1 /* 2 * defines common to all virtual CPUs 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #ifndef CPU_ALL_H 20 #define CPU_ALL_H 21 22 #include "exec/cpu-common.h" 23 #include "exec/memory.h" 24 #include "exec/tswap.h" 25 #include "qemu/thread.h" 26 #include "hw/core/cpu.h" 27 #include "qemu/rcu.h" 28 29 /* some important defines: 30 * 31 * HOST_BIG_ENDIAN : whether the host cpu is big endian and 32 * otherwise little endian. 33 * 34 * TARGET_BIG_ENDIAN : same for the target cpu 35 */ 36 37 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 38 #define BSWAP_NEEDED 39 #endif 40 41 #if TARGET_LONG_SIZE == 4 42 #define tswapl(s) tswap32(s) 43 #define tswapls(s) tswap32s((uint32_t *)(s)) 44 #define bswaptls(s) bswap32s(s) 45 #else 46 #define tswapl(s) tswap64(s) 47 #define tswapls(s) tswap64s((uint64_t *)(s)) 48 #define bswaptls(s) bswap64s(s) 49 #endif 50 51 /* Target-endianness CPU memory access functions. These fit into the 52 * {ld,st}{type}{sign}{size}{endian}_p naming scheme described in bswap.h. 53 */ 54 #if TARGET_BIG_ENDIAN 55 #define lduw_p(p) lduw_be_p(p) 56 #define ldsw_p(p) ldsw_be_p(p) 57 #define ldl_p(p) ldl_be_p(p) 58 #define ldq_p(p) ldq_be_p(p) 59 #define stw_p(p, v) stw_be_p(p, v) 60 #define stl_p(p, v) stl_be_p(p, v) 61 #define stq_p(p, v) stq_be_p(p, v) 62 #define ldn_p(p, sz) ldn_be_p(p, sz) 63 #define stn_p(p, sz, v) stn_be_p(p, sz, v) 64 #else 65 #define lduw_p(p) lduw_le_p(p) 66 #define ldsw_p(p) ldsw_le_p(p) 67 #define ldl_p(p) ldl_le_p(p) 68 #define ldq_p(p) ldq_le_p(p) 69 #define stw_p(p, v) stw_le_p(p, v) 70 #define stl_p(p, v) stl_le_p(p, v) 71 #define stq_p(p, v) stq_le_p(p, v) 72 #define ldn_p(p, sz) ldn_le_p(p, sz) 73 #define stn_p(p, sz, v) stn_le_p(p, sz, v) 74 #endif 75 76 /* MMU memory access macros */ 77 78 #if defined(CONFIG_USER_ONLY) 79 #include "exec/user/abitypes.h" 80 #include "exec/user/guest-base.h" 81 82 extern bool have_guest_base; 83 84 /* 85 * If non-zero, the guest virtual address space is a contiguous subset 86 * of the host virtual address space, i.e. '-R reserved_va' is in effect 87 * either from the command-line or by default. The value is the last 88 * byte of the guest address space e.g. UINT32_MAX. 89 * 90 * If zero, the host and guest virtual address spaces are intermingled. 91 */ 92 extern unsigned long reserved_va; 93 94 /* 95 * Limit the guest addresses as best we can. 96 * 97 * When not using -R reserved_va, we cannot really limit the guest 98 * to less address space than the host. For 32-bit guests, this 99 * acts as a sanity check that we're not giving the guest an address 100 * that it cannot even represent. For 64-bit guests... the address 101 * might not be what the real kernel would give, but it is at least 102 * representable in the guest. 103 * 104 * TODO: Improve address allocation to avoid this problem, and to 105 * avoid setting bits at the top of guest addresses that might need 106 * to be used for tags. 107 */ 108 #define GUEST_ADDR_MAX_ \ 109 ((MIN_CONST(TARGET_VIRT_ADDR_SPACE_BITS, TARGET_ABI_BITS) <= 32) ? \ 110 UINT32_MAX : ~0ul) 111 #define GUEST_ADDR_MAX (reserved_va ? : GUEST_ADDR_MAX_) 112 113 #else 114 115 #include "exec/hwaddr.h" 116 117 #define SUFFIX 118 #define ARG1 as 119 #define ARG1_DECL AddressSpace *as 120 #define TARGET_ENDIANNESS 121 #include "exec/memory_ldst.h.inc" 122 123 #define SUFFIX _cached_slow 124 #define ARG1 cache 125 #define ARG1_DECL MemoryRegionCache *cache 126 #define TARGET_ENDIANNESS 127 #include "exec/memory_ldst.h.inc" 128 129 static inline void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val) 130 { 131 address_space_stl_notdirty(as, addr, val, 132 MEMTXATTRS_UNSPECIFIED, NULL); 133 } 134 135 #define SUFFIX 136 #define ARG1 as 137 #define ARG1_DECL AddressSpace *as 138 #define TARGET_ENDIANNESS 139 #include "exec/memory_ldst_phys.h.inc" 140 141 /* Inline fast path for direct RAM access. */ 142 #define ENDIANNESS 143 #include "exec/memory_ldst_cached.h.inc" 144 145 #define SUFFIX _cached 146 #define ARG1 cache 147 #define ARG1_DECL MemoryRegionCache *cache 148 #define TARGET_ENDIANNESS 149 #include "exec/memory_ldst_phys.h.inc" 150 #endif 151 152 /* page related stuff */ 153 154 #ifdef TARGET_PAGE_BITS_VARY 155 # include "exec/page-vary.h" 156 extern const TargetPageBits target_page; 157 #ifdef CONFIG_DEBUG_TCG 158 #define TARGET_PAGE_BITS ({ assert(target_page.decided); target_page.bits; }) 159 #define TARGET_PAGE_MASK ({ assert(target_page.decided); \ 160 (target_long)target_page.mask; }) 161 #else 162 #define TARGET_PAGE_BITS target_page.bits 163 #define TARGET_PAGE_MASK ((target_long)target_page.mask) 164 #endif 165 #define TARGET_PAGE_SIZE (-(int)TARGET_PAGE_MASK) 166 #else 167 #define TARGET_PAGE_BITS_MIN TARGET_PAGE_BITS 168 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS) 169 #define TARGET_PAGE_MASK ((target_long)-1 << TARGET_PAGE_BITS) 170 #endif 171 172 #define TARGET_PAGE_ALIGN(addr) ROUND_UP((addr), TARGET_PAGE_SIZE) 173 174 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY) 175 /* FIXME: Code that sets/uses this is broken and needs to go away. */ 176 #define PAGE_RESERVED 0x0100 177 #endif 178 /* 179 * For linux-user, indicates that the page is mapped with the same semantics 180 * in both guest and host. 181 */ 182 #define PAGE_PASSTHROUGH 0x0800 183 184 #if defined(CONFIG_USER_ONLY) 185 void page_dump(FILE *f); 186 187 typedef int (*walk_memory_regions_fn)(void *, target_ulong, 188 target_ulong, unsigned long); 189 int walk_memory_regions(void *, walk_memory_regions_fn); 190 191 int page_get_flags(target_ulong address); 192 void page_set_flags(target_ulong start, target_ulong last, int flags); 193 void page_reset_target_data(target_ulong start, target_ulong last); 194 195 /** 196 * page_check_range 197 * @start: first byte of range 198 * @len: length of range 199 * @flags: flags required for each page 200 * 201 * Return true if every page in [@start, @start+@len) has @flags set. 202 * Return false if any page is unmapped. Thus testing flags == 0 is 203 * equivalent to testing for flags == PAGE_VALID. 204 */ 205 bool page_check_range(target_ulong start, target_ulong last, int flags); 206 207 /** 208 * page_check_range_empty: 209 * @start: first byte of range 210 * @last: last byte of range 211 * Context: holding mmap lock 212 * 213 * Return true if the entire range [@start, @last] is unmapped. 214 * The memory lock must be held so that the caller will can ensure 215 * the result stays true until a new mapping can be installed. 216 */ 217 bool page_check_range_empty(target_ulong start, target_ulong last); 218 219 /** 220 * page_find_range_empty 221 * @min: first byte of search range 222 * @max: last byte of search range 223 * @len: size of the hole required 224 * @align: alignment of the hole required (power of 2) 225 * 226 * If there is a range [x, x+@len) within [@min, @max] such that 227 * x % @align == 0, then return x. Otherwise return -1. 228 * The memory lock must be held, as the caller will want to ensure 229 * the returned range stays empty until a new mapping can be installed. 230 */ 231 target_ulong page_find_range_empty(target_ulong min, target_ulong max, 232 target_ulong len, target_ulong align); 233 234 /** 235 * page_get_target_data(address) 236 * @address: guest virtual address 237 * 238 * Return TARGET_PAGE_DATA_SIZE bytes of out-of-band data to associate 239 * with the guest page at @address, allocating it if necessary. The 240 * caller should already have verified that the address is valid. 241 * 242 * The memory will be freed when the guest page is deallocated, 243 * e.g. with the munmap system call. 244 */ 245 void *page_get_target_data(target_ulong address) 246 __attribute__((returns_nonnull)); 247 #endif 248 249 CPUArchState *cpu_copy(CPUArchState *env); 250 251 /* Flags for use in ENV->INTERRUPT_PENDING. 252 253 The numbers assigned here are non-sequential in order to preserve 254 binary compatibility with the vmstate dump. Bit 0 (0x0001) was 255 previously used for CPU_INTERRUPT_EXIT, and is cleared when loading 256 the vmstate dump. */ 257 258 /* External hardware interrupt pending. This is typically used for 259 interrupts from devices. */ 260 #define CPU_INTERRUPT_HARD 0x0002 261 262 /* Exit the current TB. This is typically used when some system-level device 263 makes some change to the memory mapping. E.g. the a20 line change. */ 264 #define CPU_INTERRUPT_EXITTB 0x0004 265 266 /* Halt the CPU. */ 267 #define CPU_INTERRUPT_HALT 0x0020 268 269 /* Debug event pending. */ 270 #define CPU_INTERRUPT_DEBUG 0x0080 271 272 /* Reset signal. */ 273 #define CPU_INTERRUPT_RESET 0x0400 274 275 /* Several target-specific external hardware interrupts. Each target/cpu.h 276 should define proper names based on these defines. */ 277 #define CPU_INTERRUPT_TGT_EXT_0 0x0008 278 #define CPU_INTERRUPT_TGT_EXT_1 0x0010 279 #define CPU_INTERRUPT_TGT_EXT_2 0x0040 280 #define CPU_INTERRUPT_TGT_EXT_3 0x0200 281 #define CPU_INTERRUPT_TGT_EXT_4 0x1000 282 283 /* Several target-specific internal interrupts. These differ from the 284 preceding target-specific interrupts in that they are intended to 285 originate from within the cpu itself, typically in response to some 286 instruction being executed. These, therefore, are not masked while 287 single-stepping within the debugger. */ 288 #define CPU_INTERRUPT_TGT_INT_0 0x0100 289 #define CPU_INTERRUPT_TGT_INT_1 0x0800 290 #define CPU_INTERRUPT_TGT_INT_2 0x2000 291 292 /* First unused bit: 0x4000. */ 293 294 /* The set of all bits that should be masked when single-stepping. */ 295 #define CPU_INTERRUPT_SSTEP_MASK \ 296 (CPU_INTERRUPT_HARD \ 297 | CPU_INTERRUPT_TGT_EXT_0 \ 298 | CPU_INTERRUPT_TGT_EXT_1 \ 299 | CPU_INTERRUPT_TGT_EXT_2 \ 300 | CPU_INTERRUPT_TGT_EXT_3 \ 301 | CPU_INTERRUPT_TGT_EXT_4) 302 303 #ifdef CONFIG_USER_ONLY 304 305 /* 306 * Allow some level of source compatibility with softmmu. We do not 307 * support any of the more exotic features, so only invalid pages may 308 * be signaled by probe_access_flags(). 309 */ 310 #define TLB_INVALID_MASK (1 << (TARGET_PAGE_BITS_MIN - 1)) 311 #define TLB_MMIO (1 << (TARGET_PAGE_BITS_MIN - 2)) 312 #define TLB_WATCHPOINT 0 313 314 static inline int cpu_mmu_index(CPUState *cs, bool ifetch) 315 { 316 return MMU_USER_IDX; 317 } 318 #else 319 320 /* 321 * Flags stored in the low bits of the TLB virtual address. 322 * These are defined so that fast path ram access is all zeros. 323 * The flags all must be between TARGET_PAGE_BITS and 324 * maximum address alignment bit. 325 * 326 * Use TARGET_PAGE_BITS_MIN so that these bits are constant 327 * when TARGET_PAGE_BITS_VARY is in effect. 328 * 329 * The count, if not the placement of these bits is known 330 * to tcg/tcg-op-ldst.c, check_max_alignment(). 331 */ 332 /* Zero if TLB entry is valid. */ 333 #define TLB_INVALID_MASK (1 << (TARGET_PAGE_BITS_MIN - 1)) 334 /* Set if TLB entry references a clean RAM page. The iotlb entry will 335 contain the page physical address. */ 336 #define TLB_NOTDIRTY (1 << (TARGET_PAGE_BITS_MIN - 2)) 337 /* Set if TLB entry is an IO callback. */ 338 #define TLB_MMIO (1 << (TARGET_PAGE_BITS_MIN - 3)) 339 /* Set if TLB entry writes ignored. */ 340 #define TLB_DISCARD_WRITE (1 << (TARGET_PAGE_BITS_MIN - 4)) 341 /* Set if the slow path must be used; more flags in CPUTLBEntryFull. */ 342 #define TLB_FORCE_SLOW (1 << (TARGET_PAGE_BITS_MIN - 5)) 343 344 /* 345 * Use this mask to check interception with an alignment mask 346 * in a TCG backend. 347 */ 348 #define TLB_FLAGS_MASK \ 349 (TLB_INVALID_MASK | TLB_NOTDIRTY | TLB_MMIO \ 350 | TLB_FORCE_SLOW | TLB_DISCARD_WRITE) 351 352 /* 353 * Flags stored in CPUTLBEntryFull.slow_flags[x]. 354 * TLB_FORCE_SLOW must be set in CPUTLBEntry.addr_idx[x]. 355 */ 356 /* Set if TLB entry requires byte swap. */ 357 #define TLB_BSWAP (1 << 0) 358 /* Set if TLB entry contains a watchpoint. */ 359 #define TLB_WATCHPOINT (1 << 1) 360 /* Set if TLB entry requires aligned accesses. */ 361 #define TLB_CHECK_ALIGNED (1 << 2) 362 363 #define TLB_SLOW_FLAGS_MASK (TLB_BSWAP | TLB_WATCHPOINT | TLB_CHECK_ALIGNED) 364 365 /* The two sets of flags must not overlap. */ 366 QEMU_BUILD_BUG_ON(TLB_FLAGS_MASK & TLB_SLOW_FLAGS_MASK); 367 368 /** 369 * tlb_hit_page: return true if page aligned @addr is a hit against the 370 * TLB entry @tlb_addr 371 * 372 * @addr: virtual address to test (must be page aligned) 373 * @tlb_addr: TLB entry address (a CPUTLBEntry addr_read/write/code value) 374 */ 375 static inline bool tlb_hit_page(uint64_t tlb_addr, vaddr addr) 376 { 377 return addr == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK)); 378 } 379 380 /** 381 * tlb_hit: return true if @addr is a hit against the TLB entry @tlb_addr 382 * 383 * @addr: virtual address to test (need not be page aligned) 384 * @tlb_addr: TLB entry address (a CPUTLBEntry addr_read/write/code value) 385 */ 386 static inline bool tlb_hit(uint64_t tlb_addr, vaddr addr) 387 { 388 return tlb_hit_page(tlb_addr, addr & TARGET_PAGE_MASK); 389 } 390 391 #endif /* !CONFIG_USER_ONLY */ 392 393 /* Validate correct placement of CPUArchState. */ 394 #include "cpu.h" 395 QEMU_BUILD_BUG_ON(offsetof(ArchCPU, parent_obj) != 0); 396 QEMU_BUILD_BUG_ON(offsetof(ArchCPU, env) != sizeof(CPUState)); 397 398 #endif /* CPU_ALL_H */ 399