xref: /openbmc/qemu/include/exec/exec-all.h (revision fafe0021e32d339e64d6042811640d66c8336d4b)
1 /*
2  * internal execution defines for qemu
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef EXEC_ALL_H
21 #define EXEC_ALL_H
22 
23 #include "cpu.h"
24 #ifdef CONFIG_TCG
25 #include "exec/cpu_ldst.h"
26 #endif
27 #include "qemu/interval-tree.h"
28 #include "qemu/clang-tsa.h"
29 
30 /* Page tracking code uses ram addresses in system mode, and virtual
31    addresses in userspace mode.  Define tb_page_addr_t to be an appropriate
32    type.  */
33 #if defined(CONFIG_USER_ONLY)
34 typedef abi_ulong tb_page_addr_t;
35 #define TB_PAGE_ADDR_FMT TARGET_ABI_FMT_lx
36 #else
37 typedef ram_addr_t tb_page_addr_t;
38 #define TB_PAGE_ADDR_FMT RAM_ADDR_FMT
39 #endif
40 
41 /**
42  * cpu_unwind_state_data:
43  * @cpu: the cpu context
44  * @host_pc: the host pc within the translation
45  * @data: output data
46  *
47  * Attempt to load the the unwind state for a host pc occurring in
48  * translated code.  If @host_pc is not in translated code, the
49  * function returns false; otherwise @data is loaded.
50  * This is the same unwind info as given to restore_state_to_opc.
51  */
52 bool cpu_unwind_state_data(CPUState *cpu, uintptr_t host_pc, uint64_t *data);
53 
54 /**
55  * cpu_restore_state:
56  * @cpu: the cpu context
57  * @host_pc: the host pc within the translation
58  * @return: true if state was restored, false otherwise
59  *
60  * Attempt to restore the state for a fault occurring in translated
61  * code. If @host_pc is not in translated code no state is
62  * restored and the function returns false.
63  */
64 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc);
65 
66 G_NORETURN void cpu_loop_exit_noexc(CPUState *cpu);
67 G_NORETURN void cpu_loop_exit(CPUState *cpu);
68 G_NORETURN void cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc);
69 G_NORETURN void cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc);
70 
71 /**
72  * cpu_loop_exit_requested:
73  * @cpu: The CPU state to be tested
74  *
75  * Indicate if somebody asked for a return of the CPU to the main loop
76  * (e.g., via cpu_exit() or cpu_interrupt()).
77  *
78  * This is helpful for architectures that support interruptible
79  * instructions. After writing back all state to registers/memory, this
80  * call can be used to check if it makes sense to return to the main loop
81  * or to continue executing the interruptible instruction.
82  */
83 static inline bool cpu_loop_exit_requested(CPUState *cpu)
84 {
85     return (int32_t)qatomic_read(&cpu_neg(cpu)->icount_decr.u32) < 0;
86 }
87 
88 #if !defined(CONFIG_USER_ONLY) && defined(CONFIG_TCG)
89 /* cputlb.c */
90 /**
91  * tlb_init - initialize a CPU's TLB
92  * @cpu: CPU whose TLB should be initialized
93  */
94 void tlb_init(CPUState *cpu);
95 /**
96  * tlb_destroy - destroy a CPU's TLB
97  * @cpu: CPU whose TLB should be destroyed
98  */
99 void tlb_destroy(CPUState *cpu);
100 /**
101  * tlb_flush_page:
102  * @cpu: CPU whose TLB should be flushed
103  * @addr: virtual address of page to be flushed
104  *
105  * Flush one page from the TLB of the specified CPU, for all
106  * MMU indexes.
107  */
108 void tlb_flush_page(CPUState *cpu, target_ulong addr);
109 /**
110  * tlb_flush_page_all_cpus:
111  * @cpu: src CPU of the flush
112  * @addr: virtual address of page to be flushed
113  *
114  * Flush one page from the TLB of the specified CPU, for all
115  * MMU indexes.
116  */
117 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr);
118 /**
119  * tlb_flush_page_all_cpus_synced:
120  * @cpu: src CPU of the flush
121  * @addr: virtual address of page to be flushed
122  *
123  * Flush one page from the TLB of the specified CPU, for all MMU
124  * indexes like tlb_flush_page_all_cpus except the source vCPUs work
125  * is scheduled as safe work meaning all flushes will be complete once
126  * the source vCPUs safe work is complete. This will depend on when
127  * the guests translation ends the TB.
128  */
129 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr);
130 /**
131  * tlb_flush:
132  * @cpu: CPU whose TLB should be flushed
133  *
134  * Flush the entire TLB for the specified CPU. Most CPU architectures
135  * allow the implementation to drop entries from the TLB at any time
136  * so this is generally safe. If more selective flushing is required
137  * use one of the other functions for efficiency.
138  */
139 void tlb_flush(CPUState *cpu);
140 /**
141  * tlb_flush_all_cpus:
142  * @cpu: src CPU of the flush
143  */
144 void tlb_flush_all_cpus(CPUState *src_cpu);
145 /**
146  * tlb_flush_all_cpus_synced:
147  * @cpu: src CPU of the flush
148  *
149  * Like tlb_flush_all_cpus except this except the source vCPUs work is
150  * scheduled as safe work meaning all flushes will be complete once
151  * the source vCPUs safe work is complete. This will depend on when
152  * the guests translation ends the TB.
153  */
154 void tlb_flush_all_cpus_synced(CPUState *src_cpu);
155 /**
156  * tlb_flush_page_by_mmuidx:
157  * @cpu: CPU whose TLB should be flushed
158  * @addr: virtual address of page to be flushed
159  * @idxmap: bitmap of MMU indexes to flush
160  *
161  * Flush one page from the TLB of the specified CPU, for the specified
162  * MMU indexes.
163  */
164 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr,
165                               uint16_t idxmap);
166 /**
167  * tlb_flush_page_by_mmuidx_all_cpus:
168  * @cpu: Originating CPU of the flush
169  * @addr: virtual address of page to be flushed
170  * @idxmap: bitmap of MMU indexes to flush
171  *
172  * Flush one page from the TLB of all CPUs, for the specified
173  * MMU indexes.
174  */
175 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr,
176                                        uint16_t idxmap);
177 /**
178  * tlb_flush_page_by_mmuidx_all_cpus_synced:
179  * @cpu: Originating CPU of the flush
180  * @addr: virtual address of page to be flushed
181  * @idxmap: bitmap of MMU indexes to flush
182  *
183  * Flush one page from the TLB of all CPUs, for the specified MMU
184  * indexes like tlb_flush_page_by_mmuidx_all_cpus except the source
185  * vCPUs work is scheduled as safe work meaning all flushes will be
186  * complete once  the source vCPUs safe work is complete. This will
187  * depend on when the guests translation ends the TB.
188  */
189 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu, target_ulong addr,
190                                               uint16_t idxmap);
191 /**
192  * tlb_flush_by_mmuidx:
193  * @cpu: CPU whose TLB should be flushed
194  * @wait: If true ensure synchronisation by exiting the cpu_loop
195  * @idxmap: bitmap of MMU indexes to flush
196  *
197  * Flush all entries from the TLB of the specified CPU, for the specified
198  * MMU indexes.
199  */
200 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap);
201 /**
202  * tlb_flush_by_mmuidx_all_cpus:
203  * @cpu: Originating CPU of the flush
204  * @idxmap: bitmap of MMU indexes to flush
205  *
206  * Flush all entries from all TLBs of all CPUs, for the specified
207  * MMU indexes.
208  */
209 void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap);
210 /**
211  * tlb_flush_by_mmuidx_all_cpus_synced:
212  * @cpu: Originating CPU of the flush
213  * @idxmap: bitmap of MMU indexes to flush
214  *
215  * Flush all entries from all TLBs of all CPUs, for the specified
216  * MMU indexes like tlb_flush_by_mmuidx_all_cpus except except the source
217  * vCPUs work is scheduled as safe work meaning all flushes will be
218  * complete once  the source vCPUs safe work is complete. This will
219  * depend on when the guests translation ends the TB.
220  */
221 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu, uint16_t idxmap);
222 
223 /**
224  * tlb_flush_page_bits_by_mmuidx
225  * @cpu: CPU whose TLB should be flushed
226  * @addr: virtual address of page to be flushed
227  * @idxmap: bitmap of mmu indexes to flush
228  * @bits: number of significant bits in address
229  *
230  * Similar to tlb_flush_page_mask, but with a bitmap of indexes.
231  */
232 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, target_ulong addr,
233                                    uint16_t idxmap, unsigned bits);
234 
235 /* Similarly, with broadcast and syncing. */
236 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr,
237                                             uint16_t idxmap, unsigned bits);
238 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced
239     (CPUState *cpu, target_ulong addr, uint16_t idxmap, unsigned bits);
240 
241 /**
242  * tlb_flush_range_by_mmuidx
243  * @cpu: CPU whose TLB should be flushed
244  * @addr: virtual address of the start of the range to be flushed
245  * @len: length of range to be flushed
246  * @idxmap: bitmap of mmu indexes to flush
247  * @bits: number of significant bits in address
248  *
249  * For each mmuidx in @idxmap, flush all pages within [@addr,@addr+@len),
250  * comparing only the low @bits worth of each virtual page.
251  */
252 void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr,
253                                target_ulong len, uint16_t idxmap,
254                                unsigned bits);
255 
256 /* Similarly, with broadcast and syncing. */
257 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr,
258                                         target_ulong len, uint16_t idxmap,
259                                         unsigned bits);
260 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *cpu,
261                                                target_ulong addr,
262                                                target_ulong len,
263                                                uint16_t idxmap,
264                                                unsigned bits);
265 
266 /**
267  * tlb_set_page_full:
268  * @cpu: CPU context
269  * @mmu_idx: mmu index of the tlb to modify
270  * @vaddr: virtual address of the entry to add
271  * @full: the details of the tlb entry
272  *
273  * Add an entry to @cpu tlb index @mmu_idx.  All of the fields of
274  * @full must be filled, except for xlat_section, and constitute
275  * the complete description of the translated page.
276  *
277  * This is generally called by the target tlb_fill function after
278  * having performed a successful page table walk to find the physical
279  * address and attributes for the translation.
280  *
281  * At most one entry for a given virtual address is permitted. Only a
282  * single TARGET_PAGE_SIZE region is mapped; @full->lg_page_size is only
283  * used by tlb_flush_page.
284  */
285 void tlb_set_page_full(CPUState *cpu, int mmu_idx, target_ulong vaddr,
286                        CPUTLBEntryFull *full);
287 
288 /**
289  * tlb_set_page_with_attrs:
290  * @cpu: CPU to add this TLB entry for
291  * @vaddr: virtual address of page to add entry for
292  * @paddr: physical address of the page
293  * @attrs: memory transaction attributes
294  * @prot: access permissions (PAGE_READ/PAGE_WRITE/PAGE_EXEC bits)
295  * @mmu_idx: MMU index to insert TLB entry for
296  * @size: size of the page in bytes
297  *
298  * Add an entry to this CPU's TLB (a mapping from virtual address
299  * @vaddr to physical address @paddr) with the specified memory
300  * transaction attributes. This is generally called by the target CPU
301  * specific code after it has been called through the tlb_fill()
302  * entry point and performed a successful page table walk to find
303  * the physical address and attributes for the virtual address
304  * which provoked the TLB miss.
305  *
306  * At most one entry for a given virtual address is permitted. Only a
307  * single TARGET_PAGE_SIZE region is mapped; the supplied @size is only
308  * used by tlb_flush_page.
309  */
310 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
311                              hwaddr paddr, MemTxAttrs attrs,
312                              int prot, int mmu_idx, target_ulong size);
313 /* tlb_set_page:
314  *
315  * This function is equivalent to calling tlb_set_page_with_attrs()
316  * with an @attrs argument of MEMTXATTRS_UNSPECIFIED. It's provided
317  * as a convenience for CPUs which don't use memory transaction attributes.
318  */
319 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
320                   hwaddr paddr, int prot,
321                   int mmu_idx, target_ulong size);
322 #else
323 static inline void tlb_init(CPUState *cpu)
324 {
325 }
326 static inline void tlb_destroy(CPUState *cpu)
327 {
328 }
329 static inline void tlb_flush_page(CPUState *cpu, target_ulong addr)
330 {
331 }
332 static inline void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
333 {
334 }
335 static inline void tlb_flush_page_all_cpus_synced(CPUState *src,
336                                                   target_ulong addr)
337 {
338 }
339 static inline void tlb_flush(CPUState *cpu)
340 {
341 }
342 static inline void tlb_flush_all_cpus(CPUState *src_cpu)
343 {
344 }
345 static inline void tlb_flush_all_cpus_synced(CPUState *src_cpu)
346 {
347 }
348 static inline void tlb_flush_page_by_mmuidx(CPUState *cpu,
349                                             target_ulong addr, uint16_t idxmap)
350 {
351 }
352 
353 static inline void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
354 {
355 }
356 static inline void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu,
357                                                      target_ulong addr,
358                                                      uint16_t idxmap)
359 {
360 }
361 static inline void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu,
362                                                             target_ulong addr,
363                                                             uint16_t idxmap)
364 {
365 }
366 static inline void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap)
367 {
368 }
369 
370 static inline void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu,
371                                                        uint16_t idxmap)
372 {
373 }
374 static inline void tlb_flush_page_bits_by_mmuidx(CPUState *cpu,
375                                                  target_ulong addr,
376                                                  uint16_t idxmap,
377                                                  unsigned bits)
378 {
379 }
380 static inline void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *cpu,
381                                                           target_ulong addr,
382                                                           uint16_t idxmap,
383                                                           unsigned bits)
384 {
385 }
386 static inline void
387 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *cpu, target_ulong addr,
388                                               uint16_t idxmap, unsigned bits)
389 {
390 }
391 static inline void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr,
392                                              target_ulong len, uint16_t idxmap,
393                                              unsigned bits)
394 {
395 }
396 static inline void tlb_flush_range_by_mmuidx_all_cpus(CPUState *cpu,
397                                                       target_ulong addr,
398                                                       target_ulong len,
399                                                       uint16_t idxmap,
400                                                       unsigned bits)
401 {
402 }
403 static inline void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *cpu,
404                                                              target_ulong addr,
405                                                              target_long len,
406                                                              uint16_t idxmap,
407                                                              unsigned bits)
408 {
409 }
410 #endif
411 /**
412  * probe_access:
413  * @env: CPUArchState
414  * @addr: guest virtual address to look up
415  * @size: size of the access
416  * @access_type: read, write or execute permission
417  * @mmu_idx: MMU index to use for lookup
418  * @retaddr: return address for unwinding
419  *
420  * Look up the guest virtual address @addr.  Raise an exception if the
421  * page does not satisfy @access_type.  Raise an exception if the
422  * access (@addr, @size) hits a watchpoint.  For writes, mark a clean
423  * page as dirty.
424  *
425  * Finally, return the host address for a page that is backed by RAM,
426  * or NULL if the page requires I/O.
427  */
428 void *probe_access(CPUArchState *env, target_ulong addr, int size,
429                    MMUAccessType access_type, int mmu_idx, uintptr_t retaddr);
430 
431 static inline void *probe_write(CPUArchState *env, target_ulong addr, int size,
432                                 int mmu_idx, uintptr_t retaddr)
433 {
434     return probe_access(env, addr, size, MMU_DATA_STORE, mmu_idx, retaddr);
435 }
436 
437 static inline void *probe_read(CPUArchState *env, target_ulong addr, int size,
438                                int mmu_idx, uintptr_t retaddr)
439 {
440     return probe_access(env, addr, size, MMU_DATA_LOAD, mmu_idx, retaddr);
441 }
442 
443 /**
444  * probe_access_flags:
445  * @env: CPUArchState
446  * @addr: guest virtual address to look up
447  * @size: size of the access
448  * @access_type: read, write or execute permission
449  * @mmu_idx: MMU index to use for lookup
450  * @nonfault: suppress the fault
451  * @phost: return value for host address
452  * @retaddr: return address for unwinding
453  *
454  * Similar to probe_access, loosely returning the TLB_FLAGS_MASK for
455  * the page, and storing the host address for RAM in @phost.
456  *
457  * If @nonfault is set, do not raise an exception but return TLB_INVALID_MASK.
458  * Do not handle watchpoints, but include TLB_WATCHPOINT in the returned flags.
459  * Do handle clean pages, so exclude TLB_NOTDIRY from the returned flags.
460  * For simplicity, all "mmio-like" flags are folded to TLB_MMIO.
461  */
462 int probe_access_flags(CPUArchState *env, target_ulong addr, int size,
463                        MMUAccessType access_type, int mmu_idx,
464                        bool nonfault, void **phost, uintptr_t retaddr);
465 
466 #ifndef CONFIG_USER_ONLY
467 /**
468  * probe_access_full:
469  * Like probe_access_flags, except also return into @pfull.
470  *
471  * The CPUTLBEntryFull structure returned via @pfull is transient
472  * and must be consumed or copied immediately, before any further
473  * access or changes to TLB @mmu_idx.
474  */
475 int probe_access_full(CPUArchState *env, target_ulong addr, int size,
476                       MMUAccessType access_type, int mmu_idx,
477                       bool nonfault, void **phost,
478                       CPUTLBEntryFull **pfull, uintptr_t retaddr);
479 #endif
480 
481 #define CODE_GEN_ALIGN           16 /* must be >= of the size of a icache line */
482 
483 /* Estimated block size for TB allocation.  */
484 /* ??? The following is based on a 2015 survey of x86_64 host output.
485    Better would seem to be some sort of dynamically sized TB array,
486    adapting to the block sizes actually being produced.  */
487 #if defined(CONFIG_SOFTMMU)
488 #define CODE_GEN_AVG_BLOCK_SIZE 400
489 #else
490 #define CODE_GEN_AVG_BLOCK_SIZE 150
491 #endif
492 
493 /*
494  * Translation Cache-related fields of a TB.
495  * This struct exists just for convenience; we keep track of TB's in a binary
496  * search tree, and the only fields needed to compare TB's in the tree are
497  * @ptr and @size.
498  * Note: the address of search data can be obtained by adding @size to @ptr.
499  */
500 struct tb_tc {
501     const void *ptr;    /* pointer to the translated code */
502     size_t size;
503 };
504 
505 struct TranslationBlock {
506     /*
507      * Guest PC corresponding to this block.  This must be the true
508      * virtual address.  Therefore e.g. x86 stores EIP + CS_BASE, and
509      * targets like Arm, MIPS, HP-PA, which reuse low bits for ISA or
510      * privilege, must store those bits elsewhere.
511      *
512      * If CF_PCREL, the opcodes for the TranslationBlock are written
513      * such that the TB is associated only with the physical page and
514      * may be run in any virtual address context.  In this case, PC
515      * must always be taken from ENV in a target-specific manner.
516      * Unwind information is taken as offsets from the page, to be
517      * deposited into the "current" PC.
518      */
519     target_ulong pc;
520 
521     /*
522      * Target-specific data associated with the TranslationBlock, e.g.:
523      * x86: the original user, the Code Segment virtual base,
524      * arm: an extension of tb->flags,
525      * s390x: instruction data for EXECUTE,
526      * sparc: the next pc of the instruction queue (for delay slots).
527      */
528     target_ulong cs_base;
529 
530     uint32_t flags; /* flags defining in which context the code was generated */
531     uint32_t cflags;    /* compile flags */
532 
533 /* Note that TCG_MAX_INSNS is 512; we validate this match elsewhere. */
534 #define CF_COUNT_MASK    0x000001ff
535 #define CF_NO_GOTO_TB    0x00000200 /* Do not chain with goto_tb */
536 #define CF_NO_GOTO_PTR   0x00000400 /* Do not chain with goto_ptr */
537 #define CF_SINGLE_STEP   0x00000800 /* gdbstub single-step in effect */
538 #define CF_LAST_IO       0x00008000 /* Last insn may be an IO access.  */
539 #define CF_MEMI_ONLY     0x00010000 /* Only instrument memory ops */
540 #define CF_USE_ICOUNT    0x00020000
541 #define CF_INVALID       0x00040000 /* TB is stale. Set with @jmp_lock held */
542 #define CF_PARALLEL      0x00080000 /* Generate code for a parallel context */
543 #define CF_NOIRQ         0x00100000 /* Generate an uninterruptible TB */
544 #define CF_PCREL         0x00200000 /* Opcodes in TB are PC-relative */
545 #define CF_CLUSTER_MASK  0xff000000 /* Top 8 bits are cluster ID */
546 #define CF_CLUSTER_SHIFT 24
547 
548     /*
549      * Above fields used for comparing
550      */
551 
552     /* size of target code for this block (1 <= size <= TARGET_PAGE_SIZE) */
553     uint16_t size;
554     uint16_t icount;
555 
556     struct tb_tc tc;
557 
558     /*
559      * Track tb_page_addr_t intervals that intersect this TB.
560      * For user-only, the virtual addresses are always contiguous,
561      * and we use a unified interval tree.  For system, we use a
562      * linked list headed in each PageDesc.  Within the list, the lsb
563      * of the previous pointer tells the index of page_next[], and the
564      * list is protected by the PageDesc lock(s).
565      */
566 #ifdef CONFIG_USER_ONLY
567     IntervalTreeNode itree;
568 #else
569     uintptr_t page_next[2];
570     tb_page_addr_t page_addr[2];
571 #endif
572 
573     /* jmp_lock placed here to fill a 4-byte hole. Its documentation is below */
574     QemuSpin jmp_lock;
575 
576     /* The following data are used to directly call another TB from
577      * the code of this one. This can be done either by emitting direct or
578      * indirect native jump instructions. These jumps are reset so that the TB
579      * just continues its execution. The TB can be linked to another one by
580      * setting one of the jump targets (or patching the jump instruction). Only
581      * two of such jumps are supported.
582      */
583 #define TB_JMP_OFFSET_INVALID 0xffff /* indicates no jump generated */
584     uint16_t jmp_reset_offset[2]; /* offset of original jump target */
585     uint16_t jmp_insn_offset[2];  /* offset of direct jump insn */
586     uintptr_t jmp_target_addr[2]; /* target address */
587 
588     /*
589      * Each TB has a NULL-terminated list (jmp_list_head) of incoming jumps.
590      * Each TB can have two outgoing jumps, and therefore can participate
591      * in two lists. The list entries are kept in jmp_list_next[2]. The least
592      * significant bit (LSB) of the pointers in these lists is used to encode
593      * which of the two list entries is to be used in the pointed TB.
594      *
595      * List traversals are protected by jmp_lock. The destination TB of each
596      * outgoing jump is kept in jmp_dest[] so that the appropriate jmp_lock
597      * can be acquired from any origin TB.
598      *
599      * jmp_dest[] are tagged pointers as well. The LSB is set when the TB is
600      * being invalidated, so that no further outgoing jumps from it can be set.
601      *
602      * jmp_lock also protects the CF_INVALID cflag; a jump must not be chained
603      * to a destination TB that has CF_INVALID set.
604      */
605     uintptr_t jmp_list_head;
606     uintptr_t jmp_list_next[2];
607     uintptr_t jmp_dest[2];
608 };
609 
610 /* Hide the qatomic_read to make code a little easier on the eyes */
611 static inline uint32_t tb_cflags(const TranslationBlock *tb)
612 {
613     return qatomic_read(&tb->cflags);
614 }
615 
616 static inline tb_page_addr_t tb_page_addr0(const TranslationBlock *tb)
617 {
618 #ifdef CONFIG_USER_ONLY
619     return tb->itree.start;
620 #else
621     return tb->page_addr[0];
622 #endif
623 }
624 
625 static inline tb_page_addr_t tb_page_addr1(const TranslationBlock *tb)
626 {
627 #ifdef CONFIG_USER_ONLY
628     tb_page_addr_t next = tb->itree.last & TARGET_PAGE_MASK;
629     return next == (tb->itree.start & TARGET_PAGE_MASK) ? -1 : next;
630 #else
631     return tb->page_addr[1];
632 #endif
633 }
634 
635 static inline void tb_set_page_addr0(TranslationBlock *tb,
636                                      tb_page_addr_t addr)
637 {
638 #ifdef CONFIG_USER_ONLY
639     tb->itree.start = addr;
640     /*
641      * To begin, we record an interval of one byte.  When the translation
642      * loop encounters a second page, the interval will be extended to
643      * include the first byte of the second page, which is sufficient to
644      * allow tb_page_addr1() above to work properly.  The final corrected
645      * interval will be set by tb_page_add() from tb->size before the
646      * node is added to the interval tree.
647      */
648     tb->itree.last = addr;
649 #else
650     tb->page_addr[0] = addr;
651 #endif
652 }
653 
654 static inline void tb_set_page_addr1(TranslationBlock *tb,
655                                      tb_page_addr_t addr)
656 {
657 #ifdef CONFIG_USER_ONLY
658     /* Extend the interval to the first byte of the second page.  See above. */
659     tb->itree.last = addr;
660 #else
661     tb->page_addr[1] = addr;
662 #endif
663 }
664 
665 /* current cflags for hashing/comparison */
666 uint32_t curr_cflags(CPUState *cpu);
667 
668 /* TranslationBlock invalidate API */
669 #if defined(CONFIG_USER_ONLY)
670 void tb_invalidate_phys_addr(target_ulong addr);
671 #else
672 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs);
673 #endif
674 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr);
675 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t last);
676 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr);
677 
678 /* GETPC is the true target of the return instruction that we'll execute.  */
679 #if defined(CONFIG_TCG_INTERPRETER)
680 extern __thread uintptr_t tci_tb_ptr;
681 # define GETPC() tci_tb_ptr
682 #else
683 # define GETPC() \
684     ((uintptr_t)__builtin_extract_return_addr(__builtin_return_address(0)))
685 #endif
686 
687 /* The true return address will often point to a host insn that is part of
688    the next translated guest insn.  Adjust the address backward to point to
689    the middle of the call insn.  Subtracting one would do the job except for
690    several compressed mode architectures (arm, mips) which set the low bit
691    to indicate the compressed mode; subtracting two works around that.  It
692    is also the case that there are no host isas that contain a call insn
693    smaller than 4 bytes, so we don't worry about special-casing this.  */
694 #define GETPC_ADJ   2
695 
696 #if !defined(CONFIG_USER_ONLY)
697 
698 /**
699  * iotlb_to_section:
700  * @cpu: CPU performing the access
701  * @index: TCG CPU IOTLB entry
702  *
703  * Given a TCG CPU IOTLB entry, return the MemoryRegionSection that
704  * it refers to. @index will have been initially created and returned
705  * by memory_region_section_get_iotlb().
706  */
707 struct MemoryRegionSection *iotlb_to_section(CPUState *cpu,
708                                              hwaddr index, MemTxAttrs attrs);
709 #endif
710 
711 /**
712  * get_page_addr_code_hostp()
713  * @env: CPUArchState
714  * @addr: guest virtual address of guest code
715  *
716  * See get_page_addr_code() (full-system version) for documentation on the
717  * return value.
718  *
719  * Sets *@hostp (when @hostp is non-NULL) as follows.
720  * If the return value is -1, sets *@hostp to NULL. Otherwise, sets *@hostp
721  * to the host address where @addr's content is kept.
722  *
723  * Note: this function can trigger an exception.
724  */
725 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr,
726                                         void **hostp);
727 
728 /**
729  * get_page_addr_code()
730  * @env: CPUArchState
731  * @addr: guest virtual address of guest code
732  *
733  * If we cannot translate and execute from the entire RAM page, or if
734  * the region is not backed by RAM, returns -1. Otherwise, returns the
735  * ram_addr_t corresponding to the guest code at @addr.
736  *
737  * Note: this function can trigger an exception.
738  */
739 static inline tb_page_addr_t get_page_addr_code(CPUArchState *env,
740                                                 target_ulong addr)
741 {
742     return get_page_addr_code_hostp(env, addr, NULL);
743 }
744 
745 #if defined(CONFIG_USER_ONLY)
746 void TSA_NO_TSA mmap_lock(void);
747 void TSA_NO_TSA mmap_unlock(void);
748 bool have_mmap_lock(void);
749 
750 /**
751  * adjust_signal_pc:
752  * @pc: raw pc from the host signal ucontext_t.
753  * @is_write: host memory operation was write, or read-modify-write.
754  *
755  * Alter @pc as required for unwinding.  Return the type of the
756  * guest memory access -- host reads may be for guest execution.
757  */
758 MMUAccessType adjust_signal_pc(uintptr_t *pc, bool is_write);
759 
760 /**
761  * handle_sigsegv_accerr_write:
762  * @cpu: the cpu context
763  * @old_set: the sigset_t from the signal ucontext_t
764  * @host_pc: the host pc, adjusted for the signal
765  * @host_addr: the host address of the fault
766  *
767  * Return true if the write fault has been handled, and should be re-tried.
768  */
769 bool handle_sigsegv_accerr_write(CPUState *cpu, sigset_t *old_set,
770                                  uintptr_t host_pc, abi_ptr guest_addr);
771 
772 /**
773  * cpu_loop_exit_sigsegv:
774  * @cpu: the cpu context
775  * @addr: the guest address of the fault
776  * @access_type: access was read/write/execute
777  * @maperr: true for invalid page, false for permission fault
778  * @ra: host pc for unwinding
779  *
780  * Use the TCGCPUOps hook to record cpu state, do guest operating system
781  * specific things to raise SIGSEGV, and jump to the main cpu loop.
782  */
783 G_NORETURN void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr,
784                                       MMUAccessType access_type,
785                                       bool maperr, uintptr_t ra);
786 
787 /**
788  * cpu_loop_exit_sigbus:
789  * @cpu: the cpu context
790  * @addr: the guest address of the alignment fault
791  * @access_type: access was read/write/execute
792  * @ra: host pc for unwinding
793  *
794  * Use the TCGCPUOps hook to record cpu state, do guest operating system
795  * specific things to raise SIGBUS, and jump to the main cpu loop.
796  */
797 G_NORETURN void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr,
798                                      MMUAccessType access_type,
799                                      uintptr_t ra);
800 
801 #else
802 static inline void mmap_lock(void) {}
803 static inline void mmap_unlock(void) {}
804 
805 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length);
806 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr);
807 
808 MemoryRegionSection *
809 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
810                                   hwaddr *xlat, hwaddr *plen,
811                                   MemTxAttrs attrs, int *prot);
812 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
813                                        MemoryRegionSection *section);
814 #endif
815 
816 #endif
817