xref: /openbmc/qemu/hw/vfio/pci-quirks.c (revision 9cdd2a736b99bad19fb4f88d2230c75f680c31ec)
1 /*
2  * device quirks for PCI devices
3  *
4  * Copyright Red Hat, Inc. 2012-2015
5  *
6  * Authors:
7  *  Alex Williamson <alex.williamson@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qemu/error-report.h"
15 #include "qemu/range.h"
16 #include "qapi/error.h"
17 #include "qapi/visitor.h"
18 #include "hw/nvram/fw_cfg.h"
19 #include "pci.h"
20 #include "trace.h"
21 
22 /* Use uin32_t for vendor & device so PCI_ANY_ID expands and cannot match hw */
23 static bool vfio_pci_is(VFIOPCIDevice *vdev, uint32_t vendor, uint32_t device)
24 {
25     return (vendor == PCI_ANY_ID || vendor == vdev->vendor_id) &&
26            (device == PCI_ANY_ID || device == vdev->device_id);
27 }
28 
29 static bool vfio_is_vga(VFIOPCIDevice *vdev)
30 {
31     PCIDevice *pdev = &vdev->pdev;
32     uint16_t class = pci_get_word(pdev->config + PCI_CLASS_DEVICE);
33 
34     return class == PCI_CLASS_DISPLAY_VGA;
35 }
36 
37 /*
38  * List of device ids/vendor ids for which to disable
39  * option rom loading. This avoids the guest hangs during rom
40  * execution as noticed with the BCM 57810 card for lack of a
41  * more better way to handle such issues.
42  * The  user can still override by specifying a romfile or
43  * rombar=1.
44  * Please see https://bugs.launchpad.net/qemu/+bug/1284874
45  * for an analysis of the 57810 card hang. When adding
46  * a new vendor id/device id combination below, please also add
47  * your card/environment details and information that could
48  * help in debugging to the bug tracking this issue
49  */
50 static const struct {
51     uint32_t vendor;
52     uint32_t device;
53 } romblacklist[] = {
54     { 0x14e4, 0x168e }, /* Broadcom BCM 57810 */
55 };
56 
57 bool vfio_blacklist_opt_rom(VFIOPCIDevice *vdev)
58 {
59     int i;
60 
61     for (i = 0 ; i < ARRAY_SIZE(romblacklist); i++) {
62         if (vfio_pci_is(vdev, romblacklist[i].vendor, romblacklist[i].device)) {
63             trace_vfio_quirk_rom_blacklisted(vdev->vbasedev.name,
64                                              romblacklist[i].vendor,
65                                              romblacklist[i].device);
66             return true;
67         }
68     }
69     return false;
70 }
71 
72 /*
73  * Device specific region quirks (mostly backdoors to PCI config space)
74  */
75 
76 /*
77  * The generic window quirks operate on an address and data register,
78  * vfio_generic_window_address_quirk handles the address register and
79  * vfio_generic_window_data_quirk handles the data register.  These ops
80  * pass reads and writes through to hardware until a value matching the
81  * stored address match/mask is written.  When this occurs, the data
82  * register access emulated PCI config space for the device rather than
83  * passing through accesses.  This enables devices where PCI config space
84  * is accessible behind a window register to maintain the virtualization
85  * provided through vfio.
86  */
87 typedef struct VFIOConfigWindowMatch {
88     uint32_t match;
89     uint32_t mask;
90 } VFIOConfigWindowMatch;
91 
92 typedef struct VFIOConfigWindowQuirk {
93     struct VFIOPCIDevice *vdev;
94 
95     uint32_t address_val;
96 
97     uint32_t address_offset;
98     uint32_t data_offset;
99 
100     bool window_enabled;
101     uint8_t bar;
102 
103     MemoryRegion *addr_mem;
104     MemoryRegion *data_mem;
105 
106     uint32_t nr_matches;
107     VFIOConfigWindowMatch matches[];
108 } VFIOConfigWindowQuirk;
109 
110 static uint64_t vfio_generic_window_quirk_address_read(void *opaque,
111                                                        hwaddr addr,
112                                                        unsigned size)
113 {
114     VFIOConfigWindowQuirk *window = opaque;
115     VFIOPCIDevice *vdev = window->vdev;
116 
117     return vfio_region_read(&vdev->bars[window->bar].region,
118                             addr + window->address_offset, size);
119 }
120 
121 static void vfio_generic_window_quirk_address_write(void *opaque, hwaddr addr,
122                                                     uint64_t data,
123                                                     unsigned size)
124 {
125     VFIOConfigWindowQuirk *window = opaque;
126     VFIOPCIDevice *vdev = window->vdev;
127     int i;
128 
129     window->window_enabled = false;
130 
131     vfio_region_write(&vdev->bars[window->bar].region,
132                       addr + window->address_offset, data, size);
133 
134     for (i = 0; i < window->nr_matches; i++) {
135         if ((data & ~window->matches[i].mask) == window->matches[i].match) {
136             window->window_enabled = true;
137             window->address_val = data & window->matches[i].mask;
138             trace_vfio_quirk_generic_window_address_write(vdev->vbasedev.name,
139                                     memory_region_name(window->addr_mem), data);
140             break;
141         }
142     }
143 }
144 
145 static const MemoryRegionOps vfio_generic_window_address_quirk = {
146     .read = vfio_generic_window_quirk_address_read,
147     .write = vfio_generic_window_quirk_address_write,
148     .endianness = DEVICE_LITTLE_ENDIAN,
149 };
150 
151 static uint64_t vfio_generic_window_quirk_data_read(void *opaque,
152                                                     hwaddr addr, unsigned size)
153 {
154     VFIOConfigWindowQuirk *window = opaque;
155     VFIOPCIDevice *vdev = window->vdev;
156     uint64_t data;
157 
158     /* Always read data reg, discard if window enabled */
159     data = vfio_region_read(&vdev->bars[window->bar].region,
160                             addr + window->data_offset, size);
161 
162     if (window->window_enabled) {
163         data = vfio_pci_read_config(&vdev->pdev, window->address_val, size);
164         trace_vfio_quirk_generic_window_data_read(vdev->vbasedev.name,
165                                     memory_region_name(window->data_mem), data);
166     }
167 
168     return data;
169 }
170 
171 static void vfio_generic_window_quirk_data_write(void *opaque, hwaddr addr,
172                                                  uint64_t data, unsigned size)
173 {
174     VFIOConfigWindowQuirk *window = opaque;
175     VFIOPCIDevice *vdev = window->vdev;
176 
177     if (window->window_enabled) {
178         vfio_pci_write_config(&vdev->pdev, window->address_val, data, size);
179         trace_vfio_quirk_generic_window_data_write(vdev->vbasedev.name,
180                                     memory_region_name(window->data_mem), data);
181         return;
182     }
183 
184     vfio_region_write(&vdev->bars[window->bar].region,
185                       addr + window->data_offset, data, size);
186 }
187 
188 static const MemoryRegionOps vfio_generic_window_data_quirk = {
189     .read = vfio_generic_window_quirk_data_read,
190     .write = vfio_generic_window_quirk_data_write,
191     .endianness = DEVICE_LITTLE_ENDIAN,
192 };
193 
194 /*
195  * The generic mirror quirk handles devices which expose PCI config space
196  * through a region within a BAR.  When enabled, reads and writes are
197  * redirected through to emulated PCI config space.  XXX if PCI config space
198  * used memory regions, this could just be an alias.
199  */
200 typedef struct VFIOConfigMirrorQuirk {
201     struct VFIOPCIDevice *vdev;
202     uint32_t offset;
203     uint8_t bar;
204     MemoryRegion *mem;
205 } VFIOConfigMirrorQuirk;
206 
207 static uint64_t vfio_generic_quirk_mirror_read(void *opaque,
208                                                hwaddr addr, unsigned size)
209 {
210     VFIOConfigMirrorQuirk *mirror = opaque;
211     VFIOPCIDevice *vdev = mirror->vdev;
212     uint64_t data;
213 
214     /* Read and discard in case the hardware cares */
215     (void)vfio_region_read(&vdev->bars[mirror->bar].region,
216                            addr + mirror->offset, size);
217 
218     data = vfio_pci_read_config(&vdev->pdev, addr, size);
219     trace_vfio_quirk_generic_mirror_read(vdev->vbasedev.name,
220                                          memory_region_name(mirror->mem),
221                                          addr, data);
222     return data;
223 }
224 
225 static void vfio_generic_quirk_mirror_write(void *opaque, hwaddr addr,
226                                             uint64_t data, unsigned size)
227 {
228     VFIOConfigMirrorQuirk *mirror = opaque;
229     VFIOPCIDevice *vdev = mirror->vdev;
230 
231     vfio_pci_write_config(&vdev->pdev, addr, data, size);
232     trace_vfio_quirk_generic_mirror_write(vdev->vbasedev.name,
233                                           memory_region_name(mirror->mem),
234                                           addr, data);
235 }
236 
237 static const MemoryRegionOps vfio_generic_mirror_quirk = {
238     .read = vfio_generic_quirk_mirror_read,
239     .write = vfio_generic_quirk_mirror_write,
240     .endianness = DEVICE_LITTLE_ENDIAN,
241 };
242 
243 /* Is range1 fully contained within range2?  */
244 static bool vfio_range_contained(uint64_t first1, uint64_t len1,
245                                  uint64_t first2, uint64_t len2) {
246     return (first1 >= first2 && first1 + len1 <= first2 + len2);
247 }
248 
249 #define PCI_VENDOR_ID_ATI               0x1002
250 
251 /*
252  * Radeon HD cards (HD5450 & HD7850) report the upper byte of the I/O port BAR
253  * through VGA register 0x3c3.  On newer cards, the I/O port BAR is always
254  * BAR4 (older cards like the X550 used BAR1, but we don't care to support
255  * those).  Note that on bare metal, a read of 0x3c3 doesn't always return the
256  * I/O port BAR address.  Originally this was coded to return the virtual BAR
257  * address only if the physical register read returns the actual BAR address,
258  * but users have reported greater success if we return the virtual address
259  * unconditionally.
260  */
261 static uint64_t vfio_ati_3c3_quirk_read(void *opaque,
262                                         hwaddr addr, unsigned size)
263 {
264     VFIOPCIDevice *vdev = opaque;
265     uint64_t data = vfio_pci_read_config(&vdev->pdev,
266                                          PCI_BASE_ADDRESS_4 + 1, size);
267 
268     trace_vfio_quirk_ati_3c3_read(vdev->vbasedev.name, data);
269 
270     return data;
271 }
272 
273 static const MemoryRegionOps vfio_ati_3c3_quirk = {
274     .read = vfio_ati_3c3_quirk_read,
275     .endianness = DEVICE_LITTLE_ENDIAN,
276 };
277 
278 static void vfio_vga_probe_ati_3c3_quirk(VFIOPCIDevice *vdev)
279 {
280     VFIOQuirk *quirk;
281 
282     /*
283      * As long as the BAR is >= 256 bytes it will be aligned such that the
284      * lower byte is always zero.  Filter out anything else, if it exists.
285      */
286     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
287         !vdev->bars[4].ioport || vdev->bars[4].region.size < 256) {
288         return;
289     }
290 
291     quirk = g_malloc0(sizeof(*quirk));
292     quirk->mem = g_new0(MemoryRegion, 1);
293     quirk->nr_mem = 1;
294 
295     memory_region_init_io(quirk->mem, OBJECT(vdev), &vfio_ati_3c3_quirk, vdev,
296                           "vfio-ati-3c3-quirk", 1);
297     memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
298                                 3 /* offset 3 bytes from 0x3c0 */, quirk->mem);
299 
300     QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks,
301                       quirk, next);
302 
303     trace_vfio_quirk_ati_3c3_probe(vdev->vbasedev.name);
304 }
305 
306 /*
307  * Newer ATI/AMD devices, including HD5450 and HD7850, have a mirror to PCI
308  * config space through MMIO BAR2 at offset 0x4000.  Nothing seems to access
309  * the MMIO space directly, but a window to this space is provided through
310  * I/O port BAR4.  Offset 0x0 is the address register and offset 0x4 is the
311  * data register.  When the address is programmed to a range of 0x4000-0x4fff
312  * PCI configuration space is available.  Experimentation seems to indicate
313  * that read-only may be provided by hardware.
314  */
315 static void vfio_probe_ati_bar4_quirk(VFIOPCIDevice *vdev, int nr)
316 {
317     VFIOQuirk *quirk;
318     VFIOConfigWindowQuirk *window;
319 
320     /* This windows doesn't seem to be used except by legacy VGA code */
321     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
322         !vdev->vga || nr != 4) {
323         return;
324     }
325 
326     quirk = g_malloc0(sizeof(*quirk));
327     quirk->mem = g_new0(MemoryRegion, 2);
328     quirk->nr_mem = 2;
329     window = quirk->data = g_malloc0(sizeof(*window) +
330                                      sizeof(VFIOConfigWindowMatch));
331     window->vdev = vdev;
332     window->address_offset = 0;
333     window->data_offset = 4;
334     window->nr_matches = 1;
335     window->matches[0].match = 0x4000;
336     window->matches[0].mask = vdev->config_size - 1;
337     window->bar = nr;
338     window->addr_mem = &quirk->mem[0];
339     window->data_mem = &quirk->mem[1];
340 
341     memory_region_init_io(window->addr_mem, OBJECT(vdev),
342                           &vfio_generic_window_address_quirk, window,
343                           "vfio-ati-bar4-window-address-quirk", 4);
344     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
345                                         window->address_offset,
346                                         window->addr_mem, 1);
347 
348     memory_region_init_io(window->data_mem, OBJECT(vdev),
349                           &vfio_generic_window_data_quirk, window,
350                           "vfio-ati-bar4-window-data-quirk", 4);
351     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
352                                         window->data_offset,
353                                         window->data_mem, 1);
354 
355     QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
356 
357     trace_vfio_quirk_ati_bar4_probe(vdev->vbasedev.name);
358 }
359 
360 /*
361  * Trap the BAR2 MMIO mirror to config space as well.
362  */
363 static void vfio_probe_ati_bar2_quirk(VFIOPCIDevice *vdev, int nr)
364 {
365     VFIOQuirk *quirk;
366     VFIOConfigMirrorQuirk *mirror;
367 
368     /* Only enable on newer devices where BAR2 is 64bit */
369     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
370         !vdev->vga || nr != 2 || !vdev->bars[2].mem64) {
371         return;
372     }
373 
374     quirk = g_malloc0(sizeof(*quirk));
375     mirror = quirk->data = g_malloc0(sizeof(*mirror));
376     mirror->mem = quirk->mem = g_new0(MemoryRegion, 1);
377     quirk->nr_mem = 1;
378     mirror->vdev = vdev;
379     mirror->offset = 0x4000;
380     mirror->bar = nr;
381 
382     memory_region_init_io(mirror->mem, OBJECT(vdev),
383                           &vfio_generic_mirror_quirk, mirror,
384                           "vfio-ati-bar2-4000-quirk", PCI_CONFIG_SPACE_SIZE);
385     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
386                                         mirror->offset, mirror->mem, 1);
387 
388     QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
389 
390     trace_vfio_quirk_ati_bar2_probe(vdev->vbasedev.name);
391 }
392 
393 /*
394  * Older ATI/AMD cards like the X550 have a similar window to that above.
395  * I/O port BAR1 provides a window to a mirror of PCI config space located
396  * in BAR2 at offset 0xf00.  We don't care to support such older cards, but
397  * note it for future reference.
398  */
399 
400 #define PCI_VENDOR_ID_NVIDIA                    0x10de
401 
402 /*
403  * Nvidia has several different methods to get to config space, the
404  * nouveu project has several of these documented here:
405  * https://github.com/pathscale/envytools/tree/master/hwdocs
406  *
407  * The first quirk is actually not documented in envytools and is found
408  * on 10de:01d1 (NVIDIA Corporation G72 [GeForce 7300 LE]).  This is an
409  * NV46 chipset.  The backdoor uses the legacy VGA I/O ports to access
410  * the mirror of PCI config space found at BAR0 offset 0x1800.  The access
411  * sequence first writes 0x338 to I/O port 0x3d4.  The target offset is
412  * then written to 0x3d0.  Finally 0x538 is written for a read and 0x738
413  * is written for a write to 0x3d4.  The BAR0 offset is then accessible
414  * through 0x3d0.  This quirk doesn't seem to be necessary on newer cards
415  * that use the I/O port BAR5 window but it doesn't hurt to leave it.
416  */
417 typedef enum {NONE = 0, SELECT, WINDOW, READ, WRITE} VFIONvidia3d0State;
418 static const char *nv3d0_states[] = { "NONE", "SELECT",
419                                       "WINDOW", "READ", "WRITE" };
420 
421 typedef struct VFIONvidia3d0Quirk {
422     VFIOPCIDevice *vdev;
423     VFIONvidia3d0State state;
424     uint32_t offset;
425 } VFIONvidia3d0Quirk;
426 
427 static uint64_t vfio_nvidia_3d4_quirk_read(void *opaque,
428                                            hwaddr addr, unsigned size)
429 {
430     VFIONvidia3d0Quirk *quirk = opaque;
431     VFIOPCIDevice *vdev = quirk->vdev;
432 
433     quirk->state = NONE;
434 
435     return vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
436                          addr + 0x14, size);
437 }
438 
439 static void vfio_nvidia_3d4_quirk_write(void *opaque, hwaddr addr,
440                                         uint64_t data, unsigned size)
441 {
442     VFIONvidia3d0Quirk *quirk = opaque;
443     VFIOPCIDevice *vdev = quirk->vdev;
444     VFIONvidia3d0State old_state = quirk->state;
445 
446     quirk->state = NONE;
447 
448     switch (data) {
449     case 0x338:
450         if (old_state == NONE) {
451             quirk->state = SELECT;
452             trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
453                                               nv3d0_states[quirk->state]);
454         }
455         break;
456     case 0x538:
457         if (old_state == WINDOW) {
458             quirk->state = READ;
459             trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
460                                               nv3d0_states[quirk->state]);
461         }
462         break;
463     case 0x738:
464         if (old_state == WINDOW) {
465             quirk->state = WRITE;
466             trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
467                                               nv3d0_states[quirk->state]);
468         }
469         break;
470     }
471 
472     vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
473                    addr + 0x14, data, size);
474 }
475 
476 static const MemoryRegionOps vfio_nvidia_3d4_quirk = {
477     .read = vfio_nvidia_3d4_quirk_read,
478     .write = vfio_nvidia_3d4_quirk_write,
479     .endianness = DEVICE_LITTLE_ENDIAN,
480 };
481 
482 static uint64_t vfio_nvidia_3d0_quirk_read(void *opaque,
483                                            hwaddr addr, unsigned size)
484 {
485     VFIONvidia3d0Quirk *quirk = opaque;
486     VFIOPCIDevice *vdev = quirk->vdev;
487     VFIONvidia3d0State old_state = quirk->state;
488     uint64_t data = vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
489                                   addr + 0x10, size);
490 
491     quirk->state = NONE;
492 
493     if (old_state == READ &&
494         (quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) {
495         uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1);
496 
497         data = vfio_pci_read_config(&vdev->pdev, offset, size);
498         trace_vfio_quirk_nvidia_3d0_read(vdev->vbasedev.name,
499                                          offset, size, data);
500     }
501 
502     return data;
503 }
504 
505 static void vfio_nvidia_3d0_quirk_write(void *opaque, hwaddr addr,
506                                         uint64_t data, unsigned size)
507 {
508     VFIONvidia3d0Quirk *quirk = opaque;
509     VFIOPCIDevice *vdev = quirk->vdev;
510     VFIONvidia3d0State old_state = quirk->state;
511 
512     quirk->state = NONE;
513 
514     if (old_state == SELECT) {
515         quirk->offset = (uint32_t)data;
516         quirk->state = WINDOW;
517         trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
518                                           nv3d0_states[quirk->state]);
519     } else if (old_state == WRITE) {
520         if ((quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) {
521             uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1);
522 
523             vfio_pci_write_config(&vdev->pdev, offset, data, size);
524             trace_vfio_quirk_nvidia_3d0_write(vdev->vbasedev.name,
525                                               offset, data, size);
526             return;
527         }
528     }
529 
530     vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
531                    addr + 0x10, data, size);
532 }
533 
534 static const MemoryRegionOps vfio_nvidia_3d0_quirk = {
535     .read = vfio_nvidia_3d0_quirk_read,
536     .write = vfio_nvidia_3d0_quirk_write,
537     .endianness = DEVICE_LITTLE_ENDIAN,
538 };
539 
540 static void vfio_vga_probe_nvidia_3d0_quirk(VFIOPCIDevice *vdev)
541 {
542     VFIOQuirk *quirk;
543     VFIONvidia3d0Quirk *data;
544 
545     if (vdev->no_geforce_quirks ||
546         !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
547         !vdev->bars[1].region.size) {
548         return;
549     }
550 
551     quirk = g_malloc0(sizeof(*quirk));
552     quirk->data = data = g_malloc0(sizeof(*data));
553     quirk->mem = g_new0(MemoryRegion, 2);
554     quirk->nr_mem = 2;
555     data->vdev = vdev;
556 
557     memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_nvidia_3d4_quirk,
558                           data, "vfio-nvidia-3d4-quirk", 2);
559     memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
560                                 0x14 /* 0x3c0 + 0x14 */, &quirk->mem[0]);
561 
562     memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_nvidia_3d0_quirk,
563                           data, "vfio-nvidia-3d0-quirk", 2);
564     memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
565                                 0x10 /* 0x3c0 + 0x10 */, &quirk->mem[1]);
566 
567     QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks,
568                       quirk, next);
569 
570     trace_vfio_quirk_nvidia_3d0_probe(vdev->vbasedev.name);
571 }
572 
573 /*
574  * The second quirk is documented in envytools.  The I/O port BAR5 is just
575  * a set of address/data ports to the MMIO BARs.  The BAR we care about is
576  * again BAR0.  This backdoor is apparently a bit newer than the one above
577  * so we need to not only trap 256 bytes @0x1800, but all of PCI config
578  * space, including extended space is available at the 4k @0x88000.
579  */
580 typedef struct VFIONvidiaBAR5Quirk {
581     uint32_t master;
582     uint32_t enable;
583     MemoryRegion *addr_mem;
584     MemoryRegion *data_mem;
585     bool enabled;
586     VFIOConfigWindowQuirk window; /* last for match data */
587 } VFIONvidiaBAR5Quirk;
588 
589 static void vfio_nvidia_bar5_enable(VFIONvidiaBAR5Quirk *bar5)
590 {
591     VFIOPCIDevice *vdev = bar5->window.vdev;
592 
593     if (((bar5->master & bar5->enable) & 0x1) == bar5->enabled) {
594         return;
595     }
596 
597     bar5->enabled = !bar5->enabled;
598     trace_vfio_quirk_nvidia_bar5_state(vdev->vbasedev.name,
599                                        bar5->enabled ?  "Enable" : "Disable");
600     memory_region_set_enabled(bar5->addr_mem, bar5->enabled);
601     memory_region_set_enabled(bar5->data_mem, bar5->enabled);
602 }
603 
604 static uint64_t vfio_nvidia_bar5_quirk_master_read(void *opaque,
605                                                    hwaddr addr, unsigned size)
606 {
607     VFIONvidiaBAR5Quirk *bar5 = opaque;
608     VFIOPCIDevice *vdev = bar5->window.vdev;
609 
610     return vfio_region_read(&vdev->bars[5].region, addr, size);
611 }
612 
613 static void vfio_nvidia_bar5_quirk_master_write(void *opaque, hwaddr addr,
614                                                 uint64_t data, unsigned size)
615 {
616     VFIONvidiaBAR5Quirk *bar5 = opaque;
617     VFIOPCIDevice *vdev = bar5->window.vdev;
618 
619     vfio_region_write(&vdev->bars[5].region, addr, data, size);
620 
621     bar5->master = data;
622     vfio_nvidia_bar5_enable(bar5);
623 }
624 
625 static const MemoryRegionOps vfio_nvidia_bar5_quirk_master = {
626     .read = vfio_nvidia_bar5_quirk_master_read,
627     .write = vfio_nvidia_bar5_quirk_master_write,
628     .endianness = DEVICE_LITTLE_ENDIAN,
629 };
630 
631 static uint64_t vfio_nvidia_bar5_quirk_enable_read(void *opaque,
632                                                    hwaddr addr, unsigned size)
633 {
634     VFIONvidiaBAR5Quirk *bar5 = opaque;
635     VFIOPCIDevice *vdev = bar5->window.vdev;
636 
637     return vfio_region_read(&vdev->bars[5].region, addr + 4, size);
638 }
639 
640 static void vfio_nvidia_bar5_quirk_enable_write(void *opaque, hwaddr addr,
641                                                 uint64_t data, unsigned size)
642 {
643     VFIONvidiaBAR5Quirk *bar5 = opaque;
644     VFIOPCIDevice *vdev = bar5->window.vdev;
645 
646     vfio_region_write(&vdev->bars[5].region, addr + 4, data, size);
647 
648     bar5->enable = data;
649     vfio_nvidia_bar5_enable(bar5);
650 }
651 
652 static const MemoryRegionOps vfio_nvidia_bar5_quirk_enable = {
653     .read = vfio_nvidia_bar5_quirk_enable_read,
654     .write = vfio_nvidia_bar5_quirk_enable_write,
655     .endianness = DEVICE_LITTLE_ENDIAN,
656 };
657 
658 static void vfio_probe_nvidia_bar5_quirk(VFIOPCIDevice *vdev, int nr)
659 {
660     VFIOQuirk *quirk;
661     VFIONvidiaBAR5Quirk *bar5;
662     VFIOConfigWindowQuirk *window;
663 
664     if (vdev->no_geforce_quirks ||
665         !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
666         !vdev->vga || nr != 5 || !vdev->bars[5].ioport) {
667         return;
668     }
669 
670     quirk = g_malloc0(sizeof(*quirk));
671     quirk->mem = g_new0(MemoryRegion, 4);
672     quirk->nr_mem = 4;
673     bar5 = quirk->data = g_malloc0(sizeof(*bar5) +
674                                    (sizeof(VFIOConfigWindowMatch) * 2));
675     window = &bar5->window;
676 
677     window->vdev = vdev;
678     window->address_offset = 0x8;
679     window->data_offset = 0xc;
680     window->nr_matches = 2;
681     window->matches[0].match = 0x1800;
682     window->matches[0].mask = PCI_CONFIG_SPACE_SIZE - 1;
683     window->matches[1].match = 0x88000;
684     window->matches[1].mask = vdev->config_size - 1;
685     window->bar = nr;
686     window->addr_mem = bar5->addr_mem = &quirk->mem[0];
687     window->data_mem = bar5->data_mem = &quirk->mem[1];
688 
689     memory_region_init_io(window->addr_mem, OBJECT(vdev),
690                           &vfio_generic_window_address_quirk, window,
691                           "vfio-nvidia-bar5-window-address-quirk", 4);
692     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
693                                         window->address_offset,
694                                         window->addr_mem, 1);
695     memory_region_set_enabled(window->addr_mem, false);
696 
697     memory_region_init_io(window->data_mem, OBJECT(vdev),
698                           &vfio_generic_window_data_quirk, window,
699                           "vfio-nvidia-bar5-window-data-quirk", 4);
700     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
701                                         window->data_offset,
702                                         window->data_mem, 1);
703     memory_region_set_enabled(window->data_mem, false);
704 
705     memory_region_init_io(&quirk->mem[2], OBJECT(vdev),
706                           &vfio_nvidia_bar5_quirk_master, bar5,
707                           "vfio-nvidia-bar5-master-quirk", 4);
708     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
709                                         0, &quirk->mem[2], 1);
710 
711     memory_region_init_io(&quirk->mem[3], OBJECT(vdev),
712                           &vfio_nvidia_bar5_quirk_enable, bar5,
713                           "vfio-nvidia-bar5-enable-quirk", 4);
714     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
715                                         4, &quirk->mem[3], 1);
716 
717     QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
718 
719     trace_vfio_quirk_nvidia_bar5_probe(vdev->vbasedev.name);
720 }
721 
722 /*
723  * Finally, BAR0 itself.  We want to redirect any accesses to either
724  * 0x1800 or 0x88000 through the PCI config space access functions.
725  */
726 static void vfio_nvidia_quirk_mirror_write(void *opaque, hwaddr addr,
727                                            uint64_t data, unsigned size)
728 {
729     VFIOConfigMirrorQuirk *mirror = opaque;
730     VFIOPCIDevice *vdev = mirror->vdev;
731     PCIDevice *pdev = &vdev->pdev;
732 
733     vfio_generic_quirk_mirror_write(opaque, addr, data, size);
734 
735     /*
736      * Nvidia seems to acknowledge MSI interrupts by writing 0xff to the
737      * MSI capability ID register.  Both the ID and next register are
738      * read-only, so we allow writes covering either of those to real hw.
739      */
740     if ((pdev->cap_present & QEMU_PCI_CAP_MSI) &&
741         vfio_range_contained(addr, size, pdev->msi_cap, PCI_MSI_FLAGS)) {
742         vfio_region_write(&vdev->bars[mirror->bar].region,
743                           addr + mirror->offset, data, size);
744         trace_vfio_quirk_nvidia_bar0_msi_ack(vdev->vbasedev.name);
745     }
746 }
747 
748 static const MemoryRegionOps vfio_nvidia_mirror_quirk = {
749     .read = vfio_generic_quirk_mirror_read,
750     .write = vfio_nvidia_quirk_mirror_write,
751     .endianness = DEVICE_LITTLE_ENDIAN,
752 };
753 
754 static void vfio_probe_nvidia_bar0_quirk(VFIOPCIDevice *vdev, int nr)
755 {
756     VFIOQuirk *quirk;
757     VFIOConfigMirrorQuirk *mirror;
758 
759     if (vdev->no_geforce_quirks ||
760         !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
761         !vfio_is_vga(vdev) || nr != 0) {
762         return;
763     }
764 
765     quirk = g_malloc0(sizeof(*quirk));
766     mirror = quirk->data = g_malloc0(sizeof(*mirror));
767     mirror->mem = quirk->mem = g_new0(MemoryRegion, 1);
768     quirk->nr_mem = 1;
769     mirror->vdev = vdev;
770     mirror->offset = 0x88000;
771     mirror->bar = nr;
772 
773     memory_region_init_io(mirror->mem, OBJECT(vdev),
774                           &vfio_nvidia_mirror_quirk, mirror,
775                           "vfio-nvidia-bar0-88000-mirror-quirk",
776                           vdev->config_size);
777     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
778                                         mirror->offset, mirror->mem, 1);
779 
780     QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
781 
782     /* The 0x1800 offset mirror only seems to get used by legacy VGA */
783     if (vdev->vga) {
784         quirk = g_malloc0(sizeof(*quirk));
785         mirror = quirk->data = g_malloc0(sizeof(*mirror));
786         mirror->mem = quirk->mem = g_new0(MemoryRegion, 1);
787         quirk->nr_mem = 1;
788         mirror->vdev = vdev;
789         mirror->offset = 0x1800;
790         mirror->bar = nr;
791 
792         memory_region_init_io(mirror->mem, OBJECT(vdev),
793                               &vfio_nvidia_mirror_quirk, mirror,
794                               "vfio-nvidia-bar0-1800-mirror-quirk",
795                               PCI_CONFIG_SPACE_SIZE);
796         memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
797                                             mirror->offset, mirror->mem, 1);
798 
799         QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
800     }
801 
802     trace_vfio_quirk_nvidia_bar0_probe(vdev->vbasedev.name);
803 }
804 
805 /*
806  * TODO - Some Nvidia devices provide config access to their companion HDA
807  * device and even to their parent bridge via these config space mirrors.
808  * Add quirks for those regions.
809  */
810 
811 #define PCI_VENDOR_ID_REALTEK 0x10ec
812 
813 /*
814  * RTL8168 devices have a backdoor that can access the MSI-X table.  At BAR2
815  * offset 0x70 there is a dword data register, offset 0x74 is a dword address
816  * register.  According to the Linux r8169 driver, the MSI-X table is addressed
817  * when the "type" portion of the address register is set to 0x1.  This appears
818  * to be bits 16:30.  Bit 31 is both a write indicator and some sort of
819  * "address latched" indicator.  Bits 12:15 are a mask field, which we can
820  * ignore because the MSI-X table should always be accessed as a dword (full
821  * mask).  Bits 0:11 is offset within the type.
822  *
823  * Example trace:
824  *
825  * Read from MSI-X table offset 0
826  * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x1f000, 4) // store read addr
827  * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x8001f000 // latch
828  * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x70, 4) = 0xfee00398 // read data
829  *
830  * Write 0xfee00000 to MSI-X table offset 0
831  * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x70, 0xfee00000, 4) // write data
832  * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x8001f000, 4) // do write
833  * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x1f000 // complete
834  */
835 typedef struct VFIOrtl8168Quirk {
836     VFIOPCIDevice *vdev;
837     uint32_t addr;
838     uint32_t data;
839     bool enabled;
840 } VFIOrtl8168Quirk;
841 
842 static uint64_t vfio_rtl8168_quirk_address_read(void *opaque,
843                                                 hwaddr addr, unsigned size)
844 {
845     VFIOrtl8168Quirk *rtl = opaque;
846     VFIOPCIDevice *vdev = rtl->vdev;
847     uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x74, size);
848 
849     if (rtl->enabled) {
850         data = rtl->addr ^ 0x80000000U; /* latch/complete */
851         trace_vfio_quirk_rtl8168_fake_latch(vdev->vbasedev.name, data);
852     }
853 
854     return data;
855 }
856 
857 static void vfio_rtl8168_quirk_address_write(void *opaque, hwaddr addr,
858                                              uint64_t data, unsigned size)
859 {
860     VFIOrtl8168Quirk *rtl = opaque;
861     VFIOPCIDevice *vdev = rtl->vdev;
862 
863     rtl->enabled = false;
864 
865     if ((data & 0x7fff0000) == 0x10000) { /* MSI-X table */
866         rtl->enabled = true;
867         rtl->addr = (uint32_t)data;
868 
869         if (data & 0x80000000U) { /* Do write */
870             if (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX) {
871                 hwaddr offset = data & 0xfff;
872                 uint64_t val = rtl->data;
873 
874                 trace_vfio_quirk_rtl8168_msix_write(vdev->vbasedev.name,
875                                                     (uint16_t)offset, val);
876 
877                 /* Write to the proper guest MSI-X table instead */
878                 memory_region_dispatch_write(&vdev->pdev.msix_table_mmio,
879                                              offset, val, size,
880                                              MEMTXATTRS_UNSPECIFIED);
881             }
882             return; /* Do not write guest MSI-X data to hardware */
883         }
884     }
885 
886     vfio_region_write(&vdev->bars[2].region, addr + 0x74, data, size);
887 }
888 
889 static const MemoryRegionOps vfio_rtl_address_quirk = {
890     .read = vfio_rtl8168_quirk_address_read,
891     .write = vfio_rtl8168_quirk_address_write,
892     .valid = {
893         .min_access_size = 4,
894         .max_access_size = 4,
895         .unaligned = false,
896     },
897     .endianness = DEVICE_LITTLE_ENDIAN,
898 };
899 
900 static uint64_t vfio_rtl8168_quirk_data_read(void *opaque,
901                                              hwaddr addr, unsigned size)
902 {
903     VFIOrtl8168Quirk *rtl = opaque;
904     VFIOPCIDevice *vdev = rtl->vdev;
905     uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x70, size);
906 
907     if (rtl->enabled && (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX)) {
908         hwaddr offset = rtl->addr & 0xfff;
909         memory_region_dispatch_read(&vdev->pdev.msix_table_mmio, offset,
910                                     &data, size, MEMTXATTRS_UNSPECIFIED);
911         trace_vfio_quirk_rtl8168_msix_read(vdev->vbasedev.name, offset, data);
912     }
913 
914     return data;
915 }
916 
917 static void vfio_rtl8168_quirk_data_write(void *opaque, hwaddr addr,
918                                           uint64_t data, unsigned size)
919 {
920     VFIOrtl8168Quirk *rtl = opaque;
921     VFIOPCIDevice *vdev = rtl->vdev;
922 
923     rtl->data = (uint32_t)data;
924 
925     vfio_region_write(&vdev->bars[2].region, addr + 0x70, data, size);
926 }
927 
928 static const MemoryRegionOps vfio_rtl_data_quirk = {
929     .read = vfio_rtl8168_quirk_data_read,
930     .write = vfio_rtl8168_quirk_data_write,
931     .valid = {
932         .min_access_size = 4,
933         .max_access_size = 4,
934         .unaligned = false,
935     },
936     .endianness = DEVICE_LITTLE_ENDIAN,
937 };
938 
939 static void vfio_probe_rtl8168_bar2_quirk(VFIOPCIDevice *vdev, int nr)
940 {
941     VFIOQuirk *quirk;
942     VFIOrtl8168Quirk *rtl;
943 
944     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_REALTEK, 0x8168) || nr != 2) {
945         return;
946     }
947 
948     quirk = g_malloc0(sizeof(*quirk));
949     quirk->mem = g_new0(MemoryRegion, 2);
950     quirk->nr_mem = 2;
951     quirk->data = rtl = g_malloc0(sizeof(*rtl));
952     rtl->vdev = vdev;
953 
954     memory_region_init_io(&quirk->mem[0], OBJECT(vdev),
955                           &vfio_rtl_address_quirk, rtl,
956                           "vfio-rtl8168-window-address-quirk", 4);
957     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
958                                         0x74, &quirk->mem[0], 1);
959 
960     memory_region_init_io(&quirk->mem[1], OBJECT(vdev),
961                           &vfio_rtl_data_quirk, rtl,
962                           "vfio-rtl8168-window-data-quirk", 4);
963     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
964                                         0x70, &quirk->mem[1], 1);
965 
966     QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
967 
968     trace_vfio_quirk_rtl8168_probe(vdev->vbasedev.name);
969 }
970 
971 /*
972  * Intel IGD support
973  *
974  * Obviously IGD is not a discrete device, this is evidenced not only by it
975  * being integrated into the CPU, but by the various chipset and BIOS
976  * dependencies that it brings along with it.  Intel is trying to move away
977  * from this and Broadwell and newer devices can run in what Intel calls
978  * "Universal Pass-Through" mode, or UPT.  Theoretically in UPT mode, nothing
979  * more is required beyond assigning the IGD device to a VM.  There are
980  * however support limitations to this mode.  It only supports IGD as a
981  * secondary graphics device in the VM and it doesn't officially support any
982  * physical outputs.
983  *
984  * The code here attempts to enable what we'll call legacy mode assignment,
985  * IGD retains most of the capabilities we expect for it to have on bare
986  * metal.  To enable this mode, the IGD device must be assigned to the VM
987  * at PCI address 00:02.0, it must have a ROM, it very likely needs VGA
988  * support, we must have VM BIOS support for reserving and populating some
989  * of the required tables, and we need to tweak the chipset with revisions
990  * and IDs and an LPC/ISA bridge device.  The intention is to make all of
991  * this happen automatically by installing the device at the correct VM PCI
992  * bus address.  If any of the conditions are not met, we cross our fingers
993  * and hope the user knows better.
994  *
995  * NB - It is possible to enable physical outputs in UPT mode by supplying
996  * an OpRegion table.  We don't do this by default because the guest driver
997  * behaves differently if an OpRegion is provided and no monitor is attached
998  * vs no OpRegion and a monitor being attached or not.  Effectively, if a
999  * headless setup is desired, the OpRegion gets in the way of that.
1000  */
1001 
1002 /*
1003  * This presumes the device is already known to be an Intel VGA device, so we
1004  * take liberties in which device ID bits match which generation.  This should
1005  * not be taken as an indication that all the devices are supported, or even
1006  * supportable, some of them don't even support VT-d.
1007  * See linux:include/drm/i915_pciids.h for IDs.
1008  */
1009 static int igd_gen(VFIOPCIDevice *vdev)
1010 {
1011     if ((vdev->device_id & 0xfff) == 0xa84) {
1012         return 8; /* Broxton */
1013     }
1014 
1015     switch (vdev->device_id & 0xff00) {
1016     /* Old, untested, unavailable, unknown */
1017     case 0x0000:
1018     case 0x2500:
1019     case 0x2700:
1020     case 0x2900:
1021     case 0x2a00:
1022     case 0x2e00:
1023     case 0x3500:
1024     case 0xa000:
1025         return -1;
1026     /* SandyBridge, IvyBridge, ValleyView, Haswell */
1027     case 0x0100:
1028     case 0x0400:
1029     case 0x0a00:
1030     case 0x0c00:
1031     case 0x0d00:
1032     case 0x0f00:
1033         return 6;
1034     /* BroadWell, CherryView, SkyLake, KabyLake */
1035     case 0x1600:
1036     case 0x1900:
1037     case 0x2200:
1038     case 0x5900:
1039         return 8;
1040     }
1041 
1042     return 8; /* Assume newer is compatible */
1043 }
1044 
1045 typedef struct VFIOIGDQuirk {
1046     struct VFIOPCIDevice *vdev;
1047     uint32_t index;
1048     uint32_t bdsm;
1049 } VFIOIGDQuirk;
1050 
1051 #define IGD_GMCH 0x50 /* Graphics Control Register */
1052 #define IGD_BDSM 0x5c /* Base Data of Stolen Memory */
1053 #define IGD_ASLS 0xfc /* ASL Storage Register */
1054 
1055 /*
1056  * The OpRegion includes the Video BIOS Table, which seems important for
1057  * telling the driver what sort of outputs it has.  Without this, the device
1058  * may work in the guest, but we may not get output.  This also requires BIOS
1059  * support to reserve and populate a section of guest memory sufficient for
1060  * the table and to write the base address of that memory to the ASLS register
1061  * of the IGD device.
1062  */
1063 int vfio_pci_igd_opregion_init(VFIOPCIDevice *vdev,
1064                                struct vfio_region_info *info, Error **errp)
1065 {
1066     int ret;
1067 
1068     vdev->igd_opregion = g_malloc0(info->size);
1069     ret = pread(vdev->vbasedev.fd, vdev->igd_opregion,
1070                 info->size, info->offset);
1071     if (ret != info->size) {
1072         error_setg(errp, "failed to read IGD OpRegion");
1073         g_free(vdev->igd_opregion);
1074         vdev->igd_opregion = NULL;
1075         return -EINVAL;
1076     }
1077 
1078     /*
1079      * Provide fw_cfg with a copy of the OpRegion which the VM firmware is to
1080      * allocate 32bit reserved memory for, copy these contents into, and write
1081      * the reserved memory base address to the device ASLS register at 0xFC.
1082      * Alignment of this reserved region seems flexible, but using a 4k page
1083      * alignment seems to work well.  This interface assumes a single IGD
1084      * device, which may be at VM address 00:02.0 in legacy mode or another
1085      * address in UPT mode.
1086      *
1087      * NB, there may be future use cases discovered where the VM should have
1088      * direct interaction with the host OpRegion, in which case the write to
1089      * the ASLS register would trigger MemoryRegion setup to enable that.
1090      */
1091     fw_cfg_add_file(fw_cfg_find(), "etc/igd-opregion",
1092                     vdev->igd_opregion, info->size);
1093 
1094     trace_vfio_pci_igd_opregion_enabled(vdev->vbasedev.name);
1095 
1096     pci_set_long(vdev->pdev.config + IGD_ASLS, 0);
1097     pci_set_long(vdev->pdev.wmask + IGD_ASLS, ~0);
1098     pci_set_long(vdev->emulated_config_bits + IGD_ASLS, ~0);
1099 
1100     return 0;
1101 }
1102 
1103 /*
1104  * The rather short list of registers that we copy from the host devices.
1105  * The LPC/ISA bridge values are definitely needed to support the vBIOS, the
1106  * host bridge values may or may not be needed depending on the guest OS.
1107  * Since we're only munging revision and subsystem values on the host bridge,
1108  * we don't require our own device.  The LPC/ISA bridge needs to be our very
1109  * own though.
1110  */
1111 typedef struct {
1112     uint8_t offset;
1113     uint8_t len;
1114 } IGDHostInfo;
1115 
1116 static const IGDHostInfo igd_host_bridge_infos[] = {
1117     {PCI_REVISION_ID,         2},
1118     {PCI_SUBSYSTEM_VENDOR_ID, 2},
1119     {PCI_SUBSYSTEM_ID,        2},
1120 };
1121 
1122 static const IGDHostInfo igd_lpc_bridge_infos[] = {
1123     {PCI_VENDOR_ID,           2},
1124     {PCI_DEVICE_ID,           2},
1125     {PCI_REVISION_ID,         2},
1126     {PCI_SUBSYSTEM_VENDOR_ID, 2},
1127     {PCI_SUBSYSTEM_ID,        2},
1128 };
1129 
1130 static int vfio_pci_igd_copy(VFIOPCIDevice *vdev, PCIDevice *pdev,
1131                              struct vfio_region_info *info,
1132                              const IGDHostInfo *list, int len)
1133 {
1134     int i, ret;
1135 
1136     for (i = 0; i < len; i++) {
1137         ret = pread(vdev->vbasedev.fd, pdev->config + list[i].offset,
1138                     list[i].len, info->offset + list[i].offset);
1139         if (ret != list[i].len) {
1140             error_report("IGD copy failed: %m");
1141             return -errno;
1142         }
1143     }
1144 
1145     return 0;
1146 }
1147 
1148 /*
1149  * Stuff a few values into the host bridge.
1150  */
1151 static int vfio_pci_igd_host_init(VFIOPCIDevice *vdev,
1152                                   struct vfio_region_info *info)
1153 {
1154     PCIBus *bus;
1155     PCIDevice *host_bridge;
1156     int ret;
1157 
1158     bus = pci_device_root_bus(&vdev->pdev);
1159     host_bridge = pci_find_device(bus, 0, PCI_DEVFN(0, 0));
1160 
1161     if (!host_bridge) {
1162         error_report("Can't find host bridge");
1163         return -ENODEV;
1164     }
1165 
1166     ret = vfio_pci_igd_copy(vdev, host_bridge, info, igd_host_bridge_infos,
1167                             ARRAY_SIZE(igd_host_bridge_infos));
1168     if (!ret) {
1169         trace_vfio_pci_igd_host_bridge_enabled(vdev->vbasedev.name);
1170     }
1171 
1172     return ret;
1173 }
1174 
1175 /*
1176  * IGD LPC/ISA bridge support code.  The vBIOS needs this, but we can't write
1177  * arbitrary values into just any bridge, so we must create our own.  We try
1178  * to handle if the user has created it for us, which they might want to do
1179  * to enable multifunction so we don't occupy the whole PCI slot.
1180  */
1181 static void vfio_pci_igd_lpc_bridge_realize(PCIDevice *pdev, Error **errp)
1182 {
1183     if (pdev->devfn != PCI_DEVFN(0x1f, 0)) {
1184         error_setg(errp, "VFIO dummy ISA/LPC bridge must have address 1f.0");
1185     }
1186 }
1187 
1188 static void vfio_pci_igd_lpc_bridge_class_init(ObjectClass *klass, void *data)
1189 {
1190     DeviceClass *dc = DEVICE_CLASS(klass);
1191     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1192 
1193     set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
1194     dc->desc = "VFIO dummy ISA/LPC bridge for IGD assignment";
1195     dc->hotpluggable = false;
1196     k->realize = vfio_pci_igd_lpc_bridge_realize;
1197     k->class_id = PCI_CLASS_BRIDGE_ISA;
1198 }
1199 
1200 static TypeInfo vfio_pci_igd_lpc_bridge_info = {
1201     .name = "vfio-pci-igd-lpc-bridge",
1202     .parent = TYPE_PCI_DEVICE,
1203     .class_init = vfio_pci_igd_lpc_bridge_class_init,
1204     .interfaces = (InterfaceInfo[]) {
1205         { INTERFACE_CONVENTIONAL_PCI_DEVICE },
1206         { },
1207     },
1208 };
1209 
1210 static void vfio_pci_igd_register_types(void)
1211 {
1212     type_register_static(&vfio_pci_igd_lpc_bridge_info);
1213 }
1214 
1215 type_init(vfio_pci_igd_register_types)
1216 
1217 static int vfio_pci_igd_lpc_init(VFIOPCIDevice *vdev,
1218                                  struct vfio_region_info *info)
1219 {
1220     PCIDevice *lpc_bridge;
1221     int ret;
1222 
1223     lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev),
1224                                  0, PCI_DEVFN(0x1f, 0));
1225     if (!lpc_bridge) {
1226         lpc_bridge = pci_create_simple(pci_device_root_bus(&vdev->pdev),
1227                                  PCI_DEVFN(0x1f, 0), "vfio-pci-igd-lpc-bridge");
1228     }
1229 
1230     ret = vfio_pci_igd_copy(vdev, lpc_bridge, info, igd_lpc_bridge_infos,
1231                             ARRAY_SIZE(igd_lpc_bridge_infos));
1232     if (!ret) {
1233         trace_vfio_pci_igd_lpc_bridge_enabled(vdev->vbasedev.name);
1234     }
1235 
1236     return ret;
1237 }
1238 
1239 /*
1240  * IGD Gen8 and newer support up to 8MB for the GTT and use a 64bit PTE
1241  * entry, older IGDs use 2MB and 32bit.  Each PTE maps a 4k page.  Therefore
1242  * we either have 2M/4k * 4 = 2k or 8M/4k * 8 = 16k as the maximum iobar index
1243  * for programming the GTT.
1244  *
1245  * See linux:include/drm/i915_drm.h for shift and mask values.
1246  */
1247 static int vfio_igd_gtt_max(VFIOPCIDevice *vdev)
1248 {
1249     uint32_t gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch));
1250     int ggms, gen = igd_gen(vdev);
1251 
1252     gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch));
1253     ggms = (gmch >> (gen < 8 ? 8 : 6)) & 0x3;
1254     if (gen > 6) {
1255         ggms = 1 << ggms;
1256     }
1257 
1258     ggms *= 1024 * 1024;
1259 
1260     return (ggms / (4 * 1024)) * (gen < 8 ? 4 : 8);
1261 }
1262 
1263 /*
1264  * The IGD ROM will make use of stolen memory (GGMS) for support of VESA modes.
1265  * Somehow the host stolen memory range is used for this, but how the ROM gets
1266  * it is a mystery, perhaps it's hardcoded into the ROM.  Thankfully though, it
1267  * reprograms the GTT through the IOBAR where we can trap it and transpose the
1268  * programming to the VM allocated buffer.  That buffer gets reserved by the VM
1269  * firmware via the fw_cfg entry added below.  Here we're just monitoring the
1270  * IOBAR address and data registers to detect a write sequence targeting the
1271  * GTTADR.  This code is developed by observed behavior and doesn't have a
1272  * direct spec reference, unfortunately.
1273  */
1274 static uint64_t vfio_igd_quirk_data_read(void *opaque,
1275                                          hwaddr addr, unsigned size)
1276 {
1277     VFIOIGDQuirk *igd = opaque;
1278     VFIOPCIDevice *vdev = igd->vdev;
1279 
1280     igd->index = ~0;
1281 
1282     return vfio_region_read(&vdev->bars[4].region, addr + 4, size);
1283 }
1284 
1285 static void vfio_igd_quirk_data_write(void *opaque, hwaddr addr,
1286                                       uint64_t data, unsigned size)
1287 {
1288     VFIOIGDQuirk *igd = opaque;
1289     VFIOPCIDevice *vdev = igd->vdev;
1290     uint64_t val = data;
1291     int gen = igd_gen(vdev);
1292 
1293     /*
1294      * Programming the GGMS starts at index 0x1 and uses every 4th index (ie.
1295      * 0x1, 0x5, 0x9, 0xd,...).  For pre-Gen8 each 4-byte write is a whole PTE
1296      * entry, with 0th bit enable set.  For Gen8 and up, PTEs are 64bit, so
1297      * entries 0x5 & 0xd are the high dword, in our case zero.  Each PTE points
1298      * to a 4k page, which we translate to a page from the VM allocated region,
1299      * pointed to by the BDSM register.  If this is not set, we fail.
1300      *
1301      * We trap writes to the full configured GTT size, but we typically only
1302      * see the vBIOS writing up to (nearly) the 1MB barrier.  In fact it often
1303      * seems to miss the last entry for an even 1MB GTT.  Doing a gratuitous
1304      * write of that last entry does work, but is hopefully unnecessary since
1305      * we clear the previous GTT on initialization.
1306      */
1307     if ((igd->index % 4 == 1) && igd->index < vfio_igd_gtt_max(vdev)) {
1308         if (gen < 8 || (igd->index % 8 == 1)) {
1309             uint32_t base;
1310 
1311             base = pci_get_long(vdev->pdev.config + IGD_BDSM);
1312             if (!base) {
1313                 hw_error("vfio-igd: Guest attempted to program IGD GTT before "
1314                          "BIOS reserved stolen memory.  Unsupported BIOS?");
1315             }
1316 
1317             val = data - igd->bdsm + base;
1318         } else {
1319             val = 0; /* upper 32bits of pte, we only enable below 4G PTEs */
1320         }
1321 
1322         trace_vfio_pci_igd_bar4_write(vdev->vbasedev.name,
1323                                       igd->index, data, val);
1324     }
1325 
1326     vfio_region_write(&vdev->bars[4].region, addr + 4, val, size);
1327 
1328     igd->index = ~0;
1329 }
1330 
1331 static const MemoryRegionOps vfio_igd_data_quirk = {
1332     .read = vfio_igd_quirk_data_read,
1333     .write = vfio_igd_quirk_data_write,
1334     .endianness = DEVICE_LITTLE_ENDIAN,
1335 };
1336 
1337 static uint64_t vfio_igd_quirk_index_read(void *opaque,
1338                                           hwaddr addr, unsigned size)
1339 {
1340     VFIOIGDQuirk *igd = opaque;
1341     VFIOPCIDevice *vdev = igd->vdev;
1342 
1343     igd->index = ~0;
1344 
1345     return vfio_region_read(&vdev->bars[4].region, addr, size);
1346 }
1347 
1348 static void vfio_igd_quirk_index_write(void *opaque, hwaddr addr,
1349                                        uint64_t data, unsigned size)
1350 {
1351     VFIOIGDQuirk *igd = opaque;
1352     VFIOPCIDevice *vdev = igd->vdev;
1353 
1354     igd->index = data;
1355 
1356     vfio_region_write(&vdev->bars[4].region, addr, data, size);
1357 }
1358 
1359 static const MemoryRegionOps vfio_igd_index_quirk = {
1360     .read = vfio_igd_quirk_index_read,
1361     .write = vfio_igd_quirk_index_write,
1362     .endianness = DEVICE_LITTLE_ENDIAN,
1363 };
1364 
1365 static void vfio_probe_igd_bar4_quirk(VFIOPCIDevice *vdev, int nr)
1366 {
1367     struct vfio_region_info *rom = NULL, *opregion = NULL,
1368                             *host = NULL, *lpc = NULL;
1369     VFIOQuirk *quirk;
1370     VFIOIGDQuirk *igd;
1371     PCIDevice *lpc_bridge;
1372     int i, ret, ggms_mb, gms_mb = 0, gen;
1373     uint64_t *bdsm_size;
1374     uint32_t gmch;
1375     uint16_t cmd_orig, cmd;
1376     Error *err = NULL;
1377 
1378     /*
1379      * This must be an Intel VGA device at address 00:02.0 for us to even
1380      * consider enabling legacy mode.  The vBIOS has dependencies on the
1381      * PCI bus address.
1382      */
1383     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_INTEL, PCI_ANY_ID) ||
1384         !vfio_is_vga(vdev) || nr != 4 ||
1385         &vdev->pdev != pci_find_device(pci_device_root_bus(&vdev->pdev),
1386                                        0, PCI_DEVFN(0x2, 0))) {
1387         return;
1388     }
1389 
1390     /*
1391      * We need to create an LPC/ISA bridge at PCI bus address 00:1f.0 that we
1392      * can stuff host values into, so if there's already one there and it's not
1393      * one we can hack on, legacy mode is no-go.  Sorry Q35.
1394      */
1395     lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev),
1396                                  0, PCI_DEVFN(0x1f, 0));
1397     if (lpc_bridge && !object_dynamic_cast(OBJECT(lpc_bridge),
1398                                            "vfio-pci-igd-lpc-bridge")) {
1399         error_report("IGD device %s cannot support legacy mode due to existing "
1400                      "devices at address 1f.0", vdev->vbasedev.name);
1401         return;
1402     }
1403 
1404     /*
1405      * IGD is not a standard, they like to change their specs often.  We
1406      * only attempt to support back to SandBridge and we hope that newer
1407      * devices maintain compatibility with generation 8.
1408      */
1409     gen = igd_gen(vdev);
1410     if (gen != 6 && gen != 8) {
1411         error_report("IGD device %s is unsupported in legacy mode, "
1412                      "try SandyBridge or newer", vdev->vbasedev.name);
1413         return;
1414     }
1415 
1416     /*
1417      * Most of what we're doing here is to enable the ROM to run, so if
1418      * there's no ROM, there's no point in setting up this quirk.
1419      * NB. We only seem to get BIOS ROMs, so a UEFI VM would need CSM support.
1420      */
1421     ret = vfio_get_region_info(&vdev->vbasedev,
1422                                VFIO_PCI_ROM_REGION_INDEX, &rom);
1423     if ((ret || !rom->size) && !vdev->pdev.romfile) {
1424         error_report("IGD device %s has no ROM, legacy mode disabled",
1425                      vdev->vbasedev.name);
1426         goto out;
1427     }
1428 
1429     /*
1430      * Ignore the hotplug corner case, mark the ROM failed, we can't
1431      * create the devices we need for legacy mode in the hotplug scenario.
1432      */
1433     if (vdev->pdev.qdev.hotplugged) {
1434         error_report("IGD device %s hotplugged, ROM disabled, "
1435                      "legacy mode disabled", vdev->vbasedev.name);
1436         vdev->rom_read_failed = true;
1437         goto out;
1438     }
1439 
1440     /*
1441      * Check whether we have all the vfio device specific regions to
1442      * support legacy mode (added in Linux v4.6).  If not, bail.
1443      */
1444     ret = vfio_get_dev_region_info(&vdev->vbasedev,
1445                         VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
1446                         VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION, &opregion);
1447     if (ret) {
1448         error_report("IGD device %s does not support OpRegion access,"
1449                      "legacy mode disabled", vdev->vbasedev.name);
1450         goto out;
1451     }
1452 
1453     ret = vfio_get_dev_region_info(&vdev->vbasedev,
1454                         VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
1455                         VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG, &host);
1456     if (ret) {
1457         error_report("IGD device %s does not support host bridge access,"
1458                      "legacy mode disabled", vdev->vbasedev.name);
1459         goto out;
1460     }
1461 
1462     ret = vfio_get_dev_region_info(&vdev->vbasedev,
1463                         VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
1464                         VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG, &lpc);
1465     if (ret) {
1466         error_report("IGD device %s does not support LPC bridge access,"
1467                      "legacy mode disabled", vdev->vbasedev.name);
1468         goto out;
1469     }
1470 
1471     gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, 4);
1472 
1473     /*
1474      * If IGD VGA Disable is clear (expected) and VGA is not already enabled,
1475      * try to enable it.  Probably shouldn't be using legacy mode without VGA,
1476      * but also no point in us enabling VGA if disabled in hardware.
1477      */
1478     if (!(gmch & 0x2) && !vdev->vga && vfio_populate_vga(vdev, &err)) {
1479         error_reportf_err(err, ERR_PREFIX, vdev->vbasedev.name);
1480         error_report("IGD device %s failed to enable VGA access, "
1481                      "legacy mode disabled", vdev->vbasedev.name);
1482         goto out;
1483     }
1484 
1485     /* Create our LPC/ISA bridge */
1486     ret = vfio_pci_igd_lpc_init(vdev, lpc);
1487     if (ret) {
1488         error_report("IGD device %s failed to create LPC bridge, "
1489                      "legacy mode disabled", vdev->vbasedev.name);
1490         goto out;
1491     }
1492 
1493     /* Stuff some host values into the VM PCI host bridge */
1494     ret = vfio_pci_igd_host_init(vdev, host);
1495     if (ret) {
1496         error_report("IGD device %s failed to modify host bridge, "
1497                      "legacy mode disabled", vdev->vbasedev.name);
1498         goto out;
1499     }
1500 
1501     /* Setup OpRegion access */
1502     ret = vfio_pci_igd_opregion_init(vdev, opregion, &err);
1503     if (ret) {
1504         error_append_hint(&err, "IGD legacy mode disabled\n");
1505         error_reportf_err(err, ERR_PREFIX, vdev->vbasedev.name);
1506         goto out;
1507     }
1508 
1509     /* Setup our quirk to munge GTT addresses to the VM allocated buffer */
1510     quirk = g_malloc0(sizeof(*quirk));
1511     quirk->mem = g_new0(MemoryRegion, 2);
1512     quirk->nr_mem = 2;
1513     igd = quirk->data = g_malloc0(sizeof(*igd));
1514     igd->vdev = vdev;
1515     igd->index = ~0;
1516     igd->bdsm = vfio_pci_read_config(&vdev->pdev, IGD_BDSM, 4);
1517     igd->bdsm &= ~((1 << 20) - 1); /* 1MB aligned */
1518 
1519     memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_igd_index_quirk,
1520                           igd, "vfio-igd-index-quirk", 4);
1521     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1522                                         0, &quirk->mem[0], 1);
1523 
1524     memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_igd_data_quirk,
1525                           igd, "vfio-igd-data-quirk", 4);
1526     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1527                                         4, &quirk->mem[1], 1);
1528 
1529     QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1530 
1531     /* Determine the size of stolen memory needed for GTT */
1532     ggms_mb = (gmch >> (gen < 8 ? 8 : 6)) & 0x3;
1533     if (gen > 6) {
1534         ggms_mb = 1 << ggms_mb;
1535     }
1536 
1537     /*
1538      * Assume we have no GMS memory, but allow it to be overrided by device
1539      * option (experimental).  The spec doesn't actually allow zero GMS when
1540      * when IVD (IGD VGA Disable) is clear, but the claim is that it's unused,
1541      * so let's not waste VM memory for it.
1542      */
1543     gmch &= ~((gen < 8 ? 0x1f : 0xff) << (gen < 8 ? 3 : 8));
1544 
1545     if (vdev->igd_gms) {
1546         if (vdev->igd_gms <= 0x10) {
1547             gms_mb = vdev->igd_gms * 32;
1548             gmch |= vdev->igd_gms << (gen < 8 ? 3 : 8);
1549         } else {
1550             error_report("Unsupported IGD GMS value 0x%x", vdev->igd_gms);
1551             vdev->igd_gms = 0;
1552         }
1553     }
1554 
1555     /*
1556      * Request reserved memory for stolen memory via fw_cfg.  VM firmware
1557      * must allocate a 1MB aligned reserved memory region below 4GB with
1558      * the requested size (in bytes) for use by the Intel PCI class VGA
1559      * device at VM address 00:02.0.  The base address of this reserved
1560      * memory region must be written to the device BDSM regsiter at PCI
1561      * config offset 0x5C.
1562      */
1563     bdsm_size = g_malloc(sizeof(*bdsm_size));
1564     *bdsm_size = cpu_to_le64((ggms_mb + gms_mb) * 1024 * 1024);
1565     fw_cfg_add_file(fw_cfg_find(), "etc/igd-bdsm-size",
1566                     bdsm_size, sizeof(*bdsm_size));
1567 
1568     /* GMCH is read-only, emulated */
1569     pci_set_long(vdev->pdev.config + IGD_GMCH, gmch);
1570     pci_set_long(vdev->pdev.wmask + IGD_GMCH, 0);
1571     pci_set_long(vdev->emulated_config_bits + IGD_GMCH, ~0);
1572 
1573     /* BDSM is read-write, emulated.  The BIOS needs to be able to write it */
1574     pci_set_long(vdev->pdev.config + IGD_BDSM, 0);
1575     pci_set_long(vdev->pdev.wmask + IGD_BDSM, ~0);
1576     pci_set_long(vdev->emulated_config_bits + IGD_BDSM, ~0);
1577 
1578     /*
1579      * This IOBAR gives us access to GTTADR, which allows us to write to
1580      * the GTT itself.  So let's go ahead and write zero to all the GTT
1581      * entries to avoid spurious DMA faults.  Be sure I/O access is enabled
1582      * before talking to the device.
1583      */
1584     if (pread(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig),
1585               vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) {
1586         error_report("IGD device %s - failed to read PCI command register",
1587                      vdev->vbasedev.name);
1588     }
1589 
1590     cmd = cmd_orig | PCI_COMMAND_IO;
1591 
1592     if (pwrite(vdev->vbasedev.fd, &cmd, sizeof(cmd),
1593                vdev->config_offset + PCI_COMMAND) != sizeof(cmd)) {
1594         error_report("IGD device %s - failed to write PCI command register",
1595                      vdev->vbasedev.name);
1596     }
1597 
1598     for (i = 1; i < vfio_igd_gtt_max(vdev); i += 4) {
1599         vfio_region_write(&vdev->bars[4].region, 0, i, 4);
1600         vfio_region_write(&vdev->bars[4].region, 4, 0, 4);
1601     }
1602 
1603     if (pwrite(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig),
1604                vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) {
1605         error_report("IGD device %s - failed to restore PCI command register",
1606                      vdev->vbasedev.name);
1607     }
1608 
1609     trace_vfio_pci_igd_bdsm_enabled(vdev->vbasedev.name, ggms_mb + gms_mb);
1610 
1611 out:
1612     g_free(rom);
1613     g_free(opregion);
1614     g_free(host);
1615     g_free(lpc);
1616 }
1617 
1618 /*
1619  * Common quirk probe entry points.
1620  */
1621 void vfio_vga_quirk_setup(VFIOPCIDevice *vdev)
1622 {
1623     vfio_vga_probe_ati_3c3_quirk(vdev);
1624     vfio_vga_probe_nvidia_3d0_quirk(vdev);
1625 }
1626 
1627 void vfio_vga_quirk_exit(VFIOPCIDevice *vdev)
1628 {
1629     VFIOQuirk *quirk;
1630     int i, j;
1631 
1632     for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) {
1633         QLIST_FOREACH(quirk, &vdev->vga->region[i].quirks, next) {
1634             for (j = 0; j < quirk->nr_mem; j++) {
1635                 memory_region_del_subregion(&vdev->vga->region[i].mem,
1636                                             &quirk->mem[j]);
1637             }
1638         }
1639     }
1640 }
1641 
1642 void vfio_vga_quirk_finalize(VFIOPCIDevice *vdev)
1643 {
1644     int i, j;
1645 
1646     for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) {
1647         while (!QLIST_EMPTY(&vdev->vga->region[i].quirks)) {
1648             VFIOQuirk *quirk = QLIST_FIRST(&vdev->vga->region[i].quirks);
1649             QLIST_REMOVE(quirk, next);
1650             for (j = 0; j < quirk->nr_mem; j++) {
1651                 object_unparent(OBJECT(&quirk->mem[j]));
1652             }
1653             g_free(quirk->mem);
1654             g_free(quirk->data);
1655             g_free(quirk);
1656         }
1657     }
1658 }
1659 
1660 void vfio_bar_quirk_setup(VFIOPCIDevice *vdev, int nr)
1661 {
1662     vfio_probe_ati_bar4_quirk(vdev, nr);
1663     vfio_probe_ati_bar2_quirk(vdev, nr);
1664     vfio_probe_nvidia_bar5_quirk(vdev, nr);
1665     vfio_probe_nvidia_bar0_quirk(vdev, nr);
1666     vfio_probe_rtl8168_bar2_quirk(vdev, nr);
1667     vfio_probe_igd_bar4_quirk(vdev, nr);
1668 }
1669 
1670 void vfio_bar_quirk_exit(VFIOPCIDevice *vdev, int nr)
1671 {
1672     VFIOBAR *bar = &vdev->bars[nr];
1673     VFIOQuirk *quirk;
1674     int i;
1675 
1676     QLIST_FOREACH(quirk, &bar->quirks, next) {
1677         for (i = 0; i < quirk->nr_mem; i++) {
1678             memory_region_del_subregion(bar->region.mem, &quirk->mem[i]);
1679         }
1680     }
1681 }
1682 
1683 void vfio_bar_quirk_finalize(VFIOPCIDevice *vdev, int nr)
1684 {
1685     VFIOBAR *bar = &vdev->bars[nr];
1686     int i;
1687 
1688     while (!QLIST_EMPTY(&bar->quirks)) {
1689         VFIOQuirk *quirk = QLIST_FIRST(&bar->quirks);
1690         QLIST_REMOVE(quirk, next);
1691         for (i = 0; i < quirk->nr_mem; i++) {
1692             object_unparent(OBJECT(&quirk->mem[i]));
1693         }
1694         g_free(quirk->mem);
1695         g_free(quirk->data);
1696         g_free(quirk);
1697     }
1698 }
1699 
1700 /*
1701  * Reset quirks
1702  */
1703 
1704 /*
1705  * AMD Radeon PCI config reset, based on Linux:
1706  *   drivers/gpu/drm/radeon/ci_smc.c:ci_is_smc_running()
1707  *   drivers/gpu/drm/radeon/radeon_device.c:radeon_pci_config_reset
1708  *   drivers/gpu/drm/radeon/ci_smc.c:ci_reset_smc()
1709  *   drivers/gpu/drm/radeon/ci_smc.c:ci_stop_smc_clock()
1710  * IDs: include/drm/drm_pciids.h
1711  * Registers: http://cgit.freedesktop.org/~agd5f/linux/commit/?id=4e2aa447f6f0
1712  *
1713  * Bonaire and Hawaii GPUs do not respond to a bus reset.  This is a bug in the
1714  * hardware that should be fixed on future ASICs.  The symptom of this is that
1715  * once the accerlated driver loads, Windows guests will bsod on subsequent
1716  * attmpts to load the driver, such as after VM reset or shutdown/restart.  To
1717  * work around this, we do an AMD specific PCI config reset, followed by an SMC
1718  * reset.  The PCI config reset only works if SMC firmware is running, so we
1719  * have a dependency on the state of the device as to whether this reset will
1720  * be effective.  There are still cases where we won't be able to kick the
1721  * device into working, but this greatly improves the usability overall.  The
1722  * config reset magic is relatively common on AMD GPUs, but the setup and SMC
1723  * poking is largely ASIC specific.
1724  */
1725 static bool vfio_radeon_smc_is_running(VFIOPCIDevice *vdev)
1726 {
1727     uint32_t clk, pc_c;
1728 
1729     /*
1730      * Registers 200h and 204h are index and data registers for accessing
1731      * indirect configuration registers within the device.
1732      */
1733     vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4);
1734     clk = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1735     vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000370, 4);
1736     pc_c = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1737 
1738     return (!(clk & 1) && (0x20100 <= pc_c));
1739 }
1740 
1741 /*
1742  * The scope of a config reset is controlled by a mode bit in the misc register
1743  * and a fuse, exposed as a bit in another register.  The fuse is the default
1744  * (0 = GFX, 1 = whole GPU), the misc bit is a toggle, with the forumula
1745  * scope = !(misc ^ fuse), where the resulting scope is defined the same as
1746  * the fuse.  A truth table therefore tells us that if misc == fuse, we need
1747  * to flip the value of the bit in the misc register.
1748  */
1749 static void vfio_radeon_set_gfx_only_reset(VFIOPCIDevice *vdev)
1750 {
1751     uint32_t misc, fuse;
1752     bool a, b;
1753 
1754     vfio_region_write(&vdev->bars[5].region, 0x200, 0xc00c0000, 4);
1755     fuse = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1756     b = fuse & 64;
1757 
1758     vfio_region_write(&vdev->bars[5].region, 0x200, 0xc0000010, 4);
1759     misc = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1760     a = misc & 2;
1761 
1762     if (a == b) {
1763         vfio_region_write(&vdev->bars[5].region, 0x204, misc ^ 2, 4);
1764         vfio_region_read(&vdev->bars[5].region, 0x204, 4); /* flush */
1765     }
1766 }
1767 
1768 static int vfio_radeon_reset(VFIOPCIDevice *vdev)
1769 {
1770     PCIDevice *pdev = &vdev->pdev;
1771     int i, ret = 0;
1772     uint32_t data;
1773 
1774     /* Defer to a kernel implemented reset */
1775     if (vdev->vbasedev.reset_works) {
1776         trace_vfio_quirk_ati_bonaire_reset_skipped(vdev->vbasedev.name);
1777         return -ENODEV;
1778     }
1779 
1780     /* Enable only memory BAR access */
1781     vfio_pci_write_config(pdev, PCI_COMMAND, PCI_COMMAND_MEMORY, 2);
1782 
1783     /* Reset only works if SMC firmware is loaded and running */
1784     if (!vfio_radeon_smc_is_running(vdev)) {
1785         ret = -EINVAL;
1786         trace_vfio_quirk_ati_bonaire_reset_no_smc(vdev->vbasedev.name);
1787         goto out;
1788     }
1789 
1790     /* Make sure only the GFX function is reset */
1791     vfio_radeon_set_gfx_only_reset(vdev);
1792 
1793     /* AMD PCI config reset */
1794     vfio_pci_write_config(pdev, 0x7c, 0x39d5e86b, 4);
1795     usleep(100);
1796 
1797     /* Read back the memory size to make sure we're out of reset */
1798     for (i = 0; i < 100000; i++) {
1799         if (vfio_region_read(&vdev->bars[5].region, 0x5428, 4) != 0xffffffff) {
1800             goto reset_smc;
1801         }
1802         usleep(1);
1803     }
1804 
1805     trace_vfio_quirk_ati_bonaire_reset_timeout(vdev->vbasedev.name);
1806 
1807 reset_smc:
1808     /* Reset SMC */
1809     vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000000, 4);
1810     data = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1811     data |= 1;
1812     vfio_region_write(&vdev->bars[5].region, 0x204, data, 4);
1813 
1814     /* Disable SMC clock */
1815     vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4);
1816     data = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1817     data |= 1;
1818     vfio_region_write(&vdev->bars[5].region, 0x204, data, 4);
1819 
1820     trace_vfio_quirk_ati_bonaire_reset_done(vdev->vbasedev.name);
1821 
1822 out:
1823     /* Restore PCI command register */
1824     vfio_pci_write_config(pdev, PCI_COMMAND, 0, 2);
1825 
1826     return ret;
1827 }
1828 
1829 void vfio_setup_resetfn_quirk(VFIOPCIDevice *vdev)
1830 {
1831     switch (vdev->vendor_id) {
1832     case 0x1002:
1833         switch (vdev->device_id) {
1834         /* Bonaire */
1835         case 0x6649: /* Bonaire [FirePro W5100] */
1836         case 0x6650:
1837         case 0x6651:
1838         case 0x6658: /* Bonaire XTX [Radeon R7 260X] */
1839         case 0x665c: /* Bonaire XT [Radeon HD 7790/8770 / R9 260 OEM] */
1840         case 0x665d: /* Bonaire [Radeon R7 200 Series] */
1841         /* Hawaii */
1842         case 0x67A0: /* Hawaii XT GL [FirePro W9100] */
1843         case 0x67A1: /* Hawaii PRO GL [FirePro W8100] */
1844         case 0x67A2:
1845         case 0x67A8:
1846         case 0x67A9:
1847         case 0x67AA:
1848         case 0x67B0: /* Hawaii XT [Radeon R9 290X] */
1849         case 0x67B1: /* Hawaii PRO [Radeon R9 290] */
1850         case 0x67B8:
1851         case 0x67B9:
1852         case 0x67BA:
1853         case 0x67BE:
1854             vdev->resetfn = vfio_radeon_reset;
1855             trace_vfio_quirk_ati_bonaire_reset(vdev->vbasedev.name);
1856             break;
1857         }
1858         break;
1859     }
1860 }
1861 
1862 /*
1863  * The NVIDIA GPUDirect P2P Vendor capability allows the user to specify
1864  * devices as a member of a clique.  Devices within the same clique ID
1865  * are capable of direct P2P.  It's the user's responsibility that this
1866  * is correct.  The spec says that this may reside at any unused config
1867  * offset, but reserves and recommends hypervisors place this at C8h.
1868  * The spec also states that the hypervisor should place this capability
1869  * at the end of the capability list, thus next is defined as 0h.
1870  *
1871  * +----------------+----------------+----------------+----------------+
1872  * | sig 7:0 ('P')  |  vndr len (8h) |    next (0h)   |   cap id (9h)  |
1873  * +----------------+----------------+----------------+----------------+
1874  * | rsvd 15:7(0h),id 6:3,ver 2:0(0h)|          sig 23:8 ('P2')        |
1875  * +---------------------------------+---------------------------------+
1876  *
1877  * https://lists.gnu.org/archive/html/qemu-devel/2017-08/pdfUda5iEpgOS.pdf
1878  */
1879 static void get_nv_gpudirect_clique_id(Object *obj, Visitor *v,
1880                                        const char *name, void *opaque,
1881                                        Error **errp)
1882 {
1883     DeviceState *dev = DEVICE(obj);
1884     Property *prop = opaque;
1885     uint8_t *ptr = qdev_get_prop_ptr(dev, prop);
1886 
1887     visit_type_uint8(v, name, ptr, errp);
1888 }
1889 
1890 static void set_nv_gpudirect_clique_id(Object *obj, Visitor *v,
1891                                        const char *name, void *opaque,
1892                                        Error **errp)
1893 {
1894     DeviceState *dev = DEVICE(obj);
1895     Property *prop = opaque;
1896     uint8_t value, *ptr = qdev_get_prop_ptr(dev, prop);
1897     Error *local_err = NULL;
1898 
1899     if (dev->realized) {
1900         qdev_prop_set_after_realize(dev, name, errp);
1901         return;
1902     }
1903 
1904     visit_type_uint8(v, name, &value, &local_err);
1905     if (local_err) {
1906         error_propagate(errp, local_err);
1907         return;
1908     }
1909 
1910     if (value & ~0xF) {
1911         error_setg(errp, "Property %s: valid range 0-15", name);
1912         return;
1913     }
1914 
1915     *ptr = value;
1916 }
1917 
1918 const PropertyInfo qdev_prop_nv_gpudirect_clique = {
1919     .name = "uint4",
1920     .description = "NVIDIA GPUDirect Clique ID (0 - 15)",
1921     .get = get_nv_gpudirect_clique_id,
1922     .set = set_nv_gpudirect_clique_id,
1923 };
1924 
1925 static int vfio_add_nv_gpudirect_cap(VFIOPCIDevice *vdev, Error **errp)
1926 {
1927     PCIDevice *pdev = &vdev->pdev;
1928     int ret, pos = 0xC8;
1929 
1930     if (vdev->nv_gpudirect_clique == 0xFF) {
1931         return 0;
1932     }
1933 
1934     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID)) {
1935         error_setg(errp, "NVIDIA GPUDirect Clique ID: invalid device vendor");
1936         return -EINVAL;
1937     }
1938 
1939     if (pci_get_byte(pdev->config + PCI_CLASS_DEVICE + 1) !=
1940         PCI_BASE_CLASS_DISPLAY) {
1941         error_setg(errp, "NVIDIA GPUDirect Clique ID: unsupported PCI class");
1942         return -EINVAL;
1943     }
1944 
1945     ret = pci_add_capability(pdev, PCI_CAP_ID_VNDR, pos, 8, errp);
1946     if (ret < 0) {
1947         error_prepend(errp, "Failed to add NVIDIA GPUDirect cap: ");
1948         return ret;
1949     }
1950 
1951     memset(vdev->emulated_config_bits + pos, 0xFF, 8);
1952     pos += PCI_CAP_FLAGS;
1953     pci_set_byte(pdev->config + pos++, 8);
1954     pci_set_byte(pdev->config + pos++, 'P');
1955     pci_set_byte(pdev->config + pos++, '2');
1956     pci_set_byte(pdev->config + pos++, 'P');
1957     pci_set_byte(pdev->config + pos++, vdev->nv_gpudirect_clique << 3);
1958     pci_set_byte(pdev->config + pos, 0);
1959 
1960     return 0;
1961 }
1962 
1963 int vfio_add_virt_caps(VFIOPCIDevice *vdev, Error **errp)
1964 {
1965     int ret;
1966 
1967     ret = vfio_add_nv_gpudirect_cap(vdev, errp);
1968     if (ret) {
1969         return ret;
1970     }
1971 
1972     return 0;
1973 }
1974