xref: /openbmc/qemu/hw/ssi/xilinx_spi.c (revision 0b8f74488e50f98b04e63157f85fde8a13f8d6aa)
1 /*
2  * QEMU model of the Xilinx SPI Controller
3  *
4  * Copyright (C) 2010 Edgar E. Iglesias.
5  * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
6  * Copyright (C) 2012 PetaLogix
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "hw/sysbus.h"
29 #include "sysemu/sysemu.h"
30 #include "qemu/log.h"
31 #include "qemu/fifo8.h"
32 
33 #include "hw/ssi/ssi.h"
34 
35 #ifdef XILINX_SPI_ERR_DEBUG
36 #define DB_PRINT(...) do { \
37     fprintf(stderr,  ": %s: ", __func__); \
38     fprintf(stderr, ## __VA_ARGS__); \
39     } while (0)
40 #else
41     #define DB_PRINT(...)
42 #endif
43 
44 #define R_DGIER     (0x1c / 4)
45 #define R_DGIER_IE  (1 << 31)
46 
47 #define R_IPISR     (0x20 / 4)
48 #define IRQ_DRR_NOT_EMPTY    (1 << (31 - 23))
49 #define IRQ_DRR_OVERRUN      (1 << (31 - 26))
50 #define IRQ_DRR_FULL         (1 << (31 - 27))
51 #define IRQ_TX_FF_HALF_EMPTY (1 << 6)
52 #define IRQ_DTR_UNDERRUN     (1 << 3)
53 #define IRQ_DTR_EMPTY        (1 << (31 - 29))
54 
55 #define R_IPIER     (0x28 / 4)
56 #define R_SRR       (0x40 / 4)
57 #define R_SPICR     (0x60 / 4)
58 #define R_SPICR_TXFF_RST     (1 << 5)
59 #define R_SPICR_RXFF_RST     (1 << 6)
60 #define R_SPICR_MTI          (1 << 8)
61 
62 #define R_SPISR     (0x64 / 4)
63 #define SR_TX_FULL    (1 << 3)
64 #define SR_TX_EMPTY   (1 << 2)
65 #define SR_RX_FULL    (1 << 1)
66 #define SR_RX_EMPTY   (1 << 0)
67 
68 #define R_SPIDTR    (0x68 / 4)
69 #define R_SPIDRR    (0x6C / 4)
70 #define R_SPISSR    (0x70 / 4)
71 #define R_TX_FF_OCY (0x74 / 4)
72 #define R_RX_FF_OCY (0x78 / 4)
73 #define R_MAX       (0x7C / 4)
74 
75 #define FIFO_CAPACITY 256
76 
77 #define TYPE_XILINX_SPI "xlnx.xps-spi"
78 #define XILINX_SPI(obj) OBJECT_CHECK(XilinxSPI, (obj), TYPE_XILINX_SPI)
79 
80 typedef struct XilinxSPI {
81     SysBusDevice parent_obj;
82 
83     MemoryRegion mmio;
84 
85     qemu_irq irq;
86     int irqline;
87 
88     uint8_t num_cs;
89     qemu_irq *cs_lines;
90 
91     SSIBus *spi;
92 
93     Fifo8 rx_fifo;
94     Fifo8 tx_fifo;
95 
96     uint32_t regs[R_MAX];
97 } XilinxSPI;
98 
99 static void txfifo_reset(XilinxSPI *s)
100 {
101     fifo8_reset(&s->tx_fifo);
102 
103     s->regs[R_SPISR] &= ~SR_TX_FULL;
104     s->regs[R_SPISR] |= SR_TX_EMPTY;
105 }
106 
107 static void rxfifo_reset(XilinxSPI *s)
108 {
109     fifo8_reset(&s->rx_fifo);
110 
111     s->regs[R_SPISR] |= SR_RX_EMPTY;
112     s->regs[R_SPISR] &= ~SR_RX_FULL;
113 }
114 
115 static void xlx_spi_update_cs(XilinxSPI *s)
116 {
117     int i;
118 
119     for (i = 0; i < s->num_cs; ++i) {
120         qemu_set_irq(s->cs_lines[i], !(~s->regs[R_SPISSR] & 1 << i));
121     }
122 }
123 
124 static void xlx_spi_update_irq(XilinxSPI *s)
125 {
126     uint32_t pending;
127 
128     s->regs[R_IPISR] |=
129             (!fifo8_is_empty(&s->rx_fifo) ? IRQ_DRR_NOT_EMPTY : 0) |
130             (fifo8_is_full(&s->rx_fifo) ? IRQ_DRR_FULL : 0);
131 
132     pending = s->regs[R_IPISR] & s->regs[R_IPIER];
133 
134     pending = pending && (s->regs[R_DGIER] & R_DGIER_IE);
135     pending = !!pending;
136 
137     /* This call lies right in the data paths so don't call the
138        irq chain unless things really changed.  */
139     if (pending != s->irqline) {
140         s->irqline = pending;
141         DB_PRINT("irq_change of state %d ISR:%x IER:%X\n",
142                     pending, s->regs[R_IPISR], s->regs[R_IPIER]);
143         qemu_set_irq(s->irq, pending);
144     }
145 
146 }
147 
148 static void xlx_spi_do_reset(XilinxSPI *s)
149 {
150     memset(s->regs, 0, sizeof s->regs);
151 
152     rxfifo_reset(s);
153     txfifo_reset(s);
154 
155     s->regs[R_SPISSR] = ~0;
156     xlx_spi_update_irq(s);
157     xlx_spi_update_cs(s);
158 }
159 
160 static void xlx_spi_reset(DeviceState *d)
161 {
162     xlx_spi_do_reset(XILINX_SPI(d));
163 }
164 
165 static inline int spi_master_enabled(XilinxSPI *s)
166 {
167     return !(s->regs[R_SPICR] & R_SPICR_MTI);
168 }
169 
170 static void spi_flush_txfifo(XilinxSPI *s)
171 {
172     uint32_t tx;
173     uint32_t rx;
174 
175     while (!fifo8_is_empty(&s->tx_fifo)) {
176         tx = (uint32_t)fifo8_pop(&s->tx_fifo);
177         DB_PRINT("data tx:%x\n", tx);
178         rx = ssi_transfer(s->spi, tx);
179         DB_PRINT("data rx:%x\n", rx);
180         if (fifo8_is_full(&s->rx_fifo)) {
181             s->regs[R_IPISR] |= IRQ_DRR_OVERRUN;
182         } else {
183             fifo8_push(&s->rx_fifo, (uint8_t)rx);
184             if (fifo8_is_full(&s->rx_fifo)) {
185                 s->regs[R_SPISR] |= SR_RX_FULL;
186                 s->regs[R_IPISR] |= IRQ_DRR_FULL;
187             }
188         }
189 
190         s->regs[R_SPISR] &= ~SR_RX_EMPTY;
191         s->regs[R_SPISR] &= ~SR_TX_FULL;
192         s->regs[R_SPISR] |= SR_TX_EMPTY;
193 
194         s->regs[R_IPISR] |= IRQ_DTR_EMPTY;
195         s->regs[R_IPISR] |= IRQ_DRR_NOT_EMPTY;
196     }
197 
198 }
199 
200 static uint64_t
201 spi_read(void *opaque, hwaddr addr, unsigned int size)
202 {
203     XilinxSPI *s = opaque;
204     uint32_t r = 0;
205 
206     addr >>= 2;
207     switch (addr) {
208     case R_SPIDRR:
209         if (fifo8_is_empty(&s->rx_fifo)) {
210             DB_PRINT("Read from empty FIFO!\n");
211             return 0xdeadbeef;
212         }
213 
214         s->regs[R_SPISR] &= ~SR_RX_FULL;
215         r = fifo8_pop(&s->rx_fifo);
216         if (fifo8_is_empty(&s->rx_fifo)) {
217             s->regs[R_SPISR] |= SR_RX_EMPTY;
218         }
219         break;
220 
221     case R_SPISR:
222         r = s->regs[addr];
223         break;
224 
225     default:
226         if (addr < ARRAY_SIZE(s->regs)) {
227             r = s->regs[addr];
228         }
229         break;
230 
231     }
232     DB_PRINT("addr=" TARGET_FMT_plx " = %x\n", addr * 4, r);
233     xlx_spi_update_irq(s);
234     return r;
235 }
236 
237 static void
238 spi_write(void *opaque, hwaddr addr,
239             uint64_t val64, unsigned int size)
240 {
241     XilinxSPI *s = opaque;
242     uint32_t value = val64;
243 
244     DB_PRINT("addr=" TARGET_FMT_plx " = %x\n", addr, value);
245     addr >>= 2;
246     switch (addr) {
247     case R_SRR:
248         if (value != 0xa) {
249             DB_PRINT("Invalid write to SRR %x\n", value);
250         } else {
251             xlx_spi_do_reset(s);
252         }
253         break;
254 
255     case R_SPIDTR:
256         s->regs[R_SPISR] &= ~SR_TX_EMPTY;
257         fifo8_push(&s->tx_fifo, (uint8_t)value);
258         if (fifo8_is_full(&s->tx_fifo)) {
259             s->regs[R_SPISR] |= SR_TX_FULL;
260         }
261         if (!spi_master_enabled(s)) {
262             goto done;
263         } else {
264             DB_PRINT("DTR and master enabled\n");
265         }
266         spi_flush_txfifo(s);
267         break;
268 
269     case R_SPISR:
270         DB_PRINT("Invalid write to SPISR %x\n", value);
271         break;
272 
273     case R_IPISR:
274         /* Toggle the bits.  */
275         s->regs[addr] ^= value;
276         break;
277 
278     /* Slave Select Register.  */
279     case R_SPISSR:
280         s->regs[addr] = value;
281         xlx_spi_update_cs(s);
282         break;
283 
284     case R_SPICR:
285         /* FIXME: reset irq and sr state to empty queues.  */
286         if (value & R_SPICR_RXFF_RST) {
287             rxfifo_reset(s);
288         }
289 
290         if (value & R_SPICR_TXFF_RST) {
291             txfifo_reset(s);
292         }
293         value &= ~(R_SPICR_RXFF_RST | R_SPICR_TXFF_RST);
294         s->regs[addr] = value;
295 
296         if (!(value & R_SPICR_MTI)) {
297             spi_flush_txfifo(s);
298         }
299         break;
300 
301     default:
302         if (addr < ARRAY_SIZE(s->regs)) {
303             s->regs[addr] = value;
304         }
305         break;
306     }
307 
308 done:
309     xlx_spi_update_irq(s);
310 }
311 
312 static const MemoryRegionOps spi_ops = {
313     .read = spi_read,
314     .write = spi_write,
315     .endianness = DEVICE_NATIVE_ENDIAN,
316     .valid = {
317         .min_access_size = 4,
318         .max_access_size = 4
319     }
320 };
321 
322 static void xilinx_spi_realize(DeviceState *dev, Error **errp)
323 {
324     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
325     XilinxSPI *s = XILINX_SPI(dev);
326     int i;
327 
328     DB_PRINT("\n");
329 
330     s->spi = ssi_create_bus(dev, "spi");
331 
332     sysbus_init_irq(sbd, &s->irq);
333     s->cs_lines = g_new0(qemu_irq, s->num_cs);
334     ssi_auto_connect_slaves(dev, s->cs_lines, s->spi);
335     for (i = 0; i < s->num_cs; ++i) {
336         sysbus_init_irq(sbd, &s->cs_lines[i]);
337     }
338 
339     memory_region_init_io(&s->mmio, OBJECT(s), &spi_ops, s,
340                           "xilinx-spi", R_MAX * 4);
341     sysbus_init_mmio(sbd, &s->mmio);
342 
343     s->irqline = -1;
344 
345     fifo8_create(&s->tx_fifo, FIFO_CAPACITY);
346     fifo8_create(&s->rx_fifo, FIFO_CAPACITY);
347 }
348 
349 static const VMStateDescription vmstate_xilinx_spi = {
350     .name = "xilinx_spi",
351     .version_id = 1,
352     .minimum_version_id = 1,
353     .fields = (VMStateField[]) {
354         VMSTATE_FIFO8(tx_fifo, XilinxSPI),
355         VMSTATE_FIFO8(rx_fifo, XilinxSPI),
356         VMSTATE_UINT32_ARRAY(regs, XilinxSPI, R_MAX),
357         VMSTATE_END_OF_LIST()
358     }
359 };
360 
361 static Property xilinx_spi_properties[] = {
362     DEFINE_PROP_UINT8("num-ss-bits", XilinxSPI, num_cs, 1),
363     DEFINE_PROP_END_OF_LIST(),
364 };
365 
366 static void xilinx_spi_class_init(ObjectClass *klass, void *data)
367 {
368     DeviceClass *dc = DEVICE_CLASS(klass);
369 
370     dc->realize = xilinx_spi_realize;
371     dc->reset = xlx_spi_reset;
372     dc->props = xilinx_spi_properties;
373     dc->vmsd = &vmstate_xilinx_spi;
374 }
375 
376 static const TypeInfo xilinx_spi_info = {
377     .name           = TYPE_XILINX_SPI,
378     .parent         = TYPE_SYS_BUS_DEVICE,
379     .instance_size  = sizeof(XilinxSPI),
380     .class_init     = xilinx_spi_class_init,
381 };
382 
383 static void xilinx_spi_register_types(void)
384 {
385     type_register_static(&xilinx_spi_info);
386 }
387 
388 type_init(xilinx_spi_register_types)
389