xref: /openbmc/qemu/include/qom/object.h (revision 881444687571d8b23f308f76bef326ab860685b4)
1 /*
2  * QEMU Object Model
3  *
4  * Copyright IBM, Corp. 2011
5  *
6  * Authors:
7  *  Anthony Liguori   <aliguori@us.ibm.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef QEMU_OBJECT_H
15 #define QEMU_OBJECT_H
16 
17 #include "qapi/qapi-builtin-types.h"
18 #include "qemu/module.h"
19 #include "qom/object.h"
20 
21 struct TypeImpl;
22 typedef struct TypeImpl *Type;
23 
24 typedef struct TypeInfo TypeInfo;
25 
26 typedef struct InterfaceClass InterfaceClass;
27 typedef struct InterfaceInfo InterfaceInfo;
28 
29 #define TYPE_OBJECT "object"
30 
31 /**
32  * DOC:
33  *
34  * The QEMU Object Model provides a framework for registering user creatable
35  * types and instantiating objects from those types.  QOM provides the following
36  * features:
37  *
38  *  - System for dynamically registering types
39  *  - Support for single-inheritance of types
40  *  - Multiple inheritance of stateless interfaces
41  *
42  * <example>
43  *   <title>Creating a minimal type</title>
44  *   <programlisting>
45  * #include "qdev.h"
46  *
47  * #define TYPE_MY_DEVICE "my-device"
48  *
49  * // No new virtual functions: we can reuse the typedef for the
50  * // superclass.
51  * typedef DeviceClass MyDeviceClass;
52  * typedef struct MyDevice
53  * {
54  *     DeviceState parent;
55  *
56  *     int reg0, reg1, reg2;
57  * } MyDevice;
58  *
59  * static const TypeInfo my_device_info = {
60  *     .name = TYPE_MY_DEVICE,
61  *     .parent = TYPE_DEVICE,
62  *     .instance_size = sizeof(MyDevice),
63  * };
64  *
65  * static void my_device_register_types(void)
66  * {
67  *     type_register_static(&my_device_info);
68  * }
69  *
70  * type_init(my_device_register_types)
71  *   </programlisting>
72  * </example>
73  *
74  * In the above example, we create a simple type that is described by #TypeInfo.
75  * #TypeInfo describes information about the type including what it inherits
76  * from, the instance and class size, and constructor/destructor hooks.
77  *
78  * Alternatively several static types could be registered using helper macro
79  * DEFINE_TYPES()
80  *
81  * <example>
82  *   <programlisting>
83  * static const TypeInfo device_types_info[] = {
84  *     {
85  *         .name = TYPE_MY_DEVICE_A,
86  *         .parent = TYPE_DEVICE,
87  *         .instance_size = sizeof(MyDeviceA),
88  *     },
89  *     {
90  *         .name = TYPE_MY_DEVICE_B,
91  *         .parent = TYPE_DEVICE,
92  *         .instance_size = sizeof(MyDeviceB),
93  *     },
94  * };
95  *
96  * DEFINE_TYPES(device_types_info)
97  *   </programlisting>
98  * </example>
99  *
100  * Every type has an #ObjectClass associated with it.  #ObjectClass derivatives
101  * are instantiated dynamically but there is only ever one instance for any
102  * given type.  The #ObjectClass typically holds a table of function pointers
103  * for the virtual methods implemented by this type.
104  *
105  * Using object_new(), a new #Object derivative will be instantiated.  You can
106  * cast an #Object to a subclass (or base-class) type using
107  * object_dynamic_cast().  You typically want to define macro wrappers around
108  * OBJECT_CHECK() and OBJECT_CLASS_CHECK() to make it easier to convert to a
109  * specific type:
110  *
111  * <example>
112  *   <title>Typecasting macros</title>
113  *   <programlisting>
114  *    #define MY_DEVICE_GET_CLASS(obj) \
115  *       OBJECT_GET_CLASS(MyDeviceClass, obj, TYPE_MY_DEVICE)
116  *    #define MY_DEVICE_CLASS(klass) \
117  *       OBJECT_CLASS_CHECK(MyDeviceClass, klass, TYPE_MY_DEVICE)
118  *    #define MY_DEVICE(obj) \
119  *       OBJECT_CHECK(MyDevice, obj, TYPE_MY_DEVICE)
120  *   </programlisting>
121  * </example>
122  *
123  * Class Initialization
124  * ====================
125  *
126  * Before an object is initialized, the class for the object must be
127  * initialized.  There is only one class object for all instance objects
128  * that is created lazily.
129  *
130  * Classes are initialized by first initializing any parent classes (if
131  * necessary).  After the parent class object has initialized, it will be
132  * copied into the current class object and any additional storage in the
133  * class object is zero filled.
134  *
135  * The effect of this is that classes automatically inherit any virtual
136  * function pointers that the parent class has already initialized.  All
137  * other fields will be zero filled.
138  *
139  * Once all of the parent classes have been initialized, #TypeInfo::class_init
140  * is called to let the class being instantiated provide default initialize for
141  * its virtual functions.  Here is how the above example might be modified
142  * to introduce an overridden virtual function:
143  *
144  * <example>
145  *   <title>Overriding a virtual function</title>
146  *   <programlisting>
147  * #include "qdev.h"
148  *
149  * void my_device_class_init(ObjectClass *klass, void *class_data)
150  * {
151  *     DeviceClass *dc = DEVICE_CLASS(klass);
152  *     dc->reset = my_device_reset;
153  * }
154  *
155  * static const TypeInfo my_device_info = {
156  *     .name = TYPE_MY_DEVICE,
157  *     .parent = TYPE_DEVICE,
158  *     .instance_size = sizeof(MyDevice),
159  *     .class_init = my_device_class_init,
160  * };
161  *   </programlisting>
162  * </example>
163  *
164  * Introducing new virtual methods requires a class to define its own
165  * struct and to add a .class_size member to the #TypeInfo.  Each method
166  * will also have a wrapper function to call it easily:
167  *
168  * <example>
169  *   <title>Defining an abstract class</title>
170  *   <programlisting>
171  * #include "qdev.h"
172  *
173  * typedef struct MyDeviceClass
174  * {
175  *     DeviceClass parent;
176  *
177  *     void (*frobnicate) (MyDevice *obj);
178  * } MyDeviceClass;
179  *
180  * static const TypeInfo my_device_info = {
181  *     .name = TYPE_MY_DEVICE,
182  *     .parent = TYPE_DEVICE,
183  *     .instance_size = sizeof(MyDevice),
184  *     .abstract = true, // or set a default in my_device_class_init
185  *     .class_size = sizeof(MyDeviceClass),
186  * };
187  *
188  * void my_device_frobnicate(MyDevice *obj)
189  * {
190  *     MyDeviceClass *klass = MY_DEVICE_GET_CLASS(obj);
191  *
192  *     klass->frobnicate(obj);
193  * }
194  *   </programlisting>
195  * </example>
196  *
197  * Interfaces
198  * ==========
199  *
200  * Interfaces allow a limited form of multiple inheritance.  Instances are
201  * similar to normal types except for the fact that are only defined by
202  * their classes and never carry any state.  As a consequence, a pointer to
203  * an interface instance should always be of incomplete type in order to be
204  * sure it cannot be dereferenced.  That is, you should define the
205  * 'typedef struct SomethingIf SomethingIf' so that you can pass around
206  * ``SomethingIf *si`` arguments, but not define a ``struct SomethingIf { ... }``.
207  * The only things you can validly do with a ``SomethingIf *`` are to pass it as
208  * an argument to a method on its corresponding SomethingIfClass, or to
209  * dynamically cast it to an object that implements the interface.
210  *
211  * Methods
212  * =======
213  *
214  * A <emphasis>method</emphasis> is a function within the namespace scope of
215  * a class. It usually operates on the object instance by passing it as a
216  * strongly-typed first argument.
217  * If it does not operate on an object instance, it is dubbed
218  * <emphasis>class method</emphasis>.
219  *
220  * Methods cannot be overloaded. That is, the #ObjectClass and method name
221  * uniquely identity the function to be called; the signature does not vary
222  * except for trailing varargs.
223  *
224  * Methods are always <emphasis>virtual</emphasis>. Overriding a method in
225  * #TypeInfo.class_init of a subclass leads to any user of the class obtained
226  * via OBJECT_GET_CLASS() accessing the overridden function.
227  * The original function is not automatically invoked. It is the responsibility
228  * of the overriding class to determine whether and when to invoke the method
229  * being overridden.
230  *
231  * To invoke the method being overridden, the preferred solution is to store
232  * the original value in the overriding class before overriding the method.
233  * This corresponds to |[ {super,base}.method(...) ]| in Java and C#
234  * respectively; this frees the overriding class from hardcoding its parent
235  * class, which someone might choose to change at some point.
236  *
237  * <example>
238  *   <title>Overriding a virtual method</title>
239  *   <programlisting>
240  * typedef struct MyState MyState;
241  *
242  * typedef void (*MyDoSomething)(MyState *obj);
243  *
244  * typedef struct MyClass {
245  *     ObjectClass parent_class;
246  *
247  *     MyDoSomething do_something;
248  * } MyClass;
249  *
250  * static void my_do_something(MyState *obj)
251  * {
252  *     // do something
253  * }
254  *
255  * static void my_class_init(ObjectClass *oc, void *data)
256  * {
257  *     MyClass *mc = MY_CLASS(oc);
258  *
259  *     mc->do_something = my_do_something;
260  * }
261  *
262  * static const TypeInfo my_type_info = {
263  *     .name = TYPE_MY,
264  *     .parent = TYPE_OBJECT,
265  *     .instance_size = sizeof(MyState),
266  *     .class_size = sizeof(MyClass),
267  *     .class_init = my_class_init,
268  * };
269  *
270  * typedef struct DerivedClass {
271  *     MyClass parent_class;
272  *
273  *     MyDoSomething parent_do_something;
274  * } DerivedClass;
275  *
276  * static void derived_do_something(MyState *obj)
277  * {
278  *     DerivedClass *dc = DERIVED_GET_CLASS(obj);
279  *
280  *     // do something here
281  *     dc->parent_do_something(obj);
282  *     // do something else here
283  * }
284  *
285  * static void derived_class_init(ObjectClass *oc, void *data)
286  * {
287  *     MyClass *mc = MY_CLASS(oc);
288  *     DerivedClass *dc = DERIVED_CLASS(oc);
289  *
290  *     dc->parent_do_something = mc->do_something;
291  *     mc->do_something = derived_do_something;
292  * }
293  *
294  * static const TypeInfo derived_type_info = {
295  *     .name = TYPE_DERIVED,
296  *     .parent = TYPE_MY,
297  *     .class_size = sizeof(DerivedClass),
298  *     .class_init = derived_class_init,
299  * };
300  *   </programlisting>
301  * </example>
302  *
303  * Alternatively, object_class_by_name() can be used to obtain the class and
304  * its non-overridden methods for a specific type. This would correspond to
305  * ``MyClass::method(...)`` in C++.
306  *
307  * The first example of such a QOM method was #CPUClass.reset,
308  * another example is #DeviceClass.realize.
309  *
310  * Standard type declaration and definition macros
311  * ===============================================
312  *
313  * A lot of the code outlined above follows a standard pattern and naming
314  * convention. To reduce the amount of boilerplate code that needs to be
315  * written for a new type there are two sets of macros to generate the
316  * common parts in a standard format.
317  *
318  * A type is declared using the OBJECT_DECLARE macro family. In types
319  * which do not require any virtual functions in the class, the
320  * OBJECT_DECLARE_SIMPLE_TYPE macro is suitable, and is commonly placed
321  * in the header file:
322  *
323  * <example>
324  *   <title>Declaring a simple type</title>
325  *   <programlisting>
326  *     OBJECT_DECLARE_SIMPLE_TYPE(MyDevice, my_device, MY_DEVICE, DEVICE)
327  *   </programlisting>
328  * </example>
329  *
330  * This is equivalent to the following:
331  *
332  * <example>
333  *   <title>Expansion from declaring a simple type</title>
334  *   <programlisting>
335  *     typedef struct MyDevice MyDevice;
336  *     typedef struct MyDeviceClass MyDeviceClass;
337  *
338  *     G_DEFINE_AUTOPTR_CLEANUP_FUNC(MyDeviceClass, object_unref)
339  *
340  *     #define MY_DEVICE_GET_CLASS(void *obj) \
341  *             OBJECT_GET_CLASS(MyDeviceClass, obj, TYPE_MY_DEVICE)
342  *     #define MY_DEVICE_CLASS(void *klass) \
343  *             OBJECT_CLASS_CHECK(MyDeviceClass, klass, TYPE_MY_DEVICE)
344  *     #define MY_DEVICE(void *obj)
345  *             OBJECT_CHECK(MyDevice, obj, TYPE_MY_DEVICE)
346  *
347  *     struct MyDeviceClass {
348  *         DeviceClass parent_class;
349  *     };
350  *   </programlisting>
351  * </example>
352  *
353  * The 'struct MyDevice' needs to be declared separately.
354  * If the type requires virtual functions to be declared in the class
355  * struct, then the alternative OBJECT_DECLARE_TYPE() macro can be
356  * used. This does the same as OBJECT_DECLARE_SIMPLE_TYPE(), but without
357  * the 'struct MyDeviceClass' definition.
358  *
359  * To implement the type, the OBJECT_DEFINE macro family is available.
360  * In the simple case the OBJECT_DEFINE_TYPE macro is suitable:
361  *
362  * <example>
363  *   <title>Defining a simple type</title>
364  *   <programlisting>
365  *     OBJECT_DEFINE_TYPE(MyDevice, my_device, MY_DEVICE, DEVICE)
366  *   </programlisting>
367  * </example>
368  *
369  * This is equivalent to the following:
370  *
371  * <example>
372  *   <title>Expansion from defining a simple type</title>
373  *   <programlisting>
374  *     static void my_device_finalize(Object *obj);
375  *     static void my_device_class_init(ObjectClass *oc, void *data);
376  *     static void my_device_init(Object *obj);
377  *
378  *     static const TypeInfo my_device_info = {
379  *         .parent = TYPE_DEVICE,
380  *         .name = TYPE_MY_DEVICE,
381  *         .instance_size = sizeof(MyDevice),
382  *         .instance_init = my_device_init,
383  *         .instance_finalize = my_device_finalize,
384  *         .class_size = sizeof(MyDeviceClass),
385  *         .class_init = my_device_class_init,
386  *     };
387  *
388  *     static void
389  *     my_device_register_types(void)
390  *     {
391  *         type_register_static(&my_device_info);
392  *     }
393  *     type_init(my_device_register_types);
394  *   </programlisting>
395  * </example>
396  *
397  * This is sufficient to get the type registered with the type
398  * system, and the three standard methods now need to be implemented
399  * along with any other logic required for the type.
400  *
401  * If the type needs to implement one or more interfaces, then the
402  * OBJECT_DEFINE_TYPE_WITH_INTERFACES() macro can be used instead.
403  * This accepts an array of interface type names.
404  *
405  * <example>
406  *   <title>Defining a simple type implementing interfaces</title>
407  *   <programlisting>
408  *     OBJECT_DEFINE_TYPE_WITH_INTERFACES(MyDevice, my_device,
409  *                                        MY_DEVICE, DEVICE,
410  *                                        { TYPE_USER_CREATABLE }, { NULL })
411  *   </programlisting>
412  * </example>
413  *
414  * If the type is not intended to be instantiated, then then
415  * the OBJECT_DEFINE_ABSTRACT_TYPE() macro can be used instead:
416  *
417  * <example>
418  *   <title>Defining a simple type</title>
419  *   <programlisting>
420  *     OBJECT_DEFINE_ABSTRACT_TYPE(MyDevice, my_device, MY_DEVICE, DEVICE)
421  *   </programlisting>
422  * </example>
423  */
424 
425 
426 typedef struct ObjectProperty ObjectProperty;
427 
428 /**
429  * ObjectPropertyAccessor:
430  * @obj: the object that owns the property
431  * @v: the visitor that contains the property data
432  * @name: the name of the property
433  * @opaque: the object property opaque
434  * @errp: a pointer to an Error that is filled if getting/setting fails.
435  *
436  * Called when trying to get/set a property.
437  */
438 typedef void (ObjectPropertyAccessor)(Object *obj,
439                                       Visitor *v,
440                                       const char *name,
441                                       void *opaque,
442                                       Error **errp);
443 
444 /**
445  * ObjectPropertyResolve:
446  * @obj: the object that owns the property
447  * @opaque: the opaque registered with the property
448  * @part: the name of the property
449  *
450  * Resolves the #Object corresponding to property @part.
451  *
452  * The returned object can also be used as a starting point
453  * to resolve a relative path starting with "@part".
454  *
455  * Returns: If @path is the path that led to @obj, the function
456  * returns the #Object corresponding to "@path/@part".
457  * If "@path/@part" is not a valid object path, it returns #NULL.
458  */
459 typedef Object *(ObjectPropertyResolve)(Object *obj,
460                                         void *opaque,
461                                         const char *part);
462 
463 /**
464  * ObjectPropertyRelease:
465  * @obj: the object that owns the property
466  * @name: the name of the property
467  * @opaque: the opaque registered with the property
468  *
469  * Called when a property is removed from a object.
470  */
471 typedef void (ObjectPropertyRelease)(Object *obj,
472                                      const char *name,
473                                      void *opaque);
474 
475 /**
476  * ObjectPropertyInit:
477  * @obj: the object that owns the property
478  * @prop: the property to set
479  *
480  * Called when a property is initialized.
481  */
482 typedef void (ObjectPropertyInit)(Object *obj, ObjectProperty *prop);
483 
484 struct ObjectProperty
485 {
486     char *name;
487     char *type;
488     char *description;
489     ObjectPropertyAccessor *get;
490     ObjectPropertyAccessor *set;
491     ObjectPropertyResolve *resolve;
492     ObjectPropertyRelease *release;
493     ObjectPropertyInit *init;
494     void *opaque;
495     QObject *defval;
496 };
497 
498 /**
499  * ObjectUnparent:
500  * @obj: the object that is being removed from the composition tree
501  *
502  * Called when an object is being removed from the QOM composition tree.
503  * The function should remove any backlinks from children objects to @obj.
504  */
505 typedef void (ObjectUnparent)(Object *obj);
506 
507 /**
508  * ObjectFree:
509  * @obj: the object being freed
510  *
511  * Called when an object's last reference is removed.
512  */
513 typedef void (ObjectFree)(void *obj);
514 
515 #define OBJECT_CLASS_CAST_CACHE 4
516 
517 /**
518  * ObjectClass:
519  *
520  * The base for all classes.  The only thing that #ObjectClass contains is an
521  * integer type handle.
522  */
523 struct ObjectClass
524 {
525     /* private: */
526     Type type;
527     GSList *interfaces;
528 
529     const char *object_cast_cache[OBJECT_CLASS_CAST_CACHE];
530     const char *class_cast_cache[OBJECT_CLASS_CAST_CACHE];
531 
532     ObjectUnparent *unparent;
533 
534     GHashTable *properties;
535 };
536 
537 /**
538  * Object:
539  *
540  * The base for all objects.  The first member of this object is a pointer to
541  * a #ObjectClass.  Since C guarantees that the first member of a structure
542  * always begins at byte 0 of that structure, as long as any sub-object places
543  * its parent as the first member, we can cast directly to a #Object.
544  *
545  * As a result, #Object contains a reference to the objects type as its
546  * first member.  This allows identification of the real type of the object at
547  * run time.
548  */
549 struct Object
550 {
551     /* private: */
552     ObjectClass *class;
553     ObjectFree *free;
554     GHashTable *properties;
555     uint32_t ref;
556     Object *parent;
557 };
558 
559 /**
560  * DECLARE_INSTANCE_CHECKER:
561  * @InstanceType: instance struct name
562  * @OBJ_NAME: the object name in uppercase with underscore separators
563  * @TYPENAME: type name
564  *
565  * Direct usage of this macro should be avoided, and the complete
566  * OBJECT_DECLARE_TYPE macro is recommended instead.
567  *
568  * This macro will provide the three standard type cast functions for a
569  * QOM type.
570  */
571 #define DECLARE_INSTANCE_CHECKER(InstanceType, OBJ_NAME, TYPENAME) \
572     static inline G_GNUC_UNUSED InstanceType * \
573     OBJ_NAME(const void *obj) \
574     { return OBJECT_CHECK(InstanceType, obj, TYPENAME); }
575 
576 /**
577  * DECLARE_CLASS_CHECKERS:
578  * @ClassType: class struct name
579  * @OBJ_NAME: the object name in uppercase with underscore separators
580  * @TYPENAME: type name
581  *
582  * Direct usage of this macro should be avoided, and the complete
583  * OBJECT_DECLARE_TYPE macro is recommended instead.
584  *
585  * This macro will provide the three standard type cast functions for a
586  * QOM type.
587  */
588 #define DECLARE_CLASS_CHECKERS(ClassType, OBJ_NAME, TYPENAME) \
589     static inline G_GNUC_UNUSED ClassType * \
590     OBJ_NAME##_GET_CLASS(const void *obj) \
591     { return OBJECT_GET_CLASS(ClassType, obj, TYPENAME); } \
592     \
593     static inline G_GNUC_UNUSED ClassType * \
594     OBJ_NAME##_CLASS(const void *klass) \
595     { return OBJECT_CLASS_CHECK(ClassType, klass, TYPENAME); }
596 
597 /**
598  * DECLARE_OBJ_CHECKERS:
599  * @InstanceType: instance struct name
600  * @ClassType: class struct name
601  * @OBJ_NAME: the object name in uppercase with underscore separators
602  * @TYPENAME: type name
603  *
604  * Direct usage of this macro should be avoided, and the complete
605  * OBJECT_DECLARE_TYPE macro is recommended instead.
606  *
607  * This macro will provide the three standard type cast functions for a
608  * QOM type.
609  */
610 #define DECLARE_OBJ_CHECKERS(InstanceType, ClassType, OBJ_NAME, TYPENAME) \
611     DECLARE_INSTANCE_CHECKER(InstanceType, OBJ_NAME, TYPENAME) \
612     \
613     DECLARE_CLASS_CHECKERS(ClassType, OBJ_NAME, TYPENAME)
614 
615 /**
616  * OBJECT_DECLARE_TYPE:
617  * @InstanceType: instance struct name
618  * @ClassType: class struct name
619  * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators
620  *
621  * This macro is typically used in a header file, and will:
622  *
623  *   - create the typedefs for the object and class structs
624  *   - register the type for use with g_autoptr
625  *   - provide three standard type cast functions
626  *
627  * The object struct and class struct need to be declared manually.
628  */
629 #define OBJECT_DECLARE_TYPE(InstanceType, ClassType, MODULE_OBJ_NAME) \
630     typedef struct InstanceType InstanceType; \
631     typedef struct ClassType ClassType; \
632     \
633     G_DEFINE_AUTOPTR_CLEANUP_FUNC(InstanceType, object_unref) \
634     \
635     DECLARE_OBJ_CHECKERS(InstanceType, ClassType, \
636                          MODULE_OBJ_NAME, TYPE_##MODULE_OBJ_NAME)
637 
638 /**
639  * OBJECT_DECLARE_SIMPLE_TYPE:
640  * @InstanceType: instance struct name
641  * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators
642  *
643  * This does the same as OBJECT_DECLARE_TYPE(), but with no class struct
644  * declared.
645  *
646  * This macro should be used unless the class struct needs to have
647  * virtual methods declared.
648  */
649 #define OBJECT_DECLARE_SIMPLE_TYPE(InstanceType, MODULE_OBJ_NAME) \
650     typedef struct InstanceType InstanceType; \
651     \
652     G_DEFINE_AUTOPTR_CLEANUP_FUNC(InstanceType, object_unref) \
653     \
654     DECLARE_INSTANCE_CHECKER(InstanceType, MODULE_OBJ_NAME, TYPE_##MODULE_OBJ_NAME)
655 
656 
657 /**
658  * OBJECT_DEFINE_TYPE_EXTENDED:
659  * @ModuleObjName: the object name with initial caps
660  * @module_obj_name: the object name in lowercase with underscore separators
661  * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators
662  * @PARENT_MODULE_OBJ_NAME: the parent object name in uppercase with underscore
663  *                          separators
664  * @ABSTRACT: boolean flag to indicate whether the object can be instantiated
665  * @...: list of initializers for "InterfaceInfo" to declare implemented interfaces
666  *
667  * This macro is typically used in a source file, and will:
668  *
669  *   - declare prototypes for _finalize, _class_init and _init methods
670  *   - declare the TypeInfo struct instance
671  *   - provide the constructor to register the type
672  *
673  * After using this macro, implementations of the _finalize, _class_init,
674  * and _init methods need to be written. Any of these can be zero-line
675  * no-op impls if no special logic is required for a given type.
676  *
677  * This macro should rarely be used, instead one of the more specialized
678  * macros is usually a better choice.
679  */
680 #define OBJECT_DEFINE_TYPE_EXTENDED(ModuleObjName, module_obj_name, \
681                                     MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME, \
682                                     ABSTRACT, ...) \
683     static void \
684     module_obj_name##_finalize(Object *obj); \
685     static void \
686     module_obj_name##_class_init(ObjectClass *oc, void *data); \
687     static void \
688     module_obj_name##_init(Object *obj); \
689     \
690     static const TypeInfo module_obj_name##_info = { \
691         .parent = TYPE_##PARENT_MODULE_OBJ_NAME, \
692         .name = TYPE_##MODULE_OBJ_NAME, \
693         .instance_size = sizeof(ModuleObjName), \
694         .instance_align = __alignof__(ModuleObjName), \
695         .instance_init = module_obj_name##_init, \
696         .instance_finalize = module_obj_name##_finalize, \
697         .class_size = sizeof(ModuleObjName##Class), \
698         .class_init = module_obj_name##_class_init, \
699         .abstract = ABSTRACT, \
700         .interfaces = (InterfaceInfo[]) { __VA_ARGS__ } , \
701     }; \
702     \
703     static void \
704     module_obj_name##_register_types(void) \
705     { \
706         type_register_static(&module_obj_name##_info); \
707     } \
708     type_init(module_obj_name##_register_types);
709 
710 /**
711  * OBJECT_DEFINE_TYPE:
712  * @ModuleObjName: the object name with initial caps
713  * @module_obj_name: the object name in lowercase with underscore separators
714  * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators
715  * @PARENT_MODULE_OBJ_NAME: the parent object name in uppercase with underscore
716  *                          separators
717  *
718  * This is a specialization of OBJECT_DEFINE_TYPE_EXTENDED, which is suitable
719  * for the common case of a non-abstract type, without any interfaces.
720  */
721 #define OBJECT_DEFINE_TYPE(ModuleObjName, module_obj_name, MODULE_OBJ_NAME, \
722                            PARENT_MODULE_OBJ_NAME) \
723     OBJECT_DEFINE_TYPE_EXTENDED(ModuleObjName, module_obj_name, \
724                                 MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME, \
725                                 false, { NULL })
726 
727 /**
728  * OBJECT_DEFINE_TYPE_WITH_INTERFACES:
729  * @ModuleObjName: the object name with initial caps
730  * @module_obj_name: the object name in lowercase with underscore separators
731  * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators
732  * @PARENT_MODULE_OBJ_NAME: the parent object name in uppercase with underscore
733  *                          separators
734  * @...: list of initializers for "InterfaceInfo" to declare implemented interfaces
735  *
736  * This is a specialization of OBJECT_DEFINE_TYPE_EXTENDED, which is suitable
737  * for the common case of a non-abstract type, with one or more implemented
738  * interfaces.
739  *
740  * Note when passing the list of interfaces, be sure to include the final
741  * NULL entry, e.g.  { TYPE_USER_CREATABLE }, { NULL }
742  */
743 #define OBJECT_DEFINE_TYPE_WITH_INTERFACES(ModuleObjName, module_obj_name, \
744                                            MODULE_OBJ_NAME, \
745                                            PARENT_MODULE_OBJ_NAME, ...) \
746     OBJECT_DEFINE_TYPE_EXTENDED(ModuleObjName, module_obj_name, \
747                                 MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME, \
748                                 false, __VA_ARGS__)
749 
750 /**
751  * OBJECT_DEFINE_ABSTRACT_TYPE:
752  * @ModuleObjName: the object name with initial caps
753  * @module_obj_name: the object name in lowercase with underscore separators
754  * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators
755  * @PARENT_MODULE_OBJ_NAME: the parent object name in uppercase with underscore
756  *                          separators
757  *
758  * This is a specialization of OBJECT_DEFINE_TYPE_EXTENDED, which is suitable
759  * for defining an abstract type, without any interfaces.
760  */
761 #define OBJECT_DEFINE_ABSTRACT_TYPE(ModuleObjName, module_obj_name, \
762                                     MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME) \
763     OBJECT_DEFINE_TYPE_EXTENDED(ModuleObjName, module_obj_name, \
764                                 MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME, \
765                                 true, { NULL })
766 
767 /**
768  * TypeInfo:
769  * @name: The name of the type.
770  * @parent: The name of the parent type.
771  * @instance_size: The size of the object (derivative of #Object).  If
772  *   @instance_size is 0, then the size of the object will be the size of the
773  *   parent object.
774  * @instance_align: The required alignment of the object.  If @instance_align
775  *   is 0, then normal malloc alignment is sufficient; if non-zero, then we
776  *   must use qemu_memalign for allocation.
777  * @instance_init: This function is called to initialize an object.  The parent
778  *   class will have already been initialized so the type is only responsible
779  *   for initializing its own members.
780  * @instance_post_init: This function is called to finish initialization of
781  *   an object, after all @instance_init functions were called.
782  * @instance_finalize: This function is called during object destruction.  This
783  *   is called before the parent @instance_finalize function has been called.
784  *   An object should only free the members that are unique to its type in this
785  *   function.
786  * @abstract: If this field is true, then the class is considered abstract and
787  *   cannot be directly instantiated.
788  * @class_size: The size of the class object (derivative of #ObjectClass)
789  *   for this object.  If @class_size is 0, then the size of the class will be
790  *   assumed to be the size of the parent class.  This allows a type to avoid
791  *   implementing an explicit class type if they are not adding additional
792  *   virtual functions.
793  * @class_init: This function is called after all parent class initialization
794  *   has occurred to allow a class to set its default virtual method pointers.
795  *   This is also the function to use to override virtual methods from a parent
796  *   class.
797  * @class_base_init: This function is called for all base classes after all
798  *   parent class initialization has occurred, but before the class itself
799  *   is initialized.  This is the function to use to undo the effects of
800  *   memcpy from the parent class to the descendants.
801  * @class_data: Data to pass to the @class_init,
802  *   @class_base_init. This can be useful when building dynamic
803  *   classes.
804  * @interfaces: The list of interfaces associated with this type.  This
805  *   should point to a static array that's terminated with a zero filled
806  *   element.
807  */
808 struct TypeInfo
809 {
810     const char *name;
811     const char *parent;
812 
813     size_t instance_size;
814     size_t instance_align;
815     void (*instance_init)(Object *obj);
816     void (*instance_post_init)(Object *obj);
817     void (*instance_finalize)(Object *obj);
818 
819     bool abstract;
820     size_t class_size;
821 
822     void (*class_init)(ObjectClass *klass, void *data);
823     void (*class_base_init)(ObjectClass *klass, void *data);
824     void *class_data;
825 
826     InterfaceInfo *interfaces;
827 };
828 
829 /**
830  * OBJECT:
831  * @obj: A derivative of #Object
832  *
833  * Converts an object to a #Object.  Since all objects are #Objects,
834  * this function will always succeed.
835  */
836 #define OBJECT(obj) \
837     ((Object *)(obj))
838 
839 /**
840  * OBJECT_CLASS:
841  * @class: A derivative of #ObjectClass.
842  *
843  * Converts a class to an #ObjectClass.  Since all objects are #Objects,
844  * this function will always succeed.
845  */
846 #define OBJECT_CLASS(class) \
847     ((ObjectClass *)(class))
848 
849 /**
850  * OBJECT_CHECK:
851  * @type: The C type to use for the return value.
852  * @obj: A derivative of @type to cast.
853  * @name: The QOM typename of @type
854  *
855  * A type safe version of @object_dynamic_cast_assert.  Typically each class
856  * will define a macro based on this type to perform type safe dynamic_casts to
857  * this object type.
858  *
859  * If an invalid object is passed to this function, a run time assert will be
860  * generated.
861  */
862 #define OBJECT_CHECK(type, obj, name) \
863     ((type *)object_dynamic_cast_assert(OBJECT(obj), (name), \
864                                         __FILE__, __LINE__, __func__))
865 
866 /**
867  * OBJECT_CLASS_CHECK:
868  * @class_type: The C type to use for the return value.
869  * @class: A derivative class of @class_type to cast.
870  * @name: the QOM typename of @class_type.
871  *
872  * A type safe version of @object_class_dynamic_cast_assert.  This macro is
873  * typically wrapped by each type to perform type safe casts of a class to a
874  * specific class type.
875  */
876 #define OBJECT_CLASS_CHECK(class_type, class, name) \
877     ((class_type *)object_class_dynamic_cast_assert(OBJECT_CLASS(class), (name), \
878                                                __FILE__, __LINE__, __func__))
879 
880 /**
881  * OBJECT_GET_CLASS:
882  * @class: The C type to use for the return value.
883  * @obj: The object to obtain the class for.
884  * @name: The QOM typename of @obj.
885  *
886  * This function will return a specific class for a given object.  Its generally
887  * used by each type to provide a type safe macro to get a specific class type
888  * from an object.
889  */
890 #define OBJECT_GET_CLASS(class, obj, name) \
891     OBJECT_CLASS_CHECK(class, object_get_class(OBJECT(obj)), name)
892 
893 /**
894  * InterfaceInfo:
895  * @type: The name of the interface.
896  *
897  * The information associated with an interface.
898  */
899 struct InterfaceInfo {
900     const char *type;
901 };
902 
903 /**
904  * InterfaceClass:
905  * @parent_class: the base class
906  *
907  * The class for all interfaces.  Subclasses of this class should only add
908  * virtual methods.
909  */
910 struct InterfaceClass
911 {
912     ObjectClass parent_class;
913     /* private: */
914     ObjectClass *concrete_class;
915     Type interface_type;
916 };
917 
918 #define TYPE_INTERFACE "interface"
919 
920 /**
921  * INTERFACE_CLASS:
922  * @klass: class to cast from
923  * Returns: An #InterfaceClass or raise an error if cast is invalid
924  */
925 #define INTERFACE_CLASS(klass) \
926     OBJECT_CLASS_CHECK(InterfaceClass, klass, TYPE_INTERFACE)
927 
928 /**
929  * INTERFACE_CHECK:
930  * @interface: the type to return
931  * @obj: the object to convert to an interface
932  * @name: the interface type name
933  *
934  * Returns: @obj casted to @interface if cast is valid, otherwise raise error.
935  */
936 #define INTERFACE_CHECK(interface, obj, name) \
937     ((interface *)object_dynamic_cast_assert(OBJECT((obj)), (name), \
938                                              __FILE__, __LINE__, __func__))
939 
940 /**
941  * object_new_with_class:
942  * @klass: The class to instantiate.
943  *
944  * This function will initialize a new object using heap allocated memory.
945  * The returned object has a reference count of 1, and will be freed when
946  * the last reference is dropped.
947  *
948  * Returns: The newly allocated and instantiated object.
949  */
950 Object *object_new_with_class(ObjectClass *klass);
951 
952 /**
953  * object_new:
954  * @typename: The name of the type of the object to instantiate.
955  *
956  * This function will initialize a new object using heap allocated memory.
957  * The returned object has a reference count of 1, and will be freed when
958  * the last reference is dropped.
959  *
960  * Returns: The newly allocated and instantiated object.
961  */
962 Object *object_new(const char *typename);
963 
964 /**
965  * object_new_with_props:
966  * @typename:  The name of the type of the object to instantiate.
967  * @parent: the parent object
968  * @id: The unique ID of the object
969  * @errp: pointer to error object
970  * @...: list of property names and values
971  *
972  * This function will initialize a new object using heap allocated memory.
973  * The returned object has a reference count of 1, and will be freed when
974  * the last reference is dropped.
975  *
976  * The @id parameter will be used when registering the object as a
977  * child of @parent in the composition tree.
978  *
979  * The variadic parameters are a list of pairs of (propname, propvalue)
980  * strings. The propname of %NULL indicates the end of the property
981  * list. If the object implements the user creatable interface, the
982  * object will be marked complete once all the properties have been
983  * processed.
984  *
985  * <example>
986  *   <title>Creating an object with properties</title>
987  *   <programlisting>
988  *   Error *err = NULL;
989  *   Object *obj;
990  *
991  *   obj = object_new_with_props(TYPE_MEMORY_BACKEND_FILE,
992  *                               object_get_objects_root(),
993  *                               "hostmem0",
994  *                               &err,
995  *                               "share", "yes",
996  *                               "mem-path", "/dev/shm/somefile",
997  *                               "prealloc", "yes",
998  *                               "size", "1048576",
999  *                               NULL);
1000  *
1001  *   if (!obj) {
1002  *     error_reportf_err(err, "Cannot create memory backend: ");
1003  *   }
1004  *   </programlisting>
1005  * </example>
1006  *
1007  * The returned object will have one stable reference maintained
1008  * for as long as it is present in the object hierarchy.
1009  *
1010  * Returns: The newly allocated, instantiated & initialized object.
1011  */
1012 Object *object_new_with_props(const char *typename,
1013                               Object *parent,
1014                               const char *id,
1015                               Error **errp,
1016                               ...) QEMU_SENTINEL;
1017 
1018 /**
1019  * object_new_with_propv:
1020  * @typename:  The name of the type of the object to instantiate.
1021  * @parent: the parent object
1022  * @id: The unique ID of the object
1023  * @errp: pointer to error object
1024  * @vargs: list of property names and values
1025  *
1026  * See object_new_with_props() for documentation.
1027  */
1028 Object *object_new_with_propv(const char *typename,
1029                               Object *parent,
1030                               const char *id,
1031                               Error **errp,
1032                               va_list vargs);
1033 
1034 bool object_apply_global_props(Object *obj, const GPtrArray *props,
1035                                Error **errp);
1036 void object_set_machine_compat_props(GPtrArray *compat_props);
1037 void object_set_accelerator_compat_props(GPtrArray *compat_props);
1038 void object_register_sugar_prop(const char *driver, const char *prop, const char *value);
1039 void object_apply_compat_props(Object *obj);
1040 
1041 /**
1042  * object_set_props:
1043  * @obj: the object instance to set properties on
1044  * @errp: pointer to error object
1045  * @...: list of property names and values
1046  *
1047  * This function will set a list of properties on an existing object
1048  * instance.
1049  *
1050  * The variadic parameters are a list of pairs of (propname, propvalue)
1051  * strings. The propname of %NULL indicates the end of the property
1052  * list.
1053  *
1054  * <example>
1055  *   <title>Update an object's properties</title>
1056  *   <programlisting>
1057  *   Error *err = NULL;
1058  *   Object *obj = ...get / create object...;
1059  *
1060  *   if (!object_set_props(obj,
1061  *                         &err,
1062  *                         "share", "yes",
1063  *                         "mem-path", "/dev/shm/somefile",
1064  *                         "prealloc", "yes",
1065  *                         "size", "1048576",
1066  *                         NULL)) {
1067  *     error_reportf_err(err, "Cannot set properties: ");
1068  *   }
1069  *   </programlisting>
1070  * </example>
1071  *
1072  * The returned object will have one stable reference maintained
1073  * for as long as it is present in the object hierarchy.
1074  *
1075  * Returns: %true on success, %false on error.
1076  */
1077 bool object_set_props(Object *obj, Error **errp, ...) QEMU_SENTINEL;
1078 
1079 /**
1080  * object_set_propv:
1081  * @obj: the object instance to set properties on
1082  * @errp: pointer to error object
1083  * @vargs: list of property names and values
1084  *
1085  * See object_set_props() for documentation.
1086  *
1087  * Returns: %true on success, %false on error.
1088  */
1089 bool object_set_propv(Object *obj, Error **errp, va_list vargs);
1090 
1091 /**
1092  * object_initialize:
1093  * @obj: A pointer to the memory to be used for the object.
1094  * @size: The maximum size available at @obj for the object.
1095  * @typename: The name of the type of the object to instantiate.
1096  *
1097  * This function will initialize an object.  The memory for the object should
1098  * have already been allocated.  The returned object has a reference count of 1,
1099  * and will be finalized when the last reference is dropped.
1100  */
1101 void object_initialize(void *obj, size_t size, const char *typename);
1102 
1103 /**
1104  * object_initialize_child_with_props:
1105  * @parentobj: The parent object to add a property to
1106  * @propname: The name of the property
1107  * @childobj: A pointer to the memory to be used for the object.
1108  * @size: The maximum size available at @childobj for the object.
1109  * @type: The name of the type of the object to instantiate.
1110  * @errp: If an error occurs, a pointer to an area to store the error
1111  * @...: list of property names and values
1112  *
1113  * This function will initialize an object. The memory for the object should
1114  * have already been allocated. The object will then be added as child property
1115  * to a parent with object_property_add_child() function. The returned object
1116  * has a reference count of 1 (for the "child<...>" property from the parent),
1117  * so the object will be finalized automatically when the parent gets removed.
1118  *
1119  * The variadic parameters are a list of pairs of (propname, propvalue)
1120  * strings. The propname of %NULL indicates the end of the property list.
1121  * If the object implements the user creatable interface, the object will
1122  * be marked complete once all the properties have been processed.
1123  *
1124  * Returns: %true on success, %false on failure.
1125  */
1126 bool object_initialize_child_with_props(Object *parentobj,
1127                              const char *propname,
1128                              void *childobj, size_t size, const char *type,
1129                              Error **errp, ...) QEMU_SENTINEL;
1130 
1131 /**
1132  * object_initialize_child_with_propsv:
1133  * @parentobj: The parent object to add a property to
1134  * @propname: The name of the property
1135  * @childobj: A pointer to the memory to be used for the object.
1136  * @size: The maximum size available at @childobj for the object.
1137  * @type: The name of the type of the object to instantiate.
1138  * @errp: If an error occurs, a pointer to an area to store the error
1139  * @vargs: list of property names and values
1140  *
1141  * See object_initialize_child() for documentation.
1142  *
1143  * Returns: %true on success, %false on failure.
1144  */
1145 bool object_initialize_child_with_propsv(Object *parentobj,
1146                               const char *propname,
1147                               void *childobj, size_t size, const char *type,
1148                               Error **errp, va_list vargs);
1149 
1150 /**
1151  * object_initialize_child:
1152  * @parent: The parent object to add a property to
1153  * @propname: The name of the property
1154  * @child: A precisely typed pointer to the memory to be used for the
1155  * object.
1156  * @type: The name of the type of the object to instantiate.
1157  *
1158  * This is like
1159  * object_initialize_child_with_props(parent, propname,
1160  *                                    child, sizeof(*child), type,
1161  *                                    &error_abort, NULL)
1162  */
1163 #define object_initialize_child(parent, propname, child, type)          \
1164     object_initialize_child_internal((parent), (propname),              \
1165                                      (child), sizeof(*(child)), (type))
1166 void object_initialize_child_internal(Object *parent, const char *propname,
1167                                       void *child, size_t size,
1168                                       const char *type);
1169 
1170 /**
1171  * object_dynamic_cast:
1172  * @obj: The object to cast.
1173  * @typename: The @typename to cast to.
1174  *
1175  * This function will determine if @obj is-a @typename.  @obj can refer to an
1176  * object or an interface associated with an object.
1177  *
1178  * Returns: This function returns @obj on success or #NULL on failure.
1179  */
1180 Object *object_dynamic_cast(Object *obj, const char *typename);
1181 
1182 /**
1183  * object_dynamic_cast_assert:
1184  * @obj: The object to cast.
1185  * @typename: The @typename to cast to.
1186  * @file: Source code file where function was called
1187  * @line: Source code line where function was called
1188  * @func: Name of function where this function was called
1189  *
1190  * See object_dynamic_cast() for a description of the parameters of this
1191  * function.  The only difference in behavior is that this function asserts
1192  * instead of returning #NULL on failure if QOM cast debugging is enabled.
1193  * This function is not meant to be called directly, but only through
1194  * the wrapper macro OBJECT_CHECK.
1195  */
1196 Object *object_dynamic_cast_assert(Object *obj, const char *typename,
1197                                    const char *file, int line, const char *func);
1198 
1199 /**
1200  * object_get_class:
1201  * @obj: A derivative of #Object
1202  *
1203  * Returns: The #ObjectClass of the type associated with @obj.
1204  */
1205 ObjectClass *object_get_class(Object *obj);
1206 
1207 /**
1208  * object_get_typename:
1209  * @obj: A derivative of #Object.
1210  *
1211  * Returns: The QOM typename of @obj.
1212  */
1213 const char *object_get_typename(const Object *obj);
1214 
1215 /**
1216  * type_register_static:
1217  * @info: The #TypeInfo of the new type.
1218  *
1219  * @info and all of the strings it points to should exist for the life time
1220  * that the type is registered.
1221  *
1222  * Returns: the new #Type.
1223  */
1224 Type type_register_static(const TypeInfo *info);
1225 
1226 /**
1227  * type_register:
1228  * @info: The #TypeInfo of the new type
1229  *
1230  * Unlike type_register_static(), this call does not require @info or its
1231  * string members to continue to exist after the call returns.
1232  *
1233  * Returns: the new #Type.
1234  */
1235 Type type_register(const TypeInfo *info);
1236 
1237 /**
1238  * type_register_static_array:
1239  * @infos: The array of the new type #TypeInfo structures.
1240  * @nr_infos: number of entries in @infos
1241  *
1242  * @infos and all of the strings it points to should exist for the life time
1243  * that the type is registered.
1244  */
1245 void type_register_static_array(const TypeInfo *infos, int nr_infos);
1246 
1247 /**
1248  * DEFINE_TYPES:
1249  * @type_array: The array containing #TypeInfo structures to register
1250  *
1251  * @type_array should be static constant that exists for the life time
1252  * that the type is registered.
1253  */
1254 #define DEFINE_TYPES(type_array)                                            \
1255 static void do_qemu_init_ ## type_array(void)                               \
1256 {                                                                           \
1257     type_register_static_array(type_array, ARRAY_SIZE(type_array));         \
1258 }                                                                           \
1259 type_init(do_qemu_init_ ## type_array)
1260 
1261 /**
1262  * object_class_dynamic_cast_assert:
1263  * @klass: The #ObjectClass to attempt to cast.
1264  * @typename: The QOM typename of the class to cast to.
1265  * @file: Source code file where function was called
1266  * @line: Source code line where function was called
1267  * @func: Name of function where this function was called
1268  *
1269  * See object_class_dynamic_cast() for a description of the parameters
1270  * of this function.  The only difference in behavior is that this function
1271  * asserts instead of returning #NULL on failure if QOM cast debugging is
1272  * enabled.  This function is not meant to be called directly, but only through
1273  * the wrapper macro OBJECT_CLASS_CHECK.
1274  */
1275 ObjectClass *object_class_dynamic_cast_assert(ObjectClass *klass,
1276                                               const char *typename,
1277                                               const char *file, int line,
1278                                               const char *func);
1279 
1280 /**
1281  * object_class_dynamic_cast:
1282  * @klass: The #ObjectClass to attempt to cast.
1283  * @typename: The QOM typename of the class to cast to.
1284  *
1285  * Returns: If @typename is a class, this function returns @klass if
1286  * @typename is a subtype of @klass, else returns #NULL.
1287  *
1288  * If @typename is an interface, this function returns the interface
1289  * definition for @klass if @klass implements it unambiguously; #NULL
1290  * is returned if @klass does not implement the interface or if multiple
1291  * classes or interfaces on the hierarchy leading to @klass implement
1292  * it.  (FIXME: perhaps this can be detected at type definition time?)
1293  */
1294 ObjectClass *object_class_dynamic_cast(ObjectClass *klass,
1295                                        const char *typename);
1296 
1297 /**
1298  * object_class_get_parent:
1299  * @klass: The class to obtain the parent for.
1300  *
1301  * Returns: The parent for @klass or %NULL if none.
1302  */
1303 ObjectClass *object_class_get_parent(ObjectClass *klass);
1304 
1305 /**
1306  * object_class_get_name:
1307  * @klass: The class to obtain the QOM typename for.
1308  *
1309  * Returns: The QOM typename for @klass.
1310  */
1311 const char *object_class_get_name(ObjectClass *klass);
1312 
1313 /**
1314  * object_class_is_abstract:
1315  * @klass: The class to obtain the abstractness for.
1316  *
1317  * Returns: %true if @klass is abstract, %false otherwise.
1318  */
1319 bool object_class_is_abstract(ObjectClass *klass);
1320 
1321 /**
1322  * object_class_by_name:
1323  * @typename: The QOM typename to obtain the class for.
1324  *
1325  * Returns: The class for @typename or %NULL if not found.
1326  */
1327 ObjectClass *object_class_by_name(const char *typename);
1328 
1329 /**
1330  * module_object_class_by_name:
1331  * @typename: The QOM typename to obtain the class for.
1332  *
1333  * For objects which might be provided by a module.  Behaves like
1334  * object_class_by_name, but additionally tries to load the module
1335  * needed in case the class is not available.
1336  *
1337  * Returns: The class for @typename or %NULL if not found.
1338  */
1339 ObjectClass *module_object_class_by_name(const char *typename);
1340 
1341 void object_class_foreach(void (*fn)(ObjectClass *klass, void *opaque),
1342                           const char *implements_type, bool include_abstract,
1343                           void *opaque);
1344 
1345 /**
1346  * object_class_get_list:
1347  * @implements_type: The type to filter for, including its derivatives.
1348  * @include_abstract: Whether to include abstract classes.
1349  *
1350  * Returns: A singly-linked list of the classes in reverse hashtable order.
1351  */
1352 GSList *object_class_get_list(const char *implements_type,
1353                               bool include_abstract);
1354 
1355 /**
1356  * object_class_get_list_sorted:
1357  * @implements_type: The type to filter for, including its derivatives.
1358  * @include_abstract: Whether to include abstract classes.
1359  *
1360  * Returns: A singly-linked list of the classes in alphabetical
1361  * case-insensitive order.
1362  */
1363 GSList *object_class_get_list_sorted(const char *implements_type,
1364                               bool include_abstract);
1365 
1366 /**
1367  * object_ref:
1368  * @obj: the object
1369  *
1370  * Increase the reference count of a object.  A object cannot be freed as long
1371  * as its reference count is greater than zero.
1372  * Returns: @obj
1373  */
1374 Object *object_ref(void *obj);
1375 
1376 /**
1377  * object_unref:
1378  * @obj: the object
1379  *
1380  * Decrease the reference count of a object.  A object cannot be freed as long
1381  * as its reference count is greater than zero.
1382  */
1383 void object_unref(void *obj);
1384 
1385 /**
1386  * object_property_try_add:
1387  * @obj: the object to add a property to
1388  * @name: the name of the property.  This can contain any character except for
1389  *  a forward slash.  In general, you should use hyphens '-' instead of
1390  *  underscores '_' when naming properties.
1391  * @type: the type name of the property.  This namespace is pretty loosely
1392  *   defined.  Sub namespaces are constructed by using a prefix and then
1393  *   to angle brackets.  For instance, the type 'virtio-net-pci' in the
1394  *   'link' namespace would be 'link<virtio-net-pci>'.
1395  * @get: The getter to be called to read a property.  If this is NULL, then
1396  *   the property cannot be read.
1397  * @set: the setter to be called to write a property.  If this is NULL,
1398  *   then the property cannot be written.
1399  * @release: called when the property is removed from the object.  This is
1400  *   meant to allow a property to free its opaque upon object
1401  *   destruction.  This may be NULL.
1402  * @opaque: an opaque pointer to pass to the callbacks for the property
1403  * @errp: pointer to error object
1404  *
1405  * Returns: The #ObjectProperty; this can be used to set the @resolve
1406  * callback for child and link properties.
1407  */
1408 ObjectProperty *object_property_try_add(Object *obj, const char *name,
1409                                         const char *type,
1410                                         ObjectPropertyAccessor *get,
1411                                         ObjectPropertyAccessor *set,
1412                                         ObjectPropertyRelease *release,
1413                                         void *opaque, Error **errp);
1414 
1415 /**
1416  * object_property_add:
1417  * Same as object_property_try_add() with @errp hardcoded to
1418  * &error_abort.
1419  *
1420  * @obj: the object to add a property to
1421  * @name: the name of the property.  This can contain any character except for
1422  *  a forward slash.  In general, you should use hyphens '-' instead of
1423  *  underscores '_' when naming properties.
1424  * @type: the type name of the property.  This namespace is pretty loosely
1425  *   defined.  Sub namespaces are constructed by using a prefix and then
1426  *   to angle brackets.  For instance, the type 'virtio-net-pci' in the
1427  *   'link' namespace would be 'link<virtio-net-pci>'.
1428  * @get: The getter to be called to read a property.  If this is NULL, then
1429  *   the property cannot be read.
1430  * @set: the setter to be called to write a property.  If this is NULL,
1431  *   then the property cannot be written.
1432  * @release: called when the property is removed from the object.  This is
1433  *   meant to allow a property to free its opaque upon object
1434  *   destruction.  This may be NULL.
1435  * @opaque: an opaque pointer to pass to the callbacks for the property
1436  */
1437 ObjectProperty *object_property_add(Object *obj, const char *name,
1438                                     const char *type,
1439                                     ObjectPropertyAccessor *get,
1440                                     ObjectPropertyAccessor *set,
1441                                     ObjectPropertyRelease *release,
1442                                     void *opaque);
1443 
1444 void object_property_del(Object *obj, const char *name);
1445 
1446 ObjectProperty *object_class_property_add(ObjectClass *klass, const char *name,
1447                                           const char *type,
1448                                           ObjectPropertyAccessor *get,
1449                                           ObjectPropertyAccessor *set,
1450                                           ObjectPropertyRelease *release,
1451                                           void *opaque);
1452 
1453 /**
1454  * object_property_set_default_bool:
1455  * @prop: the property to set
1456  * @value: the value to be written to the property
1457  *
1458  * Set the property default value.
1459  */
1460 void object_property_set_default_bool(ObjectProperty *prop, bool value);
1461 
1462 /**
1463  * object_property_set_default_str:
1464  * @prop: the property to set
1465  * @value: the value to be written to the property
1466  *
1467  * Set the property default value.
1468  */
1469 void object_property_set_default_str(ObjectProperty *prop, const char *value);
1470 
1471 /**
1472  * object_property_set_default_int:
1473  * @prop: the property to set
1474  * @value: the value to be written to the property
1475  *
1476  * Set the property default value.
1477  */
1478 void object_property_set_default_int(ObjectProperty *prop, int64_t value);
1479 
1480 /**
1481  * object_property_set_default_uint:
1482  * @prop: the property to set
1483  * @value: the value to be written to the property
1484  *
1485  * Set the property default value.
1486  */
1487 void object_property_set_default_uint(ObjectProperty *prop, uint64_t value);
1488 
1489 /**
1490  * object_property_find:
1491  * @obj: the object
1492  * @name: the name of the property
1493  *
1494  * Look up a property for an object.
1495  *
1496  * Return its #ObjectProperty if found, or NULL.
1497  */
1498 ObjectProperty *object_property_find(Object *obj, const char *name);
1499 
1500 /**
1501  * object_property_find_err:
1502  * @obj: the object
1503  * @name: the name of the property
1504  * @errp: returns an error if this function fails
1505  *
1506  * Look up a property for an object.
1507  *
1508  * Return its #ObjectProperty if found, or NULL.
1509  */
1510 ObjectProperty *object_property_find_err(Object *obj,
1511                                          const char *name,
1512                                          Error **errp);
1513 
1514 /**
1515  * object_class_property_find:
1516  * @klass: the object class
1517  * @name: the name of the property
1518  *
1519  * Look up a property for an object class.
1520  *
1521  * Return its #ObjectProperty if found, or NULL.
1522  */
1523 ObjectProperty *object_class_property_find(ObjectClass *klass,
1524                                            const char *name);
1525 
1526 /**
1527  * object_class_property_find_err:
1528  * @klass: the object class
1529  * @name: the name of the property
1530  * @errp: returns an error if this function fails
1531  *
1532  * Look up a property for an object class.
1533  *
1534  * Return its #ObjectProperty if found, or NULL.
1535  */
1536 ObjectProperty *object_class_property_find_err(ObjectClass *klass,
1537                                                const char *name,
1538                                                Error **errp);
1539 
1540 typedef struct ObjectPropertyIterator {
1541     ObjectClass *nextclass;
1542     GHashTableIter iter;
1543 } ObjectPropertyIterator;
1544 
1545 /**
1546  * object_property_iter_init:
1547  * @iter: the iterator instance
1548  * @obj: the object
1549  *
1550  * Initializes an iterator for traversing all properties
1551  * registered against an object instance, its class and all parent classes.
1552  *
1553  * It is forbidden to modify the property list while iterating,
1554  * whether removing or adding properties.
1555  *
1556  * Typical usage pattern would be
1557  *
1558  * <example>
1559  *   <title>Using object property iterators</title>
1560  *   <programlisting>
1561  *   ObjectProperty *prop;
1562  *   ObjectPropertyIterator iter;
1563  *
1564  *   object_property_iter_init(&iter, obj);
1565  *   while ((prop = object_property_iter_next(&iter))) {
1566  *     ... do something with prop ...
1567  *   }
1568  *   </programlisting>
1569  * </example>
1570  */
1571 void object_property_iter_init(ObjectPropertyIterator *iter,
1572                                Object *obj);
1573 
1574 /**
1575  * object_class_property_iter_init:
1576  * @iter: the iterator instance
1577  * @klass: the class
1578  *
1579  * Initializes an iterator for traversing all properties
1580  * registered against an object class and all parent classes.
1581  *
1582  * It is forbidden to modify the property list while iterating,
1583  * whether removing or adding properties.
1584  *
1585  * This can be used on abstract classes as it does not create a temporary
1586  * instance.
1587  */
1588 void object_class_property_iter_init(ObjectPropertyIterator *iter,
1589                                      ObjectClass *klass);
1590 
1591 /**
1592  * object_property_iter_next:
1593  * @iter: the iterator instance
1594  *
1595  * Return the next available property. If no further properties
1596  * are available, a %NULL value will be returned and the @iter
1597  * pointer should not be used again after this point without
1598  * re-initializing it.
1599  *
1600  * Returns: the next property, or %NULL when all properties
1601  * have been traversed.
1602  */
1603 ObjectProperty *object_property_iter_next(ObjectPropertyIterator *iter);
1604 
1605 void object_unparent(Object *obj);
1606 
1607 /**
1608  * object_property_get:
1609  * @obj: the object
1610  * @name: the name of the property
1611  * @v: the visitor that will receive the property value.  This should be an
1612  *   Output visitor and the data will be written with @name as the name.
1613  * @errp: returns an error if this function fails
1614  *
1615  * Reads a property from a object.
1616  *
1617  * Returns: %true on success, %false on failure.
1618  */
1619 bool object_property_get(Object *obj, const char *name, Visitor *v,
1620                          Error **errp);
1621 
1622 /**
1623  * object_property_set_str:
1624  * @obj: the object
1625  * @name: the name of the property
1626  * @value: the value to be written to the property
1627  * @errp: returns an error if this function fails
1628  *
1629  * Writes a string value to a property.
1630  *
1631  * Returns: %true on success, %false on failure.
1632  */
1633 bool object_property_set_str(Object *obj, const char *name,
1634                              const char *value, Error **errp);
1635 
1636 /**
1637  * object_property_get_str:
1638  * @obj: the object
1639  * @name: the name of the property
1640  * @errp: returns an error if this function fails
1641  *
1642  * Returns: the value of the property, converted to a C string, or NULL if
1643  * an error occurs (including when the property value is not a string).
1644  * The caller should free the string.
1645  */
1646 char *object_property_get_str(Object *obj, const char *name,
1647                               Error **errp);
1648 
1649 /**
1650  * object_property_set_link:
1651  * @obj: the object
1652  * @name: the name of the property
1653  * @value: the value to be written to the property
1654  * @errp: returns an error if this function fails
1655  *
1656  * Writes an object's canonical path to a property.
1657  *
1658  * If the link property was created with
1659  * <code>OBJ_PROP_LINK_STRONG</code> bit, the old target object is
1660  * unreferenced, and a reference is added to the new target object.
1661  *
1662  * Returns: %true on success, %false on failure.
1663  */
1664 bool object_property_set_link(Object *obj, const char *name,
1665                               Object *value, Error **errp);
1666 
1667 /**
1668  * object_property_get_link:
1669  * @obj: the object
1670  * @name: the name of the property
1671  * @errp: returns an error if this function fails
1672  *
1673  * Returns: the value of the property, resolved from a path to an Object,
1674  * or NULL if an error occurs (including when the property value is not a
1675  * string or not a valid object path).
1676  */
1677 Object *object_property_get_link(Object *obj, const char *name,
1678                                  Error **errp);
1679 
1680 /**
1681  * object_property_set_bool:
1682  * @obj: the object
1683  * @name: the name of the property
1684  * @value: the value to be written to the property
1685  * @errp: returns an error if this function fails
1686  *
1687  * Writes a bool value to a property.
1688  *
1689  * Returns: %true on success, %false on failure.
1690  */
1691 bool object_property_set_bool(Object *obj, const char *name,
1692                               bool value, Error **errp);
1693 
1694 /**
1695  * object_property_get_bool:
1696  * @obj: the object
1697  * @name: the name of the property
1698  * @errp: returns an error if this function fails
1699  *
1700  * Returns: the value of the property, converted to a boolean, or false if
1701  * an error occurs (including when the property value is not a bool).
1702  */
1703 bool object_property_get_bool(Object *obj, const char *name,
1704                               Error **errp);
1705 
1706 /**
1707  * object_property_set_int:
1708  * @obj: the object
1709  * @name: the name of the property
1710  * @value: the value to be written to the property
1711  * @errp: returns an error if this function fails
1712  *
1713  * Writes an integer value to a property.
1714  *
1715  * Returns: %true on success, %false on failure.
1716  */
1717 bool object_property_set_int(Object *obj, const char *name,
1718                              int64_t value, Error **errp);
1719 
1720 /**
1721  * object_property_get_int:
1722  * @obj: the object
1723  * @name: the name of the property
1724  * @errp: returns an error if this function fails
1725  *
1726  * Returns: the value of the property, converted to an integer, or -1 if
1727  * an error occurs (including when the property value is not an integer).
1728  */
1729 int64_t object_property_get_int(Object *obj, const char *name,
1730                                 Error **errp);
1731 
1732 /**
1733  * object_property_set_uint:
1734  * @obj: the object
1735  * @name: the name of the property
1736  * @value: the value to be written to the property
1737  * @errp: returns an error if this function fails
1738  *
1739  * Writes an unsigned integer value to a property.
1740  *
1741  * Returns: %true on success, %false on failure.
1742  */
1743 bool object_property_set_uint(Object *obj, const char *name,
1744                               uint64_t value, Error **errp);
1745 
1746 /**
1747  * object_property_get_uint:
1748  * @obj: the object
1749  * @name: the name of the property
1750  * @errp: returns an error if this function fails
1751  *
1752  * Returns: the value of the property, converted to an unsigned integer, or 0
1753  * an error occurs (including when the property value is not an integer).
1754  */
1755 uint64_t object_property_get_uint(Object *obj, const char *name,
1756                                   Error **errp);
1757 
1758 /**
1759  * object_property_get_enum:
1760  * @obj: the object
1761  * @name: the name of the property
1762  * @typename: the name of the enum data type
1763  * @errp: returns an error if this function fails
1764  *
1765  * Returns: the value of the property, converted to an integer (which
1766  * can't be negative), or -1 on error (including when the property
1767  * value is not an enum).
1768  */
1769 int object_property_get_enum(Object *obj, const char *name,
1770                              const char *typename, Error **errp);
1771 
1772 /**
1773  * object_property_set:
1774  * @obj: the object
1775  * @name: the name of the property
1776  * @v: the visitor that will be used to write the property value.  This should
1777  *   be an Input visitor and the data will be first read with @name as the
1778  *   name and then written as the property value.
1779  * @errp: returns an error if this function fails
1780  *
1781  * Writes a property to a object.
1782  *
1783  * Returns: %true on success, %false on failure.
1784  */
1785 bool object_property_set(Object *obj, const char *name, Visitor *v,
1786                          Error **errp);
1787 
1788 /**
1789  * object_property_parse:
1790  * @obj: the object
1791  * @name: the name of the property
1792  * @string: the string that will be used to parse the property value.
1793  * @errp: returns an error if this function fails
1794  *
1795  * Parses a string and writes the result into a property of an object.
1796  *
1797  * Returns: %true on success, %false on failure.
1798  */
1799 bool object_property_parse(Object *obj, const char *name,
1800                            const char *string, Error **errp);
1801 
1802 /**
1803  * object_property_print:
1804  * @obj: the object
1805  * @name: the name of the property
1806  * @human: if true, print for human consumption
1807  * @errp: returns an error if this function fails
1808  *
1809  * Returns a string representation of the value of the property.  The
1810  * caller shall free the string.
1811  */
1812 char *object_property_print(Object *obj, const char *name, bool human,
1813                             Error **errp);
1814 
1815 /**
1816  * object_property_get_type:
1817  * @obj: the object
1818  * @name: the name of the property
1819  * @errp: returns an error if this function fails
1820  *
1821  * Returns:  The type name of the property.
1822  */
1823 const char *object_property_get_type(Object *obj, const char *name,
1824                                      Error **errp);
1825 
1826 /**
1827  * object_get_root:
1828  *
1829  * Returns: the root object of the composition tree
1830  */
1831 Object *object_get_root(void);
1832 
1833 
1834 /**
1835  * object_get_objects_root:
1836  *
1837  * Get the container object that holds user created
1838  * object instances. This is the object at path
1839  * "/objects"
1840  *
1841  * Returns: the user object container
1842  */
1843 Object *object_get_objects_root(void);
1844 
1845 /**
1846  * object_get_internal_root:
1847  *
1848  * Get the container object that holds internally used object
1849  * instances.  Any object which is put into this container must not be
1850  * user visible, and it will not be exposed in the QOM tree.
1851  *
1852  * Returns: the internal object container
1853  */
1854 Object *object_get_internal_root(void);
1855 
1856 /**
1857  * object_get_canonical_path_component:
1858  * @obj: the object
1859  *
1860  * Returns: The final component in the object's canonical path.  The canonical
1861  * path is the path within the composition tree starting from the root.
1862  * %NULL if the object doesn't have a parent (and thus a canonical path).
1863  */
1864 const char *object_get_canonical_path_component(const Object *obj);
1865 
1866 /**
1867  * object_get_canonical_path:
1868  * @obj: the object
1869  *
1870  * Returns: The canonical path for a object, newly allocated.  This is
1871  * the path within the composition tree starting from the root.  Use
1872  * g_free() to free it.
1873  */
1874 char *object_get_canonical_path(const Object *obj);
1875 
1876 /**
1877  * object_resolve_path:
1878  * @path: the path to resolve
1879  * @ambiguous: returns true if the path resolution failed because of an
1880  *   ambiguous match
1881  *
1882  * There are two types of supported paths--absolute paths and partial paths.
1883  *
1884  * Absolute paths are derived from the root object and can follow child<> or
1885  * link<> properties.  Since they can follow link<> properties, they can be
1886  * arbitrarily long.  Absolute paths look like absolute filenames and are
1887  * prefixed with a leading slash.
1888  *
1889  * Partial paths look like relative filenames.  They do not begin with a
1890  * prefix.  The matching rules for partial paths are subtle but designed to make
1891  * specifying objects easy.  At each level of the composition tree, the partial
1892  * path is matched as an absolute path.  The first match is not returned.  At
1893  * least two matches are searched for.  A successful result is only returned if
1894  * only one match is found.  If more than one match is found, a flag is
1895  * returned to indicate that the match was ambiguous.
1896  *
1897  * Returns: The matched object or NULL on path lookup failure.
1898  */
1899 Object *object_resolve_path(const char *path, bool *ambiguous);
1900 
1901 /**
1902  * object_resolve_path_type:
1903  * @path: the path to resolve
1904  * @typename: the type to look for.
1905  * @ambiguous: returns true if the path resolution failed because of an
1906  *   ambiguous match
1907  *
1908  * This is similar to object_resolve_path.  However, when looking for a
1909  * partial path only matches that implement the given type are considered.
1910  * This restricts the search and avoids spuriously flagging matches as
1911  * ambiguous.
1912  *
1913  * For both partial and absolute paths, the return value goes through
1914  * a dynamic cast to @typename.  This is important if either the link,
1915  * or the typename itself are of interface types.
1916  *
1917  * Returns: The matched object or NULL on path lookup failure.
1918  */
1919 Object *object_resolve_path_type(const char *path, const char *typename,
1920                                  bool *ambiguous);
1921 
1922 /**
1923  * object_resolve_path_component:
1924  * @parent: the object in which to resolve the path
1925  * @part: the component to resolve.
1926  *
1927  * This is similar to object_resolve_path with an absolute path, but it
1928  * only resolves one element (@part) and takes the others from @parent.
1929  *
1930  * Returns: The resolved object or NULL on path lookup failure.
1931  */
1932 Object *object_resolve_path_component(Object *parent, const char *part);
1933 
1934 /**
1935  * object_property_try_add_child:
1936  * @obj: the object to add a property to
1937  * @name: the name of the property
1938  * @child: the child object
1939  * @errp: pointer to error object
1940  *
1941  * Child properties form the composition tree.  All objects need to be a child
1942  * of another object.  Objects can only be a child of one object.
1943  *
1944  * There is no way for a child to determine what its parent is.  It is not
1945  * a bidirectional relationship.  This is by design.
1946  *
1947  * The value of a child property as a C string will be the child object's
1948  * canonical path. It can be retrieved using object_property_get_str().
1949  * The child object itself can be retrieved using object_property_get_link().
1950  *
1951  * Returns: The newly added property on success, or %NULL on failure.
1952  */
1953 ObjectProperty *object_property_try_add_child(Object *obj, const char *name,
1954                                               Object *child, Error **errp);
1955 
1956 /**
1957  * object_property_add_child:
1958  * @obj: the object to add a property to
1959  * @name: the name of the property
1960  * @child: the child object
1961  *
1962  * Same as object_property_try_add_child() with @errp hardcoded to
1963  * &error_abort
1964  */
1965 ObjectProperty *object_property_add_child(Object *obj, const char *name,
1966                                           Object *child);
1967 
1968 typedef enum {
1969     /* Unref the link pointer when the property is deleted */
1970     OBJ_PROP_LINK_STRONG = 0x1,
1971 
1972     /* private */
1973     OBJ_PROP_LINK_DIRECT = 0x2,
1974     OBJ_PROP_LINK_CLASS = 0x4,
1975 } ObjectPropertyLinkFlags;
1976 
1977 /**
1978  * object_property_allow_set_link:
1979  * @obj: the object to add a property to
1980  * @name: the name of the property
1981  * @child: the child object
1982  * @errp: pointer to error object
1983  *
1984  * The default implementation of the object_property_add_link() check()
1985  * callback function.  It allows the link property to be set and never returns
1986  * an error.
1987  */
1988 void object_property_allow_set_link(const Object *obj, const char *name,
1989                                     Object *child, Error **errp);
1990 
1991 /**
1992  * object_property_add_link:
1993  * @obj: the object to add a property to
1994  * @name: the name of the property
1995  * @type: the qobj type of the link
1996  * @targetp: a pointer to where the link object reference is stored
1997  * @check: callback to veto setting or NULL if the property is read-only
1998  * @flags: additional options for the link
1999  *
2000  * Links establish relationships between objects.  Links are unidirectional
2001  * although two links can be combined to form a bidirectional relationship
2002  * between objects.
2003  *
2004  * Links form the graph in the object model.
2005  *
2006  * The <code>@check()</code> callback is invoked when
2007  * object_property_set_link() is called and can raise an error to prevent the
2008  * link being set.  If <code>@check</code> is NULL, the property is read-only
2009  * and cannot be set.
2010  *
2011  * Ownership of the pointer that @child points to is transferred to the
2012  * link property.  The reference count for <code>*@child</code> is
2013  * managed by the property from after the function returns till the
2014  * property is deleted with object_property_del().  If the
2015  * <code>@flags</code> <code>OBJ_PROP_LINK_STRONG</code> bit is set,
2016  * the reference count is decremented when the property is deleted or
2017  * modified.
2018  *
2019  * Returns: The newly added property on success, or %NULL on failure.
2020  */
2021 ObjectProperty *object_property_add_link(Object *obj, const char *name,
2022                               const char *type, Object **targetp,
2023                               void (*check)(const Object *obj, const char *name,
2024                                             Object *val, Error **errp),
2025                               ObjectPropertyLinkFlags flags);
2026 
2027 ObjectProperty *object_class_property_add_link(ObjectClass *oc,
2028                               const char *name,
2029                               const char *type, ptrdiff_t offset,
2030                               void (*check)(const Object *obj, const char *name,
2031                                             Object *val, Error **errp),
2032                               ObjectPropertyLinkFlags flags);
2033 
2034 /**
2035  * object_property_add_str:
2036  * @obj: the object to add a property to
2037  * @name: the name of the property
2038  * @get: the getter or NULL if the property is write-only.  This function must
2039  *   return a string to be freed by g_free().
2040  * @set: the setter or NULL if the property is read-only
2041  *
2042  * Add a string property using getters/setters.  This function will add a
2043  * property of type 'string'.
2044  *
2045  * Returns: The newly added property on success, or %NULL on failure.
2046  */
2047 ObjectProperty *object_property_add_str(Object *obj, const char *name,
2048                              char *(*get)(Object *, Error **),
2049                              void (*set)(Object *, const char *, Error **));
2050 
2051 ObjectProperty *object_class_property_add_str(ObjectClass *klass,
2052                                    const char *name,
2053                                    char *(*get)(Object *, Error **),
2054                                    void (*set)(Object *, const char *,
2055                                                Error **));
2056 
2057 /**
2058  * object_property_add_bool:
2059  * @obj: the object to add a property to
2060  * @name: the name of the property
2061  * @get: the getter or NULL if the property is write-only.
2062  * @set: the setter or NULL if the property is read-only
2063  *
2064  * Add a bool property using getters/setters.  This function will add a
2065  * property of type 'bool'.
2066  *
2067  * Returns: The newly added property on success, or %NULL on failure.
2068  */
2069 ObjectProperty *object_property_add_bool(Object *obj, const char *name,
2070                               bool (*get)(Object *, Error **),
2071                               void (*set)(Object *, bool, Error **));
2072 
2073 ObjectProperty *object_class_property_add_bool(ObjectClass *klass,
2074                                     const char *name,
2075                                     bool (*get)(Object *, Error **),
2076                                     void (*set)(Object *, bool, Error **));
2077 
2078 /**
2079  * object_property_add_enum:
2080  * @obj: the object to add a property to
2081  * @name: the name of the property
2082  * @typename: the name of the enum data type
2083  * @lookup: enum value namelookup table
2084  * @get: the getter or %NULL if the property is write-only.
2085  * @set: the setter or %NULL if the property is read-only
2086  *
2087  * Add an enum property using getters/setters.  This function will add a
2088  * property of type '@typename'.
2089  *
2090  * Returns: The newly added property on success, or %NULL on failure.
2091  */
2092 ObjectProperty *object_property_add_enum(Object *obj, const char *name,
2093                               const char *typename,
2094                               const QEnumLookup *lookup,
2095                               int (*get)(Object *, Error **),
2096                               void (*set)(Object *, int, Error **));
2097 
2098 ObjectProperty *object_class_property_add_enum(ObjectClass *klass,
2099                                     const char *name,
2100                                     const char *typename,
2101                                     const QEnumLookup *lookup,
2102                                     int (*get)(Object *, Error **),
2103                                     void (*set)(Object *, int, Error **));
2104 
2105 /**
2106  * object_property_add_tm:
2107  * @obj: the object to add a property to
2108  * @name: the name of the property
2109  * @get: the getter or NULL if the property is write-only.
2110  *
2111  * Add a read-only struct tm valued property using a getter function.
2112  * This function will add a property of type 'struct tm'.
2113  *
2114  * Returns: The newly added property on success, or %NULL on failure.
2115  */
2116 ObjectProperty *object_property_add_tm(Object *obj, const char *name,
2117                             void (*get)(Object *, struct tm *, Error **));
2118 
2119 ObjectProperty *object_class_property_add_tm(ObjectClass *klass,
2120                             const char *name,
2121                             void (*get)(Object *, struct tm *, Error **));
2122 
2123 typedef enum {
2124     /* Automatically add a getter to the property */
2125     OBJ_PROP_FLAG_READ = 1 << 0,
2126     /* Automatically add a setter to the property */
2127     OBJ_PROP_FLAG_WRITE = 1 << 1,
2128     /* Automatically add a getter and a setter to the property */
2129     OBJ_PROP_FLAG_READWRITE = (OBJ_PROP_FLAG_READ | OBJ_PROP_FLAG_WRITE),
2130 } ObjectPropertyFlags;
2131 
2132 /**
2133  * object_property_add_uint8_ptr:
2134  * @obj: the object to add a property to
2135  * @name: the name of the property
2136  * @v: pointer to value
2137  * @flags: bitwise-or'd ObjectPropertyFlags
2138  *
2139  * Add an integer property in memory.  This function will add a
2140  * property of type 'uint8'.
2141  *
2142  * Returns: The newly added property on success, or %NULL on failure.
2143  */
2144 ObjectProperty *object_property_add_uint8_ptr(Object *obj, const char *name,
2145                                               const uint8_t *v,
2146                                               ObjectPropertyFlags flags);
2147 
2148 ObjectProperty *object_class_property_add_uint8_ptr(ObjectClass *klass,
2149                                          const char *name,
2150                                          const uint8_t *v,
2151                                          ObjectPropertyFlags flags);
2152 
2153 /**
2154  * object_property_add_uint16_ptr:
2155  * @obj: the object to add a property to
2156  * @name: the name of the property
2157  * @v: pointer to value
2158  * @flags: bitwise-or'd ObjectPropertyFlags
2159  *
2160  * Add an integer property in memory.  This function will add a
2161  * property of type 'uint16'.
2162  *
2163  * Returns: The newly added property on success, or %NULL on failure.
2164  */
2165 ObjectProperty *object_property_add_uint16_ptr(Object *obj, const char *name,
2166                                     const uint16_t *v,
2167                                     ObjectPropertyFlags flags);
2168 
2169 ObjectProperty *object_class_property_add_uint16_ptr(ObjectClass *klass,
2170                                           const char *name,
2171                                           const uint16_t *v,
2172                                           ObjectPropertyFlags flags);
2173 
2174 /**
2175  * object_property_add_uint32_ptr:
2176  * @obj: the object to add a property to
2177  * @name: the name of the property
2178  * @v: pointer to value
2179  * @flags: bitwise-or'd ObjectPropertyFlags
2180  *
2181  * Add an integer property in memory.  This function will add a
2182  * property of type 'uint32'.
2183  *
2184  * Returns: The newly added property on success, or %NULL on failure.
2185  */
2186 ObjectProperty *object_property_add_uint32_ptr(Object *obj, const char *name,
2187                                     const uint32_t *v,
2188                                     ObjectPropertyFlags flags);
2189 
2190 ObjectProperty *object_class_property_add_uint32_ptr(ObjectClass *klass,
2191                                           const char *name,
2192                                           const uint32_t *v,
2193                                           ObjectPropertyFlags flags);
2194 
2195 /**
2196  * object_property_add_uint64_ptr:
2197  * @obj: the object to add a property to
2198  * @name: the name of the property
2199  * @v: pointer to value
2200  * @flags: bitwise-or'd ObjectPropertyFlags
2201  *
2202  * Add an integer property in memory.  This function will add a
2203  * property of type 'uint64'.
2204  *
2205  * Returns: The newly added property on success, or %NULL on failure.
2206  */
2207 ObjectProperty *object_property_add_uint64_ptr(Object *obj, const char *name,
2208                                     const uint64_t *v,
2209                                     ObjectPropertyFlags flags);
2210 
2211 ObjectProperty *object_class_property_add_uint64_ptr(ObjectClass *klass,
2212                                           const char *name,
2213                                           const uint64_t *v,
2214                                           ObjectPropertyFlags flags);
2215 
2216 /**
2217  * object_property_add_alias:
2218  * @obj: the object to add a property to
2219  * @name: the name of the property
2220  * @target_obj: the object to forward property access to
2221  * @target_name: the name of the property on the forwarded object
2222  *
2223  * Add an alias for a property on an object.  This function will add a property
2224  * of the same type as the forwarded property.
2225  *
2226  * The caller must ensure that <code>@target_obj</code> stays alive as long as
2227  * this property exists.  In the case of a child object or an alias on the same
2228  * object this will be the case.  For aliases to other objects the caller is
2229  * responsible for taking a reference.
2230  *
2231  * Returns: The newly added property on success, or %NULL on failure.
2232  */
2233 ObjectProperty *object_property_add_alias(Object *obj, const char *name,
2234                                Object *target_obj, const char *target_name);
2235 
2236 /**
2237  * object_property_add_const_link:
2238  * @obj: the object to add a property to
2239  * @name: the name of the property
2240  * @target: the object to be referred by the link
2241  *
2242  * Add an unmodifiable link for a property on an object.  This function will
2243  * add a property of type link<TYPE> where TYPE is the type of @target.
2244  *
2245  * The caller must ensure that @target stays alive as long as
2246  * this property exists.  In the case @target is a child of @obj,
2247  * this will be the case.  Otherwise, the caller is responsible for
2248  * taking a reference.
2249  *
2250  * Returns: The newly added property on success, or %NULL on failure.
2251  */
2252 ObjectProperty *object_property_add_const_link(Object *obj, const char *name,
2253                                                Object *target);
2254 
2255 /**
2256  * object_property_set_description:
2257  * @obj: the object owning the property
2258  * @name: the name of the property
2259  * @description: the description of the property on the object
2260  *
2261  * Set an object property's description.
2262  *
2263  * Returns: %true on success, %false on failure.
2264  */
2265 void object_property_set_description(Object *obj, const char *name,
2266                                      const char *description);
2267 void object_class_property_set_description(ObjectClass *klass, const char *name,
2268                                            const char *description);
2269 
2270 /**
2271  * object_child_foreach:
2272  * @obj: the object whose children will be navigated
2273  * @fn: the iterator function to be called
2274  * @opaque: an opaque value that will be passed to the iterator
2275  *
2276  * Call @fn passing each child of @obj and @opaque to it, until @fn returns
2277  * non-zero.
2278  *
2279  * It is forbidden to add or remove children from @obj from the @fn
2280  * callback.
2281  *
2282  * Returns: The last value returned by @fn, or 0 if there is no child.
2283  */
2284 int object_child_foreach(Object *obj, int (*fn)(Object *child, void *opaque),
2285                          void *opaque);
2286 
2287 /**
2288  * object_child_foreach_recursive:
2289  * @obj: the object whose children will be navigated
2290  * @fn: the iterator function to be called
2291  * @opaque: an opaque value that will be passed to the iterator
2292  *
2293  * Call @fn passing each child of @obj and @opaque to it, until @fn returns
2294  * non-zero. Calls recursively, all child nodes of @obj will also be passed
2295  * all the way down to the leaf nodes of the tree. Depth first ordering.
2296  *
2297  * It is forbidden to add or remove children from @obj (or its
2298  * child nodes) from the @fn callback.
2299  *
2300  * Returns: The last value returned by @fn, or 0 if there is no child.
2301  */
2302 int object_child_foreach_recursive(Object *obj,
2303                                    int (*fn)(Object *child, void *opaque),
2304                                    void *opaque);
2305 /**
2306  * container_get:
2307  * @root: root of the #path, e.g., object_get_root()
2308  * @path: path to the container
2309  *
2310  * Return a container object whose path is @path.  Create more containers
2311  * along the path if necessary.
2312  *
2313  * Returns: the container object.
2314  */
2315 Object *container_get(Object *root, const char *path);
2316 
2317 /**
2318  * object_type_get_instance_size:
2319  * @typename: Name of the Type whose instance_size is required
2320  *
2321  * Returns the instance_size of the given @typename.
2322  */
2323 size_t object_type_get_instance_size(const char *typename);
2324 
2325 /**
2326  * object_property_help:
2327  * @name: the name of the property
2328  * @type: the type of the property
2329  * @defval: the default value
2330  * @description: description of the property
2331  *
2332  * Returns: a user-friendly formatted string describing the property
2333  * for help purposes.
2334  */
2335 char *object_property_help(const char *name, const char *type,
2336                            QObject *defval, const char *description);
2337 
2338 G_DEFINE_AUTOPTR_CLEANUP_FUNC(Object, object_unref)
2339 
2340 #endif
2341