1 /* 2 * vhost-vdpa 3 * 4 * Copyright(c) 2017-2018 Intel Corporation. 5 * Copyright(c) 2020 Red Hat, Inc. 6 * 7 * This work is licensed under the terms of the GNU GPL, version 2 or later. 8 * See the COPYING file in the top-level directory. 9 * 10 */ 11 12 #include "qemu/osdep.h" 13 #include <linux/vhost.h> 14 #include <linux/vfio.h> 15 #include <sys/eventfd.h> 16 #include <sys/ioctl.h> 17 #include "exec/target_page.h" 18 #include "hw/virtio/vhost.h" 19 #include "hw/virtio/vhost-backend.h" 20 #include "hw/virtio/virtio-net.h" 21 #include "hw/virtio/vhost-shadow-virtqueue.h" 22 #include "hw/virtio/vhost-vdpa.h" 23 #include "exec/address-spaces.h" 24 #include "migration/blocker.h" 25 #include "qemu/cutils.h" 26 #include "qemu/main-loop.h" 27 #include "trace.h" 28 #include "qapi/error.h" 29 30 /* 31 * Return one past the end of the end of section. Be careful with uint64_t 32 * conversions! 33 */ 34 static Int128 vhost_vdpa_section_end(const MemoryRegionSection *section, 35 int page_mask) 36 { 37 Int128 llend = int128_make64(section->offset_within_address_space); 38 llend = int128_add(llend, section->size); 39 llend = int128_and(llend, int128_exts64(page_mask)); 40 41 return llend; 42 } 43 44 static bool vhost_vdpa_listener_skipped_section(MemoryRegionSection *section, 45 uint64_t iova_min, 46 uint64_t iova_max, 47 int page_mask) 48 { 49 Int128 llend; 50 bool is_ram = memory_region_is_ram(section->mr); 51 bool is_iommu = memory_region_is_iommu(section->mr); 52 bool is_protected = memory_region_is_protected(section->mr); 53 54 /* vhost-vDPA doesn't allow MMIO to be mapped */ 55 bool is_ram_device = memory_region_is_ram_device(section->mr); 56 57 if ((!is_ram && !is_iommu) || is_protected || is_ram_device) { 58 trace_vhost_vdpa_skipped_memory_section(is_ram, is_iommu, is_protected, 59 is_ram_device, iova_min, 60 iova_max, page_mask); 61 return true; 62 } 63 64 if (section->offset_within_address_space < iova_min) { 65 error_report("RAM section out of device range (min=0x%" PRIx64 66 ", addr=0x%" HWADDR_PRIx ")", 67 iova_min, section->offset_within_address_space); 68 return true; 69 } 70 /* 71 * While using vIOMMU, sometimes the section will be larger than iova_max, 72 * but the memory that actually maps is smaller, so move the check to 73 * function vhost_vdpa_iommu_map_notify(). That function will use the actual 74 * size that maps to the kernel 75 */ 76 77 if (!is_iommu) { 78 llend = vhost_vdpa_section_end(section, page_mask); 79 if (int128_gt(llend, int128_make64(iova_max))) { 80 error_report("RAM section out of device range (max=0x%" PRIx64 81 ", end addr=0x%" PRIx64 ")", 82 iova_max, int128_get64(llend)); 83 return true; 84 } 85 } 86 87 return false; 88 } 89 90 /* 91 * The caller must set asid = 0 if the device does not support asid. 92 * This is not an ABI break since it is set to 0 by the initializer anyway. 93 */ 94 int vhost_vdpa_dma_map(VhostVDPAShared *s, uint32_t asid, hwaddr iova, 95 hwaddr size, void *vaddr, bool readonly) 96 { 97 struct vhost_msg_v2 msg = {}; 98 int fd = s->device_fd; 99 int ret = 0; 100 101 msg.type = VHOST_IOTLB_MSG_V2; 102 msg.asid = asid; 103 msg.iotlb.iova = iova; 104 msg.iotlb.size = size; 105 msg.iotlb.uaddr = (uint64_t)(uintptr_t)vaddr; 106 msg.iotlb.perm = readonly ? VHOST_ACCESS_RO : VHOST_ACCESS_RW; 107 msg.iotlb.type = VHOST_IOTLB_UPDATE; 108 109 trace_vhost_vdpa_dma_map(s, fd, msg.type, msg.asid, msg.iotlb.iova, 110 msg.iotlb.size, msg.iotlb.uaddr, msg.iotlb.perm, 111 msg.iotlb.type); 112 113 if (write(fd, &msg, sizeof(msg)) != sizeof(msg)) { 114 error_report("failed to write, fd=%d, errno=%d (%s)", 115 fd, errno, strerror(errno)); 116 return -EIO ; 117 } 118 119 return ret; 120 } 121 122 /* 123 * The caller must set asid = 0 if the device does not support asid. 124 * This is not an ABI break since it is set to 0 by the initializer anyway. 125 */ 126 int vhost_vdpa_dma_unmap(VhostVDPAShared *s, uint32_t asid, hwaddr iova, 127 hwaddr size) 128 { 129 struct vhost_msg_v2 msg = {}; 130 int fd = s->device_fd; 131 int ret = 0; 132 133 msg.type = VHOST_IOTLB_MSG_V2; 134 msg.asid = asid; 135 msg.iotlb.iova = iova; 136 msg.iotlb.size = size; 137 msg.iotlb.type = VHOST_IOTLB_INVALIDATE; 138 139 trace_vhost_vdpa_dma_unmap(s, fd, msg.type, msg.asid, msg.iotlb.iova, 140 msg.iotlb.size, msg.iotlb.type); 141 142 if (write(fd, &msg, sizeof(msg)) != sizeof(msg)) { 143 error_report("failed to write, fd=%d, errno=%d (%s)", 144 fd, errno, strerror(errno)); 145 return -EIO ; 146 } 147 148 return ret; 149 } 150 151 static void vhost_vdpa_listener_begin_batch(VhostVDPAShared *s) 152 { 153 int fd = s->device_fd; 154 struct vhost_msg_v2 msg = { 155 .type = VHOST_IOTLB_MSG_V2, 156 .iotlb.type = VHOST_IOTLB_BATCH_BEGIN, 157 }; 158 159 trace_vhost_vdpa_listener_begin_batch(s, fd, msg.type, msg.iotlb.type); 160 if (write(fd, &msg, sizeof(msg)) != sizeof(msg)) { 161 error_report("failed to write, fd=%d, errno=%d (%s)", 162 fd, errno, strerror(errno)); 163 } 164 } 165 166 static void vhost_vdpa_iotlb_batch_begin_once(VhostVDPAShared *s) 167 { 168 if (s->backend_cap & (0x1ULL << VHOST_BACKEND_F_IOTLB_BATCH) && 169 !s->iotlb_batch_begin_sent) { 170 vhost_vdpa_listener_begin_batch(s); 171 } 172 173 s->iotlb_batch_begin_sent = true; 174 } 175 176 static void vhost_vdpa_listener_commit(MemoryListener *listener) 177 { 178 VhostVDPAShared *s = container_of(listener, VhostVDPAShared, listener); 179 struct vhost_msg_v2 msg = {}; 180 int fd = s->device_fd; 181 182 if (!(s->backend_cap & (0x1ULL << VHOST_BACKEND_F_IOTLB_BATCH))) { 183 return; 184 } 185 186 if (!s->iotlb_batch_begin_sent) { 187 return; 188 } 189 190 msg.type = VHOST_IOTLB_MSG_V2; 191 msg.iotlb.type = VHOST_IOTLB_BATCH_END; 192 193 trace_vhost_vdpa_listener_commit(s, fd, msg.type, msg.iotlb.type); 194 if (write(fd, &msg, sizeof(msg)) != sizeof(msg)) { 195 error_report("failed to write, fd=%d, errno=%d (%s)", 196 fd, errno, strerror(errno)); 197 } 198 199 s->iotlb_batch_begin_sent = false; 200 } 201 202 static void vhost_vdpa_iommu_map_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) 203 { 204 struct vdpa_iommu *iommu = container_of(n, struct vdpa_iommu, n); 205 206 hwaddr iova = iotlb->iova + iommu->iommu_offset; 207 VhostVDPAShared *s = iommu->dev_shared; 208 void *vaddr; 209 int ret; 210 Int128 llend; 211 Error *local_err = NULL; 212 213 if (iotlb->target_as != &address_space_memory) { 214 error_report("Wrong target AS \"%s\", only system memory is allowed", 215 iotlb->target_as->name ? iotlb->target_as->name : "none"); 216 return; 217 } 218 RCU_READ_LOCK_GUARD(); 219 /* check if RAM section out of device range */ 220 llend = int128_add(int128_makes64(iotlb->addr_mask), int128_makes64(iova)); 221 if (int128_gt(llend, int128_make64(s->iova_range.last))) { 222 error_report("RAM section out of device range (max=0x%" PRIx64 223 ", end addr=0x%" PRIx64 ")", 224 s->iova_range.last, int128_get64(llend)); 225 return; 226 } 227 228 if ((iotlb->perm & IOMMU_RW) != IOMMU_NONE) { 229 bool read_only; 230 231 if (!memory_get_xlat_addr(iotlb, &vaddr, NULL, &read_only, NULL, 232 &local_err)) { 233 error_report_err(local_err); 234 return; 235 } 236 ret = vhost_vdpa_dma_map(s, VHOST_VDPA_GUEST_PA_ASID, iova, 237 iotlb->addr_mask + 1, vaddr, read_only); 238 if (ret) { 239 error_report("vhost_vdpa_dma_map(%p, 0x%" HWADDR_PRIx ", " 240 "0x%" HWADDR_PRIx ", %p) = %d (%m)", 241 s, iova, iotlb->addr_mask + 1, vaddr, ret); 242 } 243 } else { 244 ret = vhost_vdpa_dma_unmap(s, VHOST_VDPA_GUEST_PA_ASID, iova, 245 iotlb->addr_mask + 1); 246 if (ret) { 247 error_report("vhost_vdpa_dma_unmap(%p, 0x%" HWADDR_PRIx ", " 248 "0x%" HWADDR_PRIx ") = %d (%m)", 249 s, iova, iotlb->addr_mask + 1, ret); 250 } 251 } 252 } 253 254 static void vhost_vdpa_iommu_region_add(MemoryListener *listener, 255 MemoryRegionSection *section) 256 { 257 VhostVDPAShared *s = container_of(listener, VhostVDPAShared, listener); 258 259 struct vdpa_iommu *iommu; 260 Int128 end; 261 int iommu_idx; 262 IOMMUMemoryRegion *iommu_mr; 263 int ret; 264 265 iommu_mr = IOMMU_MEMORY_REGION(section->mr); 266 267 iommu = g_malloc0(sizeof(*iommu)); 268 end = int128_add(int128_make64(section->offset_within_region), 269 section->size); 270 end = int128_sub(end, int128_one()); 271 iommu_idx = memory_region_iommu_attrs_to_index(iommu_mr, 272 MEMTXATTRS_UNSPECIFIED); 273 iommu->iommu_mr = iommu_mr; 274 iommu_notifier_init(&iommu->n, vhost_vdpa_iommu_map_notify, 275 IOMMU_NOTIFIER_IOTLB_EVENTS, 276 section->offset_within_region, 277 int128_get64(end), 278 iommu_idx); 279 iommu->iommu_offset = section->offset_within_address_space - 280 section->offset_within_region; 281 iommu->dev_shared = s; 282 283 ret = memory_region_register_iommu_notifier(section->mr, &iommu->n, NULL); 284 if (ret) { 285 g_free(iommu); 286 return; 287 } 288 289 QLIST_INSERT_HEAD(&s->iommu_list, iommu, iommu_next); 290 memory_region_iommu_replay(iommu->iommu_mr, &iommu->n); 291 292 return; 293 } 294 295 static void vhost_vdpa_iommu_region_del(MemoryListener *listener, 296 MemoryRegionSection *section) 297 { 298 VhostVDPAShared *s = container_of(listener, VhostVDPAShared, listener); 299 300 struct vdpa_iommu *iommu; 301 302 QLIST_FOREACH(iommu, &s->iommu_list, iommu_next) 303 { 304 if (MEMORY_REGION(iommu->iommu_mr) == section->mr && 305 iommu->n.start == section->offset_within_region) { 306 memory_region_unregister_iommu_notifier(section->mr, &iommu->n); 307 QLIST_REMOVE(iommu, iommu_next); 308 g_free(iommu); 309 break; 310 } 311 } 312 } 313 314 static void vhost_vdpa_listener_region_add(MemoryListener *listener, 315 MemoryRegionSection *section) 316 { 317 DMAMap mem_region = {}; 318 VhostVDPAShared *s = container_of(listener, VhostVDPAShared, listener); 319 hwaddr iova; 320 Int128 llend, llsize; 321 void *vaddr; 322 int ret; 323 int page_size = qemu_target_page_size(); 324 int page_mask = -page_size; 325 326 if (vhost_vdpa_listener_skipped_section(section, s->iova_range.first, 327 s->iova_range.last, page_mask)) { 328 return; 329 } 330 if (memory_region_is_iommu(section->mr)) { 331 vhost_vdpa_iommu_region_add(listener, section); 332 return; 333 } 334 335 if (unlikely((section->offset_within_address_space & ~page_mask) != 336 (section->offset_within_region & ~page_mask))) { 337 trace_vhost_vdpa_listener_region_add_unaligned(s, section->mr->name, 338 section->offset_within_address_space & ~page_mask, 339 section->offset_within_region & ~page_mask); 340 return; 341 } 342 343 iova = ROUND_UP(section->offset_within_address_space, page_size); 344 llend = vhost_vdpa_section_end(section, page_mask); 345 if (int128_ge(int128_make64(iova), llend)) { 346 return; 347 } 348 349 memory_region_ref(section->mr); 350 351 /* Here we assume that memory_region_is_ram(section->mr)==true */ 352 353 vaddr = memory_region_get_ram_ptr(section->mr) + 354 section->offset_within_region + 355 (iova - section->offset_within_address_space); 356 357 trace_vhost_vdpa_listener_region_add(s, iova, int128_get64(llend), 358 vaddr, section->readonly); 359 360 llsize = int128_sub(llend, int128_make64(iova)); 361 if (s->shadow_data) { 362 int r; 363 364 mem_region.translated_addr = (hwaddr)(uintptr_t)vaddr, 365 mem_region.size = int128_get64(llsize) - 1, 366 mem_region.perm = IOMMU_ACCESS_FLAG(true, section->readonly), 367 368 r = vhost_iova_tree_map_alloc(s->iova_tree, &mem_region); 369 if (unlikely(r != IOVA_OK)) { 370 error_report("Can't allocate a mapping (%d)", r); 371 goto fail; 372 } 373 374 iova = mem_region.iova; 375 } 376 377 vhost_vdpa_iotlb_batch_begin_once(s); 378 ret = vhost_vdpa_dma_map(s, VHOST_VDPA_GUEST_PA_ASID, iova, 379 int128_get64(llsize), vaddr, section->readonly); 380 if (ret) { 381 error_report("vhost vdpa map fail!"); 382 goto fail_map; 383 } 384 385 return; 386 387 fail_map: 388 if (s->shadow_data) { 389 vhost_iova_tree_remove(s->iova_tree, mem_region); 390 } 391 392 fail: 393 /* 394 * On the initfn path, store the first error in the container so we 395 * can gracefully fail. Runtime, there's not much we can do other 396 * than throw a hardware error. 397 */ 398 error_report("vhost-vdpa: DMA mapping failed, unable to continue"); 399 return; 400 401 } 402 403 static void vhost_vdpa_listener_region_del(MemoryListener *listener, 404 MemoryRegionSection *section) 405 { 406 VhostVDPAShared *s = container_of(listener, VhostVDPAShared, listener); 407 hwaddr iova; 408 Int128 llend, llsize; 409 int ret; 410 int page_size = qemu_target_page_size(); 411 int page_mask = -page_size; 412 413 if (vhost_vdpa_listener_skipped_section(section, s->iova_range.first, 414 s->iova_range.last, page_mask)) { 415 return; 416 } 417 if (memory_region_is_iommu(section->mr)) { 418 vhost_vdpa_iommu_region_del(listener, section); 419 } 420 421 if (unlikely((section->offset_within_address_space & ~page_mask) != 422 (section->offset_within_region & ~page_mask))) { 423 trace_vhost_vdpa_listener_region_del_unaligned(s, section->mr->name, 424 section->offset_within_address_space & ~page_mask, 425 section->offset_within_region & ~page_mask); 426 return; 427 } 428 429 iova = ROUND_UP(section->offset_within_address_space, page_size); 430 llend = vhost_vdpa_section_end(section, page_mask); 431 432 trace_vhost_vdpa_listener_region_del(s, iova, 433 int128_get64(int128_sub(llend, int128_one()))); 434 435 if (int128_ge(int128_make64(iova), llend)) { 436 return; 437 } 438 439 llsize = int128_sub(llend, int128_make64(iova)); 440 441 if (s->shadow_data) { 442 const DMAMap *result; 443 const void *vaddr = memory_region_get_ram_ptr(section->mr) + 444 section->offset_within_region + 445 (iova - section->offset_within_address_space); 446 DMAMap mem_region = { 447 .translated_addr = (hwaddr)(uintptr_t)vaddr, 448 .size = int128_get64(llsize) - 1, 449 }; 450 451 result = vhost_iova_tree_find_iova(s->iova_tree, &mem_region); 452 if (!result) { 453 /* The memory listener map wasn't mapped */ 454 return; 455 } 456 iova = result->iova; 457 vhost_iova_tree_remove(s->iova_tree, *result); 458 } 459 vhost_vdpa_iotlb_batch_begin_once(s); 460 /* 461 * The unmap ioctl doesn't accept a full 64-bit. need to check it 462 */ 463 if (int128_eq(llsize, int128_2_64())) { 464 llsize = int128_rshift(llsize, 1); 465 ret = vhost_vdpa_dma_unmap(s, VHOST_VDPA_GUEST_PA_ASID, iova, 466 int128_get64(llsize)); 467 468 if (ret) { 469 error_report("vhost_vdpa_dma_unmap(%p, 0x%" HWADDR_PRIx ", " 470 "0x%" HWADDR_PRIx ") = %d (%m)", 471 s, iova, int128_get64(llsize), ret); 472 } 473 iova += int128_get64(llsize); 474 } 475 ret = vhost_vdpa_dma_unmap(s, VHOST_VDPA_GUEST_PA_ASID, iova, 476 int128_get64(llsize)); 477 478 if (ret) { 479 error_report("vhost_vdpa_dma_unmap(%p, 0x%" HWADDR_PRIx ", " 480 "0x%" HWADDR_PRIx ") = %d (%m)", 481 s, iova, int128_get64(llsize), ret); 482 } 483 484 memory_region_unref(section->mr); 485 } 486 /* 487 * IOTLB API is used by vhost-vdpa which requires incremental updating 488 * of the mapping. So we can not use generic vhost memory listener which 489 * depends on the addnop(). 490 */ 491 static const MemoryListener vhost_vdpa_memory_listener = { 492 .name = "vhost-vdpa", 493 .commit = vhost_vdpa_listener_commit, 494 .region_add = vhost_vdpa_listener_region_add, 495 .region_del = vhost_vdpa_listener_region_del, 496 }; 497 498 static int vhost_vdpa_call(struct vhost_dev *dev, unsigned long int request, 499 void *arg) 500 { 501 struct vhost_vdpa *v = dev->opaque; 502 int fd = v->shared->device_fd; 503 int ret; 504 505 assert(dev->vhost_ops->backend_type == VHOST_BACKEND_TYPE_VDPA); 506 507 ret = ioctl(fd, request, arg); 508 return ret < 0 ? -errno : ret; 509 } 510 511 static int vhost_vdpa_add_status(struct vhost_dev *dev, uint8_t status) 512 { 513 uint8_t s; 514 int ret; 515 516 trace_vhost_vdpa_add_status(dev, status); 517 ret = vhost_vdpa_call(dev, VHOST_VDPA_GET_STATUS, &s); 518 if (ret < 0) { 519 return ret; 520 } 521 if ((s & status) == status) { 522 /* Don't set bits already set */ 523 return 0; 524 } 525 526 s |= status; 527 528 ret = vhost_vdpa_call(dev, VHOST_VDPA_SET_STATUS, &s); 529 if (ret < 0) { 530 return ret; 531 } 532 533 ret = vhost_vdpa_call(dev, VHOST_VDPA_GET_STATUS, &s); 534 if (ret < 0) { 535 return ret; 536 } 537 538 if (!(s & status)) { 539 return -EIO; 540 } 541 542 return 0; 543 } 544 545 int vhost_vdpa_get_iova_range(int fd, struct vhost_vdpa_iova_range *iova_range) 546 { 547 int ret = ioctl(fd, VHOST_VDPA_GET_IOVA_RANGE, iova_range); 548 549 return ret < 0 ? -errno : 0; 550 } 551 552 /* 553 * The use of this function is for requests that only need to be 554 * applied once. Typically such request occurs at the beginning 555 * of operation, and before setting up queues. It should not be 556 * used for request that performs operation until all queues are 557 * set, which would need to check dev->vq_index_end instead. 558 */ 559 static bool vhost_vdpa_first_dev(struct vhost_dev *dev) 560 { 561 struct vhost_vdpa *v = dev->opaque; 562 563 return v->index == 0; 564 } 565 566 static bool vhost_vdpa_last_dev(struct vhost_dev *dev) 567 { 568 return dev->vq_index + dev->nvqs == dev->vq_index_end; 569 } 570 571 static int vhost_vdpa_get_dev_features(struct vhost_dev *dev, 572 uint64_t *features) 573 { 574 int ret; 575 576 ret = vhost_vdpa_call(dev, VHOST_GET_FEATURES, features); 577 trace_vhost_vdpa_get_features(dev, *features); 578 return ret; 579 } 580 581 static void vhost_vdpa_init_svq(struct vhost_dev *hdev, struct vhost_vdpa *v) 582 { 583 g_autoptr(GPtrArray) shadow_vqs = NULL; 584 585 shadow_vqs = g_ptr_array_new_full(hdev->nvqs, vhost_svq_free); 586 for (unsigned n = 0; n < hdev->nvqs; ++n) { 587 VhostShadowVirtqueue *svq; 588 589 svq = vhost_svq_new(v->shadow_vq_ops, v->shadow_vq_ops_opaque); 590 g_ptr_array_add(shadow_vqs, svq); 591 } 592 593 v->shadow_vqs = g_steal_pointer(&shadow_vqs); 594 } 595 596 static int vhost_vdpa_init(struct vhost_dev *dev, void *opaque, Error **errp) 597 { 598 struct vhost_vdpa *v = opaque; 599 assert(dev->vhost_ops->backend_type == VHOST_BACKEND_TYPE_VDPA); 600 trace_vhost_vdpa_init(dev, v->shared, opaque); 601 int ret; 602 603 v->dev = dev; 604 dev->opaque = opaque ; 605 v->shared->listener = vhost_vdpa_memory_listener; 606 vhost_vdpa_init_svq(dev, v); 607 608 error_propagate(&dev->migration_blocker, v->migration_blocker); 609 if (!vhost_vdpa_first_dev(dev)) { 610 return 0; 611 } 612 613 /* 614 * If dev->shadow_vqs_enabled at initialization that means the device has 615 * been started with x-svq=on, so don't block migration 616 */ 617 if (dev->migration_blocker == NULL && !v->shadow_vqs_enabled) { 618 /* We don't have dev->features yet */ 619 uint64_t features; 620 ret = vhost_vdpa_get_dev_features(dev, &features); 621 if (unlikely(ret)) { 622 error_setg_errno(errp, -ret, "Could not get device features"); 623 return ret; 624 } 625 vhost_svq_valid_features(features, &dev->migration_blocker); 626 } 627 628 /* 629 * Similar to VFIO, we end up pinning all guest memory and have to 630 * disable discarding of RAM. 631 */ 632 ret = ram_block_discard_disable(true); 633 if (ret) { 634 error_report("Cannot set discarding of RAM broken"); 635 return ret; 636 } 637 638 vhost_vdpa_add_status(dev, VIRTIO_CONFIG_S_ACKNOWLEDGE | 639 VIRTIO_CONFIG_S_DRIVER); 640 641 return 0; 642 } 643 644 static void vhost_vdpa_host_notifier_uninit(struct vhost_dev *dev, 645 int queue_index) 646 { 647 size_t page_size = qemu_real_host_page_size(); 648 struct vhost_vdpa *v = dev->opaque; 649 VirtIODevice *vdev = dev->vdev; 650 VhostVDPAHostNotifier *n; 651 652 n = &v->notifier[queue_index]; 653 654 if (n->addr) { 655 virtio_queue_set_host_notifier_mr(vdev, queue_index, &n->mr, false); 656 object_unparent(OBJECT(&n->mr)); 657 munmap(n->addr, page_size); 658 n->addr = NULL; 659 } 660 } 661 662 static int vhost_vdpa_host_notifier_init(struct vhost_dev *dev, int queue_index) 663 { 664 size_t page_size = qemu_real_host_page_size(); 665 struct vhost_vdpa *v = dev->opaque; 666 VirtIODevice *vdev = dev->vdev; 667 VhostVDPAHostNotifier *n; 668 int fd = v->shared->device_fd; 669 void *addr; 670 char *name; 671 672 vhost_vdpa_host_notifier_uninit(dev, queue_index); 673 674 n = &v->notifier[queue_index]; 675 676 addr = mmap(NULL, page_size, PROT_WRITE, MAP_SHARED, fd, 677 queue_index * page_size); 678 if (addr == MAP_FAILED) { 679 goto err; 680 } 681 682 name = g_strdup_printf("vhost-vdpa/host-notifier@%p mmaps[%d]", 683 v, queue_index); 684 memory_region_init_ram_device_ptr(&n->mr, OBJECT(vdev), name, 685 page_size, addr); 686 g_free(name); 687 688 if (virtio_queue_set_host_notifier_mr(vdev, queue_index, &n->mr, true)) { 689 object_unparent(OBJECT(&n->mr)); 690 munmap(addr, page_size); 691 goto err; 692 } 693 n->addr = addr; 694 695 return 0; 696 697 err: 698 return -1; 699 } 700 701 static void vhost_vdpa_host_notifiers_uninit(struct vhost_dev *dev, int n) 702 { 703 int i; 704 705 /* 706 * Pack all the changes to the memory regions in a single 707 * transaction to avoid a few updating of the address space 708 * topology. 709 */ 710 memory_region_transaction_begin(); 711 712 for (i = dev->vq_index; i < dev->vq_index + n; i++) { 713 vhost_vdpa_host_notifier_uninit(dev, i); 714 } 715 716 memory_region_transaction_commit(); 717 } 718 719 static void vhost_vdpa_host_notifiers_init(struct vhost_dev *dev) 720 { 721 struct vhost_vdpa *v = dev->opaque; 722 int i; 723 724 if (v->shadow_vqs_enabled) { 725 /* FIXME SVQ is not compatible with host notifiers mr */ 726 return; 727 } 728 729 /* 730 * Pack all the changes to the memory regions in a single 731 * transaction to avoid a few updating of the address space 732 * topology. 733 */ 734 memory_region_transaction_begin(); 735 736 for (i = dev->vq_index; i < dev->vq_index + dev->nvqs; i++) { 737 if (vhost_vdpa_host_notifier_init(dev, i)) { 738 vhost_vdpa_host_notifiers_uninit(dev, i - dev->vq_index); 739 break; 740 } 741 } 742 743 memory_region_transaction_commit(); 744 } 745 746 static void vhost_vdpa_svq_cleanup(struct vhost_dev *dev) 747 { 748 struct vhost_vdpa *v = dev->opaque; 749 size_t idx; 750 751 for (idx = 0; idx < v->shadow_vqs->len; ++idx) { 752 vhost_svq_stop(g_ptr_array_index(v->shadow_vqs, idx)); 753 } 754 g_ptr_array_free(v->shadow_vqs, true); 755 } 756 757 static int vhost_vdpa_cleanup(struct vhost_dev *dev) 758 { 759 struct vhost_vdpa *v; 760 assert(dev->vhost_ops->backend_type == VHOST_BACKEND_TYPE_VDPA); 761 v = dev->opaque; 762 trace_vhost_vdpa_cleanup(dev, v); 763 if (vhost_vdpa_first_dev(dev)) { 764 ram_block_discard_disable(false); 765 memory_listener_unregister(&v->shared->listener); 766 } 767 768 vhost_vdpa_host_notifiers_uninit(dev, dev->nvqs); 769 vhost_vdpa_svq_cleanup(dev); 770 771 dev->opaque = NULL; 772 773 return 0; 774 } 775 776 static int vhost_vdpa_memslots_limit(struct vhost_dev *dev) 777 { 778 trace_vhost_vdpa_memslots_limit(dev, INT_MAX); 779 return INT_MAX; 780 } 781 782 static int vhost_vdpa_set_mem_table(struct vhost_dev *dev, 783 struct vhost_memory *mem) 784 { 785 if (!vhost_vdpa_first_dev(dev)) { 786 return 0; 787 } 788 789 trace_vhost_vdpa_set_mem_table(dev, mem->nregions, mem->padding); 790 if (trace_event_get_state_backends(TRACE_VHOST_VDPA_SET_MEM_TABLE) && 791 trace_event_get_state_backends(TRACE_VHOST_VDPA_DUMP_REGIONS)) { 792 int i; 793 for (i = 0; i < mem->nregions; i++) { 794 trace_vhost_vdpa_dump_regions(dev, i, 795 mem->regions[i].guest_phys_addr, 796 mem->regions[i].memory_size, 797 mem->regions[i].userspace_addr, 798 mem->regions[i].flags_padding); 799 } 800 } 801 if (mem->padding) { 802 return -EINVAL; 803 } 804 805 return 0; 806 } 807 808 static int vhost_vdpa_set_features(struct vhost_dev *dev, 809 uint64_t features) 810 { 811 struct vhost_vdpa *v = dev->opaque; 812 int ret; 813 814 if (!vhost_vdpa_first_dev(dev)) { 815 return 0; 816 } 817 818 if (v->shadow_vqs_enabled) { 819 if ((v->acked_features ^ features) == BIT_ULL(VHOST_F_LOG_ALL)) { 820 /* 821 * QEMU is just trying to enable or disable logging. SVQ handles 822 * this sepparately, so no need to forward this. 823 */ 824 v->acked_features = features; 825 return 0; 826 } 827 828 v->acked_features = features; 829 830 /* We must not ack _F_LOG if SVQ is enabled */ 831 features &= ~BIT_ULL(VHOST_F_LOG_ALL); 832 } 833 834 trace_vhost_vdpa_set_features(dev, features); 835 ret = vhost_vdpa_call(dev, VHOST_SET_FEATURES, &features); 836 if (ret) { 837 return ret; 838 } 839 840 return vhost_vdpa_add_status(dev, VIRTIO_CONFIG_S_FEATURES_OK); 841 } 842 843 static int vhost_vdpa_set_backend_cap(struct vhost_dev *dev) 844 { 845 struct vhost_vdpa *v = dev->opaque; 846 847 uint64_t features; 848 uint64_t f = 0x1ULL << VHOST_BACKEND_F_IOTLB_MSG_V2 | 849 0x1ULL << VHOST_BACKEND_F_IOTLB_BATCH | 850 0x1ULL << VHOST_BACKEND_F_IOTLB_ASID | 851 0x1ULL << VHOST_BACKEND_F_SUSPEND; 852 int r; 853 854 if (vhost_vdpa_call(dev, VHOST_GET_BACKEND_FEATURES, &features)) { 855 return -EFAULT; 856 } 857 858 features &= f; 859 860 if (vhost_vdpa_first_dev(dev)) { 861 r = vhost_vdpa_call(dev, VHOST_SET_BACKEND_FEATURES, &features); 862 if (r) { 863 return -EFAULT; 864 } 865 } 866 867 dev->backend_cap = features; 868 v->shared->backend_cap = features; 869 870 return 0; 871 } 872 873 static int vhost_vdpa_get_device_id(struct vhost_dev *dev, 874 uint32_t *device_id) 875 { 876 int ret; 877 ret = vhost_vdpa_call(dev, VHOST_VDPA_GET_DEVICE_ID, device_id); 878 trace_vhost_vdpa_get_device_id(dev, *device_id); 879 return ret; 880 } 881 882 static int vhost_vdpa_reset_device(struct vhost_dev *dev) 883 { 884 struct vhost_vdpa *v = dev->opaque; 885 int ret; 886 uint8_t status = 0; 887 888 ret = vhost_vdpa_call(dev, VHOST_VDPA_SET_STATUS, &status); 889 trace_vhost_vdpa_reset_device(dev); 890 v->suspended = false; 891 return ret; 892 } 893 894 static int vhost_vdpa_get_vq_index(struct vhost_dev *dev, int idx) 895 { 896 assert(idx >= dev->vq_index && idx < dev->vq_index + dev->nvqs); 897 898 trace_vhost_vdpa_get_vq_index(dev, idx, idx); 899 return idx; 900 } 901 902 static int vhost_vdpa_set_vring_enable_one(struct vhost_vdpa *v, unsigned idx, 903 int enable) 904 { 905 struct vhost_dev *dev = v->dev; 906 struct vhost_vring_state state = { 907 .index = idx, 908 .num = enable, 909 }; 910 int r = vhost_vdpa_call(dev, VHOST_VDPA_SET_VRING_ENABLE, &state); 911 912 trace_vhost_vdpa_set_vring_enable_one(dev, idx, enable, r); 913 return r; 914 } 915 916 static int vhost_vdpa_set_vring_enable(struct vhost_dev *dev, int enable) 917 { 918 struct vhost_vdpa *v = dev->opaque; 919 unsigned int i; 920 int ret; 921 922 for (i = 0; i < dev->nvqs; ++i) { 923 ret = vhost_vdpa_set_vring_enable_one(v, i, enable); 924 if (ret < 0) { 925 return ret; 926 } 927 } 928 929 return 0; 930 } 931 932 int vhost_vdpa_set_vring_ready(struct vhost_vdpa *v, unsigned idx) 933 { 934 return vhost_vdpa_set_vring_enable_one(v, idx, 1); 935 } 936 937 static int vhost_vdpa_set_config_call(struct vhost_dev *dev, 938 int fd) 939 { 940 trace_vhost_vdpa_set_config_call(dev, fd); 941 return vhost_vdpa_call(dev, VHOST_VDPA_SET_CONFIG_CALL, &fd); 942 } 943 944 static void vhost_vdpa_dump_config(struct vhost_dev *dev, const uint8_t *config, 945 uint32_t config_len) 946 { 947 int b, len; 948 char line[QEMU_HEXDUMP_LINE_LEN]; 949 950 for (b = 0; b < config_len; b += 16) { 951 len = config_len - b; 952 qemu_hexdump_line(line, b, config, len, false); 953 trace_vhost_vdpa_dump_config(dev, line); 954 } 955 } 956 957 static int vhost_vdpa_set_config(struct vhost_dev *dev, const uint8_t *data, 958 uint32_t offset, uint32_t size, 959 uint32_t flags) 960 { 961 struct vhost_vdpa_config *config; 962 int ret; 963 unsigned long config_size = offsetof(struct vhost_vdpa_config, buf); 964 965 trace_vhost_vdpa_set_config(dev, offset, size, flags); 966 config = g_malloc(size + config_size); 967 config->off = offset; 968 config->len = size; 969 memcpy(config->buf, data, size); 970 if (trace_event_get_state_backends(TRACE_VHOST_VDPA_SET_CONFIG) && 971 trace_event_get_state_backends(TRACE_VHOST_VDPA_DUMP_CONFIG)) { 972 vhost_vdpa_dump_config(dev, data, size); 973 } 974 ret = vhost_vdpa_call(dev, VHOST_VDPA_SET_CONFIG, config); 975 g_free(config); 976 return ret; 977 } 978 979 static int vhost_vdpa_get_config(struct vhost_dev *dev, uint8_t *config, 980 uint32_t config_len, Error **errp) 981 { 982 struct vhost_vdpa_config *v_config; 983 unsigned long config_size = offsetof(struct vhost_vdpa_config, buf); 984 int ret; 985 986 trace_vhost_vdpa_get_config(dev, config, config_len); 987 v_config = g_malloc(config_len + config_size); 988 v_config->len = config_len; 989 v_config->off = 0; 990 ret = vhost_vdpa_call(dev, VHOST_VDPA_GET_CONFIG, v_config); 991 memcpy(config, v_config->buf, config_len); 992 g_free(v_config); 993 if (trace_event_get_state_backends(TRACE_VHOST_VDPA_GET_CONFIG) && 994 trace_event_get_state_backends(TRACE_VHOST_VDPA_DUMP_CONFIG)) { 995 vhost_vdpa_dump_config(dev, config, config_len); 996 } 997 return ret; 998 } 999 1000 static int vhost_vdpa_set_dev_vring_base(struct vhost_dev *dev, 1001 struct vhost_vring_state *ring) 1002 { 1003 struct vhost_vdpa *v = dev->opaque; 1004 1005 trace_vhost_vdpa_set_dev_vring_base(dev, ring->index, ring->num, 1006 v->shadow_vqs_enabled); 1007 return vhost_vdpa_call(dev, VHOST_SET_VRING_BASE, ring); 1008 } 1009 1010 static int vhost_vdpa_set_vring_dev_kick(struct vhost_dev *dev, 1011 struct vhost_vring_file *file) 1012 { 1013 trace_vhost_vdpa_set_vring_kick(dev, file->index, file->fd); 1014 return vhost_vdpa_call(dev, VHOST_SET_VRING_KICK, file); 1015 } 1016 1017 static int vhost_vdpa_set_vring_dev_call(struct vhost_dev *dev, 1018 struct vhost_vring_file *file) 1019 { 1020 trace_vhost_vdpa_set_vring_call(dev, file->index, file->fd); 1021 return vhost_vdpa_call(dev, VHOST_SET_VRING_CALL, file); 1022 } 1023 1024 static int vhost_vdpa_set_vring_dev_addr(struct vhost_dev *dev, 1025 struct vhost_vring_addr *addr) 1026 { 1027 trace_vhost_vdpa_set_vring_addr(dev, addr->index, addr->flags, 1028 addr->desc_user_addr, addr->used_user_addr, 1029 addr->avail_user_addr, 1030 addr->log_guest_addr); 1031 1032 return vhost_vdpa_call(dev, VHOST_SET_VRING_ADDR, addr); 1033 1034 } 1035 1036 /** 1037 * Set the shadow virtqueue descriptors to the device 1038 * 1039 * @dev: The vhost device model 1040 * @svq: The shadow virtqueue 1041 * @idx: The index of the virtqueue in the vhost device 1042 * @errp: Error 1043 * 1044 * Note that this function does not rewind kick file descriptor if cannot set 1045 * call one. 1046 */ 1047 static int vhost_vdpa_svq_set_fds(struct vhost_dev *dev, 1048 VhostShadowVirtqueue *svq, unsigned idx, 1049 Error **errp) 1050 { 1051 struct vhost_vring_file file = { 1052 .index = dev->vq_index + idx, 1053 }; 1054 const EventNotifier *event_notifier = &svq->hdev_kick; 1055 int r; 1056 1057 r = event_notifier_init(&svq->hdev_kick, 0); 1058 if (r != 0) { 1059 error_setg_errno(errp, -r, "Couldn't create kick event notifier"); 1060 goto err_init_hdev_kick; 1061 } 1062 1063 r = event_notifier_init(&svq->hdev_call, 0); 1064 if (r != 0) { 1065 error_setg_errno(errp, -r, "Couldn't create call event notifier"); 1066 goto err_init_hdev_call; 1067 } 1068 1069 file.fd = event_notifier_get_fd(event_notifier); 1070 r = vhost_vdpa_set_vring_dev_kick(dev, &file); 1071 if (unlikely(r != 0)) { 1072 error_setg_errno(errp, -r, "Can't set device kick fd"); 1073 goto err_init_set_dev_fd; 1074 } 1075 1076 event_notifier = &svq->hdev_call; 1077 file.fd = event_notifier_get_fd(event_notifier); 1078 r = vhost_vdpa_set_vring_dev_call(dev, &file); 1079 if (unlikely(r != 0)) { 1080 error_setg_errno(errp, -r, "Can't set device call fd"); 1081 goto err_init_set_dev_fd; 1082 } 1083 1084 return 0; 1085 1086 err_init_set_dev_fd: 1087 event_notifier_set_handler(&svq->hdev_call, NULL); 1088 1089 err_init_hdev_call: 1090 event_notifier_cleanup(&svq->hdev_kick); 1091 1092 err_init_hdev_kick: 1093 return r; 1094 } 1095 1096 /** 1097 * Unmap a SVQ area in the device 1098 */ 1099 static void vhost_vdpa_svq_unmap_ring(struct vhost_vdpa *v, hwaddr addr) 1100 { 1101 const DMAMap needle = { 1102 .translated_addr = addr, 1103 }; 1104 const DMAMap *result = vhost_iova_tree_find_iova(v->shared->iova_tree, 1105 &needle); 1106 hwaddr size; 1107 int r; 1108 1109 if (unlikely(!result)) { 1110 error_report("Unable to find SVQ address to unmap"); 1111 return; 1112 } 1113 1114 size = ROUND_UP(result->size, qemu_real_host_page_size()); 1115 r = vhost_vdpa_dma_unmap(v->shared, v->address_space_id, result->iova, 1116 size); 1117 if (unlikely(r < 0)) { 1118 error_report("Unable to unmap SVQ vring: %s (%d)", g_strerror(-r), -r); 1119 return; 1120 } 1121 1122 vhost_iova_tree_remove(v->shared->iova_tree, *result); 1123 } 1124 1125 static void vhost_vdpa_svq_unmap_rings(struct vhost_dev *dev, 1126 const VhostShadowVirtqueue *svq) 1127 { 1128 struct vhost_vdpa *v = dev->opaque; 1129 struct vhost_vring_addr svq_addr; 1130 1131 vhost_svq_get_vring_addr(svq, &svq_addr); 1132 1133 vhost_vdpa_svq_unmap_ring(v, svq_addr.desc_user_addr); 1134 1135 vhost_vdpa_svq_unmap_ring(v, svq_addr.used_user_addr); 1136 } 1137 1138 /** 1139 * Map the SVQ area in the device 1140 * 1141 * @v: Vhost-vdpa device 1142 * @needle: The area to search iova 1143 * @errorp: Error pointer 1144 */ 1145 static bool vhost_vdpa_svq_map_ring(struct vhost_vdpa *v, DMAMap *needle, 1146 Error **errp) 1147 { 1148 int r; 1149 1150 r = vhost_iova_tree_map_alloc(v->shared->iova_tree, needle); 1151 if (unlikely(r != IOVA_OK)) { 1152 error_setg(errp, "Cannot allocate iova (%d)", r); 1153 return false; 1154 } 1155 1156 r = vhost_vdpa_dma_map(v->shared, v->address_space_id, needle->iova, 1157 needle->size + 1, 1158 (void *)(uintptr_t)needle->translated_addr, 1159 needle->perm == IOMMU_RO); 1160 if (unlikely(r != 0)) { 1161 error_setg_errno(errp, -r, "Cannot map region to device"); 1162 vhost_iova_tree_remove(v->shared->iova_tree, *needle); 1163 } 1164 1165 return r == 0; 1166 } 1167 1168 /** 1169 * Map the shadow virtqueue rings in the device 1170 * 1171 * @dev: The vhost device 1172 * @svq: The shadow virtqueue 1173 * @addr: Assigned IOVA addresses 1174 * @errp: Error pointer 1175 */ 1176 static bool vhost_vdpa_svq_map_rings(struct vhost_dev *dev, 1177 const VhostShadowVirtqueue *svq, 1178 struct vhost_vring_addr *addr, 1179 Error **errp) 1180 { 1181 ERRP_GUARD(); 1182 DMAMap device_region, driver_region; 1183 struct vhost_vring_addr svq_addr; 1184 struct vhost_vdpa *v = dev->opaque; 1185 size_t device_size = vhost_svq_device_area_size(svq); 1186 size_t driver_size = vhost_svq_driver_area_size(svq); 1187 size_t avail_offset; 1188 bool ok; 1189 1190 vhost_svq_get_vring_addr(svq, &svq_addr); 1191 1192 driver_region = (DMAMap) { 1193 .translated_addr = svq_addr.desc_user_addr, 1194 .size = driver_size - 1, 1195 .perm = IOMMU_RO, 1196 }; 1197 ok = vhost_vdpa_svq_map_ring(v, &driver_region, errp); 1198 if (unlikely(!ok)) { 1199 error_prepend(errp, "Cannot create vq driver region: "); 1200 return false; 1201 } 1202 addr->desc_user_addr = driver_region.iova; 1203 avail_offset = svq_addr.avail_user_addr - svq_addr.desc_user_addr; 1204 addr->avail_user_addr = driver_region.iova + avail_offset; 1205 1206 device_region = (DMAMap) { 1207 .translated_addr = svq_addr.used_user_addr, 1208 .size = device_size - 1, 1209 .perm = IOMMU_RW, 1210 }; 1211 ok = vhost_vdpa_svq_map_ring(v, &device_region, errp); 1212 if (unlikely(!ok)) { 1213 error_prepend(errp, "Cannot create vq device region: "); 1214 vhost_vdpa_svq_unmap_ring(v, driver_region.translated_addr); 1215 } 1216 addr->used_user_addr = device_region.iova; 1217 1218 return ok; 1219 } 1220 1221 static bool vhost_vdpa_svq_setup(struct vhost_dev *dev, 1222 VhostShadowVirtqueue *svq, unsigned idx, 1223 Error **errp) 1224 { 1225 uint16_t vq_index = dev->vq_index + idx; 1226 struct vhost_vring_state s = { 1227 .index = vq_index, 1228 }; 1229 int r; 1230 1231 r = vhost_vdpa_set_dev_vring_base(dev, &s); 1232 if (unlikely(r)) { 1233 error_setg_errno(errp, -r, "Cannot set vring base"); 1234 return false; 1235 } 1236 1237 r = vhost_vdpa_svq_set_fds(dev, svq, idx, errp); 1238 return r == 0; 1239 } 1240 1241 static bool vhost_vdpa_svqs_start(struct vhost_dev *dev) 1242 { 1243 struct vhost_vdpa *v = dev->opaque; 1244 Error *err = NULL; 1245 unsigned i; 1246 1247 if (!v->shadow_vqs_enabled) { 1248 return true; 1249 } 1250 1251 for (i = 0; i < v->shadow_vqs->len; ++i) { 1252 VirtQueue *vq = virtio_get_queue(dev->vdev, dev->vq_index + i); 1253 VhostShadowVirtqueue *svq = g_ptr_array_index(v->shadow_vqs, i); 1254 struct vhost_vring_addr addr = { 1255 .index = dev->vq_index + i, 1256 }; 1257 int r; 1258 bool ok = vhost_vdpa_svq_setup(dev, svq, i, &err); 1259 if (unlikely(!ok)) { 1260 goto err; 1261 } 1262 1263 vhost_svq_start(svq, dev->vdev, vq, v->shared->iova_tree); 1264 ok = vhost_vdpa_svq_map_rings(dev, svq, &addr, &err); 1265 if (unlikely(!ok)) { 1266 goto err_map; 1267 } 1268 1269 /* Override vring GPA set by vhost subsystem */ 1270 r = vhost_vdpa_set_vring_dev_addr(dev, &addr); 1271 if (unlikely(r != 0)) { 1272 error_setg_errno(&err, -r, "Cannot set device address"); 1273 goto err_set_addr; 1274 } 1275 } 1276 1277 return true; 1278 1279 err_set_addr: 1280 vhost_vdpa_svq_unmap_rings(dev, g_ptr_array_index(v->shadow_vqs, i)); 1281 1282 err_map: 1283 vhost_svq_stop(g_ptr_array_index(v->shadow_vqs, i)); 1284 1285 err: 1286 error_reportf_err(err, "Cannot setup SVQ %u: ", i); 1287 for (unsigned j = 0; j < i; ++j) { 1288 VhostShadowVirtqueue *svq = g_ptr_array_index(v->shadow_vqs, j); 1289 vhost_vdpa_svq_unmap_rings(dev, svq); 1290 vhost_svq_stop(svq); 1291 } 1292 1293 return false; 1294 } 1295 1296 static void vhost_vdpa_svqs_stop(struct vhost_dev *dev) 1297 { 1298 struct vhost_vdpa *v = dev->opaque; 1299 1300 if (!v->shadow_vqs_enabled) { 1301 return; 1302 } 1303 1304 for (unsigned i = 0; i < v->shadow_vqs->len; ++i) { 1305 VhostShadowVirtqueue *svq = g_ptr_array_index(v->shadow_vqs, i); 1306 1307 vhost_svq_stop(svq); 1308 vhost_vdpa_svq_unmap_rings(dev, svq); 1309 1310 event_notifier_cleanup(&svq->hdev_kick); 1311 event_notifier_cleanup(&svq->hdev_call); 1312 } 1313 } 1314 1315 static void vhost_vdpa_suspend(struct vhost_dev *dev) 1316 { 1317 struct vhost_vdpa *v = dev->opaque; 1318 int r; 1319 1320 if (!vhost_vdpa_first_dev(dev)) { 1321 return; 1322 } 1323 1324 if (dev->backend_cap & BIT_ULL(VHOST_BACKEND_F_SUSPEND)) { 1325 trace_vhost_vdpa_suspend(dev); 1326 r = ioctl(v->shared->device_fd, VHOST_VDPA_SUSPEND); 1327 if (unlikely(r)) { 1328 error_report("Cannot suspend: %s(%d)", g_strerror(errno), errno); 1329 } else { 1330 v->suspended = true; 1331 return; 1332 } 1333 } 1334 1335 vhost_vdpa_reset_device(dev); 1336 } 1337 1338 static int vhost_vdpa_dev_start(struct vhost_dev *dev, bool started) 1339 { 1340 struct vhost_vdpa *v = dev->opaque; 1341 bool ok; 1342 trace_vhost_vdpa_dev_start(dev, started); 1343 1344 if (started) { 1345 vhost_vdpa_host_notifiers_init(dev); 1346 ok = vhost_vdpa_svqs_start(dev); 1347 if (unlikely(!ok)) { 1348 return -1; 1349 } 1350 } else { 1351 vhost_vdpa_suspend(dev); 1352 vhost_vdpa_svqs_stop(dev); 1353 vhost_vdpa_host_notifiers_uninit(dev, dev->nvqs); 1354 } 1355 1356 if (!vhost_vdpa_last_dev(dev)) { 1357 return 0; 1358 } 1359 1360 if (started) { 1361 if (vhost_dev_has_iommu(dev) && (v->shadow_vqs_enabled)) { 1362 error_report("SVQ can not work while IOMMU enable, please disable" 1363 "IOMMU and try again"); 1364 return -1; 1365 } 1366 memory_listener_register(&v->shared->listener, dev->vdev->dma_as); 1367 1368 return vhost_vdpa_add_status(dev, VIRTIO_CONFIG_S_DRIVER_OK); 1369 } 1370 1371 return 0; 1372 } 1373 1374 static void vhost_vdpa_reset_status(struct vhost_dev *dev) 1375 { 1376 struct vhost_vdpa *v = dev->opaque; 1377 1378 if (!vhost_vdpa_last_dev(dev)) { 1379 return; 1380 } 1381 1382 vhost_vdpa_reset_device(dev); 1383 vhost_vdpa_add_status(dev, VIRTIO_CONFIG_S_ACKNOWLEDGE | 1384 VIRTIO_CONFIG_S_DRIVER); 1385 memory_listener_unregister(&v->shared->listener); 1386 } 1387 1388 static int vhost_vdpa_set_log_base(struct vhost_dev *dev, uint64_t base, 1389 struct vhost_log *log) 1390 { 1391 struct vhost_vdpa *v = dev->opaque; 1392 if (v->shadow_vqs_enabled || !vhost_vdpa_first_dev(dev)) { 1393 return 0; 1394 } 1395 1396 trace_vhost_vdpa_set_log_base(dev, base, log->size, log->refcnt, log->fd, 1397 log->log); 1398 return vhost_vdpa_call(dev, VHOST_SET_LOG_BASE, &base); 1399 } 1400 1401 static int vhost_vdpa_set_vring_addr(struct vhost_dev *dev, 1402 struct vhost_vring_addr *addr) 1403 { 1404 struct vhost_vdpa *v = dev->opaque; 1405 1406 if (v->shadow_vqs_enabled) { 1407 /* 1408 * Device vring addr was set at device start. SVQ base is handled by 1409 * VirtQueue code. 1410 */ 1411 return 0; 1412 } 1413 1414 return vhost_vdpa_set_vring_dev_addr(dev, addr); 1415 } 1416 1417 static int vhost_vdpa_set_vring_num(struct vhost_dev *dev, 1418 struct vhost_vring_state *ring) 1419 { 1420 trace_vhost_vdpa_set_vring_num(dev, ring->index, ring->num); 1421 return vhost_vdpa_call(dev, VHOST_SET_VRING_NUM, ring); 1422 } 1423 1424 static int vhost_vdpa_set_vring_base(struct vhost_dev *dev, 1425 struct vhost_vring_state *ring) 1426 { 1427 struct vhost_vdpa *v = dev->opaque; 1428 1429 if (v->shadow_vqs_enabled) { 1430 /* 1431 * Device vring base was set at device start. SVQ base is handled by 1432 * VirtQueue code. 1433 */ 1434 return 0; 1435 } 1436 1437 return vhost_vdpa_set_dev_vring_base(dev, ring); 1438 } 1439 1440 static int vhost_vdpa_get_vring_base(struct vhost_dev *dev, 1441 struct vhost_vring_state *ring) 1442 { 1443 struct vhost_vdpa *v = dev->opaque; 1444 int ret; 1445 1446 if (v->shadow_vqs_enabled) { 1447 ring->num = virtio_queue_get_last_avail_idx(dev->vdev, ring->index); 1448 trace_vhost_vdpa_get_vring_base(dev, ring->index, ring->num, true); 1449 return 0; 1450 } 1451 1452 if (!v->suspended) { 1453 /* 1454 * Cannot trust in value returned by device, let vhost recover used 1455 * idx from guest. 1456 */ 1457 return -1; 1458 } 1459 1460 ret = vhost_vdpa_call(dev, VHOST_GET_VRING_BASE, ring); 1461 trace_vhost_vdpa_get_vring_base(dev, ring->index, ring->num, false); 1462 return ret; 1463 } 1464 1465 static int vhost_vdpa_set_vring_kick(struct vhost_dev *dev, 1466 struct vhost_vring_file *file) 1467 { 1468 struct vhost_vdpa *v = dev->opaque; 1469 int vdpa_idx = file->index - dev->vq_index; 1470 1471 if (v->shadow_vqs_enabled) { 1472 VhostShadowVirtqueue *svq = g_ptr_array_index(v->shadow_vqs, vdpa_idx); 1473 vhost_svq_set_svq_kick_fd(svq, file->fd); 1474 return 0; 1475 } else { 1476 return vhost_vdpa_set_vring_dev_kick(dev, file); 1477 } 1478 } 1479 1480 static int vhost_vdpa_set_vring_call(struct vhost_dev *dev, 1481 struct vhost_vring_file *file) 1482 { 1483 struct vhost_vdpa *v = dev->opaque; 1484 int vdpa_idx = file->index - dev->vq_index; 1485 VhostShadowVirtqueue *svq = g_ptr_array_index(v->shadow_vqs, vdpa_idx); 1486 1487 /* Remember last call fd because we can switch to SVQ anytime. */ 1488 vhost_svq_set_svq_call_fd(svq, file->fd); 1489 /* 1490 * When SVQ is transitioning to off, shadow_vqs_enabled has 1491 * not been set back to false yet, but the underlying call fd 1492 * will have to switch back to the guest notifier to signal the 1493 * passthrough virtqueues. In other situations, SVQ's own call 1494 * fd shall be used to signal the device model. 1495 */ 1496 if (v->shadow_vqs_enabled && 1497 v->shared->svq_switching != SVQ_TSTATE_DISABLING) { 1498 return 0; 1499 } 1500 1501 return vhost_vdpa_set_vring_dev_call(dev, file); 1502 } 1503 1504 static int vhost_vdpa_get_features(struct vhost_dev *dev, 1505 uint64_t *features) 1506 { 1507 int ret = vhost_vdpa_get_dev_features(dev, features); 1508 1509 if (ret == 0) { 1510 /* Add SVQ logging capabilities */ 1511 *features |= BIT_ULL(VHOST_F_LOG_ALL); 1512 } 1513 1514 return ret; 1515 } 1516 1517 static int vhost_vdpa_set_owner(struct vhost_dev *dev) 1518 { 1519 if (!vhost_vdpa_first_dev(dev)) { 1520 return 0; 1521 } 1522 1523 trace_vhost_vdpa_set_owner(dev); 1524 return vhost_vdpa_call(dev, VHOST_SET_OWNER, NULL); 1525 } 1526 1527 static int vhost_vdpa_vq_get_addr(struct vhost_dev *dev, 1528 struct vhost_vring_addr *addr, struct vhost_virtqueue *vq) 1529 { 1530 assert(dev->vhost_ops->backend_type == VHOST_BACKEND_TYPE_VDPA); 1531 addr->desc_user_addr = (uint64_t)(unsigned long)vq->desc_phys; 1532 addr->avail_user_addr = (uint64_t)(unsigned long)vq->avail_phys; 1533 addr->used_user_addr = (uint64_t)(unsigned long)vq->used_phys; 1534 trace_vhost_vdpa_vq_get_addr(dev, vq, addr->desc_user_addr, 1535 addr->avail_user_addr, addr->used_user_addr); 1536 return 0; 1537 } 1538 1539 static bool vhost_vdpa_force_iommu(struct vhost_dev *dev) 1540 { 1541 return true; 1542 } 1543 1544 const VhostOps vdpa_ops = { 1545 .backend_type = VHOST_BACKEND_TYPE_VDPA, 1546 .vhost_backend_init = vhost_vdpa_init, 1547 .vhost_backend_cleanup = vhost_vdpa_cleanup, 1548 .vhost_set_log_base = vhost_vdpa_set_log_base, 1549 .vhost_set_vring_addr = vhost_vdpa_set_vring_addr, 1550 .vhost_set_vring_num = vhost_vdpa_set_vring_num, 1551 .vhost_set_vring_base = vhost_vdpa_set_vring_base, 1552 .vhost_get_vring_base = vhost_vdpa_get_vring_base, 1553 .vhost_set_vring_kick = vhost_vdpa_set_vring_kick, 1554 .vhost_set_vring_call = vhost_vdpa_set_vring_call, 1555 .vhost_get_features = vhost_vdpa_get_features, 1556 .vhost_set_backend_cap = vhost_vdpa_set_backend_cap, 1557 .vhost_set_owner = vhost_vdpa_set_owner, 1558 .vhost_set_vring_endian = NULL, 1559 .vhost_backend_memslots_limit = vhost_vdpa_memslots_limit, 1560 .vhost_set_mem_table = vhost_vdpa_set_mem_table, 1561 .vhost_set_features = vhost_vdpa_set_features, 1562 .vhost_reset_device = vhost_vdpa_reset_device, 1563 .vhost_get_vq_index = vhost_vdpa_get_vq_index, 1564 .vhost_set_vring_enable = vhost_vdpa_set_vring_enable, 1565 .vhost_get_config = vhost_vdpa_get_config, 1566 .vhost_set_config = vhost_vdpa_set_config, 1567 .vhost_requires_shm_log = NULL, 1568 .vhost_migration_done = NULL, 1569 .vhost_net_set_mtu = NULL, 1570 .vhost_set_iotlb_callback = NULL, 1571 .vhost_send_device_iotlb_msg = NULL, 1572 .vhost_dev_start = vhost_vdpa_dev_start, 1573 .vhost_get_device_id = vhost_vdpa_get_device_id, 1574 .vhost_vq_get_addr = vhost_vdpa_vq_get_addr, 1575 .vhost_force_iommu = vhost_vdpa_force_iommu, 1576 .vhost_set_config_call = vhost_vdpa_set_config_call, 1577 .vhost_reset_status = vhost_vdpa_reset_status, 1578 }; 1579