1 /* 2 * SCLP Support 3 * 4 * Copyright IBM, Corp. 2012 5 * 6 * Authors: 7 * Christian Borntraeger <borntraeger@de.ibm.com> 8 * Heinz Graalfs <graalfs@linux.vnet.ibm.com> 9 * 10 * This work is licensed under the terms of the GNU GPL, version 2 or (at your 11 * option) any later version. See the COPYING file in the top-level directory. 12 * 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qapi/error.h" 17 #include "cpu.h" 18 #include "sysemu/kvm.h" 19 #include "exec/memory.h" 20 #include "sysemu/sysemu.h" 21 #include "exec/address-spaces.h" 22 #include "hw/boards.h" 23 #include "hw/s390x/sclp.h" 24 #include "hw/s390x/event-facility.h" 25 #include "hw/s390x/s390-pci-bus.h" 26 #include "hw/s390x/ipl.h" 27 28 static inline SCLPDevice *get_sclp_device(void) 29 { 30 static SCLPDevice *sclp; 31 32 if (!sclp) { 33 sclp = SCLP(object_resolve_path_type("", TYPE_SCLP, NULL)); 34 } 35 return sclp; 36 } 37 38 static void prepare_cpu_entries(SCLPDevice *sclp, CPUEntry *entry, int count) 39 { 40 uint8_t features[SCCB_CPU_FEATURE_LEN] = { 0 }; 41 int i; 42 43 s390_get_feat_block(S390_FEAT_TYPE_SCLP_CPU, features); 44 for (i = 0; i < count; i++) { 45 entry[i].address = i; 46 entry[i].type = 0; 47 memcpy(entry[i].features, features, sizeof(entry[i].features)); 48 } 49 } 50 51 /* Provide information about the configuration, CPUs and storage */ 52 static void read_SCP_info(SCLPDevice *sclp, SCCB *sccb) 53 { 54 ReadInfo *read_info = (ReadInfo *) sccb; 55 MachineState *machine = MACHINE(qdev_get_machine()); 56 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); 57 CPUState *cpu; 58 int cpu_count = 0; 59 int rnsize, rnmax; 60 int slots = MIN(machine->ram_slots, s390_get_memslot_count(kvm_state)); 61 IplParameterBlock *ipib = s390_ipl_get_iplb(); 62 63 CPU_FOREACH(cpu) { 64 cpu_count++; 65 } 66 67 /* CPU information */ 68 read_info->entries_cpu = cpu_to_be16(cpu_count); 69 read_info->offset_cpu = cpu_to_be16(offsetof(ReadInfo, entries)); 70 read_info->highest_cpu = cpu_to_be16(max_cpus); 71 72 read_info->ibc_val = cpu_to_be32(s390_get_ibc_val()); 73 74 /* Configuration Characteristic (Extension) */ 75 s390_get_feat_block(S390_FEAT_TYPE_SCLP_CONF_CHAR, 76 read_info->conf_char); 77 s390_get_feat_block(S390_FEAT_TYPE_SCLP_CONF_CHAR_EXT, 78 read_info->conf_char_ext); 79 80 prepare_cpu_entries(sclp, read_info->entries, cpu_count); 81 82 read_info->facilities = cpu_to_be64(SCLP_HAS_CPU_INFO | 83 SCLP_HAS_PCI_RECONFIG); 84 85 /* Memory Hotplug is only supported for the ccw machine type */ 86 if (mhd) { 87 mhd->standby_subregion_size = MEM_SECTION_SIZE; 88 /* Deduct the memory slot already used for core */ 89 if (slots > 0) { 90 while ((mhd->standby_subregion_size * (slots - 1) 91 < mhd->standby_mem_size)) { 92 mhd->standby_subregion_size = mhd->standby_subregion_size << 1; 93 } 94 } 95 /* 96 * Initialize mapping of guest standby memory sections indicating which 97 * are and are not online. Assume all standby memory begins offline. 98 */ 99 if (mhd->standby_state_map == 0) { 100 if (mhd->standby_mem_size % mhd->standby_subregion_size) { 101 mhd->standby_state_map = g_malloc0((mhd->standby_mem_size / 102 mhd->standby_subregion_size + 1) * 103 (mhd->standby_subregion_size / 104 MEM_SECTION_SIZE)); 105 } else { 106 mhd->standby_state_map = g_malloc0(mhd->standby_mem_size / 107 MEM_SECTION_SIZE); 108 } 109 } 110 mhd->padded_ram_size = ram_size + mhd->pad_size; 111 mhd->rzm = 1 << mhd->increment_size; 112 113 read_info->facilities |= cpu_to_be64(SCLP_FC_ASSIGN_ATTACH_READ_STOR); 114 } 115 read_info->mha_pow = s390_get_mha_pow(); 116 read_info->hmfai = cpu_to_be32(s390_get_hmfai()); 117 118 rnsize = 1 << (sclp->increment_size - 20); 119 if (rnsize <= 128) { 120 read_info->rnsize = rnsize; 121 } else { 122 read_info->rnsize = 0; 123 read_info->rnsize2 = cpu_to_be32(rnsize); 124 } 125 126 rnmax = machine->maxram_size >> sclp->increment_size; 127 if (rnmax < 0x10000) { 128 read_info->rnmax = cpu_to_be16(rnmax); 129 } else { 130 read_info->rnmax = cpu_to_be16(0); 131 read_info->rnmax2 = cpu_to_be64(rnmax); 132 } 133 134 if (ipib && ipib->flags & DIAG308_FLAGS_LP_VALID) { 135 memcpy(&read_info->loadparm, &ipib->loadparm, 136 sizeof(read_info->loadparm)); 137 } else { 138 s390_ipl_set_loadparm(read_info->loadparm); 139 } 140 141 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION); 142 } 143 144 static void read_storage_element0_info(SCLPDevice *sclp, SCCB *sccb) 145 { 146 int i, assigned; 147 int subincrement_id = SCLP_STARTING_SUBINCREMENT_ID; 148 ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb; 149 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); 150 151 if (!mhd) { 152 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND); 153 return; 154 } 155 156 if ((ram_size >> mhd->increment_size) >= 0x10000) { 157 sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION); 158 return; 159 } 160 161 /* Return information regarding core memory */ 162 storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0); 163 assigned = ram_size >> mhd->increment_size; 164 storage_info->assigned = cpu_to_be16(assigned); 165 166 for (i = 0; i < assigned; i++) { 167 storage_info->entries[i] = cpu_to_be32(subincrement_id); 168 subincrement_id += SCLP_INCREMENT_UNIT; 169 } 170 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION); 171 } 172 173 static void read_storage_element1_info(SCLPDevice *sclp, SCCB *sccb) 174 { 175 ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb; 176 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); 177 178 if (!mhd) { 179 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND); 180 return; 181 } 182 183 if ((mhd->standby_mem_size >> mhd->increment_size) >= 0x10000) { 184 sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION); 185 return; 186 } 187 188 /* Return information regarding standby memory */ 189 storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0); 190 storage_info->assigned = cpu_to_be16(mhd->standby_mem_size >> 191 mhd->increment_size); 192 storage_info->standby = cpu_to_be16(mhd->standby_mem_size >> 193 mhd->increment_size); 194 sccb->h.response_code = cpu_to_be16(SCLP_RC_STANDBY_READ_COMPLETION); 195 } 196 197 static void attach_storage_element(SCLPDevice *sclp, SCCB *sccb, 198 uint16_t element) 199 { 200 int i, assigned, subincrement_id; 201 AttachStorageElement *attach_info = (AttachStorageElement *) sccb; 202 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); 203 204 if (!mhd) { 205 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND); 206 return; 207 } 208 209 if (element != 1) { 210 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND); 211 return; 212 } 213 214 assigned = mhd->standby_mem_size >> mhd->increment_size; 215 attach_info->assigned = cpu_to_be16(assigned); 216 subincrement_id = ((ram_size >> mhd->increment_size) << 16) 217 + SCLP_STARTING_SUBINCREMENT_ID; 218 for (i = 0; i < assigned; i++) { 219 attach_info->entries[i] = cpu_to_be32(subincrement_id); 220 subincrement_id += SCLP_INCREMENT_UNIT; 221 } 222 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION); 223 } 224 225 static void assign_storage(SCLPDevice *sclp, SCCB *sccb) 226 { 227 MemoryRegion *mr = NULL; 228 uint64_t this_subregion_size; 229 AssignStorage *assign_info = (AssignStorage *) sccb; 230 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); 231 ram_addr_t assign_addr; 232 MemoryRegion *sysmem = get_system_memory(); 233 234 if (!mhd) { 235 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND); 236 return; 237 } 238 assign_addr = (assign_info->rn - 1) * mhd->rzm; 239 240 if ((assign_addr % MEM_SECTION_SIZE == 0) && 241 (assign_addr >= mhd->padded_ram_size)) { 242 /* Re-use existing memory region if found */ 243 mr = memory_region_find(sysmem, assign_addr, 1).mr; 244 memory_region_unref(mr); 245 if (!mr) { 246 247 MemoryRegion *standby_ram = g_new(MemoryRegion, 1); 248 249 /* offset to align to standby_subregion_size for allocation */ 250 ram_addr_t offset = assign_addr - 251 (assign_addr - mhd->padded_ram_size) 252 % mhd->standby_subregion_size; 253 254 /* strlen("standby.ram") + 4 (Max of KVM_MEMORY_SLOTS) + NULL */ 255 char id[16]; 256 snprintf(id, 16, "standby.ram%d", 257 (int)((offset - mhd->padded_ram_size) / 258 mhd->standby_subregion_size) + 1); 259 260 /* Allocate a subregion of the calculated standby_subregion_size */ 261 if (offset + mhd->standby_subregion_size > 262 mhd->padded_ram_size + mhd->standby_mem_size) { 263 this_subregion_size = mhd->padded_ram_size + 264 mhd->standby_mem_size - offset; 265 } else { 266 this_subregion_size = mhd->standby_subregion_size; 267 } 268 269 memory_region_init_ram(standby_ram, NULL, id, this_subregion_size, 270 &error_fatal); 271 /* This is a hack to make memory hotunplug work again. Once we have 272 * subdevices, we have to unparent them when unassigning memory, 273 * instead of doing it via the ref count of the MemoryRegion. */ 274 object_ref(OBJECT(standby_ram)); 275 object_unparent(OBJECT(standby_ram)); 276 vmstate_register_ram_global(standby_ram); 277 memory_region_add_subregion(sysmem, offset, standby_ram); 278 } 279 /* The specified subregion is no longer in standby */ 280 mhd->standby_state_map[(assign_addr - mhd->padded_ram_size) 281 / MEM_SECTION_SIZE] = 1; 282 } 283 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION); 284 } 285 286 static void unassign_storage(SCLPDevice *sclp, SCCB *sccb) 287 { 288 MemoryRegion *mr = NULL; 289 AssignStorage *assign_info = (AssignStorage *) sccb; 290 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); 291 ram_addr_t unassign_addr; 292 MemoryRegion *sysmem = get_system_memory(); 293 294 if (!mhd) { 295 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND); 296 return; 297 } 298 unassign_addr = (assign_info->rn - 1) * mhd->rzm; 299 300 /* if the addr is a multiple of 256 MB */ 301 if ((unassign_addr % MEM_SECTION_SIZE == 0) && 302 (unassign_addr >= mhd->padded_ram_size)) { 303 mhd->standby_state_map[(unassign_addr - 304 mhd->padded_ram_size) / MEM_SECTION_SIZE] = 0; 305 306 /* find the specified memory region and destroy it */ 307 mr = memory_region_find(sysmem, unassign_addr, 1).mr; 308 memory_region_unref(mr); 309 if (mr) { 310 int i; 311 int is_removable = 1; 312 ram_addr_t map_offset = (unassign_addr - mhd->padded_ram_size - 313 (unassign_addr - mhd->padded_ram_size) 314 % mhd->standby_subregion_size); 315 /* Mark all affected subregions as 'standby' once again */ 316 for (i = 0; 317 i < (mhd->standby_subregion_size / MEM_SECTION_SIZE); 318 i++) { 319 320 if (mhd->standby_state_map[i + map_offset / MEM_SECTION_SIZE]) { 321 is_removable = 0; 322 break; 323 } 324 } 325 if (is_removable) { 326 memory_region_del_subregion(sysmem, mr); 327 object_unref(OBJECT(mr)); 328 } 329 } 330 } 331 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION); 332 } 333 334 /* Provide information about the CPU */ 335 static void sclp_read_cpu_info(SCLPDevice *sclp, SCCB *sccb) 336 { 337 ReadCpuInfo *cpu_info = (ReadCpuInfo *) sccb; 338 CPUState *cpu; 339 int cpu_count = 0; 340 341 CPU_FOREACH(cpu) { 342 cpu_count++; 343 } 344 345 cpu_info->nr_configured = cpu_to_be16(cpu_count); 346 cpu_info->offset_configured = cpu_to_be16(offsetof(ReadCpuInfo, entries)); 347 cpu_info->nr_standby = cpu_to_be16(0); 348 349 /* The standby offset is 16-byte for each CPU */ 350 cpu_info->offset_standby = cpu_to_be16(cpu_info->offset_configured 351 + cpu_info->nr_configured*sizeof(CPUEntry)); 352 353 prepare_cpu_entries(sclp, cpu_info->entries, cpu_count); 354 355 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION); 356 } 357 358 static void sclp_execute(SCLPDevice *sclp, SCCB *sccb, uint32_t code) 359 { 360 SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp); 361 SCLPEventFacility *ef = sclp->event_facility; 362 SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef); 363 364 switch (code & SCLP_CMD_CODE_MASK) { 365 case SCLP_CMDW_READ_SCP_INFO: 366 case SCLP_CMDW_READ_SCP_INFO_FORCED: 367 sclp_c->read_SCP_info(sclp, sccb); 368 break; 369 case SCLP_CMDW_READ_CPU_INFO: 370 sclp_c->read_cpu_info(sclp, sccb); 371 break; 372 case SCLP_READ_STORAGE_ELEMENT_INFO: 373 if (code & 0xff00) { 374 sclp_c->read_storage_element1_info(sclp, sccb); 375 } else { 376 sclp_c->read_storage_element0_info(sclp, sccb); 377 } 378 break; 379 case SCLP_ATTACH_STORAGE_ELEMENT: 380 sclp_c->attach_storage_element(sclp, sccb, (code & 0xff00) >> 8); 381 break; 382 case SCLP_ASSIGN_STORAGE: 383 sclp_c->assign_storage(sclp, sccb); 384 break; 385 case SCLP_UNASSIGN_STORAGE: 386 sclp_c->unassign_storage(sclp, sccb); 387 break; 388 case SCLP_CMDW_CONFIGURE_PCI: 389 s390_pci_sclp_configure(sccb); 390 break; 391 case SCLP_CMDW_DECONFIGURE_PCI: 392 s390_pci_sclp_deconfigure(sccb); 393 break; 394 default: 395 efc->command_handler(ef, sccb, code); 396 break; 397 } 398 } 399 400 int sclp_service_call(CPUS390XState *env, uint64_t sccb, uint32_t code) 401 { 402 SCLPDevice *sclp = get_sclp_device(); 403 SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp); 404 int r = 0; 405 SCCB work_sccb; 406 407 hwaddr sccb_len = sizeof(SCCB); 408 409 /* first some basic checks on program checks */ 410 if (env->psw.mask & PSW_MASK_PSTATE) { 411 r = -PGM_PRIVILEGED; 412 goto out; 413 } 414 if (cpu_physical_memory_is_io(sccb)) { 415 r = -PGM_ADDRESSING; 416 goto out; 417 } 418 if ((sccb & ~0x1fffUL) == 0 || (sccb & ~0x1fffUL) == env->psa 419 || (sccb & ~0x7ffffff8UL) != 0) { 420 r = -PGM_SPECIFICATION; 421 goto out; 422 } 423 424 /* 425 * we want to work on a private copy of the sccb, to prevent guests 426 * from playing dirty tricks by modifying the memory content after 427 * the host has checked the values 428 */ 429 cpu_physical_memory_read(sccb, &work_sccb, sccb_len); 430 431 /* Valid sccb sizes */ 432 if (be16_to_cpu(work_sccb.h.length) < sizeof(SCCBHeader) || 433 be16_to_cpu(work_sccb.h.length) > SCCB_SIZE) { 434 r = -PGM_SPECIFICATION; 435 goto out; 436 } 437 438 sclp_c->execute(sclp, &work_sccb, code); 439 440 cpu_physical_memory_write(sccb, &work_sccb, 441 be16_to_cpu(work_sccb.h.length)); 442 443 sclp_c->service_interrupt(sclp, sccb); 444 445 out: 446 return r; 447 } 448 449 static void service_interrupt(SCLPDevice *sclp, uint32_t sccb) 450 { 451 SCLPEventFacility *ef = sclp->event_facility; 452 SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef); 453 454 uint32_t param = sccb & ~3; 455 456 /* Indicate whether an event is still pending */ 457 param |= efc->event_pending(ef) ? 1 : 0; 458 459 if (!param) { 460 /* No need to send an interrupt, there's nothing to be notified about */ 461 return; 462 } 463 s390_sclp_extint(param); 464 } 465 466 void sclp_service_interrupt(uint32_t sccb) 467 { 468 SCLPDevice *sclp = get_sclp_device(); 469 SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp); 470 471 sclp_c->service_interrupt(sclp, sccb); 472 } 473 474 /* qemu object creation and initialization functions */ 475 476 void s390_sclp_init(void) 477 { 478 Object *new = object_new(TYPE_SCLP); 479 480 object_property_add_child(qdev_get_machine(), TYPE_SCLP, new, 481 NULL); 482 object_unref(OBJECT(new)); 483 qdev_init_nofail(DEVICE(new)); 484 } 485 486 static void sclp_realize(DeviceState *dev, Error **errp) 487 { 488 MachineState *machine = MACHINE(qdev_get_machine()); 489 SCLPDevice *sclp = SCLP(dev); 490 Error *err = NULL; 491 uint64_t hw_limit; 492 int ret; 493 494 object_property_set_bool(OBJECT(sclp->event_facility), true, "realized", 495 &err); 496 if (err) { 497 goto out; 498 } 499 /* 500 * qdev_device_add searches the sysbus for TYPE_SCLP_EVENTS_BUS. As long 501 * as we can't find a fitting bus via the qom tree, we have to add the 502 * event facility to the sysbus, so e.g. a sclp console can be created. 503 */ 504 qdev_set_parent_bus(DEVICE(sclp->event_facility), sysbus_get_default()); 505 506 ret = s390_set_memory_limit(machine->maxram_size, &hw_limit); 507 if (ret == -E2BIG) { 508 error_setg(&err, "qemu: host supports a maximum of %" PRIu64 " GB", 509 hw_limit >> 30); 510 } else if (ret) { 511 error_setg(&err, "qemu: setting the guest size failed"); 512 } 513 514 out: 515 error_propagate(errp, err); 516 } 517 518 static void sclp_memory_init(SCLPDevice *sclp) 519 { 520 MachineState *machine = MACHINE(qdev_get_machine()); 521 ram_addr_t initial_mem = machine->ram_size; 522 ram_addr_t max_mem = machine->maxram_size; 523 ram_addr_t standby_mem = max_mem - initial_mem; 524 ram_addr_t pad_mem = 0; 525 int increment_size = 20; 526 527 /* The storage increment size is a multiple of 1M and is a power of 2. 528 * The number of storage increments must be MAX_STORAGE_INCREMENTS or fewer. 529 * The variable 'increment_size' is an exponent of 2 that can be 530 * used to calculate the size (in bytes) of an increment. */ 531 while ((initial_mem >> increment_size) > MAX_STORAGE_INCREMENTS) { 532 increment_size++; 533 } 534 if (machine->ram_slots) { 535 while ((standby_mem >> increment_size) > MAX_STORAGE_INCREMENTS) { 536 increment_size++; 537 } 538 } 539 sclp->increment_size = increment_size; 540 541 /* The core and standby memory areas need to be aligned with 542 * the increment size. In effect, this can cause the 543 * user-specified memory size to be rounded down to align 544 * with the nearest increment boundary. */ 545 initial_mem = initial_mem >> increment_size << increment_size; 546 standby_mem = standby_mem >> increment_size << increment_size; 547 548 /* If the size of ram is not on a MEM_SECTION_SIZE boundary, 549 calculate the pad size necessary to force this boundary. */ 550 if (machine->ram_slots && standby_mem) { 551 sclpMemoryHotplugDev *mhd = init_sclp_memory_hotplug_dev(); 552 553 if (initial_mem % MEM_SECTION_SIZE) { 554 pad_mem = MEM_SECTION_SIZE - initial_mem % MEM_SECTION_SIZE; 555 } 556 mhd->increment_size = increment_size; 557 mhd->pad_size = pad_mem; 558 mhd->standby_mem_size = standby_mem; 559 } 560 machine->ram_size = initial_mem; 561 machine->maxram_size = initial_mem + pad_mem + standby_mem; 562 /* let's propagate the changed ram size into the global variable. */ 563 ram_size = initial_mem; 564 } 565 566 static void sclp_init(Object *obj) 567 { 568 SCLPDevice *sclp = SCLP(obj); 569 Object *new; 570 571 new = object_new(TYPE_SCLP_EVENT_FACILITY); 572 object_property_add_child(obj, TYPE_SCLP_EVENT_FACILITY, new, NULL); 573 object_unref(new); 574 sclp->event_facility = EVENT_FACILITY(new); 575 576 sclp_memory_init(sclp); 577 } 578 579 static void sclp_class_init(ObjectClass *oc, void *data) 580 { 581 SCLPDeviceClass *sc = SCLP_CLASS(oc); 582 DeviceClass *dc = DEVICE_CLASS(oc); 583 584 dc->desc = "SCLP (Service-Call Logical Processor)"; 585 dc->realize = sclp_realize; 586 dc->hotpluggable = false; 587 set_bit(DEVICE_CATEGORY_MISC, dc->categories); 588 589 sc->read_SCP_info = read_SCP_info; 590 sc->read_storage_element0_info = read_storage_element0_info; 591 sc->read_storage_element1_info = read_storage_element1_info; 592 sc->attach_storage_element = attach_storage_element; 593 sc->assign_storage = assign_storage; 594 sc->unassign_storage = unassign_storage; 595 sc->read_cpu_info = sclp_read_cpu_info; 596 sc->execute = sclp_execute; 597 sc->service_interrupt = service_interrupt; 598 } 599 600 static TypeInfo sclp_info = { 601 .name = TYPE_SCLP, 602 .parent = TYPE_DEVICE, 603 .instance_init = sclp_init, 604 .instance_size = sizeof(SCLPDevice), 605 .class_init = sclp_class_init, 606 .class_size = sizeof(SCLPDeviceClass), 607 }; 608 609 sclpMemoryHotplugDev *init_sclp_memory_hotplug_dev(void) 610 { 611 DeviceState *dev; 612 dev = qdev_create(NULL, TYPE_SCLP_MEMORY_HOTPLUG_DEV); 613 object_property_add_child(qdev_get_machine(), 614 TYPE_SCLP_MEMORY_HOTPLUG_DEV, 615 OBJECT(dev), NULL); 616 qdev_init_nofail(dev); 617 return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path( 618 TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL)); 619 } 620 621 sclpMemoryHotplugDev *get_sclp_memory_hotplug_dev(void) 622 { 623 return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path( 624 TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL)); 625 } 626 627 static void sclp_memory_hotplug_dev_class_init(ObjectClass *klass, 628 void *data) 629 { 630 DeviceClass *dc = DEVICE_CLASS(klass); 631 632 set_bit(DEVICE_CATEGORY_MISC, dc->categories); 633 } 634 635 static TypeInfo sclp_memory_hotplug_dev_info = { 636 .name = TYPE_SCLP_MEMORY_HOTPLUG_DEV, 637 .parent = TYPE_SYS_BUS_DEVICE, 638 .instance_size = sizeof(sclpMemoryHotplugDev), 639 .class_init = sclp_memory_hotplug_dev_class_init, 640 }; 641 642 static void register_types(void) 643 { 644 type_register_static(&sclp_memory_hotplug_dev_info); 645 type_register_static(&sclp_info); 646 } 647 type_init(register_types); 648