xref: /openbmc/qemu/include/exec/memory.h (revision 0806b30c8dff64e944456aa15bdc6957384e29a8)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef MEMORY_H
15 #define MEMORY_H
16 
17 #ifndef CONFIG_USER_ONLY
18 
19 #include "exec/cpu-common.h"
20 #ifndef CONFIG_USER_ONLY
21 #include "exec/hwaddr.h"
22 #endif
23 #include "exec/memattrs.h"
24 #include "exec/ramlist.h"
25 #include "qemu/queue.h"
26 #include "qemu/int128.h"
27 #include "qemu/notify.h"
28 #include "qom/object.h"
29 #include "qemu/rcu.h"
30 
31 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
32 
33 #define MAX_PHYS_ADDR_SPACE_BITS 62
34 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
35 
36 #define TYPE_MEMORY_REGION "qemu:memory-region"
37 #define MEMORY_REGION(obj) \
38         OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
39 
40 typedef struct MemoryRegionOps MemoryRegionOps;
41 typedef struct MemoryRegionMmio MemoryRegionMmio;
42 
43 struct MemoryRegionMmio {
44     CPUReadMemoryFunc *read[3];
45     CPUWriteMemoryFunc *write[3];
46 };
47 
48 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
49 
50 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
51 typedef enum {
52     IOMMU_NONE = 0,
53     IOMMU_RO   = 1,
54     IOMMU_WO   = 2,
55     IOMMU_RW   = 3,
56 } IOMMUAccessFlags;
57 
58 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
59 
60 struct IOMMUTLBEntry {
61     AddressSpace    *target_as;
62     hwaddr           iova;
63     hwaddr           translated_addr;
64     hwaddr           addr_mask;  /* 0xfff = 4k translation */
65     IOMMUAccessFlags perm;
66 };
67 
68 /*
69  * Bitmap for different IOMMUNotifier capabilities. Each notifier can
70  * register with one or multiple IOMMU Notifier capability bit(s).
71  */
72 typedef enum {
73     IOMMU_NOTIFIER_NONE = 0,
74     /* Notify cache invalidations */
75     IOMMU_NOTIFIER_UNMAP = 0x1,
76     /* Notify entry changes (newly created entries) */
77     IOMMU_NOTIFIER_MAP = 0x2,
78 } IOMMUNotifierFlag;
79 
80 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
81 
82 struct IOMMUNotifier;
83 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
84                             IOMMUTLBEntry *data);
85 
86 struct IOMMUNotifier {
87     IOMMUNotify notify;
88     IOMMUNotifierFlag notifier_flags;
89     /* Notify for address space range start <= addr <= end */
90     hwaddr start;
91     hwaddr end;
92     QLIST_ENTRY(IOMMUNotifier) node;
93 };
94 typedef struct IOMMUNotifier IOMMUNotifier;
95 
96 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
97                                        IOMMUNotifierFlag flags,
98                                        hwaddr start, hwaddr end)
99 {
100     n->notify = fn;
101     n->notifier_flags = flags;
102     n->start = start;
103     n->end = end;
104 }
105 
106 /* New-style MMIO accessors can indicate that the transaction failed.
107  * A zero (MEMTX_OK) response means success; anything else is a failure
108  * of some kind. The memory subsystem will bitwise-OR together results
109  * if it is synthesizing an operation from multiple smaller accesses.
110  */
111 #define MEMTX_OK 0
112 #define MEMTX_ERROR             (1U << 0) /* device returned an error */
113 #define MEMTX_DECODE_ERROR      (1U << 1) /* nothing at that address */
114 typedef uint32_t MemTxResult;
115 
116 /*
117  * Memory region callbacks
118  */
119 struct MemoryRegionOps {
120     /* Read from the memory region. @addr is relative to @mr; @size is
121      * in bytes. */
122     uint64_t (*read)(void *opaque,
123                      hwaddr addr,
124                      unsigned size);
125     /* Write to the memory region. @addr is relative to @mr; @size is
126      * in bytes. */
127     void (*write)(void *opaque,
128                   hwaddr addr,
129                   uint64_t data,
130                   unsigned size);
131 
132     MemTxResult (*read_with_attrs)(void *opaque,
133                                    hwaddr addr,
134                                    uint64_t *data,
135                                    unsigned size,
136                                    MemTxAttrs attrs);
137     MemTxResult (*write_with_attrs)(void *opaque,
138                                     hwaddr addr,
139                                     uint64_t data,
140                                     unsigned size,
141                                     MemTxAttrs attrs);
142 
143     enum device_endian endianness;
144     /* Guest-visible constraints: */
145     struct {
146         /* If nonzero, specify bounds on access sizes beyond which a machine
147          * check is thrown.
148          */
149         unsigned min_access_size;
150         unsigned max_access_size;
151         /* If true, unaligned accesses are supported.  Otherwise unaligned
152          * accesses throw machine checks.
153          */
154          bool unaligned;
155         /*
156          * If present, and returns #false, the transaction is not accepted
157          * by the device (and results in machine dependent behaviour such
158          * as a machine check exception).
159          */
160         bool (*accepts)(void *opaque, hwaddr addr,
161                         unsigned size, bool is_write);
162     } valid;
163     /* Internal implementation constraints: */
164     struct {
165         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
166          * will be rounded upwards and a partial result will be returned.
167          */
168         unsigned min_access_size;
169         /* If nonzero, specifies the maximum size implemented.  Larger sizes
170          * will be done as a series of accesses with smaller sizes.
171          */
172         unsigned max_access_size;
173         /* If true, unaligned accesses are supported.  Otherwise all accesses
174          * are converted to (possibly multiple) naturally aligned accesses.
175          */
176         bool unaligned;
177     } impl;
178 
179     /* If .read and .write are not present, old_mmio may be used for
180      * backwards compatibility with old mmio registration
181      */
182     const MemoryRegionMmio old_mmio;
183 };
184 
185 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
186 
187 struct MemoryRegionIOMMUOps {
188     /* Return a TLB entry that contains a given address. */
189     IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write);
190     /* Returns minimum supported page size */
191     uint64_t (*get_min_page_size)(MemoryRegion *iommu);
192     /* Called when IOMMU Notifier flag changed */
193     void (*notify_flag_changed)(MemoryRegion *iommu,
194                                 IOMMUNotifierFlag old_flags,
195                                 IOMMUNotifierFlag new_flags);
196     /* Set this up to provide customized IOMMU replay function */
197     void (*replay)(MemoryRegion *iommu, IOMMUNotifier *notifier);
198 };
199 
200 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
201 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
202 
203 struct MemoryRegion {
204     Object parent_obj;
205 
206     /* All fields are private - violators will be prosecuted */
207 
208     /* The following fields should fit in a cache line */
209     bool romd_mode;
210     bool ram;
211     bool subpage;
212     bool readonly; /* For RAM regions */
213     bool rom_device;
214     bool flush_coalesced_mmio;
215     bool global_locking;
216     uint8_t dirty_log_mask;
217     RAMBlock *ram_block;
218     Object *owner;
219     const MemoryRegionIOMMUOps *iommu_ops;
220 
221     const MemoryRegionOps *ops;
222     void *opaque;
223     MemoryRegion *container;
224     Int128 size;
225     hwaddr addr;
226     void (*destructor)(MemoryRegion *mr);
227     uint64_t align;
228     bool terminates;
229     bool ram_device;
230     bool enabled;
231     bool warning_printed; /* For reservations */
232     uint8_t vga_logging_count;
233     MemoryRegion *alias;
234     hwaddr alias_offset;
235     int32_t priority;
236     QTAILQ_HEAD(subregions, MemoryRegion) subregions;
237     QTAILQ_ENTRY(MemoryRegion) subregions_link;
238     QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
239     const char *name;
240     unsigned ioeventfd_nb;
241     MemoryRegionIoeventfd *ioeventfds;
242     QLIST_HEAD(, IOMMUNotifier) iommu_notify;
243     IOMMUNotifierFlag iommu_notify_flags;
244 };
245 
246 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
247     QLIST_FOREACH((n), &(mr)->iommu_notify, node)
248 
249 /**
250  * MemoryListener: callbacks structure for updates to the physical memory map
251  *
252  * Allows a component to adjust to changes in the guest-visible memory map.
253  * Use with memory_listener_register() and memory_listener_unregister().
254  */
255 struct MemoryListener {
256     void (*begin)(MemoryListener *listener);
257     void (*commit)(MemoryListener *listener);
258     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
259     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
260     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
261     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
262                       int old, int new);
263     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
264                      int old, int new);
265     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
266     void (*log_global_start)(MemoryListener *listener);
267     void (*log_global_stop)(MemoryListener *listener);
268     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
269                         bool match_data, uint64_t data, EventNotifier *e);
270     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
271                         bool match_data, uint64_t data, EventNotifier *e);
272     void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
273                                hwaddr addr, hwaddr len);
274     void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
275                                hwaddr addr, hwaddr len);
276     /* Lower = earlier (during add), later (during del) */
277     unsigned priority;
278     AddressSpace *address_space;
279     QTAILQ_ENTRY(MemoryListener) link;
280     QTAILQ_ENTRY(MemoryListener) link_as;
281 };
282 
283 /**
284  * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
285  */
286 struct AddressSpace {
287     /* All fields are private. */
288     struct rcu_head rcu;
289     char *name;
290     MemoryRegion *root;
291     int ref_count;
292     bool malloced;
293 
294     /* Accessed via RCU.  */
295     struct FlatView *current_map;
296 
297     int ioeventfd_nb;
298     struct MemoryRegionIoeventfd *ioeventfds;
299     struct AddressSpaceDispatch *dispatch;
300     struct AddressSpaceDispatch *next_dispatch;
301     MemoryListener dispatch_listener;
302     QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners;
303     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
304 };
305 
306 /**
307  * MemoryRegionSection: describes a fragment of a #MemoryRegion
308  *
309  * @mr: the region, or %NULL if empty
310  * @address_space: the address space the region is mapped in
311  * @offset_within_region: the beginning of the section, relative to @mr's start
312  * @size: the size of the section; will not exceed @mr's boundaries
313  * @offset_within_address_space: the address of the first byte of the section
314  *     relative to the region's address space
315  * @readonly: writes to this section are ignored
316  */
317 struct MemoryRegionSection {
318     MemoryRegion *mr;
319     AddressSpace *address_space;
320     hwaddr offset_within_region;
321     Int128 size;
322     hwaddr offset_within_address_space;
323     bool readonly;
324 };
325 
326 /**
327  * memory_region_init: Initialize a memory region
328  *
329  * The region typically acts as a container for other memory regions.  Use
330  * memory_region_add_subregion() to add subregions.
331  *
332  * @mr: the #MemoryRegion to be initialized
333  * @owner: the object that tracks the region's reference count
334  * @name: used for debugging; not visible to the user or ABI
335  * @size: size of the region; any subregions beyond this size will be clipped
336  */
337 void memory_region_init(MemoryRegion *mr,
338                         struct Object *owner,
339                         const char *name,
340                         uint64_t size);
341 
342 /**
343  * memory_region_ref: Add 1 to a memory region's reference count
344  *
345  * Whenever memory regions are accessed outside the BQL, they need to be
346  * preserved against hot-unplug.  MemoryRegions actually do not have their
347  * own reference count; they piggyback on a QOM object, their "owner".
348  * This function adds a reference to the owner.
349  *
350  * All MemoryRegions must have an owner if they can disappear, even if the
351  * device they belong to operates exclusively under the BQL.  This is because
352  * the region could be returned at any time by memory_region_find, and this
353  * is usually under guest control.
354  *
355  * @mr: the #MemoryRegion
356  */
357 void memory_region_ref(MemoryRegion *mr);
358 
359 /**
360  * memory_region_unref: Remove 1 to a memory region's reference count
361  *
362  * Whenever memory regions are accessed outside the BQL, they need to be
363  * preserved against hot-unplug.  MemoryRegions actually do not have their
364  * own reference count; they piggyback on a QOM object, their "owner".
365  * This function removes a reference to the owner and possibly destroys it.
366  *
367  * @mr: the #MemoryRegion
368  */
369 void memory_region_unref(MemoryRegion *mr);
370 
371 /**
372  * memory_region_init_io: Initialize an I/O memory region.
373  *
374  * Accesses into the region will cause the callbacks in @ops to be called.
375  * if @size is nonzero, subregions will be clipped to @size.
376  *
377  * @mr: the #MemoryRegion to be initialized.
378  * @owner: the object that tracks the region's reference count
379  * @ops: a structure containing read and write callbacks to be used when
380  *       I/O is performed on the region.
381  * @opaque: passed to the read and write callbacks of the @ops structure.
382  * @name: used for debugging; not visible to the user or ABI
383  * @size: size of the region.
384  */
385 void memory_region_init_io(MemoryRegion *mr,
386                            struct Object *owner,
387                            const MemoryRegionOps *ops,
388                            void *opaque,
389                            const char *name,
390                            uint64_t size);
391 
392 /**
393  * memory_region_init_ram:  Initialize RAM memory region.  Accesses into the
394  *                          region will modify memory directly.
395  *
396  * @mr: the #MemoryRegion to be initialized.
397  * @owner: the object that tracks the region's reference count
398  * @name: Region name, becomes part of RAMBlock name used in migration stream
399  *        must be unique within any device
400  * @size: size of the region.
401  * @errp: pointer to Error*, to store an error if it happens.
402  */
403 void memory_region_init_ram(MemoryRegion *mr,
404                             struct Object *owner,
405                             const char *name,
406                             uint64_t size,
407                             Error **errp);
408 
409 /**
410  * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
411  *                                     RAM.  Accesses into the region will
412  *                                     modify memory directly.  Only an initial
413  *                                     portion of this RAM is actually used.
414  *                                     The used size can change across reboots.
415  *
416  * @mr: the #MemoryRegion to be initialized.
417  * @owner: the object that tracks the region's reference count
418  * @name: Region name, becomes part of RAMBlock name used in migration stream
419  *        must be unique within any device
420  * @size: used size of the region.
421  * @max_size: max size of the region.
422  * @resized: callback to notify owner about used size change.
423  * @errp: pointer to Error*, to store an error if it happens.
424  */
425 void memory_region_init_resizeable_ram(MemoryRegion *mr,
426                                        struct Object *owner,
427                                        const char *name,
428                                        uint64_t size,
429                                        uint64_t max_size,
430                                        void (*resized)(const char*,
431                                                        uint64_t length,
432                                                        void *host),
433                                        Error **errp);
434 #ifdef __linux__
435 /**
436  * memory_region_init_ram_from_file:  Initialize RAM memory region with a
437  *                                    mmap-ed backend.
438  *
439  * @mr: the #MemoryRegion to be initialized.
440  * @owner: the object that tracks the region's reference count
441  * @name: Region name, becomes part of RAMBlock name used in migration stream
442  *        must be unique within any device
443  * @size: size of the region.
444  * @share: %true if memory must be mmaped with the MAP_SHARED flag
445  * @path: the path in which to allocate the RAM.
446  * @errp: pointer to Error*, to store an error if it happens.
447  */
448 void memory_region_init_ram_from_file(MemoryRegion *mr,
449                                       struct Object *owner,
450                                       const char *name,
451                                       uint64_t size,
452                                       bool share,
453                                       const char *path,
454                                       Error **errp);
455 #endif
456 
457 /**
458  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
459  *                              user-provided pointer.  Accesses into the
460  *                              region will modify memory directly.
461  *
462  * @mr: the #MemoryRegion to be initialized.
463  * @owner: the object that tracks the region's reference count
464  * @name: Region name, becomes part of RAMBlock name used in migration stream
465  *        must be unique within any device
466  * @size: size of the region.
467  * @ptr: memory to be mapped; must contain at least @size bytes.
468  */
469 void memory_region_init_ram_ptr(MemoryRegion *mr,
470                                 struct Object *owner,
471                                 const char *name,
472                                 uint64_t size,
473                                 void *ptr);
474 
475 /**
476  * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
477  *                                     a user-provided pointer.
478  *
479  * A RAM device represents a mapping to a physical device, such as to a PCI
480  * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
481  * into the VM address space and access to the region will modify memory
482  * directly.  However, the memory region should not be included in a memory
483  * dump (device may not be enabled/mapped at the time of the dump), and
484  * operations incompatible with manipulating MMIO should be avoided.  Replaces
485  * skip_dump flag.
486  *
487  * @mr: the #MemoryRegion to be initialized.
488  * @owner: the object that tracks the region's reference count
489  * @name: the name of the region.
490  * @size: size of the region.
491  * @ptr: memory to be mapped; must contain at least @size bytes.
492  */
493 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
494                                        struct Object *owner,
495                                        const char *name,
496                                        uint64_t size,
497                                        void *ptr);
498 
499 /**
500  * memory_region_init_alias: Initialize a memory region that aliases all or a
501  *                           part of another memory region.
502  *
503  * @mr: the #MemoryRegion to be initialized.
504  * @owner: the object that tracks the region's reference count
505  * @name: used for debugging; not visible to the user or ABI
506  * @orig: the region to be referenced; @mr will be equivalent to
507  *        @orig between @offset and @offset + @size - 1.
508  * @offset: start of the section in @orig to be referenced.
509  * @size: size of the region.
510  */
511 void memory_region_init_alias(MemoryRegion *mr,
512                               struct Object *owner,
513                               const char *name,
514                               MemoryRegion *orig,
515                               hwaddr offset,
516                               uint64_t size);
517 
518 /**
519  * memory_region_init_rom: Initialize a ROM memory region.
520  *
521  * This has the same effect as calling memory_region_init_ram()
522  * and then marking the resulting region read-only with
523  * memory_region_set_readonly().
524  *
525  * @mr: the #MemoryRegion to be initialized.
526  * @owner: the object that tracks the region's reference count
527  * @name: Region name, becomes part of RAMBlock name used in migration stream
528  *        must be unique within any device
529  * @size: size of the region.
530  * @errp: pointer to Error*, to store an error if it happens.
531  */
532 void memory_region_init_rom(MemoryRegion *mr,
533                             struct Object *owner,
534                             const char *name,
535                             uint64_t size,
536                             Error **errp);
537 
538 /**
539  * memory_region_init_rom_device:  Initialize a ROM memory region.  Writes are
540  *                                 handled via callbacks.
541  *
542  * @mr: the #MemoryRegion to be initialized.
543  * @owner: the object that tracks the region's reference count
544  * @ops: callbacks for write access handling (must not be NULL).
545  * @name: Region name, becomes part of RAMBlock name used in migration stream
546  *        must be unique within any device
547  * @size: size of the region.
548  * @errp: pointer to Error*, to store an error if it happens.
549  */
550 void memory_region_init_rom_device(MemoryRegion *mr,
551                                    struct Object *owner,
552                                    const MemoryRegionOps *ops,
553                                    void *opaque,
554                                    const char *name,
555                                    uint64_t size,
556                                    Error **errp);
557 
558 /**
559  * memory_region_init_reservation: Initialize a memory region that reserves
560  *                                 I/O space.
561  *
562  * A reservation region primariy serves debugging purposes.  It claims I/O
563  * space that is not supposed to be handled by QEMU itself.  Any access via
564  * the memory API will cause an abort().
565  * This function is deprecated. Use memory_region_init_io() with NULL
566  * callbacks instead.
567  *
568  * @mr: the #MemoryRegion to be initialized
569  * @owner: the object that tracks the region's reference count
570  * @name: used for debugging; not visible to the user or ABI
571  * @size: size of the region.
572  */
573 static inline void memory_region_init_reservation(MemoryRegion *mr,
574                                     Object *owner,
575                                     const char *name,
576                                     uint64_t size)
577 {
578     memory_region_init_io(mr, owner, NULL, mr, name, size);
579 }
580 
581 /**
582  * memory_region_init_iommu: Initialize a memory region that translates
583  * addresses
584  *
585  * An IOMMU region translates addresses and forwards accesses to a target
586  * memory region.
587  *
588  * @mr: the #MemoryRegion to be initialized
589  * @owner: the object that tracks the region's reference count
590  * @ops: a function that translates addresses into the @target region
591  * @name: used for debugging; not visible to the user or ABI
592  * @size: size of the region.
593  */
594 void memory_region_init_iommu(MemoryRegion *mr,
595                               struct Object *owner,
596                               const MemoryRegionIOMMUOps *ops,
597                               const char *name,
598                               uint64_t size);
599 
600 /**
601  * memory_region_owner: get a memory region's owner.
602  *
603  * @mr: the memory region being queried.
604  */
605 struct Object *memory_region_owner(MemoryRegion *mr);
606 
607 /**
608  * memory_region_size: get a memory region's size.
609  *
610  * @mr: the memory region being queried.
611  */
612 uint64_t memory_region_size(MemoryRegion *mr);
613 
614 /**
615  * memory_region_is_ram: check whether a memory region is random access
616  *
617  * Returns %true is a memory region is random access.
618  *
619  * @mr: the memory region being queried
620  */
621 static inline bool memory_region_is_ram(MemoryRegion *mr)
622 {
623     return mr->ram;
624 }
625 
626 /**
627  * memory_region_is_ram_device: check whether a memory region is a ram device
628  *
629  * Returns %true is a memory region is a device backed ram region
630  *
631  * @mr: the memory region being queried
632  */
633 bool memory_region_is_ram_device(MemoryRegion *mr);
634 
635 /**
636  * memory_region_is_romd: check whether a memory region is in ROMD mode
637  *
638  * Returns %true if a memory region is a ROM device and currently set to allow
639  * direct reads.
640  *
641  * @mr: the memory region being queried
642  */
643 static inline bool memory_region_is_romd(MemoryRegion *mr)
644 {
645     return mr->rom_device && mr->romd_mode;
646 }
647 
648 /**
649  * memory_region_is_iommu: check whether a memory region is an iommu
650  *
651  * Returns %true is a memory region is an iommu.
652  *
653  * @mr: the memory region being queried
654  */
655 static inline bool memory_region_is_iommu(MemoryRegion *mr)
656 {
657     if (mr->alias) {
658         return memory_region_is_iommu(mr->alias);
659     }
660     return mr->iommu_ops;
661 }
662 
663 
664 /**
665  * memory_region_iommu_get_min_page_size: get minimum supported page size
666  * for an iommu
667  *
668  * Returns minimum supported page size for an iommu.
669  *
670  * @mr: the memory region being queried
671  */
672 uint64_t memory_region_iommu_get_min_page_size(MemoryRegion *mr);
673 
674 /**
675  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
676  *
677  * The notification type will be decided by entry.perm bits:
678  *
679  * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
680  * - For MAP (newly added entry) notifies: set entry.perm to the
681  *   permission of the page (which is definitely !IOMMU_NONE).
682  *
683  * Note: for any IOMMU implementation, an in-place mapping change
684  * should be notified with an UNMAP followed by a MAP.
685  *
686  * @mr: the memory region that was changed
687  * @entry: the new entry in the IOMMU translation table.  The entry
688  *         replaces all old entries for the same virtual I/O address range.
689  *         Deleted entries have .@perm == 0.
690  */
691 void memory_region_notify_iommu(MemoryRegion *mr,
692                                 IOMMUTLBEntry entry);
693 
694 /**
695  * memory_region_notify_one: notify a change in an IOMMU translation
696  *                           entry to a single notifier
697  *
698  * This works just like memory_region_notify_iommu(), but it only
699  * notifies a specific notifier, not all of them.
700  *
701  * @notifier: the notifier to be notified
702  * @entry: the new entry in the IOMMU translation table.  The entry
703  *         replaces all old entries for the same virtual I/O address range.
704  *         Deleted entries have .@perm == 0.
705  */
706 void memory_region_notify_one(IOMMUNotifier *notifier,
707                               IOMMUTLBEntry *entry);
708 
709 /**
710  * memory_region_register_iommu_notifier: register a notifier for changes to
711  * IOMMU translation entries.
712  *
713  * @mr: the memory region to observe
714  * @n: the IOMMUNotifier to be added; the notify callback receives a
715  *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
716  *     ceases to be valid on exit from the notifier.
717  */
718 void memory_region_register_iommu_notifier(MemoryRegion *mr,
719                                            IOMMUNotifier *n);
720 
721 /**
722  * memory_region_iommu_replay: replay existing IOMMU translations to
723  * a notifier with the minimum page granularity returned by
724  * mr->iommu_ops->get_page_size().
725  *
726  * @mr: the memory region to observe
727  * @n: the notifier to which to replay iommu mappings
728  * @is_write: Whether to treat the replay as a translate "write"
729  *     through the iommu
730  */
731 void memory_region_iommu_replay(MemoryRegion *mr, IOMMUNotifier *n,
732                                 bool is_write);
733 
734 /**
735  * memory_region_iommu_replay_all: replay existing IOMMU translations
736  * to all the notifiers registered.
737  *
738  * @mr: the memory region to observe
739  */
740 void memory_region_iommu_replay_all(MemoryRegion *mr);
741 
742 /**
743  * memory_region_unregister_iommu_notifier: unregister a notifier for
744  * changes to IOMMU translation entries.
745  *
746  * @mr: the memory region which was observed and for which notity_stopped()
747  *      needs to be called
748  * @n: the notifier to be removed.
749  */
750 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
751                                              IOMMUNotifier *n);
752 
753 /**
754  * memory_region_name: get a memory region's name
755  *
756  * Returns the string that was used to initialize the memory region.
757  *
758  * @mr: the memory region being queried
759  */
760 const char *memory_region_name(const MemoryRegion *mr);
761 
762 /**
763  * memory_region_is_logging: return whether a memory region is logging writes
764  *
765  * Returns %true if the memory region is logging writes for the given client
766  *
767  * @mr: the memory region being queried
768  * @client: the client being queried
769  */
770 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
771 
772 /**
773  * memory_region_get_dirty_log_mask: return the clients for which a
774  * memory region is logging writes.
775  *
776  * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
777  * are the bit indices.
778  *
779  * @mr: the memory region being queried
780  */
781 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
782 
783 /**
784  * memory_region_is_rom: check whether a memory region is ROM
785  *
786  * Returns %true is a memory region is read-only memory.
787  *
788  * @mr: the memory region being queried
789  */
790 static inline bool memory_region_is_rom(MemoryRegion *mr)
791 {
792     return mr->ram && mr->readonly;
793 }
794 
795 
796 /**
797  * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
798  *
799  * Returns a file descriptor backing a file-based RAM memory region,
800  * or -1 if the region is not a file-based RAM memory region.
801  *
802  * @mr: the RAM or alias memory region being queried.
803  */
804 int memory_region_get_fd(MemoryRegion *mr);
805 
806 /**
807  * memory_region_set_fd: Mark a RAM memory region as backed by a
808  * file descriptor.
809  *
810  * This function is typically used after memory_region_init_ram_ptr().
811  *
812  * @mr: the memory region being queried.
813  * @fd: the file descriptor that backs @mr.
814  */
815 void memory_region_set_fd(MemoryRegion *mr, int fd);
816 
817 /**
818  * memory_region_from_host: Convert a pointer into a RAM memory region
819  * and an offset within it.
820  *
821  * Given a host pointer inside a RAM memory region (created with
822  * memory_region_init_ram() or memory_region_init_ram_ptr()), return
823  * the MemoryRegion and the offset within it.
824  *
825  * Use with care; by the time this function returns, the returned pointer is
826  * not protected by RCU anymore.  If the caller is not within an RCU critical
827  * section and does not hold the iothread lock, it must have other means of
828  * protecting the pointer, such as a reference to the region that includes
829  * the incoming ram_addr_t.
830  *
831  * @mr: the memory region being queried.
832  */
833 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
834 
835 /**
836  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
837  *
838  * Returns a host pointer to a RAM memory region (created with
839  * memory_region_init_ram() or memory_region_init_ram_ptr()).
840  *
841  * Use with care; by the time this function returns, the returned pointer is
842  * not protected by RCU anymore.  If the caller is not within an RCU critical
843  * section and does not hold the iothread lock, it must have other means of
844  * protecting the pointer, such as a reference to the region that includes
845  * the incoming ram_addr_t.
846  *
847  * @mr: the memory region being queried.
848  */
849 void *memory_region_get_ram_ptr(MemoryRegion *mr);
850 
851 /* memory_region_ram_resize: Resize a RAM region.
852  *
853  * Only legal before guest might have detected the memory size: e.g. on
854  * incoming migration, or right after reset.
855  *
856  * @mr: a memory region created with @memory_region_init_resizeable_ram.
857  * @newsize: the new size the region
858  * @errp: pointer to Error*, to store an error if it happens.
859  */
860 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
861                               Error **errp);
862 
863 /**
864  * memory_region_set_log: Turn dirty logging on or off for a region.
865  *
866  * Turns dirty logging on or off for a specified client (display, migration).
867  * Only meaningful for RAM regions.
868  *
869  * @mr: the memory region being updated.
870  * @log: whether dirty logging is to be enabled or disabled.
871  * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
872  */
873 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
874 
875 /**
876  * memory_region_get_dirty: Check whether a range of bytes is dirty
877  *                          for a specified client.
878  *
879  * Checks whether a range of bytes has been written to since the last
880  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
881  * must be enabled.
882  *
883  * @mr: the memory region being queried.
884  * @addr: the address (relative to the start of the region) being queried.
885  * @size: the size of the range being queried.
886  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
887  *          %DIRTY_MEMORY_VGA.
888  */
889 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
890                              hwaddr size, unsigned client);
891 
892 /**
893  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
894  *
895  * Marks a range of bytes as dirty, after it has been dirtied outside
896  * guest code.
897  *
898  * @mr: the memory region being dirtied.
899  * @addr: the address (relative to the start of the region) being dirtied.
900  * @size: size of the range being dirtied.
901  */
902 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
903                              hwaddr size);
904 
905 /**
906  * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
907  *                                     for a specified client. It clears them.
908  *
909  * Checks whether a range of bytes has been written to since the last
910  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
911  * must be enabled.
912  *
913  * @mr: the memory region being queried.
914  * @addr: the address (relative to the start of the region) being queried.
915  * @size: the size of the range being queried.
916  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
917  *          %DIRTY_MEMORY_VGA.
918  */
919 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
920                                         hwaddr size, unsigned client);
921 
922 /**
923  * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
924  *                                         bitmap and clear it.
925  *
926  * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
927  * returns the snapshot.  The snapshot can then be used to query dirty
928  * status, using memory_region_snapshot_get_dirty.  Unlike
929  * memory_region_test_and_clear_dirty this allows to query the same
930  * page multiple times, which is especially useful for display updates
931  * where the scanlines often are not page aligned.
932  *
933  * The dirty bitmap region which gets copyed into the snapshot (and
934  * cleared afterwards) can be larger than requested.  The boundaries
935  * are rounded up/down so complete bitmap longs (covering 64 pages on
936  * 64bit hosts) can be copied over into the bitmap snapshot.  Which
937  * isn't a problem for display updates as the extra pages are outside
938  * the visible area, and in case the visible area changes a full
939  * display redraw is due anyway.  Should other use cases for this
940  * function emerge we might have to revisit this implementation
941  * detail.
942  *
943  * Use g_free to release DirtyBitmapSnapshot.
944  *
945  * @mr: the memory region being queried.
946  * @addr: the address (relative to the start of the region) being queried.
947  * @size: the size of the range being queried.
948  * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
949  */
950 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
951                                                             hwaddr addr,
952                                                             hwaddr size,
953                                                             unsigned client);
954 
955 /**
956  * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
957  *                                   in the specified dirty bitmap snapshot.
958  *
959  * @mr: the memory region being queried.
960  * @snap: the dirty bitmap snapshot
961  * @addr: the address (relative to the start of the region) being queried.
962  * @size: the size of the range being queried.
963  */
964 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
965                                       DirtyBitmapSnapshot *snap,
966                                       hwaddr addr, hwaddr size);
967 
968 /**
969  * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
970  *                                  any external TLBs (e.g. kvm)
971  *
972  * Flushes dirty information from accelerators such as kvm and vhost-net
973  * and makes it available to users of the memory API.
974  *
975  * @mr: the region being flushed.
976  */
977 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
978 
979 /**
980  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
981  *                            client.
982  *
983  * Marks a range of pages as no longer dirty.
984  *
985  * @mr: the region being updated.
986  * @addr: the start of the subrange being cleaned.
987  * @size: the size of the subrange being cleaned.
988  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
989  *          %DIRTY_MEMORY_VGA.
990  */
991 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
992                                hwaddr size, unsigned client);
993 
994 /**
995  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
996  *
997  * Allows a memory region to be marked as read-only (turning it into a ROM).
998  * only useful on RAM regions.
999  *
1000  * @mr: the region being updated.
1001  * @readonly: whether rhe region is to be ROM or RAM.
1002  */
1003 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1004 
1005 /**
1006  * memory_region_rom_device_set_romd: enable/disable ROMD mode
1007  *
1008  * Allows a ROM device (initialized with memory_region_init_rom_device() to
1009  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
1010  * device is mapped to guest memory and satisfies read access directly.
1011  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1012  * Writes are always handled by the #MemoryRegion.write function.
1013  *
1014  * @mr: the memory region to be updated
1015  * @romd_mode: %true to put the region into ROMD mode
1016  */
1017 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1018 
1019 /**
1020  * memory_region_set_coalescing: Enable memory coalescing for the region.
1021  *
1022  * Enabled writes to a region to be queued for later processing. MMIO ->write
1023  * callbacks may be delayed until a non-coalesced MMIO is issued.
1024  * Only useful for IO regions.  Roughly similar to write-combining hardware.
1025  *
1026  * @mr: the memory region to be write coalesced
1027  */
1028 void memory_region_set_coalescing(MemoryRegion *mr);
1029 
1030 /**
1031  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1032  *                               a region.
1033  *
1034  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1035  * Multiple calls can be issued coalesced disjoint ranges.
1036  *
1037  * @mr: the memory region to be updated.
1038  * @offset: the start of the range within the region to be coalesced.
1039  * @size: the size of the subrange to be coalesced.
1040  */
1041 void memory_region_add_coalescing(MemoryRegion *mr,
1042                                   hwaddr offset,
1043                                   uint64_t size);
1044 
1045 /**
1046  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1047  *
1048  * Disables any coalescing caused by memory_region_set_coalescing() or
1049  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
1050  * hardware.
1051  *
1052  * @mr: the memory region to be updated.
1053  */
1054 void memory_region_clear_coalescing(MemoryRegion *mr);
1055 
1056 /**
1057  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1058  *                                    accesses.
1059  *
1060  * Ensure that pending coalesced MMIO request are flushed before the memory
1061  * region is accessed. This property is automatically enabled for all regions
1062  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1063  *
1064  * @mr: the memory region to be updated.
1065  */
1066 void memory_region_set_flush_coalesced(MemoryRegion *mr);
1067 
1068 /**
1069  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1070  *                                      accesses.
1071  *
1072  * Clear the automatic coalesced MMIO flushing enabled via
1073  * memory_region_set_flush_coalesced. Note that this service has no effect on
1074  * memory regions that have MMIO coalescing enabled for themselves. For them,
1075  * automatic flushing will stop once coalescing is disabled.
1076  *
1077  * @mr: the memory region to be updated.
1078  */
1079 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1080 
1081 /**
1082  * memory_region_set_global_locking: Declares the access processing requires
1083  *                                   QEMU's global lock.
1084  *
1085  * When this is invoked, accesses to the memory region will be processed while
1086  * holding the global lock of QEMU. This is the default behavior of memory
1087  * regions.
1088  *
1089  * @mr: the memory region to be updated.
1090  */
1091 void memory_region_set_global_locking(MemoryRegion *mr);
1092 
1093 /**
1094  * memory_region_clear_global_locking: Declares that access processing does
1095  *                                     not depend on the QEMU global lock.
1096  *
1097  * By clearing this property, accesses to the memory region will be processed
1098  * outside of QEMU's global lock (unless the lock is held on when issuing the
1099  * access request). In this case, the device model implementing the access
1100  * handlers is responsible for synchronization of concurrency.
1101  *
1102  * @mr: the memory region to be updated.
1103  */
1104 void memory_region_clear_global_locking(MemoryRegion *mr);
1105 
1106 /**
1107  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1108  *                            is written to a location.
1109  *
1110  * Marks a word in an IO region (initialized with memory_region_init_io())
1111  * as a trigger for an eventfd event.  The I/O callback will not be called.
1112  * The caller must be prepared to handle failure (that is, take the required
1113  * action if the callback _is_ called).
1114  *
1115  * @mr: the memory region being updated.
1116  * @addr: the address within @mr that is to be monitored
1117  * @size: the size of the access to trigger the eventfd
1118  * @match_data: whether to match against @data, instead of just @addr
1119  * @data: the data to match against the guest write
1120  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1121  **/
1122 void memory_region_add_eventfd(MemoryRegion *mr,
1123                                hwaddr addr,
1124                                unsigned size,
1125                                bool match_data,
1126                                uint64_t data,
1127                                EventNotifier *e);
1128 
1129 /**
1130  * memory_region_del_eventfd: Cancel an eventfd.
1131  *
1132  * Cancels an eventfd trigger requested by a previous
1133  * memory_region_add_eventfd() call.
1134  *
1135  * @mr: the memory region being updated.
1136  * @addr: the address within @mr that is to be monitored
1137  * @size: the size of the access to trigger the eventfd
1138  * @match_data: whether to match against @data, instead of just @addr
1139  * @data: the data to match against the guest write
1140  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1141  */
1142 void memory_region_del_eventfd(MemoryRegion *mr,
1143                                hwaddr addr,
1144                                unsigned size,
1145                                bool match_data,
1146                                uint64_t data,
1147                                EventNotifier *e);
1148 
1149 /**
1150  * memory_region_add_subregion: Add a subregion to a container.
1151  *
1152  * Adds a subregion at @offset.  The subregion may not overlap with other
1153  * subregions (except for those explicitly marked as overlapping).  A region
1154  * may only be added once as a subregion (unless removed with
1155  * memory_region_del_subregion()); use memory_region_init_alias() if you
1156  * want a region to be a subregion in multiple locations.
1157  *
1158  * @mr: the region to contain the new subregion; must be a container
1159  *      initialized with memory_region_init().
1160  * @offset: the offset relative to @mr where @subregion is added.
1161  * @subregion: the subregion to be added.
1162  */
1163 void memory_region_add_subregion(MemoryRegion *mr,
1164                                  hwaddr offset,
1165                                  MemoryRegion *subregion);
1166 /**
1167  * memory_region_add_subregion_overlap: Add a subregion to a container
1168  *                                      with overlap.
1169  *
1170  * Adds a subregion at @offset.  The subregion may overlap with other
1171  * subregions.  Conflicts are resolved by having a higher @priority hide a
1172  * lower @priority. Subregions without priority are taken as @priority 0.
1173  * A region may only be added once as a subregion (unless removed with
1174  * memory_region_del_subregion()); use memory_region_init_alias() if you
1175  * want a region to be a subregion in multiple locations.
1176  *
1177  * @mr: the region to contain the new subregion; must be a container
1178  *      initialized with memory_region_init().
1179  * @offset: the offset relative to @mr where @subregion is added.
1180  * @subregion: the subregion to be added.
1181  * @priority: used for resolving overlaps; highest priority wins.
1182  */
1183 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1184                                          hwaddr offset,
1185                                          MemoryRegion *subregion,
1186                                          int priority);
1187 
1188 /**
1189  * memory_region_get_ram_addr: Get the ram address associated with a memory
1190  *                             region
1191  */
1192 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1193 
1194 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1195 /**
1196  * memory_region_del_subregion: Remove a subregion.
1197  *
1198  * Removes a subregion from its container.
1199  *
1200  * @mr: the container to be updated.
1201  * @subregion: the region being removed; must be a current subregion of @mr.
1202  */
1203 void memory_region_del_subregion(MemoryRegion *mr,
1204                                  MemoryRegion *subregion);
1205 
1206 /*
1207  * memory_region_set_enabled: dynamically enable or disable a region
1208  *
1209  * Enables or disables a memory region.  A disabled memory region
1210  * ignores all accesses to itself and its subregions.  It does not
1211  * obscure sibling subregions with lower priority - it simply behaves as
1212  * if it was removed from the hierarchy.
1213  *
1214  * Regions default to being enabled.
1215  *
1216  * @mr: the region to be updated
1217  * @enabled: whether to enable or disable the region
1218  */
1219 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1220 
1221 /*
1222  * memory_region_set_address: dynamically update the address of a region
1223  *
1224  * Dynamically updates the address of a region, relative to its container.
1225  * May be used on regions are currently part of a memory hierarchy.
1226  *
1227  * @mr: the region to be updated
1228  * @addr: new address, relative to container region
1229  */
1230 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1231 
1232 /*
1233  * memory_region_set_size: dynamically update the size of a region.
1234  *
1235  * Dynamically updates the size of a region.
1236  *
1237  * @mr: the region to be updated
1238  * @size: used size of the region.
1239  */
1240 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1241 
1242 /*
1243  * memory_region_set_alias_offset: dynamically update a memory alias's offset
1244  *
1245  * Dynamically updates the offset into the target region that an alias points
1246  * to, as if the fourth argument to memory_region_init_alias() has changed.
1247  *
1248  * @mr: the #MemoryRegion to be updated; should be an alias.
1249  * @offset: the new offset into the target memory region
1250  */
1251 void memory_region_set_alias_offset(MemoryRegion *mr,
1252                                     hwaddr offset);
1253 
1254 /**
1255  * memory_region_present: checks if an address relative to a @container
1256  * translates into #MemoryRegion within @container
1257  *
1258  * Answer whether a #MemoryRegion within @container covers the address
1259  * @addr.
1260  *
1261  * @container: a #MemoryRegion within which @addr is a relative address
1262  * @addr: the area within @container to be searched
1263  */
1264 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1265 
1266 /**
1267  * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1268  * into any address space.
1269  *
1270  * @mr: a #MemoryRegion which should be checked if it's mapped
1271  */
1272 bool memory_region_is_mapped(MemoryRegion *mr);
1273 
1274 /**
1275  * memory_region_find: translate an address/size relative to a
1276  * MemoryRegion into a #MemoryRegionSection.
1277  *
1278  * Locates the first #MemoryRegion within @mr that overlaps the range
1279  * given by @addr and @size.
1280  *
1281  * Returns a #MemoryRegionSection that describes a contiguous overlap.
1282  * It will have the following characteristics:
1283  *    .@size = 0 iff no overlap was found
1284  *    .@mr is non-%NULL iff an overlap was found
1285  *
1286  * Remember that in the return value the @offset_within_region is
1287  * relative to the returned region (in the .@mr field), not to the
1288  * @mr argument.
1289  *
1290  * Similarly, the .@offset_within_address_space is relative to the
1291  * address space that contains both regions, the passed and the
1292  * returned one.  However, in the special case where the @mr argument
1293  * has no container (and thus is the root of the address space), the
1294  * following will hold:
1295  *    .@offset_within_address_space >= @addr
1296  *    .@offset_within_address_space + .@size <= @addr + @size
1297  *
1298  * @mr: a MemoryRegion within which @addr is a relative address
1299  * @addr: start of the area within @as to be searched
1300  * @size: size of the area to be searched
1301  */
1302 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1303                                        hwaddr addr, uint64_t size);
1304 
1305 /**
1306  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1307  *
1308  * Synchronizes the dirty page log for all address spaces.
1309  */
1310 void memory_global_dirty_log_sync(void);
1311 
1312 /**
1313  * memory_region_transaction_begin: Start a transaction.
1314  *
1315  * During a transaction, changes will be accumulated and made visible
1316  * only when the transaction ends (is committed).
1317  */
1318 void memory_region_transaction_begin(void);
1319 
1320 /**
1321  * memory_region_transaction_commit: Commit a transaction and make changes
1322  *                                   visible to the guest.
1323  */
1324 void memory_region_transaction_commit(void);
1325 
1326 /**
1327  * memory_listener_register: register callbacks to be called when memory
1328  *                           sections are mapped or unmapped into an address
1329  *                           space
1330  *
1331  * @listener: an object containing the callbacks to be called
1332  * @filter: if non-%NULL, only regions in this address space will be observed
1333  */
1334 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1335 
1336 /**
1337  * memory_listener_unregister: undo the effect of memory_listener_register()
1338  *
1339  * @listener: an object containing the callbacks to be removed
1340  */
1341 void memory_listener_unregister(MemoryListener *listener);
1342 
1343 /**
1344  * memory_global_dirty_log_start: begin dirty logging for all regions
1345  */
1346 void memory_global_dirty_log_start(void);
1347 
1348 /**
1349  * memory_global_dirty_log_stop: end dirty logging for all regions
1350  */
1351 void memory_global_dirty_log_stop(void);
1352 
1353 void mtree_info(fprintf_function mon_printf, void *f, bool flatview);
1354 
1355 /**
1356  * memory_region_dispatch_read: perform a read directly to the specified
1357  * MemoryRegion.
1358  *
1359  * @mr: #MemoryRegion to access
1360  * @addr: address within that region
1361  * @pval: pointer to uint64_t which the data is written to
1362  * @size: size of the access in bytes
1363  * @attrs: memory transaction attributes to use for the access
1364  */
1365 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1366                                         hwaddr addr,
1367                                         uint64_t *pval,
1368                                         unsigned size,
1369                                         MemTxAttrs attrs);
1370 /**
1371  * memory_region_dispatch_write: perform a write directly to the specified
1372  * MemoryRegion.
1373  *
1374  * @mr: #MemoryRegion to access
1375  * @addr: address within that region
1376  * @data: data to write
1377  * @size: size of the access in bytes
1378  * @attrs: memory transaction attributes to use for the access
1379  */
1380 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1381                                          hwaddr addr,
1382                                          uint64_t data,
1383                                          unsigned size,
1384                                          MemTxAttrs attrs);
1385 
1386 /**
1387  * address_space_init: initializes an address space
1388  *
1389  * @as: an uninitialized #AddressSpace
1390  * @root: a #MemoryRegion that routes addresses for the address space
1391  * @name: an address space name.  The name is only used for debugging
1392  *        output.
1393  */
1394 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1395 
1396 /**
1397  * address_space_init_shareable: return an address space for a memory region,
1398  *                               creating it if it does not already exist
1399  *
1400  * @root: a #MemoryRegion that routes addresses for the address space
1401  * @name: an address space name.  The name is only used for debugging
1402  *        output.
1403  *
1404  * This function will return a pointer to an existing AddressSpace
1405  * which was initialized with the specified MemoryRegion, or it will
1406  * create and initialize one if it does not already exist. The ASes
1407  * are reference-counted, so the memory will be freed automatically
1408  * when the AddressSpace is destroyed via address_space_destroy.
1409  */
1410 AddressSpace *address_space_init_shareable(MemoryRegion *root,
1411                                            const char *name);
1412 
1413 /**
1414  * address_space_destroy: destroy an address space
1415  *
1416  * Releases all resources associated with an address space.  After an address space
1417  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1418  * as well.
1419  *
1420  * @as: address space to be destroyed
1421  */
1422 void address_space_destroy(AddressSpace *as);
1423 
1424 /**
1425  * address_space_rw: read from or write to an address space.
1426  *
1427  * Return a MemTxResult indicating whether the operation succeeded
1428  * or failed (eg unassigned memory, device rejected the transaction,
1429  * IOMMU fault).
1430  *
1431  * @as: #AddressSpace to be accessed
1432  * @addr: address within that address space
1433  * @attrs: memory transaction attributes
1434  * @buf: buffer with the data transferred
1435  * @is_write: indicates the transfer direction
1436  */
1437 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1438                              MemTxAttrs attrs, uint8_t *buf,
1439                              int len, bool is_write);
1440 
1441 /**
1442  * address_space_write: write to address space.
1443  *
1444  * Return a MemTxResult indicating whether the operation succeeded
1445  * or failed (eg unassigned memory, device rejected the transaction,
1446  * IOMMU fault).
1447  *
1448  * @as: #AddressSpace to be accessed
1449  * @addr: address within that address space
1450  * @attrs: memory transaction attributes
1451  * @buf: buffer with the data transferred
1452  */
1453 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1454                                 MemTxAttrs attrs,
1455                                 const uint8_t *buf, int len);
1456 
1457 /* address_space_ld*: load from an address space
1458  * address_space_st*: store to an address space
1459  *
1460  * These functions perform a load or store of the byte, word,
1461  * longword or quad to the specified address within the AddressSpace.
1462  * The _le suffixed functions treat the data as little endian;
1463  * _be indicates big endian; no suffix indicates "same endianness
1464  * as guest CPU".
1465  *
1466  * The "guest CPU endianness" accessors are deprecated for use outside
1467  * target-* code; devices should be CPU-agnostic and use either the LE
1468  * or the BE accessors.
1469  *
1470  * @as #AddressSpace to be accessed
1471  * @addr: address within that address space
1472  * @val: data value, for stores
1473  * @attrs: memory transaction attributes
1474  * @result: location to write the success/failure of the transaction;
1475  *   if NULL, this information is discarded
1476  */
1477 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1478                             MemTxAttrs attrs, MemTxResult *result);
1479 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1480                             MemTxAttrs attrs, MemTxResult *result);
1481 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1482                             MemTxAttrs attrs, MemTxResult *result);
1483 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1484                             MemTxAttrs attrs, MemTxResult *result);
1485 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1486                             MemTxAttrs attrs, MemTxResult *result);
1487 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1488                             MemTxAttrs attrs, MemTxResult *result);
1489 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1490                             MemTxAttrs attrs, MemTxResult *result);
1491 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1492                             MemTxAttrs attrs, MemTxResult *result);
1493 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1494                             MemTxAttrs attrs, MemTxResult *result);
1495 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1496                             MemTxAttrs attrs, MemTxResult *result);
1497 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1498                             MemTxAttrs attrs, MemTxResult *result);
1499 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1500                             MemTxAttrs attrs, MemTxResult *result);
1501 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1502                             MemTxAttrs attrs, MemTxResult *result);
1503 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1504                             MemTxAttrs attrs, MemTxResult *result);
1505 
1506 uint32_t ldub_phys(AddressSpace *as, hwaddr addr);
1507 uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr);
1508 uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr);
1509 uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr);
1510 uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr);
1511 uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr);
1512 uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr);
1513 void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1514 void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1515 void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1516 void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1517 void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1518 void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1519 void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1520 
1521 struct MemoryRegionCache {
1522     hwaddr xlat;
1523     hwaddr len;
1524     AddressSpace *as;
1525 };
1526 
1527 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .as = NULL })
1528 
1529 /* address_space_cache_init: prepare for repeated access to a physical
1530  * memory region
1531  *
1532  * @cache: #MemoryRegionCache to be filled
1533  * @as: #AddressSpace to be accessed
1534  * @addr: address within that address space
1535  * @len: length of buffer
1536  * @is_write: indicates the transfer direction
1537  *
1538  * Will only work with RAM, and may map a subset of the requested range by
1539  * returning a value that is less than @len.  On failure, return a negative
1540  * errno value.
1541  *
1542  * Because it only works with RAM, this function can be used for
1543  * read-modify-write operations.  In this case, is_write should be %true.
1544  *
1545  * Note that addresses passed to the address_space_*_cached functions
1546  * are relative to @addr.
1547  */
1548 int64_t address_space_cache_init(MemoryRegionCache *cache,
1549                                  AddressSpace *as,
1550                                  hwaddr addr,
1551                                  hwaddr len,
1552                                  bool is_write);
1553 
1554 /**
1555  * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
1556  *
1557  * @cache: The #MemoryRegionCache to operate on.
1558  * @addr: The first physical address that was written, relative to the
1559  * address that was passed to @address_space_cache_init.
1560  * @access_len: The number of bytes that were written starting at @addr.
1561  */
1562 void address_space_cache_invalidate(MemoryRegionCache *cache,
1563                                     hwaddr addr,
1564                                     hwaddr access_len);
1565 
1566 /**
1567  * address_space_cache_destroy: free a #MemoryRegionCache
1568  *
1569  * @cache: The #MemoryRegionCache whose memory should be released.
1570  */
1571 void address_space_cache_destroy(MemoryRegionCache *cache);
1572 
1573 /* address_space_ld*_cached: load from a cached #MemoryRegion
1574  * address_space_st*_cached: store into a cached #MemoryRegion
1575  *
1576  * These functions perform a load or store of the byte, word,
1577  * longword or quad to the specified address.  The address is
1578  * a physical address in the AddressSpace, but it must lie within
1579  * a #MemoryRegion that was mapped with address_space_cache_init.
1580  *
1581  * The _le suffixed functions treat the data as little endian;
1582  * _be indicates big endian; no suffix indicates "same endianness
1583  * as guest CPU".
1584  *
1585  * The "guest CPU endianness" accessors are deprecated for use outside
1586  * target-* code; devices should be CPU-agnostic and use either the LE
1587  * or the BE accessors.
1588  *
1589  * @cache: previously initialized #MemoryRegionCache to be accessed
1590  * @addr: address within the address space
1591  * @val: data value, for stores
1592  * @attrs: memory transaction attributes
1593  * @result: location to write the success/failure of the transaction;
1594  *   if NULL, this information is discarded
1595  */
1596 uint32_t address_space_ldub_cached(MemoryRegionCache *cache, hwaddr addr,
1597                             MemTxAttrs attrs, MemTxResult *result);
1598 uint32_t address_space_lduw_le_cached(MemoryRegionCache *cache, hwaddr addr,
1599                             MemTxAttrs attrs, MemTxResult *result);
1600 uint32_t address_space_lduw_be_cached(MemoryRegionCache *cache, hwaddr addr,
1601                             MemTxAttrs attrs, MemTxResult *result);
1602 uint32_t address_space_ldl_le_cached(MemoryRegionCache *cache, hwaddr addr,
1603                             MemTxAttrs attrs, MemTxResult *result);
1604 uint32_t address_space_ldl_be_cached(MemoryRegionCache *cache, hwaddr addr,
1605                             MemTxAttrs attrs, MemTxResult *result);
1606 uint64_t address_space_ldq_le_cached(MemoryRegionCache *cache, hwaddr addr,
1607                             MemTxAttrs attrs, MemTxResult *result);
1608 uint64_t address_space_ldq_be_cached(MemoryRegionCache *cache, hwaddr addr,
1609                             MemTxAttrs attrs, MemTxResult *result);
1610 void address_space_stb_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1611                             MemTxAttrs attrs, MemTxResult *result);
1612 void address_space_stw_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1613                             MemTxAttrs attrs, MemTxResult *result);
1614 void address_space_stw_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1615                             MemTxAttrs attrs, MemTxResult *result);
1616 void address_space_stl_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1617                             MemTxAttrs attrs, MemTxResult *result);
1618 void address_space_stl_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1619                             MemTxAttrs attrs, MemTxResult *result);
1620 void address_space_stq_le_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1621                             MemTxAttrs attrs, MemTxResult *result);
1622 void address_space_stq_be_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1623                             MemTxAttrs attrs, MemTxResult *result);
1624 
1625 uint32_t ldub_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1626 uint32_t lduw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1627 uint32_t lduw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1628 uint32_t ldl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1629 uint32_t ldl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1630 uint64_t ldq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1631 uint64_t ldq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1632 void stb_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1633 void stw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1634 void stw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1635 void stl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1636 void stl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1637 void stq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1638 void stq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1639 /* address_space_get_iotlb_entry: translate an address into an IOTLB
1640  * entry. Should be called from an RCU critical section.
1641  */
1642 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
1643                                             bool is_write);
1644 
1645 /* address_space_translate: translate an address range into an address space
1646  * into a MemoryRegion and an address range into that section.  Should be
1647  * called from an RCU critical section, to avoid that the last reference
1648  * to the returned region disappears after address_space_translate returns.
1649  *
1650  * @as: #AddressSpace to be accessed
1651  * @addr: address within that address space
1652  * @xlat: pointer to address within the returned memory region section's
1653  * #MemoryRegion.
1654  * @len: pointer to length
1655  * @is_write: indicates the transfer direction
1656  */
1657 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1658                                       hwaddr *xlat, hwaddr *len,
1659                                       bool is_write);
1660 
1661 /* address_space_access_valid: check for validity of accessing an address
1662  * space range
1663  *
1664  * Check whether memory is assigned to the given address space range, and
1665  * access is permitted by any IOMMU regions that are active for the address
1666  * space.
1667  *
1668  * For now, addr and len should be aligned to a page size.  This limitation
1669  * will be lifted in the future.
1670  *
1671  * @as: #AddressSpace to be accessed
1672  * @addr: address within that address space
1673  * @len: length of the area to be checked
1674  * @is_write: indicates the transfer direction
1675  */
1676 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1677 
1678 /* address_space_map: map a physical memory region into a host virtual address
1679  *
1680  * May map a subset of the requested range, given by and returned in @plen.
1681  * May return %NULL if resources needed to perform the mapping are exhausted.
1682  * Use only for reads OR writes - not for read-modify-write operations.
1683  * Use cpu_register_map_client() to know when retrying the map operation is
1684  * likely to succeed.
1685  *
1686  * @as: #AddressSpace to be accessed
1687  * @addr: address within that address space
1688  * @plen: pointer to length of buffer; updated on return
1689  * @is_write: indicates the transfer direction
1690  */
1691 void *address_space_map(AddressSpace *as, hwaddr addr,
1692                         hwaddr *plen, bool is_write);
1693 
1694 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1695  *
1696  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
1697  * the amount of memory that was actually read or written by the caller.
1698  *
1699  * @as: #AddressSpace used
1700  * @addr: address within that address space
1701  * @len: buffer length as returned by address_space_map()
1702  * @access_len: amount of data actually transferred
1703  * @is_write: indicates the transfer direction
1704  */
1705 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1706                          int is_write, hwaddr access_len);
1707 
1708 
1709 /* Internal functions, part of the implementation of address_space_read.  */
1710 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
1711                                         MemTxAttrs attrs, uint8_t *buf,
1712                                         int len, hwaddr addr1, hwaddr l,
1713 					MemoryRegion *mr);
1714 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
1715                                     MemTxAttrs attrs, uint8_t *buf, int len);
1716 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
1717 
1718 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1719 {
1720     if (is_write) {
1721         return memory_region_is_ram(mr) &&
1722                !mr->readonly && !memory_region_is_ram_device(mr);
1723     } else {
1724         return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
1725                memory_region_is_romd(mr);
1726     }
1727 }
1728 
1729 /**
1730  * address_space_read: read from an address space.
1731  *
1732  * Return a MemTxResult indicating whether the operation succeeded
1733  * or failed (eg unassigned memory, device rejected the transaction,
1734  * IOMMU fault).
1735  *
1736  * @as: #AddressSpace to be accessed
1737  * @addr: address within that address space
1738  * @attrs: memory transaction attributes
1739  * @buf: buffer with the data transferred
1740  */
1741 static inline __attribute__((__always_inline__))
1742 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
1743                                uint8_t *buf, int len)
1744 {
1745     MemTxResult result = MEMTX_OK;
1746     hwaddr l, addr1;
1747     void *ptr;
1748     MemoryRegion *mr;
1749 
1750     if (__builtin_constant_p(len)) {
1751         if (len) {
1752             rcu_read_lock();
1753             l = len;
1754             mr = address_space_translate(as, addr, &addr1, &l, false);
1755             if (len == l && memory_access_is_direct(mr, false)) {
1756                 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1757                 memcpy(buf, ptr, len);
1758             } else {
1759                 result = address_space_read_continue(as, addr, attrs, buf, len,
1760                                                      addr1, l, mr);
1761             }
1762             rcu_read_unlock();
1763         }
1764     } else {
1765         result = address_space_read_full(as, addr, attrs, buf, len);
1766     }
1767     return result;
1768 }
1769 
1770 /**
1771  * address_space_read_cached: read from a cached RAM region
1772  *
1773  * @cache: Cached region to be addressed
1774  * @addr: address relative to the base of the RAM region
1775  * @buf: buffer with the data transferred
1776  * @len: length of the data transferred
1777  */
1778 static inline void
1779 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
1780                           void *buf, int len)
1781 {
1782     assert(addr < cache->len && len <= cache->len - addr);
1783     address_space_read(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
1784 }
1785 
1786 /**
1787  * address_space_write_cached: write to a cached RAM region
1788  *
1789  * @cache: Cached region to be addressed
1790  * @addr: address relative to the base of the RAM region
1791  * @buf: buffer with the data transferred
1792  * @len: length of the data transferred
1793  */
1794 static inline void
1795 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
1796                            void *buf, int len)
1797 {
1798     assert(addr < cache->len && len <= cache->len - addr);
1799     address_space_write(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
1800 }
1801 
1802 #endif
1803 
1804 #endif
1805