xref: /openbmc/qemu/include/qemu/coroutine.h (revision 9cdd2a736b99bad19fb4f88d2230c75f680c31ec)
1 /*
2  * QEMU coroutine implementation
3  *
4  * Copyright IBM, Corp. 2011
5  *
6  * Authors:
7  *  Stefan Hajnoczi    <stefanha@linux.vnet.ibm.com>
8  *  Kevin Wolf         <kwolf@redhat.com>
9  *
10  * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11  * See the COPYING.LIB file in the top-level directory.
12  *
13  */
14 
15 #ifndef QEMU_COROUTINE_H
16 #define QEMU_COROUTINE_H
17 
18 #include "qemu/queue.h"
19 #include "qemu/timer.h"
20 
21 /**
22  * Coroutines are a mechanism for stack switching and can be used for
23  * cooperative userspace threading.  These functions provide a simple but
24  * useful flavor of coroutines that is suitable for writing sequential code,
25  * rather than callbacks, for operations that need to give up control while
26  * waiting for events to complete.
27  *
28  * These functions are re-entrant and may be used outside the global mutex.
29  */
30 
31 /**
32  * Mark a function that executes in coroutine context
33  *
34  * Functions that execute in coroutine context cannot be called directly from
35  * normal functions.  In the future it would be nice to enable compiler or
36  * static checker support for catching such errors.  This annotation might make
37  * it possible and in the meantime it serves as documentation.
38  *
39  * For example:
40  *
41  *   static void coroutine_fn foo(void) {
42  *       ....
43  *   }
44  */
45 #define coroutine_fn
46 
47 typedef struct Coroutine Coroutine;
48 
49 /**
50  * Coroutine entry point
51  *
52  * When the coroutine is entered for the first time, opaque is passed in as an
53  * argument.
54  *
55  * When this function returns, the coroutine is destroyed automatically and
56  * execution continues in the caller who last entered the coroutine.
57  */
58 typedef void coroutine_fn CoroutineEntry(void *opaque);
59 
60 /**
61  * Create a new coroutine
62  *
63  * Use qemu_coroutine_enter() to actually transfer control to the coroutine.
64  * The opaque argument is passed as the argument to the entry point.
65  */
66 Coroutine *qemu_coroutine_create(CoroutineEntry *entry, void *opaque);
67 
68 /**
69  * Transfer control to a coroutine
70  */
71 void qemu_coroutine_enter(Coroutine *coroutine);
72 
73 /**
74  * Transfer control to a coroutine if it's not active (i.e. part of the call
75  * stack of the running coroutine). Otherwise, do nothing.
76  */
77 void qemu_coroutine_enter_if_inactive(Coroutine *co);
78 
79 /**
80  * Transfer control to a coroutine and associate it with ctx
81  */
82 void qemu_aio_coroutine_enter(AioContext *ctx, Coroutine *co);
83 
84 /**
85  * Transfer control back to a coroutine's caller
86  *
87  * This function does not return until the coroutine is re-entered using
88  * qemu_coroutine_enter().
89  */
90 void coroutine_fn qemu_coroutine_yield(void);
91 
92 /**
93  * Get the currently executing coroutine
94  */
95 Coroutine *coroutine_fn qemu_coroutine_self(void);
96 
97 /**
98  * Return whether or not currently inside a coroutine
99  *
100  * This can be used to write functions that work both when in coroutine context
101  * and when not in coroutine context.  Note that such functions cannot use the
102  * coroutine_fn annotation since they work outside coroutine context.
103  */
104 bool qemu_in_coroutine(void);
105 
106 /**
107  * Return true if the coroutine is currently entered
108  *
109  * A coroutine is "entered" if it has not yielded from the current
110  * qemu_coroutine_enter() call used to run it.  This does not mean that the
111  * coroutine is currently executing code since it may have transferred control
112  * to another coroutine using qemu_coroutine_enter().
113  *
114  * When several coroutines enter each other there may be no way to know which
115  * ones have already been entered.  In such situations this function can be
116  * used to avoid recursively entering coroutines.
117  */
118 bool qemu_coroutine_entered(Coroutine *co);
119 
120 /**
121  * Provides a mutex that can be used to synchronise coroutines
122  */
123 struct CoWaitRecord;
124 struct CoMutex {
125     /* Count of pending lockers; 0 for a free mutex, 1 for an
126      * uncontended mutex.
127      */
128     unsigned locked;
129 
130     /* Context that is holding the lock.  Useful to avoid spinning
131      * when two coroutines on the same AioContext try to get the lock. :)
132      */
133     AioContext *ctx;
134 
135     /* A queue of waiters.  Elements are added atomically in front of
136      * from_push.  to_pop is only populated, and popped from, by whoever
137      * is in charge of the next wakeup.  This can be an unlocker or,
138      * through the handoff protocol, a locker that is about to go to sleep.
139      */
140     QSLIST_HEAD(, CoWaitRecord) from_push, to_pop;
141 
142     unsigned handoff, sequence;
143 
144     Coroutine *holder;
145 };
146 
147 /**
148  * Initialises a CoMutex. This must be called before any other operation is used
149  * on the CoMutex.
150  */
151 void qemu_co_mutex_init(CoMutex *mutex);
152 
153 /**
154  * Locks the mutex. If the lock cannot be taken immediately, control is
155  * transferred to the caller of the current coroutine.
156  */
157 void coroutine_fn qemu_co_mutex_lock(CoMutex *mutex);
158 
159 /**
160  * Unlocks the mutex and schedules the next coroutine that was waiting for this
161  * lock to be run.
162  */
163 void coroutine_fn qemu_co_mutex_unlock(CoMutex *mutex);
164 
165 
166 /**
167  * CoQueues are a mechanism to queue coroutines in order to continue executing
168  * them later.  They are similar to condition variables, but they need help
169  * from an external mutex in order to maintain thread-safety.
170  */
171 typedef struct CoQueue {
172     QSIMPLEQ_HEAD(, Coroutine) entries;
173 } CoQueue;
174 
175 /**
176  * Initialise a CoQueue. This must be called before any other operation is used
177  * on the CoQueue.
178  */
179 void qemu_co_queue_init(CoQueue *queue);
180 
181 /**
182  * Adds the current coroutine to the CoQueue and transfers control to the
183  * caller of the coroutine.  The mutex is unlocked during the wait and
184  * locked again afterwards.
185  */
186 #define qemu_co_queue_wait(queue, lock) \
187     qemu_co_queue_wait_impl(queue, QEMU_MAKE_LOCKABLE(lock))
188 void coroutine_fn qemu_co_queue_wait_impl(CoQueue *queue, QemuLockable *lock);
189 
190 /**
191  * Removes the next coroutine from the CoQueue, and wake it up.
192  * Returns true if a coroutine was removed, false if the queue is empty.
193  */
194 bool coroutine_fn qemu_co_queue_next(CoQueue *queue);
195 
196 /**
197  * Empties the CoQueue; all coroutines are woken up.
198  */
199 void coroutine_fn qemu_co_queue_restart_all(CoQueue *queue);
200 
201 /**
202  * Removes the next coroutine from the CoQueue, and wake it up.  Unlike
203  * qemu_co_queue_next, this function releases the lock during aio_co_wake
204  * because it is meant to be used outside coroutine context; in that case, the
205  * coroutine is entered immediately, before qemu_co_enter_next returns.
206  *
207  * If used in coroutine context, qemu_co_enter_next is equivalent to
208  * qemu_co_queue_next.
209  */
210 #define qemu_co_enter_next(queue, lock) \
211     qemu_co_enter_next_impl(queue, QEMU_MAKE_LOCKABLE(lock))
212 bool qemu_co_enter_next_impl(CoQueue *queue, QemuLockable *lock);
213 
214 /**
215  * Checks if the CoQueue is empty.
216  */
217 bool qemu_co_queue_empty(CoQueue *queue);
218 
219 
220 typedef struct CoRwlock {
221     int pending_writer;
222     int reader;
223     CoMutex mutex;
224     CoQueue queue;
225 } CoRwlock;
226 
227 /**
228  * Initialises a CoRwlock. This must be called before any other operation
229  * is used on the CoRwlock
230  */
231 void qemu_co_rwlock_init(CoRwlock *lock);
232 
233 /**
234  * Read locks the CoRwlock. If the lock cannot be taken immediately because
235  * of a parallel writer, control is transferred to the caller of the current
236  * coroutine.
237  */
238 void qemu_co_rwlock_rdlock(CoRwlock *lock);
239 
240 /**
241  * Write Locks the CoRwlock from a reader.  This is a bit more efficient than
242  * @qemu_co_rwlock_unlock followed by a separate @qemu_co_rwlock_wrlock.
243  * However, if the lock cannot be upgraded immediately, control is transferred
244  * to the caller of the current coroutine.  Also, @qemu_co_rwlock_upgrade
245  * only overrides CoRwlock fairness if there are no concurrent readers, so
246  * another writer might run while @qemu_co_rwlock_upgrade blocks.
247  */
248 void qemu_co_rwlock_upgrade(CoRwlock *lock);
249 
250 /**
251  * Downgrades a write-side critical section to a reader.  Downgrading with
252  * @qemu_co_rwlock_downgrade never blocks, unlike @qemu_co_rwlock_unlock
253  * followed by @qemu_co_rwlock_rdlock.  This makes it more efficient, but
254  * may also sometimes be necessary for correctness.
255  */
256 void qemu_co_rwlock_downgrade(CoRwlock *lock);
257 
258 /**
259  * Write Locks the mutex. If the lock cannot be taken immediately because
260  * of a parallel reader, control is transferred to the caller of the current
261  * coroutine.
262  */
263 void qemu_co_rwlock_wrlock(CoRwlock *lock);
264 
265 /**
266  * Unlocks the read/write lock and schedules the next coroutine that was
267  * waiting for this lock to be run.
268  */
269 void qemu_co_rwlock_unlock(CoRwlock *lock);
270 
271 /**
272  * Yield the coroutine for a given duration
273  */
274 void coroutine_fn qemu_co_sleep_ns(QEMUClockType type, int64_t ns);
275 
276 /**
277  * Yield until a file descriptor becomes readable
278  *
279  * Note that this function clobbers the handlers for the file descriptor.
280  */
281 void coroutine_fn yield_until_fd_readable(int fd);
282 
283 #include "qemu/lockable.h"
284 
285 #endif /* QEMU_COROUTINE_H */
286