xref: /openbmc/qemu/hw/sparc/sun4m.c (revision 0221d73ce6a8e075adaa0a35a6ef853d2652b855)
1 /*
2  * QEMU Sun4m & Sun4d & Sun4c System Emulator
3  *
4  * Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qapi/error.h"
28 #include "qemu-common.h"
29 #include "cpu.h"
30 #include "hw/sysbus.h"
31 #include "qemu/error-report.h"
32 #include "qemu/timer.h"
33 #include "hw/sparc/sun4m_iommu.h"
34 #include "hw/rtc/m48t59.h"
35 #include "migration/vmstate.h"
36 #include "hw/sparc/sparc32_dma.h"
37 #include "hw/block/fdc.h"
38 #include "sysemu/reset.h"
39 #include "sysemu/runstate.h"
40 #include "sysemu/sysemu.h"
41 #include "net/net.h"
42 #include "hw/boards.h"
43 #include "hw/scsi/esp.h"
44 #include "hw/nvram/sun_nvram.h"
45 #include "hw/qdev-properties.h"
46 #include "hw/nvram/chrp_nvram.h"
47 #include "hw/nvram/fw_cfg.h"
48 #include "hw/char/escc.h"
49 #include "hw/empty_slot.h"
50 #include "hw/irq.h"
51 #include "hw/loader.h"
52 #include "elf.h"
53 #include "trace.h"
54 
55 /*
56  * Sun4m architecture was used in the following machines:
57  *
58  * SPARCserver 6xxMP/xx
59  * SPARCclassic (SPARCclassic Server)(SPARCstation LC) (4/15),
60  * SPARCclassic X (4/10)
61  * SPARCstation LX/ZX (4/30)
62  * SPARCstation Voyager
63  * SPARCstation 10/xx, SPARCserver 10/xx
64  * SPARCstation 5, SPARCserver 5
65  * SPARCstation 20/xx, SPARCserver 20
66  * SPARCstation 4
67  *
68  * See for example: http://www.sunhelp.org/faq/sunref1.html
69  */
70 
71 #define KERNEL_LOAD_ADDR     0x00004000
72 #define CMDLINE_ADDR         0x007ff000
73 #define INITRD_LOAD_ADDR     0x00800000
74 #define PROM_SIZE_MAX        (1 * MiB)
75 #define PROM_VADDR           0xffd00000
76 #define PROM_FILENAME        "openbios-sparc32"
77 #define CFG_ADDR             0xd00000510ULL
78 #define FW_CFG_SUN4M_DEPTH   (FW_CFG_ARCH_LOCAL + 0x00)
79 #define FW_CFG_SUN4M_WIDTH   (FW_CFG_ARCH_LOCAL + 0x01)
80 #define FW_CFG_SUN4M_HEIGHT  (FW_CFG_ARCH_LOCAL + 0x02)
81 
82 #define MAX_CPUS 16
83 #define MAX_PILS 16
84 #define MAX_VSIMMS 4
85 
86 #define ESCC_CLOCK 4915200
87 
88 struct sun4m_hwdef {
89     hwaddr iommu_base, iommu_pad_base, iommu_pad_len, slavio_base;
90     hwaddr intctl_base, counter_base, nvram_base, ms_kb_base;
91     hwaddr serial_base, fd_base;
92     hwaddr afx_base, idreg_base, dma_base, esp_base, le_base;
93     hwaddr tcx_base, cs_base, apc_base, aux1_base, aux2_base;
94     hwaddr bpp_base, dbri_base, sx_base;
95     struct {
96         hwaddr reg_base, vram_base;
97     } vsimm[MAX_VSIMMS];
98     hwaddr ecc_base;
99     uint64_t max_mem;
100     uint32_t ecc_version;
101     uint32_t iommu_version;
102     uint16_t machine_id;
103     uint8_t nvram_machine_id;
104 };
105 
106 const char *fw_cfg_arch_key_name(uint16_t key)
107 {
108     static const struct {
109         uint16_t key;
110         const char *name;
111     } fw_cfg_arch_wellknown_keys[] = {
112         {FW_CFG_SUN4M_DEPTH, "depth"},
113         {FW_CFG_SUN4M_WIDTH, "width"},
114         {FW_CFG_SUN4M_HEIGHT, "height"},
115     };
116 
117     for (size_t i = 0; i < ARRAY_SIZE(fw_cfg_arch_wellknown_keys); i++) {
118         if (fw_cfg_arch_wellknown_keys[i].key == key) {
119             return fw_cfg_arch_wellknown_keys[i].name;
120         }
121     }
122     return NULL;
123 }
124 
125 static void fw_cfg_boot_set(void *opaque, const char *boot_device,
126                             Error **errp)
127 {
128     fw_cfg_modify_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]);
129 }
130 
131 static void nvram_init(Nvram *nvram, uint8_t *macaddr,
132                        const char *cmdline, const char *boot_devices,
133                        ram_addr_t RAM_size, uint32_t kernel_size,
134                        int width, int height, int depth,
135                        int nvram_machine_id, const char *arch)
136 {
137     unsigned int i;
138     int sysp_end;
139     uint8_t image[0x1ff0];
140     NvramClass *k = NVRAM_GET_CLASS(nvram);
141 
142     memset(image, '\0', sizeof(image));
143 
144     /* OpenBIOS nvram variables partition */
145     sysp_end = chrp_nvram_create_system_partition(image, 0);
146 
147     /* Free space partition */
148     chrp_nvram_create_free_partition(&image[sysp_end], 0x1fd0 - sysp_end);
149 
150     Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr,
151                     nvram_machine_id);
152 
153     for (i = 0; i < sizeof(image); i++) {
154         (k->write)(nvram, i, image[i]);
155     }
156 }
157 
158 void cpu_check_irqs(CPUSPARCState *env)
159 {
160     CPUState *cs;
161 
162     /* We should be holding the BQL before we mess with IRQs */
163     g_assert(qemu_mutex_iothread_locked());
164 
165     if (env->pil_in && (env->interrupt_index == 0 ||
166                         (env->interrupt_index & ~15) == TT_EXTINT)) {
167         unsigned int i;
168 
169         for (i = 15; i > 0; i--) {
170             if (env->pil_in & (1 << i)) {
171                 int old_interrupt = env->interrupt_index;
172 
173                 env->interrupt_index = TT_EXTINT | i;
174                 if (old_interrupt != env->interrupt_index) {
175                     cs = env_cpu(env);
176                     trace_sun4m_cpu_interrupt(i);
177                     cpu_interrupt(cs, CPU_INTERRUPT_HARD);
178                 }
179                 break;
180             }
181         }
182     } else if (!env->pil_in && (env->interrupt_index & ~15) == TT_EXTINT) {
183         cs = env_cpu(env);
184         trace_sun4m_cpu_reset_interrupt(env->interrupt_index & 15);
185         env->interrupt_index = 0;
186         cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
187     }
188 }
189 
190 static void cpu_kick_irq(SPARCCPU *cpu)
191 {
192     CPUSPARCState *env = &cpu->env;
193     CPUState *cs = CPU(cpu);
194 
195     cs->halted = 0;
196     cpu_check_irqs(env);
197     qemu_cpu_kick(cs);
198 }
199 
200 static void cpu_set_irq(void *opaque, int irq, int level)
201 {
202     SPARCCPU *cpu = opaque;
203     CPUSPARCState *env = &cpu->env;
204 
205     if (level) {
206         trace_sun4m_cpu_set_irq_raise(irq);
207         env->pil_in |= 1 << irq;
208         cpu_kick_irq(cpu);
209     } else {
210         trace_sun4m_cpu_set_irq_lower(irq);
211         env->pil_in &= ~(1 << irq);
212         cpu_check_irqs(env);
213     }
214 }
215 
216 static void dummy_cpu_set_irq(void *opaque, int irq, int level)
217 {
218 }
219 
220 static void main_cpu_reset(void *opaque)
221 {
222     SPARCCPU *cpu = opaque;
223     CPUState *cs = CPU(cpu);
224 
225     cpu_reset(cs);
226     cs->halted = 0;
227 }
228 
229 static void secondary_cpu_reset(void *opaque)
230 {
231     SPARCCPU *cpu = opaque;
232     CPUState *cs = CPU(cpu);
233 
234     cpu_reset(cs);
235     cs->halted = 1;
236 }
237 
238 static void cpu_halt_signal(void *opaque, int irq, int level)
239 {
240     if (level && current_cpu) {
241         cpu_interrupt(current_cpu, CPU_INTERRUPT_HALT);
242     }
243 }
244 
245 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
246 {
247     return addr - 0xf0000000ULL;
248 }
249 
250 static unsigned long sun4m_load_kernel(const char *kernel_filename,
251                                        const char *initrd_filename,
252                                        ram_addr_t RAM_size,
253                                        uint32_t *initrd_size)
254 {
255     int linux_boot;
256     unsigned int i;
257     long kernel_size;
258     uint8_t *ptr;
259 
260     linux_boot = (kernel_filename != NULL);
261 
262     kernel_size = 0;
263     if (linux_boot) {
264         int bswap_needed;
265 
266 #ifdef BSWAP_NEEDED
267         bswap_needed = 1;
268 #else
269         bswap_needed = 0;
270 #endif
271         kernel_size = load_elf(kernel_filename, NULL,
272                                translate_kernel_address, NULL,
273                                NULL, NULL, NULL, 1, EM_SPARC, 0, 0);
274         if (kernel_size < 0)
275             kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR,
276                                     RAM_size - KERNEL_LOAD_ADDR, bswap_needed,
277                                     TARGET_PAGE_SIZE);
278         if (kernel_size < 0)
279             kernel_size = load_image_targphys(kernel_filename,
280                                               KERNEL_LOAD_ADDR,
281                                               RAM_size - KERNEL_LOAD_ADDR);
282         if (kernel_size < 0) {
283             error_report("could not load kernel '%s'", kernel_filename);
284             exit(1);
285         }
286 
287         /* load initrd */
288         *initrd_size = 0;
289         if (initrd_filename) {
290             *initrd_size = load_image_targphys(initrd_filename,
291                                                INITRD_LOAD_ADDR,
292                                                RAM_size - INITRD_LOAD_ADDR);
293             if ((int)*initrd_size < 0) {
294                 error_report("could not load initial ram disk '%s'",
295                              initrd_filename);
296                 exit(1);
297             }
298         }
299         if (*initrd_size > 0) {
300             for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
301                 ptr = rom_ptr(KERNEL_LOAD_ADDR + i, 24);
302                 if (ptr && ldl_p(ptr) == 0x48647253) { /* HdrS */
303                     stl_p(ptr + 16, INITRD_LOAD_ADDR);
304                     stl_p(ptr + 20, *initrd_size);
305                     break;
306                 }
307             }
308         }
309     }
310     return kernel_size;
311 }
312 
313 static void *iommu_init(hwaddr addr, uint32_t version, qemu_irq irq)
314 {
315     DeviceState *dev;
316     SysBusDevice *s;
317 
318     dev = qdev_create(NULL, TYPE_SUN4M_IOMMU);
319     qdev_prop_set_uint32(dev, "version", version);
320     qdev_init_nofail(dev);
321     s = SYS_BUS_DEVICE(dev);
322     sysbus_connect_irq(s, 0, irq);
323     sysbus_mmio_map(s, 0, addr);
324 
325     return s;
326 }
327 
328 static void *sparc32_dma_init(hwaddr dma_base,
329                               hwaddr esp_base, qemu_irq espdma_irq,
330                               hwaddr le_base, qemu_irq ledma_irq)
331 {
332     DeviceState *dma;
333     ESPDMADeviceState *espdma;
334     LEDMADeviceState *ledma;
335     SysBusESPState *esp;
336     SysBusPCNetState *lance;
337 
338     dma = qdev_create(NULL, TYPE_SPARC32_DMA);
339     qdev_init_nofail(dma);
340     sysbus_mmio_map(SYS_BUS_DEVICE(dma), 0, dma_base);
341 
342     espdma = SPARC32_ESPDMA_DEVICE(object_resolve_path_component(
343                                    OBJECT(dma), "espdma"));
344     sysbus_connect_irq(SYS_BUS_DEVICE(espdma), 0, espdma_irq);
345 
346     esp = ESP_STATE(object_resolve_path_component(OBJECT(espdma), "esp"));
347     sysbus_mmio_map(SYS_BUS_DEVICE(esp), 0, esp_base);
348     scsi_bus_legacy_handle_cmdline(&esp->esp.bus);
349 
350     ledma = SPARC32_LEDMA_DEVICE(object_resolve_path_component(
351                                  OBJECT(dma), "ledma"));
352     sysbus_connect_irq(SYS_BUS_DEVICE(ledma), 0, ledma_irq);
353 
354     lance = SYSBUS_PCNET(object_resolve_path_component(
355                          OBJECT(ledma), "lance"));
356     sysbus_mmio_map(SYS_BUS_DEVICE(lance), 0, le_base);
357 
358     return dma;
359 }
360 
361 static DeviceState *slavio_intctl_init(hwaddr addr,
362                                        hwaddr addrg,
363                                        qemu_irq **parent_irq)
364 {
365     DeviceState *dev;
366     SysBusDevice *s;
367     unsigned int i, j;
368 
369     dev = qdev_create(NULL, "slavio_intctl");
370     qdev_init_nofail(dev);
371 
372     s = SYS_BUS_DEVICE(dev);
373 
374     for (i = 0; i < MAX_CPUS; i++) {
375         for (j = 0; j < MAX_PILS; j++) {
376             sysbus_connect_irq(s, i * MAX_PILS + j, parent_irq[i][j]);
377         }
378     }
379     sysbus_mmio_map(s, 0, addrg);
380     for (i = 0; i < MAX_CPUS; i++) {
381         sysbus_mmio_map(s, i + 1, addr + i * TARGET_PAGE_SIZE);
382     }
383 
384     return dev;
385 }
386 
387 #define SYS_TIMER_OFFSET      0x10000ULL
388 #define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu)
389 
390 static void slavio_timer_init_all(hwaddr addr, qemu_irq master_irq,
391                                   qemu_irq *cpu_irqs, unsigned int num_cpus)
392 {
393     DeviceState *dev;
394     SysBusDevice *s;
395     unsigned int i;
396 
397     dev = qdev_create(NULL, "slavio_timer");
398     qdev_prop_set_uint32(dev, "num_cpus", num_cpus);
399     qdev_init_nofail(dev);
400     s = SYS_BUS_DEVICE(dev);
401     sysbus_connect_irq(s, 0, master_irq);
402     sysbus_mmio_map(s, 0, addr + SYS_TIMER_OFFSET);
403 
404     for (i = 0; i < MAX_CPUS; i++) {
405         sysbus_mmio_map(s, i + 1, addr + (hwaddr)CPU_TIMER_OFFSET(i));
406         sysbus_connect_irq(s, i + 1, cpu_irqs[i]);
407     }
408 }
409 
410 static qemu_irq  slavio_system_powerdown;
411 
412 static void slavio_powerdown_req(Notifier *n, void *opaque)
413 {
414     qemu_irq_raise(slavio_system_powerdown);
415 }
416 
417 static Notifier slavio_system_powerdown_notifier = {
418     .notify = slavio_powerdown_req
419 };
420 
421 #define MISC_LEDS 0x01600000
422 #define MISC_CFG  0x01800000
423 #define MISC_DIAG 0x01a00000
424 #define MISC_MDM  0x01b00000
425 #define MISC_SYS  0x01f00000
426 
427 static void slavio_misc_init(hwaddr base,
428                              hwaddr aux1_base,
429                              hwaddr aux2_base, qemu_irq irq,
430                              qemu_irq fdc_tc)
431 {
432     DeviceState *dev;
433     SysBusDevice *s;
434 
435     dev = qdev_create(NULL, "slavio_misc");
436     qdev_init_nofail(dev);
437     s = SYS_BUS_DEVICE(dev);
438     if (base) {
439         /* 8 bit registers */
440         /* Slavio control */
441         sysbus_mmio_map(s, 0, base + MISC_CFG);
442         /* Diagnostics */
443         sysbus_mmio_map(s, 1, base + MISC_DIAG);
444         /* Modem control */
445         sysbus_mmio_map(s, 2, base + MISC_MDM);
446         /* 16 bit registers */
447         /* ss600mp diag LEDs */
448         sysbus_mmio_map(s, 3, base + MISC_LEDS);
449         /* 32 bit registers */
450         /* System control */
451         sysbus_mmio_map(s, 4, base + MISC_SYS);
452     }
453     if (aux1_base) {
454         /* AUX 1 (Misc System Functions) */
455         sysbus_mmio_map(s, 5, aux1_base);
456     }
457     if (aux2_base) {
458         /* AUX 2 (Software Powerdown Control) */
459         sysbus_mmio_map(s, 6, aux2_base);
460     }
461     sysbus_connect_irq(s, 0, irq);
462     sysbus_connect_irq(s, 1, fdc_tc);
463     slavio_system_powerdown = qdev_get_gpio_in(dev, 0);
464     qemu_register_powerdown_notifier(&slavio_system_powerdown_notifier);
465 }
466 
467 static void ecc_init(hwaddr base, qemu_irq irq, uint32_t version)
468 {
469     DeviceState *dev;
470     SysBusDevice *s;
471 
472     dev = qdev_create(NULL, "eccmemctl");
473     qdev_prop_set_uint32(dev, "version", version);
474     qdev_init_nofail(dev);
475     s = SYS_BUS_DEVICE(dev);
476     sysbus_connect_irq(s, 0, irq);
477     sysbus_mmio_map(s, 0, base);
478     if (version == 0) { // SS-600MP only
479         sysbus_mmio_map(s, 1, base + 0x1000);
480     }
481 }
482 
483 static void apc_init(hwaddr power_base, qemu_irq cpu_halt)
484 {
485     DeviceState *dev;
486     SysBusDevice *s;
487 
488     dev = qdev_create(NULL, "apc");
489     qdev_init_nofail(dev);
490     s = SYS_BUS_DEVICE(dev);
491     /* Power management (APC) XXX: not a Slavio device */
492     sysbus_mmio_map(s, 0, power_base);
493     sysbus_connect_irq(s, 0, cpu_halt);
494 }
495 
496 static void tcx_init(hwaddr addr, qemu_irq irq, int vram_size, int width,
497                      int height, int depth)
498 {
499     DeviceState *dev;
500     SysBusDevice *s;
501 
502     dev = qdev_create(NULL, "SUNW,tcx");
503     qdev_prop_set_uint32(dev, "vram_size", vram_size);
504     qdev_prop_set_uint16(dev, "width", width);
505     qdev_prop_set_uint16(dev, "height", height);
506     qdev_prop_set_uint16(dev, "depth", depth);
507     qdev_init_nofail(dev);
508     s = SYS_BUS_DEVICE(dev);
509 
510     /* 10/ROM : FCode ROM */
511     sysbus_mmio_map(s, 0, addr);
512     /* 2/STIP : Stipple */
513     sysbus_mmio_map(s, 1, addr + 0x04000000ULL);
514     /* 3/BLIT : Blitter */
515     sysbus_mmio_map(s, 2, addr + 0x06000000ULL);
516     /* 5/RSTIP : Raw Stipple */
517     sysbus_mmio_map(s, 3, addr + 0x0c000000ULL);
518     /* 6/RBLIT : Raw Blitter */
519     sysbus_mmio_map(s, 4, addr + 0x0e000000ULL);
520     /* 7/TEC : Transform Engine */
521     sysbus_mmio_map(s, 5, addr + 0x00700000ULL);
522     /* 8/CMAP  : DAC */
523     sysbus_mmio_map(s, 6, addr + 0x00200000ULL);
524     /* 9/THC : */
525     if (depth == 8) {
526         sysbus_mmio_map(s, 7, addr + 0x00300000ULL);
527     } else {
528         sysbus_mmio_map(s, 7, addr + 0x00301000ULL);
529     }
530     /* 11/DHC : */
531     sysbus_mmio_map(s, 8, addr + 0x00240000ULL);
532     /* 12/ALT : */
533     sysbus_mmio_map(s, 9, addr + 0x00280000ULL);
534     /* 0/DFB8 : 8-bit plane */
535     sysbus_mmio_map(s, 10, addr + 0x00800000ULL);
536     /* 1/DFB24 : 24bit plane */
537     sysbus_mmio_map(s, 11, addr + 0x02000000ULL);
538     /* 4/RDFB32: Raw framebuffer. Control plane */
539     sysbus_mmio_map(s, 12, addr + 0x0a000000ULL);
540     /* 9/THC24bits : NetBSD writes here even with 8-bit display: dummy */
541     if (depth == 8) {
542         sysbus_mmio_map(s, 13, addr + 0x00301000ULL);
543     }
544 
545     sysbus_connect_irq(s, 0, irq);
546 }
547 
548 static void cg3_init(hwaddr addr, qemu_irq irq, int vram_size, int width,
549                      int height, int depth)
550 {
551     DeviceState *dev;
552     SysBusDevice *s;
553 
554     dev = qdev_create(NULL, "cgthree");
555     qdev_prop_set_uint32(dev, "vram-size", vram_size);
556     qdev_prop_set_uint16(dev, "width", width);
557     qdev_prop_set_uint16(dev, "height", height);
558     qdev_prop_set_uint16(dev, "depth", depth);
559     qdev_init_nofail(dev);
560     s = SYS_BUS_DEVICE(dev);
561 
562     /* FCode ROM */
563     sysbus_mmio_map(s, 0, addr);
564     /* DAC */
565     sysbus_mmio_map(s, 1, addr + 0x400000ULL);
566     /* 8-bit plane */
567     sysbus_mmio_map(s, 2, addr + 0x800000ULL);
568 
569     sysbus_connect_irq(s, 0, irq);
570 }
571 
572 /* NCR89C100/MACIO Internal ID register */
573 
574 #define TYPE_MACIO_ID_REGISTER "macio_idreg"
575 
576 static const uint8_t idreg_data[] = { 0xfe, 0x81, 0x01, 0x03 };
577 
578 static void idreg_init(hwaddr addr)
579 {
580     DeviceState *dev;
581     SysBusDevice *s;
582 
583     dev = qdev_create(NULL, TYPE_MACIO_ID_REGISTER);
584     qdev_init_nofail(dev);
585     s = SYS_BUS_DEVICE(dev);
586 
587     sysbus_mmio_map(s, 0, addr);
588     address_space_write_rom(&address_space_memory, addr,
589                             MEMTXATTRS_UNSPECIFIED,
590                             idreg_data, sizeof(idreg_data));
591 }
592 
593 #define MACIO_ID_REGISTER(obj) \
594     OBJECT_CHECK(IDRegState, (obj), TYPE_MACIO_ID_REGISTER)
595 
596 typedef struct IDRegState {
597     SysBusDevice parent_obj;
598 
599     MemoryRegion mem;
600 } IDRegState;
601 
602 static void idreg_realize(DeviceState *ds, Error **errp)
603 {
604     IDRegState *s = MACIO_ID_REGISTER(ds);
605     SysBusDevice *dev = SYS_BUS_DEVICE(ds);
606     Error *local_err = NULL;
607 
608     memory_region_init_ram_nomigrate(&s->mem, OBJECT(ds), "sun4m.idreg",
609                                      sizeof(idreg_data), &local_err);
610     if (local_err) {
611         error_propagate(errp, local_err);
612         return;
613     }
614 
615     vmstate_register_ram_global(&s->mem);
616     memory_region_set_readonly(&s->mem, true);
617     sysbus_init_mmio(dev, &s->mem);
618 }
619 
620 static void idreg_class_init(ObjectClass *oc, void *data)
621 {
622     DeviceClass *dc = DEVICE_CLASS(oc);
623 
624     dc->realize = idreg_realize;
625 }
626 
627 static const TypeInfo idreg_info = {
628     .name          = TYPE_MACIO_ID_REGISTER,
629     .parent        = TYPE_SYS_BUS_DEVICE,
630     .instance_size = sizeof(IDRegState),
631     .class_init    = idreg_class_init,
632 };
633 
634 #define TYPE_TCX_AFX "tcx_afx"
635 #define TCX_AFX(obj) OBJECT_CHECK(AFXState, (obj), TYPE_TCX_AFX)
636 
637 typedef struct AFXState {
638     SysBusDevice parent_obj;
639 
640     MemoryRegion mem;
641 } AFXState;
642 
643 /* SS-5 TCX AFX register */
644 static void afx_init(hwaddr addr)
645 {
646     DeviceState *dev;
647     SysBusDevice *s;
648 
649     dev = qdev_create(NULL, TYPE_TCX_AFX);
650     qdev_init_nofail(dev);
651     s = SYS_BUS_DEVICE(dev);
652 
653     sysbus_mmio_map(s, 0, addr);
654 }
655 
656 static void afx_realize(DeviceState *ds, Error **errp)
657 {
658     AFXState *s = TCX_AFX(ds);
659     SysBusDevice *dev = SYS_BUS_DEVICE(ds);
660     Error *local_err = NULL;
661 
662     memory_region_init_ram_nomigrate(&s->mem, OBJECT(ds), "sun4m.afx", 4,
663                                      &local_err);
664     if (local_err) {
665         error_propagate(errp, local_err);
666         return;
667     }
668 
669     vmstate_register_ram_global(&s->mem);
670     sysbus_init_mmio(dev, &s->mem);
671 }
672 
673 static void afx_class_init(ObjectClass *oc, void *data)
674 {
675     DeviceClass *dc = DEVICE_CLASS(oc);
676 
677     dc->realize = afx_realize;
678 }
679 
680 static const TypeInfo afx_info = {
681     .name          = TYPE_TCX_AFX,
682     .parent        = TYPE_SYS_BUS_DEVICE,
683     .instance_size = sizeof(AFXState),
684     .class_init    = afx_class_init,
685 };
686 
687 #define TYPE_OPENPROM "openprom"
688 #define OPENPROM(obj) OBJECT_CHECK(PROMState, (obj), TYPE_OPENPROM)
689 
690 typedef struct PROMState {
691     SysBusDevice parent_obj;
692 
693     MemoryRegion prom;
694 } PROMState;
695 
696 /* Boot PROM (OpenBIOS) */
697 static uint64_t translate_prom_address(void *opaque, uint64_t addr)
698 {
699     hwaddr *base_addr = (hwaddr *)opaque;
700     return addr + *base_addr - PROM_VADDR;
701 }
702 
703 static void prom_init(hwaddr addr, const char *bios_name)
704 {
705     DeviceState *dev;
706     SysBusDevice *s;
707     char *filename;
708     int ret;
709 
710     dev = qdev_create(NULL, TYPE_OPENPROM);
711     qdev_init_nofail(dev);
712     s = SYS_BUS_DEVICE(dev);
713 
714     sysbus_mmio_map(s, 0, addr);
715 
716     /* load boot prom */
717     if (bios_name == NULL) {
718         bios_name = PROM_FILENAME;
719     }
720     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
721     if (filename) {
722         ret = load_elf(filename, NULL,
723                        translate_prom_address, &addr, NULL,
724                        NULL, NULL, 1, EM_SPARC, 0, 0);
725         if (ret < 0 || ret > PROM_SIZE_MAX) {
726             ret = load_image_targphys(filename, addr, PROM_SIZE_MAX);
727         }
728         g_free(filename);
729     } else {
730         ret = -1;
731     }
732     if (ret < 0 || ret > PROM_SIZE_MAX) {
733         error_report("could not load prom '%s'", bios_name);
734         exit(1);
735     }
736 }
737 
738 static void prom_realize(DeviceState *ds, Error **errp)
739 {
740     PROMState *s = OPENPROM(ds);
741     SysBusDevice *dev = SYS_BUS_DEVICE(ds);
742     Error *local_err = NULL;
743 
744     memory_region_init_ram_nomigrate(&s->prom, OBJECT(ds), "sun4m.prom",
745                                      PROM_SIZE_MAX, &local_err);
746     if (local_err) {
747         error_propagate(errp, local_err);
748         return;
749     }
750 
751     vmstate_register_ram_global(&s->prom);
752     memory_region_set_readonly(&s->prom, true);
753     sysbus_init_mmio(dev, &s->prom);
754 }
755 
756 static Property prom_properties[] = {
757     {/* end of property list */},
758 };
759 
760 static void prom_class_init(ObjectClass *klass, void *data)
761 {
762     DeviceClass *dc = DEVICE_CLASS(klass);
763 
764     dc->props = prom_properties;
765     dc->realize = prom_realize;
766 }
767 
768 static const TypeInfo prom_info = {
769     .name          = TYPE_OPENPROM,
770     .parent        = TYPE_SYS_BUS_DEVICE,
771     .instance_size = sizeof(PROMState),
772     .class_init    = prom_class_init,
773 };
774 
775 #define TYPE_SUN4M_MEMORY "memory"
776 #define SUN4M_RAM(obj) OBJECT_CHECK(RamDevice, (obj), TYPE_SUN4M_MEMORY)
777 
778 typedef struct RamDevice {
779     SysBusDevice parent_obj;
780 
781     MemoryRegion ram;
782     uint64_t size;
783 } RamDevice;
784 
785 /* System RAM */
786 static void ram_realize(DeviceState *dev, Error **errp)
787 {
788     RamDevice *d = SUN4M_RAM(dev);
789     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
790 
791     memory_region_allocate_system_memory(&d->ram, OBJECT(d), "sun4m.ram",
792                                          d->size);
793     sysbus_init_mmio(sbd, &d->ram);
794 }
795 
796 static void ram_init(hwaddr addr, ram_addr_t RAM_size,
797                      uint64_t max_mem)
798 {
799     DeviceState *dev;
800     SysBusDevice *s;
801     RamDevice *d;
802 
803     /* allocate RAM */
804     if ((uint64_t)RAM_size > max_mem) {
805         error_report("Too much memory for this machine: %" PRId64 ","
806                      " maximum %" PRId64,
807                      RAM_size / MiB, max_mem / MiB);
808         exit(1);
809     }
810     dev = qdev_create(NULL, "memory");
811     s = SYS_BUS_DEVICE(dev);
812 
813     d = SUN4M_RAM(dev);
814     d->size = RAM_size;
815     qdev_init_nofail(dev);
816 
817     sysbus_mmio_map(s, 0, addr);
818 }
819 
820 static Property ram_properties[] = {
821     DEFINE_PROP_UINT64("size", RamDevice, size, 0),
822     DEFINE_PROP_END_OF_LIST(),
823 };
824 
825 static void ram_class_init(ObjectClass *klass, void *data)
826 {
827     DeviceClass *dc = DEVICE_CLASS(klass);
828 
829     dc->realize = ram_realize;
830     dc->props = ram_properties;
831 }
832 
833 static const TypeInfo ram_info = {
834     .name          = TYPE_SUN4M_MEMORY,
835     .parent        = TYPE_SYS_BUS_DEVICE,
836     .instance_size = sizeof(RamDevice),
837     .class_init    = ram_class_init,
838 };
839 
840 static void cpu_devinit(const char *cpu_type, unsigned int id,
841                         uint64_t prom_addr, qemu_irq **cpu_irqs)
842 {
843     CPUState *cs;
844     SPARCCPU *cpu;
845     CPUSPARCState *env;
846 
847     cpu = SPARC_CPU(cpu_create(cpu_type));
848     env = &cpu->env;
849 
850     cpu_sparc_set_id(env, id);
851     if (id == 0) {
852         qemu_register_reset(main_cpu_reset, cpu);
853     } else {
854         qemu_register_reset(secondary_cpu_reset, cpu);
855         cs = CPU(cpu);
856         cs->halted = 1;
857     }
858     *cpu_irqs = qemu_allocate_irqs(cpu_set_irq, cpu, MAX_PILS);
859     env->prom_addr = prom_addr;
860 }
861 
862 static void dummy_fdc_tc(void *opaque, int irq, int level)
863 {
864 }
865 
866 static void sun4m_hw_init(const struct sun4m_hwdef *hwdef,
867                           MachineState *machine)
868 {
869     DeviceState *slavio_intctl;
870     unsigned int i;
871     void *nvram;
872     qemu_irq *cpu_irqs[MAX_CPUS], slavio_irq[32], slavio_cpu_irq[MAX_CPUS];
873     qemu_irq fdc_tc;
874     unsigned long kernel_size;
875     uint32_t initrd_size;
876     DriveInfo *fd[MAX_FD];
877     FWCfgState *fw_cfg;
878     DeviceState *dev;
879     SysBusDevice *s;
880     unsigned int smp_cpus = machine->smp.cpus;
881     unsigned int max_cpus = machine->smp.max_cpus;
882 
883     /* init CPUs */
884     for(i = 0; i < smp_cpus; i++) {
885         cpu_devinit(machine->cpu_type, i, hwdef->slavio_base, &cpu_irqs[i]);
886     }
887 
888     for (i = smp_cpus; i < MAX_CPUS; i++)
889         cpu_irqs[i] = qemu_allocate_irqs(dummy_cpu_set_irq, NULL, MAX_PILS);
890 
891 
892     /* set up devices */
893     ram_init(0, machine->ram_size, hwdef->max_mem);
894     /* models without ECC don't trap when missing ram is accessed */
895     if (!hwdef->ecc_base) {
896         empty_slot_init(machine->ram_size, hwdef->max_mem - machine->ram_size);
897     }
898 
899     prom_init(hwdef->slavio_base, bios_name);
900 
901     slavio_intctl = slavio_intctl_init(hwdef->intctl_base,
902                                        hwdef->intctl_base + 0x10000ULL,
903                                        cpu_irqs);
904 
905     for (i = 0; i < 32; i++) {
906         slavio_irq[i] = qdev_get_gpio_in(slavio_intctl, i);
907     }
908     for (i = 0; i < MAX_CPUS; i++) {
909         slavio_cpu_irq[i] = qdev_get_gpio_in(slavio_intctl, 32 + i);
910     }
911 
912     if (hwdef->idreg_base) {
913         idreg_init(hwdef->idreg_base);
914     }
915 
916     if (hwdef->afx_base) {
917         afx_init(hwdef->afx_base);
918     }
919 
920     iommu_init(hwdef->iommu_base, hwdef->iommu_version, slavio_irq[30]);
921 
922     if (hwdef->iommu_pad_base) {
923         /* On the real hardware (SS-5, LX) the MMU is not padded, but aliased.
924            Software shouldn't use aliased addresses, neither should it crash
925            when does. Using empty_slot instead of aliasing can help with
926            debugging such accesses */
927         empty_slot_init(hwdef->iommu_pad_base,hwdef->iommu_pad_len);
928     }
929 
930     sparc32_dma_init(hwdef->dma_base,
931                      hwdef->esp_base, slavio_irq[18],
932                      hwdef->le_base, slavio_irq[16]);
933 
934     if (graphic_depth != 8 && graphic_depth != 24) {
935         error_report("Unsupported depth: %d", graphic_depth);
936         exit (1);
937     }
938     if (vga_interface_type != VGA_NONE) {
939         if (vga_interface_type == VGA_CG3) {
940             if (graphic_depth != 8) {
941                 error_report("Unsupported depth: %d", graphic_depth);
942                 exit(1);
943             }
944 
945             if (!(graphic_width == 1024 && graphic_height == 768) &&
946                 !(graphic_width == 1152 && graphic_height == 900)) {
947                 error_report("Unsupported resolution: %d x %d", graphic_width,
948                              graphic_height);
949                 exit(1);
950             }
951 
952             /* sbus irq 5 */
953             cg3_init(hwdef->tcx_base, slavio_irq[11], 0x00100000,
954                      graphic_width, graphic_height, graphic_depth);
955         } else {
956             /* If no display specified, default to TCX */
957             if (graphic_depth != 8 && graphic_depth != 24) {
958                 error_report("Unsupported depth: %d", graphic_depth);
959                 exit(1);
960             }
961 
962             if (!(graphic_width == 1024 && graphic_height == 768)) {
963                 error_report("Unsupported resolution: %d x %d",
964                              graphic_width, graphic_height);
965                 exit(1);
966             }
967 
968             tcx_init(hwdef->tcx_base, slavio_irq[11], 0x00100000,
969                      graphic_width, graphic_height, graphic_depth);
970         }
971     }
972 
973     for (i = 0; i < MAX_VSIMMS; i++) {
974         /* vsimm registers probed by OBP */
975         if (hwdef->vsimm[i].reg_base) {
976             empty_slot_init(hwdef->vsimm[i].reg_base, 0x2000);
977         }
978     }
979 
980     if (hwdef->sx_base) {
981         empty_slot_init(hwdef->sx_base, 0x2000);
982     }
983 
984     nvram = m48t59_init(slavio_irq[0], hwdef->nvram_base, 0, 0x2000, 1968, 8);
985 
986     slavio_timer_init_all(hwdef->counter_base, slavio_irq[19], slavio_cpu_irq, smp_cpus);
987 
988     /* Slavio TTYA (base+4, Linux ttyS0) is the first QEMU serial device
989        Slavio TTYB (base+0, Linux ttyS1) is the second QEMU serial device */
990     dev = qdev_create(NULL, TYPE_ESCC);
991     qdev_prop_set_uint32(dev, "disabled", !machine->enable_graphics);
992     qdev_prop_set_uint32(dev, "frequency", ESCC_CLOCK);
993     qdev_prop_set_uint32(dev, "it_shift", 1);
994     qdev_prop_set_chr(dev, "chrB", NULL);
995     qdev_prop_set_chr(dev, "chrA", NULL);
996     qdev_prop_set_uint32(dev, "chnBtype", escc_mouse);
997     qdev_prop_set_uint32(dev, "chnAtype", escc_kbd);
998     qdev_init_nofail(dev);
999     s = SYS_BUS_DEVICE(dev);
1000     sysbus_connect_irq(s, 0, slavio_irq[14]);
1001     sysbus_connect_irq(s, 1, slavio_irq[14]);
1002     sysbus_mmio_map(s, 0, hwdef->ms_kb_base);
1003 
1004     dev = qdev_create(NULL, TYPE_ESCC);
1005     qdev_prop_set_uint32(dev, "disabled", 0);
1006     qdev_prop_set_uint32(dev, "frequency", ESCC_CLOCK);
1007     qdev_prop_set_uint32(dev, "it_shift", 1);
1008     qdev_prop_set_chr(dev, "chrB", serial_hd(1));
1009     qdev_prop_set_chr(dev, "chrA", serial_hd(0));
1010     qdev_prop_set_uint32(dev, "chnBtype", escc_serial);
1011     qdev_prop_set_uint32(dev, "chnAtype", escc_serial);
1012     qdev_init_nofail(dev);
1013 
1014     s = SYS_BUS_DEVICE(dev);
1015     sysbus_connect_irq(s, 0, slavio_irq[15]);
1016     sysbus_connect_irq(s, 1,  slavio_irq[15]);
1017     sysbus_mmio_map(s, 0, hwdef->serial_base);
1018 
1019     if (hwdef->apc_base) {
1020         apc_init(hwdef->apc_base, qemu_allocate_irq(cpu_halt_signal, NULL, 0));
1021     }
1022 
1023     if (hwdef->fd_base) {
1024         /* there is zero or one floppy drive */
1025         memset(fd, 0, sizeof(fd));
1026         fd[0] = drive_get(IF_FLOPPY, 0, 0);
1027         sun4m_fdctrl_init(slavio_irq[22], hwdef->fd_base, fd,
1028                           &fdc_tc);
1029     } else {
1030         fdc_tc = qemu_allocate_irq(dummy_fdc_tc, NULL, 0);
1031     }
1032 
1033     slavio_misc_init(hwdef->slavio_base, hwdef->aux1_base, hwdef->aux2_base,
1034                      slavio_irq[30], fdc_tc);
1035 
1036     if (hwdef->cs_base) {
1037         sysbus_create_simple("SUNW,CS4231", hwdef->cs_base,
1038                              slavio_irq[5]);
1039     }
1040 
1041     if (hwdef->dbri_base) {
1042         /* ISDN chip with attached CS4215 audio codec */
1043         /* prom space */
1044         empty_slot_init(hwdef->dbri_base+0x1000, 0x30);
1045         /* reg space */
1046         empty_slot_init(hwdef->dbri_base+0x10000, 0x100);
1047     }
1048 
1049     if (hwdef->bpp_base) {
1050         /* parallel port */
1051         empty_slot_init(hwdef->bpp_base, 0x20);
1052     }
1053 
1054     initrd_size = 0;
1055     kernel_size = sun4m_load_kernel(machine->kernel_filename,
1056                                     machine->initrd_filename,
1057                                     machine->ram_size, &initrd_size);
1058 
1059     nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, machine->kernel_cmdline,
1060                machine->boot_order, machine->ram_size, kernel_size,
1061                graphic_width, graphic_height, graphic_depth,
1062                hwdef->nvram_machine_id, "Sun4m");
1063 
1064     if (hwdef->ecc_base)
1065         ecc_init(hwdef->ecc_base, slavio_irq[28],
1066                  hwdef->ecc_version);
1067 
1068     dev = qdev_create(NULL, TYPE_FW_CFG_MEM);
1069     fw_cfg = FW_CFG(dev);
1070     qdev_prop_set_uint32(dev, "data_width", 1);
1071     qdev_prop_set_bit(dev, "dma_enabled", false);
1072     object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1073                               OBJECT(fw_cfg), NULL);
1074     qdev_init_nofail(dev);
1075     s = SYS_BUS_DEVICE(dev);
1076     sysbus_mmio_map(s, 0, CFG_ADDR);
1077     sysbus_mmio_map(s, 1, CFG_ADDR + 2);
1078 
1079     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
1080     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus);
1081     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
1082     fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
1083     fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_DEPTH, graphic_depth);
1084     fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_WIDTH, graphic_width);
1085     fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_HEIGHT, graphic_height);
1086     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR);
1087     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1088     if (machine->kernel_cmdline) {
1089         fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR);
1090         pstrcpy_targphys("cmdline", CMDLINE_ADDR, TARGET_PAGE_SIZE,
1091                          machine->kernel_cmdline);
1092         fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, machine->kernel_cmdline);
1093         fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1094                        strlen(machine->kernel_cmdline) + 1);
1095     } else {
1096         fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0);
1097         fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0);
1098     }
1099     fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR);
1100     fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1101     fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, machine->boot_order[0]);
1102     qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
1103 }
1104 
1105 enum {
1106     ss5_id = 32,
1107     vger_id,
1108     lx_id,
1109     ss4_id,
1110     scls_id,
1111     sbook_id,
1112     ss10_id = 64,
1113     ss20_id,
1114     ss600mp_id,
1115 };
1116 
1117 static const struct sun4m_hwdef sun4m_hwdefs[] = {
1118     /* SS-5 */
1119     {
1120         .iommu_base   = 0x10000000,
1121         .iommu_pad_base = 0x10004000,
1122         .iommu_pad_len  = 0x0fffb000,
1123         .tcx_base     = 0x50000000,
1124         .cs_base      = 0x6c000000,
1125         .slavio_base  = 0x70000000,
1126         .ms_kb_base   = 0x71000000,
1127         .serial_base  = 0x71100000,
1128         .nvram_base   = 0x71200000,
1129         .fd_base      = 0x71400000,
1130         .counter_base = 0x71d00000,
1131         .intctl_base  = 0x71e00000,
1132         .idreg_base   = 0x78000000,
1133         .dma_base     = 0x78400000,
1134         .esp_base     = 0x78800000,
1135         .le_base      = 0x78c00000,
1136         .apc_base     = 0x6a000000,
1137         .afx_base     = 0x6e000000,
1138         .aux1_base    = 0x71900000,
1139         .aux2_base    = 0x71910000,
1140         .nvram_machine_id = 0x80,
1141         .machine_id = ss5_id,
1142         .iommu_version = 0x05000000,
1143         .max_mem = 0x10000000,
1144     },
1145     /* SS-10 */
1146     {
1147         .iommu_base   = 0xfe0000000ULL,
1148         .tcx_base     = 0xe20000000ULL,
1149         .slavio_base  = 0xff0000000ULL,
1150         .ms_kb_base   = 0xff1000000ULL,
1151         .serial_base  = 0xff1100000ULL,
1152         .nvram_base   = 0xff1200000ULL,
1153         .fd_base      = 0xff1700000ULL,
1154         .counter_base = 0xff1300000ULL,
1155         .intctl_base  = 0xff1400000ULL,
1156         .idreg_base   = 0xef0000000ULL,
1157         .dma_base     = 0xef0400000ULL,
1158         .esp_base     = 0xef0800000ULL,
1159         .le_base      = 0xef0c00000ULL,
1160         .apc_base     = 0xefa000000ULL, // XXX should not exist
1161         .aux1_base    = 0xff1800000ULL,
1162         .aux2_base    = 0xff1a01000ULL,
1163         .ecc_base     = 0xf00000000ULL,
1164         .ecc_version  = 0x10000000, // version 0, implementation 1
1165         .nvram_machine_id = 0x72,
1166         .machine_id = ss10_id,
1167         .iommu_version = 0x03000000,
1168         .max_mem = 0xf00000000ULL,
1169     },
1170     /* SS-600MP */
1171     {
1172         .iommu_base   = 0xfe0000000ULL,
1173         .tcx_base     = 0xe20000000ULL,
1174         .slavio_base  = 0xff0000000ULL,
1175         .ms_kb_base   = 0xff1000000ULL,
1176         .serial_base  = 0xff1100000ULL,
1177         .nvram_base   = 0xff1200000ULL,
1178         .counter_base = 0xff1300000ULL,
1179         .intctl_base  = 0xff1400000ULL,
1180         .dma_base     = 0xef0081000ULL,
1181         .esp_base     = 0xef0080000ULL,
1182         .le_base      = 0xef0060000ULL,
1183         .apc_base     = 0xefa000000ULL, // XXX should not exist
1184         .aux1_base    = 0xff1800000ULL,
1185         .aux2_base    = 0xff1a01000ULL, // XXX should not exist
1186         .ecc_base     = 0xf00000000ULL,
1187         .ecc_version  = 0x00000000, // version 0, implementation 0
1188         .nvram_machine_id = 0x71,
1189         .machine_id = ss600mp_id,
1190         .iommu_version = 0x01000000,
1191         .max_mem = 0xf00000000ULL,
1192     },
1193     /* SS-20 */
1194     {
1195         .iommu_base   = 0xfe0000000ULL,
1196         .tcx_base     = 0xe20000000ULL,
1197         .slavio_base  = 0xff0000000ULL,
1198         .ms_kb_base   = 0xff1000000ULL,
1199         .serial_base  = 0xff1100000ULL,
1200         .nvram_base   = 0xff1200000ULL,
1201         .fd_base      = 0xff1700000ULL,
1202         .counter_base = 0xff1300000ULL,
1203         .intctl_base  = 0xff1400000ULL,
1204         .idreg_base   = 0xef0000000ULL,
1205         .dma_base     = 0xef0400000ULL,
1206         .esp_base     = 0xef0800000ULL,
1207         .le_base      = 0xef0c00000ULL,
1208         .bpp_base     = 0xef4800000ULL,
1209         .apc_base     = 0xefa000000ULL, // XXX should not exist
1210         .aux1_base    = 0xff1800000ULL,
1211         .aux2_base    = 0xff1a01000ULL,
1212         .dbri_base    = 0xee0000000ULL,
1213         .sx_base      = 0xf80000000ULL,
1214         .vsimm        = {
1215             {
1216                 .reg_base  = 0x9c000000ULL,
1217                 .vram_base = 0xfc000000ULL
1218             }, {
1219                 .reg_base  = 0x90000000ULL,
1220                 .vram_base = 0xf0000000ULL
1221             }, {
1222                 .reg_base  = 0x94000000ULL
1223             }, {
1224                 .reg_base  = 0x98000000ULL
1225             }
1226         },
1227         .ecc_base     = 0xf00000000ULL,
1228         .ecc_version  = 0x20000000, // version 0, implementation 2
1229         .nvram_machine_id = 0x72,
1230         .machine_id = ss20_id,
1231         .iommu_version = 0x13000000,
1232         .max_mem = 0xf00000000ULL,
1233     },
1234     /* Voyager */
1235     {
1236         .iommu_base   = 0x10000000,
1237         .tcx_base     = 0x50000000,
1238         .slavio_base  = 0x70000000,
1239         .ms_kb_base   = 0x71000000,
1240         .serial_base  = 0x71100000,
1241         .nvram_base   = 0x71200000,
1242         .fd_base      = 0x71400000,
1243         .counter_base = 0x71d00000,
1244         .intctl_base  = 0x71e00000,
1245         .idreg_base   = 0x78000000,
1246         .dma_base     = 0x78400000,
1247         .esp_base     = 0x78800000,
1248         .le_base      = 0x78c00000,
1249         .apc_base     = 0x71300000, // pmc
1250         .aux1_base    = 0x71900000,
1251         .aux2_base    = 0x71910000,
1252         .nvram_machine_id = 0x80,
1253         .machine_id = vger_id,
1254         .iommu_version = 0x05000000,
1255         .max_mem = 0x10000000,
1256     },
1257     /* LX */
1258     {
1259         .iommu_base   = 0x10000000,
1260         .iommu_pad_base = 0x10004000,
1261         .iommu_pad_len  = 0x0fffb000,
1262         .tcx_base     = 0x50000000,
1263         .slavio_base  = 0x70000000,
1264         .ms_kb_base   = 0x71000000,
1265         .serial_base  = 0x71100000,
1266         .nvram_base   = 0x71200000,
1267         .fd_base      = 0x71400000,
1268         .counter_base = 0x71d00000,
1269         .intctl_base  = 0x71e00000,
1270         .idreg_base   = 0x78000000,
1271         .dma_base     = 0x78400000,
1272         .esp_base     = 0x78800000,
1273         .le_base      = 0x78c00000,
1274         .aux1_base    = 0x71900000,
1275         .aux2_base    = 0x71910000,
1276         .nvram_machine_id = 0x80,
1277         .machine_id = lx_id,
1278         .iommu_version = 0x04000000,
1279         .max_mem = 0x10000000,
1280     },
1281     /* SS-4 */
1282     {
1283         .iommu_base   = 0x10000000,
1284         .tcx_base     = 0x50000000,
1285         .cs_base      = 0x6c000000,
1286         .slavio_base  = 0x70000000,
1287         .ms_kb_base   = 0x71000000,
1288         .serial_base  = 0x71100000,
1289         .nvram_base   = 0x71200000,
1290         .fd_base      = 0x71400000,
1291         .counter_base = 0x71d00000,
1292         .intctl_base  = 0x71e00000,
1293         .idreg_base   = 0x78000000,
1294         .dma_base     = 0x78400000,
1295         .esp_base     = 0x78800000,
1296         .le_base      = 0x78c00000,
1297         .apc_base     = 0x6a000000,
1298         .aux1_base    = 0x71900000,
1299         .aux2_base    = 0x71910000,
1300         .nvram_machine_id = 0x80,
1301         .machine_id = ss4_id,
1302         .iommu_version = 0x05000000,
1303         .max_mem = 0x10000000,
1304     },
1305     /* SPARCClassic */
1306     {
1307         .iommu_base   = 0x10000000,
1308         .tcx_base     = 0x50000000,
1309         .slavio_base  = 0x70000000,
1310         .ms_kb_base   = 0x71000000,
1311         .serial_base  = 0x71100000,
1312         .nvram_base   = 0x71200000,
1313         .fd_base      = 0x71400000,
1314         .counter_base = 0x71d00000,
1315         .intctl_base  = 0x71e00000,
1316         .idreg_base   = 0x78000000,
1317         .dma_base     = 0x78400000,
1318         .esp_base     = 0x78800000,
1319         .le_base      = 0x78c00000,
1320         .apc_base     = 0x6a000000,
1321         .aux1_base    = 0x71900000,
1322         .aux2_base    = 0x71910000,
1323         .nvram_machine_id = 0x80,
1324         .machine_id = scls_id,
1325         .iommu_version = 0x05000000,
1326         .max_mem = 0x10000000,
1327     },
1328     /* SPARCbook */
1329     {
1330         .iommu_base   = 0x10000000,
1331         .tcx_base     = 0x50000000, // XXX
1332         .slavio_base  = 0x70000000,
1333         .ms_kb_base   = 0x71000000,
1334         .serial_base  = 0x71100000,
1335         .nvram_base   = 0x71200000,
1336         .fd_base      = 0x71400000,
1337         .counter_base = 0x71d00000,
1338         .intctl_base  = 0x71e00000,
1339         .idreg_base   = 0x78000000,
1340         .dma_base     = 0x78400000,
1341         .esp_base     = 0x78800000,
1342         .le_base      = 0x78c00000,
1343         .apc_base     = 0x6a000000,
1344         .aux1_base    = 0x71900000,
1345         .aux2_base    = 0x71910000,
1346         .nvram_machine_id = 0x80,
1347         .machine_id = sbook_id,
1348         .iommu_version = 0x05000000,
1349         .max_mem = 0x10000000,
1350     },
1351 };
1352 
1353 /* SPARCstation 5 hardware initialisation */
1354 static void ss5_init(MachineState *machine)
1355 {
1356     sun4m_hw_init(&sun4m_hwdefs[0], machine);
1357 }
1358 
1359 /* SPARCstation 10 hardware initialisation */
1360 static void ss10_init(MachineState *machine)
1361 {
1362     sun4m_hw_init(&sun4m_hwdefs[1], machine);
1363 }
1364 
1365 /* SPARCserver 600MP hardware initialisation */
1366 static void ss600mp_init(MachineState *machine)
1367 {
1368     sun4m_hw_init(&sun4m_hwdefs[2], machine);
1369 }
1370 
1371 /* SPARCstation 20 hardware initialisation */
1372 static void ss20_init(MachineState *machine)
1373 {
1374     sun4m_hw_init(&sun4m_hwdefs[3], machine);
1375 }
1376 
1377 /* SPARCstation Voyager hardware initialisation */
1378 static void vger_init(MachineState *machine)
1379 {
1380     sun4m_hw_init(&sun4m_hwdefs[4], machine);
1381 }
1382 
1383 /* SPARCstation LX hardware initialisation */
1384 static void ss_lx_init(MachineState *machine)
1385 {
1386     sun4m_hw_init(&sun4m_hwdefs[5], machine);
1387 }
1388 
1389 /* SPARCstation 4 hardware initialisation */
1390 static void ss4_init(MachineState *machine)
1391 {
1392     sun4m_hw_init(&sun4m_hwdefs[6], machine);
1393 }
1394 
1395 /* SPARCClassic hardware initialisation */
1396 static void scls_init(MachineState *machine)
1397 {
1398     sun4m_hw_init(&sun4m_hwdefs[7], machine);
1399 }
1400 
1401 /* SPARCbook hardware initialisation */
1402 static void sbook_init(MachineState *machine)
1403 {
1404     sun4m_hw_init(&sun4m_hwdefs[8], machine);
1405 }
1406 
1407 static void ss5_class_init(ObjectClass *oc, void *data)
1408 {
1409     MachineClass *mc = MACHINE_CLASS(oc);
1410 
1411     mc->desc = "Sun4m platform, SPARCstation 5";
1412     mc->init = ss5_init;
1413     mc->block_default_type = IF_SCSI;
1414     mc->is_default = 1;
1415     mc->default_boot_order = "c";
1416     mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
1417     mc->default_display = "tcx";
1418 }
1419 
1420 static const TypeInfo ss5_type = {
1421     .name = MACHINE_TYPE_NAME("SS-5"),
1422     .parent = TYPE_MACHINE,
1423     .class_init = ss5_class_init,
1424 };
1425 
1426 static void ss10_class_init(ObjectClass *oc, void *data)
1427 {
1428     MachineClass *mc = MACHINE_CLASS(oc);
1429 
1430     mc->desc = "Sun4m platform, SPARCstation 10";
1431     mc->init = ss10_init;
1432     mc->block_default_type = IF_SCSI;
1433     mc->max_cpus = 4;
1434     mc->default_boot_order = "c";
1435     mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
1436     mc->default_display = "tcx";
1437 }
1438 
1439 static const TypeInfo ss10_type = {
1440     .name = MACHINE_TYPE_NAME("SS-10"),
1441     .parent = TYPE_MACHINE,
1442     .class_init = ss10_class_init,
1443 };
1444 
1445 static void ss600mp_class_init(ObjectClass *oc, void *data)
1446 {
1447     MachineClass *mc = MACHINE_CLASS(oc);
1448 
1449     mc->desc = "Sun4m platform, SPARCserver 600MP";
1450     mc->init = ss600mp_init;
1451     mc->block_default_type = IF_SCSI;
1452     mc->max_cpus = 4;
1453     mc->default_boot_order = "c";
1454     mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
1455     mc->default_display = "tcx";
1456 }
1457 
1458 static const TypeInfo ss600mp_type = {
1459     .name = MACHINE_TYPE_NAME("SS-600MP"),
1460     .parent = TYPE_MACHINE,
1461     .class_init = ss600mp_class_init,
1462 };
1463 
1464 static void ss20_class_init(ObjectClass *oc, void *data)
1465 {
1466     MachineClass *mc = MACHINE_CLASS(oc);
1467 
1468     mc->desc = "Sun4m platform, SPARCstation 20";
1469     mc->init = ss20_init;
1470     mc->block_default_type = IF_SCSI;
1471     mc->max_cpus = 4;
1472     mc->default_boot_order = "c";
1473     mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
1474     mc->default_display = "tcx";
1475 }
1476 
1477 static const TypeInfo ss20_type = {
1478     .name = MACHINE_TYPE_NAME("SS-20"),
1479     .parent = TYPE_MACHINE,
1480     .class_init = ss20_class_init,
1481 };
1482 
1483 static void voyager_class_init(ObjectClass *oc, void *data)
1484 {
1485     MachineClass *mc = MACHINE_CLASS(oc);
1486 
1487     mc->desc = "Sun4m platform, SPARCstation Voyager";
1488     mc->init = vger_init;
1489     mc->block_default_type = IF_SCSI;
1490     mc->default_boot_order = "c";
1491     mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
1492     mc->default_display = "tcx";
1493 }
1494 
1495 static const TypeInfo voyager_type = {
1496     .name = MACHINE_TYPE_NAME("Voyager"),
1497     .parent = TYPE_MACHINE,
1498     .class_init = voyager_class_init,
1499 };
1500 
1501 static void ss_lx_class_init(ObjectClass *oc, void *data)
1502 {
1503     MachineClass *mc = MACHINE_CLASS(oc);
1504 
1505     mc->desc = "Sun4m platform, SPARCstation LX";
1506     mc->init = ss_lx_init;
1507     mc->block_default_type = IF_SCSI;
1508     mc->default_boot_order = "c";
1509     mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
1510     mc->default_display = "tcx";
1511 }
1512 
1513 static const TypeInfo ss_lx_type = {
1514     .name = MACHINE_TYPE_NAME("LX"),
1515     .parent = TYPE_MACHINE,
1516     .class_init = ss_lx_class_init,
1517 };
1518 
1519 static void ss4_class_init(ObjectClass *oc, void *data)
1520 {
1521     MachineClass *mc = MACHINE_CLASS(oc);
1522 
1523     mc->desc = "Sun4m platform, SPARCstation 4";
1524     mc->init = ss4_init;
1525     mc->block_default_type = IF_SCSI;
1526     mc->default_boot_order = "c";
1527     mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
1528     mc->default_display = "tcx";
1529 }
1530 
1531 static const TypeInfo ss4_type = {
1532     .name = MACHINE_TYPE_NAME("SS-4"),
1533     .parent = TYPE_MACHINE,
1534     .class_init = ss4_class_init,
1535 };
1536 
1537 static void scls_class_init(ObjectClass *oc, void *data)
1538 {
1539     MachineClass *mc = MACHINE_CLASS(oc);
1540 
1541     mc->desc = "Sun4m platform, SPARCClassic";
1542     mc->init = scls_init;
1543     mc->block_default_type = IF_SCSI;
1544     mc->default_boot_order = "c";
1545     mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
1546     mc->default_display = "tcx";
1547 }
1548 
1549 static const TypeInfo scls_type = {
1550     .name = MACHINE_TYPE_NAME("SPARCClassic"),
1551     .parent = TYPE_MACHINE,
1552     .class_init = scls_class_init,
1553 };
1554 
1555 static void sbook_class_init(ObjectClass *oc, void *data)
1556 {
1557     MachineClass *mc = MACHINE_CLASS(oc);
1558 
1559     mc->desc = "Sun4m platform, SPARCbook";
1560     mc->init = sbook_init;
1561     mc->block_default_type = IF_SCSI;
1562     mc->default_boot_order = "c";
1563     mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
1564     mc->default_display = "tcx";
1565 }
1566 
1567 static const TypeInfo sbook_type = {
1568     .name = MACHINE_TYPE_NAME("SPARCbook"),
1569     .parent = TYPE_MACHINE,
1570     .class_init = sbook_class_init,
1571 };
1572 
1573 static void sun4m_register_types(void)
1574 {
1575     type_register_static(&idreg_info);
1576     type_register_static(&afx_info);
1577     type_register_static(&prom_info);
1578     type_register_static(&ram_info);
1579 
1580     type_register_static(&ss5_type);
1581     type_register_static(&ss10_type);
1582     type_register_static(&ss600mp_type);
1583     type_register_static(&ss20_type);
1584     type_register_static(&voyager_type);
1585     type_register_static(&ss_lx_type);
1586     type_register_static(&ss4_type);
1587     type_register_static(&scls_type);
1588     type_register_static(&sbook_type);
1589 }
1590 
1591 type_init(sun4m_register_types)
1592