1 /* 2 * QEMU Object Model 3 * 4 * Copyright IBM, Corp. 2011 5 * 6 * Authors: 7 * Anthony Liguori <aliguori@us.ibm.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef QEMU_OBJECT_H 15 #define QEMU_OBJECT_H 16 17 #include "qapi/qapi-builtin-types.h" 18 #include "qemu/module.h" 19 #include "qom/object.h" 20 21 struct TypeImpl; 22 typedef struct TypeImpl *Type; 23 24 typedef struct TypeInfo TypeInfo; 25 26 typedef struct InterfaceClass InterfaceClass; 27 typedef struct InterfaceInfo InterfaceInfo; 28 29 #define TYPE_OBJECT "object" 30 31 /** 32 * DOC: 33 * 34 * .. highlight:: c 35 * 36 * The QEMU Object Model provides a framework for registering user creatable 37 * types and instantiating objects from those types. QOM provides the following 38 * features: 39 * 40 * - System for dynamically registering types 41 * - Support for single-inheritance of types 42 * - Multiple inheritance of stateless interfaces 43 * 44 * .. code-block:: c 45 * :caption: Creating a minimal type 46 * 47 * #include "qdev.h" 48 * 49 * #define TYPE_MY_DEVICE "my-device" 50 * 51 * // No new virtual functions: we can reuse the typedef for the 52 * // superclass. 53 * typedef DeviceClass MyDeviceClass; 54 * typedef struct MyDevice 55 * { 56 * DeviceState parent; 57 * 58 * int reg0, reg1, reg2; 59 * } MyDevice; 60 * 61 * static const TypeInfo my_device_info = { 62 * .name = TYPE_MY_DEVICE, 63 * .parent = TYPE_DEVICE, 64 * .instance_size = sizeof(MyDevice), 65 * }; 66 * 67 * static void my_device_register_types(void) 68 * { 69 * type_register_static(&my_device_info); 70 * } 71 * 72 * type_init(my_device_register_types) 73 * 74 * In the above example, we create a simple type that is described by #TypeInfo. 75 * #TypeInfo describes information about the type including what it inherits 76 * from, the instance and class size, and constructor/destructor hooks. 77 * 78 * Alternatively several static types could be registered using helper macro 79 * DEFINE_TYPES() 80 * 81 * .. code-block:: c 82 * 83 * static const TypeInfo device_types_info[] = { 84 * { 85 * .name = TYPE_MY_DEVICE_A, 86 * .parent = TYPE_DEVICE, 87 * .instance_size = sizeof(MyDeviceA), 88 * }, 89 * { 90 * .name = TYPE_MY_DEVICE_B, 91 * .parent = TYPE_DEVICE, 92 * .instance_size = sizeof(MyDeviceB), 93 * }, 94 * }; 95 * 96 * DEFINE_TYPES(device_types_info) 97 * 98 * Every type has an #ObjectClass associated with it. #ObjectClass derivatives 99 * are instantiated dynamically but there is only ever one instance for any 100 * given type. The #ObjectClass typically holds a table of function pointers 101 * for the virtual methods implemented by this type. 102 * 103 * Using object_new(), a new #Object derivative will be instantiated. You can 104 * cast an #Object to a subclass (or base-class) type using 105 * object_dynamic_cast(). You typically want to define macro wrappers around 106 * OBJECT_CHECK() and OBJECT_CLASS_CHECK() to make it easier to convert to a 107 * specific type: 108 * 109 * .. kernel-doc messes up with the code block below because of the 110 * backslash at the end of lines. This will be fixes if we move this 111 * content to qom.rst. 112 * 113 * .. code-block:: c 114 * :caption: Typecasting macros 115 * 116 * #define MY_DEVICE_GET_CLASS(obj) \ 117 * OBJECT_GET_CLASS(MyDeviceClass, obj, TYPE_MY_DEVICE) 118 * #define MY_DEVICE_CLASS(klass) \ 119 * OBJECT_CLASS_CHECK(MyDeviceClass, klass, TYPE_MY_DEVICE) 120 * #define MY_DEVICE(obj) \ 121 * OBJECT_CHECK(MyDevice, obj, TYPE_MY_DEVICE) 122 * 123 * Class Initialization 124 * ==================== 125 * 126 * Before an object is initialized, the class for the object must be 127 * initialized. There is only one class object for all instance objects 128 * that is created lazily. 129 * 130 * Classes are initialized by first initializing any parent classes (if 131 * necessary). After the parent class object has initialized, it will be 132 * copied into the current class object and any additional storage in the 133 * class object is zero filled. 134 * 135 * The effect of this is that classes automatically inherit any virtual 136 * function pointers that the parent class has already initialized. All 137 * other fields will be zero filled. 138 * 139 * Once all of the parent classes have been initialized, #TypeInfo::class_init 140 * is called to let the class being instantiated provide default initialize for 141 * its virtual functions. Here is how the above example might be modified 142 * to introduce an overridden virtual function: 143 * 144 * .. code-block:: c 145 * :caption: Overriding a virtual function 146 * 147 * #include "qdev.h" 148 * 149 * void my_device_class_init(ObjectClass *klass, void *class_data) 150 * { 151 * DeviceClass *dc = DEVICE_CLASS(klass); 152 * dc->reset = my_device_reset; 153 * } 154 * 155 * static const TypeInfo my_device_info = { 156 * .name = TYPE_MY_DEVICE, 157 * .parent = TYPE_DEVICE, 158 * .instance_size = sizeof(MyDevice), 159 * .class_init = my_device_class_init, 160 * }; 161 * 162 * Introducing new virtual methods requires a class to define its own 163 * struct and to add a .class_size member to the #TypeInfo. Each method 164 * will also have a wrapper function to call it easily: 165 * 166 * .. code-block:: c 167 * :caption: Defining an abstract class 168 * 169 * #include "qdev.h" 170 * 171 * typedef struct MyDeviceClass 172 * { 173 * DeviceClass parent; 174 * 175 * void (*frobnicate) (MyDevice *obj); 176 * } MyDeviceClass; 177 * 178 * static const TypeInfo my_device_info = { 179 * .name = TYPE_MY_DEVICE, 180 * .parent = TYPE_DEVICE, 181 * .instance_size = sizeof(MyDevice), 182 * .abstract = true, // or set a default in my_device_class_init 183 * .class_size = sizeof(MyDeviceClass), 184 * }; 185 * 186 * void my_device_frobnicate(MyDevice *obj) 187 * { 188 * MyDeviceClass *klass = MY_DEVICE_GET_CLASS(obj); 189 * 190 * klass->frobnicate(obj); 191 * } 192 * 193 * Interfaces 194 * ========== 195 * 196 * Interfaces allow a limited form of multiple inheritance. Instances are 197 * similar to normal types except for the fact that are only defined by 198 * their classes and never carry any state. As a consequence, a pointer to 199 * an interface instance should always be of incomplete type in order to be 200 * sure it cannot be dereferenced. That is, you should define the 201 * 'typedef struct SomethingIf SomethingIf' so that you can pass around 202 * ``SomethingIf *si`` arguments, but not define a ``struct SomethingIf { ... }``. 203 * The only things you can validly do with a ``SomethingIf *`` are to pass it as 204 * an argument to a method on its corresponding SomethingIfClass, or to 205 * dynamically cast it to an object that implements the interface. 206 * 207 * Methods 208 * ======= 209 * 210 * A <emphasis>method</emphasis> is a function within the namespace scope of 211 * a class. It usually operates on the object instance by passing it as a 212 * strongly-typed first argument. 213 * If it does not operate on an object instance, it is dubbed 214 * <emphasis>class method</emphasis>. 215 * 216 * Methods cannot be overloaded. That is, the #ObjectClass and method name 217 * uniquely identity the function to be called; the signature does not vary 218 * except for trailing varargs. 219 * 220 * Methods are always <emphasis>virtual</emphasis>. Overriding a method in 221 * #TypeInfo.class_init of a subclass leads to any user of the class obtained 222 * via OBJECT_GET_CLASS() accessing the overridden function. 223 * The original function is not automatically invoked. It is the responsibility 224 * of the overriding class to determine whether and when to invoke the method 225 * being overridden. 226 * 227 * To invoke the method being overridden, the preferred solution is to store 228 * the original value in the overriding class before overriding the method. 229 * This corresponds to ``{super,base}.method(...)`` in Java and C# 230 * respectively; this frees the overriding class from hardcoding its parent 231 * class, which someone might choose to change at some point. 232 * 233 * .. code-block:: c 234 * :caption: Overriding a virtual method 235 * 236 * typedef struct MyState MyState; 237 * 238 * typedef void (*MyDoSomething)(MyState *obj); 239 * 240 * typedef struct MyClass { 241 * ObjectClass parent_class; 242 * 243 * MyDoSomething do_something; 244 * } MyClass; 245 * 246 * static void my_do_something(MyState *obj) 247 * { 248 * // do something 249 * } 250 * 251 * static void my_class_init(ObjectClass *oc, void *data) 252 * { 253 * MyClass *mc = MY_CLASS(oc); 254 * 255 * mc->do_something = my_do_something; 256 * } 257 * 258 * static const TypeInfo my_type_info = { 259 * .name = TYPE_MY, 260 * .parent = TYPE_OBJECT, 261 * .instance_size = sizeof(MyState), 262 * .class_size = sizeof(MyClass), 263 * .class_init = my_class_init, 264 * }; 265 * 266 * typedef struct DerivedClass { 267 * MyClass parent_class; 268 * 269 * MyDoSomething parent_do_something; 270 * } DerivedClass; 271 * 272 * static void derived_do_something(MyState *obj) 273 * { 274 * DerivedClass *dc = DERIVED_GET_CLASS(obj); 275 * 276 * // do something here 277 * dc->parent_do_something(obj); 278 * // do something else here 279 * } 280 * 281 * static void derived_class_init(ObjectClass *oc, void *data) 282 * { 283 * MyClass *mc = MY_CLASS(oc); 284 * DerivedClass *dc = DERIVED_CLASS(oc); 285 * 286 * dc->parent_do_something = mc->do_something; 287 * mc->do_something = derived_do_something; 288 * } 289 * 290 * static const TypeInfo derived_type_info = { 291 * .name = TYPE_DERIVED, 292 * .parent = TYPE_MY, 293 * .class_size = sizeof(DerivedClass), 294 * .class_init = derived_class_init, 295 * }; 296 * 297 * Alternatively, object_class_by_name() can be used to obtain the class and 298 * its non-overridden methods for a specific type. This would correspond to 299 * ``MyClass::method(...)`` in C++. 300 * 301 * The first example of such a QOM method was #CPUClass.reset, 302 * another example is #DeviceClass.realize. 303 * 304 * Standard type declaration and definition macros 305 * =============================================== 306 * 307 * A lot of the code outlined above follows a standard pattern and naming 308 * convention. To reduce the amount of boilerplate code that needs to be 309 * written for a new type there are two sets of macros to generate the 310 * common parts in a standard format. 311 * 312 * A type is declared using the OBJECT_DECLARE macro family. In types 313 * which do not require any virtual functions in the class, the 314 * OBJECT_DECLARE_SIMPLE_TYPE macro is suitable, and is commonly placed 315 * in the header file: 316 * 317 * .. code-block:: c 318 * :caption: Declaring a simple type 319 * 320 * OBJECT_DECLARE_SIMPLE_TYPE(MyDevice, my_device, MY_DEVICE, DEVICE) 321 * 322 * This is equivalent to the following: 323 * 324 * .. code-block:: c 325 * :caption: Expansion from declaring a simple type 326 * 327 * typedef struct MyDevice MyDevice; 328 * typedef struct MyDeviceClass MyDeviceClass; 329 * 330 * G_DEFINE_AUTOPTR_CLEANUP_FUNC(MyDeviceClass, object_unref) 331 * 332 * #define MY_DEVICE_GET_CLASS(void *obj) \ 333 * OBJECT_GET_CLASS(MyDeviceClass, obj, TYPE_MY_DEVICE) 334 * #define MY_DEVICE_CLASS(void *klass) \ 335 * OBJECT_CLASS_CHECK(MyDeviceClass, klass, TYPE_MY_DEVICE) 336 * #define MY_DEVICE(void *obj) 337 * OBJECT_CHECK(MyDevice, obj, TYPE_MY_DEVICE) 338 * 339 * struct MyDeviceClass { 340 * DeviceClass parent_class; 341 * }; 342 * 343 * The 'struct MyDevice' needs to be declared separately. 344 * If the type requires virtual functions to be declared in the class 345 * struct, then the alternative OBJECT_DECLARE_TYPE() macro can be 346 * used. This does the same as OBJECT_DECLARE_SIMPLE_TYPE(), but without 347 * the 'struct MyDeviceClass' definition. 348 * 349 * To implement the type, the OBJECT_DEFINE macro family is available. 350 * In the simple case the OBJECT_DEFINE_TYPE macro is suitable: 351 * 352 * .. code-block:: c 353 * :caption: Defining a simple type 354 * 355 * OBJECT_DEFINE_TYPE(MyDevice, my_device, MY_DEVICE, DEVICE) 356 * 357 * This is equivalent to the following: 358 * 359 * .. code-block:: c 360 * :caption: Expansion from defining a simple type 361 * 362 * static void my_device_finalize(Object *obj); 363 * static void my_device_class_init(ObjectClass *oc, void *data); 364 * static void my_device_init(Object *obj); 365 * 366 * static const TypeInfo my_device_info = { 367 * .parent = TYPE_DEVICE, 368 * .name = TYPE_MY_DEVICE, 369 * .instance_size = sizeof(MyDevice), 370 * .instance_init = my_device_init, 371 * .instance_finalize = my_device_finalize, 372 * .class_size = sizeof(MyDeviceClass), 373 * .class_init = my_device_class_init, 374 * }; 375 * 376 * static void 377 * my_device_register_types(void) 378 * { 379 * type_register_static(&my_device_info); 380 * } 381 * type_init(my_device_register_types); 382 * 383 * This is sufficient to get the type registered with the type 384 * system, and the three standard methods now need to be implemented 385 * along with any other logic required for the type. 386 * 387 * If the type needs to implement one or more interfaces, then the 388 * OBJECT_DEFINE_TYPE_WITH_INTERFACES() macro can be used instead. 389 * This accepts an array of interface type names. 390 * 391 * .. code-block:: c 392 * :caption: Defining a simple type implementing interfaces 393 * 394 * OBJECT_DEFINE_TYPE_WITH_INTERFACES(MyDevice, my_device, 395 * MY_DEVICE, DEVICE, 396 * { TYPE_USER_CREATABLE }, { NULL }) 397 * 398 * If the type is not intended to be instantiated, then then 399 * the OBJECT_DEFINE_ABSTRACT_TYPE() macro can be used instead: 400 * 401 * .. code-block:: c 402 * :caption: Defining a simple abstract type 403 * 404 * OBJECT_DEFINE_ABSTRACT_TYPE(MyDevice, my_device, MY_DEVICE, DEVICE) 405 */ 406 407 408 typedef struct ObjectProperty ObjectProperty; 409 410 /** 411 * ObjectPropertyAccessor: 412 * @obj: the object that owns the property 413 * @v: the visitor that contains the property data 414 * @name: the name of the property 415 * @opaque: the object property opaque 416 * @errp: a pointer to an Error that is filled if getting/setting fails. 417 * 418 * Called when trying to get/set a property. 419 */ 420 typedef void (ObjectPropertyAccessor)(Object *obj, 421 Visitor *v, 422 const char *name, 423 void *opaque, 424 Error **errp); 425 426 /** 427 * ObjectPropertyResolve: 428 * @obj: the object that owns the property 429 * @opaque: the opaque registered with the property 430 * @part: the name of the property 431 * 432 * Resolves the #Object corresponding to property @part. 433 * 434 * The returned object can also be used as a starting point 435 * to resolve a relative path starting with "@part". 436 * 437 * Returns: If @path is the path that led to @obj, the function 438 * returns the #Object corresponding to "@path/@part". 439 * If "@path/@part" is not a valid object path, it returns #NULL. 440 */ 441 typedef Object *(ObjectPropertyResolve)(Object *obj, 442 void *opaque, 443 const char *part); 444 445 /** 446 * ObjectPropertyRelease: 447 * @obj: the object that owns the property 448 * @name: the name of the property 449 * @opaque: the opaque registered with the property 450 * 451 * Called when a property is removed from a object. 452 */ 453 typedef void (ObjectPropertyRelease)(Object *obj, 454 const char *name, 455 void *opaque); 456 457 /** 458 * ObjectPropertyInit: 459 * @obj: the object that owns the property 460 * @prop: the property to set 461 * 462 * Called when a property is initialized. 463 */ 464 typedef void (ObjectPropertyInit)(Object *obj, ObjectProperty *prop); 465 466 struct ObjectProperty 467 { 468 char *name; 469 char *type; 470 char *description; 471 ObjectPropertyAccessor *get; 472 ObjectPropertyAccessor *set; 473 ObjectPropertyResolve *resolve; 474 ObjectPropertyRelease *release; 475 ObjectPropertyInit *init; 476 void *opaque; 477 QObject *defval; 478 }; 479 480 /** 481 * ObjectUnparent: 482 * @obj: the object that is being removed from the composition tree 483 * 484 * Called when an object is being removed from the QOM composition tree. 485 * The function should remove any backlinks from children objects to @obj. 486 */ 487 typedef void (ObjectUnparent)(Object *obj); 488 489 /** 490 * ObjectFree: 491 * @obj: the object being freed 492 * 493 * Called when an object's last reference is removed. 494 */ 495 typedef void (ObjectFree)(void *obj); 496 497 #define OBJECT_CLASS_CAST_CACHE 4 498 499 /** 500 * ObjectClass: 501 * 502 * The base for all classes. The only thing that #ObjectClass contains is an 503 * integer type handle. 504 */ 505 struct ObjectClass 506 { 507 /* private: */ 508 Type type; 509 GSList *interfaces; 510 511 const char *object_cast_cache[OBJECT_CLASS_CAST_CACHE]; 512 const char *class_cast_cache[OBJECT_CLASS_CAST_CACHE]; 513 514 ObjectUnparent *unparent; 515 516 GHashTable *properties; 517 }; 518 519 /** 520 * Object: 521 * 522 * The base for all objects. The first member of this object is a pointer to 523 * a #ObjectClass. Since C guarantees that the first member of a structure 524 * always begins at byte 0 of that structure, as long as any sub-object places 525 * its parent as the first member, we can cast directly to a #Object. 526 * 527 * As a result, #Object contains a reference to the objects type as its 528 * first member. This allows identification of the real type of the object at 529 * run time. 530 */ 531 struct Object 532 { 533 /* private: */ 534 ObjectClass *class; 535 ObjectFree *free; 536 GHashTable *properties; 537 uint32_t ref; 538 Object *parent; 539 }; 540 541 /** 542 * DECLARE_INSTANCE_CHECKER: 543 * @InstanceType: instance struct name 544 * @OBJ_NAME: the object name in uppercase with underscore separators 545 * @TYPENAME: type name 546 * 547 * Direct usage of this macro should be avoided, and the complete 548 * OBJECT_DECLARE_TYPE macro is recommended instead. 549 * 550 * This macro will provide the three standard type cast functions for a 551 * QOM type. 552 */ 553 #define DECLARE_INSTANCE_CHECKER(InstanceType, OBJ_NAME, TYPENAME) \ 554 static inline G_GNUC_UNUSED InstanceType * \ 555 OBJ_NAME(const void *obj) \ 556 { return OBJECT_CHECK(InstanceType, obj, TYPENAME); } 557 558 /** 559 * DECLARE_CLASS_CHECKERS: 560 * @ClassType: class struct name 561 * @OBJ_NAME: the object name in uppercase with underscore separators 562 * @TYPENAME: type name 563 * 564 * Direct usage of this macro should be avoided, and the complete 565 * OBJECT_DECLARE_TYPE macro is recommended instead. 566 * 567 * This macro will provide the three standard type cast functions for a 568 * QOM type. 569 */ 570 #define DECLARE_CLASS_CHECKERS(ClassType, OBJ_NAME, TYPENAME) \ 571 static inline G_GNUC_UNUSED ClassType * \ 572 OBJ_NAME##_GET_CLASS(const void *obj) \ 573 { return OBJECT_GET_CLASS(ClassType, obj, TYPENAME); } \ 574 \ 575 static inline G_GNUC_UNUSED ClassType * \ 576 OBJ_NAME##_CLASS(const void *klass) \ 577 { return OBJECT_CLASS_CHECK(ClassType, klass, TYPENAME); } 578 579 /** 580 * DECLARE_OBJ_CHECKERS: 581 * @InstanceType: instance struct name 582 * @ClassType: class struct name 583 * @OBJ_NAME: the object name in uppercase with underscore separators 584 * @TYPENAME: type name 585 * 586 * Direct usage of this macro should be avoided, and the complete 587 * OBJECT_DECLARE_TYPE macro is recommended instead. 588 * 589 * This macro will provide the three standard type cast functions for a 590 * QOM type. 591 */ 592 #define DECLARE_OBJ_CHECKERS(InstanceType, ClassType, OBJ_NAME, TYPENAME) \ 593 DECLARE_INSTANCE_CHECKER(InstanceType, OBJ_NAME, TYPENAME) \ 594 \ 595 DECLARE_CLASS_CHECKERS(ClassType, OBJ_NAME, TYPENAME) 596 597 /** 598 * OBJECT_DECLARE_TYPE: 599 * @InstanceType: instance struct name 600 * @ClassType: class struct name 601 * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators 602 * 603 * This macro is typically used in a header file, and will: 604 * 605 * - create the typedefs for the object and class structs 606 * - register the type for use with g_autoptr 607 * - provide three standard type cast functions 608 * 609 * The object struct and class struct need to be declared manually. 610 */ 611 #define OBJECT_DECLARE_TYPE(InstanceType, ClassType, MODULE_OBJ_NAME) \ 612 typedef struct InstanceType InstanceType; \ 613 typedef struct ClassType ClassType; \ 614 \ 615 G_DEFINE_AUTOPTR_CLEANUP_FUNC(InstanceType, object_unref) \ 616 \ 617 DECLARE_OBJ_CHECKERS(InstanceType, ClassType, \ 618 MODULE_OBJ_NAME, TYPE_##MODULE_OBJ_NAME) 619 620 /** 621 * OBJECT_DECLARE_SIMPLE_TYPE: 622 * @InstanceType: instance struct name 623 * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators 624 * 625 * This does the same as OBJECT_DECLARE_TYPE(), but with no class struct 626 * declared. 627 * 628 * This macro should be used unless the class struct needs to have 629 * virtual methods declared. 630 */ 631 #define OBJECT_DECLARE_SIMPLE_TYPE(InstanceType, MODULE_OBJ_NAME) \ 632 typedef struct InstanceType InstanceType; \ 633 \ 634 G_DEFINE_AUTOPTR_CLEANUP_FUNC(InstanceType, object_unref) \ 635 \ 636 DECLARE_INSTANCE_CHECKER(InstanceType, MODULE_OBJ_NAME, TYPE_##MODULE_OBJ_NAME) 637 638 639 /** 640 * OBJECT_DEFINE_TYPE_EXTENDED: 641 * @ModuleObjName: the object name with initial caps 642 * @module_obj_name: the object name in lowercase with underscore separators 643 * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators 644 * @PARENT_MODULE_OBJ_NAME: the parent object name in uppercase with underscore 645 * separators 646 * @ABSTRACT: boolean flag to indicate whether the object can be instantiated 647 * @...: list of initializers for "InterfaceInfo" to declare implemented interfaces 648 * 649 * This macro is typically used in a source file, and will: 650 * 651 * - declare prototypes for _finalize, _class_init and _init methods 652 * - declare the TypeInfo struct instance 653 * - provide the constructor to register the type 654 * 655 * After using this macro, implementations of the _finalize, _class_init, 656 * and _init methods need to be written. Any of these can be zero-line 657 * no-op impls if no special logic is required for a given type. 658 * 659 * This macro should rarely be used, instead one of the more specialized 660 * macros is usually a better choice. 661 */ 662 #define OBJECT_DEFINE_TYPE_EXTENDED(ModuleObjName, module_obj_name, \ 663 MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME, \ 664 ABSTRACT, ...) \ 665 static void \ 666 module_obj_name##_finalize(Object *obj); \ 667 static void \ 668 module_obj_name##_class_init(ObjectClass *oc, void *data); \ 669 static void \ 670 module_obj_name##_init(Object *obj); \ 671 \ 672 static const TypeInfo module_obj_name##_info = { \ 673 .parent = TYPE_##PARENT_MODULE_OBJ_NAME, \ 674 .name = TYPE_##MODULE_OBJ_NAME, \ 675 .instance_size = sizeof(ModuleObjName), \ 676 .instance_align = __alignof__(ModuleObjName), \ 677 .instance_init = module_obj_name##_init, \ 678 .instance_finalize = module_obj_name##_finalize, \ 679 .class_size = sizeof(ModuleObjName##Class), \ 680 .class_init = module_obj_name##_class_init, \ 681 .abstract = ABSTRACT, \ 682 .interfaces = (InterfaceInfo[]) { __VA_ARGS__ } , \ 683 }; \ 684 \ 685 static void \ 686 module_obj_name##_register_types(void) \ 687 { \ 688 type_register_static(&module_obj_name##_info); \ 689 } \ 690 type_init(module_obj_name##_register_types); 691 692 /** 693 * OBJECT_DEFINE_TYPE: 694 * @ModuleObjName: the object name with initial caps 695 * @module_obj_name: the object name in lowercase with underscore separators 696 * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators 697 * @PARENT_MODULE_OBJ_NAME: the parent object name in uppercase with underscore 698 * separators 699 * 700 * This is a specialization of OBJECT_DEFINE_TYPE_EXTENDED, which is suitable 701 * for the common case of a non-abstract type, without any interfaces. 702 */ 703 #define OBJECT_DEFINE_TYPE(ModuleObjName, module_obj_name, MODULE_OBJ_NAME, \ 704 PARENT_MODULE_OBJ_NAME) \ 705 OBJECT_DEFINE_TYPE_EXTENDED(ModuleObjName, module_obj_name, \ 706 MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME, \ 707 false, { NULL }) 708 709 /** 710 * OBJECT_DEFINE_TYPE_WITH_INTERFACES: 711 * @ModuleObjName: the object name with initial caps 712 * @module_obj_name: the object name in lowercase with underscore separators 713 * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators 714 * @PARENT_MODULE_OBJ_NAME: the parent object name in uppercase with underscore 715 * separators 716 * @...: list of initializers for "InterfaceInfo" to declare implemented interfaces 717 * 718 * This is a specialization of OBJECT_DEFINE_TYPE_EXTENDED, which is suitable 719 * for the common case of a non-abstract type, with one or more implemented 720 * interfaces. 721 * 722 * Note when passing the list of interfaces, be sure to include the final 723 * NULL entry, e.g. { TYPE_USER_CREATABLE }, { NULL } 724 */ 725 #define OBJECT_DEFINE_TYPE_WITH_INTERFACES(ModuleObjName, module_obj_name, \ 726 MODULE_OBJ_NAME, \ 727 PARENT_MODULE_OBJ_NAME, ...) \ 728 OBJECT_DEFINE_TYPE_EXTENDED(ModuleObjName, module_obj_name, \ 729 MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME, \ 730 false, __VA_ARGS__) 731 732 /** 733 * OBJECT_DEFINE_ABSTRACT_TYPE: 734 * @ModuleObjName: the object name with initial caps 735 * @module_obj_name: the object name in lowercase with underscore separators 736 * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators 737 * @PARENT_MODULE_OBJ_NAME: the parent object name in uppercase with underscore 738 * separators 739 * 740 * This is a specialization of OBJECT_DEFINE_TYPE_EXTENDED, which is suitable 741 * for defining an abstract type, without any interfaces. 742 */ 743 #define OBJECT_DEFINE_ABSTRACT_TYPE(ModuleObjName, module_obj_name, \ 744 MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME) \ 745 OBJECT_DEFINE_TYPE_EXTENDED(ModuleObjName, module_obj_name, \ 746 MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME, \ 747 true, { NULL }) 748 749 /** 750 * TypeInfo: 751 * @name: The name of the type. 752 * @parent: The name of the parent type. 753 * @instance_size: The size of the object (derivative of #Object). If 754 * @instance_size is 0, then the size of the object will be the size of the 755 * parent object. 756 * @instance_align: The required alignment of the object. If @instance_align 757 * is 0, then normal malloc alignment is sufficient; if non-zero, then we 758 * must use qemu_memalign for allocation. 759 * @instance_init: This function is called to initialize an object. The parent 760 * class will have already been initialized so the type is only responsible 761 * for initializing its own members. 762 * @instance_post_init: This function is called to finish initialization of 763 * an object, after all @instance_init functions were called. 764 * @instance_finalize: This function is called during object destruction. This 765 * is called before the parent @instance_finalize function has been called. 766 * An object should only free the members that are unique to its type in this 767 * function. 768 * @abstract: If this field is true, then the class is considered abstract and 769 * cannot be directly instantiated. 770 * @class_size: The size of the class object (derivative of #ObjectClass) 771 * for this object. If @class_size is 0, then the size of the class will be 772 * assumed to be the size of the parent class. This allows a type to avoid 773 * implementing an explicit class type if they are not adding additional 774 * virtual functions. 775 * @class_init: This function is called after all parent class initialization 776 * has occurred to allow a class to set its default virtual method pointers. 777 * This is also the function to use to override virtual methods from a parent 778 * class. 779 * @class_base_init: This function is called for all base classes after all 780 * parent class initialization has occurred, but before the class itself 781 * is initialized. This is the function to use to undo the effects of 782 * memcpy from the parent class to the descendants. 783 * @class_data: Data to pass to the @class_init, 784 * @class_base_init. This can be useful when building dynamic 785 * classes. 786 * @interfaces: The list of interfaces associated with this type. This 787 * should point to a static array that's terminated with a zero filled 788 * element. 789 */ 790 struct TypeInfo 791 { 792 const char *name; 793 const char *parent; 794 795 size_t instance_size; 796 size_t instance_align; 797 void (*instance_init)(Object *obj); 798 void (*instance_post_init)(Object *obj); 799 void (*instance_finalize)(Object *obj); 800 801 bool abstract; 802 size_t class_size; 803 804 void (*class_init)(ObjectClass *klass, void *data); 805 void (*class_base_init)(ObjectClass *klass, void *data); 806 void *class_data; 807 808 InterfaceInfo *interfaces; 809 }; 810 811 /** 812 * OBJECT: 813 * @obj: A derivative of #Object 814 * 815 * Converts an object to a #Object. Since all objects are #Objects, 816 * this function will always succeed. 817 */ 818 #define OBJECT(obj) \ 819 ((Object *)(obj)) 820 821 /** 822 * OBJECT_CLASS: 823 * @class: A derivative of #ObjectClass. 824 * 825 * Converts a class to an #ObjectClass. Since all objects are #Objects, 826 * this function will always succeed. 827 */ 828 #define OBJECT_CLASS(class) \ 829 ((ObjectClass *)(class)) 830 831 /** 832 * OBJECT_CHECK: 833 * @type: The C type to use for the return value. 834 * @obj: A derivative of @type to cast. 835 * @name: The QOM typename of @type 836 * 837 * A type safe version of @object_dynamic_cast_assert. Typically each class 838 * will define a macro based on this type to perform type safe dynamic_casts to 839 * this object type. 840 * 841 * If an invalid object is passed to this function, a run time assert will be 842 * generated. 843 */ 844 #define OBJECT_CHECK(type, obj, name) \ 845 ((type *)object_dynamic_cast_assert(OBJECT(obj), (name), \ 846 __FILE__, __LINE__, __func__)) 847 848 /** 849 * OBJECT_CLASS_CHECK: 850 * @class_type: The C type to use for the return value. 851 * @class: A derivative class of @class_type to cast. 852 * @name: the QOM typename of @class_type. 853 * 854 * A type safe version of @object_class_dynamic_cast_assert. This macro is 855 * typically wrapped by each type to perform type safe casts of a class to a 856 * specific class type. 857 */ 858 #define OBJECT_CLASS_CHECK(class_type, class, name) \ 859 ((class_type *)object_class_dynamic_cast_assert(OBJECT_CLASS(class), (name), \ 860 __FILE__, __LINE__, __func__)) 861 862 /** 863 * OBJECT_GET_CLASS: 864 * @class: The C type to use for the return value. 865 * @obj: The object to obtain the class for. 866 * @name: The QOM typename of @obj. 867 * 868 * This function will return a specific class for a given object. Its generally 869 * used by each type to provide a type safe macro to get a specific class type 870 * from an object. 871 */ 872 #define OBJECT_GET_CLASS(class, obj, name) \ 873 OBJECT_CLASS_CHECK(class, object_get_class(OBJECT(obj)), name) 874 875 /** 876 * InterfaceInfo: 877 * @type: The name of the interface. 878 * 879 * The information associated with an interface. 880 */ 881 struct InterfaceInfo { 882 const char *type; 883 }; 884 885 /** 886 * InterfaceClass: 887 * @parent_class: the base class 888 * 889 * The class for all interfaces. Subclasses of this class should only add 890 * virtual methods. 891 */ 892 struct InterfaceClass 893 { 894 ObjectClass parent_class; 895 /* private: */ 896 ObjectClass *concrete_class; 897 Type interface_type; 898 }; 899 900 #define TYPE_INTERFACE "interface" 901 902 /** 903 * INTERFACE_CLASS: 904 * @klass: class to cast from 905 * Returns: An #InterfaceClass or raise an error if cast is invalid 906 */ 907 #define INTERFACE_CLASS(klass) \ 908 OBJECT_CLASS_CHECK(InterfaceClass, klass, TYPE_INTERFACE) 909 910 /** 911 * INTERFACE_CHECK: 912 * @interface: the type to return 913 * @obj: the object to convert to an interface 914 * @name: the interface type name 915 * 916 * Returns: @obj casted to @interface if cast is valid, otherwise raise error. 917 */ 918 #define INTERFACE_CHECK(interface, obj, name) \ 919 ((interface *)object_dynamic_cast_assert(OBJECT((obj)), (name), \ 920 __FILE__, __LINE__, __func__)) 921 922 /** 923 * object_new_with_class: 924 * @klass: The class to instantiate. 925 * 926 * This function will initialize a new object using heap allocated memory. 927 * The returned object has a reference count of 1, and will be freed when 928 * the last reference is dropped. 929 * 930 * Returns: The newly allocated and instantiated object. 931 */ 932 Object *object_new_with_class(ObjectClass *klass); 933 934 /** 935 * object_new: 936 * @typename: The name of the type of the object to instantiate. 937 * 938 * This function will initialize a new object using heap allocated memory. 939 * The returned object has a reference count of 1, and will be freed when 940 * the last reference is dropped. 941 * 942 * Returns: The newly allocated and instantiated object. 943 */ 944 Object *object_new(const char *typename); 945 946 /** 947 * object_new_with_props: 948 * @typename: The name of the type of the object to instantiate. 949 * @parent: the parent object 950 * @id: The unique ID of the object 951 * @errp: pointer to error object 952 * @...: list of property names and values 953 * 954 * This function will initialize a new object using heap allocated memory. 955 * The returned object has a reference count of 1, and will be freed when 956 * the last reference is dropped. 957 * 958 * The @id parameter will be used when registering the object as a 959 * child of @parent in the composition tree. 960 * 961 * The variadic parameters are a list of pairs of (propname, propvalue) 962 * strings. The propname of %NULL indicates the end of the property 963 * list. If the object implements the user creatable interface, the 964 * object will be marked complete once all the properties have been 965 * processed. 966 * 967 * .. code-block:: c 968 * :caption: Creating an object with properties 969 * 970 * Error *err = NULL; 971 * Object *obj; 972 * 973 * obj = object_new_with_props(TYPE_MEMORY_BACKEND_FILE, 974 * object_get_objects_root(), 975 * "hostmem0", 976 * &err, 977 * "share", "yes", 978 * "mem-path", "/dev/shm/somefile", 979 * "prealloc", "yes", 980 * "size", "1048576", 981 * NULL); 982 * 983 * if (!obj) { 984 * error_reportf_err(err, "Cannot create memory backend: "); 985 * } 986 * 987 * The returned object will have one stable reference maintained 988 * for as long as it is present in the object hierarchy. 989 * 990 * Returns: The newly allocated, instantiated & initialized object. 991 */ 992 Object *object_new_with_props(const char *typename, 993 Object *parent, 994 const char *id, 995 Error **errp, 996 ...) QEMU_SENTINEL; 997 998 /** 999 * object_new_with_propv: 1000 * @typename: The name of the type of the object to instantiate. 1001 * @parent: the parent object 1002 * @id: The unique ID of the object 1003 * @errp: pointer to error object 1004 * @vargs: list of property names and values 1005 * 1006 * See object_new_with_props() for documentation. 1007 */ 1008 Object *object_new_with_propv(const char *typename, 1009 Object *parent, 1010 const char *id, 1011 Error **errp, 1012 va_list vargs); 1013 1014 bool object_apply_global_props(Object *obj, const GPtrArray *props, 1015 Error **errp); 1016 void object_set_machine_compat_props(GPtrArray *compat_props); 1017 void object_set_accelerator_compat_props(GPtrArray *compat_props); 1018 void object_register_sugar_prop(const char *driver, const char *prop, const char *value); 1019 void object_apply_compat_props(Object *obj); 1020 1021 /** 1022 * object_set_props: 1023 * @obj: the object instance to set properties on 1024 * @errp: pointer to error object 1025 * @...: list of property names and values 1026 * 1027 * This function will set a list of properties on an existing object 1028 * instance. 1029 * 1030 * The variadic parameters are a list of pairs of (propname, propvalue) 1031 * strings. The propname of %NULL indicates the end of the property 1032 * list. 1033 * 1034 * .. code-block:: c 1035 * :caption: Update an object's properties 1036 * 1037 * Error *err = NULL; 1038 * Object *obj = ...get / create object...; 1039 * 1040 * if (!object_set_props(obj, 1041 * &err, 1042 * "share", "yes", 1043 * "mem-path", "/dev/shm/somefile", 1044 * "prealloc", "yes", 1045 * "size", "1048576", 1046 * NULL)) { 1047 * error_reportf_err(err, "Cannot set properties: "); 1048 * } 1049 * 1050 * The returned object will have one stable reference maintained 1051 * for as long as it is present in the object hierarchy. 1052 * 1053 * Returns: %true on success, %false on error. 1054 */ 1055 bool object_set_props(Object *obj, Error **errp, ...) QEMU_SENTINEL; 1056 1057 /** 1058 * object_set_propv: 1059 * @obj: the object instance to set properties on 1060 * @errp: pointer to error object 1061 * @vargs: list of property names and values 1062 * 1063 * See object_set_props() for documentation. 1064 * 1065 * Returns: %true on success, %false on error. 1066 */ 1067 bool object_set_propv(Object *obj, Error **errp, va_list vargs); 1068 1069 /** 1070 * object_initialize: 1071 * @obj: A pointer to the memory to be used for the object. 1072 * @size: The maximum size available at @obj for the object. 1073 * @typename: The name of the type of the object to instantiate. 1074 * 1075 * This function will initialize an object. The memory for the object should 1076 * have already been allocated. The returned object has a reference count of 1, 1077 * and will be finalized when the last reference is dropped. 1078 */ 1079 void object_initialize(void *obj, size_t size, const char *typename); 1080 1081 /** 1082 * object_initialize_child_with_props: 1083 * @parentobj: The parent object to add a property to 1084 * @propname: The name of the property 1085 * @childobj: A pointer to the memory to be used for the object. 1086 * @size: The maximum size available at @childobj for the object. 1087 * @type: The name of the type of the object to instantiate. 1088 * @errp: If an error occurs, a pointer to an area to store the error 1089 * @...: list of property names and values 1090 * 1091 * This function will initialize an object. The memory for the object should 1092 * have already been allocated. The object will then be added as child property 1093 * to a parent with object_property_add_child() function. The returned object 1094 * has a reference count of 1 (for the "child<...>" property from the parent), 1095 * so the object will be finalized automatically when the parent gets removed. 1096 * 1097 * The variadic parameters are a list of pairs of (propname, propvalue) 1098 * strings. The propname of %NULL indicates the end of the property list. 1099 * If the object implements the user creatable interface, the object will 1100 * be marked complete once all the properties have been processed. 1101 * 1102 * Returns: %true on success, %false on failure. 1103 */ 1104 bool object_initialize_child_with_props(Object *parentobj, 1105 const char *propname, 1106 void *childobj, size_t size, const char *type, 1107 Error **errp, ...) QEMU_SENTINEL; 1108 1109 /** 1110 * object_initialize_child_with_propsv: 1111 * @parentobj: The parent object to add a property to 1112 * @propname: The name of the property 1113 * @childobj: A pointer to the memory to be used for the object. 1114 * @size: The maximum size available at @childobj for the object. 1115 * @type: The name of the type of the object to instantiate. 1116 * @errp: If an error occurs, a pointer to an area to store the error 1117 * @vargs: list of property names and values 1118 * 1119 * See object_initialize_child() for documentation. 1120 * 1121 * Returns: %true on success, %false on failure. 1122 */ 1123 bool object_initialize_child_with_propsv(Object *parentobj, 1124 const char *propname, 1125 void *childobj, size_t size, const char *type, 1126 Error **errp, va_list vargs); 1127 1128 /** 1129 * object_initialize_child: 1130 * @parent: The parent object to add a property to 1131 * @propname: The name of the property 1132 * @child: A precisely typed pointer to the memory to be used for the 1133 * object. 1134 * @type: The name of the type of the object to instantiate. 1135 * 1136 * This is like:: 1137 * 1138 * object_initialize_child_with_props(parent, propname, 1139 * child, sizeof(*child), type, 1140 * &error_abort, NULL) 1141 */ 1142 #define object_initialize_child(parent, propname, child, type) \ 1143 object_initialize_child_internal((parent), (propname), \ 1144 (child), sizeof(*(child)), (type)) 1145 void object_initialize_child_internal(Object *parent, const char *propname, 1146 void *child, size_t size, 1147 const char *type); 1148 1149 /** 1150 * object_dynamic_cast: 1151 * @obj: The object to cast. 1152 * @typename: The @typename to cast to. 1153 * 1154 * This function will determine if @obj is-a @typename. @obj can refer to an 1155 * object or an interface associated with an object. 1156 * 1157 * Returns: This function returns @obj on success or #NULL on failure. 1158 */ 1159 Object *object_dynamic_cast(Object *obj, const char *typename); 1160 1161 /** 1162 * object_dynamic_cast_assert: 1163 * @obj: The object to cast. 1164 * @typename: The @typename to cast to. 1165 * @file: Source code file where function was called 1166 * @line: Source code line where function was called 1167 * @func: Name of function where this function was called 1168 * 1169 * See object_dynamic_cast() for a description of the parameters of this 1170 * function. The only difference in behavior is that this function asserts 1171 * instead of returning #NULL on failure if QOM cast debugging is enabled. 1172 * This function is not meant to be called directly, but only through 1173 * the wrapper macro OBJECT_CHECK. 1174 */ 1175 Object *object_dynamic_cast_assert(Object *obj, const char *typename, 1176 const char *file, int line, const char *func); 1177 1178 /** 1179 * object_get_class: 1180 * @obj: A derivative of #Object 1181 * 1182 * Returns: The #ObjectClass of the type associated with @obj. 1183 */ 1184 ObjectClass *object_get_class(Object *obj); 1185 1186 /** 1187 * object_get_typename: 1188 * @obj: A derivative of #Object. 1189 * 1190 * Returns: The QOM typename of @obj. 1191 */ 1192 const char *object_get_typename(const Object *obj); 1193 1194 /** 1195 * type_register_static: 1196 * @info: The #TypeInfo of the new type. 1197 * 1198 * @info and all of the strings it points to should exist for the life time 1199 * that the type is registered. 1200 * 1201 * Returns: the new #Type. 1202 */ 1203 Type type_register_static(const TypeInfo *info); 1204 1205 /** 1206 * type_register: 1207 * @info: The #TypeInfo of the new type 1208 * 1209 * Unlike type_register_static(), this call does not require @info or its 1210 * string members to continue to exist after the call returns. 1211 * 1212 * Returns: the new #Type. 1213 */ 1214 Type type_register(const TypeInfo *info); 1215 1216 /** 1217 * type_register_static_array: 1218 * @infos: The array of the new type #TypeInfo structures. 1219 * @nr_infos: number of entries in @infos 1220 * 1221 * @infos and all of the strings it points to should exist for the life time 1222 * that the type is registered. 1223 */ 1224 void type_register_static_array(const TypeInfo *infos, int nr_infos); 1225 1226 /** 1227 * DEFINE_TYPES: 1228 * @type_array: The array containing #TypeInfo structures to register 1229 * 1230 * @type_array should be static constant that exists for the life time 1231 * that the type is registered. 1232 */ 1233 #define DEFINE_TYPES(type_array) \ 1234 static void do_qemu_init_ ## type_array(void) \ 1235 { \ 1236 type_register_static_array(type_array, ARRAY_SIZE(type_array)); \ 1237 } \ 1238 type_init(do_qemu_init_ ## type_array) 1239 1240 /** 1241 * object_class_dynamic_cast_assert: 1242 * @klass: The #ObjectClass to attempt to cast. 1243 * @typename: The QOM typename of the class to cast to. 1244 * @file: Source code file where function was called 1245 * @line: Source code line where function was called 1246 * @func: Name of function where this function was called 1247 * 1248 * See object_class_dynamic_cast() for a description of the parameters 1249 * of this function. The only difference in behavior is that this function 1250 * asserts instead of returning #NULL on failure if QOM cast debugging is 1251 * enabled. This function is not meant to be called directly, but only through 1252 * the wrapper macro OBJECT_CLASS_CHECK. 1253 */ 1254 ObjectClass *object_class_dynamic_cast_assert(ObjectClass *klass, 1255 const char *typename, 1256 const char *file, int line, 1257 const char *func); 1258 1259 /** 1260 * object_class_dynamic_cast: 1261 * @klass: The #ObjectClass to attempt to cast. 1262 * @typename: The QOM typename of the class to cast to. 1263 * 1264 * Returns: If @typename is a class, this function returns @klass if 1265 * @typename is a subtype of @klass, else returns #NULL. 1266 * 1267 * If @typename is an interface, this function returns the interface 1268 * definition for @klass if @klass implements it unambiguously; #NULL 1269 * is returned if @klass does not implement the interface or if multiple 1270 * classes or interfaces on the hierarchy leading to @klass implement 1271 * it. (FIXME: perhaps this can be detected at type definition time?) 1272 */ 1273 ObjectClass *object_class_dynamic_cast(ObjectClass *klass, 1274 const char *typename); 1275 1276 /** 1277 * object_class_get_parent: 1278 * @klass: The class to obtain the parent for. 1279 * 1280 * Returns: The parent for @klass or %NULL if none. 1281 */ 1282 ObjectClass *object_class_get_parent(ObjectClass *klass); 1283 1284 /** 1285 * object_class_get_name: 1286 * @klass: The class to obtain the QOM typename for. 1287 * 1288 * Returns: The QOM typename for @klass. 1289 */ 1290 const char *object_class_get_name(ObjectClass *klass); 1291 1292 /** 1293 * object_class_is_abstract: 1294 * @klass: The class to obtain the abstractness for. 1295 * 1296 * Returns: %true if @klass is abstract, %false otherwise. 1297 */ 1298 bool object_class_is_abstract(ObjectClass *klass); 1299 1300 /** 1301 * object_class_by_name: 1302 * @typename: The QOM typename to obtain the class for. 1303 * 1304 * Returns: The class for @typename or %NULL if not found. 1305 */ 1306 ObjectClass *object_class_by_name(const char *typename); 1307 1308 /** 1309 * module_object_class_by_name: 1310 * @typename: The QOM typename to obtain the class for. 1311 * 1312 * For objects which might be provided by a module. Behaves like 1313 * object_class_by_name, but additionally tries to load the module 1314 * needed in case the class is not available. 1315 * 1316 * Returns: The class for @typename or %NULL if not found. 1317 */ 1318 ObjectClass *module_object_class_by_name(const char *typename); 1319 1320 void object_class_foreach(void (*fn)(ObjectClass *klass, void *opaque), 1321 const char *implements_type, bool include_abstract, 1322 void *opaque); 1323 1324 /** 1325 * object_class_get_list: 1326 * @implements_type: The type to filter for, including its derivatives. 1327 * @include_abstract: Whether to include abstract classes. 1328 * 1329 * Returns: A singly-linked list of the classes in reverse hashtable order. 1330 */ 1331 GSList *object_class_get_list(const char *implements_type, 1332 bool include_abstract); 1333 1334 /** 1335 * object_class_get_list_sorted: 1336 * @implements_type: The type to filter for, including its derivatives. 1337 * @include_abstract: Whether to include abstract classes. 1338 * 1339 * Returns: A singly-linked list of the classes in alphabetical 1340 * case-insensitive order. 1341 */ 1342 GSList *object_class_get_list_sorted(const char *implements_type, 1343 bool include_abstract); 1344 1345 /** 1346 * object_ref: 1347 * @obj: the object 1348 * 1349 * Increase the reference count of a object. A object cannot be freed as long 1350 * as its reference count is greater than zero. 1351 * Returns: @obj 1352 */ 1353 Object *object_ref(void *obj); 1354 1355 /** 1356 * object_unref: 1357 * @obj: the object 1358 * 1359 * Decrease the reference count of a object. A object cannot be freed as long 1360 * as its reference count is greater than zero. 1361 */ 1362 void object_unref(void *obj); 1363 1364 /** 1365 * object_property_try_add: 1366 * @obj: the object to add a property to 1367 * @name: the name of the property. This can contain any character except for 1368 * a forward slash. In general, you should use hyphens '-' instead of 1369 * underscores '_' when naming properties. 1370 * @type: the type name of the property. This namespace is pretty loosely 1371 * defined. Sub namespaces are constructed by using a prefix and then 1372 * to angle brackets. For instance, the type 'virtio-net-pci' in the 1373 * 'link' namespace would be 'link<virtio-net-pci>'. 1374 * @get: The getter to be called to read a property. If this is NULL, then 1375 * the property cannot be read. 1376 * @set: the setter to be called to write a property. If this is NULL, 1377 * then the property cannot be written. 1378 * @release: called when the property is removed from the object. This is 1379 * meant to allow a property to free its opaque upon object 1380 * destruction. This may be NULL. 1381 * @opaque: an opaque pointer to pass to the callbacks for the property 1382 * @errp: pointer to error object 1383 * 1384 * Returns: The #ObjectProperty; this can be used to set the @resolve 1385 * callback for child and link properties. 1386 */ 1387 ObjectProperty *object_property_try_add(Object *obj, const char *name, 1388 const char *type, 1389 ObjectPropertyAccessor *get, 1390 ObjectPropertyAccessor *set, 1391 ObjectPropertyRelease *release, 1392 void *opaque, Error **errp); 1393 1394 /** 1395 * object_property_add: 1396 * Same as object_property_try_add() with @errp hardcoded to 1397 * &error_abort. 1398 * 1399 * @obj: the object to add a property to 1400 * @name: the name of the property. This can contain any character except for 1401 * a forward slash. In general, you should use hyphens '-' instead of 1402 * underscores '_' when naming properties. 1403 * @type: the type name of the property. This namespace is pretty loosely 1404 * defined. Sub namespaces are constructed by using a prefix and then 1405 * to angle brackets. For instance, the type 'virtio-net-pci' in the 1406 * 'link' namespace would be 'link<virtio-net-pci>'. 1407 * @get: The getter to be called to read a property. If this is NULL, then 1408 * the property cannot be read. 1409 * @set: the setter to be called to write a property. If this is NULL, 1410 * then the property cannot be written. 1411 * @release: called when the property is removed from the object. This is 1412 * meant to allow a property to free its opaque upon object 1413 * destruction. This may be NULL. 1414 * @opaque: an opaque pointer to pass to the callbacks for the property 1415 */ 1416 ObjectProperty *object_property_add(Object *obj, const char *name, 1417 const char *type, 1418 ObjectPropertyAccessor *get, 1419 ObjectPropertyAccessor *set, 1420 ObjectPropertyRelease *release, 1421 void *opaque); 1422 1423 void object_property_del(Object *obj, const char *name); 1424 1425 ObjectProperty *object_class_property_add(ObjectClass *klass, const char *name, 1426 const char *type, 1427 ObjectPropertyAccessor *get, 1428 ObjectPropertyAccessor *set, 1429 ObjectPropertyRelease *release, 1430 void *opaque); 1431 1432 /** 1433 * object_property_set_default_bool: 1434 * @prop: the property to set 1435 * @value: the value to be written to the property 1436 * 1437 * Set the property default value. 1438 */ 1439 void object_property_set_default_bool(ObjectProperty *prop, bool value); 1440 1441 /** 1442 * object_property_set_default_str: 1443 * @prop: the property to set 1444 * @value: the value to be written to the property 1445 * 1446 * Set the property default value. 1447 */ 1448 void object_property_set_default_str(ObjectProperty *prop, const char *value); 1449 1450 /** 1451 * object_property_set_default_int: 1452 * @prop: the property to set 1453 * @value: the value to be written to the property 1454 * 1455 * Set the property default value. 1456 */ 1457 void object_property_set_default_int(ObjectProperty *prop, int64_t value); 1458 1459 /** 1460 * object_property_set_default_uint: 1461 * @prop: the property to set 1462 * @value: the value to be written to the property 1463 * 1464 * Set the property default value. 1465 */ 1466 void object_property_set_default_uint(ObjectProperty *prop, uint64_t value); 1467 1468 /** 1469 * object_property_find: 1470 * @obj: the object 1471 * @name: the name of the property 1472 * 1473 * Look up a property for an object. 1474 * 1475 * Return its #ObjectProperty if found, or NULL. 1476 */ 1477 ObjectProperty *object_property_find(Object *obj, const char *name); 1478 1479 /** 1480 * object_property_find_err: 1481 * @obj: the object 1482 * @name: the name of the property 1483 * @errp: returns an error if this function fails 1484 * 1485 * Look up a property for an object. 1486 * 1487 * Return its #ObjectProperty if found, or NULL. 1488 */ 1489 ObjectProperty *object_property_find_err(Object *obj, 1490 const char *name, 1491 Error **errp); 1492 1493 /** 1494 * object_class_property_find: 1495 * @klass: the object class 1496 * @name: the name of the property 1497 * 1498 * Look up a property for an object class. 1499 * 1500 * Return its #ObjectProperty if found, or NULL. 1501 */ 1502 ObjectProperty *object_class_property_find(ObjectClass *klass, 1503 const char *name); 1504 1505 /** 1506 * object_class_property_find_err: 1507 * @klass: the object class 1508 * @name: the name of the property 1509 * @errp: returns an error if this function fails 1510 * 1511 * Look up a property for an object class. 1512 * 1513 * Return its #ObjectProperty if found, or NULL. 1514 */ 1515 ObjectProperty *object_class_property_find_err(ObjectClass *klass, 1516 const char *name, 1517 Error **errp); 1518 1519 typedef struct ObjectPropertyIterator { 1520 ObjectClass *nextclass; 1521 GHashTableIter iter; 1522 } ObjectPropertyIterator; 1523 1524 /** 1525 * object_property_iter_init: 1526 * @iter: the iterator instance 1527 * @obj: the object 1528 * 1529 * Initializes an iterator for traversing all properties 1530 * registered against an object instance, its class and all parent classes. 1531 * 1532 * It is forbidden to modify the property list while iterating, 1533 * whether removing or adding properties. 1534 * 1535 * Typical usage pattern would be 1536 * 1537 * .. code-block:: c 1538 * :caption: Using object property iterators 1539 * 1540 * ObjectProperty *prop; 1541 * ObjectPropertyIterator iter; 1542 * 1543 * object_property_iter_init(&iter, obj); 1544 * while ((prop = object_property_iter_next(&iter))) { 1545 * ... do something with prop ... 1546 * } 1547 */ 1548 void object_property_iter_init(ObjectPropertyIterator *iter, 1549 Object *obj); 1550 1551 /** 1552 * object_class_property_iter_init: 1553 * @iter: the iterator instance 1554 * @klass: the class 1555 * 1556 * Initializes an iterator for traversing all properties 1557 * registered against an object class and all parent classes. 1558 * 1559 * It is forbidden to modify the property list while iterating, 1560 * whether removing or adding properties. 1561 * 1562 * This can be used on abstract classes as it does not create a temporary 1563 * instance. 1564 */ 1565 void object_class_property_iter_init(ObjectPropertyIterator *iter, 1566 ObjectClass *klass); 1567 1568 /** 1569 * object_property_iter_next: 1570 * @iter: the iterator instance 1571 * 1572 * Return the next available property. If no further properties 1573 * are available, a %NULL value will be returned and the @iter 1574 * pointer should not be used again after this point without 1575 * re-initializing it. 1576 * 1577 * Returns: the next property, or %NULL when all properties 1578 * have been traversed. 1579 */ 1580 ObjectProperty *object_property_iter_next(ObjectPropertyIterator *iter); 1581 1582 void object_unparent(Object *obj); 1583 1584 /** 1585 * object_property_get: 1586 * @obj: the object 1587 * @name: the name of the property 1588 * @v: the visitor that will receive the property value. This should be an 1589 * Output visitor and the data will be written with @name as the name. 1590 * @errp: returns an error if this function fails 1591 * 1592 * Reads a property from a object. 1593 * 1594 * Returns: %true on success, %false on failure. 1595 */ 1596 bool object_property_get(Object *obj, const char *name, Visitor *v, 1597 Error **errp); 1598 1599 /** 1600 * object_property_set_str: 1601 * @obj: the object 1602 * @name: the name of the property 1603 * @value: the value to be written to the property 1604 * @errp: returns an error if this function fails 1605 * 1606 * Writes a string value to a property. 1607 * 1608 * Returns: %true on success, %false on failure. 1609 */ 1610 bool object_property_set_str(Object *obj, const char *name, 1611 const char *value, Error **errp); 1612 1613 /** 1614 * object_property_get_str: 1615 * @obj: the object 1616 * @name: the name of the property 1617 * @errp: returns an error if this function fails 1618 * 1619 * Returns: the value of the property, converted to a C string, or NULL if 1620 * an error occurs (including when the property value is not a string). 1621 * The caller should free the string. 1622 */ 1623 char *object_property_get_str(Object *obj, const char *name, 1624 Error **errp); 1625 1626 /** 1627 * object_property_set_link: 1628 * @obj: the object 1629 * @name: the name of the property 1630 * @value: the value to be written to the property 1631 * @errp: returns an error if this function fails 1632 * 1633 * Writes an object's canonical path to a property. 1634 * 1635 * If the link property was created with 1636 * <code>OBJ_PROP_LINK_STRONG</code> bit, the old target object is 1637 * unreferenced, and a reference is added to the new target object. 1638 * 1639 * Returns: %true on success, %false on failure. 1640 */ 1641 bool object_property_set_link(Object *obj, const char *name, 1642 Object *value, Error **errp); 1643 1644 /** 1645 * object_property_get_link: 1646 * @obj: the object 1647 * @name: the name of the property 1648 * @errp: returns an error if this function fails 1649 * 1650 * Returns: the value of the property, resolved from a path to an Object, 1651 * or NULL if an error occurs (including when the property value is not a 1652 * string or not a valid object path). 1653 */ 1654 Object *object_property_get_link(Object *obj, const char *name, 1655 Error **errp); 1656 1657 /** 1658 * object_property_set_bool: 1659 * @obj: the object 1660 * @name: the name of the property 1661 * @value: the value to be written to the property 1662 * @errp: returns an error if this function fails 1663 * 1664 * Writes a bool value to a property. 1665 * 1666 * Returns: %true on success, %false on failure. 1667 */ 1668 bool object_property_set_bool(Object *obj, const char *name, 1669 bool value, Error **errp); 1670 1671 /** 1672 * object_property_get_bool: 1673 * @obj: the object 1674 * @name: the name of the property 1675 * @errp: returns an error if this function fails 1676 * 1677 * Returns: the value of the property, converted to a boolean, or false if 1678 * an error occurs (including when the property value is not a bool). 1679 */ 1680 bool object_property_get_bool(Object *obj, const char *name, 1681 Error **errp); 1682 1683 /** 1684 * object_property_set_int: 1685 * @obj: the object 1686 * @name: the name of the property 1687 * @value: the value to be written to the property 1688 * @errp: returns an error if this function fails 1689 * 1690 * Writes an integer value to a property. 1691 * 1692 * Returns: %true on success, %false on failure. 1693 */ 1694 bool object_property_set_int(Object *obj, const char *name, 1695 int64_t value, Error **errp); 1696 1697 /** 1698 * object_property_get_int: 1699 * @obj: the object 1700 * @name: the name of the property 1701 * @errp: returns an error if this function fails 1702 * 1703 * Returns: the value of the property, converted to an integer, or -1 if 1704 * an error occurs (including when the property value is not an integer). 1705 */ 1706 int64_t object_property_get_int(Object *obj, const char *name, 1707 Error **errp); 1708 1709 /** 1710 * object_property_set_uint: 1711 * @obj: the object 1712 * @name: the name of the property 1713 * @value: the value to be written to the property 1714 * @errp: returns an error if this function fails 1715 * 1716 * Writes an unsigned integer value to a property. 1717 * 1718 * Returns: %true on success, %false on failure. 1719 */ 1720 bool object_property_set_uint(Object *obj, const char *name, 1721 uint64_t value, Error **errp); 1722 1723 /** 1724 * object_property_get_uint: 1725 * @obj: the object 1726 * @name: the name of the property 1727 * @errp: returns an error if this function fails 1728 * 1729 * Returns: the value of the property, converted to an unsigned integer, or 0 1730 * an error occurs (including when the property value is not an integer). 1731 */ 1732 uint64_t object_property_get_uint(Object *obj, const char *name, 1733 Error **errp); 1734 1735 /** 1736 * object_property_get_enum: 1737 * @obj: the object 1738 * @name: the name of the property 1739 * @typename: the name of the enum data type 1740 * @errp: returns an error if this function fails 1741 * 1742 * Returns: the value of the property, converted to an integer (which 1743 * can't be negative), or -1 on error (including when the property 1744 * value is not an enum). 1745 */ 1746 int object_property_get_enum(Object *obj, const char *name, 1747 const char *typename, Error **errp); 1748 1749 /** 1750 * object_property_set: 1751 * @obj: the object 1752 * @name: the name of the property 1753 * @v: the visitor that will be used to write the property value. This should 1754 * be an Input visitor and the data will be first read with @name as the 1755 * name and then written as the property value. 1756 * @errp: returns an error if this function fails 1757 * 1758 * Writes a property to a object. 1759 * 1760 * Returns: %true on success, %false on failure. 1761 */ 1762 bool object_property_set(Object *obj, const char *name, Visitor *v, 1763 Error **errp); 1764 1765 /** 1766 * object_property_parse: 1767 * @obj: the object 1768 * @name: the name of the property 1769 * @string: the string that will be used to parse the property value. 1770 * @errp: returns an error if this function fails 1771 * 1772 * Parses a string and writes the result into a property of an object. 1773 * 1774 * Returns: %true on success, %false on failure. 1775 */ 1776 bool object_property_parse(Object *obj, const char *name, 1777 const char *string, Error **errp); 1778 1779 /** 1780 * object_property_print: 1781 * @obj: the object 1782 * @name: the name of the property 1783 * @human: if true, print for human consumption 1784 * @errp: returns an error if this function fails 1785 * 1786 * Returns a string representation of the value of the property. The 1787 * caller shall free the string. 1788 */ 1789 char *object_property_print(Object *obj, const char *name, bool human, 1790 Error **errp); 1791 1792 /** 1793 * object_property_get_type: 1794 * @obj: the object 1795 * @name: the name of the property 1796 * @errp: returns an error if this function fails 1797 * 1798 * Returns: The type name of the property. 1799 */ 1800 const char *object_property_get_type(Object *obj, const char *name, 1801 Error **errp); 1802 1803 /** 1804 * object_get_root: 1805 * 1806 * Returns: the root object of the composition tree 1807 */ 1808 Object *object_get_root(void); 1809 1810 1811 /** 1812 * object_get_objects_root: 1813 * 1814 * Get the container object that holds user created 1815 * object instances. This is the object at path 1816 * "/objects" 1817 * 1818 * Returns: the user object container 1819 */ 1820 Object *object_get_objects_root(void); 1821 1822 /** 1823 * object_get_internal_root: 1824 * 1825 * Get the container object that holds internally used object 1826 * instances. Any object which is put into this container must not be 1827 * user visible, and it will not be exposed in the QOM tree. 1828 * 1829 * Returns: the internal object container 1830 */ 1831 Object *object_get_internal_root(void); 1832 1833 /** 1834 * object_get_canonical_path_component: 1835 * @obj: the object 1836 * 1837 * Returns: The final component in the object's canonical path. The canonical 1838 * path is the path within the composition tree starting from the root. 1839 * %NULL if the object doesn't have a parent (and thus a canonical path). 1840 */ 1841 const char *object_get_canonical_path_component(const Object *obj); 1842 1843 /** 1844 * object_get_canonical_path: 1845 * @obj: the object 1846 * 1847 * Returns: The canonical path for a object, newly allocated. This is 1848 * the path within the composition tree starting from the root. Use 1849 * g_free() to free it. 1850 */ 1851 char *object_get_canonical_path(const Object *obj); 1852 1853 /** 1854 * object_resolve_path: 1855 * @path: the path to resolve 1856 * @ambiguous: returns true if the path resolution failed because of an 1857 * ambiguous match 1858 * 1859 * There are two types of supported paths--absolute paths and partial paths. 1860 * 1861 * Absolute paths are derived from the root object and can follow child<> or 1862 * link<> properties. Since they can follow link<> properties, they can be 1863 * arbitrarily long. Absolute paths look like absolute filenames and are 1864 * prefixed with a leading slash. 1865 * 1866 * Partial paths look like relative filenames. They do not begin with a 1867 * prefix. The matching rules for partial paths are subtle but designed to make 1868 * specifying objects easy. At each level of the composition tree, the partial 1869 * path is matched as an absolute path. The first match is not returned. At 1870 * least two matches are searched for. A successful result is only returned if 1871 * only one match is found. If more than one match is found, a flag is 1872 * returned to indicate that the match was ambiguous. 1873 * 1874 * Returns: The matched object or NULL on path lookup failure. 1875 */ 1876 Object *object_resolve_path(const char *path, bool *ambiguous); 1877 1878 /** 1879 * object_resolve_path_type: 1880 * @path: the path to resolve 1881 * @typename: the type to look for. 1882 * @ambiguous: returns true if the path resolution failed because of an 1883 * ambiguous match 1884 * 1885 * This is similar to object_resolve_path. However, when looking for a 1886 * partial path only matches that implement the given type are considered. 1887 * This restricts the search and avoids spuriously flagging matches as 1888 * ambiguous. 1889 * 1890 * For both partial and absolute paths, the return value goes through 1891 * a dynamic cast to @typename. This is important if either the link, 1892 * or the typename itself are of interface types. 1893 * 1894 * Returns: The matched object or NULL on path lookup failure. 1895 */ 1896 Object *object_resolve_path_type(const char *path, const char *typename, 1897 bool *ambiguous); 1898 1899 /** 1900 * object_resolve_path_component: 1901 * @parent: the object in which to resolve the path 1902 * @part: the component to resolve. 1903 * 1904 * This is similar to object_resolve_path with an absolute path, but it 1905 * only resolves one element (@part) and takes the others from @parent. 1906 * 1907 * Returns: The resolved object or NULL on path lookup failure. 1908 */ 1909 Object *object_resolve_path_component(Object *parent, const char *part); 1910 1911 /** 1912 * object_property_try_add_child: 1913 * @obj: the object to add a property to 1914 * @name: the name of the property 1915 * @child: the child object 1916 * @errp: pointer to error object 1917 * 1918 * Child properties form the composition tree. All objects need to be a child 1919 * of another object. Objects can only be a child of one object. 1920 * 1921 * There is no way for a child to determine what its parent is. It is not 1922 * a bidirectional relationship. This is by design. 1923 * 1924 * The value of a child property as a C string will be the child object's 1925 * canonical path. It can be retrieved using object_property_get_str(). 1926 * The child object itself can be retrieved using object_property_get_link(). 1927 * 1928 * Returns: The newly added property on success, or %NULL on failure. 1929 */ 1930 ObjectProperty *object_property_try_add_child(Object *obj, const char *name, 1931 Object *child, Error **errp); 1932 1933 /** 1934 * object_property_add_child: 1935 * @obj: the object to add a property to 1936 * @name: the name of the property 1937 * @child: the child object 1938 * 1939 * Same as object_property_try_add_child() with @errp hardcoded to 1940 * &error_abort 1941 */ 1942 ObjectProperty *object_property_add_child(Object *obj, const char *name, 1943 Object *child); 1944 1945 typedef enum { 1946 /* Unref the link pointer when the property is deleted */ 1947 OBJ_PROP_LINK_STRONG = 0x1, 1948 1949 /* private */ 1950 OBJ_PROP_LINK_DIRECT = 0x2, 1951 OBJ_PROP_LINK_CLASS = 0x4, 1952 } ObjectPropertyLinkFlags; 1953 1954 /** 1955 * object_property_allow_set_link: 1956 * @obj: the object to add a property to 1957 * @name: the name of the property 1958 * @child: the child object 1959 * @errp: pointer to error object 1960 * 1961 * The default implementation of the object_property_add_link() check() 1962 * callback function. It allows the link property to be set and never returns 1963 * an error. 1964 */ 1965 void object_property_allow_set_link(const Object *obj, const char *name, 1966 Object *child, Error **errp); 1967 1968 /** 1969 * object_property_add_link: 1970 * @obj: the object to add a property to 1971 * @name: the name of the property 1972 * @type: the qobj type of the link 1973 * @targetp: a pointer to where the link object reference is stored 1974 * @check: callback to veto setting or NULL if the property is read-only 1975 * @flags: additional options for the link 1976 * 1977 * Links establish relationships between objects. Links are unidirectional 1978 * although two links can be combined to form a bidirectional relationship 1979 * between objects. 1980 * 1981 * Links form the graph in the object model. 1982 * 1983 * The <code>@check()</code> callback is invoked when 1984 * object_property_set_link() is called and can raise an error to prevent the 1985 * link being set. If <code>@check</code> is NULL, the property is read-only 1986 * and cannot be set. 1987 * 1988 * Ownership of the pointer that @child points to is transferred to the 1989 * link property. The reference count for <code>*@child</code> is 1990 * managed by the property from after the function returns till the 1991 * property is deleted with object_property_del(). If the 1992 * <code>@flags</code> <code>OBJ_PROP_LINK_STRONG</code> bit is set, 1993 * the reference count is decremented when the property is deleted or 1994 * modified. 1995 * 1996 * Returns: The newly added property on success, or %NULL on failure. 1997 */ 1998 ObjectProperty *object_property_add_link(Object *obj, const char *name, 1999 const char *type, Object **targetp, 2000 void (*check)(const Object *obj, const char *name, 2001 Object *val, Error **errp), 2002 ObjectPropertyLinkFlags flags); 2003 2004 ObjectProperty *object_class_property_add_link(ObjectClass *oc, 2005 const char *name, 2006 const char *type, ptrdiff_t offset, 2007 void (*check)(const Object *obj, const char *name, 2008 Object *val, Error **errp), 2009 ObjectPropertyLinkFlags flags); 2010 2011 /** 2012 * object_property_add_str: 2013 * @obj: the object to add a property to 2014 * @name: the name of the property 2015 * @get: the getter or NULL if the property is write-only. This function must 2016 * return a string to be freed by g_free(). 2017 * @set: the setter or NULL if the property is read-only 2018 * 2019 * Add a string property using getters/setters. This function will add a 2020 * property of type 'string'. 2021 * 2022 * Returns: The newly added property on success, or %NULL on failure. 2023 */ 2024 ObjectProperty *object_property_add_str(Object *obj, const char *name, 2025 char *(*get)(Object *, Error **), 2026 void (*set)(Object *, const char *, Error **)); 2027 2028 ObjectProperty *object_class_property_add_str(ObjectClass *klass, 2029 const char *name, 2030 char *(*get)(Object *, Error **), 2031 void (*set)(Object *, const char *, 2032 Error **)); 2033 2034 /** 2035 * object_property_add_bool: 2036 * @obj: the object to add a property to 2037 * @name: the name of the property 2038 * @get: the getter or NULL if the property is write-only. 2039 * @set: the setter or NULL if the property is read-only 2040 * 2041 * Add a bool property using getters/setters. This function will add a 2042 * property of type 'bool'. 2043 * 2044 * Returns: The newly added property on success, or %NULL on failure. 2045 */ 2046 ObjectProperty *object_property_add_bool(Object *obj, const char *name, 2047 bool (*get)(Object *, Error **), 2048 void (*set)(Object *, bool, Error **)); 2049 2050 ObjectProperty *object_class_property_add_bool(ObjectClass *klass, 2051 const char *name, 2052 bool (*get)(Object *, Error **), 2053 void (*set)(Object *, bool, Error **)); 2054 2055 /** 2056 * object_property_add_enum: 2057 * @obj: the object to add a property to 2058 * @name: the name of the property 2059 * @typename: the name of the enum data type 2060 * @lookup: enum value namelookup table 2061 * @get: the getter or %NULL if the property is write-only. 2062 * @set: the setter or %NULL if the property is read-only 2063 * 2064 * Add an enum property using getters/setters. This function will add a 2065 * property of type '@typename'. 2066 * 2067 * Returns: The newly added property on success, or %NULL on failure. 2068 */ 2069 ObjectProperty *object_property_add_enum(Object *obj, const char *name, 2070 const char *typename, 2071 const QEnumLookup *lookup, 2072 int (*get)(Object *, Error **), 2073 void (*set)(Object *, int, Error **)); 2074 2075 ObjectProperty *object_class_property_add_enum(ObjectClass *klass, 2076 const char *name, 2077 const char *typename, 2078 const QEnumLookup *lookup, 2079 int (*get)(Object *, Error **), 2080 void (*set)(Object *, int, Error **)); 2081 2082 /** 2083 * object_property_add_tm: 2084 * @obj: the object to add a property to 2085 * @name: the name of the property 2086 * @get: the getter or NULL if the property is write-only. 2087 * 2088 * Add a read-only struct tm valued property using a getter function. 2089 * This function will add a property of type 'struct tm'. 2090 * 2091 * Returns: The newly added property on success, or %NULL on failure. 2092 */ 2093 ObjectProperty *object_property_add_tm(Object *obj, const char *name, 2094 void (*get)(Object *, struct tm *, Error **)); 2095 2096 ObjectProperty *object_class_property_add_tm(ObjectClass *klass, 2097 const char *name, 2098 void (*get)(Object *, struct tm *, Error **)); 2099 2100 typedef enum { 2101 /* Automatically add a getter to the property */ 2102 OBJ_PROP_FLAG_READ = 1 << 0, 2103 /* Automatically add a setter to the property */ 2104 OBJ_PROP_FLAG_WRITE = 1 << 1, 2105 /* Automatically add a getter and a setter to the property */ 2106 OBJ_PROP_FLAG_READWRITE = (OBJ_PROP_FLAG_READ | OBJ_PROP_FLAG_WRITE), 2107 } ObjectPropertyFlags; 2108 2109 /** 2110 * object_property_add_uint8_ptr: 2111 * @obj: the object to add a property to 2112 * @name: the name of the property 2113 * @v: pointer to value 2114 * @flags: bitwise-or'd ObjectPropertyFlags 2115 * 2116 * Add an integer property in memory. This function will add a 2117 * property of type 'uint8'. 2118 * 2119 * Returns: The newly added property on success, or %NULL on failure. 2120 */ 2121 ObjectProperty *object_property_add_uint8_ptr(Object *obj, const char *name, 2122 const uint8_t *v, 2123 ObjectPropertyFlags flags); 2124 2125 ObjectProperty *object_class_property_add_uint8_ptr(ObjectClass *klass, 2126 const char *name, 2127 const uint8_t *v, 2128 ObjectPropertyFlags flags); 2129 2130 /** 2131 * object_property_add_uint16_ptr: 2132 * @obj: the object to add a property to 2133 * @name: the name of the property 2134 * @v: pointer to value 2135 * @flags: bitwise-or'd ObjectPropertyFlags 2136 * 2137 * Add an integer property in memory. This function will add a 2138 * property of type 'uint16'. 2139 * 2140 * Returns: The newly added property on success, or %NULL on failure. 2141 */ 2142 ObjectProperty *object_property_add_uint16_ptr(Object *obj, const char *name, 2143 const uint16_t *v, 2144 ObjectPropertyFlags flags); 2145 2146 ObjectProperty *object_class_property_add_uint16_ptr(ObjectClass *klass, 2147 const char *name, 2148 const uint16_t *v, 2149 ObjectPropertyFlags flags); 2150 2151 /** 2152 * object_property_add_uint32_ptr: 2153 * @obj: the object to add a property to 2154 * @name: the name of the property 2155 * @v: pointer to value 2156 * @flags: bitwise-or'd ObjectPropertyFlags 2157 * 2158 * Add an integer property in memory. This function will add a 2159 * property of type 'uint32'. 2160 * 2161 * Returns: The newly added property on success, or %NULL on failure. 2162 */ 2163 ObjectProperty *object_property_add_uint32_ptr(Object *obj, const char *name, 2164 const uint32_t *v, 2165 ObjectPropertyFlags flags); 2166 2167 ObjectProperty *object_class_property_add_uint32_ptr(ObjectClass *klass, 2168 const char *name, 2169 const uint32_t *v, 2170 ObjectPropertyFlags flags); 2171 2172 /** 2173 * object_property_add_uint64_ptr: 2174 * @obj: the object to add a property to 2175 * @name: the name of the property 2176 * @v: pointer to value 2177 * @flags: bitwise-or'd ObjectPropertyFlags 2178 * 2179 * Add an integer property in memory. This function will add a 2180 * property of type 'uint64'. 2181 * 2182 * Returns: The newly added property on success, or %NULL on failure. 2183 */ 2184 ObjectProperty *object_property_add_uint64_ptr(Object *obj, const char *name, 2185 const uint64_t *v, 2186 ObjectPropertyFlags flags); 2187 2188 ObjectProperty *object_class_property_add_uint64_ptr(ObjectClass *klass, 2189 const char *name, 2190 const uint64_t *v, 2191 ObjectPropertyFlags flags); 2192 2193 /** 2194 * object_property_add_alias: 2195 * @obj: the object to add a property to 2196 * @name: the name of the property 2197 * @target_obj: the object to forward property access to 2198 * @target_name: the name of the property on the forwarded object 2199 * 2200 * Add an alias for a property on an object. This function will add a property 2201 * of the same type as the forwarded property. 2202 * 2203 * The caller must ensure that <code>@target_obj</code> stays alive as long as 2204 * this property exists. In the case of a child object or an alias on the same 2205 * object this will be the case. For aliases to other objects the caller is 2206 * responsible for taking a reference. 2207 * 2208 * Returns: The newly added property on success, or %NULL on failure. 2209 */ 2210 ObjectProperty *object_property_add_alias(Object *obj, const char *name, 2211 Object *target_obj, const char *target_name); 2212 2213 /** 2214 * object_property_add_const_link: 2215 * @obj: the object to add a property to 2216 * @name: the name of the property 2217 * @target: the object to be referred by the link 2218 * 2219 * Add an unmodifiable link for a property on an object. This function will 2220 * add a property of type link<TYPE> where TYPE is the type of @target. 2221 * 2222 * The caller must ensure that @target stays alive as long as 2223 * this property exists. In the case @target is a child of @obj, 2224 * this will be the case. Otherwise, the caller is responsible for 2225 * taking a reference. 2226 * 2227 * Returns: The newly added property on success, or %NULL on failure. 2228 */ 2229 ObjectProperty *object_property_add_const_link(Object *obj, const char *name, 2230 Object *target); 2231 2232 /** 2233 * object_property_set_description: 2234 * @obj: the object owning the property 2235 * @name: the name of the property 2236 * @description: the description of the property on the object 2237 * 2238 * Set an object property's description. 2239 * 2240 * Returns: %true on success, %false on failure. 2241 */ 2242 void object_property_set_description(Object *obj, const char *name, 2243 const char *description); 2244 void object_class_property_set_description(ObjectClass *klass, const char *name, 2245 const char *description); 2246 2247 /** 2248 * object_child_foreach: 2249 * @obj: the object whose children will be navigated 2250 * @fn: the iterator function to be called 2251 * @opaque: an opaque value that will be passed to the iterator 2252 * 2253 * Call @fn passing each child of @obj and @opaque to it, until @fn returns 2254 * non-zero. 2255 * 2256 * It is forbidden to add or remove children from @obj from the @fn 2257 * callback. 2258 * 2259 * Returns: The last value returned by @fn, or 0 if there is no child. 2260 */ 2261 int object_child_foreach(Object *obj, int (*fn)(Object *child, void *opaque), 2262 void *opaque); 2263 2264 /** 2265 * object_child_foreach_recursive: 2266 * @obj: the object whose children will be navigated 2267 * @fn: the iterator function to be called 2268 * @opaque: an opaque value that will be passed to the iterator 2269 * 2270 * Call @fn passing each child of @obj and @opaque to it, until @fn returns 2271 * non-zero. Calls recursively, all child nodes of @obj will also be passed 2272 * all the way down to the leaf nodes of the tree. Depth first ordering. 2273 * 2274 * It is forbidden to add or remove children from @obj (or its 2275 * child nodes) from the @fn callback. 2276 * 2277 * Returns: The last value returned by @fn, or 0 if there is no child. 2278 */ 2279 int object_child_foreach_recursive(Object *obj, 2280 int (*fn)(Object *child, void *opaque), 2281 void *opaque); 2282 /** 2283 * container_get: 2284 * @root: root of the #path, e.g., object_get_root() 2285 * @path: path to the container 2286 * 2287 * Return a container object whose path is @path. Create more containers 2288 * along the path if necessary. 2289 * 2290 * Returns: the container object. 2291 */ 2292 Object *container_get(Object *root, const char *path); 2293 2294 /** 2295 * object_type_get_instance_size: 2296 * @typename: Name of the Type whose instance_size is required 2297 * 2298 * Returns the instance_size of the given @typename. 2299 */ 2300 size_t object_type_get_instance_size(const char *typename); 2301 2302 /** 2303 * object_property_help: 2304 * @name: the name of the property 2305 * @type: the type of the property 2306 * @defval: the default value 2307 * @description: description of the property 2308 * 2309 * Returns: a user-friendly formatted string describing the property 2310 * for help purposes. 2311 */ 2312 char *object_property_help(const char *name, const char *type, 2313 QObject *defval, const char *description); 2314 2315 G_DEFINE_AUTOPTR_CLEANUP_FUNC(Object, object_unref) 2316 2317 #endif 2318