xref: /openbmc/qemu/include/exec/exec-all.h (revision f3fa412de28ae3cb31d38811d30a77e4e20456cc)
1 /*
2  * internal execution defines for qemu
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef EXEC_ALL_H
21 #define EXEC_ALL_H
22 
23 #include "cpu.h"
24 #include "exec/tb-context.h"
25 #ifdef CONFIG_TCG
26 #include "exec/cpu_ldst.h"
27 #endif
28 #include "sysemu/cpu-timers.h"
29 
30 /* allow to see translation results - the slowdown should be negligible, so we leave it */
31 #define DEBUG_DISAS
32 
33 /* Page tracking code uses ram addresses in system mode, and virtual
34    addresses in userspace mode.  Define tb_page_addr_t to be an appropriate
35    type.  */
36 #if defined(CONFIG_USER_ONLY)
37 typedef abi_ulong tb_page_addr_t;
38 #define TB_PAGE_ADDR_FMT TARGET_ABI_FMT_lx
39 #else
40 typedef ram_addr_t tb_page_addr_t;
41 #define TB_PAGE_ADDR_FMT RAM_ADDR_FMT
42 #endif
43 
44 #include "qemu/log.h"
45 
46 void gen_intermediate_code(CPUState *cpu, TranslationBlock *tb, int max_insns);
47 void restore_state_to_opc(CPUArchState *env, TranslationBlock *tb,
48                           target_ulong *data);
49 
50 /**
51  * cpu_restore_state:
52  * @cpu: the vCPU state is to be restore to
53  * @searched_pc: the host PC the fault occurred at
54  * @will_exit: true if the TB executed will be interrupted after some
55                cpu adjustments. Required for maintaining the correct
56                icount valus
57  * @return: true if state was restored, false otherwise
58  *
59  * Attempt to restore the state for a fault occurring in translated
60  * code. If the searched_pc is not in translated code no state is
61  * restored and the function returns false.
62  */
63 bool cpu_restore_state(CPUState *cpu, uintptr_t searched_pc, bool will_exit);
64 
65 void QEMU_NORETURN cpu_loop_exit_noexc(CPUState *cpu);
66 void QEMU_NORETURN cpu_loop_exit(CPUState *cpu);
67 void QEMU_NORETURN cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc);
68 void QEMU_NORETURN cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc);
69 
70 /**
71  * cpu_loop_exit_requested:
72  * @cpu: The CPU state to be tested
73  *
74  * Indicate if somebody asked for a return of the CPU to the main loop
75  * (e.g., via cpu_exit() or cpu_interrupt()).
76  *
77  * This is helpful for architectures that support interruptible
78  * instructions. After writing back all state to registers/memory, this
79  * call can be used to check if it makes sense to return to the main loop
80  * or to continue executing the interruptible instruction.
81  */
82 static inline bool cpu_loop_exit_requested(CPUState *cpu)
83 {
84     return (int32_t)qatomic_read(&cpu_neg(cpu)->icount_decr.u32) < 0;
85 }
86 
87 #if !defined(CONFIG_USER_ONLY)
88 void cpu_reloading_memory_map(void);
89 /**
90  * cpu_address_space_init:
91  * @cpu: CPU to add this address space to
92  * @asidx: integer index of this address space
93  * @prefix: prefix to be used as name of address space
94  * @mr: the root memory region of address space
95  *
96  * Add the specified address space to the CPU's cpu_ases list.
97  * The address space added with @asidx 0 is the one used for the
98  * convenience pointer cpu->as.
99  * The target-specific code which registers ASes is responsible
100  * for defining what semantics address space 0, 1, 2, etc have.
101  *
102  * Before the first call to this function, the caller must set
103  * cpu->num_ases to the total number of address spaces it needs
104  * to support.
105  *
106  * Note that with KVM only one address space is supported.
107  */
108 void cpu_address_space_init(CPUState *cpu, int asidx,
109                             const char *prefix, MemoryRegion *mr);
110 #endif
111 
112 #if !defined(CONFIG_USER_ONLY) && defined(CONFIG_TCG)
113 /* cputlb.c */
114 /**
115  * tlb_init - initialize a CPU's TLB
116  * @cpu: CPU whose TLB should be initialized
117  */
118 void tlb_init(CPUState *cpu);
119 /**
120  * tlb_destroy - destroy a CPU's TLB
121  * @cpu: CPU whose TLB should be destroyed
122  */
123 void tlb_destroy(CPUState *cpu);
124 /**
125  * tlb_flush_page:
126  * @cpu: CPU whose TLB should be flushed
127  * @addr: virtual address of page to be flushed
128  *
129  * Flush one page from the TLB of the specified CPU, for all
130  * MMU indexes.
131  */
132 void tlb_flush_page(CPUState *cpu, target_ulong addr);
133 /**
134  * tlb_flush_page_all_cpus:
135  * @cpu: src CPU of the flush
136  * @addr: virtual address of page to be flushed
137  *
138  * Flush one page from the TLB of the specified CPU, for all
139  * MMU indexes.
140  */
141 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr);
142 /**
143  * tlb_flush_page_all_cpus_synced:
144  * @cpu: src CPU of the flush
145  * @addr: virtual address of page to be flushed
146  *
147  * Flush one page from the TLB of the specified CPU, for all MMU
148  * indexes like tlb_flush_page_all_cpus except the source vCPUs work
149  * is scheduled as safe work meaning all flushes will be complete once
150  * the source vCPUs safe work is complete. This will depend on when
151  * the guests translation ends the TB.
152  */
153 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr);
154 /**
155  * tlb_flush:
156  * @cpu: CPU whose TLB should be flushed
157  *
158  * Flush the entire TLB for the specified CPU. Most CPU architectures
159  * allow the implementation to drop entries from the TLB at any time
160  * so this is generally safe. If more selective flushing is required
161  * use one of the other functions for efficiency.
162  */
163 void tlb_flush(CPUState *cpu);
164 /**
165  * tlb_flush_all_cpus:
166  * @cpu: src CPU of the flush
167  */
168 void tlb_flush_all_cpus(CPUState *src_cpu);
169 /**
170  * tlb_flush_all_cpus_synced:
171  * @cpu: src CPU of the flush
172  *
173  * Like tlb_flush_all_cpus except this except the source vCPUs work is
174  * scheduled as safe work meaning all flushes will be complete once
175  * the source vCPUs safe work is complete. This will depend on when
176  * the guests translation ends the TB.
177  */
178 void tlb_flush_all_cpus_synced(CPUState *src_cpu);
179 /**
180  * tlb_flush_page_by_mmuidx:
181  * @cpu: CPU whose TLB should be flushed
182  * @addr: virtual address of page to be flushed
183  * @idxmap: bitmap of MMU indexes to flush
184  *
185  * Flush one page from the TLB of the specified CPU, for the specified
186  * MMU indexes.
187  */
188 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr,
189                               uint16_t idxmap);
190 /**
191  * tlb_flush_page_by_mmuidx_all_cpus:
192  * @cpu: Originating CPU of the flush
193  * @addr: virtual address of page to be flushed
194  * @idxmap: bitmap of MMU indexes to flush
195  *
196  * Flush one page from the TLB of all CPUs, for the specified
197  * MMU indexes.
198  */
199 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr,
200                                        uint16_t idxmap);
201 /**
202  * tlb_flush_page_by_mmuidx_all_cpus_synced:
203  * @cpu: Originating CPU of the flush
204  * @addr: virtual address of page to be flushed
205  * @idxmap: bitmap of MMU indexes to flush
206  *
207  * Flush one page from the TLB of all CPUs, for the specified MMU
208  * indexes like tlb_flush_page_by_mmuidx_all_cpus except the source
209  * vCPUs work is scheduled as safe work meaning all flushes will be
210  * complete once  the source vCPUs safe work is complete. This will
211  * depend on when the guests translation ends the TB.
212  */
213 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu, target_ulong addr,
214                                               uint16_t idxmap);
215 /**
216  * tlb_flush_by_mmuidx:
217  * @cpu: CPU whose TLB should be flushed
218  * @wait: If true ensure synchronisation by exiting the cpu_loop
219  * @idxmap: bitmap of MMU indexes to flush
220  *
221  * Flush all entries from the TLB of the specified CPU, for the specified
222  * MMU indexes.
223  */
224 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap);
225 /**
226  * tlb_flush_by_mmuidx_all_cpus:
227  * @cpu: Originating CPU of the flush
228  * @idxmap: bitmap of MMU indexes to flush
229  *
230  * Flush all entries from all TLBs of all CPUs, for the specified
231  * MMU indexes.
232  */
233 void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap);
234 /**
235  * tlb_flush_by_mmuidx_all_cpus_synced:
236  * @cpu: Originating CPU of the flush
237  * @idxmap: bitmap of MMU indexes to flush
238  *
239  * Flush all entries from all TLBs of all CPUs, for the specified
240  * MMU indexes like tlb_flush_by_mmuidx_all_cpus except except the source
241  * vCPUs work is scheduled as safe work meaning all flushes will be
242  * complete once  the source vCPUs safe work is complete. This will
243  * depend on when the guests translation ends the TB.
244  */
245 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu, uint16_t idxmap);
246 
247 /**
248  * tlb_flush_page_bits_by_mmuidx
249  * @cpu: CPU whose TLB should be flushed
250  * @addr: virtual address of page to be flushed
251  * @idxmap: bitmap of mmu indexes to flush
252  * @bits: number of significant bits in address
253  *
254  * Similar to tlb_flush_page_mask, but with a bitmap of indexes.
255  */
256 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, target_ulong addr,
257                                    uint16_t idxmap, unsigned bits);
258 
259 /* Similarly, with broadcast and syncing. */
260 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr,
261                                             uint16_t idxmap, unsigned bits);
262 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced
263     (CPUState *cpu, target_ulong addr, uint16_t idxmap, unsigned bits);
264 
265 /**
266  * tlb_flush_range_by_mmuidx
267  * @cpu: CPU whose TLB should be flushed
268  * @addr: virtual address of the start of the range to be flushed
269  * @len: length of range to be flushed
270  * @idxmap: bitmap of mmu indexes to flush
271  * @bits: number of significant bits in address
272  *
273  * For each mmuidx in @idxmap, flush all pages within [@addr,@addr+@len),
274  * comparing only the low @bits worth of each virtual page.
275  */
276 void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr,
277                                target_ulong len, uint16_t idxmap,
278                                unsigned bits);
279 
280 /* Similarly, with broadcast and syncing. */
281 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr,
282                                         target_ulong len, uint16_t idxmap,
283                                         unsigned bits);
284 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *cpu,
285                                                target_ulong addr,
286                                                target_ulong len,
287                                                uint16_t idxmap,
288                                                unsigned bits);
289 
290 /**
291  * tlb_set_page_with_attrs:
292  * @cpu: CPU to add this TLB entry for
293  * @vaddr: virtual address of page to add entry for
294  * @paddr: physical address of the page
295  * @attrs: memory transaction attributes
296  * @prot: access permissions (PAGE_READ/PAGE_WRITE/PAGE_EXEC bits)
297  * @mmu_idx: MMU index to insert TLB entry for
298  * @size: size of the page in bytes
299  *
300  * Add an entry to this CPU's TLB (a mapping from virtual address
301  * @vaddr to physical address @paddr) with the specified memory
302  * transaction attributes. This is generally called by the target CPU
303  * specific code after it has been called through the tlb_fill()
304  * entry point and performed a successful page table walk to find
305  * the physical address and attributes for the virtual address
306  * which provoked the TLB miss.
307  *
308  * At most one entry for a given virtual address is permitted. Only a
309  * single TARGET_PAGE_SIZE region is mapped; the supplied @size is only
310  * used by tlb_flush_page.
311  */
312 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
313                              hwaddr paddr, MemTxAttrs attrs,
314                              int prot, int mmu_idx, target_ulong size);
315 /* tlb_set_page:
316  *
317  * This function is equivalent to calling tlb_set_page_with_attrs()
318  * with an @attrs argument of MEMTXATTRS_UNSPECIFIED. It's provided
319  * as a convenience for CPUs which don't use memory transaction attributes.
320  */
321 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
322                   hwaddr paddr, int prot,
323                   int mmu_idx, target_ulong size);
324 #else
325 static inline void tlb_init(CPUState *cpu)
326 {
327 }
328 static inline void tlb_destroy(CPUState *cpu)
329 {
330 }
331 static inline void tlb_flush_page(CPUState *cpu, target_ulong addr)
332 {
333 }
334 static inline void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
335 {
336 }
337 static inline void tlb_flush_page_all_cpus_synced(CPUState *src,
338                                                   target_ulong addr)
339 {
340 }
341 static inline void tlb_flush(CPUState *cpu)
342 {
343 }
344 static inline void tlb_flush_all_cpus(CPUState *src_cpu)
345 {
346 }
347 static inline void tlb_flush_all_cpus_synced(CPUState *src_cpu)
348 {
349 }
350 static inline void tlb_flush_page_by_mmuidx(CPUState *cpu,
351                                             target_ulong addr, uint16_t idxmap)
352 {
353 }
354 
355 static inline void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
356 {
357 }
358 static inline void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu,
359                                                      target_ulong addr,
360                                                      uint16_t idxmap)
361 {
362 }
363 static inline void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu,
364                                                             target_ulong addr,
365                                                             uint16_t idxmap)
366 {
367 }
368 static inline void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap)
369 {
370 }
371 
372 static inline void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu,
373                                                        uint16_t idxmap)
374 {
375 }
376 static inline void tlb_flush_page_bits_by_mmuidx(CPUState *cpu,
377                                                  target_ulong addr,
378                                                  uint16_t idxmap,
379                                                  unsigned bits)
380 {
381 }
382 static inline void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *cpu,
383                                                           target_ulong addr,
384                                                           uint16_t idxmap,
385                                                           unsigned bits)
386 {
387 }
388 static inline void
389 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *cpu, target_ulong addr,
390                                               uint16_t idxmap, unsigned bits)
391 {
392 }
393 static inline void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr,
394                                              target_ulong len, uint16_t idxmap,
395                                              unsigned bits)
396 {
397 }
398 static inline void tlb_flush_range_by_mmuidx_all_cpus(CPUState *cpu,
399                                                       target_ulong addr,
400                                                       target_ulong len,
401                                                       uint16_t idxmap,
402                                                       unsigned bits)
403 {
404 }
405 static inline void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *cpu,
406                                                              target_ulong addr,
407                                                              target_long len,
408                                                              uint16_t idxmap,
409                                                              unsigned bits)
410 {
411 }
412 #endif
413 /**
414  * probe_access:
415  * @env: CPUArchState
416  * @addr: guest virtual address to look up
417  * @size: size of the access
418  * @access_type: read, write or execute permission
419  * @mmu_idx: MMU index to use for lookup
420  * @retaddr: return address for unwinding
421  *
422  * Look up the guest virtual address @addr.  Raise an exception if the
423  * page does not satisfy @access_type.  Raise an exception if the
424  * access (@addr, @size) hits a watchpoint.  For writes, mark a clean
425  * page as dirty.
426  *
427  * Finally, return the host address for a page that is backed by RAM,
428  * or NULL if the page requires I/O.
429  */
430 void *probe_access(CPUArchState *env, target_ulong addr, int size,
431                    MMUAccessType access_type, int mmu_idx, uintptr_t retaddr);
432 
433 static inline void *probe_write(CPUArchState *env, target_ulong addr, int size,
434                                 int mmu_idx, uintptr_t retaddr)
435 {
436     return probe_access(env, addr, size, MMU_DATA_STORE, mmu_idx, retaddr);
437 }
438 
439 static inline void *probe_read(CPUArchState *env, target_ulong addr, int size,
440                                int mmu_idx, uintptr_t retaddr)
441 {
442     return probe_access(env, addr, size, MMU_DATA_LOAD, mmu_idx, retaddr);
443 }
444 
445 /**
446  * probe_access_flags:
447  * @env: CPUArchState
448  * @addr: guest virtual address to look up
449  * @access_type: read, write or execute permission
450  * @mmu_idx: MMU index to use for lookup
451  * @nonfault: suppress the fault
452  * @phost: return value for host address
453  * @retaddr: return address for unwinding
454  *
455  * Similar to probe_access, loosely returning the TLB_FLAGS_MASK for
456  * the page, and storing the host address for RAM in @phost.
457  *
458  * If @nonfault is set, do not raise an exception but return TLB_INVALID_MASK.
459  * Do not handle watchpoints, but include TLB_WATCHPOINT in the returned flags.
460  * Do handle clean pages, so exclude TLB_NOTDIRY from the returned flags.
461  * For simplicity, all "mmio-like" flags are folded to TLB_MMIO.
462  */
463 int probe_access_flags(CPUArchState *env, target_ulong addr,
464                        MMUAccessType access_type, int mmu_idx,
465                        bool nonfault, void **phost, uintptr_t retaddr);
466 
467 #define CODE_GEN_ALIGN           16 /* must be >= of the size of a icache line */
468 
469 /* Estimated block size for TB allocation.  */
470 /* ??? The following is based on a 2015 survey of x86_64 host output.
471    Better would seem to be some sort of dynamically sized TB array,
472    adapting to the block sizes actually being produced.  */
473 #if defined(CONFIG_SOFTMMU)
474 #define CODE_GEN_AVG_BLOCK_SIZE 400
475 #else
476 #define CODE_GEN_AVG_BLOCK_SIZE 150
477 #endif
478 
479 /*
480  * Translation Cache-related fields of a TB.
481  * This struct exists just for convenience; we keep track of TB's in a binary
482  * search tree, and the only fields needed to compare TB's in the tree are
483  * @ptr and @size.
484  * Note: the address of search data can be obtained by adding @size to @ptr.
485  */
486 struct tb_tc {
487     const void *ptr;    /* pointer to the translated code */
488     size_t size;
489 };
490 
491 struct TranslationBlock {
492     target_ulong pc;   /* simulated PC corresponding to this block (EIP + CS base) */
493     target_ulong cs_base; /* CS base for this block */
494     uint32_t flags; /* flags defining in which context the code was generated */
495     uint32_t cflags;    /* compile flags */
496 #define CF_COUNT_MASK  0x00007fff
497 #define CF_LAST_IO     0x00008000 /* Last insn may be an IO access.  */
498 #define CF_MEMI_ONLY   0x00010000 /* Only instrument memory ops */
499 #define CF_USE_ICOUNT  0x00020000
500 #define CF_INVALID     0x00040000 /* TB is stale. Set with @jmp_lock held */
501 #define CF_PARALLEL    0x00080000 /* Generate code for a parallel context */
502 #define CF_CLUSTER_MASK 0xff000000 /* Top 8 bits are cluster ID */
503 #define CF_CLUSTER_SHIFT 24
504 
505     /* Per-vCPU dynamic tracing state used to generate this TB */
506     uint32_t trace_vcpu_dstate;
507 
508     /*
509      * Above fields used for comparing
510      */
511 
512     /* size of target code for this block (1 <= size <= TARGET_PAGE_SIZE) */
513     uint16_t size;
514     uint16_t icount;
515 
516     struct tb_tc tc;
517 
518     /* first and second physical page containing code. The lower bit
519        of the pointer tells the index in page_next[].
520        The list is protected by the TB's page('s) lock(s) */
521     uintptr_t page_next[2];
522     tb_page_addr_t page_addr[2];
523 
524     /* jmp_lock placed here to fill a 4-byte hole. Its documentation is below */
525     QemuSpin jmp_lock;
526 
527     /* The following data are used to directly call another TB from
528      * the code of this one. This can be done either by emitting direct or
529      * indirect native jump instructions. These jumps are reset so that the TB
530      * just continues its execution. The TB can be linked to another one by
531      * setting one of the jump targets (or patching the jump instruction). Only
532      * two of such jumps are supported.
533      */
534     uint16_t jmp_reset_offset[2]; /* offset of original jump target */
535 #define TB_JMP_RESET_OFFSET_INVALID 0xffff /* indicates no jump generated */
536     uintptr_t jmp_target_arg[2];  /* target address or offset */
537 
538     /*
539      * Each TB has a NULL-terminated list (jmp_list_head) of incoming jumps.
540      * Each TB can have two outgoing jumps, and therefore can participate
541      * in two lists. The list entries are kept in jmp_list_next[2]. The least
542      * significant bit (LSB) of the pointers in these lists is used to encode
543      * which of the two list entries is to be used in the pointed TB.
544      *
545      * List traversals are protected by jmp_lock. The destination TB of each
546      * outgoing jump is kept in jmp_dest[] so that the appropriate jmp_lock
547      * can be acquired from any origin TB.
548      *
549      * jmp_dest[] are tagged pointers as well. The LSB is set when the TB is
550      * being invalidated, so that no further outgoing jumps from it can be set.
551      *
552      * jmp_lock also protects the CF_INVALID cflag; a jump must not be chained
553      * to a destination TB that has CF_INVALID set.
554      */
555     uintptr_t jmp_list_head;
556     uintptr_t jmp_list_next[2];
557     uintptr_t jmp_dest[2];
558 };
559 
560 /* Hide the qatomic_read to make code a little easier on the eyes */
561 static inline uint32_t tb_cflags(const TranslationBlock *tb)
562 {
563     return qatomic_read(&tb->cflags);
564 }
565 
566 /* current cflags for hashing/comparison */
567 static inline uint32_t curr_cflags(CPUState *cpu)
568 {
569     return cpu->tcg_cflags;
570 }
571 
572 /* TranslationBlock invalidate API */
573 #if defined(CONFIG_USER_ONLY)
574 void tb_invalidate_phys_addr(target_ulong addr);
575 void tb_invalidate_phys_range(target_ulong start, target_ulong end);
576 #else
577 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs);
578 #endif
579 void tb_flush(CPUState *cpu);
580 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr);
581 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
582                                    target_ulong cs_base, uint32_t flags,
583                                    uint32_t cflags);
584 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr);
585 
586 /* GETPC is the true target of the return instruction that we'll execute.  */
587 #if defined(CONFIG_TCG_INTERPRETER)
588 extern __thread uintptr_t tci_tb_ptr;
589 # define GETPC() tci_tb_ptr
590 #else
591 # define GETPC() \
592     ((uintptr_t)__builtin_extract_return_addr(__builtin_return_address(0)))
593 #endif
594 
595 /* The true return address will often point to a host insn that is part of
596    the next translated guest insn.  Adjust the address backward to point to
597    the middle of the call insn.  Subtracting one would do the job except for
598    several compressed mode architectures (arm, mips) which set the low bit
599    to indicate the compressed mode; subtracting two works around that.  It
600    is also the case that there are no host isas that contain a call insn
601    smaller than 4 bytes, so we don't worry about special-casing this.  */
602 #define GETPC_ADJ   2
603 
604 #if !defined(CONFIG_USER_ONLY) && defined(CONFIG_DEBUG_TCG)
605 void assert_no_pages_locked(void);
606 #else
607 static inline void assert_no_pages_locked(void)
608 {
609 }
610 #endif
611 
612 #if !defined(CONFIG_USER_ONLY)
613 
614 /**
615  * iotlb_to_section:
616  * @cpu: CPU performing the access
617  * @index: TCG CPU IOTLB entry
618  *
619  * Given a TCG CPU IOTLB entry, return the MemoryRegionSection that
620  * it refers to. @index will have been initially created and returned
621  * by memory_region_section_get_iotlb().
622  */
623 struct MemoryRegionSection *iotlb_to_section(CPUState *cpu,
624                                              hwaddr index, MemTxAttrs attrs);
625 #endif
626 
627 #if defined(CONFIG_USER_ONLY)
628 void mmap_lock(void);
629 void mmap_unlock(void);
630 bool have_mmap_lock(void);
631 
632 /**
633  * get_page_addr_code() - user-mode version
634  * @env: CPUArchState
635  * @addr: guest virtual address of guest code
636  *
637  * Returns @addr.
638  */
639 static inline tb_page_addr_t get_page_addr_code(CPUArchState *env,
640                                                 target_ulong addr)
641 {
642     return addr;
643 }
644 
645 /**
646  * get_page_addr_code_hostp() - user-mode version
647  * @env: CPUArchState
648  * @addr: guest virtual address of guest code
649  *
650  * Returns @addr.
651  *
652  * If @hostp is non-NULL, sets *@hostp to the host address where @addr's content
653  * is kept.
654  */
655 static inline tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env,
656                                                       target_ulong addr,
657                                                       void **hostp)
658 {
659     if (hostp) {
660         *hostp = g2h_untagged(addr);
661     }
662     return addr;
663 }
664 #else
665 static inline void mmap_lock(void) {}
666 static inline void mmap_unlock(void) {}
667 
668 /**
669  * get_page_addr_code() - full-system version
670  * @env: CPUArchState
671  * @addr: guest virtual address of guest code
672  *
673  * If we cannot translate and execute from the entire RAM page, or if
674  * the region is not backed by RAM, returns -1. Otherwise, returns the
675  * ram_addr_t corresponding to the guest code at @addr.
676  *
677  * Note: this function can trigger an exception.
678  */
679 tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr);
680 
681 /**
682  * get_page_addr_code_hostp() - full-system version
683  * @env: CPUArchState
684  * @addr: guest virtual address of guest code
685  *
686  * See get_page_addr_code() (full-system version) for documentation on the
687  * return value.
688  *
689  * Sets *@hostp (when @hostp is non-NULL) as follows.
690  * If the return value is -1, sets *@hostp to NULL. Otherwise, sets *@hostp
691  * to the host address where @addr's content is kept.
692  *
693  * Note: this function can trigger an exception.
694  */
695 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr,
696                                         void **hostp);
697 
698 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length);
699 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr);
700 
701 MemoryRegionSection *
702 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
703                                   hwaddr *xlat, hwaddr *plen,
704                                   MemTxAttrs attrs, int *prot);
705 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
706                                        MemoryRegionSection *section);
707 #endif
708 
709 #endif
710