xref: /openbmc/qemu/include/hw/core/cpu.h (revision 6a094d62ffccad7e2411cc96d6400145e38da13e)
1 /*
2  * QEMU CPU model
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 #ifndef QEMU_CPU_H
21 #define QEMU_CPU_H
22 
23 #include "hw/qdev-core.h"
24 #include "disas/dis-asm.h"
25 #include "exec/hwaddr.h"
26 #include "exec/memattrs.h"
27 #include "qapi/qapi-types-run-state.h"
28 #include "qemu/bitmap.h"
29 #include "qemu/rcu_queue.h"
30 #include "qemu/queue.h"
31 #include "qemu/thread.h"
32 #include "qemu/plugin.h"
33 #include "qom/object.h"
34 
35 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
36                                      void *opaque);
37 
38 /**
39  * vaddr:
40  * Type wide enough to contain any #target_ulong virtual address.
41  */
42 typedef uint64_t vaddr;
43 #define VADDR_PRId PRId64
44 #define VADDR_PRIu PRIu64
45 #define VADDR_PRIo PRIo64
46 #define VADDR_PRIx PRIx64
47 #define VADDR_PRIX PRIX64
48 #define VADDR_MAX UINT64_MAX
49 
50 /**
51  * SECTION:cpu
52  * @section_id: QEMU-cpu
53  * @title: CPU Class
54  * @short_description: Base class for all CPUs
55  */
56 
57 #define TYPE_CPU "cpu"
58 
59 /* Since this macro is used a lot in hot code paths and in conjunction with
60  * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
61  * an unchecked cast.
62  */
63 #define CPU(obj) ((CPUState *)(obj))
64 
65 typedef struct CPUClass CPUClass;
66 DECLARE_CLASS_CHECKERS(CPUClass, CPU,
67                        TYPE_CPU)
68 
69 typedef enum MMUAccessType {
70     MMU_DATA_LOAD  = 0,
71     MMU_DATA_STORE = 1,
72     MMU_INST_FETCH = 2
73 } MMUAccessType;
74 
75 typedef struct CPUWatchpoint CPUWatchpoint;
76 
77 /* see tcg-cpu-ops.h */
78 struct TCGCPUOps;
79 
80 /* see accel-cpu.h */
81 struct AccelCPUClass;
82 
83 /* see sysemu-cpu-ops.h */
84 struct SysemuCPUOps;
85 
86 /**
87  * CPUClass:
88  * @class_by_name: Callback to map -cpu command line model name to an
89  * instantiatable CPU type.
90  * @parse_features: Callback to parse command line arguments.
91  * @reset_dump_flags: #CPUDumpFlags to use for reset logging.
92  * @has_work: Callback for checking if there is work to do.
93  * @memory_rw_debug: Callback for GDB memory access.
94  * @dump_state: Callback for dumping state.
95  * @get_arch_id: Callback for getting architecture-dependent CPU ID.
96  * @set_pc: Callback for setting the Program Counter register. This
97  *       should have the semantics used by the target architecture when
98  *       setting the PC from a source such as an ELF file entry point;
99  *       for example on Arm it will also set the Thumb mode bit based
100  *       on the least significant bit of the new PC value.
101  *       If the target behaviour here is anything other than "set
102  *       the PC register to the value passed in" then the target must
103  *       also implement the synchronize_from_tb hook.
104  * @gdb_read_register: Callback for letting GDB read a register.
105  * @gdb_write_register: Callback for letting GDB write a register.
106  * @gdb_adjust_breakpoint: Callback for adjusting the address of a
107  *       breakpoint.  Used by AVR to handle a gdb mis-feature with
108  *       its Harvard architecture split code and data.
109  * @gdb_num_core_regs: Number of core registers accessible to GDB.
110  * @gdb_core_xml_file: File name for core registers GDB XML description.
111  * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
112  *           before the insn which triggers a watchpoint rather than after it.
113  * @gdb_arch_name: Optional callback that returns the architecture name known
114  * to GDB. The caller must free the returned string with g_free.
115  * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the
116  *   gdb stub. Returns a pointer to the XML contents for the specified XML file
117  *   or NULL if the CPU doesn't have a dynamically generated content for it.
118  * @disas_set_info: Setup architecture specific components of disassembly info
119  * @adjust_watchpoint_address: Perform a target-specific adjustment to an
120  * address before attempting to match it against watchpoints.
121  * @deprecation_note: If this CPUClass is deprecated, this field provides
122  *                    related information.
123  *
124  * Represents a CPU family or model.
125  */
126 struct CPUClass {
127     /*< private >*/
128     DeviceClass parent_class;
129     /*< public >*/
130 
131     ObjectClass *(*class_by_name)(const char *cpu_model);
132     void (*parse_features)(const char *typename, char *str, Error **errp);
133 
134     bool (*has_work)(CPUState *cpu);
135     int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
136                            uint8_t *buf, int len, bool is_write);
137     void (*dump_state)(CPUState *cpu, FILE *, int flags);
138     int64_t (*get_arch_id)(CPUState *cpu);
139     void (*set_pc)(CPUState *cpu, vaddr value);
140     int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg);
141     int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
142     vaddr (*gdb_adjust_breakpoint)(CPUState *cpu, vaddr addr);
143 
144     const char *gdb_core_xml_file;
145     gchar * (*gdb_arch_name)(CPUState *cpu);
146     const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname);
147 
148     void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
149 
150     const char *deprecation_note;
151     struct AccelCPUClass *accel_cpu;
152 
153     /* when system emulation is not available, this pointer is NULL */
154     const struct SysemuCPUOps *sysemu_ops;
155 
156     /* when TCG is not available, this pointer is NULL */
157     const struct TCGCPUOps *tcg_ops;
158 
159     /*
160      * if not NULL, this is called in order for the CPUClass to initialize
161      * class data that depends on the accelerator, see accel/accel-common.c.
162      */
163     void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc);
164 
165     /*
166      * Keep non-pointer data at the end to minimize holes.
167      */
168     int reset_dump_flags;
169     int gdb_num_core_regs;
170     bool gdb_stop_before_watchpoint;
171 };
172 
173 /*
174  * Low 16 bits: number of cycles left, used only in icount mode.
175  * High 16 bits: Set to -1 to force TCG to stop executing linked TBs
176  * for this CPU and return to its top level loop (even in non-icount mode).
177  * This allows a single read-compare-cbranch-write sequence to test
178  * for both decrementer underflow and exceptions.
179  */
180 typedef union IcountDecr {
181     uint32_t u32;
182     struct {
183 #ifdef HOST_WORDS_BIGENDIAN
184         uint16_t high;
185         uint16_t low;
186 #else
187         uint16_t low;
188         uint16_t high;
189 #endif
190     } u16;
191 } IcountDecr;
192 
193 typedef struct CPUBreakpoint {
194     vaddr pc;
195     int flags; /* BP_* */
196     QTAILQ_ENTRY(CPUBreakpoint) entry;
197 } CPUBreakpoint;
198 
199 struct CPUWatchpoint {
200     vaddr vaddr;
201     vaddr len;
202     vaddr hitaddr;
203     MemTxAttrs hitattrs;
204     int flags; /* BP_* */
205     QTAILQ_ENTRY(CPUWatchpoint) entry;
206 };
207 
208 #ifdef CONFIG_PLUGIN
209 /*
210  * For plugins we sometime need to save the resolved iotlb data before
211  * the memory regions get moved around  by io_writex.
212  */
213 typedef struct SavedIOTLB {
214     hwaddr addr;
215     MemoryRegionSection *section;
216     hwaddr mr_offset;
217 } SavedIOTLB;
218 #endif
219 
220 struct KVMState;
221 struct kvm_run;
222 
223 struct hax_vcpu_state;
224 struct hvf_vcpu_state;
225 
226 #define TB_JMP_CACHE_BITS 12
227 #define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS)
228 
229 /* work queue */
230 
231 /* The union type allows passing of 64 bit target pointers on 32 bit
232  * hosts in a single parameter
233  */
234 typedef union {
235     int           host_int;
236     unsigned long host_ulong;
237     void         *host_ptr;
238     vaddr         target_ptr;
239 } run_on_cpu_data;
240 
241 #define RUN_ON_CPU_HOST_PTR(p)    ((run_on_cpu_data){.host_ptr = (p)})
242 #define RUN_ON_CPU_HOST_INT(i)    ((run_on_cpu_data){.host_int = (i)})
243 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)})
244 #define RUN_ON_CPU_TARGET_PTR(v)  ((run_on_cpu_data){.target_ptr = (v)})
245 #define RUN_ON_CPU_NULL           RUN_ON_CPU_HOST_PTR(NULL)
246 
247 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data);
248 
249 struct qemu_work_item;
250 
251 #define CPU_UNSET_NUMA_NODE_ID -1
252 #define CPU_TRACE_DSTATE_MAX_EVENTS 32
253 
254 /**
255  * CPUState:
256  * @cpu_index: CPU index (informative).
257  * @cluster_index: Identifies which cluster this CPU is in.
258  *   For boards which don't define clusters or for "loose" CPUs not assigned
259  *   to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will
260  *   be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER
261  *   QOM parent.
262  * @tcg_cflags: Pre-computed cflags for this cpu.
263  * @nr_cores: Number of cores within this CPU package.
264  * @nr_threads: Number of threads within this CPU.
265  * @running: #true if CPU is currently running (lockless).
266  * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end;
267  * valid under cpu_list_lock.
268  * @created: Indicates whether the CPU thread has been successfully created.
269  * @interrupt_request: Indicates a pending interrupt request.
270  * @halted: Nonzero if the CPU is in suspended state.
271  * @stop: Indicates a pending stop request.
272  * @stopped: Indicates the CPU has been artificially stopped.
273  * @unplug: Indicates a pending CPU unplug request.
274  * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
275  * @singlestep_enabled: Flags for single-stepping.
276  * @icount_extra: Instructions until next timer event.
277  * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution
278  * requires that IO only be performed on the last instruction of a TB
279  * so that interrupts take effect immediately.
280  * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the
281  *            AddressSpaces this CPU has)
282  * @num_ases: number of CPUAddressSpaces in @cpu_ases
283  * @as: Pointer to the first AddressSpace, for the convenience of targets which
284  *      only have a single AddressSpace
285  * @env_ptr: Pointer to subclass-specific CPUArchState field.
286  * @icount_decr_ptr: Pointer to IcountDecr field within subclass.
287  * @gdb_regs: Additional GDB registers.
288  * @gdb_num_regs: Number of total registers accessible to GDB.
289  * @gdb_num_g_regs: Number of registers in GDB 'g' packets.
290  * @next_cpu: Next CPU sharing TB cache.
291  * @opaque: User data.
292  * @mem_io_pc: Host Program Counter at which the memory was accessed.
293  * @kvm_fd: vCPU file descriptor for KVM.
294  * @work_mutex: Lock to prevent multiple access to @work_list.
295  * @work_list: List of pending asynchronous work.
296  * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes
297  *                        to @trace_dstate).
298  * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask).
299  * @plugin_mask: Plugin event bitmap. Modified only via async work.
300  * @ignore_memory_transaction_failures: Cached copy of the MachineState
301  *    flag of the same name: allows the board to suppress calling of the
302  *    CPU do_transaction_failed hook function.
303  * @kvm_dirty_gfns: Points to the KVM dirty ring for this CPU when KVM dirty
304  *    ring is enabled.
305  * @kvm_fetch_index: Keeps the index that we last fetched from the per-vCPU
306  *    dirty ring structure.
307  *
308  * State of one CPU core or thread.
309  */
310 struct CPUState {
311     /*< private >*/
312     DeviceState parent_obj;
313     /*< public >*/
314 
315     int nr_cores;
316     int nr_threads;
317 
318     struct QemuThread *thread;
319 #ifdef _WIN32
320     HANDLE hThread;
321 #endif
322     int thread_id;
323     bool running, has_waiter;
324     struct QemuCond *halt_cond;
325     bool thread_kicked;
326     bool created;
327     bool stop;
328     bool stopped;
329 
330     /* Should CPU start in powered-off state? */
331     bool start_powered_off;
332 
333     bool unplug;
334     bool crash_occurred;
335     bool exit_request;
336     bool in_exclusive_context;
337     uint32_t cflags_next_tb;
338     /* updates protected by BQL */
339     uint32_t interrupt_request;
340     int singlestep_enabled;
341     int64_t icount_budget;
342     int64_t icount_extra;
343     uint64_t random_seed;
344     sigjmp_buf jmp_env;
345 
346     QemuMutex work_mutex;
347     QSIMPLEQ_HEAD(, qemu_work_item) work_list;
348 
349     CPUAddressSpace *cpu_ases;
350     int num_ases;
351     AddressSpace *as;
352     MemoryRegion *memory;
353 
354     void *env_ptr; /* CPUArchState */
355     IcountDecr *icount_decr_ptr;
356 
357     /* Accessed in parallel; all accesses must be atomic */
358     TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE];
359 
360     struct GDBRegisterState *gdb_regs;
361     int gdb_num_regs;
362     int gdb_num_g_regs;
363     QTAILQ_ENTRY(CPUState) node;
364 
365     /* ice debug support */
366     QTAILQ_HEAD(, CPUBreakpoint) breakpoints;
367 
368     QTAILQ_HEAD(, CPUWatchpoint) watchpoints;
369     CPUWatchpoint *watchpoint_hit;
370 
371     void *opaque;
372 
373     /* In order to avoid passing too many arguments to the MMIO helpers,
374      * we store some rarely used information in the CPU context.
375      */
376     uintptr_t mem_io_pc;
377 
378     /* Only used in KVM */
379     int kvm_fd;
380     struct KVMState *kvm_state;
381     struct kvm_run *kvm_run;
382     struct kvm_dirty_gfn *kvm_dirty_gfns;
383     uint32_t kvm_fetch_index;
384     uint64_t dirty_pages;
385 
386     /* Used for events with 'vcpu' and *without* the 'disabled' properties */
387     DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS);
388     DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS);
389 
390     DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX);
391 
392 #ifdef CONFIG_PLUGIN
393     GArray *plugin_mem_cbs;
394     /* saved iotlb data from io_writex */
395     SavedIOTLB saved_iotlb;
396 #endif
397 
398     /* TODO Move common fields from CPUArchState here. */
399     int cpu_index;
400     int cluster_index;
401     uint32_t tcg_cflags;
402     uint32_t halted;
403     uint32_t can_do_io;
404     int32_t exception_index;
405 
406     /* shared by kvm, hax and hvf */
407     bool vcpu_dirty;
408 
409     /* Used to keep track of an outstanding cpu throttle thread for migration
410      * autoconverge
411      */
412     bool throttle_thread_scheduled;
413 
414     bool ignore_memory_transaction_failures;
415 
416     /* Used for user-only emulation of prctl(PR_SET_UNALIGN). */
417     bool prctl_unalign_sigbus;
418 
419     struct hax_vcpu_state *hax_vcpu;
420 
421     struct hvf_vcpu_state *hvf;
422 
423     /* track IOMMUs whose translations we've cached in the TCG TLB */
424     GArray *iommu_notifiers;
425 };
426 
427 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ;
428 extern CPUTailQ cpus;
429 
430 #define first_cpu        QTAILQ_FIRST_RCU(&cpus)
431 #define CPU_NEXT(cpu)    QTAILQ_NEXT_RCU(cpu, node)
432 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node)
433 #define CPU_FOREACH_SAFE(cpu, next_cpu) \
434     QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu)
435 
436 extern __thread CPUState *current_cpu;
437 
438 static inline void cpu_tb_jmp_cache_clear(CPUState *cpu)
439 {
440     unsigned int i;
441 
442     for (i = 0; i < TB_JMP_CACHE_SIZE; i++) {
443         qatomic_set(&cpu->tb_jmp_cache[i], NULL);
444     }
445 }
446 
447 /**
448  * qemu_tcg_mttcg_enabled:
449  * Check whether we are running MultiThread TCG or not.
450  *
451  * Returns: %true if we are in MTTCG mode %false otherwise.
452  */
453 extern bool mttcg_enabled;
454 #define qemu_tcg_mttcg_enabled() (mttcg_enabled)
455 
456 /**
457  * cpu_paging_enabled:
458  * @cpu: The CPU whose state is to be inspected.
459  *
460  * Returns: %true if paging is enabled, %false otherwise.
461  */
462 bool cpu_paging_enabled(const CPUState *cpu);
463 
464 /**
465  * cpu_get_memory_mapping:
466  * @cpu: The CPU whose memory mappings are to be obtained.
467  * @list: Where to write the memory mappings to.
468  * @errp: Pointer for reporting an #Error.
469  */
470 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
471                             Error **errp);
472 
473 #if !defined(CONFIG_USER_ONLY)
474 
475 /**
476  * cpu_write_elf64_note:
477  * @f: pointer to a function that writes memory to a file
478  * @cpu: The CPU whose memory is to be dumped
479  * @cpuid: ID number of the CPU
480  * @opaque: pointer to the CPUState struct
481  */
482 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
483                          int cpuid, void *opaque);
484 
485 /**
486  * cpu_write_elf64_qemunote:
487  * @f: pointer to a function that writes memory to a file
488  * @cpu: The CPU whose memory is to be dumped
489  * @cpuid: ID number of the CPU
490  * @opaque: pointer to the CPUState struct
491  */
492 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
493                              void *opaque);
494 
495 /**
496  * cpu_write_elf32_note:
497  * @f: pointer to a function that writes memory to a file
498  * @cpu: The CPU whose memory is to be dumped
499  * @cpuid: ID number of the CPU
500  * @opaque: pointer to the CPUState struct
501  */
502 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
503                          int cpuid, void *opaque);
504 
505 /**
506  * cpu_write_elf32_qemunote:
507  * @f: pointer to a function that writes memory to a file
508  * @cpu: The CPU whose memory is to be dumped
509  * @cpuid: ID number of the CPU
510  * @opaque: pointer to the CPUState struct
511  */
512 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
513                              void *opaque);
514 
515 /**
516  * cpu_get_crash_info:
517  * @cpu: The CPU to get crash information for
518  *
519  * Gets the previously saved crash information.
520  * Caller is responsible for freeing the data.
521  */
522 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu);
523 
524 #endif /* !CONFIG_USER_ONLY */
525 
526 /**
527  * CPUDumpFlags:
528  * @CPU_DUMP_CODE:
529  * @CPU_DUMP_FPU: dump FPU register state, not just integer
530  * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
531  */
532 enum CPUDumpFlags {
533     CPU_DUMP_CODE = 0x00010000,
534     CPU_DUMP_FPU  = 0x00020000,
535     CPU_DUMP_CCOP = 0x00040000,
536 };
537 
538 /**
539  * cpu_dump_state:
540  * @cpu: The CPU whose state is to be dumped.
541  * @f: If non-null, dump to this stream, else to current print sink.
542  *
543  * Dumps CPU state.
544  */
545 void cpu_dump_state(CPUState *cpu, FILE *f, int flags);
546 
547 #ifndef CONFIG_USER_ONLY
548 /**
549  * cpu_get_phys_page_attrs_debug:
550  * @cpu: The CPU to obtain the physical page address for.
551  * @addr: The virtual address.
552  * @attrs: Updated on return with the memory transaction attributes to use
553  *         for this access.
554  *
555  * Obtains the physical page corresponding to a virtual one, together
556  * with the corresponding memory transaction attributes to use for the access.
557  * Use it only for debugging because no protection checks are done.
558  *
559  * Returns: Corresponding physical page address or -1 if no page found.
560  */
561 hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
562                                      MemTxAttrs *attrs);
563 
564 /**
565  * cpu_get_phys_page_debug:
566  * @cpu: The CPU to obtain the physical page address for.
567  * @addr: The virtual address.
568  *
569  * Obtains the physical page corresponding to a virtual one.
570  * Use it only for debugging because no protection checks are done.
571  *
572  * Returns: Corresponding physical page address or -1 if no page found.
573  */
574 hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
575 
576 /** cpu_asidx_from_attrs:
577  * @cpu: CPU
578  * @attrs: memory transaction attributes
579  *
580  * Returns the address space index specifying the CPU AddressSpace
581  * to use for a memory access with the given transaction attributes.
582  */
583 int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs);
584 
585 /**
586  * cpu_virtio_is_big_endian:
587  * @cpu: CPU
588 
589  * Returns %true if a CPU which supports runtime configurable endianness
590  * is currently big-endian.
591  */
592 bool cpu_virtio_is_big_endian(CPUState *cpu);
593 
594 #endif /* CONFIG_USER_ONLY */
595 
596 /**
597  * cpu_list_add:
598  * @cpu: The CPU to be added to the list of CPUs.
599  */
600 void cpu_list_add(CPUState *cpu);
601 
602 /**
603  * cpu_list_remove:
604  * @cpu: The CPU to be removed from the list of CPUs.
605  */
606 void cpu_list_remove(CPUState *cpu);
607 
608 /**
609  * cpu_reset:
610  * @cpu: The CPU whose state is to be reset.
611  */
612 void cpu_reset(CPUState *cpu);
613 
614 /**
615  * cpu_class_by_name:
616  * @typename: The CPU base type.
617  * @cpu_model: The model string without any parameters.
618  *
619  * Looks up a CPU #ObjectClass matching name @cpu_model.
620  *
621  * Returns: A #CPUClass or %NULL if not matching class is found.
622  */
623 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
624 
625 /**
626  * cpu_create:
627  * @typename: The CPU type.
628  *
629  * Instantiates a CPU and realizes the CPU.
630  *
631  * Returns: A #CPUState or %NULL if an error occurred.
632  */
633 CPUState *cpu_create(const char *typename);
634 
635 /**
636  * parse_cpu_option:
637  * @cpu_option: The -cpu option including optional parameters.
638  *
639  * processes optional parameters and registers them as global properties
640  *
641  * Returns: type of CPU to create or prints error and terminates process
642  *          if an error occurred.
643  */
644 const char *parse_cpu_option(const char *cpu_option);
645 
646 /**
647  * cpu_has_work:
648  * @cpu: The vCPU to check.
649  *
650  * Checks whether the CPU has work to do.
651  *
652  * Returns: %true if the CPU has work, %false otherwise.
653  */
654 static inline bool cpu_has_work(CPUState *cpu)
655 {
656     CPUClass *cc = CPU_GET_CLASS(cpu);
657 
658     g_assert(cc->has_work);
659     return cc->has_work(cpu);
660 }
661 
662 /**
663  * qemu_cpu_is_self:
664  * @cpu: The vCPU to check against.
665  *
666  * Checks whether the caller is executing on the vCPU thread.
667  *
668  * Returns: %true if called from @cpu's thread, %false otherwise.
669  */
670 bool qemu_cpu_is_self(CPUState *cpu);
671 
672 /**
673  * qemu_cpu_kick:
674  * @cpu: The vCPU to kick.
675  *
676  * Kicks @cpu's thread.
677  */
678 void qemu_cpu_kick(CPUState *cpu);
679 
680 /**
681  * cpu_is_stopped:
682  * @cpu: The CPU to check.
683  *
684  * Checks whether the CPU is stopped.
685  *
686  * Returns: %true if run state is not running or if artificially stopped;
687  * %false otherwise.
688  */
689 bool cpu_is_stopped(CPUState *cpu);
690 
691 /**
692  * do_run_on_cpu:
693  * @cpu: The vCPU to run on.
694  * @func: The function to be executed.
695  * @data: Data to pass to the function.
696  * @mutex: Mutex to release while waiting for @func to run.
697  *
698  * Used internally in the implementation of run_on_cpu.
699  */
700 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
701                    QemuMutex *mutex);
702 
703 /**
704  * run_on_cpu:
705  * @cpu: The vCPU to run on.
706  * @func: The function to be executed.
707  * @data: Data to pass to the function.
708  *
709  * Schedules the function @func for execution on the vCPU @cpu.
710  */
711 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
712 
713 /**
714  * async_run_on_cpu:
715  * @cpu: The vCPU to run on.
716  * @func: The function to be executed.
717  * @data: Data to pass to the function.
718  *
719  * Schedules the function @func for execution on the vCPU @cpu asynchronously.
720  */
721 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
722 
723 /**
724  * async_safe_run_on_cpu:
725  * @cpu: The vCPU to run on.
726  * @func: The function to be executed.
727  * @data: Data to pass to the function.
728  *
729  * Schedules the function @func for execution on the vCPU @cpu asynchronously,
730  * while all other vCPUs are sleeping.
731  *
732  * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the
733  * BQL.
734  */
735 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
736 
737 /**
738  * cpu_in_exclusive_context()
739  * @cpu: The vCPU to check
740  *
741  * Returns true if @cpu is an exclusive context, for example running
742  * something which has previously been queued via async_safe_run_on_cpu().
743  */
744 static inline bool cpu_in_exclusive_context(const CPUState *cpu)
745 {
746     return cpu->in_exclusive_context;
747 }
748 
749 /**
750  * qemu_get_cpu:
751  * @index: The CPUState@cpu_index value of the CPU to obtain.
752  *
753  * Gets a CPU matching @index.
754  *
755  * Returns: The CPU or %NULL if there is no matching CPU.
756  */
757 CPUState *qemu_get_cpu(int index);
758 
759 /**
760  * cpu_exists:
761  * @id: Guest-exposed CPU ID to lookup.
762  *
763  * Search for CPU with specified ID.
764  *
765  * Returns: %true - CPU is found, %false - CPU isn't found.
766  */
767 bool cpu_exists(int64_t id);
768 
769 /**
770  * cpu_by_arch_id:
771  * @id: Guest-exposed CPU ID of the CPU to obtain.
772  *
773  * Get a CPU with matching @id.
774  *
775  * Returns: The CPU or %NULL if there is no matching CPU.
776  */
777 CPUState *cpu_by_arch_id(int64_t id);
778 
779 /**
780  * cpu_interrupt:
781  * @cpu: The CPU to set an interrupt on.
782  * @mask: The interrupts to set.
783  *
784  * Invokes the interrupt handler.
785  */
786 
787 void cpu_interrupt(CPUState *cpu, int mask);
788 
789 /**
790  * cpu_set_pc:
791  * @cpu: The CPU to set the program counter for.
792  * @addr: Program counter value.
793  *
794  * Sets the program counter for a CPU.
795  */
796 static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
797 {
798     CPUClass *cc = CPU_GET_CLASS(cpu);
799 
800     cc->set_pc(cpu, addr);
801 }
802 
803 /**
804  * cpu_reset_interrupt:
805  * @cpu: The CPU to clear the interrupt on.
806  * @mask: The interrupt mask to clear.
807  *
808  * Resets interrupts on the vCPU @cpu.
809  */
810 void cpu_reset_interrupt(CPUState *cpu, int mask);
811 
812 /**
813  * cpu_exit:
814  * @cpu: The CPU to exit.
815  *
816  * Requests the CPU @cpu to exit execution.
817  */
818 void cpu_exit(CPUState *cpu);
819 
820 /**
821  * cpu_resume:
822  * @cpu: The CPU to resume.
823  *
824  * Resumes CPU, i.e. puts CPU into runnable state.
825  */
826 void cpu_resume(CPUState *cpu);
827 
828 /**
829  * cpu_remove_sync:
830  * @cpu: The CPU to remove.
831  *
832  * Requests the CPU to be removed and waits till it is removed.
833  */
834 void cpu_remove_sync(CPUState *cpu);
835 
836 /**
837  * process_queued_cpu_work() - process all items on CPU work queue
838  * @cpu: The CPU which work queue to process.
839  */
840 void process_queued_cpu_work(CPUState *cpu);
841 
842 /**
843  * cpu_exec_start:
844  * @cpu: The CPU for the current thread.
845  *
846  * Record that a CPU has started execution and can be interrupted with
847  * cpu_exit.
848  */
849 void cpu_exec_start(CPUState *cpu);
850 
851 /**
852  * cpu_exec_end:
853  * @cpu: The CPU for the current thread.
854  *
855  * Record that a CPU has stopped execution and exclusive sections
856  * can be executed without interrupting it.
857  */
858 void cpu_exec_end(CPUState *cpu);
859 
860 /**
861  * start_exclusive:
862  *
863  * Wait for a concurrent exclusive section to end, and then start
864  * a section of work that is run while other CPUs are not running
865  * between cpu_exec_start and cpu_exec_end.  CPUs that are running
866  * cpu_exec are exited immediately.  CPUs that call cpu_exec_start
867  * during the exclusive section go to sleep until this CPU calls
868  * end_exclusive.
869  */
870 void start_exclusive(void);
871 
872 /**
873  * end_exclusive:
874  *
875  * Concludes an exclusive execution section started by start_exclusive.
876  */
877 void end_exclusive(void);
878 
879 /**
880  * qemu_init_vcpu:
881  * @cpu: The vCPU to initialize.
882  *
883  * Initializes a vCPU.
884  */
885 void qemu_init_vcpu(CPUState *cpu);
886 
887 #define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
888 #define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
889 #define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
890 
891 /**
892  * cpu_single_step:
893  * @cpu: CPU to the flags for.
894  * @enabled: Flags to enable.
895  *
896  * Enables or disables single-stepping for @cpu.
897  */
898 void cpu_single_step(CPUState *cpu, int enabled);
899 
900 /* Breakpoint/watchpoint flags */
901 #define BP_MEM_READ           0x01
902 #define BP_MEM_WRITE          0x02
903 #define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
904 #define BP_STOP_BEFORE_ACCESS 0x04
905 /* 0x08 currently unused */
906 #define BP_GDB                0x10
907 #define BP_CPU                0x20
908 #define BP_ANY                (BP_GDB | BP_CPU)
909 #define BP_WATCHPOINT_HIT_READ 0x40
910 #define BP_WATCHPOINT_HIT_WRITE 0x80
911 #define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE)
912 
913 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
914                           CPUBreakpoint **breakpoint);
915 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
916 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
917 void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
918 
919 /* Return true if PC matches an installed breakpoint.  */
920 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
921 {
922     CPUBreakpoint *bp;
923 
924     if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
925         QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
926             if (bp->pc == pc && (bp->flags & mask)) {
927                 return true;
928             }
929         }
930     }
931     return false;
932 }
933 
934 #ifdef CONFIG_USER_ONLY
935 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
936                                         int flags, CPUWatchpoint **watchpoint)
937 {
938     return -ENOSYS;
939 }
940 
941 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
942                                         vaddr len, int flags)
943 {
944     return -ENOSYS;
945 }
946 
947 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu,
948                                                 CPUWatchpoint *wp)
949 {
950 }
951 
952 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
953 {
954 }
955 
956 static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
957                                         MemTxAttrs atr, int fl, uintptr_t ra)
958 {
959 }
960 
961 static inline int cpu_watchpoint_address_matches(CPUState *cpu,
962                                                  vaddr addr, vaddr len)
963 {
964     return 0;
965 }
966 #else
967 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
968                           int flags, CPUWatchpoint **watchpoint);
969 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
970                           vaddr len, int flags);
971 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint);
972 void cpu_watchpoint_remove_all(CPUState *cpu, int mask);
973 
974 /**
975  * cpu_check_watchpoint:
976  * @cpu: cpu context
977  * @addr: guest virtual address
978  * @len: access length
979  * @attrs: memory access attributes
980  * @flags: watchpoint access type
981  * @ra: unwind return address
982  *
983  * Check for a watchpoint hit in [addr, addr+len) of the type
984  * specified by @flags.  Exit via exception with a hit.
985  */
986 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
987                           MemTxAttrs attrs, int flags, uintptr_t ra);
988 
989 /**
990  * cpu_watchpoint_address_matches:
991  * @cpu: cpu context
992  * @addr: guest virtual address
993  * @len: access length
994  *
995  * Return the watchpoint flags that apply to [addr, addr+len).
996  * If no watchpoint is registered for the range, the result is 0.
997  */
998 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len);
999 #endif
1000 
1001 /**
1002  * cpu_get_address_space:
1003  * @cpu: CPU to get address space from
1004  * @asidx: index identifying which address space to get
1005  *
1006  * Return the requested address space of this CPU. @asidx
1007  * specifies which address space to read.
1008  */
1009 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx);
1010 
1011 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...)
1012     GCC_FMT_ATTR(2, 3);
1013 
1014 /* $(top_srcdir)/cpu.c */
1015 void cpu_class_init_props(DeviceClass *dc);
1016 void cpu_exec_initfn(CPUState *cpu);
1017 void cpu_exec_realizefn(CPUState *cpu, Error **errp);
1018 void cpu_exec_unrealizefn(CPUState *cpu);
1019 
1020 /**
1021  * target_words_bigendian:
1022  * Returns true if the (default) endianness of the target is big endian,
1023  * false otherwise. Note that in target-specific code, you can use
1024  * TARGET_WORDS_BIGENDIAN directly instead. On the other hand, common
1025  * code should normally never need to know about the endianness of the
1026  * target, so please do *not* use this function unless you know very well
1027  * what you are doing!
1028  */
1029 bool target_words_bigendian(void);
1030 
1031 #ifdef NEED_CPU_H
1032 
1033 #ifdef CONFIG_SOFTMMU
1034 
1035 extern const VMStateDescription vmstate_cpu_common;
1036 
1037 #define VMSTATE_CPU() {                                                     \
1038     .name = "parent_obj",                                                   \
1039     .size = sizeof(CPUState),                                               \
1040     .vmsd = &vmstate_cpu_common,                                            \
1041     .flags = VMS_STRUCT,                                                    \
1042     .offset = 0,                                                            \
1043 }
1044 #endif /* CONFIG_SOFTMMU */
1045 
1046 #endif /* NEED_CPU_H */
1047 
1048 #define UNASSIGNED_CPU_INDEX -1
1049 #define UNASSIGNED_CLUSTER_INDEX -1
1050 
1051 #endif
1052