1 /* 2 * Software MMU support 3 * 4 * This library is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU Lesser General Public 6 * License as published by the Free Software Foundation; either 7 * version 2.1 of the License, or (at your option) any later version. 8 * 9 * This library is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * Lesser General Public License for more details. 13 * 14 * You should have received a copy of the GNU Lesser General Public 15 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 16 * 17 */ 18 19 /* 20 * Generate inline load/store functions for all MMU modes (typically 21 * at least _user and _kernel) as well as _data versions, for all data 22 * sizes. 23 * 24 * Used by target op helpers. 25 * 26 * The syntax for the accessors is: 27 * 28 * load: cpu_ld{sign}{size}{end}_{mmusuffix}(env, ptr) 29 * cpu_ld{sign}{size}{end}_{mmusuffix}_ra(env, ptr, retaddr) 30 * cpu_ld{sign}{size}{end}_mmuidx_ra(env, ptr, mmu_idx, retaddr) 31 * cpu_ld{sign}{size}{end}_mmu(env, ptr, oi, retaddr) 32 * 33 * store: cpu_st{size}{end}_{mmusuffix}(env, ptr, val) 34 * cpu_st{size}{end}_{mmusuffix}_ra(env, ptr, val, retaddr) 35 * cpu_st{size}{end}_mmuidx_ra(env, ptr, val, mmu_idx, retaddr) 36 * cpu_st{size}{end}_mmu(env, ptr, val, oi, retaddr) 37 * 38 * sign is: 39 * (empty): for 32 and 64 bit sizes 40 * u : unsigned 41 * s : signed 42 * 43 * size is: 44 * b: 8 bits 45 * w: 16 bits 46 * l: 32 bits 47 * q: 64 bits 48 * 49 * end is: 50 * (empty): for target native endian, or for 8 bit access 51 * _be: for forced big endian 52 * _le: for forced little endian 53 * 54 * mmusuffix is one of the generic suffixes "data" or "code", or "mmuidx". 55 * The "mmuidx" suffix carries an extra mmu_idx argument that specifies 56 * the index to use; the "data" and "code" suffixes take the index from 57 * cpu_mmu_index(). 58 * 59 * The "mmu" suffix carries the full MemOpIdx, with both mmu_idx and the 60 * MemOp including alignment requirements. The alignment will be enforced. 61 */ 62 #ifndef CPU_LDST_H 63 #define CPU_LDST_H 64 65 #include "exec/memopidx.h" 66 #include "qemu/int128.h" 67 #include "cpu.h" 68 69 #if defined(CONFIG_USER_ONLY) 70 /* sparc32plus has 64bit long but 32bit space address 71 * this can make bad result with g2h() and h2g() 72 */ 73 #if TARGET_VIRT_ADDR_SPACE_BITS <= 32 74 typedef uint32_t abi_ptr; 75 #define TARGET_ABI_FMT_ptr "%x" 76 #else 77 typedef uint64_t abi_ptr; 78 #define TARGET_ABI_FMT_ptr "%"PRIx64 79 #endif 80 81 #ifndef TARGET_TAGGED_ADDRESSES 82 static inline abi_ptr cpu_untagged_addr(CPUState *cs, abi_ptr x) 83 { 84 return x; 85 } 86 #endif 87 88 /* All direct uses of g2h and h2g need to go away for usermode softmmu. */ 89 static inline void *g2h_untagged(abi_ptr x) 90 { 91 return (void *)((uintptr_t)(x) + guest_base); 92 } 93 94 static inline void *g2h(CPUState *cs, abi_ptr x) 95 { 96 return g2h_untagged(cpu_untagged_addr(cs, x)); 97 } 98 99 static inline bool guest_addr_valid_untagged(abi_ulong x) 100 { 101 return x <= GUEST_ADDR_MAX; 102 } 103 104 static inline bool guest_range_valid_untagged(abi_ulong start, abi_ulong len) 105 { 106 return len - 1 <= GUEST_ADDR_MAX && start <= GUEST_ADDR_MAX - len + 1; 107 } 108 109 #define h2g_valid(x) \ 110 (HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS || \ 111 (uintptr_t)(x) - guest_base <= GUEST_ADDR_MAX) 112 113 #define h2g_nocheck(x) ({ \ 114 uintptr_t __ret = (uintptr_t)(x) - guest_base; \ 115 (abi_ptr)__ret; \ 116 }) 117 118 #define h2g(x) ({ \ 119 /* Check if given address fits target address space */ \ 120 assert(h2g_valid(x)); \ 121 h2g_nocheck(x); \ 122 }) 123 #else 124 typedef target_ulong abi_ptr; 125 #define TARGET_ABI_FMT_ptr TARGET_FMT_lx 126 #endif 127 128 uint32_t cpu_ldub_data(CPUArchState *env, abi_ptr ptr); 129 int cpu_ldsb_data(CPUArchState *env, abi_ptr ptr); 130 uint32_t cpu_lduw_be_data(CPUArchState *env, abi_ptr ptr); 131 int cpu_ldsw_be_data(CPUArchState *env, abi_ptr ptr); 132 uint32_t cpu_ldl_be_data(CPUArchState *env, abi_ptr ptr); 133 uint64_t cpu_ldq_be_data(CPUArchState *env, abi_ptr ptr); 134 uint32_t cpu_lduw_le_data(CPUArchState *env, abi_ptr ptr); 135 int cpu_ldsw_le_data(CPUArchState *env, abi_ptr ptr); 136 uint32_t cpu_ldl_le_data(CPUArchState *env, abi_ptr ptr); 137 uint64_t cpu_ldq_le_data(CPUArchState *env, abi_ptr ptr); 138 139 uint32_t cpu_ldub_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra); 140 int cpu_ldsb_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra); 141 uint32_t cpu_lduw_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra); 142 int cpu_ldsw_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra); 143 uint32_t cpu_ldl_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra); 144 uint64_t cpu_ldq_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra); 145 uint32_t cpu_lduw_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra); 146 int cpu_ldsw_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra); 147 uint32_t cpu_ldl_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra); 148 uint64_t cpu_ldq_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra); 149 150 void cpu_stb_data(CPUArchState *env, abi_ptr ptr, uint32_t val); 151 void cpu_stw_be_data(CPUArchState *env, abi_ptr ptr, uint32_t val); 152 void cpu_stl_be_data(CPUArchState *env, abi_ptr ptr, uint32_t val); 153 void cpu_stq_be_data(CPUArchState *env, abi_ptr ptr, uint64_t val); 154 void cpu_stw_le_data(CPUArchState *env, abi_ptr ptr, uint32_t val); 155 void cpu_stl_le_data(CPUArchState *env, abi_ptr ptr, uint32_t val); 156 void cpu_stq_le_data(CPUArchState *env, abi_ptr ptr, uint64_t val); 157 158 void cpu_stb_data_ra(CPUArchState *env, abi_ptr ptr, 159 uint32_t val, uintptr_t ra); 160 void cpu_stw_be_data_ra(CPUArchState *env, abi_ptr ptr, 161 uint32_t val, uintptr_t ra); 162 void cpu_stl_be_data_ra(CPUArchState *env, abi_ptr ptr, 163 uint32_t val, uintptr_t ra); 164 void cpu_stq_be_data_ra(CPUArchState *env, abi_ptr ptr, 165 uint64_t val, uintptr_t ra); 166 void cpu_stw_le_data_ra(CPUArchState *env, abi_ptr ptr, 167 uint32_t val, uintptr_t ra); 168 void cpu_stl_le_data_ra(CPUArchState *env, abi_ptr ptr, 169 uint32_t val, uintptr_t ra); 170 void cpu_stq_le_data_ra(CPUArchState *env, abi_ptr ptr, 171 uint64_t val, uintptr_t ra); 172 173 uint32_t cpu_ldub_mmuidx_ra(CPUArchState *env, abi_ptr ptr, 174 int mmu_idx, uintptr_t ra); 175 int cpu_ldsb_mmuidx_ra(CPUArchState *env, abi_ptr ptr, 176 int mmu_idx, uintptr_t ra); 177 uint32_t cpu_lduw_be_mmuidx_ra(CPUArchState *env, abi_ptr ptr, 178 int mmu_idx, uintptr_t ra); 179 int cpu_ldsw_be_mmuidx_ra(CPUArchState *env, abi_ptr ptr, 180 int mmu_idx, uintptr_t ra); 181 uint32_t cpu_ldl_be_mmuidx_ra(CPUArchState *env, abi_ptr ptr, 182 int mmu_idx, uintptr_t ra); 183 uint64_t cpu_ldq_be_mmuidx_ra(CPUArchState *env, abi_ptr ptr, 184 int mmu_idx, uintptr_t ra); 185 uint32_t cpu_lduw_le_mmuidx_ra(CPUArchState *env, abi_ptr ptr, 186 int mmu_idx, uintptr_t ra); 187 int cpu_ldsw_le_mmuidx_ra(CPUArchState *env, abi_ptr ptr, 188 int mmu_idx, uintptr_t ra); 189 uint32_t cpu_ldl_le_mmuidx_ra(CPUArchState *env, abi_ptr ptr, 190 int mmu_idx, uintptr_t ra); 191 uint64_t cpu_ldq_le_mmuidx_ra(CPUArchState *env, abi_ptr ptr, 192 int mmu_idx, uintptr_t ra); 193 194 void cpu_stb_mmuidx_ra(CPUArchState *env, abi_ptr ptr, uint32_t val, 195 int mmu_idx, uintptr_t ra); 196 void cpu_stw_be_mmuidx_ra(CPUArchState *env, abi_ptr ptr, uint32_t val, 197 int mmu_idx, uintptr_t ra); 198 void cpu_stl_be_mmuidx_ra(CPUArchState *env, abi_ptr ptr, uint32_t val, 199 int mmu_idx, uintptr_t ra); 200 void cpu_stq_be_mmuidx_ra(CPUArchState *env, abi_ptr ptr, uint64_t val, 201 int mmu_idx, uintptr_t ra); 202 void cpu_stw_le_mmuidx_ra(CPUArchState *env, abi_ptr ptr, uint32_t val, 203 int mmu_idx, uintptr_t ra); 204 void cpu_stl_le_mmuidx_ra(CPUArchState *env, abi_ptr ptr, uint32_t val, 205 int mmu_idx, uintptr_t ra); 206 void cpu_stq_le_mmuidx_ra(CPUArchState *env, abi_ptr ptr, uint64_t val, 207 int mmu_idx, uintptr_t ra); 208 209 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr ptr, MemOpIdx oi, uintptr_t ra); 210 uint16_t cpu_ldw_mmu(CPUArchState *env, abi_ptr ptr, MemOpIdx oi, uintptr_t ra); 211 uint32_t cpu_ldl_mmu(CPUArchState *env, abi_ptr ptr, MemOpIdx oi, uintptr_t ra); 212 uint64_t cpu_ldq_mmu(CPUArchState *env, abi_ptr ptr, MemOpIdx oi, uintptr_t ra); 213 Int128 cpu_ld16_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra); 214 215 void cpu_stb_mmu(CPUArchState *env, abi_ptr ptr, uint8_t val, 216 MemOpIdx oi, uintptr_t ra); 217 void cpu_stw_mmu(CPUArchState *env, abi_ptr ptr, uint16_t val, 218 MemOpIdx oi, uintptr_t ra); 219 void cpu_stl_mmu(CPUArchState *env, abi_ptr ptr, uint32_t val, 220 MemOpIdx oi, uintptr_t ra); 221 void cpu_stq_mmu(CPUArchState *env, abi_ptr ptr, uint64_t val, 222 MemOpIdx oi, uintptr_t ra); 223 void cpu_st16_mmu(CPUArchState *env, abi_ptr addr, Int128 val, 224 MemOpIdx oi, uintptr_t ra); 225 226 uint32_t cpu_atomic_cmpxchgb_mmu(CPUArchState *env, target_ulong addr, 227 uint32_t cmpv, uint32_t newv, 228 MemOpIdx oi, uintptr_t retaddr); 229 uint32_t cpu_atomic_cmpxchgw_le_mmu(CPUArchState *env, target_ulong addr, 230 uint32_t cmpv, uint32_t newv, 231 MemOpIdx oi, uintptr_t retaddr); 232 uint32_t cpu_atomic_cmpxchgl_le_mmu(CPUArchState *env, target_ulong addr, 233 uint32_t cmpv, uint32_t newv, 234 MemOpIdx oi, uintptr_t retaddr); 235 uint64_t cpu_atomic_cmpxchgq_le_mmu(CPUArchState *env, target_ulong addr, 236 uint64_t cmpv, uint64_t newv, 237 MemOpIdx oi, uintptr_t retaddr); 238 uint32_t cpu_atomic_cmpxchgw_be_mmu(CPUArchState *env, target_ulong addr, 239 uint32_t cmpv, uint32_t newv, 240 MemOpIdx oi, uintptr_t retaddr); 241 uint32_t cpu_atomic_cmpxchgl_be_mmu(CPUArchState *env, target_ulong addr, 242 uint32_t cmpv, uint32_t newv, 243 MemOpIdx oi, uintptr_t retaddr); 244 uint64_t cpu_atomic_cmpxchgq_be_mmu(CPUArchState *env, target_ulong addr, 245 uint64_t cmpv, uint64_t newv, 246 MemOpIdx oi, uintptr_t retaddr); 247 248 #define GEN_ATOMIC_HELPER(NAME, TYPE, SUFFIX) \ 249 TYPE cpu_atomic_ ## NAME ## SUFFIX ## _mmu \ 250 (CPUArchState *env, target_ulong addr, TYPE val, \ 251 MemOpIdx oi, uintptr_t retaddr); 252 253 #ifdef CONFIG_ATOMIC64 254 #define GEN_ATOMIC_HELPER_ALL(NAME) \ 255 GEN_ATOMIC_HELPER(NAME, uint32_t, b) \ 256 GEN_ATOMIC_HELPER(NAME, uint32_t, w_le) \ 257 GEN_ATOMIC_HELPER(NAME, uint32_t, w_be) \ 258 GEN_ATOMIC_HELPER(NAME, uint32_t, l_le) \ 259 GEN_ATOMIC_HELPER(NAME, uint32_t, l_be) \ 260 GEN_ATOMIC_HELPER(NAME, uint64_t, q_le) \ 261 GEN_ATOMIC_HELPER(NAME, uint64_t, q_be) 262 #else 263 #define GEN_ATOMIC_HELPER_ALL(NAME) \ 264 GEN_ATOMIC_HELPER(NAME, uint32_t, b) \ 265 GEN_ATOMIC_HELPER(NAME, uint32_t, w_le) \ 266 GEN_ATOMIC_HELPER(NAME, uint32_t, w_be) \ 267 GEN_ATOMIC_HELPER(NAME, uint32_t, l_le) \ 268 GEN_ATOMIC_HELPER(NAME, uint32_t, l_be) 269 #endif 270 271 GEN_ATOMIC_HELPER_ALL(fetch_add) 272 GEN_ATOMIC_HELPER_ALL(fetch_sub) 273 GEN_ATOMIC_HELPER_ALL(fetch_and) 274 GEN_ATOMIC_HELPER_ALL(fetch_or) 275 GEN_ATOMIC_HELPER_ALL(fetch_xor) 276 GEN_ATOMIC_HELPER_ALL(fetch_smin) 277 GEN_ATOMIC_HELPER_ALL(fetch_umin) 278 GEN_ATOMIC_HELPER_ALL(fetch_smax) 279 GEN_ATOMIC_HELPER_ALL(fetch_umax) 280 281 GEN_ATOMIC_HELPER_ALL(add_fetch) 282 GEN_ATOMIC_HELPER_ALL(sub_fetch) 283 GEN_ATOMIC_HELPER_ALL(and_fetch) 284 GEN_ATOMIC_HELPER_ALL(or_fetch) 285 GEN_ATOMIC_HELPER_ALL(xor_fetch) 286 GEN_ATOMIC_HELPER_ALL(smin_fetch) 287 GEN_ATOMIC_HELPER_ALL(umin_fetch) 288 GEN_ATOMIC_HELPER_ALL(smax_fetch) 289 GEN_ATOMIC_HELPER_ALL(umax_fetch) 290 291 GEN_ATOMIC_HELPER_ALL(xchg) 292 293 #undef GEN_ATOMIC_HELPER_ALL 294 #undef GEN_ATOMIC_HELPER 295 296 Int128 cpu_atomic_cmpxchgo_le_mmu(CPUArchState *env, target_ulong addr, 297 Int128 cmpv, Int128 newv, 298 MemOpIdx oi, uintptr_t retaddr); 299 Int128 cpu_atomic_cmpxchgo_be_mmu(CPUArchState *env, target_ulong addr, 300 Int128 cmpv, Int128 newv, 301 MemOpIdx oi, uintptr_t retaddr); 302 303 #if defined(CONFIG_USER_ONLY) 304 305 extern __thread uintptr_t helper_retaddr; 306 307 static inline void set_helper_retaddr(uintptr_t ra) 308 { 309 helper_retaddr = ra; 310 /* 311 * Ensure that this write is visible to the SIGSEGV handler that 312 * may be invoked due to a subsequent invalid memory operation. 313 */ 314 signal_barrier(); 315 } 316 317 static inline void clear_helper_retaddr(void) 318 { 319 /* 320 * Ensure that previous memory operations have succeeded before 321 * removing the data visible to the signal handler. 322 */ 323 signal_barrier(); 324 helper_retaddr = 0; 325 } 326 327 #else 328 329 /* Needed for TCG_OVERSIZED_GUEST */ 330 #include "tcg/tcg.h" 331 332 static inline target_ulong tlb_read_idx(const CPUTLBEntry *entry, 333 MMUAccessType access_type) 334 { 335 /* Do not rearrange the CPUTLBEntry structure members. */ 336 QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_read) != 337 MMU_DATA_LOAD * sizeof(uint64_t)); 338 QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_write) != 339 MMU_DATA_STORE * sizeof(uint64_t)); 340 QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_code) != 341 MMU_INST_FETCH * sizeof(uint64_t)); 342 343 #if TARGET_LONG_BITS == 32 344 /* Use qatomic_read, in case of addr_write; only care about low bits. */ 345 const uint32_t *ptr = (uint32_t *)&entry->addr_idx[access_type]; 346 ptr += HOST_BIG_ENDIAN; 347 return qatomic_read(ptr); 348 #else 349 const uint64_t *ptr = &entry->addr_idx[access_type]; 350 # if TCG_OVERSIZED_GUEST 351 return *ptr; 352 # else 353 /* ofs might correspond to .addr_write, so use qatomic_read */ 354 return qatomic_read(ptr); 355 # endif 356 #endif 357 } 358 359 static inline target_ulong tlb_addr_write(const CPUTLBEntry *entry) 360 { 361 return tlb_read_idx(entry, MMU_DATA_STORE); 362 } 363 364 /* Find the TLB index corresponding to the mmu_idx + address pair. */ 365 static inline uintptr_t tlb_index(CPUArchState *env, uintptr_t mmu_idx, 366 target_ulong addr) 367 { 368 uintptr_t size_mask = env_tlb(env)->f[mmu_idx].mask >> CPU_TLB_ENTRY_BITS; 369 370 return (addr >> TARGET_PAGE_BITS) & size_mask; 371 } 372 373 /* Find the TLB entry corresponding to the mmu_idx + address pair. */ 374 static inline CPUTLBEntry *tlb_entry(CPUArchState *env, uintptr_t mmu_idx, 375 target_ulong addr) 376 { 377 return &env_tlb(env)->f[mmu_idx].table[tlb_index(env, mmu_idx, addr)]; 378 } 379 380 #endif /* defined(CONFIG_USER_ONLY) */ 381 382 #if TARGET_BIG_ENDIAN 383 # define cpu_lduw_data cpu_lduw_be_data 384 # define cpu_ldsw_data cpu_ldsw_be_data 385 # define cpu_ldl_data cpu_ldl_be_data 386 # define cpu_ldq_data cpu_ldq_be_data 387 # define cpu_lduw_data_ra cpu_lduw_be_data_ra 388 # define cpu_ldsw_data_ra cpu_ldsw_be_data_ra 389 # define cpu_ldl_data_ra cpu_ldl_be_data_ra 390 # define cpu_ldq_data_ra cpu_ldq_be_data_ra 391 # define cpu_lduw_mmuidx_ra cpu_lduw_be_mmuidx_ra 392 # define cpu_ldsw_mmuidx_ra cpu_ldsw_be_mmuidx_ra 393 # define cpu_ldl_mmuidx_ra cpu_ldl_be_mmuidx_ra 394 # define cpu_ldq_mmuidx_ra cpu_ldq_be_mmuidx_ra 395 # define cpu_stw_data cpu_stw_be_data 396 # define cpu_stl_data cpu_stl_be_data 397 # define cpu_stq_data cpu_stq_be_data 398 # define cpu_stw_data_ra cpu_stw_be_data_ra 399 # define cpu_stl_data_ra cpu_stl_be_data_ra 400 # define cpu_stq_data_ra cpu_stq_be_data_ra 401 # define cpu_stw_mmuidx_ra cpu_stw_be_mmuidx_ra 402 # define cpu_stl_mmuidx_ra cpu_stl_be_mmuidx_ra 403 # define cpu_stq_mmuidx_ra cpu_stq_be_mmuidx_ra 404 #else 405 # define cpu_lduw_data cpu_lduw_le_data 406 # define cpu_ldsw_data cpu_ldsw_le_data 407 # define cpu_ldl_data cpu_ldl_le_data 408 # define cpu_ldq_data cpu_ldq_le_data 409 # define cpu_lduw_data_ra cpu_lduw_le_data_ra 410 # define cpu_ldsw_data_ra cpu_ldsw_le_data_ra 411 # define cpu_ldl_data_ra cpu_ldl_le_data_ra 412 # define cpu_ldq_data_ra cpu_ldq_le_data_ra 413 # define cpu_lduw_mmuidx_ra cpu_lduw_le_mmuidx_ra 414 # define cpu_ldsw_mmuidx_ra cpu_ldsw_le_mmuidx_ra 415 # define cpu_ldl_mmuidx_ra cpu_ldl_le_mmuidx_ra 416 # define cpu_ldq_mmuidx_ra cpu_ldq_le_mmuidx_ra 417 # define cpu_stw_data cpu_stw_le_data 418 # define cpu_stl_data cpu_stl_le_data 419 # define cpu_stq_data cpu_stq_le_data 420 # define cpu_stw_data_ra cpu_stw_le_data_ra 421 # define cpu_stl_data_ra cpu_stl_le_data_ra 422 # define cpu_stq_data_ra cpu_stq_le_data_ra 423 # define cpu_stw_mmuidx_ra cpu_stw_le_mmuidx_ra 424 # define cpu_stl_mmuidx_ra cpu_stl_le_mmuidx_ra 425 # define cpu_stq_mmuidx_ra cpu_stq_le_mmuidx_ra 426 #endif 427 428 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr, 429 MemOpIdx oi, uintptr_t ra); 430 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr, 431 MemOpIdx oi, uintptr_t ra); 432 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr, 433 MemOpIdx oi, uintptr_t ra); 434 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr, 435 MemOpIdx oi, uintptr_t ra); 436 437 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr); 438 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr); 439 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr); 440 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr); 441 442 static inline int cpu_ldsb_code(CPUArchState *env, abi_ptr addr) 443 { 444 return (int8_t)cpu_ldub_code(env, addr); 445 } 446 447 static inline int cpu_ldsw_code(CPUArchState *env, abi_ptr addr) 448 { 449 return (int16_t)cpu_lduw_code(env, addr); 450 } 451 452 /** 453 * tlb_vaddr_to_host: 454 * @env: CPUArchState 455 * @addr: guest virtual address to look up 456 * @access_type: 0 for read, 1 for write, 2 for execute 457 * @mmu_idx: MMU index to use for lookup 458 * 459 * Look up the specified guest virtual index in the TCG softmmu TLB. 460 * If we can translate a host virtual address suitable for direct RAM 461 * access, without causing a guest exception, then return it. 462 * Otherwise (TLB entry is for an I/O access, guest software 463 * TLB fill required, etc) return NULL. 464 */ 465 #ifdef CONFIG_USER_ONLY 466 static inline void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr, 467 MMUAccessType access_type, int mmu_idx) 468 { 469 return g2h(env_cpu(env), addr); 470 } 471 #else 472 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr, 473 MMUAccessType access_type, int mmu_idx); 474 #endif 475 476 #endif /* CPU_LDST_H */ 477