xref: /openbmc/qemu/include/hw/clock.h (revision 812b31d3f91507160c367440c17715b62d5e0869)
1 /*
2  * Hardware Clocks
3  *
4  * Copyright GreenSocs 2016-2020
5  *
6  * Authors:
7  *  Frederic Konrad
8  *  Damien Hedde
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or later.
11  * See the COPYING file in the top-level directory.
12  */
13 
14 #ifndef QEMU_HW_CLOCK_H
15 #define QEMU_HW_CLOCK_H
16 
17 #include "qom/object.h"
18 #include "qemu/queue.h"
19 #include "qemu/host-utils.h"
20 #include "qemu/bitops.h"
21 
22 #define TYPE_CLOCK "clock"
23 OBJECT_DECLARE_SIMPLE_TYPE(Clock, CLOCK)
24 
25 /*
26  * Argument to ClockCallback functions indicating why the callback
27  * has been called. A mask of these values logically ORed together
28  * is used to specify which events are interesting when the callback
29  * is registered, so these values must all be different bit values.
30  */
31 typedef enum ClockEvent {
32     ClockUpdate = 1, /* Clock period has just updated */
33     ClockPreUpdate = 2, /* Clock period is about to update */
34 } ClockEvent;
35 
36 typedef void ClockCallback(void *opaque, ClockEvent event);
37 
38 /*
39  * clock store a value representing the clock's period in 2^-32ns unit.
40  * It can represent:
41  *  + periods from 2^-32ns up to 4seconds
42  *  + frequency from ~0.25Hz 2e10Ghz
43  * Resolution of frequency representation decreases with frequency:
44  * + at 100MHz, resolution is ~2mHz
45  * + at 1Ghz,   resolution is ~0.2Hz
46  * + at 10Ghz,  resolution is ~20Hz
47  */
48 #define CLOCK_PERIOD_1SEC (1000000000llu << 32)
49 
50 /*
51  * macro helpers to convert to hertz / nanosecond
52  */
53 #define CLOCK_PERIOD_FROM_NS(ns) ((ns) * (CLOCK_PERIOD_1SEC / 1000000000llu))
54 #define CLOCK_PERIOD_FROM_HZ(hz) (((hz) != 0) ? CLOCK_PERIOD_1SEC / (hz) : 0u)
55 #define CLOCK_PERIOD_TO_HZ(per) (((per) != 0) ? CLOCK_PERIOD_1SEC / (per) : 0u)
56 
57 /**
58  * Clock:
59  * @parent_obj: parent class
60  * @period: unsigned integer representing the period of the clock
61  * @canonical_path: clock path string cache (used for trace purpose)
62  * @callback: called when clock changes
63  * @callback_opaque: argument for @callback
64  * @callback_events: mask of events when callback should be called
65  * @source: source (or parent in clock tree) of the clock
66  * @children: list of clocks connected to this one (it is their source)
67  * @sibling: structure used to form a clock list
68  */
69 
70 
71 struct Clock {
72     /*< private >*/
73     Object parent_obj;
74 
75     /* all fields are private and should not be modified directly */
76 
77     /* fields */
78     uint64_t period;
79     char *canonical_path;
80     ClockCallback *callback;
81     void *callback_opaque;
82     unsigned int callback_events;
83 
84     /* Clocks are organized in a clock tree */
85     Clock *source;
86     QLIST_HEAD(, Clock) children;
87     QLIST_ENTRY(Clock) sibling;
88 };
89 
90 /*
91  * vmstate description entry to be added in device vmsd.
92  */
93 extern const VMStateDescription vmstate_clock;
94 #define VMSTATE_CLOCK(field, state) \
95     VMSTATE_CLOCK_V(field, state, 0)
96 #define VMSTATE_CLOCK_V(field, state, version) \
97     VMSTATE_STRUCT_POINTER_V(field, state, version, vmstate_clock, Clock)
98 #define VMSTATE_ARRAY_CLOCK(field, state, num) \
99     VMSTATE_ARRAY_CLOCK_V(field, state, num, 0)
100 #define VMSTATE_ARRAY_CLOCK_V(field, state, num, version)          \
101     VMSTATE_ARRAY_OF_POINTER_TO_STRUCT(field, state, num, version, \
102                                        vmstate_clock, Clock)
103 
104 /**
105  * clock_setup_canonical_path:
106  * @clk: clock
107  *
108  * compute the canonical path of the clock (used by log messages)
109  */
110 void clock_setup_canonical_path(Clock *clk);
111 
112 /**
113  * clock_new:
114  * @parent: the clock parent
115  * @name: the clock object name
116  *
117  * Helper function to create a new clock and parent it to @parent. There is no
118  * need to call clock_setup_canonical_path on the returned clock as it is done
119  * by this function.
120  *
121  * @return the newly created clock
122  */
123 Clock *clock_new(Object *parent, const char *name);
124 
125 /**
126  * clock_set_callback:
127  * @clk: the clock to register the callback into
128  * @cb: the callback function
129  * @opaque: the argument to the callback
130  * @events: the events the callback should be called for
131  *          (logical OR of ClockEvent enum values)
132  *
133  * Register a callback called on every clock update.
134  * Note that a clock has only one callback: you cannot register
135  * different callback functions for different events.
136  */
137 void clock_set_callback(Clock *clk, ClockCallback *cb,
138                         void *opaque, unsigned int events);
139 
140 /**
141  * clock_clear_callback:
142  * @clk: the clock to delete the callback from
143  *
144  * Unregister the callback registered with clock_set_callback.
145  */
146 void clock_clear_callback(Clock *clk);
147 
148 /**
149  * clock_set_source:
150  * @clk: the clock.
151  * @src: the source clock
152  *
153  * Setup @src as the clock source of @clk. The current @src period
154  * value is also copied to @clk and its subtree but no callback is
155  * called.
156  * Further @src update will be propagated to @clk and its subtree.
157  */
158 void clock_set_source(Clock *clk, Clock *src);
159 
160 /**
161  * clock_has_source:
162  * @clk: the clock
163  *
164  * Returns true if the clock has a source clock connected to it.
165  * This is useful for devices which have input clocks which must
166  * be connected by the board/SoC code which creates them. The
167  * device code can use this to check in its realize method that
168  * the clock has been connected.
169  */
170 static inline bool clock_has_source(const Clock *clk)
171 {
172     return clk->source != NULL;
173 }
174 
175 /**
176  * clock_set:
177  * @clk: the clock to initialize.
178  * @value: the clock's value, 0 means unclocked
179  *
180  * Set the local cached period value of @clk to @value.
181  *
182  * @return: true if the clock is changed.
183  */
184 bool clock_set(Clock *clk, uint64_t value);
185 
186 static inline bool clock_set_hz(Clock *clk, unsigned hz)
187 {
188     return clock_set(clk, CLOCK_PERIOD_FROM_HZ(hz));
189 }
190 
191 static inline bool clock_set_ns(Clock *clk, unsigned ns)
192 {
193     return clock_set(clk, CLOCK_PERIOD_FROM_NS(ns));
194 }
195 
196 /**
197  * clock_propagate:
198  * @clk: the clock
199  *
200  * Propagate the clock period that has been previously configured using
201  * @clock_set(). This will update recursively all connected clocks.
202  * It is an error to call this function on a clock which has a source.
203  * Note: this function must not be called during device inititialization
204  * or migration.
205  */
206 void clock_propagate(Clock *clk);
207 
208 /**
209  * clock_update:
210  * @clk: the clock to update.
211  * @value: the new clock's value, 0 means unclocked
212  *
213  * Update the @clk to the new @value. All connected clocks will be informed
214  * of this update. This is equivalent to call @clock_set() then
215  * @clock_propagate().
216  */
217 static inline void clock_update(Clock *clk, uint64_t value)
218 {
219     if (clock_set(clk, value)) {
220         clock_propagate(clk);
221     }
222 }
223 
224 static inline void clock_update_hz(Clock *clk, unsigned hz)
225 {
226     clock_update(clk, CLOCK_PERIOD_FROM_HZ(hz));
227 }
228 
229 static inline void clock_update_ns(Clock *clk, unsigned ns)
230 {
231     clock_update(clk, CLOCK_PERIOD_FROM_NS(ns));
232 }
233 
234 /**
235  * clock_get:
236  * @clk: the clk to fetch the clock
237  *
238  * @return: the current period.
239  */
240 static inline uint64_t clock_get(const Clock *clk)
241 {
242     return clk->period;
243 }
244 
245 static inline unsigned clock_get_hz(Clock *clk)
246 {
247     return CLOCK_PERIOD_TO_HZ(clock_get(clk));
248 }
249 
250 /**
251  * clock_ticks_to_ns:
252  * @clk: the clock to query
253  * @ticks: number of ticks
254  *
255  * Returns the length of time in nanoseconds for this clock
256  * to tick @ticks times. Because a clock can have a period
257  * which is not a whole number of nanoseconds, it is important
258  * to use this function when calculating things like timer
259  * expiry deadlines, rather than attempting to obtain a "period
260  * in nanoseconds" value and then multiplying that by a number
261  * of ticks.
262  *
263  * The result could in theory be too large to fit in a 64-bit
264  * value if the number of ticks and the clock period are both
265  * large; to avoid overflow the result will be saturated to INT64_MAX
266  * (because this is the largest valid input to the QEMUTimer APIs).
267  * Since INT64_MAX nanoseconds is almost 300 years, anything with
268  * an expiry later than that is in the "will never happen" category
269  * and callers can reasonably not special-case the saturated result.
270  */
271 static inline uint64_t clock_ticks_to_ns(const Clock *clk, uint64_t ticks)
272 {
273     uint64_t ns_low, ns_high;
274 
275     /*
276      * clk->period is the period in units of 2^-32 ns, so
277      * (clk->period * ticks) is the required length of time in those
278      * units, and we can convert to nanoseconds by multiplying by
279      * 2^32, which is the same as shifting the 128-bit multiplication
280      * result right by 32.
281      */
282     mulu64(&ns_low, &ns_high, clk->period, ticks);
283     if (ns_high & MAKE_64BIT_MASK(31, 33)) {
284         return INT64_MAX;
285     }
286     return ns_low >> 32 | ns_high << 32;
287 }
288 
289 /**
290  * clock_ns_to_ticks:
291  * @clk: the clock to query
292  * @ns: duration in nanoseconds
293  *
294  * Returns the number of ticks this clock would make in the given
295  * number of nanoseconds. Because a clock can have a period which
296  * is not a whole number of nanoseconds, it is important to use this
297  * function rather than attempting to obtain a "period in nanoseconds"
298  * value and then dividing the duration by that value.
299  *
300  * If the clock is stopped (ie it has period zero), returns 0.
301  *
302  * For some inputs the result could overflow a 64-bit value (because
303  * the clock's period is short and the duration is long). In these
304  * cases we truncate the result to a 64-bit value. This is on the
305  * assumption that generally the result is going to be used to report
306  * a 32-bit or 64-bit guest register value, so wrapping either cannot
307  * happen or is the desired behaviour.
308  */
309 static inline uint64_t clock_ns_to_ticks(const Clock *clk, uint64_t ns)
310 {
311     /*
312      * ticks = duration_in_ns / period_in_ns
313      *       = ns / (period / 2^32)
314      *       = (ns * 2^32) / period
315      * The hi, lo inputs to divu128() are (ns << 32) as a 128 bit value.
316      */
317     uint64_t lo = ns << 32;
318     uint64_t hi = ns >> 32;
319     if (clk->period == 0) {
320         return 0;
321     }
322     /*
323      * Ignore divu128() return value as we've caught div-by-zero and don't
324      * need different behaviour for overflow.
325      */
326     divu128(&lo, &hi, clk->period);
327     return lo;
328 }
329 
330 /**
331  * clock_is_enabled:
332  * @clk: a clock
333  *
334  * @return: true if the clock is running.
335  */
336 static inline bool clock_is_enabled(const Clock *clk)
337 {
338     return clock_get(clk) != 0;
339 }
340 
341 /**
342  * clock_display_freq: return human-readable representation of clock frequency
343  * @clk: clock
344  *
345  * Return a string which has a human-readable representation of the
346  * clock's frequency, e.g. "33.3 MHz". This is intended for debug
347  * and display purposes.
348  *
349  * The caller is responsible for freeing the string with g_free().
350  */
351 char *clock_display_freq(Clock *clk);
352 
353 #endif /* QEMU_HW_CLOCK_H */
354