xref: /openbmc/qemu/include/hw/core/cpu.h (revision a976a99a29755e8c7a275ac269db8a0a20d79e95)
1 /*
2  * QEMU CPU model
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 #ifndef QEMU_CPU_H
21 #define QEMU_CPU_H
22 
23 #include "hw/qdev-core.h"
24 #include "disas/dis-asm.h"
25 #include "exec/cpu-common.h"
26 #include "exec/hwaddr.h"
27 #include "exec/memattrs.h"
28 #include "qapi/qapi-types-run-state.h"
29 #include "qemu/bitmap.h"
30 #include "qemu/rcu_queue.h"
31 #include "qemu/queue.h"
32 #include "qemu/thread.h"
33 #include "qemu/plugin.h"
34 #include "qom/object.h"
35 
36 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
37                                      void *opaque);
38 
39 /**
40  * SECTION:cpu
41  * @section_id: QEMU-cpu
42  * @title: CPU Class
43  * @short_description: Base class for all CPUs
44  */
45 
46 #define TYPE_CPU "cpu"
47 
48 /* Since this macro is used a lot in hot code paths and in conjunction with
49  * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
50  * an unchecked cast.
51  */
52 #define CPU(obj) ((CPUState *)(obj))
53 
54 /*
55  * The class checkers bring in CPU_GET_CLASS() which is potentially
56  * expensive given the eventual call to
57  * object_class_dynamic_cast_assert(). Because of this the CPUState
58  * has a cached value for the class in cs->cc which is set up in
59  * cpu_exec_realizefn() for use in hot code paths.
60  */
61 typedef struct CPUClass CPUClass;
62 DECLARE_CLASS_CHECKERS(CPUClass, CPU,
63                        TYPE_CPU)
64 
65 /**
66  * OBJECT_DECLARE_CPU_TYPE:
67  * @CpuInstanceType: instance struct name
68  * @CpuClassType: class struct name
69  * @CPU_MODULE_OBJ_NAME: the CPU name in uppercase with underscore separators
70  *
71  * This macro is typically used in "cpu-qom.h" header file, and will:
72  *
73  *   - create the typedefs for the CPU object and class structs
74  *   - register the type for use with g_autoptr
75  *   - provide three standard type cast functions
76  *
77  * The object struct and class struct need to be declared manually.
78  */
79 #define OBJECT_DECLARE_CPU_TYPE(CpuInstanceType, CpuClassType, CPU_MODULE_OBJ_NAME) \
80     typedef struct ArchCPU CpuInstanceType; \
81     OBJECT_DECLARE_TYPE(ArchCPU, CpuClassType, CPU_MODULE_OBJ_NAME);
82 
83 typedef enum MMUAccessType {
84     MMU_DATA_LOAD  = 0,
85     MMU_DATA_STORE = 1,
86     MMU_INST_FETCH = 2
87 } MMUAccessType;
88 
89 typedef struct CPUWatchpoint CPUWatchpoint;
90 
91 /* see tcg-cpu-ops.h */
92 struct TCGCPUOps;
93 
94 /* see accel-cpu.h */
95 struct AccelCPUClass;
96 
97 /* see sysemu-cpu-ops.h */
98 struct SysemuCPUOps;
99 
100 /**
101  * CPUClass:
102  * @class_by_name: Callback to map -cpu command line model name to an
103  * instantiatable CPU type.
104  * @parse_features: Callback to parse command line arguments.
105  * @reset_dump_flags: #CPUDumpFlags to use for reset logging.
106  * @has_work: Callback for checking if there is work to do.
107  * @memory_rw_debug: Callback for GDB memory access.
108  * @dump_state: Callback for dumping state.
109  * @get_arch_id: Callback for getting architecture-dependent CPU ID.
110  * @set_pc: Callback for setting the Program Counter register. This
111  *       should have the semantics used by the target architecture when
112  *       setting the PC from a source such as an ELF file entry point;
113  *       for example on Arm it will also set the Thumb mode bit based
114  *       on the least significant bit of the new PC value.
115  *       If the target behaviour here is anything other than "set
116  *       the PC register to the value passed in" then the target must
117  *       also implement the synchronize_from_tb hook.
118  * @gdb_read_register: Callback for letting GDB read a register.
119  * @gdb_write_register: Callback for letting GDB write a register.
120  * @gdb_adjust_breakpoint: Callback for adjusting the address of a
121  *       breakpoint.  Used by AVR to handle a gdb mis-feature with
122  *       its Harvard architecture split code and data.
123  * @gdb_num_core_regs: Number of core registers accessible to GDB.
124  * @gdb_core_xml_file: File name for core registers GDB XML description.
125  * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
126  *           before the insn which triggers a watchpoint rather than after it.
127  * @gdb_arch_name: Optional callback that returns the architecture name known
128  * to GDB. The caller must free the returned string with g_free.
129  * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the
130  *   gdb stub. Returns a pointer to the XML contents for the specified XML file
131  *   or NULL if the CPU doesn't have a dynamically generated content for it.
132  * @disas_set_info: Setup architecture specific components of disassembly info
133  * @adjust_watchpoint_address: Perform a target-specific adjustment to an
134  * address before attempting to match it against watchpoints.
135  * @deprecation_note: If this CPUClass is deprecated, this field provides
136  *                    related information.
137  *
138  * Represents a CPU family or model.
139  */
140 struct CPUClass {
141     /*< private >*/
142     DeviceClass parent_class;
143     /*< public >*/
144 
145     ObjectClass *(*class_by_name)(const char *cpu_model);
146     void (*parse_features)(const char *typename, char *str, Error **errp);
147 
148     bool (*has_work)(CPUState *cpu);
149     int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
150                            uint8_t *buf, int len, bool is_write);
151     void (*dump_state)(CPUState *cpu, FILE *, int flags);
152     int64_t (*get_arch_id)(CPUState *cpu);
153     void (*set_pc)(CPUState *cpu, vaddr value);
154     int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg);
155     int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
156     vaddr (*gdb_adjust_breakpoint)(CPUState *cpu, vaddr addr);
157 
158     const char *gdb_core_xml_file;
159     gchar * (*gdb_arch_name)(CPUState *cpu);
160     const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname);
161 
162     void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
163 
164     const char *deprecation_note;
165     struct AccelCPUClass *accel_cpu;
166 
167     /* when system emulation is not available, this pointer is NULL */
168     const struct SysemuCPUOps *sysemu_ops;
169 
170     /* when TCG is not available, this pointer is NULL */
171     const struct TCGCPUOps *tcg_ops;
172 
173     /*
174      * if not NULL, this is called in order for the CPUClass to initialize
175      * class data that depends on the accelerator, see accel/accel-common.c.
176      */
177     void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc);
178 
179     /*
180      * Keep non-pointer data at the end to minimize holes.
181      */
182     int reset_dump_flags;
183     int gdb_num_core_regs;
184     bool gdb_stop_before_watchpoint;
185 };
186 
187 /*
188  * Low 16 bits: number of cycles left, used only in icount mode.
189  * High 16 bits: Set to -1 to force TCG to stop executing linked TBs
190  * for this CPU and return to its top level loop (even in non-icount mode).
191  * This allows a single read-compare-cbranch-write sequence to test
192  * for both decrementer underflow and exceptions.
193  */
194 typedef union IcountDecr {
195     uint32_t u32;
196     struct {
197 #if HOST_BIG_ENDIAN
198         uint16_t high;
199         uint16_t low;
200 #else
201         uint16_t low;
202         uint16_t high;
203 #endif
204     } u16;
205 } IcountDecr;
206 
207 typedef struct CPUBreakpoint {
208     vaddr pc;
209     int flags; /* BP_* */
210     QTAILQ_ENTRY(CPUBreakpoint) entry;
211 } CPUBreakpoint;
212 
213 struct CPUWatchpoint {
214     vaddr vaddr;
215     vaddr len;
216     vaddr hitaddr;
217     MemTxAttrs hitattrs;
218     int flags; /* BP_* */
219     QTAILQ_ENTRY(CPUWatchpoint) entry;
220 };
221 
222 #ifdef CONFIG_PLUGIN
223 /*
224  * For plugins we sometime need to save the resolved iotlb data before
225  * the memory regions get moved around  by io_writex.
226  */
227 typedef struct SavedIOTLB {
228     MemoryRegionSection *section;
229     hwaddr mr_offset;
230 } SavedIOTLB;
231 #endif
232 
233 struct KVMState;
234 struct kvm_run;
235 
236 struct hax_vcpu_state;
237 struct hvf_vcpu_state;
238 
239 /* work queue */
240 
241 /* The union type allows passing of 64 bit target pointers on 32 bit
242  * hosts in a single parameter
243  */
244 typedef union {
245     int           host_int;
246     unsigned long host_ulong;
247     void         *host_ptr;
248     vaddr         target_ptr;
249 } run_on_cpu_data;
250 
251 #define RUN_ON_CPU_HOST_PTR(p)    ((run_on_cpu_data){.host_ptr = (p)})
252 #define RUN_ON_CPU_HOST_INT(i)    ((run_on_cpu_data){.host_int = (i)})
253 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)})
254 #define RUN_ON_CPU_TARGET_PTR(v)  ((run_on_cpu_data){.target_ptr = (v)})
255 #define RUN_ON_CPU_NULL           RUN_ON_CPU_HOST_PTR(NULL)
256 
257 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data);
258 
259 struct qemu_work_item;
260 
261 #define CPU_UNSET_NUMA_NODE_ID -1
262 #define CPU_TRACE_DSTATE_MAX_EVENTS 32
263 
264 /**
265  * CPUState:
266  * @cpu_index: CPU index (informative).
267  * @cluster_index: Identifies which cluster this CPU is in.
268  *   For boards which don't define clusters or for "loose" CPUs not assigned
269  *   to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will
270  *   be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER
271  *   QOM parent.
272  * @tcg_cflags: Pre-computed cflags for this cpu.
273  * @nr_cores: Number of cores within this CPU package.
274  * @nr_threads: Number of threads within this CPU.
275  * @running: #true if CPU is currently running (lockless).
276  * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end;
277  * valid under cpu_list_lock.
278  * @created: Indicates whether the CPU thread has been successfully created.
279  * @interrupt_request: Indicates a pending interrupt request.
280  * @halted: Nonzero if the CPU is in suspended state.
281  * @stop: Indicates a pending stop request.
282  * @stopped: Indicates the CPU has been artificially stopped.
283  * @unplug: Indicates a pending CPU unplug request.
284  * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
285  * @singlestep_enabled: Flags for single-stepping.
286  * @icount_extra: Instructions until next timer event.
287  * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution
288  * requires that IO only be performed on the last instruction of a TB
289  * so that interrupts take effect immediately.
290  * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the
291  *            AddressSpaces this CPU has)
292  * @num_ases: number of CPUAddressSpaces in @cpu_ases
293  * @as: Pointer to the first AddressSpace, for the convenience of targets which
294  *      only have a single AddressSpace
295  * @env_ptr: Pointer to subclass-specific CPUArchState field.
296  * @icount_decr_ptr: Pointer to IcountDecr field within subclass.
297  * @gdb_regs: Additional GDB registers.
298  * @gdb_num_regs: Number of total registers accessible to GDB.
299  * @gdb_num_g_regs: Number of registers in GDB 'g' packets.
300  * @next_cpu: Next CPU sharing TB cache.
301  * @opaque: User data.
302  * @mem_io_pc: Host Program Counter at which the memory was accessed.
303  * @kvm_fd: vCPU file descriptor for KVM.
304  * @work_mutex: Lock to prevent multiple access to @work_list.
305  * @work_list: List of pending asynchronous work.
306  * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes
307  *                        to @trace_dstate).
308  * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask).
309  * @plugin_mask: Plugin event bitmap. Modified only via async work.
310  * @ignore_memory_transaction_failures: Cached copy of the MachineState
311  *    flag of the same name: allows the board to suppress calling of the
312  *    CPU do_transaction_failed hook function.
313  * @kvm_dirty_gfns: Points to the KVM dirty ring for this CPU when KVM dirty
314  *    ring is enabled.
315  * @kvm_fetch_index: Keeps the index that we last fetched from the per-vCPU
316  *    dirty ring structure.
317  *
318  * State of one CPU core or thread.
319  */
320 struct CPUState {
321     /*< private >*/
322     DeviceState parent_obj;
323     /* cache to avoid expensive CPU_GET_CLASS */
324     CPUClass *cc;
325     /*< public >*/
326 
327     int nr_cores;
328     int nr_threads;
329 
330     struct QemuThread *thread;
331 #ifdef _WIN32
332     HANDLE hThread;
333 #endif
334     int thread_id;
335     bool running, has_waiter;
336     struct QemuCond *halt_cond;
337     bool thread_kicked;
338     bool created;
339     bool stop;
340     bool stopped;
341 
342     /* Should CPU start in powered-off state? */
343     bool start_powered_off;
344 
345     bool unplug;
346     bool crash_occurred;
347     bool exit_request;
348     bool in_exclusive_context;
349     uint32_t cflags_next_tb;
350     /* updates protected by BQL */
351     uint32_t interrupt_request;
352     int singlestep_enabled;
353     int64_t icount_budget;
354     int64_t icount_extra;
355     uint64_t random_seed;
356     sigjmp_buf jmp_env;
357 
358     QemuMutex work_mutex;
359     QSIMPLEQ_HEAD(, qemu_work_item) work_list;
360 
361     CPUAddressSpace *cpu_ases;
362     int num_ases;
363     AddressSpace *as;
364     MemoryRegion *memory;
365 
366     CPUArchState *env_ptr;
367     IcountDecr *icount_decr_ptr;
368 
369     CPUJumpCache *tb_jmp_cache;
370 
371     struct GDBRegisterState *gdb_regs;
372     int gdb_num_regs;
373     int gdb_num_g_regs;
374     QTAILQ_ENTRY(CPUState) node;
375 
376     /* ice debug support */
377     QTAILQ_HEAD(, CPUBreakpoint) breakpoints;
378 
379     QTAILQ_HEAD(, CPUWatchpoint) watchpoints;
380     CPUWatchpoint *watchpoint_hit;
381 
382     void *opaque;
383 
384     /* In order to avoid passing too many arguments to the MMIO helpers,
385      * we store some rarely used information in the CPU context.
386      */
387     uintptr_t mem_io_pc;
388 
389     /* Only used in KVM */
390     int kvm_fd;
391     struct KVMState *kvm_state;
392     struct kvm_run *kvm_run;
393     struct kvm_dirty_gfn *kvm_dirty_gfns;
394     uint32_t kvm_fetch_index;
395     uint64_t dirty_pages;
396 
397     /* Used for events with 'vcpu' and *without* the 'disabled' properties */
398     DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS);
399     DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS);
400 
401     DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX);
402 
403 #ifdef CONFIG_PLUGIN
404     GArray *plugin_mem_cbs;
405     /* saved iotlb data from io_writex */
406     SavedIOTLB saved_iotlb;
407 #endif
408 
409     /* TODO Move common fields from CPUArchState here. */
410     int cpu_index;
411     int cluster_index;
412     uint32_t tcg_cflags;
413     uint32_t halted;
414     uint32_t can_do_io;
415     int32_t exception_index;
416 
417     /* shared by kvm, hax and hvf */
418     bool vcpu_dirty;
419 
420     /* Used to keep track of an outstanding cpu throttle thread for migration
421      * autoconverge
422      */
423     bool throttle_thread_scheduled;
424 
425     /*
426      * Sleep throttle_us_per_full microseconds once dirty ring is full
427      * if dirty page rate limit is enabled.
428      */
429     int64_t throttle_us_per_full;
430 
431     bool ignore_memory_transaction_failures;
432 
433     /* Used for user-only emulation of prctl(PR_SET_UNALIGN). */
434     bool prctl_unalign_sigbus;
435 
436     struct hax_vcpu_state *hax_vcpu;
437 
438     struct hvf_vcpu_state *hvf;
439 
440     /* track IOMMUs whose translations we've cached in the TCG TLB */
441     GArray *iommu_notifiers;
442 };
443 
444 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ;
445 extern CPUTailQ cpus;
446 
447 #define first_cpu        QTAILQ_FIRST_RCU(&cpus)
448 #define CPU_NEXT(cpu)    QTAILQ_NEXT_RCU(cpu, node)
449 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node)
450 #define CPU_FOREACH_SAFE(cpu, next_cpu) \
451     QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu)
452 
453 extern __thread CPUState *current_cpu;
454 
455 /**
456  * qemu_tcg_mttcg_enabled:
457  * Check whether we are running MultiThread TCG or not.
458  *
459  * Returns: %true if we are in MTTCG mode %false otherwise.
460  */
461 extern bool mttcg_enabled;
462 #define qemu_tcg_mttcg_enabled() (mttcg_enabled)
463 
464 /**
465  * cpu_paging_enabled:
466  * @cpu: The CPU whose state is to be inspected.
467  *
468  * Returns: %true if paging is enabled, %false otherwise.
469  */
470 bool cpu_paging_enabled(const CPUState *cpu);
471 
472 /**
473  * cpu_get_memory_mapping:
474  * @cpu: The CPU whose memory mappings are to be obtained.
475  * @list: Where to write the memory mappings to.
476  * @errp: Pointer for reporting an #Error.
477  */
478 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
479                             Error **errp);
480 
481 #if !defined(CONFIG_USER_ONLY)
482 
483 /**
484  * cpu_write_elf64_note:
485  * @f: pointer to a function that writes memory to a file
486  * @cpu: The CPU whose memory is to be dumped
487  * @cpuid: ID number of the CPU
488  * @opaque: pointer to the CPUState struct
489  */
490 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
491                          int cpuid, void *opaque);
492 
493 /**
494  * cpu_write_elf64_qemunote:
495  * @f: pointer to a function that writes memory to a file
496  * @cpu: The CPU whose memory is to be dumped
497  * @cpuid: ID number of the CPU
498  * @opaque: pointer to the CPUState struct
499  */
500 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
501                              void *opaque);
502 
503 /**
504  * cpu_write_elf32_note:
505  * @f: pointer to a function that writes memory to a file
506  * @cpu: The CPU whose memory is to be dumped
507  * @cpuid: ID number of the CPU
508  * @opaque: pointer to the CPUState struct
509  */
510 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
511                          int cpuid, void *opaque);
512 
513 /**
514  * cpu_write_elf32_qemunote:
515  * @f: pointer to a function that writes memory to a file
516  * @cpu: The CPU whose memory is to be dumped
517  * @cpuid: ID number of the CPU
518  * @opaque: pointer to the CPUState struct
519  */
520 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
521                              void *opaque);
522 
523 /**
524  * cpu_get_crash_info:
525  * @cpu: The CPU to get crash information for
526  *
527  * Gets the previously saved crash information.
528  * Caller is responsible for freeing the data.
529  */
530 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu);
531 
532 #endif /* !CONFIG_USER_ONLY */
533 
534 /**
535  * CPUDumpFlags:
536  * @CPU_DUMP_CODE:
537  * @CPU_DUMP_FPU: dump FPU register state, not just integer
538  * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
539  */
540 enum CPUDumpFlags {
541     CPU_DUMP_CODE = 0x00010000,
542     CPU_DUMP_FPU  = 0x00020000,
543     CPU_DUMP_CCOP = 0x00040000,
544 };
545 
546 /**
547  * cpu_dump_state:
548  * @cpu: The CPU whose state is to be dumped.
549  * @f: If non-null, dump to this stream, else to current print sink.
550  *
551  * Dumps CPU state.
552  */
553 void cpu_dump_state(CPUState *cpu, FILE *f, int flags);
554 
555 #ifndef CONFIG_USER_ONLY
556 /**
557  * cpu_get_phys_page_attrs_debug:
558  * @cpu: The CPU to obtain the physical page address for.
559  * @addr: The virtual address.
560  * @attrs: Updated on return with the memory transaction attributes to use
561  *         for this access.
562  *
563  * Obtains the physical page corresponding to a virtual one, together
564  * with the corresponding memory transaction attributes to use for the access.
565  * Use it only for debugging because no protection checks are done.
566  *
567  * Returns: Corresponding physical page address or -1 if no page found.
568  */
569 hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
570                                      MemTxAttrs *attrs);
571 
572 /**
573  * cpu_get_phys_page_debug:
574  * @cpu: The CPU to obtain the physical page address for.
575  * @addr: The virtual address.
576  *
577  * Obtains the physical page corresponding to a virtual one.
578  * Use it only for debugging because no protection checks are done.
579  *
580  * Returns: Corresponding physical page address or -1 if no page found.
581  */
582 hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
583 
584 /** cpu_asidx_from_attrs:
585  * @cpu: CPU
586  * @attrs: memory transaction attributes
587  *
588  * Returns the address space index specifying the CPU AddressSpace
589  * to use for a memory access with the given transaction attributes.
590  */
591 int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs);
592 
593 /**
594  * cpu_virtio_is_big_endian:
595  * @cpu: CPU
596 
597  * Returns %true if a CPU which supports runtime configurable endianness
598  * is currently big-endian.
599  */
600 bool cpu_virtio_is_big_endian(CPUState *cpu);
601 
602 #endif /* CONFIG_USER_ONLY */
603 
604 /**
605  * cpu_list_add:
606  * @cpu: The CPU to be added to the list of CPUs.
607  */
608 void cpu_list_add(CPUState *cpu);
609 
610 /**
611  * cpu_list_remove:
612  * @cpu: The CPU to be removed from the list of CPUs.
613  */
614 void cpu_list_remove(CPUState *cpu);
615 
616 /**
617  * cpu_reset:
618  * @cpu: The CPU whose state is to be reset.
619  */
620 void cpu_reset(CPUState *cpu);
621 
622 /**
623  * cpu_class_by_name:
624  * @typename: The CPU base type.
625  * @cpu_model: The model string without any parameters.
626  *
627  * Looks up a CPU #ObjectClass matching name @cpu_model.
628  *
629  * Returns: A #CPUClass or %NULL if not matching class is found.
630  */
631 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
632 
633 /**
634  * cpu_create:
635  * @typename: The CPU type.
636  *
637  * Instantiates a CPU and realizes the CPU.
638  *
639  * Returns: A #CPUState or %NULL if an error occurred.
640  */
641 CPUState *cpu_create(const char *typename);
642 
643 /**
644  * parse_cpu_option:
645  * @cpu_option: The -cpu option including optional parameters.
646  *
647  * processes optional parameters and registers them as global properties
648  *
649  * Returns: type of CPU to create or prints error and terminates process
650  *          if an error occurred.
651  */
652 const char *parse_cpu_option(const char *cpu_option);
653 
654 /**
655  * cpu_has_work:
656  * @cpu: The vCPU to check.
657  *
658  * Checks whether the CPU has work to do.
659  *
660  * Returns: %true if the CPU has work, %false otherwise.
661  */
662 static inline bool cpu_has_work(CPUState *cpu)
663 {
664     CPUClass *cc = CPU_GET_CLASS(cpu);
665 
666     g_assert(cc->has_work);
667     return cc->has_work(cpu);
668 }
669 
670 /**
671  * qemu_cpu_is_self:
672  * @cpu: The vCPU to check against.
673  *
674  * Checks whether the caller is executing on the vCPU thread.
675  *
676  * Returns: %true if called from @cpu's thread, %false otherwise.
677  */
678 bool qemu_cpu_is_self(CPUState *cpu);
679 
680 /**
681  * qemu_cpu_kick:
682  * @cpu: The vCPU to kick.
683  *
684  * Kicks @cpu's thread.
685  */
686 void qemu_cpu_kick(CPUState *cpu);
687 
688 /**
689  * cpu_is_stopped:
690  * @cpu: The CPU to check.
691  *
692  * Checks whether the CPU is stopped.
693  *
694  * Returns: %true if run state is not running or if artificially stopped;
695  * %false otherwise.
696  */
697 bool cpu_is_stopped(CPUState *cpu);
698 
699 /**
700  * do_run_on_cpu:
701  * @cpu: The vCPU to run on.
702  * @func: The function to be executed.
703  * @data: Data to pass to the function.
704  * @mutex: Mutex to release while waiting for @func to run.
705  *
706  * Used internally in the implementation of run_on_cpu.
707  */
708 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
709                    QemuMutex *mutex);
710 
711 /**
712  * run_on_cpu:
713  * @cpu: The vCPU to run on.
714  * @func: The function to be executed.
715  * @data: Data to pass to the function.
716  *
717  * Schedules the function @func for execution on the vCPU @cpu.
718  */
719 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
720 
721 /**
722  * async_run_on_cpu:
723  * @cpu: The vCPU to run on.
724  * @func: The function to be executed.
725  * @data: Data to pass to the function.
726  *
727  * Schedules the function @func for execution on the vCPU @cpu asynchronously.
728  */
729 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
730 
731 /**
732  * async_safe_run_on_cpu:
733  * @cpu: The vCPU to run on.
734  * @func: The function to be executed.
735  * @data: Data to pass to the function.
736  *
737  * Schedules the function @func for execution on the vCPU @cpu asynchronously,
738  * while all other vCPUs are sleeping.
739  *
740  * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the
741  * BQL.
742  */
743 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
744 
745 /**
746  * cpu_in_exclusive_context()
747  * @cpu: The vCPU to check
748  *
749  * Returns true if @cpu is an exclusive context, for example running
750  * something which has previously been queued via async_safe_run_on_cpu().
751  */
752 static inline bool cpu_in_exclusive_context(const CPUState *cpu)
753 {
754     return cpu->in_exclusive_context;
755 }
756 
757 /**
758  * qemu_get_cpu:
759  * @index: The CPUState@cpu_index value of the CPU to obtain.
760  *
761  * Gets a CPU matching @index.
762  *
763  * Returns: The CPU or %NULL if there is no matching CPU.
764  */
765 CPUState *qemu_get_cpu(int index);
766 
767 /**
768  * cpu_exists:
769  * @id: Guest-exposed CPU ID to lookup.
770  *
771  * Search for CPU with specified ID.
772  *
773  * Returns: %true - CPU is found, %false - CPU isn't found.
774  */
775 bool cpu_exists(int64_t id);
776 
777 /**
778  * cpu_by_arch_id:
779  * @id: Guest-exposed CPU ID of the CPU to obtain.
780  *
781  * Get a CPU with matching @id.
782  *
783  * Returns: The CPU or %NULL if there is no matching CPU.
784  */
785 CPUState *cpu_by_arch_id(int64_t id);
786 
787 /**
788  * cpu_interrupt:
789  * @cpu: The CPU to set an interrupt on.
790  * @mask: The interrupts to set.
791  *
792  * Invokes the interrupt handler.
793  */
794 
795 void cpu_interrupt(CPUState *cpu, int mask);
796 
797 /**
798  * cpu_set_pc:
799  * @cpu: The CPU to set the program counter for.
800  * @addr: Program counter value.
801  *
802  * Sets the program counter for a CPU.
803  */
804 static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
805 {
806     CPUClass *cc = CPU_GET_CLASS(cpu);
807 
808     cc->set_pc(cpu, addr);
809 }
810 
811 /**
812  * cpu_reset_interrupt:
813  * @cpu: The CPU to clear the interrupt on.
814  * @mask: The interrupt mask to clear.
815  *
816  * Resets interrupts on the vCPU @cpu.
817  */
818 void cpu_reset_interrupt(CPUState *cpu, int mask);
819 
820 /**
821  * cpu_exit:
822  * @cpu: The CPU to exit.
823  *
824  * Requests the CPU @cpu to exit execution.
825  */
826 void cpu_exit(CPUState *cpu);
827 
828 /**
829  * cpu_resume:
830  * @cpu: The CPU to resume.
831  *
832  * Resumes CPU, i.e. puts CPU into runnable state.
833  */
834 void cpu_resume(CPUState *cpu);
835 
836 /**
837  * cpu_remove_sync:
838  * @cpu: The CPU to remove.
839  *
840  * Requests the CPU to be removed and waits till it is removed.
841  */
842 void cpu_remove_sync(CPUState *cpu);
843 
844 /**
845  * process_queued_cpu_work() - process all items on CPU work queue
846  * @cpu: The CPU which work queue to process.
847  */
848 void process_queued_cpu_work(CPUState *cpu);
849 
850 /**
851  * cpu_exec_start:
852  * @cpu: The CPU for the current thread.
853  *
854  * Record that a CPU has started execution and can be interrupted with
855  * cpu_exit.
856  */
857 void cpu_exec_start(CPUState *cpu);
858 
859 /**
860  * cpu_exec_end:
861  * @cpu: The CPU for the current thread.
862  *
863  * Record that a CPU has stopped execution and exclusive sections
864  * can be executed without interrupting it.
865  */
866 void cpu_exec_end(CPUState *cpu);
867 
868 /**
869  * start_exclusive:
870  *
871  * Wait for a concurrent exclusive section to end, and then start
872  * a section of work that is run while other CPUs are not running
873  * between cpu_exec_start and cpu_exec_end.  CPUs that are running
874  * cpu_exec are exited immediately.  CPUs that call cpu_exec_start
875  * during the exclusive section go to sleep until this CPU calls
876  * end_exclusive.
877  */
878 void start_exclusive(void);
879 
880 /**
881  * end_exclusive:
882  *
883  * Concludes an exclusive execution section started by start_exclusive.
884  */
885 void end_exclusive(void);
886 
887 /**
888  * qemu_init_vcpu:
889  * @cpu: The vCPU to initialize.
890  *
891  * Initializes a vCPU.
892  */
893 void qemu_init_vcpu(CPUState *cpu);
894 
895 #define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
896 #define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
897 #define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
898 
899 /**
900  * cpu_single_step:
901  * @cpu: CPU to the flags for.
902  * @enabled: Flags to enable.
903  *
904  * Enables or disables single-stepping for @cpu.
905  */
906 void cpu_single_step(CPUState *cpu, int enabled);
907 
908 /* Breakpoint/watchpoint flags */
909 #define BP_MEM_READ           0x01
910 #define BP_MEM_WRITE          0x02
911 #define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
912 #define BP_STOP_BEFORE_ACCESS 0x04
913 /* 0x08 currently unused */
914 #define BP_GDB                0x10
915 #define BP_CPU                0x20
916 #define BP_ANY                (BP_GDB | BP_CPU)
917 #define BP_WATCHPOINT_HIT_READ 0x40
918 #define BP_WATCHPOINT_HIT_WRITE 0x80
919 #define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE)
920 
921 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
922                           CPUBreakpoint **breakpoint);
923 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
924 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
925 void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
926 
927 /* Return true if PC matches an installed breakpoint.  */
928 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
929 {
930     CPUBreakpoint *bp;
931 
932     if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
933         QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
934             if (bp->pc == pc && (bp->flags & mask)) {
935                 return true;
936             }
937         }
938     }
939     return false;
940 }
941 
942 #ifdef CONFIG_USER_ONLY
943 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
944                                         int flags, CPUWatchpoint **watchpoint)
945 {
946     return -ENOSYS;
947 }
948 
949 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
950                                         vaddr len, int flags)
951 {
952     return -ENOSYS;
953 }
954 
955 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu,
956                                                 CPUWatchpoint *wp)
957 {
958 }
959 
960 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
961 {
962 }
963 
964 static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
965                                         MemTxAttrs atr, int fl, uintptr_t ra)
966 {
967 }
968 
969 static inline int cpu_watchpoint_address_matches(CPUState *cpu,
970                                                  vaddr addr, vaddr len)
971 {
972     return 0;
973 }
974 #else
975 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
976                           int flags, CPUWatchpoint **watchpoint);
977 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
978                           vaddr len, int flags);
979 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint);
980 void cpu_watchpoint_remove_all(CPUState *cpu, int mask);
981 
982 /**
983  * cpu_check_watchpoint:
984  * @cpu: cpu context
985  * @addr: guest virtual address
986  * @len: access length
987  * @attrs: memory access attributes
988  * @flags: watchpoint access type
989  * @ra: unwind return address
990  *
991  * Check for a watchpoint hit in [addr, addr+len) of the type
992  * specified by @flags.  Exit via exception with a hit.
993  */
994 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
995                           MemTxAttrs attrs, int flags, uintptr_t ra);
996 
997 /**
998  * cpu_watchpoint_address_matches:
999  * @cpu: cpu context
1000  * @addr: guest virtual address
1001  * @len: access length
1002  *
1003  * Return the watchpoint flags that apply to [addr, addr+len).
1004  * If no watchpoint is registered for the range, the result is 0.
1005  */
1006 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len);
1007 #endif
1008 
1009 /**
1010  * cpu_get_address_space:
1011  * @cpu: CPU to get address space from
1012  * @asidx: index identifying which address space to get
1013  *
1014  * Return the requested address space of this CPU. @asidx
1015  * specifies which address space to read.
1016  */
1017 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx);
1018 
1019 G_NORETURN void cpu_abort(CPUState *cpu, const char *fmt, ...)
1020     G_GNUC_PRINTF(2, 3);
1021 
1022 /* $(top_srcdir)/cpu.c */
1023 void cpu_class_init_props(DeviceClass *dc);
1024 void cpu_exec_initfn(CPUState *cpu);
1025 void cpu_exec_realizefn(CPUState *cpu, Error **errp);
1026 void cpu_exec_unrealizefn(CPUState *cpu);
1027 
1028 /**
1029  * target_words_bigendian:
1030  * Returns true if the (default) endianness of the target is big endian,
1031  * false otherwise. Note that in target-specific code, you can use
1032  * TARGET_BIG_ENDIAN directly instead. On the other hand, common
1033  * code should normally never need to know about the endianness of the
1034  * target, so please do *not* use this function unless you know very well
1035  * what you are doing!
1036  */
1037 bool target_words_bigendian(void);
1038 
1039 void page_size_init(void);
1040 
1041 #ifdef NEED_CPU_H
1042 
1043 #ifdef CONFIG_SOFTMMU
1044 
1045 extern const VMStateDescription vmstate_cpu_common;
1046 
1047 #define VMSTATE_CPU() {                                                     \
1048     .name = "parent_obj",                                                   \
1049     .size = sizeof(CPUState),                                               \
1050     .vmsd = &vmstate_cpu_common,                                            \
1051     .flags = VMS_STRUCT,                                                    \
1052     .offset = 0,                                                            \
1053 }
1054 #endif /* CONFIG_SOFTMMU */
1055 
1056 #endif /* NEED_CPU_H */
1057 
1058 #define UNASSIGNED_CPU_INDEX -1
1059 #define UNASSIGNED_CLUSTER_INDEX -1
1060 
1061 #endif
1062