1 /* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef MEMORY_H 15 #define MEMORY_H 16 17 #ifndef CONFIG_USER_ONLY 18 19 #include "exec/cpu-common.h" 20 #include "exec/hwaddr.h" 21 #include "exec/memattrs.h" 22 #include "exec/memop.h" 23 #include "exec/ramlist.h" 24 #include "qemu/bswap.h" 25 #include "qemu/queue.h" 26 #include "qemu/int128.h" 27 #include "qemu/range.h" 28 #include "qemu/notify.h" 29 #include "qom/object.h" 30 #include "qemu/rcu.h" 31 32 #define RAM_ADDR_INVALID (~(ram_addr_t)0) 33 34 #define MAX_PHYS_ADDR_SPACE_BITS 62 35 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 36 37 #define TYPE_MEMORY_REGION "memory-region" 38 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION, 39 TYPE_MEMORY_REGION) 40 41 #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region" 42 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass; 43 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass, 44 IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION) 45 46 #define TYPE_RAM_DISCARD_MANAGER "ram-discard-manager" 47 typedef struct RamDiscardManagerClass RamDiscardManagerClass; 48 typedef struct RamDiscardManager RamDiscardManager; 49 DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass, 50 RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER); 51 52 #ifdef CONFIG_FUZZ 53 void fuzz_dma_read_cb(size_t addr, 54 size_t len, 55 MemoryRegion *mr); 56 #else 57 static inline void fuzz_dma_read_cb(size_t addr, 58 size_t len, 59 MemoryRegion *mr) 60 { 61 /* Do Nothing */ 62 } 63 #endif 64 65 /* Possible bits for global_dirty_log_{start|stop} */ 66 67 /* Dirty tracking enabled because migration is running */ 68 #define GLOBAL_DIRTY_MIGRATION (1U << 0) 69 70 /* Dirty tracking enabled because measuring dirty rate */ 71 #define GLOBAL_DIRTY_DIRTY_RATE (1U << 1) 72 73 /* Dirty tracking enabled because dirty limit */ 74 #define GLOBAL_DIRTY_LIMIT (1U << 2) 75 76 #define GLOBAL_DIRTY_MASK (0x7) 77 78 extern unsigned int global_dirty_tracking; 79 80 typedef struct MemoryRegionOps MemoryRegionOps; 81 82 struct ReservedRegion { 83 Range range; 84 unsigned type; 85 }; 86 87 /** 88 * struct MemoryRegionSection: describes a fragment of a #MemoryRegion 89 * 90 * @mr: the region, or %NULL if empty 91 * @fv: the flat view of the address space the region is mapped in 92 * @offset_within_region: the beginning of the section, relative to @mr's start 93 * @size: the size of the section; will not exceed @mr's boundaries 94 * @offset_within_address_space: the address of the first byte of the section 95 * relative to the region's address space 96 * @readonly: writes to this section are ignored 97 * @nonvolatile: this section is non-volatile 98 * @unmergeable: this section should not get merged with adjacent sections 99 */ 100 struct MemoryRegionSection { 101 Int128 size; 102 MemoryRegion *mr; 103 FlatView *fv; 104 hwaddr offset_within_region; 105 hwaddr offset_within_address_space; 106 bool readonly; 107 bool nonvolatile; 108 bool unmergeable; 109 }; 110 111 typedef struct IOMMUTLBEntry IOMMUTLBEntry; 112 113 /* See address_space_translate: bit 0 is read, bit 1 is write. */ 114 typedef enum { 115 IOMMU_NONE = 0, 116 IOMMU_RO = 1, 117 IOMMU_WO = 2, 118 IOMMU_RW = 3, 119 } IOMMUAccessFlags; 120 121 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0)) 122 123 struct IOMMUTLBEntry { 124 AddressSpace *target_as; 125 hwaddr iova; 126 hwaddr translated_addr; 127 hwaddr addr_mask; /* 0xfff = 4k translation */ 128 IOMMUAccessFlags perm; 129 }; 130 131 /* 132 * Bitmap for different IOMMUNotifier capabilities. Each notifier can 133 * register with one or multiple IOMMU Notifier capability bit(s). 134 * 135 * Normally there're two use cases for the notifiers: 136 * 137 * (1) When the device needs accurate synchronizations of the vIOMMU page 138 * tables, it needs to register with both MAP|UNMAP notifies (which 139 * is defined as IOMMU_NOTIFIER_IOTLB_EVENTS below). 140 * 141 * Regarding to accurate synchronization, it's when the notified 142 * device maintains a shadow page table and must be notified on each 143 * guest MAP (page table entry creation) and UNMAP (invalidation) 144 * events (e.g. VFIO). Both notifications must be accurate so that 145 * the shadow page table is fully in sync with the guest view. 146 * 147 * (2) When the device doesn't need accurate synchronizations of the 148 * vIOMMU page tables, it needs to register only with UNMAP or 149 * DEVIOTLB_UNMAP notifies. 150 * 151 * It's when the device maintains a cache of IOMMU translations 152 * (IOTLB) and is able to fill that cache by requesting translations 153 * from the vIOMMU through a protocol similar to ATS (Address 154 * Translation Service). 155 * 156 * Note that in this mode the vIOMMU will not maintain a shadowed 157 * page table for the address space, and the UNMAP messages can cover 158 * more than the pages that used to get mapped. The IOMMU notifiee 159 * should be able to take care of over-sized invalidations. 160 */ 161 typedef enum { 162 IOMMU_NOTIFIER_NONE = 0, 163 /* Notify cache invalidations */ 164 IOMMU_NOTIFIER_UNMAP = 0x1, 165 /* Notify entry changes (newly created entries) */ 166 IOMMU_NOTIFIER_MAP = 0x2, 167 /* Notify changes on device IOTLB entries */ 168 IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04, 169 } IOMMUNotifierFlag; 170 171 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP) 172 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP 173 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \ 174 IOMMU_NOTIFIER_DEVIOTLB_EVENTS) 175 176 struct IOMMUNotifier; 177 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier, 178 IOMMUTLBEntry *data); 179 180 struct IOMMUNotifier { 181 IOMMUNotify notify; 182 IOMMUNotifierFlag notifier_flags; 183 /* Notify for address space range start <= addr <= end */ 184 hwaddr start; 185 hwaddr end; 186 int iommu_idx; 187 QLIST_ENTRY(IOMMUNotifier) node; 188 }; 189 typedef struct IOMMUNotifier IOMMUNotifier; 190 191 typedef struct IOMMUTLBEvent { 192 IOMMUNotifierFlag type; 193 IOMMUTLBEntry entry; 194 } IOMMUTLBEvent; 195 196 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ 197 #define RAM_PREALLOC (1 << 0) 198 199 /* RAM is mmap-ed with MAP_SHARED */ 200 #define RAM_SHARED (1 << 1) 201 202 /* Only a portion of RAM (used_length) is actually used, and migrated. 203 * Resizing RAM while migrating can result in the migration being canceled. 204 */ 205 #define RAM_RESIZEABLE (1 << 2) 206 207 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically 208 * zero the page and wake waiting processes. 209 * (Set during postcopy) 210 */ 211 #define RAM_UF_ZEROPAGE (1 << 3) 212 213 /* RAM can be migrated */ 214 #define RAM_MIGRATABLE (1 << 4) 215 216 /* RAM is a persistent kind memory */ 217 #define RAM_PMEM (1 << 5) 218 219 220 /* 221 * UFFDIO_WRITEPROTECT is used on this RAMBlock to 222 * support 'write-tracking' migration type. 223 * Implies ram_state->ram_wt_enabled. 224 */ 225 #define RAM_UF_WRITEPROTECT (1 << 6) 226 227 /* 228 * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge 229 * pages if applicable) is skipped: will bail out if not supported. When not 230 * set, the OS will do the reservation, if supported for the memory type. 231 */ 232 #define RAM_NORESERVE (1 << 7) 233 234 /* RAM that isn't accessible through normal means. */ 235 #define RAM_PROTECTED (1 << 8) 236 237 /* RAM is an mmap-ed named file */ 238 #define RAM_NAMED_FILE (1 << 9) 239 240 /* RAM is mmap-ed read-only */ 241 #define RAM_READONLY (1 << 10) 242 243 /* RAM FD is opened read-only */ 244 #define RAM_READONLY_FD (1 << 11) 245 246 /* RAM can be private that has kvm guest memfd backend */ 247 #define RAM_GUEST_MEMFD (1 << 12) 248 249 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn, 250 IOMMUNotifierFlag flags, 251 hwaddr start, hwaddr end, 252 int iommu_idx) 253 { 254 n->notify = fn; 255 n->notifier_flags = flags; 256 n->start = start; 257 n->end = end; 258 n->iommu_idx = iommu_idx; 259 } 260 261 /* 262 * Memory region callbacks 263 */ 264 struct MemoryRegionOps { 265 /* Read from the memory region. @addr is relative to @mr; @size is 266 * in bytes. */ 267 uint64_t (*read)(void *opaque, 268 hwaddr addr, 269 unsigned size); 270 /* Write to the memory region. @addr is relative to @mr; @size is 271 * in bytes. */ 272 void (*write)(void *opaque, 273 hwaddr addr, 274 uint64_t data, 275 unsigned size); 276 277 MemTxResult (*read_with_attrs)(void *opaque, 278 hwaddr addr, 279 uint64_t *data, 280 unsigned size, 281 MemTxAttrs attrs); 282 MemTxResult (*write_with_attrs)(void *opaque, 283 hwaddr addr, 284 uint64_t data, 285 unsigned size, 286 MemTxAttrs attrs); 287 288 enum device_endian endianness; 289 /* Guest-visible constraints: */ 290 struct { 291 /* If nonzero, specify bounds on access sizes beyond which a machine 292 * check is thrown. 293 */ 294 unsigned min_access_size; 295 unsigned max_access_size; 296 /* If true, unaligned accesses are supported. Otherwise unaligned 297 * accesses throw machine checks. 298 */ 299 bool unaligned; 300 /* 301 * If present, and returns #false, the transaction is not accepted 302 * by the device (and results in machine dependent behaviour such 303 * as a machine check exception). 304 */ 305 bool (*accepts)(void *opaque, hwaddr addr, 306 unsigned size, bool is_write, 307 MemTxAttrs attrs); 308 } valid; 309 /* Internal implementation constraints: */ 310 struct { 311 /* If nonzero, specifies the minimum size implemented. Smaller sizes 312 * will be rounded upwards and a partial result will be returned. 313 */ 314 unsigned min_access_size; 315 /* If nonzero, specifies the maximum size implemented. Larger sizes 316 * will be done as a series of accesses with smaller sizes. 317 */ 318 unsigned max_access_size; 319 /* If true, unaligned accesses are supported. Otherwise all accesses 320 * are converted to (possibly multiple) naturally aligned accesses. 321 */ 322 bool unaligned; 323 } impl; 324 }; 325 326 typedef struct MemoryRegionClass { 327 /* private */ 328 ObjectClass parent_class; 329 } MemoryRegionClass; 330 331 332 enum IOMMUMemoryRegionAttr { 333 IOMMU_ATTR_SPAPR_TCE_FD 334 }; 335 336 /* 337 * IOMMUMemoryRegionClass: 338 * 339 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION 340 * and provide an implementation of at least the @translate method here 341 * to handle requests to the memory region. Other methods are optional. 342 * 343 * The IOMMU implementation must use the IOMMU notifier infrastructure 344 * to report whenever mappings are changed, by calling 345 * memory_region_notify_iommu() (or, if necessary, by calling 346 * memory_region_notify_iommu_one() for each registered notifier). 347 * 348 * Conceptually an IOMMU provides a mapping from input address 349 * to an output TLB entry. If the IOMMU is aware of memory transaction 350 * attributes and the output TLB entry depends on the transaction 351 * attributes, we represent this using IOMMU indexes. Each index 352 * selects a particular translation table that the IOMMU has: 353 * 354 * @attrs_to_index returns the IOMMU index for a set of transaction attributes 355 * 356 * @translate takes an input address and an IOMMU index 357 * 358 * and the mapping returned can only depend on the input address and the 359 * IOMMU index. 360 * 361 * Most IOMMUs don't care about the transaction attributes and support 362 * only a single IOMMU index. A more complex IOMMU might have one index 363 * for secure transactions and one for non-secure transactions. 364 */ 365 struct IOMMUMemoryRegionClass { 366 /* private: */ 367 MemoryRegionClass parent_class; 368 369 /* public: */ 370 /** 371 * @translate: 372 * 373 * Return a TLB entry that contains a given address. 374 * 375 * The IOMMUAccessFlags indicated via @flag are optional and may 376 * be specified as IOMMU_NONE to indicate that the caller needs 377 * the full translation information for both reads and writes. If 378 * the access flags are specified then the IOMMU implementation 379 * may use this as an optimization, to stop doing a page table 380 * walk as soon as it knows that the requested permissions are not 381 * allowed. If IOMMU_NONE is passed then the IOMMU must do the 382 * full page table walk and report the permissions in the returned 383 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not 384 * return different mappings for reads and writes.) 385 * 386 * The returned information remains valid while the caller is 387 * holding the big QEMU lock or is inside an RCU critical section; 388 * if the caller wishes to cache the mapping beyond that it must 389 * register an IOMMU notifier so it can invalidate its cached 390 * information when the IOMMU mapping changes. 391 * 392 * @iommu: the IOMMUMemoryRegion 393 * 394 * @hwaddr: address to be translated within the memory region 395 * 396 * @flag: requested access permission 397 * 398 * @iommu_idx: IOMMU index for the translation 399 */ 400 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr, 401 IOMMUAccessFlags flag, int iommu_idx); 402 /** 403 * @get_min_page_size: 404 * 405 * Returns minimum supported page size in bytes. 406 * 407 * If this method is not provided then the minimum is assumed to 408 * be TARGET_PAGE_SIZE. 409 * 410 * @iommu: the IOMMUMemoryRegion 411 */ 412 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu); 413 /** 414 * @notify_flag_changed: 415 * 416 * Called when IOMMU Notifier flag changes (ie when the set of 417 * events which IOMMU users are requesting notification for changes). 418 * Optional method -- need not be provided if the IOMMU does not 419 * need to know exactly which events must be notified. 420 * 421 * @iommu: the IOMMUMemoryRegion 422 * 423 * @old_flags: events which previously needed to be notified 424 * 425 * @new_flags: events which now need to be notified 426 * 427 * Returns 0 on success, or a negative errno; in particular 428 * returns -EINVAL if the new flag bitmap is not supported by the 429 * IOMMU memory region. In case of failure, the error object 430 * must be created 431 */ 432 int (*notify_flag_changed)(IOMMUMemoryRegion *iommu, 433 IOMMUNotifierFlag old_flags, 434 IOMMUNotifierFlag new_flags, 435 Error **errp); 436 /** 437 * @replay: 438 * 439 * Called to handle memory_region_iommu_replay(). 440 * 441 * The default implementation of memory_region_iommu_replay() is to 442 * call the IOMMU translate method for every page in the address space 443 * with flag == IOMMU_NONE and then call the notifier if translate 444 * returns a valid mapping. If this method is implemented then it 445 * overrides the default behaviour, and must provide the full semantics 446 * of memory_region_iommu_replay(), by calling @notifier for every 447 * translation present in the IOMMU. 448 * 449 * Optional method -- an IOMMU only needs to provide this method 450 * if the default is inefficient or produces undesirable side effects. 451 * 452 * Note: this is not related to record-and-replay functionality. 453 */ 454 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier); 455 456 /** 457 * @get_attr: 458 * 459 * Get IOMMU misc attributes. This is an optional method that 460 * can be used to allow users of the IOMMU to get implementation-specific 461 * information. The IOMMU implements this method to handle calls 462 * by IOMMU users to memory_region_iommu_get_attr() by filling in 463 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that 464 * the IOMMU supports. If the method is unimplemented then 465 * memory_region_iommu_get_attr() will always return -EINVAL. 466 * 467 * @iommu: the IOMMUMemoryRegion 468 * 469 * @attr: attribute being queried 470 * 471 * @data: memory to fill in with the attribute data 472 * 473 * Returns 0 on success, or a negative errno; in particular 474 * returns -EINVAL for unrecognized or unimplemented attribute types. 475 */ 476 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr, 477 void *data); 478 479 /** 480 * @attrs_to_index: 481 * 482 * Return the IOMMU index to use for a given set of transaction attributes. 483 * 484 * Optional method: if an IOMMU only supports a single IOMMU index then 485 * the default implementation of memory_region_iommu_attrs_to_index() 486 * will return 0. 487 * 488 * The indexes supported by an IOMMU must be contiguous, starting at 0. 489 * 490 * @iommu: the IOMMUMemoryRegion 491 * @attrs: memory transaction attributes 492 */ 493 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs); 494 495 /** 496 * @num_indexes: 497 * 498 * Return the number of IOMMU indexes this IOMMU supports. 499 * 500 * Optional method: if this method is not provided, then 501 * memory_region_iommu_num_indexes() will return 1, indicating that 502 * only a single IOMMU index is supported. 503 * 504 * @iommu: the IOMMUMemoryRegion 505 */ 506 int (*num_indexes)(IOMMUMemoryRegion *iommu); 507 508 /** 509 * @iommu_set_page_size_mask: 510 * 511 * Restrict the page size mask that can be supported with a given IOMMU 512 * memory region. Used for example to propagate host physical IOMMU page 513 * size mask limitations to the virtual IOMMU. 514 * 515 * Optional method: if this method is not provided, then the default global 516 * page mask is used. 517 * 518 * @iommu: the IOMMUMemoryRegion 519 * 520 * @page_size_mask: a bitmask of supported page sizes. At least one bit, 521 * representing the smallest page size, must be set. Additional set bits 522 * represent supported block sizes. For example a host physical IOMMU that 523 * uses page tables with a page size of 4kB, and supports 2MB and 4GB 524 * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate 525 * block sizes is specified with mask 0xfffffffffffff000. 526 * 527 * Returns 0 on success, or a negative error. In case of failure, the error 528 * object must be created. 529 */ 530 int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu, 531 uint64_t page_size_mask, 532 Error **errp); 533 }; 534 535 typedef struct RamDiscardListener RamDiscardListener; 536 typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl, 537 MemoryRegionSection *section); 538 typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl, 539 MemoryRegionSection *section); 540 541 struct RamDiscardListener { 542 /* 543 * @notify_populate: 544 * 545 * Notification that previously discarded memory is about to get populated. 546 * Listeners are able to object. If any listener objects, already 547 * successfully notified listeners are notified about a discard again. 548 * 549 * @rdl: the #RamDiscardListener getting notified 550 * @section: the #MemoryRegionSection to get populated. The section 551 * is aligned within the memory region to the minimum granularity 552 * unless it would exceed the registered section. 553 * 554 * Returns 0 on success. If the notification is rejected by the listener, 555 * an error is returned. 556 */ 557 NotifyRamPopulate notify_populate; 558 559 /* 560 * @notify_discard: 561 * 562 * Notification that previously populated memory was discarded successfully 563 * and listeners should drop all references to such memory and prevent 564 * new population (e.g., unmap). 565 * 566 * @rdl: the #RamDiscardListener getting notified 567 * @section: the #MemoryRegionSection to get populated. The section 568 * is aligned within the memory region to the minimum granularity 569 * unless it would exceed the registered section. 570 */ 571 NotifyRamDiscard notify_discard; 572 573 /* 574 * @double_discard_supported: 575 * 576 * The listener suppors getting @notify_discard notifications that span 577 * already discarded parts. 578 */ 579 bool double_discard_supported; 580 581 MemoryRegionSection *section; 582 QLIST_ENTRY(RamDiscardListener) next; 583 }; 584 585 static inline void ram_discard_listener_init(RamDiscardListener *rdl, 586 NotifyRamPopulate populate_fn, 587 NotifyRamDiscard discard_fn, 588 bool double_discard_supported) 589 { 590 rdl->notify_populate = populate_fn; 591 rdl->notify_discard = discard_fn; 592 rdl->double_discard_supported = double_discard_supported; 593 } 594 595 typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque); 596 typedef void (*ReplayRamDiscard)(MemoryRegionSection *section, void *opaque); 597 598 /* 599 * RamDiscardManagerClass: 600 * 601 * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion 602 * regions are currently populated to be used/accessed by the VM, notifying 603 * after parts were discarded (freeing up memory) and before parts will be 604 * populated (consuming memory), to be used/accessed by the VM. 605 * 606 * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the 607 * #MemoryRegion isn't mapped into an address space yet (either directly 608 * or via an alias); it cannot change while the #MemoryRegion is 609 * mapped into an address space. 610 * 611 * The #RamDiscardManager is intended to be used by technologies that are 612 * incompatible with discarding of RAM (e.g., VFIO, which may pin all 613 * memory inside a #MemoryRegion), and require proper coordination to only 614 * map the currently populated parts, to hinder parts that are expected to 615 * remain discarded from silently getting populated and consuming memory. 616 * Technologies that support discarding of RAM don't have to bother and can 617 * simply map the whole #MemoryRegion. 618 * 619 * An example #RamDiscardManager is virtio-mem, which logically (un)plugs 620 * memory within an assigned RAM #MemoryRegion, coordinated with the VM. 621 * Logically unplugging memory consists of discarding RAM. The VM agreed to not 622 * access unplugged (discarded) memory - especially via DMA. virtio-mem will 623 * properly coordinate with listeners before memory is plugged (populated), 624 * and after memory is unplugged (discarded). 625 * 626 * Listeners are called in multiples of the minimum granularity (unless it 627 * would exceed the registered range) and changes are aligned to the minimum 628 * granularity within the #MemoryRegion. Listeners have to prepare for memory 629 * becoming discarded in a different granularity than it was populated and the 630 * other way around. 631 */ 632 struct RamDiscardManagerClass { 633 /* private */ 634 InterfaceClass parent_class; 635 636 /* public */ 637 638 /** 639 * @get_min_granularity: 640 * 641 * Get the minimum granularity in which listeners will get notified 642 * about changes within the #MemoryRegion via the #RamDiscardManager. 643 * 644 * @rdm: the #RamDiscardManager 645 * @mr: the #MemoryRegion 646 * 647 * Returns the minimum granularity. 648 */ 649 uint64_t (*get_min_granularity)(const RamDiscardManager *rdm, 650 const MemoryRegion *mr); 651 652 /** 653 * @is_populated: 654 * 655 * Check whether the given #MemoryRegionSection is completely populated 656 * (i.e., no parts are currently discarded) via the #RamDiscardManager. 657 * There are no alignment requirements. 658 * 659 * @rdm: the #RamDiscardManager 660 * @section: the #MemoryRegionSection 661 * 662 * Returns whether the given range is completely populated. 663 */ 664 bool (*is_populated)(const RamDiscardManager *rdm, 665 const MemoryRegionSection *section); 666 667 /** 668 * @replay_populated: 669 * 670 * Call the #ReplayRamPopulate callback for all populated parts within the 671 * #MemoryRegionSection via the #RamDiscardManager. 672 * 673 * In case any call fails, no further calls are made. 674 * 675 * @rdm: the #RamDiscardManager 676 * @section: the #MemoryRegionSection 677 * @replay_fn: the #ReplayRamPopulate callback 678 * @opaque: pointer to forward to the callback 679 * 680 * Returns 0 on success, or a negative error if any notification failed. 681 */ 682 int (*replay_populated)(const RamDiscardManager *rdm, 683 MemoryRegionSection *section, 684 ReplayRamPopulate replay_fn, void *opaque); 685 686 /** 687 * @replay_discarded: 688 * 689 * Call the #ReplayRamDiscard callback for all discarded parts within the 690 * #MemoryRegionSection via the #RamDiscardManager. 691 * 692 * @rdm: the #RamDiscardManager 693 * @section: the #MemoryRegionSection 694 * @replay_fn: the #ReplayRamDiscard callback 695 * @opaque: pointer to forward to the callback 696 */ 697 void (*replay_discarded)(const RamDiscardManager *rdm, 698 MemoryRegionSection *section, 699 ReplayRamDiscard replay_fn, void *opaque); 700 701 /** 702 * @register_listener: 703 * 704 * Register a #RamDiscardListener for the given #MemoryRegionSection and 705 * immediately notify the #RamDiscardListener about all populated parts 706 * within the #MemoryRegionSection via the #RamDiscardManager. 707 * 708 * In case any notification fails, no further notifications are triggered 709 * and an error is logged. 710 * 711 * @rdm: the #RamDiscardManager 712 * @rdl: the #RamDiscardListener 713 * @section: the #MemoryRegionSection 714 */ 715 void (*register_listener)(RamDiscardManager *rdm, 716 RamDiscardListener *rdl, 717 MemoryRegionSection *section); 718 719 /** 720 * @unregister_listener: 721 * 722 * Unregister a previously registered #RamDiscardListener via the 723 * #RamDiscardManager after notifying the #RamDiscardListener about all 724 * populated parts becoming unpopulated within the registered 725 * #MemoryRegionSection. 726 * 727 * @rdm: the #RamDiscardManager 728 * @rdl: the #RamDiscardListener 729 */ 730 void (*unregister_listener)(RamDiscardManager *rdm, 731 RamDiscardListener *rdl); 732 }; 733 734 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm, 735 const MemoryRegion *mr); 736 737 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm, 738 const MemoryRegionSection *section); 739 740 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm, 741 MemoryRegionSection *section, 742 ReplayRamPopulate replay_fn, 743 void *opaque); 744 745 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm, 746 MemoryRegionSection *section, 747 ReplayRamDiscard replay_fn, 748 void *opaque); 749 750 void ram_discard_manager_register_listener(RamDiscardManager *rdm, 751 RamDiscardListener *rdl, 752 MemoryRegionSection *section); 753 754 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm, 755 RamDiscardListener *rdl); 756 757 /** 758 * memory_get_xlat_addr: Extract addresses from a TLB entry 759 * 760 * @iotlb: pointer to an #IOMMUTLBEntry 761 * @vaddr: virtual address 762 * @ram_addr: RAM address 763 * @read_only: indicates if writes are allowed 764 * @mr_has_discard_manager: indicates memory is controlled by a 765 * RamDiscardManager 766 * @errp: pointer to Error*, to store an error if it happens. 767 * 768 * Return: true on success, else false setting @errp with error. 769 */ 770 bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr, 771 ram_addr_t *ram_addr, bool *read_only, 772 bool *mr_has_discard_manager, Error **errp); 773 774 typedef struct CoalescedMemoryRange CoalescedMemoryRange; 775 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 776 777 /** MemoryRegion: 778 * 779 * A struct representing a memory region. 780 */ 781 struct MemoryRegion { 782 Object parent_obj; 783 784 /* private: */ 785 786 /* The following fields should fit in a cache line */ 787 bool romd_mode; 788 bool ram; 789 bool subpage; 790 bool readonly; /* For RAM regions */ 791 bool nonvolatile; 792 bool rom_device; 793 bool flush_coalesced_mmio; 794 bool unmergeable; 795 uint8_t dirty_log_mask; 796 bool is_iommu; 797 RAMBlock *ram_block; 798 Object *owner; 799 /* owner as TYPE_DEVICE. Used for re-entrancy checks in MR access hotpath */ 800 DeviceState *dev; 801 802 const MemoryRegionOps *ops; 803 void *opaque; 804 MemoryRegion *container; 805 int mapped_via_alias; /* Mapped via an alias, container might be NULL */ 806 Int128 size; 807 hwaddr addr; 808 void (*destructor)(MemoryRegion *mr); 809 uint64_t align; 810 bool terminates; 811 bool ram_device; 812 bool enabled; 813 bool warning_printed; /* For reservations */ 814 uint8_t vga_logging_count; 815 MemoryRegion *alias; 816 hwaddr alias_offset; 817 int32_t priority; 818 QTAILQ_HEAD(, MemoryRegion) subregions; 819 QTAILQ_ENTRY(MemoryRegion) subregions_link; 820 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced; 821 const char *name; 822 unsigned ioeventfd_nb; 823 MemoryRegionIoeventfd *ioeventfds; 824 RamDiscardManager *rdm; /* Only for RAM */ 825 826 /* For devices designed to perform re-entrant IO into their own IO MRs */ 827 bool disable_reentrancy_guard; 828 }; 829 830 struct IOMMUMemoryRegion { 831 MemoryRegion parent_obj; 832 833 QLIST_HEAD(, IOMMUNotifier) iommu_notify; 834 IOMMUNotifierFlag iommu_notify_flags; 835 }; 836 837 #define IOMMU_NOTIFIER_FOREACH(n, mr) \ 838 QLIST_FOREACH((n), &(mr)->iommu_notify, node) 839 840 #define MEMORY_LISTENER_PRIORITY_MIN 0 841 #define MEMORY_LISTENER_PRIORITY_ACCEL 10 842 #define MEMORY_LISTENER_PRIORITY_DEV_BACKEND 10 843 844 /** 845 * struct MemoryListener: callbacks structure for updates to the physical memory map 846 * 847 * Allows a component to adjust to changes in the guest-visible memory map. 848 * Use with memory_listener_register() and memory_listener_unregister(). 849 */ 850 struct MemoryListener { 851 /** 852 * @begin: 853 * 854 * Called at the beginning of an address space update transaction. 855 * Followed by calls to #MemoryListener.region_add(), 856 * #MemoryListener.region_del(), #MemoryListener.region_nop(), 857 * #MemoryListener.log_start() and #MemoryListener.log_stop() in 858 * increasing address order. 859 * 860 * @listener: The #MemoryListener. 861 */ 862 void (*begin)(MemoryListener *listener); 863 864 /** 865 * @commit: 866 * 867 * Called at the end of an address space update transaction, 868 * after the last call to #MemoryListener.region_add(), 869 * #MemoryListener.region_del() or #MemoryListener.region_nop(), 870 * #MemoryListener.log_start() and #MemoryListener.log_stop(). 871 * 872 * @listener: The #MemoryListener. 873 */ 874 void (*commit)(MemoryListener *listener); 875 876 /** 877 * @region_add: 878 * 879 * Called during an address space update transaction, 880 * for a section of the address space that is new in this address space 881 * space since the last transaction. 882 * 883 * @listener: The #MemoryListener. 884 * @section: The new #MemoryRegionSection. 885 */ 886 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 887 888 /** 889 * @region_del: 890 * 891 * Called during an address space update transaction, 892 * for a section of the address space that has disappeared in the address 893 * space since the last transaction. 894 * 895 * @listener: The #MemoryListener. 896 * @section: The old #MemoryRegionSection. 897 */ 898 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 899 900 /** 901 * @region_nop: 902 * 903 * Called during an address space update transaction, 904 * for a section of the address space that is in the same place in the address 905 * space as in the last transaction. 906 * 907 * @listener: The #MemoryListener. 908 * @section: The #MemoryRegionSection. 909 */ 910 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 911 912 /** 913 * @log_start: 914 * 915 * Called during an address space update transaction, after 916 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or 917 * #MemoryListener.region_nop(), if dirty memory logging clients have 918 * become active since the last transaction. 919 * 920 * @listener: The #MemoryListener. 921 * @section: The #MemoryRegionSection. 922 * @old: A bitmap of dirty memory logging clients that were active in 923 * the previous transaction. 924 * @new: A bitmap of dirty memory logging clients that are active in 925 * the current transaction. 926 */ 927 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, 928 int old, int new); 929 930 /** 931 * @log_stop: 932 * 933 * Called during an address space update transaction, after 934 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or 935 * #MemoryListener.region_nop() and possibly after 936 * #MemoryListener.log_start(), if dirty memory logging clients have 937 * become inactive since the last transaction. 938 * 939 * @listener: The #MemoryListener. 940 * @section: The #MemoryRegionSection. 941 * @old: A bitmap of dirty memory logging clients that were active in 942 * the previous transaction. 943 * @new: A bitmap of dirty memory logging clients that are active in 944 * the current transaction. 945 */ 946 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, 947 int old, int new); 948 949 /** 950 * @log_sync: 951 * 952 * Called by memory_region_snapshot_and_clear_dirty() and 953 * memory_global_dirty_log_sync(), before accessing QEMU's "official" 954 * copy of the dirty memory bitmap for a #MemoryRegionSection. 955 * 956 * @listener: The #MemoryListener. 957 * @section: The #MemoryRegionSection. 958 */ 959 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 960 961 /** 962 * @log_sync_global: 963 * 964 * This is the global version of @log_sync when the listener does 965 * not have a way to synchronize the log with finer granularity. 966 * When the listener registers with @log_sync_global defined, then 967 * its @log_sync must be NULL. Vice versa. 968 * 969 * @listener: The #MemoryListener. 970 * @last_stage: The last stage to synchronize the log during migration. 971 * The caller should guarantee that the synchronization with true for 972 * @last_stage is triggered for once after all VCPUs have been stopped. 973 */ 974 void (*log_sync_global)(MemoryListener *listener, bool last_stage); 975 976 /** 977 * @log_clear: 978 * 979 * Called before reading the dirty memory bitmap for a 980 * #MemoryRegionSection. 981 * 982 * @listener: The #MemoryListener. 983 * @section: The #MemoryRegionSection. 984 */ 985 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section); 986 987 /** 988 * @log_global_start: 989 * 990 * Called by memory_global_dirty_log_start(), which 991 * enables the %DIRTY_LOG_MIGRATION client on all memory regions in 992 * the address space. #MemoryListener.log_global_start() is also 993 * called when a #MemoryListener is added, if global dirty logging is 994 * active at that time. 995 * 996 * @listener: The #MemoryListener. 997 * @errp: pointer to Error*, to store an error if it happens. 998 * 999 * Return: true on success, else false setting @errp with error. 1000 */ 1001 bool (*log_global_start)(MemoryListener *listener, Error **errp); 1002 1003 /** 1004 * @log_global_stop: 1005 * 1006 * Called by memory_global_dirty_log_stop(), which 1007 * disables the %DIRTY_LOG_MIGRATION client on all memory regions in 1008 * the address space. 1009 * 1010 * @listener: The #MemoryListener. 1011 */ 1012 void (*log_global_stop)(MemoryListener *listener); 1013 1014 /** 1015 * @log_global_after_sync: 1016 * 1017 * Called after reading the dirty memory bitmap 1018 * for any #MemoryRegionSection. 1019 * 1020 * @listener: The #MemoryListener. 1021 */ 1022 void (*log_global_after_sync)(MemoryListener *listener); 1023 1024 /** 1025 * @eventfd_add: 1026 * 1027 * Called during an address space update transaction, 1028 * for a section of the address space that has had a new ioeventfd 1029 * registration since the last transaction. 1030 * 1031 * @listener: The #MemoryListener. 1032 * @section: The new #MemoryRegionSection. 1033 * @match_data: The @match_data parameter for the new ioeventfd. 1034 * @data: The @data parameter for the new ioeventfd. 1035 * @e: The #EventNotifier parameter for the new ioeventfd. 1036 */ 1037 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 1038 bool match_data, uint64_t data, EventNotifier *e); 1039 1040 /** 1041 * @eventfd_del: 1042 * 1043 * Called during an address space update transaction, 1044 * for a section of the address space that has dropped an ioeventfd 1045 * registration since the last transaction. 1046 * 1047 * @listener: The #MemoryListener. 1048 * @section: The new #MemoryRegionSection. 1049 * @match_data: The @match_data parameter for the dropped ioeventfd. 1050 * @data: The @data parameter for the dropped ioeventfd. 1051 * @e: The #EventNotifier parameter for the dropped ioeventfd. 1052 */ 1053 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 1054 bool match_data, uint64_t data, EventNotifier *e); 1055 1056 /** 1057 * @coalesced_io_add: 1058 * 1059 * Called during an address space update transaction, 1060 * for a section of the address space that has had a new coalesced 1061 * MMIO range registration since the last transaction. 1062 * 1063 * @listener: The #MemoryListener. 1064 * @section: The new #MemoryRegionSection. 1065 * @addr: The starting address for the coalesced MMIO range. 1066 * @len: The length of the coalesced MMIO range. 1067 */ 1068 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section, 1069 hwaddr addr, hwaddr len); 1070 1071 /** 1072 * @coalesced_io_del: 1073 * 1074 * Called during an address space update transaction, 1075 * for a section of the address space that has dropped a coalesced 1076 * MMIO range since the last transaction. 1077 * 1078 * @listener: The #MemoryListener. 1079 * @section: The new #MemoryRegionSection. 1080 * @addr: The starting address for the coalesced MMIO range. 1081 * @len: The length of the coalesced MMIO range. 1082 */ 1083 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section, 1084 hwaddr addr, hwaddr len); 1085 /** 1086 * @priority: 1087 * 1088 * Govern the order in which memory listeners are invoked. Lower priorities 1089 * are invoked earlier for "add" or "start" callbacks, and later for "delete" 1090 * or "stop" callbacks. 1091 */ 1092 unsigned priority; 1093 1094 /** 1095 * @name: 1096 * 1097 * Name of the listener. It can be used in contexts where we'd like to 1098 * identify one memory listener with the rest. 1099 */ 1100 const char *name; 1101 1102 /* private: */ 1103 AddressSpace *address_space; 1104 QTAILQ_ENTRY(MemoryListener) link; 1105 QTAILQ_ENTRY(MemoryListener) link_as; 1106 }; 1107 1108 typedef struct AddressSpaceMapClient { 1109 QEMUBH *bh; 1110 QLIST_ENTRY(AddressSpaceMapClient) link; 1111 } AddressSpaceMapClient; 1112 1113 typedef struct { 1114 MemoryRegion *mr; 1115 void *buffer; 1116 hwaddr addr; 1117 hwaddr len; 1118 bool in_use; 1119 } BounceBuffer; 1120 1121 /** 1122 * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects 1123 */ 1124 struct AddressSpace { 1125 /* private: */ 1126 struct rcu_head rcu; 1127 char *name; 1128 MemoryRegion *root; 1129 1130 /* Accessed via RCU. */ 1131 struct FlatView *current_map; 1132 1133 int ioeventfd_nb; 1134 int ioeventfd_notifiers; 1135 struct MemoryRegionIoeventfd *ioeventfds; 1136 QTAILQ_HEAD(, MemoryListener) listeners; 1137 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 1138 1139 /* Bounce buffer to use for this address space. */ 1140 BounceBuffer bounce; 1141 /* List of callbacks to invoke when buffers free up */ 1142 QemuMutex map_client_list_lock; 1143 QLIST_HEAD(, AddressSpaceMapClient) map_client_list; 1144 }; 1145 1146 typedef struct AddressSpaceDispatch AddressSpaceDispatch; 1147 typedef struct FlatRange FlatRange; 1148 1149 /* Flattened global view of current active memory hierarchy. Kept in sorted 1150 * order. 1151 */ 1152 struct FlatView { 1153 struct rcu_head rcu; 1154 unsigned ref; 1155 FlatRange *ranges; 1156 unsigned nr; 1157 unsigned nr_allocated; 1158 struct AddressSpaceDispatch *dispatch; 1159 MemoryRegion *root; 1160 }; 1161 1162 static inline FlatView *address_space_to_flatview(AddressSpace *as) 1163 { 1164 return qatomic_rcu_read(&as->current_map); 1165 } 1166 1167 /** 1168 * typedef flatview_cb: callback for flatview_for_each_range() 1169 * 1170 * @start: start address of the range within the FlatView 1171 * @len: length of the range in bytes 1172 * @mr: MemoryRegion covering this range 1173 * @offset_in_region: offset of the first byte of the range within @mr 1174 * @opaque: data pointer passed to flatview_for_each_range() 1175 * 1176 * Returns: true to stop the iteration, false to keep going. 1177 */ 1178 typedef bool (*flatview_cb)(Int128 start, 1179 Int128 len, 1180 const MemoryRegion *mr, 1181 hwaddr offset_in_region, 1182 void *opaque); 1183 1184 /** 1185 * flatview_for_each_range: Iterate through a FlatView 1186 * @fv: the FlatView to iterate through 1187 * @cb: function to call for each range 1188 * @opaque: opaque data pointer to pass to @cb 1189 * 1190 * A FlatView is made up of a list of non-overlapping ranges, each of 1191 * which is a slice of a MemoryRegion. This function iterates through 1192 * each range in @fv, calling @cb. The callback function can terminate 1193 * iteration early by returning 'true'. 1194 */ 1195 void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque); 1196 1197 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a, 1198 MemoryRegionSection *b) 1199 { 1200 return a->mr == b->mr && 1201 a->fv == b->fv && 1202 a->offset_within_region == b->offset_within_region && 1203 a->offset_within_address_space == b->offset_within_address_space && 1204 int128_eq(a->size, b->size) && 1205 a->readonly == b->readonly && 1206 a->nonvolatile == b->nonvolatile; 1207 } 1208 1209 /** 1210 * memory_region_section_new_copy: Copy a memory region section 1211 * 1212 * Allocate memory for a new copy, copy the memory region section, and 1213 * properly take a reference on all relevant members. 1214 * 1215 * @s: the #MemoryRegionSection to copy 1216 */ 1217 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s); 1218 1219 /** 1220 * memory_region_section_new_copy: Free a copied memory region section 1221 * 1222 * Free a copy of a memory section created via memory_region_section_new_copy(). 1223 * properly dropping references on all relevant members. 1224 * 1225 * @s: the #MemoryRegionSection to copy 1226 */ 1227 void memory_region_section_free_copy(MemoryRegionSection *s); 1228 1229 /** 1230 * memory_region_init: Initialize a memory region 1231 * 1232 * The region typically acts as a container for other memory regions. Use 1233 * memory_region_add_subregion() to add subregions. 1234 * 1235 * @mr: the #MemoryRegion to be initialized 1236 * @owner: the object that tracks the region's reference count 1237 * @name: used for debugging; not visible to the user or ABI 1238 * @size: size of the region; any subregions beyond this size will be clipped 1239 */ 1240 void memory_region_init(MemoryRegion *mr, 1241 Object *owner, 1242 const char *name, 1243 uint64_t size); 1244 1245 /** 1246 * memory_region_ref: Add 1 to a memory region's reference count 1247 * 1248 * Whenever memory regions are accessed outside the BQL, they need to be 1249 * preserved against hot-unplug. MemoryRegions actually do not have their 1250 * own reference count; they piggyback on a QOM object, their "owner". 1251 * This function adds a reference to the owner. 1252 * 1253 * All MemoryRegions must have an owner if they can disappear, even if the 1254 * device they belong to operates exclusively under the BQL. This is because 1255 * the region could be returned at any time by memory_region_find, and this 1256 * is usually under guest control. 1257 * 1258 * @mr: the #MemoryRegion 1259 */ 1260 void memory_region_ref(MemoryRegion *mr); 1261 1262 /** 1263 * memory_region_unref: Remove 1 to a memory region's reference count 1264 * 1265 * Whenever memory regions are accessed outside the BQL, they need to be 1266 * preserved against hot-unplug. MemoryRegions actually do not have their 1267 * own reference count; they piggyback on a QOM object, their "owner". 1268 * This function removes a reference to the owner and possibly destroys it. 1269 * 1270 * @mr: the #MemoryRegion 1271 */ 1272 void memory_region_unref(MemoryRegion *mr); 1273 1274 /** 1275 * memory_region_init_io: Initialize an I/O memory region. 1276 * 1277 * Accesses into the region will cause the callbacks in @ops to be called. 1278 * if @size is nonzero, subregions will be clipped to @size. 1279 * 1280 * @mr: the #MemoryRegion to be initialized. 1281 * @owner: the object that tracks the region's reference count 1282 * @ops: a structure containing read and write callbacks to be used when 1283 * I/O is performed on the region. 1284 * @opaque: passed to the read and write callbacks of the @ops structure. 1285 * @name: used for debugging; not visible to the user or ABI 1286 * @size: size of the region. 1287 */ 1288 void memory_region_init_io(MemoryRegion *mr, 1289 Object *owner, 1290 const MemoryRegionOps *ops, 1291 void *opaque, 1292 const char *name, 1293 uint64_t size); 1294 1295 /** 1296 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses 1297 * into the region will modify memory 1298 * directly. 1299 * 1300 * @mr: the #MemoryRegion to be initialized. 1301 * @owner: the object that tracks the region's reference count 1302 * @name: Region name, becomes part of RAMBlock name used in migration stream 1303 * must be unique within any device 1304 * @size: size of the region. 1305 * @errp: pointer to Error*, to store an error if it happens. 1306 * 1307 * Note that this function does not do anything to cause the data in the 1308 * RAM memory region to be migrated; that is the responsibility of the caller. 1309 * 1310 * Return: true on success, else false setting @errp with error. 1311 */ 1312 bool memory_region_init_ram_nomigrate(MemoryRegion *mr, 1313 Object *owner, 1314 const char *name, 1315 uint64_t size, 1316 Error **errp); 1317 1318 /** 1319 * memory_region_init_ram_flags_nomigrate: Initialize RAM memory region. 1320 * Accesses into the region will 1321 * modify memory directly. 1322 * 1323 * @mr: the #MemoryRegion to be initialized. 1324 * @owner: the object that tracks the region's reference count 1325 * @name: Region name, becomes part of RAMBlock name used in migration stream 1326 * must be unique within any device 1327 * @size: size of the region. 1328 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE, 1329 * RAM_GUEST_MEMFD. 1330 * @errp: pointer to Error*, to store an error if it happens. 1331 * 1332 * Note that this function does not do anything to cause the data in the 1333 * RAM memory region to be migrated; that is the responsibility of the caller. 1334 * 1335 * Return: true on success, else false setting @errp with error. 1336 */ 1337 bool memory_region_init_ram_flags_nomigrate(MemoryRegion *mr, 1338 Object *owner, 1339 const char *name, 1340 uint64_t size, 1341 uint32_t ram_flags, 1342 Error **errp); 1343 1344 /** 1345 * memory_region_init_resizeable_ram: Initialize memory region with resizable 1346 * RAM. Accesses into the region will 1347 * modify memory directly. Only an initial 1348 * portion of this RAM is actually used. 1349 * Changing the size while migrating 1350 * can result in the migration being 1351 * canceled. 1352 * 1353 * @mr: the #MemoryRegion to be initialized. 1354 * @owner: the object that tracks the region's reference count 1355 * @name: Region name, becomes part of RAMBlock name used in migration stream 1356 * must be unique within any device 1357 * @size: used size of the region. 1358 * @max_size: max size of the region. 1359 * @resized: callback to notify owner about used size change. 1360 * @errp: pointer to Error*, to store an error if it happens. 1361 * 1362 * Note that this function does not do anything to cause the data in the 1363 * RAM memory region to be migrated; that is the responsibility of the caller. 1364 * 1365 * Return: true on success, else false setting @errp with error. 1366 */ 1367 bool memory_region_init_resizeable_ram(MemoryRegion *mr, 1368 Object *owner, 1369 const char *name, 1370 uint64_t size, 1371 uint64_t max_size, 1372 void (*resized)(const char*, 1373 uint64_t length, 1374 void *host), 1375 Error **errp); 1376 #ifdef CONFIG_POSIX 1377 1378 /** 1379 * memory_region_init_ram_from_file: Initialize RAM memory region with a 1380 * mmap-ed backend. 1381 * 1382 * @mr: the #MemoryRegion to be initialized. 1383 * @owner: the object that tracks the region's reference count 1384 * @name: Region name, becomes part of RAMBlock name used in migration stream 1385 * must be unique within any device 1386 * @size: size of the region. 1387 * @align: alignment of the region base address; if 0, the default alignment 1388 * (getpagesize()) will be used. 1389 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM, 1390 * RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY, 1391 * RAM_READONLY_FD, RAM_GUEST_MEMFD 1392 * @path: the path in which to allocate the RAM. 1393 * @offset: offset within the file referenced by path 1394 * @errp: pointer to Error*, to store an error if it happens. 1395 * 1396 * Note that this function does not do anything to cause the data in the 1397 * RAM memory region to be migrated; that is the responsibility of the caller. 1398 * 1399 * Return: true on success, else false setting @errp with error. 1400 */ 1401 bool memory_region_init_ram_from_file(MemoryRegion *mr, 1402 Object *owner, 1403 const char *name, 1404 uint64_t size, 1405 uint64_t align, 1406 uint32_t ram_flags, 1407 const char *path, 1408 ram_addr_t offset, 1409 Error **errp); 1410 1411 /** 1412 * memory_region_init_ram_from_fd: Initialize RAM memory region with a 1413 * mmap-ed backend. 1414 * 1415 * @mr: the #MemoryRegion to be initialized. 1416 * @owner: the object that tracks the region's reference count 1417 * @name: the name of the region. 1418 * @size: size of the region. 1419 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM, 1420 * RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY, 1421 * RAM_READONLY_FD, RAM_GUEST_MEMFD 1422 * @fd: the fd to mmap. 1423 * @offset: offset within the file referenced by fd 1424 * @errp: pointer to Error*, to store an error if it happens. 1425 * 1426 * Note that this function does not do anything to cause the data in the 1427 * RAM memory region to be migrated; that is the responsibility of the caller. 1428 * 1429 * Return: true on success, else false setting @errp with error. 1430 */ 1431 bool memory_region_init_ram_from_fd(MemoryRegion *mr, 1432 Object *owner, 1433 const char *name, 1434 uint64_t size, 1435 uint32_t ram_flags, 1436 int fd, 1437 ram_addr_t offset, 1438 Error **errp); 1439 #endif 1440 1441 /** 1442 * memory_region_init_ram_ptr: Initialize RAM memory region from a 1443 * user-provided pointer. Accesses into the 1444 * region will modify memory directly. 1445 * 1446 * @mr: the #MemoryRegion to be initialized. 1447 * @owner: the object that tracks the region's reference count 1448 * @name: Region name, becomes part of RAMBlock name used in migration stream 1449 * must be unique within any device 1450 * @size: size of the region. 1451 * @ptr: memory to be mapped; must contain at least @size bytes. 1452 * 1453 * Note that this function does not do anything to cause the data in the 1454 * RAM memory region to be migrated; that is the responsibility of the caller. 1455 */ 1456 void memory_region_init_ram_ptr(MemoryRegion *mr, 1457 Object *owner, 1458 const char *name, 1459 uint64_t size, 1460 void *ptr); 1461 1462 /** 1463 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from 1464 * a user-provided pointer. 1465 * 1466 * A RAM device represents a mapping to a physical device, such as to a PCI 1467 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped 1468 * into the VM address space and access to the region will modify memory 1469 * directly. However, the memory region should not be included in a memory 1470 * dump (device may not be enabled/mapped at the time of the dump), and 1471 * operations incompatible with manipulating MMIO should be avoided. Replaces 1472 * skip_dump flag. 1473 * 1474 * @mr: the #MemoryRegion to be initialized. 1475 * @owner: the object that tracks the region's reference count 1476 * @name: the name of the region. 1477 * @size: size of the region. 1478 * @ptr: memory to be mapped; must contain at least @size bytes. 1479 * 1480 * Note that this function does not do anything to cause the data in the 1481 * RAM memory region to be migrated; that is the responsibility of the caller. 1482 * (For RAM device memory regions, migrating the contents rarely makes sense.) 1483 */ 1484 void memory_region_init_ram_device_ptr(MemoryRegion *mr, 1485 Object *owner, 1486 const char *name, 1487 uint64_t size, 1488 void *ptr); 1489 1490 /** 1491 * memory_region_init_alias: Initialize a memory region that aliases all or a 1492 * part of another memory region. 1493 * 1494 * @mr: the #MemoryRegion to be initialized. 1495 * @owner: the object that tracks the region's reference count 1496 * @name: used for debugging; not visible to the user or ABI 1497 * @orig: the region to be referenced; @mr will be equivalent to 1498 * @orig between @offset and @offset + @size - 1. 1499 * @offset: start of the section in @orig to be referenced. 1500 * @size: size of the region. 1501 */ 1502 void memory_region_init_alias(MemoryRegion *mr, 1503 Object *owner, 1504 const char *name, 1505 MemoryRegion *orig, 1506 hwaddr offset, 1507 uint64_t size); 1508 1509 /** 1510 * memory_region_init_rom_nomigrate: Initialize a ROM memory region. 1511 * 1512 * This has the same effect as calling memory_region_init_ram_nomigrate() 1513 * and then marking the resulting region read-only with 1514 * memory_region_set_readonly(). 1515 * 1516 * Note that this function does not do anything to cause the data in the 1517 * RAM side of the memory region to be migrated; that is the responsibility 1518 * of the caller. 1519 * 1520 * @mr: the #MemoryRegion to be initialized. 1521 * @owner: the object that tracks the region's reference count 1522 * @name: Region name, becomes part of RAMBlock name used in migration stream 1523 * must be unique within any device 1524 * @size: size of the region. 1525 * @errp: pointer to Error*, to store an error if it happens. 1526 * 1527 * Return: true on success, else false setting @errp with error. 1528 */ 1529 bool memory_region_init_rom_nomigrate(MemoryRegion *mr, 1530 Object *owner, 1531 const char *name, 1532 uint64_t size, 1533 Error **errp); 1534 1535 /** 1536 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region. 1537 * Writes are handled via callbacks. 1538 * 1539 * Note that this function does not do anything to cause the data in the 1540 * RAM side of the memory region to be migrated; that is the responsibility 1541 * of the caller. 1542 * 1543 * @mr: the #MemoryRegion to be initialized. 1544 * @owner: the object that tracks the region's reference count 1545 * @ops: callbacks for write access handling (must not be NULL). 1546 * @opaque: passed to the read and write callbacks of the @ops structure. 1547 * @name: Region name, becomes part of RAMBlock name used in migration stream 1548 * must be unique within any device 1549 * @size: size of the region. 1550 * @errp: pointer to Error*, to store an error if it happens. 1551 * 1552 * Return: true on success, else false setting @errp with error. 1553 */ 1554 bool memory_region_init_rom_device_nomigrate(MemoryRegion *mr, 1555 Object *owner, 1556 const MemoryRegionOps *ops, 1557 void *opaque, 1558 const char *name, 1559 uint64_t size, 1560 Error **errp); 1561 1562 /** 1563 * memory_region_init_iommu: Initialize a memory region of a custom type 1564 * that translates addresses 1565 * 1566 * An IOMMU region translates addresses and forwards accesses to a target 1567 * memory region. 1568 * 1569 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION. 1570 * @_iommu_mr should be a pointer to enough memory for an instance of 1571 * that subclass, @instance_size is the size of that subclass, and 1572 * @mrtypename is its name. This function will initialize @_iommu_mr as an 1573 * instance of the subclass, and its methods will then be called to handle 1574 * accesses to the memory region. See the documentation of 1575 * #IOMMUMemoryRegionClass for further details. 1576 * 1577 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized 1578 * @instance_size: the IOMMUMemoryRegion subclass instance size 1579 * @mrtypename: the type name of the #IOMMUMemoryRegion 1580 * @owner: the object that tracks the region's reference count 1581 * @name: used for debugging; not visible to the user or ABI 1582 * @size: size of the region. 1583 */ 1584 void memory_region_init_iommu(void *_iommu_mr, 1585 size_t instance_size, 1586 const char *mrtypename, 1587 Object *owner, 1588 const char *name, 1589 uint64_t size); 1590 1591 /** 1592 * memory_region_init_ram - Initialize RAM memory region. Accesses into the 1593 * region will modify memory directly. 1594 * 1595 * @mr: the #MemoryRegion to be initialized 1596 * @owner: the object that tracks the region's reference count (must be 1597 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL) 1598 * @name: name of the memory region 1599 * @size: size of the region in bytes 1600 * @errp: pointer to Error*, to store an error if it happens. 1601 * 1602 * This function allocates RAM for a board model or device, and 1603 * arranges for it to be migrated (by calling vmstate_register_ram() 1604 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1605 * @owner is NULL). 1606 * 1607 * TODO: Currently we restrict @owner to being either NULL (for 1608 * global RAM regions with no owner) or devices, so that we can 1609 * give the RAM block a unique name for migration purposes. 1610 * We should lift this restriction and allow arbitrary Objects. 1611 * If you pass a non-NULL non-device @owner then we will assert. 1612 * 1613 * Return: true on success, else false setting @errp with error. 1614 */ 1615 bool memory_region_init_ram(MemoryRegion *mr, 1616 Object *owner, 1617 const char *name, 1618 uint64_t size, 1619 Error **errp); 1620 1621 bool memory_region_init_ram_guest_memfd(MemoryRegion *mr, 1622 Object *owner, 1623 const char *name, 1624 uint64_t size, 1625 Error **errp); 1626 1627 /** 1628 * memory_region_init_rom: Initialize a ROM memory region. 1629 * 1630 * This has the same effect as calling memory_region_init_ram() 1631 * and then marking the resulting region read-only with 1632 * memory_region_set_readonly(). This includes arranging for the 1633 * contents to be migrated. 1634 * 1635 * TODO: Currently we restrict @owner to being either NULL (for 1636 * global RAM regions with no owner) or devices, so that we can 1637 * give the RAM block a unique name for migration purposes. 1638 * We should lift this restriction and allow arbitrary Objects. 1639 * If you pass a non-NULL non-device @owner then we will assert. 1640 * 1641 * @mr: the #MemoryRegion to be initialized. 1642 * @owner: the object that tracks the region's reference count 1643 * @name: Region name, becomes part of RAMBlock name used in migration stream 1644 * must be unique within any device 1645 * @size: size of the region. 1646 * @errp: pointer to Error*, to store an error if it happens. 1647 * 1648 * Return: true on success, else false setting @errp with error. 1649 */ 1650 bool memory_region_init_rom(MemoryRegion *mr, 1651 Object *owner, 1652 const char *name, 1653 uint64_t size, 1654 Error **errp); 1655 1656 /** 1657 * memory_region_init_rom_device: Initialize a ROM memory region. 1658 * Writes are handled via callbacks. 1659 * 1660 * This function initializes a memory region backed by RAM for reads 1661 * and callbacks for writes, and arranges for the RAM backing to 1662 * be migrated (by calling vmstate_register_ram() 1663 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1664 * @owner is NULL). 1665 * 1666 * TODO: Currently we restrict @owner to being either NULL (for 1667 * global RAM regions with no owner) or devices, so that we can 1668 * give the RAM block a unique name for migration purposes. 1669 * We should lift this restriction and allow arbitrary Objects. 1670 * If you pass a non-NULL non-device @owner then we will assert. 1671 * 1672 * @mr: the #MemoryRegion to be initialized. 1673 * @owner: the object that tracks the region's reference count 1674 * @ops: callbacks for write access handling (must not be NULL). 1675 * @opaque: passed to the read and write callbacks of the @ops structure. 1676 * @name: Region name, becomes part of RAMBlock name used in migration stream 1677 * must be unique within any device 1678 * @size: size of the region. 1679 * @errp: pointer to Error*, to store an error if it happens. 1680 * 1681 * Return: true on success, else false setting @errp with error. 1682 */ 1683 bool memory_region_init_rom_device(MemoryRegion *mr, 1684 Object *owner, 1685 const MemoryRegionOps *ops, 1686 void *opaque, 1687 const char *name, 1688 uint64_t size, 1689 Error **errp); 1690 1691 1692 /** 1693 * memory_region_owner: get a memory region's owner. 1694 * 1695 * @mr: the memory region being queried. 1696 */ 1697 Object *memory_region_owner(MemoryRegion *mr); 1698 1699 /** 1700 * memory_region_size: get a memory region's size. 1701 * 1702 * @mr: the memory region being queried. 1703 */ 1704 uint64_t memory_region_size(MemoryRegion *mr); 1705 1706 /** 1707 * memory_region_is_ram: check whether a memory region is random access 1708 * 1709 * Returns %true if a memory region is random access. 1710 * 1711 * @mr: the memory region being queried 1712 */ 1713 static inline bool memory_region_is_ram(MemoryRegion *mr) 1714 { 1715 return mr->ram; 1716 } 1717 1718 /** 1719 * memory_region_is_ram_device: check whether a memory region is a ram device 1720 * 1721 * Returns %true if a memory region is a device backed ram region 1722 * 1723 * @mr: the memory region being queried 1724 */ 1725 bool memory_region_is_ram_device(MemoryRegion *mr); 1726 1727 /** 1728 * memory_region_is_romd: check whether a memory region is in ROMD mode 1729 * 1730 * Returns %true if a memory region is a ROM device and currently set to allow 1731 * direct reads. 1732 * 1733 * @mr: the memory region being queried 1734 */ 1735 static inline bool memory_region_is_romd(MemoryRegion *mr) 1736 { 1737 return mr->rom_device && mr->romd_mode; 1738 } 1739 1740 /** 1741 * memory_region_is_protected: check whether a memory region is protected 1742 * 1743 * Returns %true if a memory region is protected RAM and cannot be accessed 1744 * via standard mechanisms, e.g. DMA. 1745 * 1746 * @mr: the memory region being queried 1747 */ 1748 bool memory_region_is_protected(MemoryRegion *mr); 1749 1750 /** 1751 * memory_region_has_guest_memfd: check whether a memory region has guest_memfd 1752 * associated 1753 * 1754 * Returns %true if a memory region's ram_block has valid guest_memfd assigned. 1755 * 1756 * @mr: the memory region being queried 1757 */ 1758 bool memory_region_has_guest_memfd(MemoryRegion *mr); 1759 1760 /** 1761 * memory_region_get_iommu: check whether a memory region is an iommu 1762 * 1763 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu, 1764 * otherwise NULL. 1765 * 1766 * @mr: the memory region being queried 1767 */ 1768 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr) 1769 { 1770 if (mr->alias) { 1771 return memory_region_get_iommu(mr->alias); 1772 } 1773 if (mr->is_iommu) { 1774 return (IOMMUMemoryRegion *) mr; 1775 } 1776 return NULL; 1777 } 1778 1779 /** 1780 * memory_region_get_iommu_class_nocheck: returns iommu memory region class 1781 * if an iommu or NULL if not 1782 * 1783 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu, 1784 * otherwise NULL. This is fast path avoiding QOM checking, use with caution. 1785 * 1786 * @iommu_mr: the memory region being queried 1787 */ 1788 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck( 1789 IOMMUMemoryRegion *iommu_mr) 1790 { 1791 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class); 1792 } 1793 1794 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL) 1795 1796 /** 1797 * memory_region_iommu_get_min_page_size: get minimum supported page size 1798 * for an iommu 1799 * 1800 * Returns minimum supported page size for an iommu. 1801 * 1802 * @iommu_mr: the memory region being queried 1803 */ 1804 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr); 1805 1806 /** 1807 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 1808 * 1809 * Note: for any IOMMU implementation, an in-place mapping change 1810 * should be notified with an UNMAP followed by a MAP. 1811 * 1812 * @iommu_mr: the memory region that was changed 1813 * @iommu_idx: the IOMMU index for the translation table which has changed 1814 * @event: TLB event with the new entry in the IOMMU translation table. 1815 * The entry replaces all old entries for the same virtual I/O address 1816 * range. 1817 */ 1818 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr, 1819 int iommu_idx, 1820 const IOMMUTLBEvent event); 1821 1822 /** 1823 * memory_region_notify_iommu_one: notify a change in an IOMMU translation 1824 * entry to a single notifier 1825 * 1826 * This works just like memory_region_notify_iommu(), but it only 1827 * notifies a specific notifier, not all of them. 1828 * 1829 * @notifier: the notifier to be notified 1830 * @event: TLB event with the new entry in the IOMMU translation table. 1831 * The entry replaces all old entries for the same virtual I/O address 1832 * range. 1833 */ 1834 void memory_region_notify_iommu_one(IOMMUNotifier *notifier, 1835 const IOMMUTLBEvent *event); 1836 1837 /** 1838 * memory_region_unmap_iommu_notifier_range: notify a unmap for an IOMMU 1839 * translation that covers the 1840 * range of a notifier 1841 * 1842 * @notifier: the notifier to be notified 1843 */ 1844 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier); 1845 1846 1847 /** 1848 * memory_region_register_iommu_notifier: register a notifier for changes to 1849 * IOMMU translation entries. 1850 * 1851 * Returns 0 on success, or a negative errno otherwise. In particular, 1852 * -EINVAL indicates that at least one of the attributes of the notifier 1853 * is not supported (flag/range) by the IOMMU memory region. In case of error 1854 * the error object must be created. 1855 * 1856 * @mr: the memory region to observe 1857 * @n: the IOMMUNotifier to be added; the notify callback receives a 1858 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer 1859 * ceases to be valid on exit from the notifier. 1860 * @errp: pointer to Error*, to store an error if it happens. 1861 */ 1862 int memory_region_register_iommu_notifier(MemoryRegion *mr, 1863 IOMMUNotifier *n, Error **errp); 1864 1865 /** 1866 * memory_region_iommu_replay: replay existing IOMMU translations to 1867 * a notifier with the minimum page granularity returned by 1868 * mr->iommu_ops->get_page_size(). 1869 * 1870 * Note: this is not related to record-and-replay functionality. 1871 * 1872 * @iommu_mr: the memory region to observe 1873 * @n: the notifier to which to replay iommu mappings 1874 */ 1875 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n); 1876 1877 /** 1878 * memory_region_unregister_iommu_notifier: unregister a notifier for 1879 * changes to IOMMU translation entries. 1880 * 1881 * @mr: the memory region which was observed and for which notity_stopped() 1882 * needs to be called 1883 * @n: the notifier to be removed. 1884 */ 1885 void memory_region_unregister_iommu_notifier(MemoryRegion *mr, 1886 IOMMUNotifier *n); 1887 1888 /** 1889 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is 1890 * defined on the IOMMU. 1891 * 1892 * Returns 0 on success, or a negative errno otherwise. In particular, 1893 * -EINVAL indicates that the IOMMU does not support the requested 1894 * attribute. 1895 * 1896 * @iommu_mr: the memory region 1897 * @attr: the requested attribute 1898 * @data: a pointer to the requested attribute data 1899 */ 1900 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr, 1901 enum IOMMUMemoryRegionAttr attr, 1902 void *data); 1903 1904 /** 1905 * memory_region_iommu_attrs_to_index: return the IOMMU index to 1906 * use for translations with the given memory transaction attributes. 1907 * 1908 * @iommu_mr: the memory region 1909 * @attrs: the memory transaction attributes 1910 */ 1911 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr, 1912 MemTxAttrs attrs); 1913 1914 /** 1915 * memory_region_iommu_num_indexes: return the total number of IOMMU 1916 * indexes that this IOMMU supports. 1917 * 1918 * @iommu_mr: the memory region 1919 */ 1920 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr); 1921 1922 /** 1923 * memory_region_iommu_set_page_size_mask: set the supported page 1924 * sizes for a given IOMMU memory region 1925 * 1926 * @iommu_mr: IOMMU memory region 1927 * @page_size_mask: supported page size mask 1928 * @errp: pointer to Error*, to store an error if it happens. 1929 */ 1930 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr, 1931 uint64_t page_size_mask, 1932 Error **errp); 1933 1934 /** 1935 * memory_region_name: get a memory region's name 1936 * 1937 * Returns the string that was used to initialize the memory region. 1938 * 1939 * @mr: the memory region being queried 1940 */ 1941 const char *memory_region_name(const MemoryRegion *mr); 1942 1943 /** 1944 * memory_region_is_logging: return whether a memory region is logging writes 1945 * 1946 * Returns %true if the memory region is logging writes for the given client 1947 * 1948 * @mr: the memory region being queried 1949 * @client: the client being queried 1950 */ 1951 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); 1952 1953 /** 1954 * memory_region_get_dirty_log_mask: return the clients for which a 1955 * memory region is logging writes. 1956 * 1957 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants 1958 * are the bit indices. 1959 * 1960 * @mr: the memory region being queried 1961 */ 1962 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); 1963 1964 /** 1965 * memory_region_is_rom: check whether a memory region is ROM 1966 * 1967 * Returns %true if a memory region is read-only memory. 1968 * 1969 * @mr: the memory region being queried 1970 */ 1971 static inline bool memory_region_is_rom(MemoryRegion *mr) 1972 { 1973 return mr->ram && mr->readonly; 1974 } 1975 1976 /** 1977 * memory_region_is_nonvolatile: check whether a memory region is non-volatile 1978 * 1979 * Returns %true is a memory region is non-volatile memory. 1980 * 1981 * @mr: the memory region being queried 1982 */ 1983 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr) 1984 { 1985 return mr->nonvolatile; 1986 } 1987 1988 /** 1989 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 1990 * 1991 * Returns a file descriptor backing a file-based RAM memory region, 1992 * or -1 if the region is not a file-based RAM memory region. 1993 * 1994 * @mr: the RAM or alias memory region being queried. 1995 */ 1996 int memory_region_get_fd(MemoryRegion *mr); 1997 1998 /** 1999 * memory_region_from_host: Convert a pointer into a RAM memory region 2000 * and an offset within it. 2001 * 2002 * Given a host pointer inside a RAM memory region (created with 2003 * memory_region_init_ram() or memory_region_init_ram_ptr()), return 2004 * the MemoryRegion and the offset within it. 2005 * 2006 * Use with care; by the time this function returns, the returned pointer is 2007 * not protected by RCU anymore. If the caller is not within an RCU critical 2008 * section and does not hold the BQL, it must have other means of 2009 * protecting the pointer, such as a reference to the region that includes 2010 * the incoming ram_addr_t. 2011 * 2012 * @ptr: the host pointer to be converted 2013 * @offset: the offset within memory region 2014 */ 2015 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset); 2016 2017 /** 2018 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 2019 * 2020 * Returns a host pointer to a RAM memory region (created with 2021 * memory_region_init_ram() or memory_region_init_ram_ptr()). 2022 * 2023 * Use with care; by the time this function returns, the returned pointer is 2024 * not protected by RCU anymore. If the caller is not within an RCU critical 2025 * section and does not hold the BQL, it must have other means of 2026 * protecting the pointer, such as a reference to the region that includes 2027 * the incoming ram_addr_t. 2028 * 2029 * @mr: the memory region being queried. 2030 */ 2031 void *memory_region_get_ram_ptr(MemoryRegion *mr); 2032 2033 /* memory_region_ram_resize: Resize a RAM region. 2034 * 2035 * Resizing RAM while migrating can result in the migration being canceled. 2036 * Care has to be taken if the guest might have already detected the memory. 2037 * 2038 * @mr: a memory region created with @memory_region_init_resizeable_ram. 2039 * @newsize: the new size the region 2040 * @errp: pointer to Error*, to store an error if it happens. 2041 */ 2042 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, 2043 Error **errp); 2044 2045 /** 2046 * memory_region_msync: Synchronize selected address range of 2047 * a memory mapped region 2048 * 2049 * @mr: the memory region to be msync 2050 * @addr: the initial address of the range to be sync 2051 * @size: the size of the range to be sync 2052 */ 2053 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size); 2054 2055 /** 2056 * memory_region_writeback: Trigger cache writeback for 2057 * selected address range 2058 * 2059 * @mr: the memory region to be updated 2060 * @addr: the initial address of the range to be written back 2061 * @size: the size of the range to be written back 2062 */ 2063 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size); 2064 2065 /** 2066 * memory_region_set_log: Turn dirty logging on or off for a region. 2067 * 2068 * Turns dirty logging on or off for a specified client (display, migration). 2069 * Only meaningful for RAM regions. 2070 * 2071 * @mr: the memory region being updated. 2072 * @log: whether dirty logging is to be enabled or disabled. 2073 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only. 2074 */ 2075 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 2076 2077 /** 2078 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 2079 * 2080 * Marks a range of bytes as dirty, after it has been dirtied outside 2081 * guest code. 2082 * 2083 * @mr: the memory region being dirtied. 2084 * @addr: the address (relative to the start of the region) being dirtied. 2085 * @size: size of the range being dirtied. 2086 */ 2087 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 2088 hwaddr size); 2089 2090 /** 2091 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range 2092 * 2093 * This function is called when the caller wants to clear the remote 2094 * dirty bitmap of a memory range within the memory region. This can 2095 * be used by e.g. KVM to manually clear dirty log when 2096 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host 2097 * kernel. 2098 * 2099 * @mr: the memory region to clear the dirty log upon 2100 * @start: start address offset within the memory region 2101 * @len: length of the memory region to clear dirty bitmap 2102 */ 2103 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start, 2104 hwaddr len); 2105 2106 /** 2107 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty 2108 * bitmap and clear it. 2109 * 2110 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and 2111 * returns the snapshot. The snapshot can then be used to query dirty 2112 * status, using memory_region_snapshot_get_dirty. Snapshotting allows 2113 * querying the same page multiple times, which is especially useful for 2114 * display updates where the scanlines often are not page aligned. 2115 * 2116 * The dirty bitmap region which gets copied into the snapshot (and 2117 * cleared afterwards) can be larger than requested. The boundaries 2118 * are rounded up/down so complete bitmap longs (covering 64 pages on 2119 * 64bit hosts) can be copied over into the bitmap snapshot. Which 2120 * isn't a problem for display updates as the extra pages are outside 2121 * the visible area, and in case the visible area changes a full 2122 * display redraw is due anyway. Should other use cases for this 2123 * function emerge we might have to revisit this implementation 2124 * detail. 2125 * 2126 * Use g_free to release DirtyBitmapSnapshot. 2127 * 2128 * @mr: the memory region being queried. 2129 * @addr: the address (relative to the start of the region) being queried. 2130 * @size: the size of the range being queried. 2131 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA. 2132 */ 2133 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr, 2134 hwaddr addr, 2135 hwaddr size, 2136 unsigned client); 2137 2138 /** 2139 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty 2140 * in the specified dirty bitmap snapshot. 2141 * 2142 * @mr: the memory region being queried. 2143 * @snap: the dirty bitmap snapshot 2144 * @addr: the address (relative to the start of the region) being queried. 2145 * @size: the size of the range being queried. 2146 */ 2147 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, 2148 DirtyBitmapSnapshot *snap, 2149 hwaddr addr, hwaddr size); 2150 2151 /** 2152 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 2153 * client. 2154 * 2155 * Marks a range of pages as no longer dirty. 2156 * 2157 * @mr: the region being updated. 2158 * @addr: the start of the subrange being cleaned. 2159 * @size: the size of the subrange being cleaned. 2160 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 2161 * %DIRTY_MEMORY_VGA. 2162 */ 2163 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 2164 hwaddr size, unsigned client); 2165 2166 /** 2167 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate 2168 * TBs (for self-modifying code). 2169 * 2170 * The MemoryRegionOps->write() callback of a ROM device must use this function 2171 * to mark byte ranges that have been modified internally, such as by directly 2172 * accessing the memory returned by memory_region_get_ram_ptr(). 2173 * 2174 * This function marks the range dirty and invalidates TBs so that TCG can 2175 * detect self-modifying code. 2176 * 2177 * @mr: the region being flushed. 2178 * @addr: the start, relative to the start of the region, of the range being 2179 * flushed. 2180 * @size: the size, in bytes, of the range being flushed. 2181 */ 2182 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size); 2183 2184 /** 2185 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 2186 * 2187 * Allows a memory region to be marked as read-only (turning it into a ROM). 2188 * only useful on RAM regions. 2189 * 2190 * @mr: the region being updated. 2191 * @readonly: whether rhe region is to be ROM or RAM. 2192 */ 2193 void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 2194 2195 /** 2196 * memory_region_set_nonvolatile: Turn a memory region non-volatile 2197 * 2198 * Allows a memory region to be marked as non-volatile. 2199 * only useful on RAM regions. 2200 * 2201 * @mr: the region being updated. 2202 * @nonvolatile: whether rhe region is to be non-volatile. 2203 */ 2204 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile); 2205 2206 /** 2207 * memory_region_rom_device_set_romd: enable/disable ROMD mode 2208 * 2209 * Allows a ROM device (initialized with memory_region_init_rom_device() to 2210 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 2211 * device is mapped to guest memory and satisfies read access directly. 2212 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 2213 * Writes are always handled by the #MemoryRegion.write function. 2214 * 2215 * @mr: the memory region to be updated 2216 * @romd_mode: %true to put the region into ROMD mode 2217 */ 2218 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 2219 2220 /** 2221 * memory_region_set_coalescing: Enable memory coalescing for the region. 2222 * 2223 * Enabled writes to a region to be queued for later processing. MMIO ->write 2224 * callbacks may be delayed until a non-coalesced MMIO is issued. 2225 * Only useful for IO regions. Roughly similar to write-combining hardware. 2226 * 2227 * @mr: the memory region to be write coalesced 2228 */ 2229 void memory_region_set_coalescing(MemoryRegion *mr); 2230 2231 /** 2232 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 2233 * a region. 2234 * 2235 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 2236 * Multiple calls can be issued coalesced disjoint ranges. 2237 * 2238 * @mr: the memory region to be updated. 2239 * @offset: the start of the range within the region to be coalesced. 2240 * @size: the size of the subrange to be coalesced. 2241 */ 2242 void memory_region_add_coalescing(MemoryRegion *mr, 2243 hwaddr offset, 2244 uint64_t size); 2245 2246 /** 2247 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 2248 * 2249 * Disables any coalescing caused by memory_region_set_coalescing() or 2250 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 2251 * hardware. 2252 * 2253 * @mr: the memory region to be updated. 2254 */ 2255 void memory_region_clear_coalescing(MemoryRegion *mr); 2256 2257 /** 2258 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 2259 * accesses. 2260 * 2261 * Ensure that pending coalesced MMIO request are flushed before the memory 2262 * region is accessed. This property is automatically enabled for all regions 2263 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 2264 * 2265 * @mr: the memory region to be updated. 2266 */ 2267 void memory_region_set_flush_coalesced(MemoryRegion *mr); 2268 2269 /** 2270 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 2271 * accesses. 2272 * 2273 * Clear the automatic coalesced MMIO flushing enabled via 2274 * memory_region_set_flush_coalesced. Note that this service has no effect on 2275 * memory regions that have MMIO coalescing enabled for themselves. For them, 2276 * automatic flushing will stop once coalescing is disabled. 2277 * 2278 * @mr: the memory region to be updated. 2279 */ 2280 void memory_region_clear_flush_coalesced(MemoryRegion *mr); 2281 2282 /** 2283 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 2284 * is written to a location. 2285 * 2286 * Marks a word in an IO region (initialized with memory_region_init_io()) 2287 * as a trigger for an eventfd event. The I/O callback will not be called. 2288 * The caller must be prepared to handle failure (that is, take the required 2289 * action if the callback _is_ called). 2290 * 2291 * @mr: the memory region being updated. 2292 * @addr: the address within @mr that is to be monitored 2293 * @size: the size of the access to trigger the eventfd 2294 * @match_data: whether to match against @data, instead of just @addr 2295 * @data: the data to match against the guest write 2296 * @e: event notifier to be triggered when @addr, @size, and @data all match. 2297 **/ 2298 void memory_region_add_eventfd(MemoryRegion *mr, 2299 hwaddr addr, 2300 unsigned size, 2301 bool match_data, 2302 uint64_t data, 2303 EventNotifier *e); 2304 2305 /** 2306 * memory_region_del_eventfd: Cancel an eventfd. 2307 * 2308 * Cancels an eventfd trigger requested by a previous 2309 * memory_region_add_eventfd() call. 2310 * 2311 * @mr: the memory region being updated. 2312 * @addr: the address within @mr that is to be monitored 2313 * @size: the size of the access to trigger the eventfd 2314 * @match_data: whether to match against @data, instead of just @addr 2315 * @data: the data to match against the guest write 2316 * @e: event notifier to be triggered when @addr, @size, and @data all match. 2317 */ 2318 void memory_region_del_eventfd(MemoryRegion *mr, 2319 hwaddr addr, 2320 unsigned size, 2321 bool match_data, 2322 uint64_t data, 2323 EventNotifier *e); 2324 2325 /** 2326 * memory_region_add_subregion: Add a subregion to a container. 2327 * 2328 * Adds a subregion at @offset. The subregion may not overlap with other 2329 * subregions (except for those explicitly marked as overlapping). A region 2330 * may only be added once as a subregion (unless removed with 2331 * memory_region_del_subregion()); use memory_region_init_alias() if you 2332 * want a region to be a subregion in multiple locations. 2333 * 2334 * @mr: the region to contain the new subregion; must be a container 2335 * initialized with memory_region_init(). 2336 * @offset: the offset relative to @mr where @subregion is added. 2337 * @subregion: the subregion to be added. 2338 */ 2339 void memory_region_add_subregion(MemoryRegion *mr, 2340 hwaddr offset, 2341 MemoryRegion *subregion); 2342 /** 2343 * memory_region_add_subregion_overlap: Add a subregion to a container 2344 * with overlap. 2345 * 2346 * Adds a subregion at @offset. The subregion may overlap with other 2347 * subregions. Conflicts are resolved by having a higher @priority hide a 2348 * lower @priority. Subregions without priority are taken as @priority 0. 2349 * A region may only be added once as a subregion (unless removed with 2350 * memory_region_del_subregion()); use memory_region_init_alias() if you 2351 * want a region to be a subregion in multiple locations. 2352 * 2353 * @mr: the region to contain the new subregion; must be a container 2354 * initialized with memory_region_init(). 2355 * @offset: the offset relative to @mr where @subregion is added. 2356 * @subregion: the subregion to be added. 2357 * @priority: used for resolving overlaps; highest priority wins. 2358 */ 2359 void memory_region_add_subregion_overlap(MemoryRegion *mr, 2360 hwaddr offset, 2361 MemoryRegion *subregion, 2362 int priority); 2363 2364 /** 2365 * memory_region_get_ram_addr: Get the ram address associated with a memory 2366 * region 2367 * 2368 * @mr: the region to be queried 2369 */ 2370 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 2371 2372 uint64_t memory_region_get_alignment(const MemoryRegion *mr); 2373 /** 2374 * memory_region_del_subregion: Remove a subregion. 2375 * 2376 * Removes a subregion from its container. 2377 * 2378 * @mr: the container to be updated. 2379 * @subregion: the region being removed; must be a current subregion of @mr. 2380 */ 2381 void memory_region_del_subregion(MemoryRegion *mr, 2382 MemoryRegion *subregion); 2383 2384 /* 2385 * memory_region_set_enabled: dynamically enable or disable a region 2386 * 2387 * Enables or disables a memory region. A disabled memory region 2388 * ignores all accesses to itself and its subregions. It does not 2389 * obscure sibling subregions with lower priority - it simply behaves as 2390 * if it was removed from the hierarchy. 2391 * 2392 * Regions default to being enabled. 2393 * 2394 * @mr: the region to be updated 2395 * @enabled: whether to enable or disable the region 2396 */ 2397 void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 2398 2399 /* 2400 * memory_region_set_address: dynamically update the address of a region 2401 * 2402 * Dynamically updates the address of a region, relative to its container. 2403 * May be used on regions are currently part of a memory hierarchy. 2404 * 2405 * @mr: the region to be updated 2406 * @addr: new address, relative to container region 2407 */ 2408 void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 2409 2410 /* 2411 * memory_region_set_size: dynamically update the size of a region. 2412 * 2413 * Dynamically updates the size of a region. 2414 * 2415 * @mr: the region to be updated 2416 * @size: used size of the region. 2417 */ 2418 void memory_region_set_size(MemoryRegion *mr, uint64_t size); 2419 2420 /* 2421 * memory_region_set_alias_offset: dynamically update a memory alias's offset 2422 * 2423 * Dynamically updates the offset into the target region that an alias points 2424 * to, as if the fourth argument to memory_region_init_alias() has changed. 2425 * 2426 * @mr: the #MemoryRegion to be updated; should be an alias. 2427 * @offset: the new offset into the target memory region 2428 */ 2429 void memory_region_set_alias_offset(MemoryRegion *mr, 2430 hwaddr offset); 2431 2432 /* 2433 * memory_region_set_unmergeable: Set a memory region unmergeable 2434 * 2435 * Mark a memory region unmergeable, resulting in the memory region (or 2436 * everything contained in a memory region container) not getting merged when 2437 * simplifying the address space and notifying memory listeners. Consequently, 2438 * memory listeners will never get notified about ranges that are larger than 2439 * the original memory regions. 2440 * 2441 * This is primarily useful when multiple aliases to a RAM memory region are 2442 * mapped into a memory region container, and updates (e.g., enable/disable or 2443 * map/unmap) of individual memory region aliases are not supposed to affect 2444 * other memory regions in the same container. 2445 * 2446 * @mr: the #MemoryRegion to be updated 2447 * @unmergeable: whether to mark the #MemoryRegion unmergeable 2448 */ 2449 void memory_region_set_unmergeable(MemoryRegion *mr, bool unmergeable); 2450 2451 /** 2452 * memory_region_present: checks if an address relative to a @container 2453 * translates into #MemoryRegion within @container 2454 * 2455 * Answer whether a #MemoryRegion within @container covers the address 2456 * @addr. 2457 * 2458 * @container: a #MemoryRegion within which @addr is a relative address 2459 * @addr: the area within @container to be searched 2460 */ 2461 bool memory_region_present(MemoryRegion *container, hwaddr addr); 2462 2463 /** 2464 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 2465 * into another memory region, which does not necessarily imply that it is 2466 * mapped into an address space. 2467 * 2468 * @mr: a #MemoryRegion which should be checked if it's mapped 2469 */ 2470 bool memory_region_is_mapped(MemoryRegion *mr); 2471 2472 /** 2473 * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a 2474 * #MemoryRegion 2475 * 2476 * The #RamDiscardManager cannot change while a memory region is mapped. 2477 * 2478 * @mr: the #MemoryRegion 2479 */ 2480 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr); 2481 2482 /** 2483 * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a 2484 * #RamDiscardManager assigned 2485 * 2486 * @mr: the #MemoryRegion 2487 */ 2488 static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr) 2489 { 2490 return !!memory_region_get_ram_discard_manager(mr); 2491 } 2492 2493 /** 2494 * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a 2495 * #MemoryRegion 2496 * 2497 * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion 2498 * that does not cover RAM, or a #MemoryRegion that already has a 2499 * #RamDiscardManager assigned. 2500 * 2501 * @mr: the #MemoryRegion 2502 * @rdm: #RamDiscardManager to set 2503 */ 2504 void memory_region_set_ram_discard_manager(MemoryRegion *mr, 2505 RamDiscardManager *rdm); 2506 2507 /** 2508 * memory_region_find: translate an address/size relative to a 2509 * MemoryRegion into a #MemoryRegionSection. 2510 * 2511 * Locates the first #MemoryRegion within @mr that overlaps the range 2512 * given by @addr and @size. 2513 * 2514 * Returns a #MemoryRegionSection that describes a contiguous overlap. 2515 * It will have the following characteristics: 2516 * - @size = 0 iff no overlap was found 2517 * - @mr is non-%NULL iff an overlap was found 2518 * 2519 * Remember that in the return value the @offset_within_region is 2520 * relative to the returned region (in the .@mr field), not to the 2521 * @mr argument. 2522 * 2523 * Similarly, the .@offset_within_address_space is relative to the 2524 * address space that contains both regions, the passed and the 2525 * returned one. However, in the special case where the @mr argument 2526 * has no container (and thus is the root of the address space), the 2527 * following will hold: 2528 * - @offset_within_address_space >= @addr 2529 * - @offset_within_address_space + .@size <= @addr + @size 2530 * 2531 * @mr: a MemoryRegion within which @addr is a relative address 2532 * @addr: start of the area within @as to be searched 2533 * @size: size of the area to be searched 2534 */ 2535 MemoryRegionSection memory_region_find(MemoryRegion *mr, 2536 hwaddr addr, uint64_t size); 2537 2538 /** 2539 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 2540 * 2541 * Synchronizes the dirty page log for all address spaces. 2542 * 2543 * @last_stage: whether this is the last stage of live migration 2544 */ 2545 void memory_global_dirty_log_sync(bool last_stage); 2546 2547 /** 2548 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 2549 * 2550 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap. 2551 * This function must be called after the dirty log bitmap is cleared, and 2552 * before dirty guest memory pages are read. If you are using 2553 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes 2554 * care of doing this. 2555 */ 2556 void memory_global_after_dirty_log_sync(void); 2557 2558 /** 2559 * memory_region_transaction_begin: Start a transaction. 2560 * 2561 * During a transaction, changes will be accumulated and made visible 2562 * only when the transaction ends (is committed). 2563 */ 2564 void memory_region_transaction_begin(void); 2565 2566 /** 2567 * memory_region_transaction_commit: Commit a transaction and make changes 2568 * visible to the guest. 2569 */ 2570 void memory_region_transaction_commit(void); 2571 2572 /** 2573 * memory_listener_register: register callbacks to be called when memory 2574 * sections are mapped or unmapped into an address 2575 * space 2576 * 2577 * @listener: an object containing the callbacks to be called 2578 * @filter: if non-%NULL, only regions in this address space will be observed 2579 */ 2580 void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 2581 2582 /** 2583 * memory_listener_unregister: undo the effect of memory_listener_register() 2584 * 2585 * @listener: an object containing the callbacks to be removed 2586 */ 2587 void memory_listener_unregister(MemoryListener *listener); 2588 2589 /** 2590 * memory_global_dirty_log_start: begin dirty logging for all regions 2591 * 2592 * @flags: purpose of starting dirty log, migration or dirty rate 2593 * @errp: pointer to Error*, to store an error if it happens. 2594 * 2595 * Return: true on success, else false setting @errp with error. 2596 */ 2597 bool memory_global_dirty_log_start(unsigned int flags, Error **errp); 2598 2599 /** 2600 * memory_global_dirty_log_stop: end dirty logging for all regions 2601 * 2602 * @flags: purpose of stopping dirty log, migration or dirty rate 2603 */ 2604 void memory_global_dirty_log_stop(unsigned int flags); 2605 2606 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled); 2607 2608 bool memory_region_access_valid(MemoryRegion *mr, hwaddr addr, 2609 unsigned size, bool is_write, 2610 MemTxAttrs attrs); 2611 2612 /** 2613 * memory_region_dispatch_read: perform a read directly to the specified 2614 * MemoryRegion. 2615 * 2616 * @mr: #MemoryRegion to access 2617 * @addr: address within that region 2618 * @pval: pointer to uint64_t which the data is written to 2619 * @op: size, sign, and endianness of the memory operation 2620 * @attrs: memory transaction attributes to use for the access 2621 */ 2622 MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 2623 hwaddr addr, 2624 uint64_t *pval, 2625 MemOp op, 2626 MemTxAttrs attrs); 2627 /** 2628 * memory_region_dispatch_write: perform a write directly to the specified 2629 * MemoryRegion. 2630 * 2631 * @mr: #MemoryRegion to access 2632 * @addr: address within that region 2633 * @data: data to write 2634 * @op: size, sign, and endianness of the memory operation 2635 * @attrs: memory transaction attributes to use for the access 2636 */ 2637 MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 2638 hwaddr addr, 2639 uint64_t data, 2640 MemOp op, 2641 MemTxAttrs attrs); 2642 2643 /** 2644 * address_space_init: initializes an address space 2645 * 2646 * @as: an uninitialized #AddressSpace 2647 * @root: a #MemoryRegion that routes addresses for the address space 2648 * @name: an address space name. The name is only used for debugging 2649 * output. 2650 */ 2651 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 2652 2653 /** 2654 * address_space_destroy: destroy an address space 2655 * 2656 * Releases all resources associated with an address space. After an address space 2657 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 2658 * as well. 2659 * 2660 * @as: address space to be destroyed 2661 */ 2662 void address_space_destroy(AddressSpace *as); 2663 2664 /** 2665 * address_space_remove_listeners: unregister all listeners of an address space 2666 * 2667 * Removes all callbacks previously registered with memory_listener_register() 2668 * for @as. 2669 * 2670 * @as: an initialized #AddressSpace 2671 */ 2672 void address_space_remove_listeners(AddressSpace *as); 2673 2674 /** 2675 * address_space_rw: read from or write to an address space. 2676 * 2677 * Return a MemTxResult indicating whether the operation succeeded 2678 * or failed (eg unassigned memory, device rejected the transaction, 2679 * IOMMU fault). 2680 * 2681 * @as: #AddressSpace to be accessed 2682 * @addr: address within that address space 2683 * @attrs: memory transaction attributes 2684 * @buf: buffer with the data transferred 2685 * @len: the number of bytes to read or write 2686 * @is_write: indicates the transfer direction 2687 */ 2688 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, 2689 MemTxAttrs attrs, void *buf, 2690 hwaddr len, bool is_write); 2691 2692 /** 2693 * address_space_write: write to address space. 2694 * 2695 * Return a MemTxResult indicating whether the operation succeeded 2696 * or failed (eg unassigned memory, device rejected the transaction, 2697 * IOMMU fault). 2698 * 2699 * @as: #AddressSpace to be accessed 2700 * @addr: address within that address space 2701 * @attrs: memory transaction attributes 2702 * @buf: buffer with the data transferred 2703 * @len: the number of bytes to write 2704 */ 2705 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 2706 MemTxAttrs attrs, 2707 const void *buf, hwaddr len); 2708 2709 /** 2710 * address_space_write_rom: write to address space, including ROM. 2711 * 2712 * This function writes to the specified address space, but will 2713 * write data to both ROM and RAM. This is used for non-guest 2714 * writes like writes from the gdb debug stub or initial loading 2715 * of ROM contents. 2716 * 2717 * Note that portions of the write which attempt to write data to 2718 * a device will be silently ignored -- only real RAM and ROM will 2719 * be written to. 2720 * 2721 * Return a MemTxResult indicating whether the operation succeeded 2722 * or failed (eg unassigned memory, device rejected the transaction, 2723 * IOMMU fault). 2724 * 2725 * @as: #AddressSpace to be accessed 2726 * @addr: address within that address space 2727 * @attrs: memory transaction attributes 2728 * @buf: buffer with the data transferred 2729 * @len: the number of bytes to write 2730 */ 2731 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 2732 MemTxAttrs attrs, 2733 const void *buf, hwaddr len); 2734 2735 /* address_space_ld*: load from an address space 2736 * address_space_st*: store to an address space 2737 * 2738 * These functions perform a load or store of the byte, word, 2739 * longword or quad to the specified address within the AddressSpace. 2740 * The _le suffixed functions treat the data as little endian; 2741 * _be indicates big endian; no suffix indicates "same endianness 2742 * as guest CPU". 2743 * 2744 * The "guest CPU endianness" accessors are deprecated for use outside 2745 * target-* code; devices should be CPU-agnostic and use either the LE 2746 * or the BE accessors. 2747 * 2748 * @as #AddressSpace to be accessed 2749 * @addr: address within that address space 2750 * @val: data value, for stores 2751 * @attrs: memory transaction attributes 2752 * @result: location to write the success/failure of the transaction; 2753 * if NULL, this information is discarded 2754 */ 2755 2756 #define SUFFIX 2757 #define ARG1 as 2758 #define ARG1_DECL AddressSpace *as 2759 #include "exec/memory_ldst.h.inc" 2760 2761 #define SUFFIX 2762 #define ARG1 as 2763 #define ARG1_DECL AddressSpace *as 2764 #include "exec/memory_ldst_phys.h.inc" 2765 2766 struct MemoryRegionCache { 2767 void *ptr; 2768 hwaddr xlat; 2769 hwaddr len; 2770 FlatView *fv; 2771 MemoryRegionSection mrs; 2772 bool is_write; 2773 }; 2774 2775 /* address_space_ld*_cached: load from a cached #MemoryRegion 2776 * address_space_st*_cached: store into a cached #MemoryRegion 2777 * 2778 * These functions perform a load or store of the byte, word, 2779 * longword or quad to the specified address. The address is 2780 * a physical address in the AddressSpace, but it must lie within 2781 * a #MemoryRegion that was mapped with address_space_cache_init. 2782 * 2783 * The _le suffixed functions treat the data as little endian; 2784 * _be indicates big endian; no suffix indicates "same endianness 2785 * as guest CPU". 2786 * 2787 * The "guest CPU endianness" accessors are deprecated for use outside 2788 * target-* code; devices should be CPU-agnostic and use either the LE 2789 * or the BE accessors. 2790 * 2791 * @cache: previously initialized #MemoryRegionCache to be accessed 2792 * @addr: address within the address space 2793 * @val: data value, for stores 2794 * @attrs: memory transaction attributes 2795 * @result: location to write the success/failure of the transaction; 2796 * if NULL, this information is discarded 2797 */ 2798 2799 #define SUFFIX _cached_slow 2800 #define ARG1 cache 2801 #define ARG1_DECL MemoryRegionCache *cache 2802 #include "exec/memory_ldst.h.inc" 2803 2804 /* Inline fast path for direct RAM access. */ 2805 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache, 2806 hwaddr addr, MemTxAttrs attrs, MemTxResult *result) 2807 { 2808 assert(addr < cache->len); 2809 if (likely(cache->ptr)) { 2810 return ldub_p(cache->ptr + addr); 2811 } else { 2812 return address_space_ldub_cached_slow(cache, addr, attrs, result); 2813 } 2814 } 2815 2816 static inline void address_space_stb_cached(MemoryRegionCache *cache, 2817 hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result) 2818 { 2819 assert(addr < cache->len); 2820 if (likely(cache->ptr)) { 2821 stb_p(cache->ptr + addr, val); 2822 } else { 2823 address_space_stb_cached_slow(cache, addr, val, attrs, result); 2824 } 2825 } 2826 2827 #define ENDIANNESS _le 2828 #include "exec/memory_ldst_cached.h.inc" 2829 2830 #define ENDIANNESS _be 2831 #include "exec/memory_ldst_cached.h.inc" 2832 2833 #define SUFFIX _cached 2834 #define ARG1 cache 2835 #define ARG1_DECL MemoryRegionCache *cache 2836 #include "exec/memory_ldst_phys.h.inc" 2837 2838 /* address_space_cache_init: prepare for repeated access to a physical 2839 * memory region 2840 * 2841 * @cache: #MemoryRegionCache to be filled 2842 * @as: #AddressSpace to be accessed 2843 * @addr: address within that address space 2844 * @len: length of buffer 2845 * @is_write: indicates the transfer direction 2846 * 2847 * Will only work with RAM, and may map a subset of the requested range by 2848 * returning a value that is less than @len. On failure, return a negative 2849 * errno value. 2850 * 2851 * Because it only works with RAM, this function can be used for 2852 * read-modify-write operations. In this case, is_write should be %true. 2853 * 2854 * Note that addresses passed to the address_space_*_cached functions 2855 * are relative to @addr. 2856 */ 2857 int64_t address_space_cache_init(MemoryRegionCache *cache, 2858 AddressSpace *as, 2859 hwaddr addr, 2860 hwaddr len, 2861 bool is_write); 2862 2863 /** 2864 * address_space_cache_init_empty: Initialize empty #MemoryRegionCache 2865 * 2866 * @cache: The #MemoryRegionCache to operate on. 2867 * 2868 * Initializes #MemoryRegionCache structure without memory region attached. 2869 * Cache initialized this way can only be safely destroyed, but not used. 2870 */ 2871 static inline void address_space_cache_init_empty(MemoryRegionCache *cache) 2872 { 2873 cache->mrs.mr = NULL; 2874 /* There is no real need to initialize fv, but it makes Coverity happy. */ 2875 cache->fv = NULL; 2876 } 2877 2878 /** 2879 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache 2880 * 2881 * @cache: The #MemoryRegionCache to operate on. 2882 * @addr: The first physical address that was written, relative to the 2883 * address that was passed to @address_space_cache_init. 2884 * @access_len: The number of bytes that were written starting at @addr. 2885 */ 2886 void address_space_cache_invalidate(MemoryRegionCache *cache, 2887 hwaddr addr, 2888 hwaddr access_len); 2889 2890 /** 2891 * address_space_cache_destroy: free a #MemoryRegionCache 2892 * 2893 * @cache: The #MemoryRegionCache whose memory should be released. 2894 */ 2895 void address_space_cache_destroy(MemoryRegionCache *cache); 2896 2897 /* address_space_get_iotlb_entry: translate an address into an IOTLB 2898 * entry. Should be called from an RCU critical section. 2899 */ 2900 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 2901 bool is_write, MemTxAttrs attrs); 2902 2903 /* address_space_translate: translate an address range into an address space 2904 * into a MemoryRegion and an address range into that section. Should be 2905 * called from an RCU critical section, to avoid that the last reference 2906 * to the returned region disappears after address_space_translate returns. 2907 * 2908 * @fv: #FlatView to be accessed 2909 * @addr: address within that address space 2910 * @xlat: pointer to address within the returned memory region section's 2911 * #MemoryRegion. 2912 * @len: pointer to length 2913 * @is_write: indicates the transfer direction 2914 * @attrs: memory attributes 2915 */ 2916 MemoryRegion *flatview_translate(FlatView *fv, 2917 hwaddr addr, hwaddr *xlat, 2918 hwaddr *len, bool is_write, 2919 MemTxAttrs attrs); 2920 2921 static inline MemoryRegion *address_space_translate(AddressSpace *as, 2922 hwaddr addr, hwaddr *xlat, 2923 hwaddr *len, bool is_write, 2924 MemTxAttrs attrs) 2925 { 2926 return flatview_translate(address_space_to_flatview(as), 2927 addr, xlat, len, is_write, attrs); 2928 } 2929 2930 /* address_space_access_valid: check for validity of accessing an address 2931 * space range 2932 * 2933 * Check whether memory is assigned to the given address space range, and 2934 * access is permitted by any IOMMU regions that are active for the address 2935 * space. 2936 * 2937 * For now, addr and len should be aligned to a page size. This limitation 2938 * will be lifted in the future. 2939 * 2940 * @as: #AddressSpace to be accessed 2941 * @addr: address within that address space 2942 * @len: length of the area to be checked 2943 * @is_write: indicates the transfer direction 2944 * @attrs: memory attributes 2945 */ 2946 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len, 2947 bool is_write, MemTxAttrs attrs); 2948 2949 /* address_space_map: map a physical memory region into a host virtual address 2950 * 2951 * May map a subset of the requested range, given by and returned in @plen. 2952 * May return %NULL and set *@plen to zero(0), if resources needed to perform 2953 * the mapping are exhausted. 2954 * Use only for reads OR writes - not for read-modify-write operations. 2955 * Use address_space_register_map_client() to know when retrying the map 2956 * operation is likely to succeed. 2957 * 2958 * @as: #AddressSpace to be accessed 2959 * @addr: address within that address space 2960 * @plen: pointer to length of buffer; updated on return 2961 * @is_write: indicates the transfer direction 2962 * @attrs: memory attributes 2963 */ 2964 void *address_space_map(AddressSpace *as, hwaddr addr, 2965 hwaddr *plen, bool is_write, MemTxAttrs attrs); 2966 2967 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 2968 * 2969 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 2970 * the amount of memory that was actually read or written by the caller. 2971 * 2972 * @as: #AddressSpace used 2973 * @buffer: host pointer as returned by address_space_map() 2974 * @len: buffer length as returned by address_space_map() 2975 * @access_len: amount of data actually transferred 2976 * @is_write: indicates the transfer direction 2977 */ 2978 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 2979 bool is_write, hwaddr access_len); 2980 2981 /* 2982 * address_space_register_map_client: Register a callback to invoke when 2983 * resources for address_space_map() are available again. 2984 * 2985 * address_space_map may fail when there are not enough resources available, 2986 * such as when bounce buffer memory would exceed the limit. The callback can 2987 * be used to retry the address_space_map operation. Note that the callback 2988 * gets automatically removed after firing. 2989 * 2990 * @as: #AddressSpace to be accessed 2991 * @bh: callback to invoke when address_space_map() retry is appropriate 2992 */ 2993 void address_space_register_map_client(AddressSpace *as, QEMUBH *bh); 2994 2995 /* 2996 * address_space_unregister_map_client: Unregister a callback that has 2997 * previously been registered and not fired yet. 2998 * 2999 * @as: #AddressSpace to be accessed 3000 * @bh: callback to unregister 3001 */ 3002 void address_space_unregister_map_client(AddressSpace *as, QEMUBH *bh); 3003 3004 /* Internal functions, part of the implementation of address_space_read. */ 3005 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 3006 MemTxAttrs attrs, void *buf, hwaddr len); 3007 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 3008 MemTxAttrs attrs, void *buf, 3009 hwaddr len, hwaddr addr1, hwaddr l, 3010 MemoryRegion *mr); 3011 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr); 3012 3013 /* Internal functions, part of the implementation of address_space_read_cached 3014 * and address_space_write_cached. */ 3015 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache, 3016 hwaddr addr, void *buf, hwaddr len); 3017 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache, 3018 hwaddr addr, const void *buf, 3019 hwaddr len); 3020 3021 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr); 3022 bool prepare_mmio_access(MemoryRegion *mr); 3023 3024 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write) 3025 { 3026 if (is_write) { 3027 return memory_region_is_ram(mr) && !mr->readonly && 3028 !mr->rom_device && !memory_region_is_ram_device(mr); 3029 } else { 3030 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) || 3031 memory_region_is_romd(mr); 3032 } 3033 } 3034 3035 /** 3036 * address_space_read: read from an address space. 3037 * 3038 * Return a MemTxResult indicating whether the operation succeeded 3039 * or failed (eg unassigned memory, device rejected the transaction, 3040 * IOMMU fault). Called within RCU critical section. 3041 * 3042 * @as: #AddressSpace to be accessed 3043 * @addr: address within that address space 3044 * @attrs: memory transaction attributes 3045 * @buf: buffer with the data transferred 3046 * @len: length of the data transferred 3047 */ 3048 static inline __attribute__((__always_inline__)) 3049 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, 3050 MemTxAttrs attrs, void *buf, 3051 hwaddr len) 3052 { 3053 MemTxResult result = MEMTX_OK; 3054 hwaddr l, addr1; 3055 void *ptr; 3056 MemoryRegion *mr; 3057 FlatView *fv; 3058 3059 if (__builtin_constant_p(len)) { 3060 if (len) { 3061 RCU_READ_LOCK_GUARD(); 3062 fv = address_space_to_flatview(as); 3063 l = len; 3064 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 3065 if (len == l && memory_access_is_direct(mr, false)) { 3066 ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 3067 memcpy(buf, ptr, len); 3068 } else { 3069 result = flatview_read_continue(fv, addr, attrs, buf, len, 3070 addr1, l, mr); 3071 } 3072 } 3073 } else { 3074 result = address_space_read_full(as, addr, attrs, buf, len); 3075 } 3076 return result; 3077 } 3078 3079 /** 3080 * address_space_read_cached: read from a cached RAM region 3081 * 3082 * @cache: Cached region to be addressed 3083 * @addr: address relative to the base of the RAM region 3084 * @buf: buffer with the data transferred 3085 * @len: length of the data transferred 3086 */ 3087 static inline MemTxResult 3088 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr, 3089 void *buf, hwaddr len) 3090 { 3091 assert(addr < cache->len && len <= cache->len - addr); 3092 fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr); 3093 if (likely(cache->ptr)) { 3094 memcpy(buf, cache->ptr + addr, len); 3095 return MEMTX_OK; 3096 } else { 3097 return address_space_read_cached_slow(cache, addr, buf, len); 3098 } 3099 } 3100 3101 /** 3102 * address_space_write_cached: write to a cached RAM region 3103 * 3104 * @cache: Cached region to be addressed 3105 * @addr: address relative to the base of the RAM region 3106 * @buf: buffer with the data transferred 3107 * @len: length of the data transferred 3108 */ 3109 static inline MemTxResult 3110 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr, 3111 const void *buf, hwaddr len) 3112 { 3113 assert(addr < cache->len && len <= cache->len - addr); 3114 if (likely(cache->ptr)) { 3115 memcpy(cache->ptr + addr, buf, len); 3116 return MEMTX_OK; 3117 } else { 3118 return address_space_write_cached_slow(cache, addr, buf, len); 3119 } 3120 } 3121 3122 /** 3123 * address_space_set: Fill address space with a constant byte. 3124 * 3125 * Return a MemTxResult indicating whether the operation succeeded 3126 * or failed (eg unassigned memory, device rejected the transaction, 3127 * IOMMU fault). 3128 * 3129 * @as: #AddressSpace to be accessed 3130 * @addr: address within that address space 3131 * @c: constant byte to fill the memory 3132 * @len: the number of bytes to fill with the constant byte 3133 * @attrs: memory transaction attributes 3134 */ 3135 MemTxResult address_space_set(AddressSpace *as, hwaddr addr, 3136 uint8_t c, hwaddr len, MemTxAttrs attrs); 3137 3138 #ifdef COMPILING_PER_TARGET 3139 /* enum device_endian to MemOp. */ 3140 static inline MemOp devend_memop(enum device_endian end) 3141 { 3142 QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN && 3143 DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN); 3144 3145 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 3146 /* Swap if non-host endianness or native (target) endianness */ 3147 return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP; 3148 #else 3149 const int non_host_endianness = 3150 DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN; 3151 3152 /* In this case, native (target) endianness needs no swap. */ 3153 return (end == non_host_endianness) ? MO_BSWAP : 0; 3154 #endif 3155 } 3156 #endif /* COMPILING_PER_TARGET */ 3157 3158 /* 3159 * Inhibit technologies that require discarding of pages in RAM blocks, e.g., 3160 * to manage the actual amount of memory consumed by the VM (then, the memory 3161 * provided by RAM blocks might be bigger than the desired memory consumption). 3162 * This *must* be set if: 3163 * - Discarding parts of a RAM blocks does not result in the change being 3164 * reflected in the VM and the pages getting freed. 3165 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous 3166 * discards blindly. 3167 * - Discarding parts of a RAM blocks will result in integrity issues (e.g., 3168 * encrypted VMs). 3169 * Technologies that only temporarily pin the current working set of a 3170 * driver are fine, because we don't expect such pages to be discarded 3171 * (esp. based on guest action like balloon inflation). 3172 * 3173 * This is *not* to be used to protect from concurrent discards (esp., 3174 * postcopy). 3175 * 3176 * Returns 0 if successful. Returns -EBUSY if a technology that relies on 3177 * discards to work reliably is active. 3178 */ 3179 int ram_block_discard_disable(bool state); 3180 3181 /* 3182 * See ram_block_discard_disable(): only disable uncoordinated discards, 3183 * keeping coordinated discards (via the RamDiscardManager) enabled. 3184 */ 3185 int ram_block_uncoordinated_discard_disable(bool state); 3186 3187 /* 3188 * Inhibit technologies that disable discarding of pages in RAM blocks. 3189 * 3190 * Returns 0 if successful. Returns -EBUSY if discards are already set to 3191 * broken. 3192 */ 3193 int ram_block_discard_require(bool state); 3194 3195 /* 3196 * See ram_block_discard_require(): only inhibit technologies that disable 3197 * uncoordinated discarding of pages in RAM blocks, allowing co-existence with 3198 * technologies that only inhibit uncoordinated discards (via the 3199 * RamDiscardManager). 3200 */ 3201 int ram_block_coordinated_discard_require(bool state); 3202 3203 /* 3204 * Test if any discarding of memory in ram blocks is disabled. 3205 */ 3206 bool ram_block_discard_is_disabled(void); 3207 3208 /* 3209 * Test if any discarding of memory in ram blocks is required to work reliably. 3210 */ 3211 bool ram_block_discard_is_required(void); 3212 3213 #endif 3214 3215 #endif 3216