xref: /openbmc/qemu/hw/ssi/aspeed_smc.c (revision e6a19a6477407e57b4deb61aaa497a14d7db9626)
1 /*
2  * ASPEED AST2400 SMC Controller (SPI Flash Only)
3  *
4  * Copyright (C) 2016 IBM Corp.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "hw/sysbus.h"
27 #include "migration/vmstate.h"
28 #include "qemu/log.h"
29 #include "qemu/module.h"
30 #include "qemu/error-report.h"
31 #include "qapi/error.h"
32 #include "qemu/units.h"
33 #include "trace.h"
34 
35 #include "hw/irq.h"
36 #include "hw/qdev-properties.h"
37 #include "hw/ssi/aspeed_smc.h"
38 
39 /* CE Type Setting Register */
40 #define R_CONF            (0x00 / 4)
41 #define   CONF_LEGACY_DISABLE  (1 << 31)
42 #define   CONF_ENABLE_W4       20
43 #define   CONF_ENABLE_W3       19
44 #define   CONF_ENABLE_W2       18
45 #define   CONF_ENABLE_W1       17
46 #define   CONF_ENABLE_W0       16
47 #define   CONF_FLASH_TYPE4     8
48 #define   CONF_FLASH_TYPE3     6
49 #define   CONF_FLASH_TYPE2     4
50 #define   CONF_FLASH_TYPE1     2
51 #define   CONF_FLASH_TYPE0     0
52 #define      CONF_FLASH_TYPE_NOR   0x0
53 #define      CONF_FLASH_TYPE_NAND  0x1
54 #define      CONF_FLASH_TYPE_SPI   0x2 /* AST2600 is SPI only */
55 
56 /* CE Control Register */
57 #define R_CE_CTRL            (0x04 / 4)
58 #define   CTRL_EXTENDED4       4  /* 32 bit addressing for SPI */
59 #define   CTRL_EXTENDED3       3  /* 32 bit addressing for SPI */
60 #define   CTRL_EXTENDED2       2  /* 32 bit addressing for SPI */
61 #define   CTRL_EXTENDED1       1  /* 32 bit addressing for SPI */
62 #define   CTRL_EXTENDED0       0  /* 32 bit addressing for SPI */
63 
64 /* Interrupt Control and Status Register */
65 #define R_INTR_CTRL       (0x08 / 4)
66 #define   INTR_CTRL_DMA_STATUS            (1 << 11)
67 #define   INTR_CTRL_CMD_ABORT_STATUS      (1 << 10)
68 #define   INTR_CTRL_WRITE_PROTECT_STATUS  (1 << 9)
69 #define   INTR_CTRL_DMA_EN                (1 << 3)
70 #define   INTR_CTRL_CMD_ABORT_EN          (1 << 2)
71 #define   INTR_CTRL_WRITE_PROTECT_EN      (1 << 1)
72 
73 /* Command Control Register */
74 #define R_CE_CMD_CTRL      (0x0C / 4)
75 #define   CTRL_ADDR_BYTE0_DISABLE_SHIFT       4
76 #define   CTRL_DATA_BYTE0_DISABLE_SHIFT       0
77 
78 #define aspeed_smc_addr_byte_enabled(s, i)                               \
79     (!((s)->regs[R_CE_CMD_CTRL] & (1 << (CTRL_ADDR_BYTE0_DISABLE_SHIFT + (i)))))
80 #define aspeed_smc_data_byte_enabled(s, i)                               \
81     (!((s)->regs[R_CE_CMD_CTRL] & (1 << (CTRL_DATA_BYTE0_DISABLE_SHIFT + (i)))))
82 
83 /* CEx Control Register */
84 #define R_CTRL0           (0x10 / 4)
85 #define   CTRL_IO_QPI              (1 << 31)
86 #define   CTRL_IO_QUAD_DATA        (1 << 30)
87 #define   CTRL_IO_DUAL_DATA        (1 << 29)
88 #define   CTRL_IO_DUAL_ADDR_DATA   (1 << 28) /* Includes dummies */
89 #define   CTRL_IO_QUAD_ADDR_DATA   (1 << 28) /* Includes dummies */
90 #define   CTRL_CMD_SHIFT           16
91 #define   CTRL_CMD_MASK            0xff
92 #define   CTRL_DUMMY_HIGH_SHIFT    14
93 #define   CTRL_AST2400_SPI_4BYTE   (1 << 13)
94 #define CE_CTRL_CLOCK_FREQ_SHIFT   8
95 #define CE_CTRL_CLOCK_FREQ_MASK    0xf
96 #define CE_CTRL_CLOCK_FREQ(div)                                         \
97     (((div) & CE_CTRL_CLOCK_FREQ_MASK) << CE_CTRL_CLOCK_FREQ_SHIFT)
98 #define   CTRL_DUMMY_LOW_SHIFT     6 /* 2 bits [7:6] */
99 #define   CTRL_CE_STOP_ACTIVE      (1 << 2)
100 #define   CTRL_CMD_MODE_MASK       0x3
101 #define     CTRL_READMODE          0x0
102 #define     CTRL_FREADMODE         0x1
103 #define     CTRL_WRITEMODE         0x2
104 #define     CTRL_USERMODE          0x3
105 #define R_CTRL1           (0x14 / 4)
106 #define R_CTRL2           (0x18 / 4)
107 #define R_CTRL3           (0x1C / 4)
108 #define R_CTRL4           (0x20 / 4)
109 
110 /* CEx Segment Address Register */
111 #define R_SEG_ADDR0       (0x30 / 4)
112 #define   SEG_END_SHIFT        24   /* 8MB units */
113 #define   SEG_END_MASK         0xff
114 #define   SEG_START_SHIFT      16   /* address bit [A29-A23] */
115 #define   SEG_START_MASK       0xff
116 #define R_SEG_ADDR1       (0x34 / 4)
117 #define R_SEG_ADDR2       (0x38 / 4)
118 #define R_SEG_ADDR3       (0x3C / 4)
119 #define R_SEG_ADDR4       (0x40 / 4)
120 
121 /* Misc Control Register #1 */
122 #define R_MISC_CTRL1      (0x50 / 4)
123 
124 /* SPI dummy cycle data */
125 #define R_DUMMY_DATA      (0x54 / 4)
126 
127 /* FMC_WDT2 Control/Status Register for Alternate Boot (AST2600) */
128 #define R_FMC_WDT2_CTRL   (0x64 / 4)
129 #define   FMC_WDT2_CTRL_ALT_BOOT_MODE    BIT(6) /* O: 2 chips 1: 1 chip */
130 #define   FMC_WDT2_CTRL_SINGLE_BOOT_MODE BIT(5)
131 #define   FMC_WDT2_CTRL_BOOT_SOURCE      BIT(4) /* O: primary 1: alternate */
132 #define   FMC_WDT2_CTRL_EN               BIT(0)
133 
134 /* DMA Control/Status Register */
135 #define R_DMA_CTRL        (0x80 / 4)
136 #define   DMA_CTRL_REQUEST      (1 << 31)
137 #define   DMA_CTRL_GRANT        (1 << 30)
138 #define   DMA_CTRL_DELAY_MASK   0xf
139 #define   DMA_CTRL_DELAY_SHIFT  8
140 #define   DMA_CTRL_FREQ_MASK    0xf
141 #define   DMA_CTRL_FREQ_SHIFT   4
142 #define   DMA_CTRL_CALIB        (1 << 3)
143 #define   DMA_CTRL_CKSUM        (1 << 2)
144 #define   DMA_CTRL_WRITE        (1 << 1)
145 #define   DMA_CTRL_ENABLE       (1 << 0)
146 
147 /* DMA Flash Side Address */
148 #define R_DMA_FLASH_ADDR  (0x84 / 4)
149 
150 /* DMA DRAM Side Address */
151 #define R_DMA_DRAM_ADDR   (0x88 / 4)
152 
153 /* DMA Length Register */
154 #define R_DMA_LEN         (0x8C / 4)
155 
156 /* Checksum Calculation Result */
157 #define R_DMA_CHECKSUM    (0x90 / 4)
158 
159 /* Read Timing Compensation Register */
160 #define R_TIMINGS         (0x94 / 4)
161 
162 /* SPI controller registers and bits (AST2400) */
163 #define R_SPI_CONF        (0x00 / 4)
164 #define   SPI_CONF_ENABLE_W0   0
165 #define R_SPI_CTRL0       (0x4 / 4)
166 #define R_SPI_MISC_CTRL   (0x10 / 4)
167 #define R_SPI_TIMINGS     (0x14 / 4)
168 
169 #define ASPEED_SMC_R_SPI_MAX (0x20 / 4)
170 #define ASPEED_SMC_R_SMC_MAX (0x20 / 4)
171 
172 /*
173  * DMA DRAM addresses should be 4 bytes aligned and the valid address
174  * range is 0x40000000 - 0x5FFFFFFF (AST2400)
175  *          0x80000000 - 0xBFFFFFFF (AST2500)
176  *
177  * DMA flash addresses should be 4 bytes aligned and the valid address
178  * range is 0x20000000 - 0x2FFFFFFF.
179  *
180  * DMA length is from 4 bytes to 32MB
181  *   0: 4 bytes
182  *   0x7FFFFF: 32M bytes
183  */
184 #define DMA_DRAM_ADDR(asc, val)   ((val) & (asc)->dma_dram_mask)
185 #define DMA_FLASH_ADDR(asc, val)  ((val) & (asc)->dma_flash_mask)
186 #define DMA_LENGTH(val)         ((val) & 0x01FFFFFC)
187 
188 /* Flash opcodes. */
189 #define SPI_OP_READ       0x03    /* Read data bytes (low frequency) */
190 
191 #define SNOOP_OFF         0xFF
192 #define SNOOP_START       0x0
193 
194 /*
195  * Default segments mapping addresses and size for each peripheral per
196  * controller. These can be changed when board is initialized with the
197  * Segment Address Registers.
198  */
199 static const AspeedSegments aspeed_2500_spi1_segments[];
200 static const AspeedSegments aspeed_2500_spi2_segments[];
201 
202 #define ASPEED_SMC_FEATURE_DMA       0x1
203 #define ASPEED_SMC_FEATURE_DMA_GRANT 0x2
204 #define ASPEED_SMC_FEATURE_WDT_CONTROL 0x4
205 
206 static inline bool aspeed_smc_has_dma(const AspeedSMCClass *asc)
207 {
208     return !!(asc->features & ASPEED_SMC_FEATURE_DMA);
209 }
210 
211 static inline bool aspeed_smc_has_wdt_control(const AspeedSMCClass *asc)
212 {
213     return !!(asc->features & ASPEED_SMC_FEATURE_WDT_CONTROL);
214 }
215 
216 #define aspeed_smc_error(fmt, ...)                                      \
217     qemu_log_mask(LOG_GUEST_ERROR, "%s: " fmt "\n", __func__, ## __VA_ARGS__)
218 
219 static bool aspeed_smc_flash_overlap(const AspeedSMCState *s,
220                                      const AspeedSegments *new,
221                                      int cs)
222 {
223     AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
224     AspeedSegments seg;
225     int i;
226 
227     for (i = 0; i < asc->cs_num_max; i++) {
228         if (i == cs) {
229             continue;
230         }
231 
232         asc->reg_to_segment(s, s->regs[R_SEG_ADDR0 + i], &seg);
233 
234         if (new->addr + new->size > seg.addr &&
235             new->addr < seg.addr + seg.size) {
236             aspeed_smc_error("new segment CS%d [ 0x%"
237                              HWADDR_PRIx" - 0x%"HWADDR_PRIx" ] overlaps with "
238                              "CS%d [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]",
239                              cs, new->addr, new->addr + new->size,
240                              i, seg.addr, seg.addr + seg.size);
241             return true;
242         }
243     }
244     return false;
245 }
246 
247 static void aspeed_smc_flash_set_segment_region(AspeedSMCState *s, int cs,
248                                                 uint64_t regval)
249 {
250     AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
251     AspeedSMCFlash *fl = &s->flashes[cs];
252     AspeedSegments seg;
253 
254     asc->reg_to_segment(s, regval, &seg);
255 
256     memory_region_transaction_begin();
257     memory_region_set_size(&fl->mmio, seg.size);
258     memory_region_set_address(&fl->mmio, seg.addr - asc->flash_window_base);
259     memory_region_set_enabled(&fl->mmio, !!seg.size);
260     memory_region_transaction_commit();
261 
262     if (asc->segment_addr_mask) {
263         regval &= asc->segment_addr_mask;
264     }
265 
266     s->regs[R_SEG_ADDR0 + cs] = regval;
267 }
268 
269 static void aspeed_smc_flash_set_segment(AspeedSMCState *s, int cs,
270                                          uint64_t new)
271 {
272     AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
273     AspeedSegments seg;
274 
275     asc->reg_to_segment(s, new, &seg);
276 
277     trace_aspeed_smc_flash_set_segment(cs, new, seg.addr, seg.addr + seg.size);
278 
279     /* The start address of CS0 is read-only */
280     if (cs == 0 && seg.addr != asc->flash_window_base) {
281         aspeed_smc_error("Tried to change CS0 start address to 0x%"
282                          HWADDR_PRIx, seg.addr);
283         seg.addr = asc->flash_window_base;
284         new = asc->segment_to_reg(s, &seg);
285     }
286 
287     /*
288      * The end address of the AST2500 spi controllers is also
289      * read-only.
290      */
291     if ((asc->segments == aspeed_2500_spi1_segments ||
292          asc->segments == aspeed_2500_spi2_segments) &&
293         cs == asc->cs_num_max &&
294         seg.addr + seg.size != asc->segments[cs].addr +
295         asc->segments[cs].size) {
296         aspeed_smc_error("Tried to change CS%d end address to 0x%"
297                          HWADDR_PRIx, cs, seg.addr + seg.size);
298         seg.size = asc->segments[cs].addr + asc->segments[cs].size -
299             seg.addr;
300         new = asc->segment_to_reg(s, &seg);
301     }
302 
303     /* Keep the segment in the overall flash window */
304     if (seg.size &&
305         (seg.addr + seg.size <= asc->flash_window_base ||
306          seg.addr > asc->flash_window_base + asc->flash_window_size)) {
307         aspeed_smc_error("new segment for CS%d is invalid : "
308                          "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]",
309                          cs, seg.addr, seg.addr + seg.size);
310         return;
311     }
312 
313     /* Check start address vs. alignment */
314     if (seg.size && !QEMU_IS_ALIGNED(seg.addr, seg.size)) {
315         aspeed_smc_error("new segment for CS%d is not "
316                          "aligned : [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]",
317                          cs, seg.addr, seg.addr + seg.size);
318     }
319 
320     /* And segments should not overlap (in the specs) */
321     aspeed_smc_flash_overlap(s, &seg, cs);
322 
323     /* All should be fine now to move the region */
324     aspeed_smc_flash_set_segment_region(s, cs, new);
325 }
326 
327 static uint64_t aspeed_smc_flash_default_read(void *opaque, hwaddr addr,
328                                               unsigned size)
329 {
330     aspeed_smc_error("To 0x%" HWADDR_PRIx " of size %u", addr, size);
331     return 0;
332 }
333 
334 static void aspeed_smc_flash_default_write(void *opaque, hwaddr addr,
335                                            uint64_t data, unsigned size)
336 {
337     aspeed_smc_error("To 0x%" HWADDR_PRIx " of size %u: 0x%" PRIx64,
338                      addr, size, data);
339 }
340 
341 static const MemoryRegionOps aspeed_smc_flash_default_ops = {
342     .read = aspeed_smc_flash_default_read,
343     .write = aspeed_smc_flash_default_write,
344     .endianness = DEVICE_LITTLE_ENDIAN,
345     .valid = {
346         .min_access_size = 1,
347         .max_access_size = 4,
348     },
349 };
350 
351 static inline int aspeed_smc_flash_mode(const AspeedSMCFlash *fl)
352 {
353     const AspeedSMCState *s = fl->controller;
354 
355     return s->regs[s->r_ctrl0 + fl->cs] & CTRL_CMD_MODE_MASK;
356 }
357 
358 static inline bool aspeed_smc_is_writable(const AspeedSMCFlash *fl)
359 {
360     const AspeedSMCState *s = fl->controller;
361 
362     return s->regs[s->r_conf] & (1 << (s->conf_enable_w0 + fl->cs));
363 }
364 
365 static inline int aspeed_smc_flash_cmd(const AspeedSMCFlash *fl)
366 {
367     const AspeedSMCState *s = fl->controller;
368     int cmd = (s->regs[s->r_ctrl0 + fl->cs] >> CTRL_CMD_SHIFT) & CTRL_CMD_MASK;
369 
370     /*
371      * In read mode, the default SPI command is READ (0x3). In other
372      * modes, the command should necessarily be defined
373      *
374      * TODO: add support for READ4 (0x13) on AST2600
375      */
376     if (aspeed_smc_flash_mode(fl) == CTRL_READMODE) {
377         cmd = SPI_OP_READ;
378     }
379 
380     if (!cmd) {
381         aspeed_smc_error("no command defined for mode %d",
382                          aspeed_smc_flash_mode(fl));
383     }
384 
385     return cmd;
386 }
387 
388 static inline int aspeed_smc_flash_addr_width(const AspeedSMCFlash *fl)
389 {
390     const AspeedSMCState *s = fl->controller;
391     AspeedSMCClass *asc = fl->asc;
392 
393     if (asc->addr_width) {
394         return asc->addr_width(s);
395     } else {
396         return s->regs[s->r_ce_ctrl] & (1 << (CTRL_EXTENDED0 + fl->cs)) ? 4 : 3;
397     }
398 }
399 
400 static void aspeed_smc_flash_do_select(AspeedSMCFlash *fl, bool unselect)
401 {
402     AspeedSMCState *s = fl->controller;
403 
404     trace_aspeed_smc_flash_select(fl->cs, unselect ? "un" : "");
405 
406     qemu_set_irq(s->cs_lines[fl->cs], unselect);
407 }
408 
409 static void aspeed_smc_flash_select(AspeedSMCFlash *fl)
410 {
411     aspeed_smc_flash_do_select(fl, false);
412 }
413 
414 static void aspeed_smc_flash_unselect(AspeedSMCFlash *fl)
415 {
416     aspeed_smc_flash_do_select(fl, true);
417 }
418 
419 static uint32_t aspeed_smc_check_segment_addr(const AspeedSMCFlash *fl,
420                                               uint32_t addr)
421 {
422     const AspeedSMCState *s = fl->controller;
423     AspeedSMCClass *asc = fl->asc;
424     AspeedSegments seg;
425 
426     asc->reg_to_segment(s, s->regs[R_SEG_ADDR0 + fl->cs], &seg);
427     if ((addr % seg.size) != addr) {
428         aspeed_smc_error("invalid address 0x%08x for CS%d segment : "
429                          "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]",
430                          addr, fl->cs, seg.addr, seg.addr + seg.size);
431         addr %= seg.size;
432     }
433 
434     return addr;
435 }
436 
437 static int aspeed_smc_flash_dummies(const AspeedSMCFlash *fl)
438 {
439     const AspeedSMCState *s = fl->controller;
440     uint32_t r_ctrl0 = s->regs[s->r_ctrl0 + fl->cs];
441     uint32_t dummy_high = (r_ctrl0 >> CTRL_DUMMY_HIGH_SHIFT) & 0x1;
442     uint32_t dummy_low = (r_ctrl0 >> CTRL_DUMMY_LOW_SHIFT) & 0x3;
443     uint32_t dummies = ((dummy_high << 2) | dummy_low) * 8;
444 
445     if (r_ctrl0 & CTRL_IO_DUAL_ADDR_DATA) {
446         dummies /= 2;
447     }
448 
449     return dummies;
450 }
451 
452 static void aspeed_smc_flash_setup(AspeedSMCFlash *fl, uint32_t addr)
453 {
454     const AspeedSMCState *s = fl->controller;
455     uint8_t cmd = aspeed_smc_flash_cmd(fl);
456     int i = aspeed_smc_flash_addr_width(fl);
457 
458     /* Flash access can not exceed CS segment */
459     addr = aspeed_smc_check_segment_addr(fl, addr);
460 
461     ssi_transfer(s->spi, cmd);
462     while (i--) {
463         if (aspeed_smc_addr_byte_enabled(s, i)) {
464             ssi_transfer(s->spi, (addr >> (i * 8)) & 0xff);
465         }
466     }
467 
468     /*
469      * Use fake transfers to model dummy bytes. The value should
470      * be configured to some non-zero value in fast read mode and
471      * zero in read mode. But, as the HW allows inconsistent
472      * settings, let's check for fast read mode.
473      */
474     if (aspeed_smc_flash_mode(fl) == CTRL_FREADMODE) {
475         for (i = 0; i < aspeed_smc_flash_dummies(fl); i++) {
476             ssi_transfer(fl->controller->spi, s->regs[R_DUMMY_DATA] & 0xff);
477         }
478     }
479 }
480 
481 static uint64_t aspeed_smc_flash_read(void *opaque, hwaddr addr, unsigned size)
482 {
483     AspeedSMCFlash *fl = opaque;
484     AspeedSMCState *s = fl->controller;
485     uint64_t ret = 0;
486     int i;
487 
488     switch (aspeed_smc_flash_mode(fl)) {
489     case CTRL_USERMODE:
490         for (i = 0; i < size; i++) {
491             ret |= (uint64_t) ssi_transfer(s->spi, 0x0) << (8 * i);
492         }
493         break;
494     case CTRL_READMODE:
495     case CTRL_FREADMODE:
496         aspeed_smc_flash_select(fl);
497         aspeed_smc_flash_setup(fl, addr);
498 
499         for (i = 0; i < size; i++) {
500             ret |= (uint64_t) ssi_transfer(s->spi, 0x0) << (8 * i);
501         }
502 
503         aspeed_smc_flash_unselect(fl);
504         break;
505     default:
506         aspeed_smc_error("invalid flash mode %d", aspeed_smc_flash_mode(fl));
507     }
508 
509     trace_aspeed_smc_flash_read(fl->cs, addr, size, ret,
510                                 aspeed_smc_flash_mode(fl));
511     return ret;
512 }
513 
514 /*
515  * TODO (clg@kaod.org): stolen from xilinx_spips.c. Should move to a
516  * common include header.
517  */
518 typedef enum {
519     READ = 0x3,         READ_4 = 0x13,
520     FAST_READ = 0xb,    FAST_READ_4 = 0x0c,
521     DOR = 0x3b,         DOR_4 = 0x3c,
522     QOR = 0x6b,         QOR_4 = 0x6c,
523     DIOR = 0xbb,        DIOR_4 = 0xbc,
524     QIOR = 0xeb,        QIOR_4 = 0xec,
525 
526     PP = 0x2,           PP_4 = 0x12,
527     DPP = 0xa2,
528     QPP = 0x32,         QPP_4 = 0x34,
529 } FlashCMD;
530 
531 static int aspeed_smc_num_dummies(uint8_t command)
532 {
533     switch (command) { /* check for dummies */
534     case READ: /* no dummy bytes/cycles */
535     case PP:
536     case DPP:
537     case QPP:
538     case READ_4:
539     case PP_4:
540     case QPP_4:
541         return 0;
542     case FAST_READ:
543     case DOR:
544     case QOR:
545     case FAST_READ_4:
546     case DOR_4:
547     case QOR_4:
548         return 1;
549     case DIOR:
550     case DIOR_4:
551         return 2;
552     case QIOR:
553     case QIOR_4:
554         return 4;
555     default:
556         return -1;
557     }
558 }
559 
560 static bool aspeed_smc_do_snoop(AspeedSMCFlash *fl,  uint64_t data,
561                                 unsigned size)
562 {
563     AspeedSMCState *s = fl->controller;
564     uint8_t addr_width = aspeed_smc_flash_addr_width(fl);
565 
566     trace_aspeed_smc_do_snoop(fl->cs, s->snoop_index, s->snoop_dummies,
567                               (uint8_t) data & 0xff);
568 
569     if (s->snoop_index == SNOOP_OFF) {
570         return false; /* Do nothing */
571 
572     } else if (s->snoop_index == SNOOP_START) {
573         uint8_t cmd = data & 0xff;
574         int ndummies = aspeed_smc_num_dummies(cmd);
575 
576         /*
577          * No dummy cycles are expected with the current command. Turn
578          * off snooping and let the transfer proceed normally.
579          */
580         if (ndummies <= 0) {
581             s->snoop_index = SNOOP_OFF;
582             return false;
583         }
584 
585         s->snoop_dummies = ndummies * 8;
586 
587     } else if (s->snoop_index >= addr_width + 1) {
588 
589         /* The SPI transfer has reached the dummy cycles sequence */
590         for (; s->snoop_dummies; s->snoop_dummies--) {
591             ssi_transfer(s->spi, s->regs[R_DUMMY_DATA] & 0xff);
592         }
593 
594         /* If no more dummy cycles are expected, turn off snooping */
595         if (!s->snoop_dummies) {
596             s->snoop_index = SNOOP_OFF;
597         } else {
598             s->snoop_index += size;
599         }
600 
601         /*
602          * Dummy cycles have been faked already. Ignore the current
603          * SPI transfer
604          */
605         return true;
606     }
607 
608     s->snoop_index += size;
609     return false;
610 }
611 
612 static void aspeed_smc_flash_write(void *opaque, hwaddr addr, uint64_t data,
613                                    unsigned size)
614 {
615     AspeedSMCFlash *fl = opaque;
616     AspeedSMCState *s = fl->controller;
617     int i;
618 
619     trace_aspeed_smc_flash_write(fl->cs, addr, size, data,
620                                  aspeed_smc_flash_mode(fl));
621 
622     if (!aspeed_smc_is_writable(fl)) {
623         aspeed_smc_error("flash is not writable at 0x%" HWADDR_PRIx, addr);
624         return;
625     }
626 
627     switch (aspeed_smc_flash_mode(fl)) {
628     case CTRL_USERMODE:
629         if (aspeed_smc_do_snoop(fl, data, size)) {
630             break;
631         }
632 
633         for (i = 0; i < size; i++) {
634             ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
635         }
636         break;
637     case CTRL_WRITEMODE:
638         aspeed_smc_flash_select(fl);
639         aspeed_smc_flash_setup(fl, addr);
640 
641         for (i = 0; i < size; i++) {
642             ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
643         }
644 
645         aspeed_smc_flash_unselect(fl);
646         break;
647     default:
648         aspeed_smc_error("invalid flash mode %d", aspeed_smc_flash_mode(fl));
649     }
650 }
651 
652 static const MemoryRegionOps aspeed_smc_flash_ops = {
653     .read = aspeed_smc_flash_read,
654     .write = aspeed_smc_flash_write,
655     .endianness = DEVICE_LITTLE_ENDIAN,
656     .valid = {
657         .min_access_size = 1,
658         .max_access_size = 4,
659     },
660 };
661 
662 static void aspeed_smc_flash_update_ctrl(AspeedSMCFlash *fl, uint32_t value)
663 {
664     AspeedSMCState *s = fl->controller;
665     bool unselect;
666 
667     /* User mode selects the CS, other modes unselect */
668     unselect = (value & CTRL_CMD_MODE_MASK) != CTRL_USERMODE;
669 
670     /* A change of CTRL_CE_STOP_ACTIVE from 0 to 1, unselects the CS */
671     if (!(s->regs[s->r_ctrl0 + fl->cs] & CTRL_CE_STOP_ACTIVE) &&
672         value & CTRL_CE_STOP_ACTIVE) {
673         unselect = true;
674     }
675 
676     s->regs[s->r_ctrl0 + fl->cs] = value;
677 
678     s->snoop_index = unselect ? SNOOP_OFF : SNOOP_START;
679 
680     aspeed_smc_flash_do_select(fl, unselect);
681 }
682 
683 static void aspeed_smc_reset(DeviceState *d)
684 {
685     AspeedSMCState *s = ASPEED_SMC(d);
686     AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
687     int i;
688 
689     if (asc->resets) {
690         memcpy(s->regs, asc->resets, sizeof s->regs);
691     } else {
692         memset(s->regs, 0, sizeof s->regs);
693     }
694 
695     for (i = 0; i < asc->cs_num_max; i++) {
696         DeviceState *dev = ssi_get_cs(s->spi, i);
697         if (dev) {
698             qemu_irq cs_line = qdev_get_gpio_in_named(dev, SSI_GPIO_CS, 0);
699             qdev_connect_gpio_out_named(DEVICE(s), "cs", i, cs_line);
700         }
701     }
702 
703     /* Unselect all peripherals */
704     for (i = 0; i < asc->cs_num_max; ++i) {
705         s->regs[s->r_ctrl0 + i] |= CTRL_CE_STOP_ACTIVE;
706         qemu_set_irq(s->cs_lines[i], true);
707     }
708 
709     /* setup the default segment register values and regions for all */
710     for (i = 0; i < asc->cs_num_max; ++i) {
711         aspeed_smc_flash_set_segment_region(s, i,
712                     asc->segment_to_reg(s, &asc->segments[i]));
713     }
714 
715     s->snoop_index = SNOOP_OFF;
716     s->snoop_dummies = 0;
717 }
718 
719 static uint64_t aspeed_smc_read(void *opaque, hwaddr addr, unsigned int size)
720 {
721     AspeedSMCState *s = ASPEED_SMC(opaque);
722     AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(opaque);
723 
724     addr >>= 2;
725 
726     if (addr == s->r_conf ||
727         (addr >= s->r_timings &&
728          addr < s->r_timings + asc->nregs_timings) ||
729         addr == s->r_ce_ctrl ||
730         addr == R_CE_CMD_CTRL ||
731         addr == R_INTR_CTRL ||
732         addr == R_DUMMY_DATA ||
733         (aspeed_smc_has_wdt_control(asc) && addr == R_FMC_WDT2_CTRL) ||
734         (aspeed_smc_has_dma(asc) && addr == R_DMA_CTRL) ||
735         (aspeed_smc_has_dma(asc) && addr == R_DMA_FLASH_ADDR) ||
736         (aspeed_smc_has_dma(asc) && addr == R_DMA_DRAM_ADDR) ||
737         (aspeed_smc_has_dma(asc) && addr == R_DMA_LEN) ||
738         (aspeed_smc_has_dma(asc) && addr == R_DMA_CHECKSUM) ||
739         (addr >= R_SEG_ADDR0 &&
740          addr < R_SEG_ADDR0 + asc->cs_num_max) ||
741         (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + asc->cs_num_max)) {
742 
743         trace_aspeed_smc_read(addr << 2, size, s->regs[addr]);
744 
745         return s->regs[addr];
746     } else {
747         qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
748                       __func__, addr);
749         return -1;
750     }
751 }
752 
753 static uint8_t aspeed_smc_hclk_divisor(uint8_t hclk_mask)
754 {
755     /* HCLK/1 .. HCLK/16 */
756     const uint8_t hclk_divisors[] = {
757         15, 7, 14, 6, 13, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 0
758     };
759     int i;
760 
761     for (i = 0; i < ARRAY_SIZE(hclk_divisors); i++) {
762         if (hclk_mask == hclk_divisors[i]) {
763             return i + 1;
764         }
765     }
766 
767     aspeed_smc_error("invalid HCLK mask %x", hclk_mask);
768     return 0;
769 }
770 
771 /*
772  * When doing calibration, the SPI clock rate in the CE0 Control
773  * Register and the read delay cycles in the Read Timing Compensation
774  * Register are set using bit[11:4] of the DMA Control Register.
775  */
776 static void aspeed_smc_dma_calibration(AspeedSMCState *s)
777 {
778     uint8_t delay =
779         (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
780     uint8_t hclk_mask =
781         (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
782     uint8_t hclk_div = aspeed_smc_hclk_divisor(hclk_mask);
783     uint32_t hclk_shift = (hclk_div - 1) << 2;
784     uint8_t cs;
785 
786     /*
787      * The Read Timing Compensation Register values apply to all CS on
788      * the SPI bus and only HCLK/1 - HCLK/5 can have tunable delays
789      */
790     if (hclk_div && hclk_div < 6) {
791         s->regs[s->r_timings] &= ~(0xf << hclk_shift);
792         s->regs[s->r_timings] |= delay << hclk_shift;
793     }
794 
795     /*
796      * TODO: compute the CS from the DMA address and the segment
797      * registers. This is not really a problem for now because the
798      * Timing Register values apply to all CS and software uses CS0 to
799      * do calibration.
800      */
801     cs = 0;
802     s->regs[s->r_ctrl0 + cs] &=
803         ~(CE_CTRL_CLOCK_FREQ_MASK << CE_CTRL_CLOCK_FREQ_SHIFT);
804     s->regs[s->r_ctrl0 + cs] |= CE_CTRL_CLOCK_FREQ(hclk_div);
805 }
806 
807 /*
808  * Emulate read errors in the DMA Checksum Register for high
809  * frequencies and optimistic settings of the Read Timing Compensation
810  * Register. This will help in tuning the SPI timing calibration
811  * algorithm.
812  */
813 static bool aspeed_smc_inject_read_failure(AspeedSMCState *s)
814 {
815     uint8_t delay =
816         (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
817     uint8_t hclk_mask =
818         (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
819 
820     /*
821      * Typical values of a palmetto-bmc machine.
822      */
823     switch (aspeed_smc_hclk_divisor(hclk_mask)) {
824     case 4 ... 16:
825         return false;
826     case 3: /* at least one HCLK cycle delay */
827         return (delay & 0x7) < 1;
828     case 2: /* at least two HCLK cycle delay */
829         return (delay & 0x7) < 2;
830     case 1: /* (> 100MHz) is above the max freq of the controller */
831         return true;
832     default:
833         g_assert_not_reached();
834     }
835 }
836 
837 /*
838  * Accumulate the result of the reads to provide a checksum that will
839  * be used to validate the read timing settings.
840  */
841 static void aspeed_smc_dma_checksum(AspeedSMCState *s)
842 {
843     MemTxResult result;
844     uint32_t data;
845 
846     if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
847         aspeed_smc_error("invalid direction for DMA checksum");
848         return;
849     }
850 
851     if (s->regs[R_DMA_CTRL] & DMA_CTRL_CALIB) {
852         aspeed_smc_dma_calibration(s);
853     }
854 
855     while (s->regs[R_DMA_LEN]) {
856         data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
857                                     MEMTXATTRS_UNSPECIFIED, &result);
858         if (result != MEMTX_OK) {
859             aspeed_smc_error("Flash read failed @%08x",
860                              s->regs[R_DMA_FLASH_ADDR]);
861             return;
862         }
863         trace_aspeed_smc_dma_checksum(s->regs[R_DMA_FLASH_ADDR], data);
864 
865         /*
866          * When the DMA is on-going, the DMA registers are updated
867          * with the current working addresses and length.
868          */
869         s->regs[R_DMA_CHECKSUM] += data;
870         s->regs[R_DMA_FLASH_ADDR] += 4;
871         s->regs[R_DMA_LEN] -= 4;
872     }
873 
874     if (s->inject_failure && aspeed_smc_inject_read_failure(s)) {
875         s->regs[R_DMA_CHECKSUM] = 0xbadc0de;
876     }
877 
878 }
879 
880 static void aspeed_smc_dma_rw(AspeedSMCState *s)
881 {
882     MemTxResult result;
883     uint32_t data;
884 
885     trace_aspeed_smc_dma_rw(s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE ?
886                             "write" : "read",
887                             s->regs[R_DMA_FLASH_ADDR],
888                             s->regs[R_DMA_DRAM_ADDR],
889                             s->regs[R_DMA_LEN]);
890     while (s->regs[R_DMA_LEN]) {
891         if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
892             data = address_space_ldl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR],
893                                         MEMTXATTRS_UNSPECIFIED, &result);
894             if (result != MEMTX_OK) {
895                 aspeed_smc_error("DRAM read failed @%08x",
896                                  s->regs[R_DMA_DRAM_ADDR]);
897                 return;
898             }
899 
900             address_space_stl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
901                                  data, MEMTXATTRS_UNSPECIFIED, &result);
902             if (result != MEMTX_OK) {
903                 aspeed_smc_error("Flash write failed @%08x",
904                                  s->regs[R_DMA_FLASH_ADDR]);
905                 return;
906             }
907         } else {
908             data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
909                                         MEMTXATTRS_UNSPECIFIED, &result);
910             if (result != MEMTX_OK) {
911                 aspeed_smc_error("Flash read failed @%08x",
912                                  s->regs[R_DMA_FLASH_ADDR]);
913                 return;
914             }
915 
916             address_space_stl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR],
917                                  data, MEMTXATTRS_UNSPECIFIED, &result);
918             if (result != MEMTX_OK) {
919                 aspeed_smc_error("DRAM write failed @%08x",
920                                  s->regs[R_DMA_DRAM_ADDR]);
921                 return;
922             }
923         }
924 
925         /*
926          * When the DMA is on-going, the DMA registers are updated
927          * with the current working addresses and length.
928          */
929         s->regs[R_DMA_FLASH_ADDR] += 4;
930         s->regs[R_DMA_DRAM_ADDR] += 4;
931         s->regs[R_DMA_LEN] -= 4;
932         s->regs[R_DMA_CHECKSUM] += data;
933     }
934 }
935 
936 static void aspeed_smc_dma_stop(AspeedSMCState *s)
937 {
938     /*
939      * When the DMA is disabled, INTR_CTRL_DMA_STATUS=0 means the
940      * engine is idle
941      */
942     s->regs[R_INTR_CTRL] &= ~INTR_CTRL_DMA_STATUS;
943     s->regs[R_DMA_CHECKSUM] = 0;
944 
945     /*
946      * Lower the DMA irq in any case. The IRQ control register could
947      * have been cleared before disabling the DMA.
948      */
949     qemu_irq_lower(s->irq);
950 }
951 
952 /*
953  * When INTR_CTRL_DMA_STATUS=1, the DMA has completed and a new DMA
954  * can start even if the result of the previous was not collected.
955  */
956 static bool aspeed_smc_dma_in_progress(AspeedSMCState *s)
957 {
958     return s->regs[R_DMA_CTRL] & DMA_CTRL_ENABLE &&
959         !(s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_STATUS);
960 }
961 
962 static void aspeed_smc_dma_done(AspeedSMCState *s)
963 {
964     s->regs[R_INTR_CTRL] |= INTR_CTRL_DMA_STATUS;
965     if (s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_EN) {
966         qemu_irq_raise(s->irq);
967     }
968 }
969 
970 static void aspeed_smc_dma_ctrl(AspeedSMCState *s, uint32_t dma_ctrl)
971 {
972     if (!(dma_ctrl & DMA_CTRL_ENABLE)) {
973         s->regs[R_DMA_CTRL] = dma_ctrl;
974 
975         aspeed_smc_dma_stop(s);
976         return;
977     }
978 
979     if (aspeed_smc_dma_in_progress(s)) {
980         aspeed_smc_error("DMA in progress !");
981         return;
982     }
983 
984     s->regs[R_DMA_CTRL] = dma_ctrl;
985 
986     if (s->regs[R_DMA_CTRL] & DMA_CTRL_CKSUM) {
987         aspeed_smc_dma_checksum(s);
988     } else {
989         aspeed_smc_dma_rw(s);
990     }
991 
992     aspeed_smc_dma_done(s);
993 }
994 
995 static inline bool aspeed_smc_dma_granted(AspeedSMCState *s)
996 {
997     AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
998 
999     if (!(asc->features & ASPEED_SMC_FEATURE_DMA_GRANT)) {
1000         return true;
1001     }
1002 
1003     if (!(s->regs[R_DMA_CTRL] & DMA_CTRL_GRANT)) {
1004         aspeed_smc_error("DMA not granted");
1005         return false;
1006     }
1007 
1008     return true;
1009 }
1010 
1011 static void aspeed_2600_smc_dma_ctrl(AspeedSMCState *s, uint32_t dma_ctrl)
1012 {
1013     /* Preserve DMA bits  */
1014     dma_ctrl |= s->regs[R_DMA_CTRL] & (DMA_CTRL_REQUEST | DMA_CTRL_GRANT);
1015 
1016     if (dma_ctrl == 0xAEED0000) {
1017         /* automatically grant request */
1018         s->regs[R_DMA_CTRL] |= (DMA_CTRL_REQUEST | DMA_CTRL_GRANT);
1019         return;
1020     }
1021 
1022     /* clear request */
1023     if (dma_ctrl == 0xDEEA0000) {
1024         s->regs[R_DMA_CTRL] &= ~(DMA_CTRL_REQUEST | DMA_CTRL_GRANT);
1025         return;
1026     }
1027 
1028     if (!aspeed_smc_dma_granted(s)) {
1029         aspeed_smc_error("DMA not granted");
1030         return;
1031     }
1032 
1033     aspeed_smc_dma_ctrl(s, dma_ctrl);
1034     s->regs[R_DMA_CTRL] &= ~(DMA_CTRL_REQUEST | DMA_CTRL_GRANT);
1035 }
1036 
1037 static void aspeed_smc_write(void *opaque, hwaddr addr, uint64_t data,
1038                              unsigned int size)
1039 {
1040     AspeedSMCState *s = ASPEED_SMC(opaque);
1041     AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
1042     uint32_t value = data;
1043 
1044     trace_aspeed_smc_write(addr, size, data);
1045 
1046     addr >>= 2;
1047 
1048     if (addr == s->r_conf ||
1049         (addr >= s->r_timings &&
1050          addr < s->r_timings + asc->nregs_timings) ||
1051         addr == s->r_ce_ctrl) {
1052         s->regs[addr] = value;
1053     } else if (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + asc->cs_num_max) {
1054         int cs = addr - s->r_ctrl0;
1055         aspeed_smc_flash_update_ctrl(&s->flashes[cs], value);
1056     } else if (addr >= R_SEG_ADDR0 &&
1057                addr < R_SEG_ADDR0 + asc->cs_num_max) {
1058         int cs = addr - R_SEG_ADDR0;
1059 
1060         if (value != s->regs[R_SEG_ADDR0 + cs]) {
1061             aspeed_smc_flash_set_segment(s, cs, value);
1062         }
1063     } else if (addr == R_CE_CMD_CTRL) {
1064         s->regs[addr] = value & 0xff;
1065     } else if (addr == R_DUMMY_DATA) {
1066         s->regs[addr] = value & 0xff;
1067     } else if (aspeed_smc_has_wdt_control(asc) && addr == R_FMC_WDT2_CTRL) {
1068         s->regs[addr] = value & FMC_WDT2_CTRL_EN;
1069     } else if (addr == R_INTR_CTRL) {
1070         s->regs[addr] = value;
1071     } else if (aspeed_smc_has_dma(asc) && addr == R_DMA_CTRL) {
1072         asc->dma_ctrl(s, value);
1073     } else if (aspeed_smc_has_dma(asc) && addr == R_DMA_DRAM_ADDR &&
1074                aspeed_smc_dma_granted(s)) {
1075         s->regs[addr] = DMA_DRAM_ADDR(asc, value);
1076     } else if (aspeed_smc_has_dma(asc) && addr == R_DMA_FLASH_ADDR &&
1077                aspeed_smc_dma_granted(s)) {
1078         s->regs[addr] = DMA_FLASH_ADDR(asc, value);
1079     } else if (aspeed_smc_has_dma(asc) && addr == R_DMA_LEN &&
1080                aspeed_smc_dma_granted(s)) {
1081         s->regs[addr] = DMA_LENGTH(value);
1082     } else {
1083         qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
1084                       __func__, addr);
1085         return;
1086     }
1087 }
1088 
1089 static const MemoryRegionOps aspeed_smc_ops = {
1090     .read = aspeed_smc_read,
1091     .write = aspeed_smc_write,
1092     .endianness = DEVICE_LITTLE_ENDIAN,
1093 };
1094 
1095 static void aspeed_smc_instance_init(Object *obj)
1096 {
1097     AspeedSMCState *s = ASPEED_SMC(obj);
1098     AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
1099     int i;
1100 
1101     for (i = 0; i < asc->cs_num_max; i++) {
1102         object_initialize_child(obj, "flash[*]", &s->flashes[i],
1103                                 TYPE_ASPEED_SMC_FLASH);
1104     }
1105 }
1106 
1107 /*
1108  * Initialize the custom address spaces for DMAs
1109  */
1110 static void aspeed_smc_dma_setup(AspeedSMCState *s, Error **errp)
1111 {
1112     if (!s->dram_mr) {
1113         error_setg(errp, TYPE_ASPEED_SMC ": 'dram' link not set");
1114         return;
1115     }
1116 
1117     address_space_init(&s->flash_as, &s->mmio_flash,
1118                        TYPE_ASPEED_SMC ".dma-flash");
1119     address_space_init(&s->dram_as, s->dram_mr,
1120                        TYPE_ASPEED_SMC ".dma-dram");
1121 }
1122 
1123 static void aspeed_smc_realize(DeviceState *dev, Error **errp)
1124 {
1125     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1126     AspeedSMCState *s = ASPEED_SMC(dev);
1127     AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
1128     int i;
1129     hwaddr offset = 0;
1130 
1131     /* keep a copy under AspeedSMCState to speed up accesses */
1132     s->r_conf = asc->r_conf;
1133     s->r_ce_ctrl = asc->r_ce_ctrl;
1134     s->r_ctrl0 = asc->r_ctrl0;
1135     s->r_timings = asc->r_timings;
1136     s->conf_enable_w0 = asc->conf_enable_w0;
1137 
1138     /* DMA irq. Keep it first for the initialization in the SoC */
1139     sysbus_init_irq(sbd, &s->irq);
1140 
1141     s->spi = ssi_create_bus(dev, NULL);
1142 
1143     /* Setup cs_lines for peripherals */
1144     s->cs_lines = g_new0(qemu_irq, asc->cs_num_max);
1145     qdev_init_gpio_out_named(DEVICE(s), s->cs_lines, "cs", asc->cs_num_max);
1146 
1147     /* The memory region for the controller registers */
1148     memory_region_init_io(&s->mmio, OBJECT(s), &aspeed_smc_ops, s,
1149                           TYPE_ASPEED_SMC, asc->nregs * 4);
1150     sysbus_init_mmio(sbd, &s->mmio);
1151 
1152     /*
1153      * The container memory region representing the address space
1154      * window in which the flash modules are mapped. The size and
1155      * address depends on the SoC model and controller type.
1156      */
1157     memory_region_init(&s->mmio_flash_container, OBJECT(s),
1158                        TYPE_ASPEED_SMC ".container",
1159                        asc->flash_window_size);
1160     sysbus_init_mmio(sbd, &s->mmio_flash_container);
1161 
1162     memory_region_init_io(&s->mmio_flash, OBJECT(s),
1163                           &aspeed_smc_flash_default_ops, s,
1164                           TYPE_ASPEED_SMC ".flash",
1165                           asc->flash_window_size);
1166     memory_region_add_subregion(&s->mmio_flash_container, 0x0,
1167                                 &s->mmio_flash);
1168 
1169     /*
1170      * Let's create a sub memory region for each possible peripheral. All
1171      * have a configurable memory segment in the overall flash mapping
1172      * window of the controller but, there is not necessarily a flash
1173      * module behind to handle the memory accesses. This depends on
1174      * the board configuration.
1175      */
1176     for (i = 0; i < asc->cs_num_max; ++i) {
1177         AspeedSMCFlash *fl = &s->flashes[i];
1178 
1179         if (!object_property_set_link(OBJECT(fl), "controller", OBJECT(s),
1180                                       errp)) {
1181             return;
1182         }
1183         if (!object_property_set_uint(OBJECT(fl), "cs", i, errp)) {
1184             return;
1185         }
1186         if (!sysbus_realize(SYS_BUS_DEVICE(fl), errp)) {
1187             return;
1188         }
1189 
1190         memory_region_add_subregion(&s->mmio_flash, offset, &fl->mmio);
1191         offset += asc->segments[i].size;
1192     }
1193 
1194     /* DMA support */
1195     if (aspeed_smc_has_dma(asc)) {
1196         aspeed_smc_dma_setup(s, errp);
1197     }
1198 }
1199 
1200 static const VMStateDescription vmstate_aspeed_smc = {
1201     .name = "aspeed.smc",
1202     .version_id = 2,
1203     .minimum_version_id = 2,
1204     .fields = (VMStateField[]) {
1205         VMSTATE_UINT32_ARRAY(regs, AspeedSMCState, ASPEED_SMC_R_MAX),
1206         VMSTATE_UINT8(snoop_index, AspeedSMCState),
1207         VMSTATE_UINT8(snoop_dummies, AspeedSMCState),
1208         VMSTATE_END_OF_LIST()
1209     }
1210 };
1211 
1212 static Property aspeed_smc_properties[] = {
1213     DEFINE_PROP_BOOL("inject-failure", AspeedSMCState, inject_failure, false),
1214     DEFINE_PROP_LINK("dram", AspeedSMCState, dram_mr,
1215                      TYPE_MEMORY_REGION, MemoryRegion *),
1216     DEFINE_PROP_END_OF_LIST(),
1217 };
1218 
1219 static void aspeed_smc_class_init(ObjectClass *klass, void *data)
1220 {
1221     DeviceClass *dc = DEVICE_CLASS(klass);
1222 
1223     dc->realize = aspeed_smc_realize;
1224     dc->reset = aspeed_smc_reset;
1225     device_class_set_props(dc, aspeed_smc_properties);
1226     dc->vmsd = &vmstate_aspeed_smc;
1227 }
1228 
1229 static const TypeInfo aspeed_smc_info = {
1230     .name           = TYPE_ASPEED_SMC,
1231     .parent         = TYPE_SYS_BUS_DEVICE,
1232     .instance_init  = aspeed_smc_instance_init,
1233     .instance_size  = sizeof(AspeedSMCState),
1234     .class_size     = sizeof(AspeedSMCClass),
1235     .class_init     = aspeed_smc_class_init,
1236     .abstract       = true,
1237 };
1238 
1239 static void aspeed_smc_flash_realize(DeviceState *dev, Error **errp)
1240 {
1241     AspeedSMCFlash *s = ASPEED_SMC_FLASH(dev);
1242     g_autofree char *name = g_strdup_printf(TYPE_ASPEED_SMC_FLASH ".%d", s->cs);
1243 
1244     if (!s->controller) {
1245         error_setg(errp, TYPE_ASPEED_SMC_FLASH ": 'controller' link not set");
1246         return;
1247     }
1248 
1249     s->asc = ASPEED_SMC_GET_CLASS(s->controller);
1250 
1251     /*
1252      * Use the default segment value to size the memory region. This
1253      * can be changed by FW at runtime.
1254      */
1255     memory_region_init_io(&s->mmio, OBJECT(s), &aspeed_smc_flash_ops,
1256                           s, name, s->asc->segments[s->cs].size);
1257     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->mmio);
1258 }
1259 
1260 static Property aspeed_smc_flash_properties[] = {
1261     DEFINE_PROP_UINT8("cs", AspeedSMCFlash, cs, 0),
1262     DEFINE_PROP_LINK("controller", AspeedSMCFlash, controller, TYPE_ASPEED_SMC,
1263                      AspeedSMCState *),
1264     DEFINE_PROP_END_OF_LIST(),
1265 };
1266 
1267 static void aspeed_smc_flash_class_init(ObjectClass *klass, void *data)
1268 {
1269     DeviceClass *dc = DEVICE_CLASS(klass);
1270 
1271     dc->desc = "Aspeed SMC Flash device region";
1272     dc->realize = aspeed_smc_flash_realize;
1273     device_class_set_props(dc, aspeed_smc_flash_properties);
1274 }
1275 
1276 static const TypeInfo aspeed_smc_flash_info = {
1277     .name           = TYPE_ASPEED_SMC_FLASH,
1278     .parent         = TYPE_SYS_BUS_DEVICE,
1279     .instance_size  = sizeof(AspeedSMCFlash),
1280     .class_init     = aspeed_smc_flash_class_init,
1281 };
1282 
1283 /*
1284  * The Segment Registers of the AST2400 and AST2500 have a 8MB
1285  * unit. The address range of a flash SPI peripheral is encoded with
1286  * absolute addresses which should be part of the overall controller
1287  * window.
1288  */
1289 static uint32_t aspeed_smc_segment_to_reg(const AspeedSMCState *s,
1290                                           const AspeedSegments *seg)
1291 {
1292     uint32_t reg = 0;
1293     reg |= ((seg->addr >> 23) & SEG_START_MASK) << SEG_START_SHIFT;
1294     reg |= (((seg->addr + seg->size) >> 23) & SEG_END_MASK) << SEG_END_SHIFT;
1295     return reg;
1296 }
1297 
1298 static void aspeed_smc_reg_to_segment(const AspeedSMCState *s,
1299                                       uint32_t reg, AspeedSegments *seg)
1300 {
1301     seg->addr = ((reg >> SEG_START_SHIFT) & SEG_START_MASK) << 23;
1302     seg->size = (((reg >> SEG_END_SHIFT) & SEG_END_MASK) << 23) - seg->addr;
1303 }
1304 
1305 static const AspeedSegments aspeed_2400_smc_segments[] = {
1306     { 0x10000000, 32 * MiB },
1307 };
1308 
1309 static void aspeed_2400_smc_class_init(ObjectClass *klass, void *data)
1310 {
1311     DeviceClass *dc = DEVICE_CLASS(klass);
1312     AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1313 
1314     dc->desc               = "Aspeed 2400 SMC Controller";
1315     asc->r_conf            = R_CONF;
1316     asc->r_ce_ctrl         = R_CE_CTRL;
1317     asc->r_ctrl0           = R_CTRL0;
1318     asc->r_timings         = R_TIMINGS;
1319     asc->nregs_timings     = 1;
1320     asc->conf_enable_w0    = CONF_ENABLE_W0;
1321     asc->cs_num_max        = 1;
1322     asc->segments          = aspeed_2400_smc_segments;
1323     asc->flash_window_base = 0x10000000;
1324     asc->flash_window_size = 0x6000000;
1325     asc->features          = 0x0;
1326     asc->nregs             = ASPEED_SMC_R_SMC_MAX;
1327     asc->segment_to_reg    = aspeed_smc_segment_to_reg;
1328     asc->reg_to_segment    = aspeed_smc_reg_to_segment;
1329     asc->dma_ctrl          = aspeed_smc_dma_ctrl;
1330 }
1331 
1332 static const TypeInfo aspeed_2400_smc_info = {
1333     .name =  "aspeed.smc-ast2400",
1334     .parent = TYPE_ASPEED_SMC,
1335     .class_init = aspeed_2400_smc_class_init,
1336 };
1337 
1338 static const uint32_t aspeed_2400_fmc_resets[ASPEED_SMC_R_MAX] = {
1339     /*
1340      * CE0 and CE1 types are HW strapped in SCU70. Do it here to
1341      * simplify the model.
1342      */
1343     [R_CONF] = CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0,
1344 };
1345 
1346 static const AspeedSegments aspeed_2400_fmc_segments[] = {
1347     { 0x20000000, 64 * MiB }, /* start address is readonly */
1348     { 0x24000000, 32 * MiB },
1349     { 0x26000000, 32 * MiB },
1350     { 0x28000000, 32 * MiB },
1351     { 0x2A000000, 32 * MiB }
1352 };
1353 
1354 static void aspeed_2400_fmc_class_init(ObjectClass *klass, void *data)
1355 {
1356     DeviceClass *dc = DEVICE_CLASS(klass);
1357     AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1358 
1359     dc->desc               = "Aspeed 2400 FMC Controller";
1360     asc->r_conf            = R_CONF;
1361     asc->r_ce_ctrl         = R_CE_CTRL;
1362     asc->r_ctrl0           = R_CTRL0;
1363     asc->r_timings         = R_TIMINGS;
1364     asc->nregs_timings     = 1;
1365     asc->conf_enable_w0    = CONF_ENABLE_W0;
1366     asc->cs_num_max        = 5;
1367     asc->segments          = aspeed_2400_fmc_segments;
1368     asc->segment_addr_mask = 0xffff0000;
1369     asc->resets            = aspeed_2400_fmc_resets;
1370     asc->flash_window_base = 0x20000000;
1371     asc->flash_window_size = 0x10000000;
1372     asc->features          = ASPEED_SMC_FEATURE_DMA;
1373     asc->dma_flash_mask    = 0x0FFFFFFC;
1374     asc->dma_dram_mask     = 0x1FFFFFFC;
1375     asc->nregs             = ASPEED_SMC_R_MAX;
1376     asc->segment_to_reg    = aspeed_smc_segment_to_reg;
1377     asc->reg_to_segment    = aspeed_smc_reg_to_segment;
1378     asc->dma_ctrl          = aspeed_smc_dma_ctrl;
1379 }
1380 
1381 static const TypeInfo aspeed_2400_fmc_info = {
1382     .name =  "aspeed.fmc-ast2400",
1383     .parent = TYPE_ASPEED_SMC,
1384     .class_init = aspeed_2400_fmc_class_init,
1385 };
1386 
1387 static const AspeedSegments aspeed_2400_spi1_segments[] = {
1388     { 0x30000000, 64 * MiB },
1389 };
1390 
1391 static int aspeed_2400_spi1_addr_width(const AspeedSMCState *s)
1392 {
1393     return s->regs[R_SPI_CTRL0] & CTRL_AST2400_SPI_4BYTE ? 4 : 3;
1394 }
1395 
1396 static void aspeed_2400_spi1_class_init(ObjectClass *klass, void *data)
1397 {
1398     DeviceClass *dc = DEVICE_CLASS(klass);
1399     AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1400 
1401     dc->desc               = "Aspeed 2400 SPI1 Controller";
1402     asc->r_conf            = R_SPI_CONF;
1403     asc->r_ce_ctrl         = 0xff;
1404     asc->r_ctrl0           = R_SPI_CTRL0;
1405     asc->r_timings         = R_SPI_TIMINGS;
1406     asc->nregs_timings     = 1;
1407     asc->conf_enable_w0    = SPI_CONF_ENABLE_W0;
1408     asc->cs_num_max        = 1;
1409     asc->segments          = aspeed_2400_spi1_segments;
1410     asc->flash_window_base = 0x30000000;
1411     asc->flash_window_size = 0x10000000;
1412     asc->features          = 0x0;
1413     asc->nregs             = ASPEED_SMC_R_SPI_MAX;
1414     asc->segment_to_reg    = aspeed_smc_segment_to_reg;
1415     asc->reg_to_segment    = aspeed_smc_reg_to_segment;
1416     asc->dma_ctrl          = aspeed_smc_dma_ctrl;
1417     asc->addr_width        = aspeed_2400_spi1_addr_width;
1418 }
1419 
1420 static const TypeInfo aspeed_2400_spi1_info = {
1421     .name =  "aspeed.spi1-ast2400",
1422     .parent = TYPE_ASPEED_SMC,
1423     .class_init = aspeed_2400_spi1_class_init,
1424 };
1425 
1426 static const uint32_t aspeed_2500_fmc_resets[ASPEED_SMC_R_MAX] = {
1427     [R_CONF] = (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0 |
1428                 CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1),
1429 };
1430 
1431 static const AspeedSegments aspeed_2500_fmc_segments[] = {
1432     { 0x20000000, 128 * MiB }, /* start address is readonly */
1433     { 0x28000000,  32 * MiB },
1434     { 0x2A000000,  32 * MiB },
1435 };
1436 
1437 static void aspeed_2500_fmc_class_init(ObjectClass *klass, void *data)
1438 {
1439     DeviceClass *dc = DEVICE_CLASS(klass);
1440     AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1441 
1442     dc->desc               = "Aspeed 2600 FMC Controller";
1443     asc->r_conf            = R_CONF;
1444     asc->r_ce_ctrl         = R_CE_CTRL;
1445     asc->r_ctrl0           = R_CTRL0;
1446     asc->r_timings         = R_TIMINGS;
1447     asc->nregs_timings     = 1;
1448     asc->conf_enable_w0    = CONF_ENABLE_W0;
1449     asc->cs_num_max        = 3;
1450     asc->segments          = aspeed_2500_fmc_segments;
1451     asc->segment_addr_mask = 0xffff0000;
1452     asc->resets            = aspeed_2500_fmc_resets;
1453     asc->flash_window_base = 0x20000000;
1454     asc->flash_window_size = 0x10000000;
1455     asc->features          = ASPEED_SMC_FEATURE_DMA;
1456     asc->dma_flash_mask    = 0x0FFFFFFC;
1457     asc->dma_dram_mask     = 0x3FFFFFFC;
1458     asc->nregs             = ASPEED_SMC_R_MAX;
1459     asc->segment_to_reg    = aspeed_smc_segment_to_reg;
1460     asc->reg_to_segment    = aspeed_smc_reg_to_segment;
1461     asc->dma_ctrl          = aspeed_smc_dma_ctrl;
1462 }
1463 
1464 static const TypeInfo aspeed_2500_fmc_info = {
1465     .name =  "aspeed.fmc-ast2500",
1466     .parent = TYPE_ASPEED_SMC,
1467     .class_init = aspeed_2500_fmc_class_init,
1468 };
1469 
1470 static const AspeedSegments aspeed_2500_spi1_segments[] = {
1471     { 0x30000000, 32 * MiB }, /* start address is readonly */
1472     { 0x32000000, 96 * MiB }, /* end address is readonly */
1473 };
1474 
1475 static void aspeed_2500_spi1_class_init(ObjectClass *klass, void *data)
1476 {
1477     DeviceClass *dc = DEVICE_CLASS(klass);
1478     AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1479 
1480     dc->desc               = "Aspeed 2600 SPI1 Controller";
1481     asc->r_conf            = R_CONF;
1482     asc->r_ce_ctrl         = R_CE_CTRL;
1483     asc->r_ctrl0           = R_CTRL0;
1484     asc->r_timings         = R_TIMINGS;
1485     asc->nregs_timings     = 1;
1486     asc->conf_enable_w0    = CONF_ENABLE_W0;
1487     asc->cs_num_max        = 2;
1488     asc->segments          = aspeed_2500_spi1_segments;
1489     asc->segment_addr_mask = 0xffff0000;
1490     asc->flash_window_base = 0x30000000;
1491     asc->flash_window_size = 0x8000000;
1492     asc->features          = 0x0;
1493     asc->nregs             = ASPEED_SMC_R_MAX;
1494     asc->segment_to_reg    = aspeed_smc_segment_to_reg;
1495     asc->reg_to_segment    = aspeed_smc_reg_to_segment;
1496     asc->dma_ctrl          = aspeed_smc_dma_ctrl;
1497 }
1498 
1499 static const TypeInfo aspeed_2500_spi1_info = {
1500     .name =  "aspeed.spi1-ast2500",
1501     .parent = TYPE_ASPEED_SMC,
1502     .class_init = aspeed_2500_spi1_class_init,
1503 };
1504 
1505 static const AspeedSegments aspeed_2500_spi2_segments[] = {
1506     { 0x38000000, 32 * MiB }, /* start address is readonly */
1507     { 0x3A000000, 96 * MiB }, /* end address is readonly */
1508 };
1509 
1510 static void aspeed_2500_spi2_class_init(ObjectClass *klass, void *data)
1511 {
1512     DeviceClass *dc = DEVICE_CLASS(klass);
1513     AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1514 
1515     dc->desc               = "Aspeed 2600 SPI2 Controller";
1516     asc->r_conf            = R_CONF;
1517     asc->r_ce_ctrl         = R_CE_CTRL;
1518     asc->r_ctrl0           = R_CTRL0;
1519     asc->r_timings         = R_TIMINGS;
1520     asc->nregs_timings     = 1;
1521     asc->conf_enable_w0    = CONF_ENABLE_W0;
1522     asc->cs_num_max        = 2;
1523     asc->segments          = aspeed_2500_spi2_segments;
1524     asc->segment_addr_mask = 0xffff0000;
1525     asc->flash_window_base = 0x38000000;
1526     asc->flash_window_size = 0x8000000;
1527     asc->features          = 0x0;
1528     asc->nregs             = ASPEED_SMC_R_MAX;
1529     asc->segment_to_reg    = aspeed_smc_segment_to_reg;
1530     asc->reg_to_segment    = aspeed_smc_reg_to_segment;
1531     asc->dma_ctrl          = aspeed_smc_dma_ctrl;
1532 }
1533 
1534 static const TypeInfo aspeed_2500_spi2_info = {
1535     .name =  "aspeed.spi2-ast2500",
1536     .parent = TYPE_ASPEED_SMC,
1537     .class_init = aspeed_2500_spi2_class_init,
1538 };
1539 
1540 /*
1541  * The Segment Registers of the AST2600 have a 1MB unit. The address
1542  * range of a flash SPI peripheral is encoded with offsets in the overall
1543  * controller window. The previous SoC AST2400 and AST2500 used
1544  * absolute addresses. Only bits [27:20] are relevant and the end
1545  * address is an upper bound limit.
1546  */
1547 #define AST2600_SEG_ADDR_MASK 0x0ff00000
1548 
1549 static uint32_t aspeed_2600_smc_segment_to_reg(const AspeedSMCState *s,
1550                                                const AspeedSegments *seg)
1551 {
1552     uint32_t reg = 0;
1553 
1554     /* Disabled segments have a nil register */
1555     if (!seg->size) {
1556         return 0;
1557     }
1558 
1559     reg |= (seg->addr & AST2600_SEG_ADDR_MASK) >> 16; /* start offset */
1560     reg |= (seg->addr + seg->size - 1) & AST2600_SEG_ADDR_MASK; /* end offset */
1561     return reg;
1562 }
1563 
1564 static void aspeed_2600_smc_reg_to_segment(const AspeedSMCState *s,
1565                                            uint32_t reg, AspeedSegments *seg)
1566 {
1567     uint32_t start_offset = (reg << 16) & AST2600_SEG_ADDR_MASK;
1568     uint32_t end_offset = reg & AST2600_SEG_ADDR_MASK;
1569     AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
1570 
1571     if (reg) {
1572         seg->addr = asc->flash_window_base + start_offset;
1573         seg->size = end_offset + MiB - start_offset;
1574     } else {
1575         seg->addr = asc->flash_window_base;
1576         seg->size = 0;
1577     }
1578 }
1579 
1580 static const uint32_t aspeed_2600_fmc_resets[ASPEED_SMC_R_MAX] = {
1581     [R_CONF] = (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0 |
1582                 CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1 |
1583                 CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE2),
1584 };
1585 
1586 static const AspeedSegments aspeed_2600_fmc_segments[] = {
1587     { 0x0, 128 * MiB }, /* start address is readonly */
1588     { 128 * MiB, 128 * MiB }, /* default is disabled but needed for -kernel */
1589     { 0x0, 0 }, /* disabled */
1590 };
1591 
1592 static void aspeed_2600_fmc_class_init(ObjectClass *klass, void *data)
1593 {
1594     DeviceClass *dc = DEVICE_CLASS(klass);
1595     AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1596 
1597     dc->desc               = "Aspeed 2600 FMC Controller";
1598     asc->r_conf            = R_CONF;
1599     asc->r_ce_ctrl         = R_CE_CTRL;
1600     asc->r_ctrl0           = R_CTRL0;
1601     asc->r_timings         = R_TIMINGS;
1602     asc->nregs_timings     = 1;
1603     asc->conf_enable_w0    = CONF_ENABLE_W0;
1604     asc->cs_num_max        = 3;
1605     asc->segments          = aspeed_2600_fmc_segments;
1606     asc->segment_addr_mask = 0x0ff00ff0;
1607     asc->resets            = aspeed_2600_fmc_resets;
1608     asc->flash_window_base = 0x20000000;
1609     asc->flash_window_size = 0x10000000;
1610     asc->features          = ASPEED_SMC_FEATURE_DMA |
1611                              ASPEED_SMC_FEATURE_WDT_CONTROL;
1612     asc->dma_flash_mask    = 0x0FFFFFFC;
1613     asc->dma_dram_mask     = 0x3FFFFFFC;
1614     asc->nregs             = ASPEED_SMC_R_MAX;
1615     asc->segment_to_reg    = aspeed_2600_smc_segment_to_reg;
1616     asc->reg_to_segment    = aspeed_2600_smc_reg_to_segment;
1617     asc->dma_ctrl          = aspeed_2600_smc_dma_ctrl;
1618 }
1619 
1620 static const TypeInfo aspeed_2600_fmc_info = {
1621     .name =  "aspeed.fmc-ast2600",
1622     .parent = TYPE_ASPEED_SMC,
1623     .class_init = aspeed_2600_fmc_class_init,
1624 };
1625 
1626 static const AspeedSegments aspeed_2600_spi1_segments[] = {
1627     { 0x0, 128 * MiB }, /* start address is readonly */
1628     { 0x0, 0 }, /* disabled */
1629 };
1630 
1631 static void aspeed_2600_spi1_class_init(ObjectClass *klass, void *data)
1632 {
1633     DeviceClass *dc = DEVICE_CLASS(klass);
1634     AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1635 
1636     dc->desc               = "Aspeed 2600 SPI1 Controller";
1637     asc->r_conf            = R_CONF;
1638     asc->r_ce_ctrl         = R_CE_CTRL;
1639     asc->r_ctrl0           = R_CTRL0;
1640     asc->r_timings         = R_TIMINGS;
1641     asc->nregs_timings     = 2;
1642     asc->conf_enable_w0    = CONF_ENABLE_W0;
1643     asc->cs_num_max        = 2;
1644     asc->segments          = aspeed_2600_spi1_segments;
1645     asc->segment_addr_mask = 0x0ff00ff0;
1646     asc->flash_window_base = 0x30000000;
1647     asc->flash_window_size = 0x10000000;
1648     asc->features          = ASPEED_SMC_FEATURE_DMA |
1649                              ASPEED_SMC_FEATURE_DMA_GRANT;
1650     asc->dma_flash_mask    = 0x0FFFFFFC;
1651     asc->dma_dram_mask     = 0x3FFFFFFC;
1652     asc->nregs             = ASPEED_SMC_R_MAX;
1653     asc->segment_to_reg    = aspeed_2600_smc_segment_to_reg;
1654     asc->reg_to_segment    = aspeed_2600_smc_reg_to_segment;
1655     asc->dma_ctrl          = aspeed_2600_smc_dma_ctrl;
1656 }
1657 
1658 static const TypeInfo aspeed_2600_spi1_info = {
1659     .name =  "aspeed.spi1-ast2600",
1660     .parent = TYPE_ASPEED_SMC,
1661     .class_init = aspeed_2600_spi1_class_init,
1662 };
1663 
1664 static const AspeedSegments aspeed_2600_spi2_segments[] = {
1665     { 0x0, 128 * MiB }, /* start address is readonly */
1666     { 0x0, 0 }, /* disabled */
1667     { 0x0, 0 }, /* disabled */
1668 };
1669 
1670 static void aspeed_2600_spi2_class_init(ObjectClass *klass, void *data)
1671 {
1672     DeviceClass *dc = DEVICE_CLASS(klass);
1673     AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1674 
1675     dc->desc               = "Aspeed 2600 SPI2 Controller";
1676     asc->r_conf            = R_CONF;
1677     asc->r_ce_ctrl         = R_CE_CTRL;
1678     asc->r_ctrl0           = R_CTRL0;
1679     asc->r_timings         = R_TIMINGS;
1680     asc->nregs_timings     = 3;
1681     asc->conf_enable_w0    = CONF_ENABLE_W0;
1682     asc->cs_num_max        = 3;
1683     asc->segments          = aspeed_2600_spi2_segments;
1684     asc->segment_addr_mask = 0x0ff00ff0;
1685     asc->flash_window_base = 0x50000000;
1686     asc->flash_window_size = 0x10000000;
1687     asc->features          = ASPEED_SMC_FEATURE_DMA |
1688                              ASPEED_SMC_FEATURE_DMA_GRANT;
1689     asc->dma_flash_mask    = 0x0FFFFFFC;
1690     asc->dma_dram_mask     = 0x3FFFFFFC;
1691     asc->nregs             = ASPEED_SMC_R_MAX;
1692     asc->segment_to_reg    = aspeed_2600_smc_segment_to_reg;
1693     asc->reg_to_segment    = aspeed_2600_smc_reg_to_segment;
1694     asc->dma_ctrl          = aspeed_2600_smc_dma_ctrl;
1695 }
1696 
1697 static const TypeInfo aspeed_2600_spi2_info = {
1698     .name =  "aspeed.spi2-ast2600",
1699     .parent = TYPE_ASPEED_SMC,
1700     .class_init = aspeed_2600_spi2_class_init,
1701 };
1702 
1703 /*
1704  * The FMC Segment Registers of the AST1030 have a 512KB unit.
1705  * Only bits [27:19] are used for decoding.
1706  */
1707 #define AST1030_SEG_ADDR_MASK 0x0ff80000
1708 
1709 static uint32_t aspeed_1030_smc_segment_to_reg(const AspeedSMCState *s,
1710         const AspeedSegments *seg)
1711 {
1712     uint32_t reg = 0;
1713 
1714     /* Disabled segments have a nil register */
1715     if (!seg->size) {
1716         return 0;
1717     }
1718 
1719     reg |= (seg->addr & AST1030_SEG_ADDR_MASK) >> 16; /* start offset */
1720     reg |= (seg->addr + seg->size - 1) & AST1030_SEG_ADDR_MASK; /* end offset */
1721     return reg;
1722 }
1723 
1724 static void aspeed_1030_smc_reg_to_segment(const AspeedSMCState *s,
1725         uint32_t reg, AspeedSegments *seg)
1726 {
1727     uint32_t start_offset = (reg << 16) & AST1030_SEG_ADDR_MASK;
1728     uint32_t end_offset = reg & AST1030_SEG_ADDR_MASK;
1729     AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
1730 
1731     if (reg) {
1732         seg->addr = asc->flash_window_base + start_offset;
1733         seg->size = end_offset + (512 * KiB) - start_offset;
1734     } else {
1735         seg->addr = asc->flash_window_base;
1736         seg->size = 0;
1737     }
1738 }
1739 
1740 static const uint32_t aspeed_1030_fmc_resets[ASPEED_SMC_R_MAX] = {
1741     [R_CONF] = (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0 |
1742                             CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1),
1743 };
1744 
1745 static const AspeedSegments aspeed_1030_fmc_segments[] = {
1746     { 0x0, 128 * MiB }, /* start address is readonly */
1747     { 128 * MiB, 128 * MiB }, /* default is disabled but needed for -kernel */
1748     { 0x0, 0 }, /* disabled */
1749 };
1750 
1751 static void aspeed_1030_fmc_class_init(ObjectClass *klass, void *data)
1752 {
1753     DeviceClass *dc = DEVICE_CLASS(klass);
1754     AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1755 
1756     dc->desc               = "Aspeed 1030 FMC Controller";
1757     asc->r_conf            = R_CONF;
1758     asc->r_ce_ctrl         = R_CE_CTRL;
1759     asc->r_ctrl0           = R_CTRL0;
1760     asc->r_timings         = R_TIMINGS;
1761     asc->nregs_timings     = 2;
1762     asc->conf_enable_w0    = CONF_ENABLE_W0;
1763     asc->cs_num_max        = 2;
1764     asc->segments          = aspeed_1030_fmc_segments;
1765     asc->segment_addr_mask = 0x0ff80ff8;
1766     asc->resets            = aspeed_1030_fmc_resets;
1767     asc->flash_window_base = 0x80000000;
1768     asc->flash_window_size = 0x10000000;
1769     asc->features          = ASPEED_SMC_FEATURE_DMA;
1770     asc->dma_flash_mask    = 0x0FFFFFFC;
1771     asc->dma_dram_mask     = 0x000BFFFC;
1772     asc->nregs             = ASPEED_SMC_R_MAX;
1773     asc->segment_to_reg    = aspeed_1030_smc_segment_to_reg;
1774     asc->reg_to_segment    = aspeed_1030_smc_reg_to_segment;
1775     asc->dma_ctrl          = aspeed_2600_smc_dma_ctrl;
1776 }
1777 
1778 static const TypeInfo aspeed_1030_fmc_info = {
1779     .name =  "aspeed.fmc-ast1030",
1780     .parent = TYPE_ASPEED_SMC,
1781     .class_init = aspeed_1030_fmc_class_init,
1782 };
1783 
1784 static const AspeedSegments aspeed_1030_spi1_segments[] = {
1785     { 0x0, 128 * MiB }, /* start address is readonly */
1786     { 0x0, 0 }, /* disabled */
1787 };
1788 
1789 static void aspeed_1030_spi1_class_init(ObjectClass *klass, void *data)
1790 {
1791     DeviceClass *dc = DEVICE_CLASS(klass);
1792     AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1793 
1794     dc->desc               = "Aspeed 1030 SPI1 Controller";
1795     asc->r_conf            = R_CONF;
1796     asc->r_ce_ctrl         = R_CE_CTRL;
1797     asc->r_ctrl0           = R_CTRL0;
1798     asc->r_timings         = R_TIMINGS;
1799     asc->nregs_timings     = 2;
1800     asc->conf_enable_w0    = CONF_ENABLE_W0;
1801     asc->cs_num_max        = 2;
1802     asc->segments          = aspeed_1030_spi1_segments;
1803     asc->segment_addr_mask = 0x0ff00ff0;
1804     asc->flash_window_base = 0x90000000;
1805     asc->flash_window_size = 0x10000000;
1806     asc->features          = ASPEED_SMC_FEATURE_DMA;
1807     asc->dma_flash_mask    = 0x0FFFFFFC;
1808     asc->dma_dram_mask     = 0x000BFFFC;
1809     asc->nregs             = ASPEED_SMC_R_MAX;
1810     asc->segment_to_reg    = aspeed_2600_smc_segment_to_reg;
1811     asc->reg_to_segment    = aspeed_2600_smc_reg_to_segment;
1812     asc->dma_ctrl          = aspeed_2600_smc_dma_ctrl;
1813 }
1814 
1815 static const TypeInfo aspeed_1030_spi1_info = {
1816     .name =  "aspeed.spi1-ast1030",
1817     .parent = TYPE_ASPEED_SMC,
1818     .class_init = aspeed_1030_spi1_class_init,
1819 };
1820 static const AspeedSegments aspeed_1030_spi2_segments[] = {
1821     { 0x0, 128 * MiB }, /* start address is readonly */
1822     { 0x0, 0 }, /* disabled */
1823 };
1824 
1825 static void aspeed_1030_spi2_class_init(ObjectClass *klass, void *data)
1826 {
1827     DeviceClass *dc = DEVICE_CLASS(klass);
1828     AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1829 
1830     dc->desc               = "Aspeed 1030 SPI2 Controller";
1831     asc->r_conf            = R_CONF;
1832     asc->r_ce_ctrl         = R_CE_CTRL;
1833     asc->r_ctrl0           = R_CTRL0;
1834     asc->r_timings         = R_TIMINGS;
1835     asc->nregs_timings     = 2;
1836     asc->conf_enable_w0    = CONF_ENABLE_W0;
1837     asc->cs_num_max        = 2;
1838     asc->segments          = aspeed_1030_spi2_segments;
1839     asc->segment_addr_mask = 0x0ff00ff0;
1840     asc->flash_window_base = 0xb0000000;
1841     asc->flash_window_size = 0x10000000;
1842     asc->features          = ASPEED_SMC_FEATURE_DMA;
1843     asc->dma_flash_mask    = 0x0FFFFFFC;
1844     asc->dma_dram_mask     = 0x000BFFFC;
1845     asc->nregs             = ASPEED_SMC_R_MAX;
1846     asc->segment_to_reg    = aspeed_2600_smc_segment_to_reg;
1847     asc->reg_to_segment    = aspeed_2600_smc_reg_to_segment;
1848     asc->dma_ctrl          = aspeed_2600_smc_dma_ctrl;
1849 }
1850 
1851 static const TypeInfo aspeed_1030_spi2_info = {
1852     .name =  "aspeed.spi2-ast1030",
1853     .parent = TYPE_ASPEED_SMC,
1854     .class_init = aspeed_1030_spi2_class_init,
1855 };
1856 
1857 static void aspeed_smc_register_types(void)
1858 {
1859     type_register_static(&aspeed_smc_flash_info);
1860     type_register_static(&aspeed_smc_info);
1861     type_register_static(&aspeed_2400_smc_info);
1862     type_register_static(&aspeed_2400_fmc_info);
1863     type_register_static(&aspeed_2400_spi1_info);
1864     type_register_static(&aspeed_2500_fmc_info);
1865     type_register_static(&aspeed_2500_spi1_info);
1866     type_register_static(&aspeed_2500_spi2_info);
1867     type_register_static(&aspeed_2600_fmc_info);
1868     type_register_static(&aspeed_2600_spi1_info);
1869     type_register_static(&aspeed_2600_spi2_info);
1870     type_register_static(&aspeed_1030_fmc_info);
1871     type_register_static(&aspeed_1030_spi1_info);
1872     type_register_static(&aspeed_1030_spi2_info);
1873 }
1874 
1875 type_init(aspeed_smc_register_types)
1876