely
1378  *   defined.  Sub namespaces are constructed by using a prefix and then
1379  *   to angle brackets.  For instance, the type 'virtio-net-pci' in the
1380  *   'link' namespace would be 'link<virtio-net-pci>'.
1381  * @get: The getter to be called to read a property.  If this is NULL, then
1382  *   the property cannot be read.
1383  * @set: the setter to be called to write a property.  If this is NULL,
1384  *   then the property cannot be written.
1385  * @release: called when the property is removed from the object.  This is
1386  *   meant to allow a property to free its opaque upon object
1387  *   destruction.  This may be NULL.
1388  * @opaque: an opaque pointer to pass to the callbacks for the property
1389  * @errp: pointer to error object
1390  *
1391  * Returns: The #ObjectProperty; this can be used to set the @resolve
1392  * callback for child and link properties.
1393  */
1394 ObjectProperty *object_property_try_add(Object *obj, const char *name,
1395                                         const char *type,
1396                                         ObjectPropertyAccessor *get,
1397                                         ObjectPropertyAccessor *set,
1398                                         ObjectPropertyRelease *release,
1399                                         void *opaque, Error **errp);
1400 
1401 /**
1402  * object_property_add:
1403  * Same as object_property_try_add() with @errp hardcoded to
1404  * &error_abort.
1405  */
1406 ObjectProperty *object_property_add(Object *obj, const char *name,
1407                                     const char *type,
1408                                     ObjectPropertyAccessor *get,
1409                                     ObjectPropertyAccessor *set,
1410                                     ObjectPropertyRelease *release,
1411                                     void *opaque);
1412 
1413 void object_property_del(Object *obj, const char *name);
1414 
1415 ObjectProperty *object_class_property_add(ObjectClass *klass, const char *name,
1416                                           const char *type,
1417                                           ObjectPropertyAccessor *get,
1418                                           ObjectPropertyAccessor *set,
1419                                           ObjectPropertyRelease *release,
1420                                           void *opaque);
1421 
1422 /**
1423  * object_property_set_default_bool:
1424  * @prop: the property to set
1425  * @value: the value to be written to the property
1426  *
1427  * Set the property default value.
1428  */
1429 void object_property_set_default_bool(ObjectProperty *prop, bool value);
1430 
1431 /**
1432  * object_property_set_default_str:
1433  * @prop: the property to set
1434  * @value: the value to be written to the property
1435  *
1436  * Set the property default value.
1437  */
1438 void object_property_set_default_str(ObjectProperty *prop, const char *value);
1439 
1440 /**
1441  * object_property_set_default_int:
1442  * @prop: the property to set
1443  * @value: the value to be written to the property
1444  *
1445  * Set the property default value.
1446  */
1447 void object_property_set_default_int(ObjectProperty *prop, int64_t value);
1448 
1449 /**
1450  * object_property_set_default_uint:
1451  * @prop: the property to set
1452  * @value: the value to be written to the property
1453  *
1454  * Set the property default value.
1455  */
1456 void object_property_set_default_uint(ObjectProperty *prop, uint64_t value);
1457 
1458 /**
1459  * object_property_find:
1460  * @obj: the object
1461  * @name: the name of the property
1462  * @errp: returns an error if this function fails
1463  *
1464  * Look up a property for an object and return its #ObjectProperty if found.
1465  */
1466 ObjectProperty *object_property_find(Object *obj, const char *name,
1467                                      Error **errp);
1468 ObjectProperty *object_class_property_find(ObjectClass *klass, const char *name,
1469                                            Error **errp);
1470 
1471 typedef struct ObjectPropertyIterator {
1472     ObjectClass *nextclass;
1473     GHashTableIter iter;
1474 } ObjectPropertyIterator;
1475 
1476 /**
1477  * object_property_iter_init:
1478  * @obj: the object
1479  *
1480  * Initializes an iterator for traversing all properties
1481  * registered against an object instance, its class and all parent classes.
1482  *
1483  * It is forbidden to modify the property list while iterating,
1484  * whether removing or adding properties.
1485  *
1486  * Typical usage pattern would be
1487  *
1488  * <example>
1489  *   <title>Using object property iterators</title>
1490  *   <programlisting>
1491  *   ObjectProperty *prop;
1492  *   ObjectPropertyIterator iter;
1493  *
1494  *   object_property_iter_init(&iter, obj);
1495  *   while ((prop = object_property_iter_next(&iter))) {
1496  *     ... do something with prop ...
1497  *   }
1498  *   </programlisting>
1499  * </example>
1500  */
1501 void object_property_iter_init(ObjectPropertyIterator *iter,
1502                                Object *obj);
1503 
1504 /**
1505  * object_class_property_iter_init:
1506  * @klass: the class
1507  *
1508  * Initializes an iterator for traversing all properties
1509  * registered against an object class and all parent classes.
1510  *
1511  * It is forbidden to modify the property list while iterating,
1512  * whether removing or adding properties.
1513  *
1514  * This can be used on abstract classes as it does not create a temporary
1515  * instance.
1516  */
1517 void object_class_property_iter_init(ObjectPropertyIterator *iter,
1518                                      ObjectClass *klass);
1519 
1520 /**
1521  * object_property_iter_next:
1522  * @iter: the iterator instance
1523  *
1524  * Return the next available property. If no further properties
1525  * are available, a %NULL value will be returned and the @iter
1526  * pointer should not be used again after this point without
1527  * re-initializing it.
1528  *
1529  * Returns: the next property, or %NULL when all properties
1530  * have been traversed.
1531  */
1532 ObjectProperty *object_property_iter_next(ObjectPropertyIterator *iter);
1533 
1534 void object_unparent(Object *obj);
1535 
1536 /**
1537  * object_property_get:
1538  * @obj: the object
1539  * @name: the name of the property
1540  * @v: the visitor that will receive the property value.  This should be an
1541  *   Output visitor and the data will be written with @name as the name.
1542  * @errp: returns an error if this function fails
1543  *
1544  * Reads a property from a object.
1545  *
1546  * Returns: %true on success, %false on failure.
1547  */
1548 bool object_property_get(Object *obj, const char *name, Visitor *v,
1549                          Error **errp);
1550 
1551 /**
1552  * object_property_set_str:
1553  * @name: the name of the property
1554  * @value: the value to be written to the property
1555  * @errp: returns an error if this function fails
1556  *
1557  * Writes a string value to a property.
1558  *
1559  * Returns: %true on success, %false on failure.
1560  */
1561 bool object_property_set_str(Object *obj, const char *name,
1562                              const char *value, Error **errp);
1563 
1564 /**
1565  * object_property_get_str:
1566  * @obj: the object
1567  * @name: the name of the property
1568  * @errp: returns an error if this function fails
1569  *
1570  * Returns: the value of the property, converted to a C string, or NULL if
1571  * an error occurs (including when the property value is not a string).
1572  * The caller should free the string.
1573  */
1574 char *object_property_get_str(Object *obj, const char *name,
1575                               Error **errp);
1576 
1577 /**
1578  * object_property_set_link:
1579  * @name: the name of the property
1580  * @value: the value to be written to the property
1581  * @errp: returns an error if this function fails
1582  *
1583  * Writes an object's canonical path to a property.
1584  *
1585  * If the link property was created with
1586  * <code>OBJ_PROP_LINK_STRONG</code> bit, the old target object is
1587  * unreferenced, and a reference is added to the new target object.
1588  *
1589  * Returns: %true on success, %false on failure.
1590  */
1591 bool object_property_set_link(Object *obj, const char *name,
1592                               Object *value, Error **errp);
1593 
1594 /**
1595  * object_property_get_link:
1596  * @obj: the object
1597  * @name: the name of the property
1598  * @errp: returns an error if this function fails
1599  *
1600  * Returns: the value of the property, resolved from a path to an Object,
1601  * or NULL if an error occurs (including when the property value is not a
1602  * string or not a valid object path).
1603  */
1604 Object *object_property_get_link(Object *obj, const char *name,
1605                                  Error **errp);
1606 
1607 /**
1608  * object_property_set_bool:
1609  * @name: the name of the property
1610  * @value: the value to be written to the property
1611  * @errp: returns an error if this function fails
1612  *
1613  * Writes a bool value to a property.
1614  *
1615  * Returns: %true on success, %false on failure.
1616  */
1617 bool object_property_set_bool(Object *obj, const char *name,
1618                               bool value, Error **errp);
1619 
1620 /**
1621  * object_property_get_bool:
1622  * @obj: the object
1623  * @name: the name of the property
1624  * @errp: returns an error if this function fails
1625  *
1626  * Returns: the value of the property, converted to a boolean, or NULL if
1627  * an error occurs (including when the property value is not a bool).
1628  */
1629 bool object_property_get_bool(Object *obj, const char *name,
1630                               Error **errp);
1631 
1632 /**
1633  * object_property_set_int:
1634  * @name: the name of the property
1635  * @value: the value to be written to the property
1636  * @errp: returns an error if this function fails
1637  *
1638  * Writes an integer value to a property.
1639  *
1640  * Returns: %true on success, %false on failure.
1641  */
1642 bool object_property_set_int(Object *obj, const char *name,
1643                              int64_t value, Error **errp);
1644 
1645 /**
1646  * object_property_get_int:
1647  * @obj: the object
1648  * @name: the name of the property
1649  * @errp: returns an error if this function fails
1650  *
1651  * Returns: the value of the property, converted to an integer, or negative if
1652  * an error occurs (including when the property value is not an integer).
1653  */
1654 int64_t object_property_get_int(Object *obj, const char *name,
1655                                 Error **errp);
1656 
1657 /**
1658  * object_property_set_uint:
1659  * @name: the name of the property
1660  * @value: the value to be written to the property
1661  * @errp: returns an error if this function fails
1662  *
1663  * Writes an unsigned integer value to a property.
1664  *
1665  * Returns: %true on success, %false on failure.
1666  */
1667 bool object_property_set_uint(Object *obj, const char *name,
1668                               uint64_t value, Error **errp);
1669 
1670 /**
1671  * object_property_get_uint:
1672  * @obj: the object
1673  * @name: the name of the property
1674  * @errp: returns an error if this function fails
1675  *
1676  * Returns: the value of the property, converted to an unsigned integer, or 0
1677  * an error occurs (including when the property value is not an integer).
1678  */
1679 uint64_t object_property_get_uint(Object *obj, const char *name,
1680                                   Error **errp);
1681 
1682 /**
1683  * object_property_get_enum:
1684  * @obj: the object
1685  * @name: the name of the property
1686  * @typename: the name of the enum data type
1687  * @errp: returns an error if this function fails
1688  *
1689  * Returns: the value of the property, converted to an integer, or
1690  * undefined if an error occurs (including when the property value is not
1691  * an enum).
1692  */
1693 int object_property_get_enum(Object *obj, const char *name,
1694                              const char *typename, Error **errp);
1695 
1696 /**
1697  * object_property_set:
1698  * @obj: the object
1699  * @name: the name of the property
1700  * @v: the visitor that will be used to write the property value.  This should
1701  *   be an Input visitor and the data will be first read with @name as the
1702  *   name and then written as the property value.
1703  * @errp: returns an error if this function fails
1704  *
1705  * Writes a property to a object.
1706  *
1707  * Returns: %true on success, %false on failure.
1708  */
1709 bool object_property_set(Object *obj, const char *name, Visitor *v,
1710                          Error **errp);
1711 
1712 /**
1713  * object_property_parse:
1714  * @obj: the object
1715  * @name: the name of the property
1716  * @string: the string that will be used to parse the property value.
1717  * @errp: returns an error if this function fails
1718  *
1719  * Parses a string and writes the result into a property of an object.
1720  *
1721  * Returns: %true on success, %false on failure.
1722  */
1723 bool object_property_parse(Object *obj, const char *name,
1724                            const char *string, Error **errp);
1725 
1726 /**
1727  * object_property_print:
1728  * @obj: the object
1729  * @name: the name of the property
1730  * @human: if true, print for human consumption
1731  * @errp: returns an error if this function fails
1732  *
1733  * Returns a string representation of the value of the property.  The
1734  * caller shall free the string.
1735  */
1736 char *object_property_print(Object *obj, const char *name, bool human,
1737                             Error **errp);
1738 
1739 /**
1740  * object_property_get_type:
1741  * @obj: the object
1742  * @name: the name of the property
1743  * @errp: returns an error if this function fails
1744  *
1745  * Returns:  The type name of the property.
1746  */
1747 const char *object_property_get_type(Object *obj, const char *name,
1748                                      Error **errp);
1749 
1750 /**
1751  * object_get_root:
1752  *
1753  * Returns: the root object of the composition tree
1754  */
1755 Object *object_get_root(void);
1756 
1757 
1758 /**
1759  * object_get_objects_root:
1760  *
1761  * Get the container object that holds user created
1762  * object instances. This is the object at path
1763  * "/objects"
1764  *
1765  * Returns: the user object container
1766  */
1767 Object *object_get_objects_root(void);
1768 
1769 /**
1770  * object_get_internal_root:
1771  *
1772  * Get the container object that holds internally used object
1773  * instances.  Any object which is put into this container must not be
1774  * user visible, and it will not be exposed in the QOM tree.
1775  *
1776  * Returns: the internal object container
1777  */
1778 Object *object_get_internal_root(void);
1779 
1780 /**
1781  * object_get_canonical_path_component:
1782  *
1783  * Returns: The final component in the object's canonical path.  The canonical
1784  * path is the path within the composition tree starting from the root.
1785  * %NULL if the object doesn't have a parent (and thus a canonical path).
1786  */
1787 const char *object_get_canonical_path_component(const Object *obj);
1788 
1789 /**
1790  * object_get_canonical_path:
1791  *
1792  * Returns: The canonical path for a object, newly allocated.  This is
1793  * the path within the composition tree starting from the root.  Use
1794  * g_free() to free it.
1795  */
1796 char *object_get_canonical_path(const Object *obj);
1797 
1798 /**
1799  * object_resolve_path:
1800  * @path: the path to resolve
1801  * @ambiguous: returns true if the path resolution failed because of an
1802  *   ambiguous match
1803  *
1804  * There are two types of supported paths--absolute paths and partial paths.
1805  *
1806  * Absolute paths are derived from the root object and can follow child<> or
1807  * link<> properties.  Since they can follow link<> properties, they can be
1808  * arbitrarily long.  Absolute paths look like absolute filenames and are
1809  * prefixed with a leading slash.
1810  *
1811  * Partial paths look like relative filenames.  They do not begin with a
1812  * prefix.  The matching rules for partial paths are subtle but designed to make
1813  * specifying objects easy.  At each level of the composition tree, the partial
1814  * path is matched as an absolute path.  The first match is not returned.  At
1815  * least two matches are searched for.  A successful result is only returned if
1816  * only one match is found.  If more than one match is found, a flag is
1817  * returned to indicate that the match was ambiguous.
1818  *
1819  * Returns: The matched object or NULL on path lookup failure.
1820  */
1821 Object *object_resolve_path(const char *path, bool *ambiguous);
1822 
1823 /**
1824  * object_resolve_path_type:
1825  * @path: the path to resolve
1826  * @typename: the type to look for.
1827  * @ambiguous: returns true if the path resolution failed because of an
1828  *   ambiguous match
1829  *
1830  * This is similar to object_resolve_path.  However, when looking for a
1831  * partial path only matches that implement the given type are considered.
1832  * This restricts the search and avoids spuriously flagging matches as
1833  * ambiguous.
1834  *
1835  * For both partial and absolute paths, the return value goes through
1836  * a dynamic cast to @typename.  This is important if either the link,
1837  * or the typename itself are of interface types.
1838  *
1839  * Returns: The matched object or NULL on path lookup failure.
1840  */
1841 Object *object_resolve_path_type(const char *path, const char *typename,
1842                                  bool *ambiguous);
1843 
1844 /**
1845  * object_resolve_path_component:
1846  * @parent: the object in which to resolve the path
1847  * @part: the component to resolve.
1848  *
1849  * This is similar to object_resolve_path with an absolute path, but it
1850  * only resolves one element (@part) and takes the others from @parent.
1851  *
1852  * Returns: The resolved object or NULL on path lookup failure.
1853  */
1854 Object *object_resolve_path_component(Object *parent, const char *part);
1855 
1856 /**
1857  * object_property_try_add_child:
1858  * @obj: the object to add a property to
1859  * @name: the name of the property
1860  * @child: the child object
1861  * @errp: pointer to error object
1862  *
1863  * Child properties form the composition tree.  All objects need to be a child
1864  * of another object.  Objects can only be a child of one object.
1865  *
1866  * There is no way for a child to determine what its parent is.  It is not
1867  * a bidirectional relationship.  This is by design.
1868  *
1869  * The value of a child property as a C string will be the child object's
1870  * canonical path. It can be retrieved using object_property_get_str().
1871  * The child object itself can be retrieved using object_property_get_link().
1872  *
1873  * Returns: The newly added property on success, or %NULL on failure.
1874  */
1875 ObjectProperty *object_property_try_add_child(Object *obj, const char *name,
1876                                               Object *child, Error **errp);
1877 
1878 /**
1879  * object_property_add_child:
1880  * Same as object_property_try_add_child() with @errp hardcoded to
1881  * &error_abort
1882  */
1883 ObjectProperty *object_property_add_child(Object *obj, const char *name,
1884                                           Object *child);
1885 
1886 typedef enum {
1887     /* Unref the link pointer when the property is deleted */
1888     OBJ_PROP_LINK_STRONG = 0x1,
1889 
1890     /* private */
1891     OBJ_PROP_LINK_DIRECT = 0x2,
1892     OBJ_PROP_LINK_CLASS = 0x4,
1893 } ObjectPropertyLinkFlags;
1894 
1895 /**
1896  * object_property_allow_set_link:
1897  *
1898  * The default implementation of the object_property_add_link() check()
1899  * callback function.  It allows the link property to be set and never returns
1900  * an error.
1901  */
1902 void object_property_allow_set_link(const Object *, const char *,
1903                                     Object *, Error **);
1904 
1905 /**
1906  * object_property_add_link:
1907  * @obj: the object to add a property to
1908  * @name: the name of the property
1909  * @type: the qobj type of the link
1910  * @targetp: a pointer to where the link object reference is stored
1911  * @check: callback to veto setting or NULL if the property is read-only
1912  * @flags: additional options for the link
1913  *
1914  * Links establish relationships between objects.  Links are unidirectional
1915  * although two links can be combined to form a bidirectional relationship
1916  * between objects.
1917  *
1918  * Links form the graph in the object model.
1919  *
1920  * The <code>@check()</code> callback is invoked when
1921  * object_property_set_link() is called and can raise an error to prevent the
1922  * link being set.  If <code>@check</code> is NULL, the property is read-only
1923  * and cannot be set.
1924  *
1925  * Ownership of the pointer that @child points to is transferred to the
1926  * link property.  The reference count for <code>*@child</code> is
1927  * managed by the property from after the function returns till the
1928  * property is deleted with object_property_del().  If the
1929  * <code>@flags</code> <code>OBJ_PROP_LINK_STRONG</code> bit is set,
1930  * the reference count is decremented when the property is deleted or
1931  * modified.
1932  *
1933  * Returns: The newly added property on success, or %NULL on failure.
1934  */
1935 ObjectProperty *object_property_add_link(Object *obj, const char *name,
1936                               const char *type, Object **targetp,
1937                               void (*check)(const Object *obj, const char *name,
1938                                             Object *val, Error **errp),
1939                               ObjectPropertyLinkFlags flags);
1940 
1941 ObjectProperty *object_class_property_add_link(ObjectClass *oc,
1942                               const char *name,
1943                               const char *type, ptrdiff_t offset,
1944                               void (*check)(const Object *obj, const char *name,
1945                                             Object *val, Error **errp),
1946                               ObjectPropertyLinkFlags flags);
1947 
1948 /**
1949  * object_property_add_str:
1950  * @obj: the object to add a property to
1951  * @name: the name of the property
1952  * @get: the getter or NULL if the property is write-only.  This function must
1953  *   return a string to be freed by g_free().
1954  * @set: the setter or NULL if the property is read-only
1955  *
1956  * Add a string property using getters/setters.  This function will add a
1957  * property of type 'string'.
1958  *
1959  * Returns: The newly added property on success, or %NULL on failure.
1960  */
1961 ObjectProperty *object_property_add_str(Object *obj, const char *name,
1962                              char *(*get)(Object *, Error **),
1963                              void (*set)(Object *, const char *, Error **));
1964 
1965 ObjectProperty *object_class_property_add_str(ObjectClass *klass,
1966                                    const char *name,
1967                                    char *(*get)(Object *, Error **),
1968                                    void (*set)(Object *, const char *,
1969                                                Error **));
1970 
1971 /**
1972  * object_property_add_bool:
1973  * @obj: the object to add a property to
1974  * @name: the name of the property
1975  * @get: the getter or NULL if the property is write-only.
1976  * @set: the setter or NULL if the property is read-only
1977  *
1978  * Add a bool property using getters/setters.  This function will add a
1979  * property of type 'bool'.
1980  *
1981  * Returns: The newly added property on success, or %NULL on failure.
1982  */
1983 ObjectProperty *object_property_add_bool(Object *obj, const char *name,
1984                               bool (*get)(Object *, Error **),
1985                               void (*set)(Object *, bool, Error **));
1986 
1987 ObjectProperty *object_class_property_add_bool(ObjectClass *klass,
1988                                     const char *name,
1989                                     bool (*get)(Object *, Error **),
1990                                     void (*set)(Object *, bool, Error **));
1991 
1992 /**
1993  * object_property_add_enum:
1994  * @obj: the object to add a property to
1995  * @name: the name of the property
1996  * @typename: the name of the enum data type
1997  * @get: the getter or %NULL if the property is write-only.
1998  * @set: the setter or %NULL if the property is read-only
1999  *
2000  * Add an enum property using getters/setters.  This function will add a
2001  * property of type '@typename'.
2002  *
2003  * Returns: The newly added property on success, or %NULL on failure.
2004  */
2005 ObjectProperty *object_property_add_enum(Object *obj, const char *name,
2006                               const char *typename,
2007                               const QEnumLookup *lookup,
2008                               int (*get)(Object *, Error **),
2009                               void (*set)(Object *, int, Error **));
2010 
2011 ObjectProperty *object_class_property_add_enum(ObjectClass *klass,
2012                                     const char *name,
2013                                     const char *typename,
2014                                     const QEnumLookup *lookup,
2015                                     int (*get)(Object *, Error **),
2016                                     void (*set)(Object *, int, Error **));
2017 
2018 /**
2019  * object_property_add_tm:
2020  * @obj: the object to add a property to
2021  * @name: the name of the property
2022  * @get: the getter or NULL if the property is write-only.
2023  *
2024  * Add a read-only struct tm valued property using a getter function.
2025  * This function will add a property of type 'struct tm'.
2026  *
2027  * Returns: The newly added property on success, or %NULL on failure.
2028  */
2029 ObjectProperty *object_property_add_tm(Object *obj, const char *name,
2030                             void (*get)(Object *, struct tm *, Error **));
2031 
2032 ObjectProperty *object_class_property_add_tm(ObjectClass *klass,
2033                             const char *name,
2034                             void (*get)(Object *, struct tm *, Error **));
2035 
2036 typedef enum {
2037     /* Automatically add a getter to the property */
2038     OBJ_PROP_FLAG_READ = 1 << 0,
2039     /* Automatically add a setter to the property */
2040     OBJ_PROP_FLAG_WRITE = 1 << 1,
2041     /* Automatically add a getter and a setter to the property */
2042     OBJ_PROP_FLAG_READWRITE = (OBJ_PROP_FLAG_READ | OBJ_PROP_FLAG_WRITE),
2043 } ObjectPropertyFlags;
2044 
2045 /**
2046  * object_property_add_uint8_ptr:
2047  * @obj: the object to add a property to
2048  * @name: the name of the property
2049  * @v: pointer to value
2050  * @flags: bitwise-or'd ObjectPropertyFlags
2051  *
2052  * Add an integer property in memory.  This function will add a
2053  * property of type 'uint8'.
2054  *
2055  * Returns: The newly added property on success, or %NULL on failure.
2056  */
2057 ObjectProperty *object_property_add_uint8_ptr(Object *obj, const char *name,
2058                                               const uint8_t *v,
2059                                               ObjectPropertyFlags flags);
2060 
2061 ObjectProperty *object_class_property_add_uint8_ptr(ObjectClass *klass,
2062                                          const char *name,
2063                                          const uint8_t *v,
2064                                          ObjectPropertyFlags flags);
2065 
2066 /**
2067  * object_property_add_uint16_ptr:
2068  * @obj: the object to add a property to
2069  * @name: the name of the property
2070  * @v: pointer to value
2071  * @flags: bitwise-or'd ObjectPropertyFlags
2072  *
2073  * Add an integer property in memory.  This function will add a
2074  * property of type 'uint16'.
2075  *
2076  * Returns: The newly added property on success, or %NULL on failure.
2077  */
2078 ObjectProperty *object_property_add_uint16_ptr(Object *obj, const char *name,
2079                                     const uint16_t *v,
2080                                     ObjectPropertyFlags flags);
2081 
2082 ObjectProperty *object_class_property_add_uint16_ptr(ObjectClass *klass,
2083                                           const char *name,
2084                                           const uint16_t *v,
2085                                           ObjectPropertyFlags flags);
2086 
2087 /**
2088  * object_property_add_uint32_ptr:
2089  * @obj: the object to add a property to
2090  * @name: the name of the property
2091  * @v: pointer to value
2092  * @flags: bitwise-or'd ObjectPropertyFlags
2093  *
2094  * Add an integer property in memory.  This function will add a
2095  * property of type 'uint32'.
2096  *
2097  * Returns: The newly added property on success, or %NULL on failure.
2098  */
2099 ObjectProperty *object_property_add_uint32_ptr(Object *obj, const char *name,
2100                                     const uint32_t *v,
2101                                     ObjectPropertyFlags flags);
2102 
2103 ObjectProperty *object_class_property_add_uint32_ptr(ObjectClass *klass,
2104                                           const char *name,
2105                                           const uint32_t *v,
2106                                           ObjectPropertyFlags flags);
2107 
2108 /**
2109  * object_property_add_uint64_ptr:
2110  * @obj: the object to add a property to
2111  * @name: the name of the property
2112  * @v: pointer to value
2113  * @flags: bitwise-or'd ObjectPropertyFlags
2114  *
2115  * Add an integer property in memory.  This function will add a
2116  * property of type 'uint64'.
2117  *
2118  * Returns: The newly added property on success, or %NULL on failure.
2119  */
2120 ObjectProperty *object_property_add_uint64_ptr(Object *obj, const char *name,
2121                                     const uint64_t *v,
2122                                     ObjectPropertyFlags flags);
2123 
2124 ObjectProperty *object_class_property_add_uint64_ptr(ObjectClass *klass,
2125                                           const char *name,
2126                                           const uint64_t *v,
2127                                           ObjectPropertyFlags flags);
2128 
2129 /**
2130  * object_property_add_alias:
2131  * @obj: the object to add a property to
2132  * @name: the name of the property
2133  * @target_obj: the object to forward property access to
2134  * @target_name: the name of the property on the forwarded object
2135  *
2136  * Add an alias for a property on an object.  This function will add a property
2137  * of the same type as the forwarded property.
2138  *
2139  * The caller must ensure that <code>@target_obj</code> stays alive as long as
2140  * this property exists.  In the case of a child object or an alias on the same
2141  * object this will be the case.  For aliases to other objects the caller is
2142  * responsible for taking a reference.
2143  *
2144  * Returns: The newly added property on success, or %NULL on failure.
2145  */
2146 ObjectProperty *object_property_add_alias(Object *obj, const char *name,
2147                                Object *target_obj, const char *target_name);
2148 
2149 /**
2150  * object_property_add_const_link:
2151  * @obj: the object to add a property to
2152  * @name: the name of the property
2153  * @target: the object to be referred by the link
2154  *
2155  * Add an unmodifiable link for a property on an object.  This function will
2156  * add a property of type link<TYPE> where TYPE is the type of @target.
2157  *
2158  * The caller must ensure that @target stays alive as long as
2159  * this property exists.  In the case @target is a child of @obj,
2160  * this will be the case.  Otherwise, the caller is responsible for
2161  * taking a reference.
2162  *
2163  * Returns: The newly added property on success, or %NULL on failure.
2164  */
2165 ObjectProperty *object_property_add_const_link(Object *obj, const char *name,
2166                                                Object *target);
2167 
2168 /**
2169  * object_property_set_description:
2170  * @obj: the object owning the property
2171  * @name: the name of the property
2172  * @description: the description of the property on the object
2173  *
2174  * Set an object property's description.
2175  *
2176  * Returns: %true on success, %false on failure.
2177  */
2178 void object_property_set_description(Object *obj, const char *name,
2179                                      const char *description);
2180 void object_class_property_set_description(ObjectClass *klass, const char *name,
2181                                            const char *description);
2182 
2183 /**
2184  * object_child_foreach:
2185  * @obj: the object whose children will be navigated
2186  * @fn: the iterator function to be called
2187  * @opaque: an opaque value that will be passed to the iterator
2188  *
2189  * Call @fn passing each child of @obj and @opaque to it, until @fn returns
2190  * non-zero.
2191  *
2192  * It is forbidden to add or remove children from @obj from the @fn
2193  * callback.
2194  *
2195  * Returns: The last value returned by @fn, or 0 if there is no child.
2196  */
2197 int object_child_foreach(Object *obj, int (*fn)(Object *child, void *opaque),
2198                          void *opaque);
2199 
2200 /**
2201  * object_child_foreach_recursive:
2202  * @obj: the object whose children will be navigated
2203  * @fn: the iterator function to be called
2204  * @opaque: an opaque value that will be passed to the iterator
2205  *
2206  * Call @fn passing each child of @obj and @opaque to it, until @fn returns
2207  * non-zero. Calls recursively, all child nodes of @obj will also be passed
2208  * all the way down to the leaf nodes of the tree. Depth first ordering.
2209  *
2210  * It is forbidden to add or remove children from @obj (or its
2211  * child nodes) from the @fn callback.
2212  *
2213  * Returns: The last value returned by @fn, or 0 if there is no child.
2214  */
2215 int object_child_foreach_recursive(Object *obj,
2216                                    int (*fn)(Object *child, void *opaque),
2217                                    void *opaque);
2218 /**
2219  * container_get:
2220  * @root: root of the #path, e.g., object_get_root()
2221  * @path: path to the container
2222  *
2223  * Return a container object whose path is @path.  Create more containers
2224  * along the path if necessary.
2225  *
2226  * Returns: the container object.
2227  */
2228 Object *container_get(Object *root, const char *path);
2229 
2230 /**
2231  * object_type_get_instance_size:
2232  * @typename: Name of the Type whose instance_size is required
2233  *
2234  * Returns the instance_size of the given @typename.
2235  */
2236 size_t object_type_get_instance_size(const char *typename);
2237 
2238 /**
2239  * object_property_help:
2240  * @name: the name of the property
2241  * @type: the type of the property
2242  * @defval: the default value
2243  * @description: description of the property
2244  *
2245  * Returns: a user-friendly formatted string describing the property
2246  * for help purposes.
2247  */
2248 char *object_property_help(const char *name, const char *type,
2249                            QObject *defval, const char *description);
2250 
2251 G_DEFINE_AUTOPTR_CLEANUP_FUNC(Object, object_unref)
2252 
2253 #endif
2254