xref: /openbmc/qemu/hw/vfio/common.c (revision 6328d8ffa6cb9d750e4bfcfd73ac25d3a39ceb63)
1 /*
2  * generic functions used by VFIO devices
3  *
4  * Copyright Red Hat, Inc. 2012
5  *
6  * Authors:
7  *  Alex Williamson <alex.williamson@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  * Based on qemu-kvm device-assignment:
13  *  Adapted for KVM by Qumranet.
14  *  Copyright (c) 2007, Neocleus, Alex Novik (alex@neocleus.com)
15  *  Copyright (c) 2007, Neocleus, Guy Zana (guy@neocleus.com)
16  *  Copyright (C) 2008, Qumranet, Amit Shah (amit.shah@qumranet.com)
17  *  Copyright (C) 2008, Red Hat, Amit Shah (amit.shah@redhat.com)
18  *  Copyright (C) 2008, IBM, Muli Ben-Yehuda (muli@il.ibm.com)
19  */
20 
21 #include "qemu/osdep.h"
22 #include <sys/ioctl.h>
23 #ifdef CONFIG_KVM
24 #include <linux/kvm.h>
25 #endif
26 #include <linux/vfio.h>
27 
28 #include "hw/vfio/vfio-common.h"
29 #include "hw/vfio/pci.h"
30 #include "exec/address-spaces.h"
31 #include "exec/memory.h"
32 #include "exec/ram_addr.h"
33 #include "hw/hw.h"
34 #include "qemu/error-report.h"
35 #include "qemu/main-loop.h"
36 #include "qemu/range.h"
37 #include "sysemu/kvm.h"
38 #include "sysemu/reset.h"
39 #include "sysemu/runstate.h"
40 #include "trace.h"
41 #include "qapi/error.h"
42 #include "migration/misc.h"
43 #include "migration/blocker.h"
44 #include "migration/qemu-file.h"
45 #include "sysemu/tpm.h"
46 
47 VFIODeviceList vfio_device_list =
48     QLIST_HEAD_INITIALIZER(vfio_device_list);
49 static QLIST_HEAD(, VFIOAddressSpace) vfio_address_spaces =
50     QLIST_HEAD_INITIALIZER(vfio_address_spaces);
51 
52 #ifdef CONFIG_KVM
53 /*
54  * We have a single VFIO pseudo device per KVM VM.  Once created it lives
55  * for the life of the VM.  Closing the file descriptor only drops our
56  * reference to it and the device's reference to kvm.  Therefore once
57  * initialized, this file descriptor is only released on QEMU exit and
58  * we'll re-use it should another vfio device be attached before then.
59  */
60 int vfio_kvm_device_fd = -1;
61 #endif
62 
63 /*
64  * Device state interfaces
65  */
66 
67 bool vfio_mig_active(void)
68 {
69     VFIODevice *vbasedev;
70 
71     if (QLIST_EMPTY(&vfio_device_list)) {
72         return false;
73     }
74 
75     QLIST_FOREACH(vbasedev, &vfio_device_list, global_next) {
76         if (vbasedev->migration_blocker) {
77             return false;
78         }
79     }
80     return true;
81 }
82 
83 static Error *multiple_devices_migration_blocker;
84 
85 /*
86  * Multiple devices migration is allowed only if all devices support P2P
87  * migration. Single device migration is allowed regardless of P2P migration
88  * support.
89  */
90 static bool vfio_multiple_devices_migration_is_supported(void)
91 {
92     VFIODevice *vbasedev;
93     unsigned int device_num = 0;
94     bool all_support_p2p = true;
95 
96     QLIST_FOREACH(vbasedev, &vfio_device_list, global_next) {
97         if (vbasedev->migration) {
98             device_num++;
99 
100             if (!(vbasedev->migration->mig_flags & VFIO_MIGRATION_P2P)) {
101                 all_support_p2p = false;
102             }
103         }
104     }
105 
106     return all_support_p2p || device_num <= 1;
107 }
108 
109 int vfio_block_multiple_devices_migration(VFIODevice *vbasedev, Error **errp)
110 {
111     int ret;
112 
113     if (vfio_multiple_devices_migration_is_supported()) {
114         return 0;
115     }
116 
117     if (vbasedev->enable_migration == ON_OFF_AUTO_ON) {
118         error_setg(errp, "Multiple VFIO devices migration is supported only if "
119                          "all of them support P2P migration");
120         return -EINVAL;
121     }
122 
123     if (multiple_devices_migration_blocker) {
124         return 0;
125     }
126 
127     error_setg(&multiple_devices_migration_blocker,
128                "Multiple VFIO devices migration is supported only if all of "
129                "them support P2P migration");
130     ret = migrate_add_blocker_normal(&multiple_devices_migration_blocker, errp);
131 
132     return ret;
133 }
134 
135 void vfio_unblock_multiple_devices_migration(void)
136 {
137     if (!multiple_devices_migration_blocker ||
138         !vfio_multiple_devices_migration_is_supported()) {
139         return;
140     }
141 
142     migrate_del_blocker(&multiple_devices_migration_blocker);
143 }
144 
145 bool vfio_viommu_preset(VFIODevice *vbasedev)
146 {
147     return vbasedev->bcontainer->space->as != &address_space_memory;
148 }
149 
150 static void vfio_set_migration_error(int err)
151 {
152     if (migration_is_setup_or_active()) {
153         migration_file_set_error(err);
154     }
155 }
156 
157 bool vfio_device_state_is_running(VFIODevice *vbasedev)
158 {
159     VFIOMigration *migration = vbasedev->migration;
160 
161     return migration->device_state == VFIO_DEVICE_STATE_RUNNING ||
162            migration->device_state == VFIO_DEVICE_STATE_RUNNING_P2P;
163 }
164 
165 bool vfio_device_state_is_precopy(VFIODevice *vbasedev)
166 {
167     VFIOMigration *migration = vbasedev->migration;
168 
169     return migration->device_state == VFIO_DEVICE_STATE_PRE_COPY ||
170            migration->device_state == VFIO_DEVICE_STATE_PRE_COPY_P2P;
171 }
172 
173 static bool vfio_devices_all_dirty_tracking(VFIOContainerBase *bcontainer)
174 {
175     VFIODevice *vbasedev;
176 
177     if (!migration_is_active() && !migration_is_device()) {
178         return false;
179     }
180 
181     QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) {
182         VFIOMigration *migration = vbasedev->migration;
183 
184         if (!migration) {
185             return false;
186         }
187 
188         if (vbasedev->pre_copy_dirty_page_tracking == ON_OFF_AUTO_OFF &&
189             (vfio_device_state_is_running(vbasedev) ||
190              vfio_device_state_is_precopy(vbasedev))) {
191             return false;
192         }
193     }
194     return true;
195 }
196 
197 bool vfio_devices_all_device_dirty_tracking(const VFIOContainerBase *bcontainer)
198 {
199     VFIODevice *vbasedev;
200 
201     QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) {
202         if (!vbasedev->dirty_pages_supported) {
203             return false;
204         }
205     }
206 
207     return true;
208 }
209 
210 /*
211  * Check if all VFIO devices are running and migration is active, which is
212  * essentially equivalent to the migration being in pre-copy phase.
213  */
214 bool
215 vfio_devices_all_running_and_mig_active(const VFIOContainerBase *bcontainer)
216 {
217     VFIODevice *vbasedev;
218 
219     if (!migration_is_active()) {
220         return false;
221     }
222 
223     QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) {
224         VFIOMigration *migration = vbasedev->migration;
225 
226         if (!migration) {
227             return false;
228         }
229 
230         if (vfio_device_state_is_running(vbasedev) ||
231             vfio_device_state_is_precopy(vbasedev)) {
232             continue;
233         } else {
234             return false;
235         }
236     }
237     return true;
238 }
239 
240 static bool vfio_listener_skipped_section(MemoryRegionSection *section)
241 {
242     return (!memory_region_is_ram(section->mr) &&
243             !memory_region_is_iommu(section->mr)) ||
244            memory_region_is_protected(section->mr) ||
245            /*
246             * Sizing an enabled 64-bit BAR can cause spurious mappings to
247             * addresses in the upper part of the 64-bit address space.  These
248             * are never accessed by the CPU and beyond the address width of
249             * some IOMMU hardware.  TODO: VFIO should tell us the IOMMU width.
250             */
251            section->offset_within_address_space & (1ULL << 63);
252 }
253 
254 /* Called with rcu_read_lock held.  */
255 static bool vfio_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr,
256                                ram_addr_t *ram_addr, bool *read_only)
257 {
258     bool ret, mr_has_discard_manager;
259 
260     ret = memory_get_xlat_addr(iotlb, vaddr, ram_addr, read_only,
261                                &mr_has_discard_manager);
262     if (ret && mr_has_discard_manager) {
263         /*
264          * Malicious VMs might trigger discarding of IOMMU-mapped memory. The
265          * pages will remain pinned inside vfio until unmapped, resulting in a
266          * higher memory consumption than expected. If memory would get
267          * populated again later, there would be an inconsistency between pages
268          * pinned by vfio and pages seen by QEMU. This is the case until
269          * unmapped from the IOMMU (e.g., during device reset).
270          *
271          * With malicious guests, we really only care about pinning more memory
272          * than expected. RLIMIT_MEMLOCK set for the user/process can never be
273          * exceeded and can be used to mitigate this problem.
274          */
275         warn_report_once("Using vfio with vIOMMUs and coordinated discarding of"
276                          " RAM (e.g., virtio-mem) works, however, malicious"
277                          " guests can trigger pinning of more memory than"
278                          " intended via an IOMMU. It's possible to mitigate "
279                          " by setting/adjusting RLIMIT_MEMLOCK.");
280     }
281     return ret;
282 }
283 
284 static void vfio_iommu_map_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
285 {
286     VFIOGuestIOMMU *giommu = container_of(n, VFIOGuestIOMMU, n);
287     VFIOContainerBase *bcontainer = giommu->bcontainer;
288     hwaddr iova = iotlb->iova + giommu->iommu_offset;
289     void *vaddr;
290     int ret;
291 
292     trace_vfio_iommu_map_notify(iotlb->perm == IOMMU_NONE ? "UNMAP" : "MAP",
293                                 iova, iova + iotlb->addr_mask);
294 
295     if (iotlb->target_as != &address_space_memory) {
296         error_report("Wrong target AS \"%s\", only system memory is allowed",
297                      iotlb->target_as->name ? iotlb->target_as->name : "none");
298         vfio_set_migration_error(-EINVAL);
299         return;
300     }
301 
302     rcu_read_lock();
303 
304     if ((iotlb->perm & IOMMU_RW) != IOMMU_NONE) {
305         bool read_only;
306 
307         if (!vfio_get_xlat_addr(iotlb, &vaddr, NULL, &read_only)) {
308             goto out;
309         }
310         /*
311          * vaddr is only valid until rcu_read_unlock(). But after
312          * vfio_dma_map has set up the mapping the pages will be
313          * pinned by the kernel. This makes sure that the RAM backend
314          * of vaddr will always be there, even if the memory object is
315          * destroyed and its backing memory munmap-ed.
316          */
317         ret = vfio_container_dma_map(bcontainer, iova,
318                                      iotlb->addr_mask + 1, vaddr,
319                                      read_only);
320         if (ret) {
321             error_report("vfio_container_dma_map(%p, 0x%"HWADDR_PRIx", "
322                          "0x%"HWADDR_PRIx", %p) = %d (%s)",
323                          bcontainer, iova,
324                          iotlb->addr_mask + 1, vaddr, ret, strerror(-ret));
325         }
326     } else {
327         ret = vfio_container_dma_unmap(bcontainer, iova,
328                                        iotlb->addr_mask + 1, iotlb);
329         if (ret) {
330             error_report("vfio_container_dma_unmap(%p, 0x%"HWADDR_PRIx", "
331                          "0x%"HWADDR_PRIx") = %d (%s)",
332                          bcontainer, iova,
333                          iotlb->addr_mask + 1, ret, strerror(-ret));
334             vfio_set_migration_error(ret);
335         }
336     }
337 out:
338     rcu_read_unlock();
339 }
340 
341 static void vfio_ram_discard_notify_discard(RamDiscardListener *rdl,
342                                             MemoryRegionSection *section)
343 {
344     VFIORamDiscardListener *vrdl = container_of(rdl, VFIORamDiscardListener,
345                                                 listener);
346     VFIOContainerBase *bcontainer = vrdl->bcontainer;
347     const hwaddr size = int128_get64(section->size);
348     const hwaddr iova = section->offset_within_address_space;
349     int ret;
350 
351     /* Unmap with a single call. */
352     ret = vfio_container_dma_unmap(bcontainer, iova, size , NULL);
353     if (ret) {
354         error_report("%s: vfio_container_dma_unmap() failed: %s", __func__,
355                      strerror(-ret));
356     }
357 }
358 
359 static int vfio_ram_discard_notify_populate(RamDiscardListener *rdl,
360                                             MemoryRegionSection *section)
361 {
362     VFIORamDiscardListener *vrdl = container_of(rdl, VFIORamDiscardListener,
363                                                 listener);
364     VFIOContainerBase *bcontainer = vrdl->bcontainer;
365     const hwaddr end = section->offset_within_region +
366                        int128_get64(section->size);
367     hwaddr start, next, iova;
368     void *vaddr;
369     int ret;
370 
371     /*
372      * Map in (aligned within memory region) minimum granularity, so we can
373      * unmap in minimum granularity later.
374      */
375     for (start = section->offset_within_region; start < end; start = next) {
376         next = ROUND_UP(start + 1, vrdl->granularity);
377         next = MIN(next, end);
378 
379         iova = start - section->offset_within_region +
380                section->offset_within_address_space;
381         vaddr = memory_region_get_ram_ptr(section->mr) + start;
382 
383         ret = vfio_container_dma_map(bcontainer, iova, next - start,
384                                      vaddr, section->readonly);
385         if (ret) {
386             /* Rollback */
387             vfio_ram_discard_notify_discard(rdl, section);
388             return ret;
389         }
390     }
391     return 0;
392 }
393 
394 static void vfio_register_ram_discard_listener(VFIOContainerBase *bcontainer,
395                                                MemoryRegionSection *section)
396 {
397     RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr);
398     VFIORamDiscardListener *vrdl;
399 
400     /* Ignore some corner cases not relevant in practice. */
401     g_assert(QEMU_IS_ALIGNED(section->offset_within_region, TARGET_PAGE_SIZE));
402     g_assert(QEMU_IS_ALIGNED(section->offset_within_address_space,
403                              TARGET_PAGE_SIZE));
404     g_assert(QEMU_IS_ALIGNED(int128_get64(section->size), TARGET_PAGE_SIZE));
405 
406     vrdl = g_new0(VFIORamDiscardListener, 1);
407     vrdl->bcontainer = bcontainer;
408     vrdl->mr = section->mr;
409     vrdl->offset_within_address_space = section->offset_within_address_space;
410     vrdl->size = int128_get64(section->size);
411     vrdl->granularity = ram_discard_manager_get_min_granularity(rdm,
412                                                                 section->mr);
413 
414     g_assert(vrdl->granularity && is_power_of_2(vrdl->granularity));
415     g_assert(bcontainer->pgsizes &&
416              vrdl->granularity >= 1ULL << ctz64(bcontainer->pgsizes));
417 
418     ram_discard_listener_init(&vrdl->listener,
419                               vfio_ram_discard_notify_populate,
420                               vfio_ram_discard_notify_discard, true);
421     ram_discard_manager_register_listener(rdm, &vrdl->listener, section);
422     QLIST_INSERT_HEAD(&bcontainer->vrdl_list, vrdl, next);
423 
424     /*
425      * Sanity-check if we have a theoretically problematic setup where we could
426      * exceed the maximum number of possible DMA mappings over time. We assume
427      * that each mapped section in the same address space as a RamDiscardManager
428      * section consumes exactly one DMA mapping, with the exception of
429      * RamDiscardManager sections; i.e., we don't expect to have gIOMMU sections
430      * in the same address space as RamDiscardManager sections.
431      *
432      * We assume that each section in the address space consumes one memslot.
433      * We take the number of KVM memory slots as a best guess for the maximum
434      * number of sections in the address space we could have over time,
435      * also consuming DMA mappings.
436      */
437     if (bcontainer->dma_max_mappings) {
438         unsigned int vrdl_count = 0, vrdl_mappings = 0, max_memslots = 512;
439 
440 #ifdef CONFIG_KVM
441         if (kvm_enabled()) {
442             max_memslots = kvm_get_max_memslots();
443         }
444 #endif
445 
446         QLIST_FOREACH(vrdl, &bcontainer->vrdl_list, next) {
447             hwaddr start, end;
448 
449             start = QEMU_ALIGN_DOWN(vrdl->offset_within_address_space,
450                                     vrdl->granularity);
451             end = ROUND_UP(vrdl->offset_within_address_space + vrdl->size,
452                            vrdl->granularity);
453             vrdl_mappings += (end - start) / vrdl->granularity;
454             vrdl_count++;
455         }
456 
457         if (vrdl_mappings + max_memslots - vrdl_count >
458             bcontainer->dma_max_mappings) {
459             warn_report("%s: possibly running out of DMA mappings. E.g., try"
460                         " increasing the 'block-size' of virtio-mem devies."
461                         " Maximum possible DMA mappings: %d, Maximum possible"
462                         " memslots: %d", __func__, bcontainer->dma_max_mappings,
463                         max_memslots);
464         }
465     }
466 }
467 
468 static void vfio_unregister_ram_discard_listener(VFIOContainerBase *bcontainer,
469                                                  MemoryRegionSection *section)
470 {
471     RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr);
472     VFIORamDiscardListener *vrdl = NULL;
473 
474     QLIST_FOREACH(vrdl, &bcontainer->vrdl_list, next) {
475         if (vrdl->mr == section->mr &&
476             vrdl->offset_within_address_space ==
477             section->offset_within_address_space) {
478             break;
479         }
480     }
481 
482     if (!vrdl) {
483         hw_error("vfio: Trying to unregister missing RAM discard listener");
484     }
485 
486     ram_discard_manager_unregister_listener(rdm, &vrdl->listener);
487     QLIST_REMOVE(vrdl, next);
488     g_free(vrdl);
489 }
490 
491 static bool vfio_known_safe_misalignment(MemoryRegionSection *section)
492 {
493     MemoryRegion *mr = section->mr;
494 
495     if (!TPM_IS_CRB(mr->owner)) {
496         return false;
497     }
498 
499     /* this is a known safe misaligned region, just trace for debug purpose */
500     trace_vfio_known_safe_misalignment(memory_region_name(mr),
501                                        section->offset_within_address_space,
502                                        section->offset_within_region,
503                                        qemu_real_host_page_size());
504     return true;
505 }
506 
507 static bool vfio_listener_valid_section(MemoryRegionSection *section,
508                                         const char *name)
509 {
510     if (vfio_listener_skipped_section(section)) {
511         trace_vfio_listener_region_skip(name,
512                 section->offset_within_address_space,
513                 section->offset_within_address_space +
514                 int128_get64(int128_sub(section->size, int128_one())));
515         return false;
516     }
517 
518     if (unlikely((section->offset_within_address_space &
519                   ~qemu_real_host_page_mask()) !=
520                  (section->offset_within_region & ~qemu_real_host_page_mask()))) {
521         if (!vfio_known_safe_misalignment(section)) {
522             error_report("%s received unaligned region %s iova=0x%"PRIx64
523                          " offset_within_region=0x%"PRIx64
524                          " qemu_real_host_page_size=0x%"PRIxPTR,
525                          __func__, memory_region_name(section->mr),
526                          section->offset_within_address_space,
527                          section->offset_within_region,
528                          qemu_real_host_page_size());
529         }
530         return false;
531     }
532 
533     return true;
534 }
535 
536 static bool vfio_get_section_iova_range(VFIOContainerBase *bcontainer,
537                                         MemoryRegionSection *section,
538                                         hwaddr *out_iova, hwaddr *out_end,
539                                         Int128 *out_llend)
540 {
541     Int128 llend;
542     hwaddr iova;
543 
544     iova = REAL_HOST_PAGE_ALIGN(section->offset_within_address_space);
545     llend = int128_make64(section->offset_within_address_space);
546     llend = int128_add(llend, section->size);
547     llend = int128_and(llend, int128_exts64(qemu_real_host_page_mask()));
548 
549     if (int128_ge(int128_make64(iova), llend)) {
550         return false;
551     }
552 
553     *out_iova = iova;
554     *out_end = int128_get64(int128_sub(llend, int128_one()));
555     if (out_llend) {
556         *out_llend = llend;
557     }
558     return true;
559 }
560 
561 static void vfio_listener_region_add(MemoryListener *listener,
562                                      MemoryRegionSection *section)
563 {
564     VFIOContainerBase *bcontainer = container_of(listener, VFIOContainerBase,
565                                                  listener);
566     hwaddr iova, end;
567     Int128 llend, llsize;
568     void *vaddr;
569     int ret;
570     Error *err = NULL;
571 
572     if (!vfio_listener_valid_section(section, "region_add")) {
573         return;
574     }
575 
576     if (!vfio_get_section_iova_range(bcontainer, section, &iova, &end,
577                                      &llend)) {
578         if (memory_region_is_ram_device(section->mr)) {
579             trace_vfio_listener_region_add_no_dma_map(
580                 memory_region_name(section->mr),
581                 section->offset_within_address_space,
582                 int128_getlo(section->size),
583                 qemu_real_host_page_size());
584         }
585         return;
586     }
587 
588     if (vfio_container_add_section_window(bcontainer, section, &err)) {
589         goto fail;
590     }
591 
592     memory_region_ref(section->mr);
593 
594     if (memory_region_is_iommu(section->mr)) {
595         VFIOGuestIOMMU *giommu;
596         IOMMUMemoryRegion *iommu_mr = IOMMU_MEMORY_REGION(section->mr);
597         int iommu_idx;
598 
599         trace_vfio_listener_region_add_iommu(iova, end);
600         /*
601          * FIXME: For VFIO iommu types which have KVM acceleration to
602          * avoid bouncing all map/unmaps through qemu this way, this
603          * would be the right place to wire that up (tell the KVM
604          * device emulation the VFIO iommu handles to use).
605          */
606         giommu = g_malloc0(sizeof(*giommu));
607         giommu->iommu_mr = iommu_mr;
608         giommu->iommu_offset = section->offset_within_address_space -
609                                section->offset_within_region;
610         giommu->bcontainer = bcontainer;
611         llend = int128_add(int128_make64(section->offset_within_region),
612                            section->size);
613         llend = int128_sub(llend, int128_one());
614         iommu_idx = memory_region_iommu_attrs_to_index(iommu_mr,
615                                                        MEMTXATTRS_UNSPECIFIED);
616         iommu_notifier_init(&giommu->n, vfio_iommu_map_notify,
617                             IOMMU_NOTIFIER_IOTLB_EVENTS,
618                             section->offset_within_region,
619                             int128_get64(llend),
620                             iommu_idx);
621 
622         ret = memory_region_iommu_set_page_size_mask(giommu->iommu_mr,
623                                                      bcontainer->pgsizes,
624                                                      &err);
625         if (ret) {
626             g_free(giommu);
627             goto fail;
628         }
629 
630         if (bcontainer->iova_ranges) {
631             ret = memory_region_iommu_set_iova_ranges(giommu->iommu_mr,
632                                                       bcontainer->iova_ranges,
633                                                       &err);
634             if (ret) {
635                 g_free(giommu);
636                 goto fail;
637             }
638         }
639 
640         ret = memory_region_register_iommu_notifier(section->mr, &giommu->n,
641                                                     &err);
642         if (ret) {
643             g_free(giommu);
644             goto fail;
645         }
646         QLIST_INSERT_HEAD(&bcontainer->giommu_list, giommu, giommu_next);
647         memory_region_iommu_replay(giommu->iommu_mr, &giommu->n);
648 
649         return;
650     }
651 
652     /* Here we assume that memory_region_is_ram(section->mr)==true */
653 
654     /*
655      * For RAM memory regions with a RamDiscardManager, we only want to map the
656      * actually populated parts - and update the mapping whenever we're notified
657      * about changes.
658      */
659     if (memory_region_has_ram_discard_manager(section->mr)) {
660         vfio_register_ram_discard_listener(bcontainer, section);
661         return;
662     }
663 
664     vaddr = memory_region_get_ram_ptr(section->mr) +
665             section->offset_within_region +
666             (iova - section->offset_within_address_space);
667 
668     trace_vfio_listener_region_add_ram(iova, end, vaddr);
669 
670     llsize = int128_sub(llend, int128_make64(iova));
671 
672     if (memory_region_is_ram_device(section->mr)) {
673         hwaddr pgmask = (1ULL << ctz64(bcontainer->pgsizes)) - 1;
674 
675         if ((iova & pgmask) || (int128_get64(llsize) & pgmask)) {
676             trace_vfio_listener_region_add_no_dma_map(
677                 memory_region_name(section->mr),
678                 section->offset_within_address_space,
679                 int128_getlo(section->size),
680                 pgmask + 1);
681             return;
682         }
683     }
684 
685     ret = vfio_container_dma_map(bcontainer, iova, int128_get64(llsize),
686                                  vaddr, section->readonly);
687     if (ret) {
688         error_setg(&err, "vfio_container_dma_map(%p, 0x%"HWADDR_PRIx", "
689                    "0x%"HWADDR_PRIx", %p) = %d (%s)",
690                    bcontainer, iova, int128_get64(llsize), vaddr, ret,
691                    strerror(-ret));
692         if (memory_region_is_ram_device(section->mr)) {
693             /* Allow unexpected mappings not to be fatal for RAM devices */
694             error_report_err(err);
695             return;
696         }
697         goto fail;
698     }
699 
700     return;
701 
702 fail:
703     if (memory_region_is_ram_device(section->mr)) {
704         error_reportf_err(err, "PCI p2p may not work: ");
705         return;
706     }
707     /*
708      * On the initfn path, store the first error in the container so we
709      * can gracefully fail.  Runtime, there's not much we can do other
710      * than throw a hardware error.
711      */
712     if (!bcontainer->initialized) {
713         if (!bcontainer->error) {
714             error_propagate_prepend(&bcontainer->error, err,
715                                     "Region %s: ",
716                                     memory_region_name(section->mr));
717         } else {
718             error_free(err);
719         }
720     } else {
721         error_report_err(err);
722         hw_error("vfio: DMA mapping failed, unable to continue");
723     }
724 }
725 
726 static void vfio_listener_region_del(MemoryListener *listener,
727                                      MemoryRegionSection *section)
728 {
729     VFIOContainerBase *bcontainer = container_of(listener, VFIOContainerBase,
730                                                  listener);
731     hwaddr iova, end;
732     Int128 llend, llsize;
733     int ret;
734     bool try_unmap = true;
735 
736     if (!vfio_listener_valid_section(section, "region_del")) {
737         return;
738     }
739 
740     if (memory_region_is_iommu(section->mr)) {
741         VFIOGuestIOMMU *giommu;
742 
743         QLIST_FOREACH(giommu, &bcontainer->giommu_list, giommu_next) {
744             if (MEMORY_REGION(giommu->iommu_mr) == section->mr &&
745                 giommu->n.start == section->offset_within_region) {
746                 memory_region_unregister_iommu_notifier(section->mr,
747                                                         &giommu->n);
748                 QLIST_REMOVE(giommu, giommu_next);
749                 g_free(giommu);
750                 break;
751             }
752         }
753 
754         /*
755          * FIXME: We assume the one big unmap below is adequate to
756          * remove any individual page mappings in the IOMMU which
757          * might have been copied into VFIO. This works for a page table
758          * based IOMMU where a big unmap flattens a large range of IO-PTEs.
759          * That may not be true for all IOMMU types.
760          */
761     }
762 
763     if (!vfio_get_section_iova_range(bcontainer, section, &iova, &end,
764                                      &llend)) {
765         return;
766     }
767 
768     llsize = int128_sub(llend, int128_make64(iova));
769 
770     trace_vfio_listener_region_del(iova, end);
771 
772     if (memory_region_is_ram_device(section->mr)) {
773         hwaddr pgmask;
774 
775         pgmask = (1ULL << ctz64(bcontainer->pgsizes)) - 1;
776         try_unmap = !((iova & pgmask) || (int128_get64(llsize) & pgmask));
777     } else if (memory_region_has_ram_discard_manager(section->mr)) {
778         vfio_unregister_ram_discard_listener(bcontainer, section);
779         /* Unregistering will trigger an unmap. */
780         try_unmap = false;
781     }
782 
783     if (try_unmap) {
784         if (int128_eq(llsize, int128_2_64())) {
785             /* The unmap ioctl doesn't accept a full 64-bit span. */
786             llsize = int128_rshift(llsize, 1);
787             ret = vfio_container_dma_unmap(bcontainer, iova,
788                                            int128_get64(llsize), NULL);
789             if (ret) {
790                 error_report("vfio_container_dma_unmap(%p, 0x%"HWADDR_PRIx", "
791                              "0x%"HWADDR_PRIx") = %d (%s)",
792                              bcontainer, iova, int128_get64(llsize), ret,
793                              strerror(-ret));
794             }
795             iova += int128_get64(llsize);
796         }
797         ret = vfio_container_dma_unmap(bcontainer, iova,
798                                        int128_get64(llsize), NULL);
799         if (ret) {
800             error_report("vfio_container_dma_unmap(%p, 0x%"HWADDR_PRIx", "
801                          "0x%"HWADDR_PRIx") = %d (%s)",
802                          bcontainer, iova, int128_get64(llsize), ret,
803                          strerror(-ret));
804         }
805     }
806 
807     memory_region_unref(section->mr);
808 
809     vfio_container_del_section_window(bcontainer, section);
810 }
811 
812 typedef struct VFIODirtyRanges {
813     hwaddr min32;
814     hwaddr max32;
815     hwaddr min64;
816     hwaddr max64;
817     hwaddr minpci64;
818     hwaddr maxpci64;
819 } VFIODirtyRanges;
820 
821 typedef struct VFIODirtyRangesListener {
822     VFIOContainerBase *bcontainer;
823     VFIODirtyRanges ranges;
824     MemoryListener listener;
825 } VFIODirtyRangesListener;
826 
827 static bool vfio_section_is_vfio_pci(MemoryRegionSection *section,
828                                      VFIOContainerBase *bcontainer)
829 {
830     VFIOPCIDevice *pcidev;
831     VFIODevice *vbasedev;
832     Object *owner;
833 
834     owner = memory_region_owner(section->mr);
835 
836     QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) {
837         if (vbasedev->type != VFIO_DEVICE_TYPE_PCI) {
838             continue;
839         }
840         pcidev = container_of(vbasedev, VFIOPCIDevice, vbasedev);
841         if (OBJECT(pcidev) == owner) {
842             return true;
843         }
844     }
845 
846     return false;
847 }
848 
849 static void vfio_dirty_tracking_update(MemoryListener *listener,
850                                        MemoryRegionSection *section)
851 {
852     VFIODirtyRangesListener *dirty = container_of(listener,
853                                                   VFIODirtyRangesListener,
854                                                   listener);
855     VFIODirtyRanges *range = &dirty->ranges;
856     hwaddr iova, end, *min, *max;
857 
858     if (!vfio_listener_valid_section(section, "tracking_update") ||
859         !vfio_get_section_iova_range(dirty->bcontainer, section,
860                                      &iova, &end, NULL)) {
861         return;
862     }
863 
864     /*
865      * The address space passed to the dirty tracker is reduced to three ranges:
866      * one for 32-bit DMA ranges, one for 64-bit DMA ranges and one for the
867      * PCI 64-bit hole.
868      *
869      * The underlying reports of dirty will query a sub-interval of each of
870      * these ranges.
871      *
872      * The purpose of the three range handling is to handle known cases of big
873      * holes in the address space, like the x86 AMD 1T hole, and firmware (like
874      * OVMF) which may relocate the pci-hole64 to the end of the address space.
875      * The latter would otherwise generate large ranges for tracking, stressing
876      * the limits of supported hardware. The pci-hole32 will always be below 4G
877      * (overlapping or not) so it doesn't need special handling and is part of
878      * the 32-bit range.
879      *
880      * The alternative would be an IOVATree but that has a much bigger runtime
881      * overhead and unnecessary complexity.
882      */
883     if (vfio_section_is_vfio_pci(section, dirty->bcontainer) &&
884         iova >= UINT32_MAX) {
885         min = &range->minpci64;
886         max = &range->maxpci64;
887     } else {
888         min = (end <= UINT32_MAX) ? &range->min32 : &range->min64;
889         max = (end <= UINT32_MAX) ? &range->max32 : &range->max64;
890     }
891     if (*min > iova) {
892         *min = iova;
893     }
894     if (*max < end) {
895         *max = end;
896     }
897 
898     trace_vfio_device_dirty_tracking_update(iova, end, *min, *max);
899     return;
900 }
901 
902 static const MemoryListener vfio_dirty_tracking_listener = {
903     .name = "vfio-tracking",
904     .region_add = vfio_dirty_tracking_update,
905 };
906 
907 static void vfio_dirty_tracking_init(VFIOContainerBase *bcontainer,
908                                      VFIODirtyRanges *ranges)
909 {
910     VFIODirtyRangesListener dirty;
911 
912     memset(&dirty, 0, sizeof(dirty));
913     dirty.ranges.min32 = UINT32_MAX;
914     dirty.ranges.min64 = UINT64_MAX;
915     dirty.ranges.minpci64 = UINT64_MAX;
916     dirty.listener = vfio_dirty_tracking_listener;
917     dirty.bcontainer = bcontainer;
918 
919     memory_listener_register(&dirty.listener,
920                              bcontainer->space->as);
921 
922     *ranges = dirty.ranges;
923 
924     /*
925      * The memory listener is synchronous, and used to calculate the range
926      * to dirty tracking. Unregister it after we are done as we are not
927      * interested in any follow-up updates.
928      */
929     memory_listener_unregister(&dirty.listener);
930 }
931 
932 static void vfio_devices_dma_logging_stop(VFIOContainerBase *bcontainer)
933 {
934     uint64_t buf[DIV_ROUND_UP(sizeof(struct vfio_device_feature),
935                               sizeof(uint64_t))] = {};
936     struct vfio_device_feature *feature = (struct vfio_device_feature *)buf;
937     VFIODevice *vbasedev;
938 
939     feature->argsz = sizeof(buf);
940     feature->flags = VFIO_DEVICE_FEATURE_SET |
941                      VFIO_DEVICE_FEATURE_DMA_LOGGING_STOP;
942 
943     QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) {
944         if (!vbasedev->dirty_tracking) {
945             continue;
946         }
947 
948         if (ioctl(vbasedev->fd, VFIO_DEVICE_FEATURE, feature)) {
949             warn_report("%s: Failed to stop DMA logging, err %d (%s)",
950                         vbasedev->name, -errno, strerror(errno));
951         }
952         vbasedev->dirty_tracking = false;
953     }
954 }
955 
956 static struct vfio_device_feature *
957 vfio_device_feature_dma_logging_start_create(VFIOContainerBase *bcontainer,
958                                              VFIODirtyRanges *tracking)
959 {
960     struct vfio_device_feature *feature;
961     size_t feature_size;
962     struct vfio_device_feature_dma_logging_control *control;
963     struct vfio_device_feature_dma_logging_range *ranges;
964 
965     feature_size = sizeof(struct vfio_device_feature) +
966                    sizeof(struct vfio_device_feature_dma_logging_control);
967     feature = g_try_malloc0(feature_size);
968     if (!feature) {
969         errno = ENOMEM;
970         return NULL;
971     }
972     feature->argsz = feature_size;
973     feature->flags = VFIO_DEVICE_FEATURE_SET |
974                      VFIO_DEVICE_FEATURE_DMA_LOGGING_START;
975 
976     control = (struct vfio_device_feature_dma_logging_control *)feature->data;
977     control->page_size = qemu_real_host_page_size();
978 
979     /*
980      * DMA logging uAPI guarantees to support at least a number of ranges that
981      * fits into a single host kernel base page.
982      */
983     control->num_ranges = !!tracking->max32 + !!tracking->max64 +
984         !!tracking->maxpci64;
985     ranges = g_try_new0(struct vfio_device_feature_dma_logging_range,
986                         control->num_ranges);
987     if (!ranges) {
988         g_free(feature);
989         errno = ENOMEM;
990 
991         return NULL;
992     }
993 
994     control->ranges = (uintptr_t)ranges;
995     if (tracking->max32) {
996         ranges->iova = tracking->min32;
997         ranges->length = (tracking->max32 - tracking->min32) + 1;
998         ranges++;
999     }
1000     if (tracking->max64) {
1001         ranges->iova = tracking->min64;
1002         ranges->length = (tracking->max64 - tracking->min64) + 1;
1003         ranges++;
1004     }
1005     if (tracking->maxpci64) {
1006         ranges->iova = tracking->minpci64;
1007         ranges->length = (tracking->maxpci64 - tracking->minpci64) + 1;
1008     }
1009 
1010     trace_vfio_device_dirty_tracking_start(control->num_ranges,
1011                                            tracking->min32, tracking->max32,
1012                                            tracking->min64, tracking->max64,
1013                                            tracking->minpci64, tracking->maxpci64);
1014 
1015     return feature;
1016 }
1017 
1018 static void vfio_device_feature_dma_logging_start_destroy(
1019     struct vfio_device_feature *feature)
1020 {
1021     struct vfio_device_feature_dma_logging_control *control =
1022         (struct vfio_device_feature_dma_logging_control *)feature->data;
1023     struct vfio_device_feature_dma_logging_range *ranges =
1024         (struct vfio_device_feature_dma_logging_range *)(uintptr_t)control->ranges;
1025 
1026     g_free(ranges);
1027     g_free(feature);
1028 }
1029 
1030 static int vfio_devices_dma_logging_start(VFIOContainerBase *bcontainer)
1031 {
1032     struct vfio_device_feature *feature;
1033     VFIODirtyRanges ranges;
1034     VFIODevice *vbasedev;
1035     int ret = 0;
1036 
1037     vfio_dirty_tracking_init(bcontainer, &ranges);
1038     feature = vfio_device_feature_dma_logging_start_create(bcontainer,
1039                                                            &ranges);
1040     if (!feature) {
1041         return -errno;
1042     }
1043 
1044     QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) {
1045         if (vbasedev->dirty_tracking) {
1046             continue;
1047         }
1048 
1049         ret = ioctl(vbasedev->fd, VFIO_DEVICE_FEATURE, feature);
1050         if (ret) {
1051             ret = -errno;
1052             error_report("%s: Failed to start DMA logging, err %d (%s)",
1053                          vbasedev->name, ret, strerror(errno));
1054             goto out;
1055         }
1056         vbasedev->dirty_tracking = true;
1057     }
1058 
1059 out:
1060     if (ret) {
1061         vfio_devices_dma_logging_stop(bcontainer);
1062     }
1063 
1064     vfio_device_feature_dma_logging_start_destroy(feature);
1065 
1066     return ret;
1067 }
1068 
1069 static void vfio_listener_log_global_start(MemoryListener *listener)
1070 {
1071     VFIOContainerBase *bcontainer = container_of(listener, VFIOContainerBase,
1072                                                  listener);
1073     int ret;
1074 
1075     if (vfio_devices_all_device_dirty_tracking(bcontainer)) {
1076         ret = vfio_devices_dma_logging_start(bcontainer);
1077     } else {
1078         ret = vfio_container_set_dirty_page_tracking(bcontainer, true);
1079     }
1080 
1081     if (ret) {
1082         error_report("vfio: Could not start dirty page tracking, err: %d (%s)",
1083                      ret, strerror(-ret));
1084         vfio_set_migration_error(ret);
1085     }
1086 }
1087 
1088 static void vfio_listener_log_global_stop(MemoryListener *listener)
1089 {
1090     VFIOContainerBase *bcontainer = container_of(listener, VFIOContainerBase,
1091                                                  listener);
1092     int ret = 0;
1093 
1094     if (vfio_devices_all_device_dirty_tracking(bcontainer)) {
1095         vfio_devices_dma_logging_stop(bcontainer);
1096     } else {
1097         ret = vfio_container_set_dirty_page_tracking(bcontainer, false);
1098     }
1099 
1100     if (ret) {
1101         error_report("vfio: Could not stop dirty page tracking, err: %d (%s)",
1102                      ret, strerror(-ret));
1103         vfio_set_migration_error(ret);
1104     }
1105 }
1106 
1107 static int vfio_device_dma_logging_report(VFIODevice *vbasedev, hwaddr iova,
1108                                           hwaddr size, void *bitmap)
1109 {
1110     uint64_t buf[DIV_ROUND_UP(sizeof(struct vfio_device_feature) +
1111                         sizeof(struct vfio_device_feature_dma_logging_report),
1112                         sizeof(uint64_t))] = {};
1113     struct vfio_device_feature *feature = (struct vfio_device_feature *)buf;
1114     struct vfio_device_feature_dma_logging_report *report =
1115         (struct vfio_device_feature_dma_logging_report *)feature->data;
1116 
1117     report->iova = iova;
1118     report->length = size;
1119     report->page_size = qemu_real_host_page_size();
1120     report->bitmap = (uintptr_t)bitmap;
1121 
1122     feature->argsz = sizeof(buf);
1123     feature->flags = VFIO_DEVICE_FEATURE_GET |
1124                      VFIO_DEVICE_FEATURE_DMA_LOGGING_REPORT;
1125 
1126     if (ioctl(vbasedev->fd, VFIO_DEVICE_FEATURE, feature)) {
1127         return -errno;
1128     }
1129 
1130     return 0;
1131 }
1132 
1133 int vfio_devices_query_dirty_bitmap(const VFIOContainerBase *bcontainer,
1134                                     VFIOBitmap *vbmap, hwaddr iova,
1135                                     hwaddr size)
1136 {
1137     VFIODevice *vbasedev;
1138     int ret;
1139 
1140     QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) {
1141         ret = vfio_device_dma_logging_report(vbasedev, iova, size,
1142                                              vbmap->bitmap);
1143         if (ret) {
1144             error_report("%s: Failed to get DMA logging report, iova: "
1145                          "0x%" HWADDR_PRIx ", size: 0x%" HWADDR_PRIx
1146                          ", err: %d (%s)",
1147                          vbasedev->name, iova, size, ret, strerror(-ret));
1148 
1149             return ret;
1150         }
1151     }
1152 
1153     return 0;
1154 }
1155 
1156 int vfio_get_dirty_bitmap(const VFIOContainerBase *bcontainer, uint64_t iova,
1157                           uint64_t size, ram_addr_t ram_addr)
1158 {
1159     bool all_device_dirty_tracking =
1160         vfio_devices_all_device_dirty_tracking(bcontainer);
1161     uint64_t dirty_pages;
1162     VFIOBitmap vbmap;
1163     int ret;
1164 
1165     if (!bcontainer->dirty_pages_supported && !all_device_dirty_tracking) {
1166         cpu_physical_memory_set_dirty_range(ram_addr, size,
1167                                             tcg_enabled() ? DIRTY_CLIENTS_ALL :
1168                                             DIRTY_CLIENTS_NOCODE);
1169         return 0;
1170     }
1171 
1172     ret = vfio_bitmap_alloc(&vbmap, size);
1173     if (ret) {
1174         return ret;
1175     }
1176 
1177     if (all_device_dirty_tracking) {
1178         ret = vfio_devices_query_dirty_bitmap(bcontainer, &vbmap, iova, size);
1179     } else {
1180         ret = vfio_container_query_dirty_bitmap(bcontainer, &vbmap, iova, size);
1181     }
1182 
1183     if (ret) {
1184         goto out;
1185     }
1186 
1187     dirty_pages = cpu_physical_memory_set_dirty_lebitmap(vbmap.bitmap, ram_addr,
1188                                                          vbmap.pages);
1189 
1190     trace_vfio_get_dirty_bitmap(iova, size, vbmap.size, ram_addr, dirty_pages);
1191 out:
1192     g_free(vbmap.bitmap);
1193 
1194     return ret;
1195 }
1196 
1197 typedef struct {
1198     IOMMUNotifier n;
1199     VFIOGuestIOMMU *giommu;
1200 } vfio_giommu_dirty_notifier;
1201 
1202 static void vfio_iommu_map_dirty_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
1203 {
1204     vfio_giommu_dirty_notifier *gdn = container_of(n,
1205                                                 vfio_giommu_dirty_notifier, n);
1206     VFIOGuestIOMMU *giommu = gdn->giommu;
1207     VFIOContainerBase *bcontainer = giommu->bcontainer;
1208     hwaddr iova = iotlb->iova + giommu->iommu_offset;
1209     ram_addr_t translated_addr;
1210     int ret = -EINVAL;
1211 
1212     trace_vfio_iommu_map_dirty_notify(iova, iova + iotlb->addr_mask);
1213 
1214     if (iotlb->target_as != &address_space_memory) {
1215         error_report("Wrong target AS \"%s\", only system memory is allowed",
1216                      iotlb->target_as->name ? iotlb->target_as->name : "none");
1217         goto out;
1218     }
1219 
1220     rcu_read_lock();
1221     if (vfio_get_xlat_addr(iotlb, NULL, &translated_addr, NULL)) {
1222         ret = vfio_get_dirty_bitmap(bcontainer, iova, iotlb->addr_mask + 1,
1223                                     translated_addr);
1224         if (ret) {
1225             error_report("vfio_iommu_map_dirty_notify(%p, 0x%"HWADDR_PRIx", "
1226                          "0x%"HWADDR_PRIx") = %d (%s)",
1227                          bcontainer, iova, iotlb->addr_mask + 1, ret,
1228                          strerror(-ret));
1229         }
1230     }
1231     rcu_read_unlock();
1232 
1233 out:
1234     if (ret) {
1235         vfio_set_migration_error(ret);
1236     }
1237 }
1238 
1239 static int vfio_ram_discard_get_dirty_bitmap(MemoryRegionSection *section,
1240                                              void *opaque)
1241 {
1242     const hwaddr size = int128_get64(section->size);
1243     const hwaddr iova = section->offset_within_address_space;
1244     const ram_addr_t ram_addr = memory_region_get_ram_addr(section->mr) +
1245                                 section->offset_within_region;
1246     VFIORamDiscardListener *vrdl = opaque;
1247 
1248     /*
1249      * Sync the whole mapped region (spanning multiple individual mappings)
1250      * in one go.
1251      */
1252     return vfio_get_dirty_bitmap(vrdl->bcontainer, iova, size, ram_addr);
1253 }
1254 
1255 static int
1256 vfio_sync_ram_discard_listener_dirty_bitmap(VFIOContainerBase *bcontainer,
1257                                             MemoryRegionSection *section)
1258 {
1259     RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr);
1260     VFIORamDiscardListener *vrdl = NULL;
1261 
1262     QLIST_FOREACH(vrdl, &bcontainer->vrdl_list, next) {
1263         if (vrdl->mr == section->mr &&
1264             vrdl->offset_within_address_space ==
1265             section->offset_within_address_space) {
1266             break;
1267         }
1268     }
1269 
1270     if (!vrdl) {
1271         hw_error("vfio: Trying to sync missing RAM discard listener");
1272     }
1273 
1274     /*
1275      * We only want/can synchronize the bitmap for actually mapped parts -
1276      * which correspond to populated parts. Replay all populated parts.
1277      */
1278     return ram_discard_manager_replay_populated(rdm, section,
1279                                               vfio_ram_discard_get_dirty_bitmap,
1280                                                 &vrdl);
1281 }
1282 
1283 static int vfio_sync_dirty_bitmap(VFIOContainerBase *bcontainer,
1284                                   MemoryRegionSection *section)
1285 {
1286     ram_addr_t ram_addr;
1287 
1288     if (memory_region_is_iommu(section->mr)) {
1289         VFIOGuestIOMMU *giommu;
1290 
1291         QLIST_FOREACH(giommu, &bcontainer->giommu_list, giommu_next) {
1292             if (MEMORY_REGION(giommu->iommu_mr) == section->mr &&
1293                 giommu->n.start == section->offset_within_region) {
1294                 Int128 llend;
1295                 vfio_giommu_dirty_notifier gdn = { .giommu = giommu };
1296                 int idx = memory_region_iommu_attrs_to_index(giommu->iommu_mr,
1297                                                        MEMTXATTRS_UNSPECIFIED);
1298 
1299                 llend = int128_add(int128_make64(section->offset_within_region),
1300                                    section->size);
1301                 llend = int128_sub(llend, int128_one());
1302 
1303                 iommu_notifier_init(&gdn.n,
1304                                     vfio_iommu_map_dirty_notify,
1305                                     IOMMU_NOTIFIER_MAP,
1306                                     section->offset_within_region,
1307                                     int128_get64(llend),
1308                                     idx);
1309                 memory_region_iommu_replay(giommu->iommu_mr, &gdn.n);
1310                 break;
1311             }
1312         }
1313         return 0;
1314     } else if (memory_region_has_ram_discard_manager(section->mr)) {
1315         return vfio_sync_ram_discard_listener_dirty_bitmap(bcontainer, section);
1316     }
1317 
1318     ram_addr = memory_region_get_ram_addr(section->mr) +
1319                section->offset_within_region;
1320 
1321     return vfio_get_dirty_bitmap(bcontainer,
1322                    REAL_HOST_PAGE_ALIGN(section->offset_within_address_space),
1323                    int128_get64(section->size), ram_addr);
1324 }
1325 
1326 static void vfio_listener_log_sync(MemoryListener *listener,
1327         MemoryRegionSection *section)
1328 {
1329     VFIOContainerBase *bcontainer = container_of(listener, VFIOContainerBase,
1330                                                  listener);
1331     int ret;
1332 
1333     if (vfio_listener_skipped_section(section)) {
1334         return;
1335     }
1336 
1337     if (vfio_devices_all_dirty_tracking(bcontainer)) {
1338         ret = vfio_sync_dirty_bitmap(bcontainer, section);
1339         if (ret) {
1340             error_report("vfio: Failed to sync dirty bitmap, err: %d (%s)", ret,
1341                          strerror(-ret));
1342             vfio_set_migration_error(ret);
1343         }
1344     }
1345 }
1346 
1347 const MemoryListener vfio_memory_listener = {
1348     .name = "vfio",
1349     .region_add = vfio_listener_region_add,
1350     .region_del = vfio_listener_region_del,
1351     .log_global_start = vfio_listener_log_global_start,
1352     .log_global_stop = vfio_listener_log_global_stop,
1353     .log_sync = vfio_listener_log_sync,
1354 };
1355 
1356 void vfio_reset_handler(void *opaque)
1357 {
1358     VFIODevice *vbasedev;
1359 
1360     QLIST_FOREACH(vbasedev, &vfio_device_list, global_next) {
1361         if (vbasedev->dev->realized) {
1362             vbasedev->ops->vfio_compute_needs_reset(vbasedev);
1363         }
1364     }
1365 
1366     QLIST_FOREACH(vbasedev, &vfio_device_list, global_next) {
1367         if (vbasedev->dev->realized && vbasedev->needs_reset) {
1368             vbasedev->ops->vfio_hot_reset_multi(vbasedev);
1369         }
1370     }
1371 }
1372 
1373 int vfio_kvm_device_add_fd(int fd, Error **errp)
1374 {
1375 #ifdef CONFIG_KVM
1376     struct kvm_device_attr attr = {
1377         .group = KVM_DEV_VFIO_FILE,
1378         .attr = KVM_DEV_VFIO_FILE_ADD,
1379         .addr = (uint64_t)(unsigned long)&fd,
1380     };
1381 
1382     if (!kvm_enabled()) {
1383         return 0;
1384     }
1385 
1386     if (vfio_kvm_device_fd < 0) {
1387         struct kvm_create_device cd = {
1388             .type = KVM_DEV_TYPE_VFIO,
1389         };
1390 
1391         if (kvm_vm_ioctl(kvm_state, KVM_CREATE_DEVICE, &cd)) {
1392             error_setg_errno(errp, errno, "Failed to create KVM VFIO device");
1393             return -errno;
1394         }
1395 
1396         vfio_kvm_device_fd = cd.fd;
1397     }
1398 
1399     if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) {
1400         error_setg_errno(errp, errno, "Failed to add fd %d to KVM VFIO device",
1401                          fd);
1402         return -errno;
1403     }
1404 #endif
1405     return 0;
1406 }
1407 
1408 int vfio_kvm_device_del_fd(int fd, Error **errp)
1409 {
1410 #ifdef CONFIG_KVM
1411     struct kvm_device_attr attr = {
1412         .group = KVM_DEV_VFIO_FILE,
1413         .attr = KVM_DEV_VFIO_FILE_DEL,
1414         .addr = (uint64_t)(unsigned long)&fd,
1415     };
1416 
1417     if (vfio_kvm_device_fd < 0) {
1418         error_setg(errp, "KVM VFIO device isn't created yet");
1419         return -EINVAL;
1420     }
1421 
1422     if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) {
1423         error_setg_errno(errp, errno,
1424                          "Failed to remove fd %d from KVM VFIO device", fd);
1425         return -errno;
1426     }
1427 #endif
1428     return 0;
1429 }
1430 
1431 VFIOAddressSpace *vfio_get_address_space(AddressSpace *as)
1432 {
1433     VFIOAddressSpace *space;
1434 
1435     QLIST_FOREACH(space, &vfio_address_spaces, list) {
1436         if (space->as == as) {
1437             return space;
1438         }
1439     }
1440 
1441     /* No suitable VFIOAddressSpace, create a new one */
1442     space = g_malloc0(sizeof(*space));
1443     space->as = as;
1444     QLIST_INIT(&space->containers);
1445 
1446     if (QLIST_EMPTY(&vfio_address_spaces)) {
1447         qemu_register_reset(vfio_reset_handler, NULL);
1448     }
1449 
1450     QLIST_INSERT_HEAD(&vfio_address_spaces, space, list);
1451 
1452     return space;
1453 }
1454 
1455 void vfio_put_address_space(VFIOAddressSpace *space)
1456 {
1457     if (!QLIST_EMPTY(&space->containers)) {
1458         return;
1459     }
1460 
1461     QLIST_REMOVE(space, list);
1462     g_free(space);
1463 
1464     if (QLIST_EMPTY(&vfio_address_spaces)) {
1465         qemu_unregister_reset(vfio_reset_handler, NULL);
1466     }
1467 }
1468 
1469 struct vfio_device_info *vfio_get_device_info(int fd)
1470 {
1471     struct vfio_device_info *info;
1472     uint32_t argsz = sizeof(*info);
1473 
1474     info = g_malloc0(argsz);
1475 
1476 retry:
1477     info->argsz = argsz;
1478 
1479     if (ioctl(fd, VFIO_DEVICE_GET_INFO, info)) {
1480         g_free(info);
1481         return NULL;
1482     }
1483 
1484     if (info->argsz > argsz) {
1485         argsz = info->argsz;
1486         info = g_realloc(info, argsz);
1487         goto retry;
1488     }
1489 
1490     return info;
1491 }
1492 
1493 int vfio_attach_device(char *name, VFIODevice *vbasedev,
1494                        AddressSpace *as, Error **errp)
1495 {
1496     const VFIOIOMMUClass *ops =
1497         VFIO_IOMMU_CLASS(object_class_by_name(TYPE_VFIO_IOMMU_LEGACY));
1498 
1499     if (vbasedev->iommufd) {
1500         ops = VFIO_IOMMU_CLASS(object_class_by_name(TYPE_VFIO_IOMMU_IOMMUFD));
1501     }
1502 
1503     assert(ops);
1504 
1505     return ops->attach_device(name, vbasedev, as, errp);
1506 }
1507 
1508 void vfio_detach_device(VFIODevice *vbasedev)
1509 {
1510     if (!vbasedev->bcontainer) {
1511         return;
1512     }
1513     vbasedev->bcontainer->ops->detach_device(vbasedev);
1514 }
1515