xref: /openbmc/qemu/hw/s390x/sclp.c (revision 0806b30c8dff64e944456aa15bdc6957384e29a8)
1 /*
2  * SCLP Support
3  *
4  * Copyright IBM, Corp. 2012
5  *
6  * Authors:
7  *  Christian Borntraeger <borntraeger@de.ibm.com>
8  *  Heinz Graalfs <graalfs@linux.vnet.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or (at your
11  * option) any later version.  See the COPYING file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include "cpu.h"
18 #include "sysemu/kvm.h"
19 #include "exec/memory.h"
20 #include "sysemu/sysemu.h"
21 #include "exec/address-spaces.h"
22 #include "hw/boards.h"
23 #include "hw/s390x/sclp.h"
24 #include "hw/s390x/event-facility.h"
25 #include "hw/s390x/s390-pci-bus.h"
26 #include "hw/s390x/ipl.h"
27 
28 static inline SCLPDevice *get_sclp_device(void)
29 {
30     static SCLPDevice *sclp;
31 
32     if (!sclp) {
33         sclp = SCLP(object_resolve_path_type("", TYPE_SCLP, NULL));
34     }
35     return sclp;
36 }
37 
38 static void prepare_cpu_entries(SCLPDevice *sclp, CPUEntry *entry, int count)
39 {
40     uint8_t features[SCCB_CPU_FEATURE_LEN] = { 0 };
41     int i;
42 
43     s390_get_feat_block(S390_FEAT_TYPE_SCLP_CPU, features);
44     for (i = 0; i < count; i++) {
45         entry[i].address = i;
46         entry[i].type = 0;
47         memcpy(entry[i].features, features, sizeof(entry[i].features));
48     }
49 }
50 
51 /* Provide information about the configuration, CPUs and storage */
52 static void read_SCP_info(SCLPDevice *sclp, SCCB *sccb)
53 {
54     ReadInfo *read_info = (ReadInfo *) sccb;
55     MachineState *machine = MACHINE(qdev_get_machine());
56     sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
57     CPUState *cpu;
58     int cpu_count = 0;
59     int rnsize, rnmax;
60     int slots = MIN(machine->ram_slots, s390_get_memslot_count(kvm_state));
61     IplParameterBlock *ipib = s390_ipl_get_iplb();
62 
63     CPU_FOREACH(cpu) {
64         cpu_count++;
65     }
66 
67     /* CPU information */
68     read_info->entries_cpu = cpu_to_be16(cpu_count);
69     read_info->offset_cpu = cpu_to_be16(offsetof(ReadInfo, entries));
70     read_info->highest_cpu = cpu_to_be16(max_cpus);
71 
72     read_info->ibc_val = cpu_to_be32(s390_get_ibc_val());
73 
74     /* Configuration Characteristic (Extension) */
75     s390_get_feat_block(S390_FEAT_TYPE_SCLP_CONF_CHAR,
76                          read_info->conf_char);
77     s390_get_feat_block(S390_FEAT_TYPE_SCLP_CONF_CHAR_EXT,
78                          read_info->conf_char_ext);
79 
80     prepare_cpu_entries(sclp, read_info->entries, cpu_count);
81 
82     read_info->facilities = cpu_to_be64(SCLP_HAS_CPU_INFO |
83                                         SCLP_HAS_PCI_RECONFIG);
84 
85     /* Memory Hotplug is only supported for the ccw machine type */
86     if (mhd) {
87         mhd->standby_subregion_size = MEM_SECTION_SIZE;
88         /* Deduct the memory slot already used for core */
89         if (slots > 0) {
90             while ((mhd->standby_subregion_size * (slots - 1)
91                     < mhd->standby_mem_size)) {
92                 mhd->standby_subregion_size = mhd->standby_subregion_size << 1;
93             }
94         }
95         /*
96          * Initialize mapping of guest standby memory sections indicating which
97          * are and are not online. Assume all standby memory begins offline.
98          */
99         if (mhd->standby_state_map == 0) {
100             if (mhd->standby_mem_size % mhd->standby_subregion_size) {
101                 mhd->standby_state_map = g_malloc0((mhd->standby_mem_size /
102                                              mhd->standby_subregion_size + 1) *
103                                              (mhd->standby_subregion_size /
104                                              MEM_SECTION_SIZE));
105             } else {
106                 mhd->standby_state_map = g_malloc0(mhd->standby_mem_size /
107                                                    MEM_SECTION_SIZE);
108             }
109         }
110         mhd->padded_ram_size = ram_size + mhd->pad_size;
111         mhd->rzm = 1 << mhd->increment_size;
112 
113         read_info->facilities |= cpu_to_be64(SCLP_FC_ASSIGN_ATTACH_READ_STOR);
114     }
115     read_info->mha_pow = s390_get_mha_pow();
116     read_info->hmfai = cpu_to_be32(s390_get_hmfai());
117 
118     rnsize = 1 << (sclp->increment_size - 20);
119     if (rnsize <= 128) {
120         read_info->rnsize = rnsize;
121     } else {
122         read_info->rnsize = 0;
123         read_info->rnsize2 = cpu_to_be32(rnsize);
124     }
125 
126     rnmax = machine->maxram_size >> sclp->increment_size;
127     if (rnmax < 0x10000) {
128         read_info->rnmax = cpu_to_be16(rnmax);
129     } else {
130         read_info->rnmax = cpu_to_be16(0);
131         read_info->rnmax2 = cpu_to_be64(rnmax);
132     }
133 
134     if (ipib && ipib->flags & DIAG308_FLAGS_LP_VALID) {
135         memcpy(&read_info->loadparm, &ipib->loadparm,
136                sizeof(read_info->loadparm));
137     } else {
138         s390_ipl_set_loadparm(read_info->loadparm);
139     }
140 
141     sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
142 }
143 
144 static void read_storage_element0_info(SCLPDevice *sclp, SCCB *sccb)
145 {
146     int i, assigned;
147     int subincrement_id = SCLP_STARTING_SUBINCREMENT_ID;
148     ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb;
149     sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
150 
151     if (!mhd) {
152         sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
153         return;
154     }
155 
156     if ((ram_size >> mhd->increment_size) >= 0x10000) {
157         sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION);
158         return;
159     }
160 
161     /* Return information regarding core memory */
162     storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0);
163     assigned = ram_size >> mhd->increment_size;
164     storage_info->assigned = cpu_to_be16(assigned);
165 
166     for (i = 0; i < assigned; i++) {
167         storage_info->entries[i] = cpu_to_be32(subincrement_id);
168         subincrement_id += SCLP_INCREMENT_UNIT;
169     }
170     sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
171 }
172 
173 static void read_storage_element1_info(SCLPDevice *sclp, SCCB *sccb)
174 {
175     ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb;
176     sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
177 
178     if (!mhd) {
179         sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
180         return;
181     }
182 
183     if ((mhd->standby_mem_size >> mhd->increment_size) >= 0x10000) {
184         sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION);
185         return;
186     }
187 
188     /* Return information regarding standby memory */
189     storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0);
190     storage_info->assigned = cpu_to_be16(mhd->standby_mem_size >>
191                                          mhd->increment_size);
192     storage_info->standby = cpu_to_be16(mhd->standby_mem_size >>
193                                         mhd->increment_size);
194     sccb->h.response_code = cpu_to_be16(SCLP_RC_STANDBY_READ_COMPLETION);
195 }
196 
197 static void attach_storage_element(SCLPDevice *sclp, SCCB *sccb,
198                                    uint16_t element)
199 {
200     int i, assigned, subincrement_id;
201     AttachStorageElement *attach_info = (AttachStorageElement *) sccb;
202     sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
203 
204     if (!mhd) {
205         sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
206         return;
207     }
208 
209     if (element != 1) {
210         sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
211         return;
212     }
213 
214     assigned = mhd->standby_mem_size >> mhd->increment_size;
215     attach_info->assigned = cpu_to_be16(assigned);
216     subincrement_id = ((ram_size >> mhd->increment_size) << 16)
217                       + SCLP_STARTING_SUBINCREMENT_ID;
218     for (i = 0; i < assigned; i++) {
219         attach_info->entries[i] = cpu_to_be32(subincrement_id);
220         subincrement_id += SCLP_INCREMENT_UNIT;
221     }
222     sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
223 }
224 
225 static void assign_storage(SCLPDevice *sclp, SCCB *sccb)
226 {
227     MemoryRegion *mr = NULL;
228     uint64_t this_subregion_size;
229     AssignStorage *assign_info = (AssignStorage *) sccb;
230     sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
231     ram_addr_t assign_addr;
232     MemoryRegion *sysmem = get_system_memory();
233 
234     if (!mhd) {
235         sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
236         return;
237     }
238     assign_addr = (assign_info->rn - 1) * mhd->rzm;
239 
240     if ((assign_addr % MEM_SECTION_SIZE == 0) &&
241         (assign_addr >= mhd->padded_ram_size)) {
242         /* Re-use existing memory region if found */
243         mr = memory_region_find(sysmem, assign_addr, 1).mr;
244         memory_region_unref(mr);
245         if (!mr) {
246 
247             MemoryRegion *standby_ram = g_new(MemoryRegion, 1);
248 
249             /* offset to align to standby_subregion_size for allocation */
250             ram_addr_t offset = assign_addr -
251                                 (assign_addr - mhd->padded_ram_size)
252                                 % mhd->standby_subregion_size;
253 
254             /* strlen("standby.ram") + 4 (Max of KVM_MEMORY_SLOTS) +  NULL */
255             char id[16];
256             snprintf(id, 16, "standby.ram%d",
257                      (int)((offset - mhd->padded_ram_size) /
258                      mhd->standby_subregion_size) + 1);
259 
260             /* Allocate a subregion of the calculated standby_subregion_size */
261             if (offset + mhd->standby_subregion_size >
262                 mhd->padded_ram_size + mhd->standby_mem_size) {
263                 this_subregion_size = mhd->padded_ram_size +
264                   mhd->standby_mem_size - offset;
265             } else {
266                 this_subregion_size = mhd->standby_subregion_size;
267             }
268 
269             memory_region_init_ram(standby_ram, NULL, id, this_subregion_size,
270                                    &error_fatal);
271             /* This is a hack to make memory hotunplug work again. Once we have
272              * subdevices, we have to unparent them when unassigning memory,
273              * instead of doing it via the ref count of the MemoryRegion. */
274             object_ref(OBJECT(standby_ram));
275             object_unparent(OBJECT(standby_ram));
276             vmstate_register_ram_global(standby_ram);
277             memory_region_add_subregion(sysmem, offset, standby_ram);
278         }
279         /* The specified subregion is no longer in standby */
280         mhd->standby_state_map[(assign_addr - mhd->padded_ram_size)
281                                / MEM_SECTION_SIZE] = 1;
282     }
283     sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
284 }
285 
286 static void unassign_storage(SCLPDevice *sclp, SCCB *sccb)
287 {
288     MemoryRegion *mr = NULL;
289     AssignStorage *assign_info = (AssignStorage *) sccb;
290     sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
291     ram_addr_t unassign_addr;
292     MemoryRegion *sysmem = get_system_memory();
293 
294     if (!mhd) {
295         sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
296         return;
297     }
298     unassign_addr = (assign_info->rn - 1) * mhd->rzm;
299 
300     /* if the addr is a multiple of 256 MB */
301     if ((unassign_addr % MEM_SECTION_SIZE == 0) &&
302         (unassign_addr >= mhd->padded_ram_size)) {
303         mhd->standby_state_map[(unassign_addr -
304                            mhd->padded_ram_size) / MEM_SECTION_SIZE] = 0;
305 
306         /* find the specified memory region and destroy it */
307         mr = memory_region_find(sysmem, unassign_addr, 1).mr;
308         memory_region_unref(mr);
309         if (mr) {
310             int i;
311             int is_removable = 1;
312             ram_addr_t map_offset = (unassign_addr - mhd->padded_ram_size -
313                                      (unassign_addr - mhd->padded_ram_size)
314                                      % mhd->standby_subregion_size);
315             /* Mark all affected subregions as 'standby' once again */
316             for (i = 0;
317                  i < (mhd->standby_subregion_size / MEM_SECTION_SIZE);
318                  i++) {
319 
320                 if (mhd->standby_state_map[i + map_offset / MEM_SECTION_SIZE]) {
321                     is_removable = 0;
322                     break;
323                 }
324             }
325             if (is_removable) {
326                 memory_region_del_subregion(sysmem, mr);
327                 object_unref(OBJECT(mr));
328             }
329         }
330     }
331     sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
332 }
333 
334 /* Provide information about the CPU */
335 static void sclp_read_cpu_info(SCLPDevice *sclp, SCCB *sccb)
336 {
337     ReadCpuInfo *cpu_info = (ReadCpuInfo *) sccb;
338     CPUState *cpu;
339     int cpu_count = 0;
340 
341     CPU_FOREACH(cpu) {
342         cpu_count++;
343     }
344 
345     cpu_info->nr_configured = cpu_to_be16(cpu_count);
346     cpu_info->offset_configured = cpu_to_be16(offsetof(ReadCpuInfo, entries));
347     cpu_info->nr_standby = cpu_to_be16(0);
348 
349     /* The standby offset is 16-byte for each CPU */
350     cpu_info->offset_standby = cpu_to_be16(cpu_info->offset_configured
351         + cpu_info->nr_configured*sizeof(CPUEntry));
352 
353     prepare_cpu_entries(sclp, cpu_info->entries, cpu_count);
354 
355     sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
356 }
357 
358 static void sclp_execute(SCLPDevice *sclp, SCCB *sccb, uint32_t code)
359 {
360     SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp);
361     SCLPEventFacility *ef = sclp->event_facility;
362     SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef);
363 
364     switch (code & SCLP_CMD_CODE_MASK) {
365     case SCLP_CMDW_READ_SCP_INFO:
366     case SCLP_CMDW_READ_SCP_INFO_FORCED:
367         sclp_c->read_SCP_info(sclp, sccb);
368         break;
369     case SCLP_CMDW_READ_CPU_INFO:
370         sclp_c->read_cpu_info(sclp, sccb);
371         break;
372     case SCLP_READ_STORAGE_ELEMENT_INFO:
373         if (code & 0xff00) {
374             sclp_c->read_storage_element1_info(sclp, sccb);
375         } else {
376             sclp_c->read_storage_element0_info(sclp, sccb);
377         }
378         break;
379     case SCLP_ATTACH_STORAGE_ELEMENT:
380         sclp_c->attach_storage_element(sclp, sccb, (code & 0xff00) >> 8);
381         break;
382     case SCLP_ASSIGN_STORAGE:
383         sclp_c->assign_storage(sclp, sccb);
384         break;
385     case SCLP_UNASSIGN_STORAGE:
386         sclp_c->unassign_storage(sclp, sccb);
387         break;
388     case SCLP_CMDW_CONFIGURE_PCI:
389         s390_pci_sclp_configure(sccb);
390         break;
391     case SCLP_CMDW_DECONFIGURE_PCI:
392         s390_pci_sclp_deconfigure(sccb);
393         break;
394     default:
395         efc->command_handler(ef, sccb, code);
396         break;
397     }
398 }
399 
400 int sclp_service_call(CPUS390XState *env, uint64_t sccb, uint32_t code)
401 {
402     SCLPDevice *sclp = get_sclp_device();
403     SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp);
404     int r = 0;
405     SCCB work_sccb;
406 
407     hwaddr sccb_len = sizeof(SCCB);
408 
409     /* first some basic checks on program checks */
410     if (env->psw.mask & PSW_MASK_PSTATE) {
411         r = -PGM_PRIVILEGED;
412         goto out;
413     }
414     if (cpu_physical_memory_is_io(sccb)) {
415         r = -PGM_ADDRESSING;
416         goto out;
417     }
418     if ((sccb & ~0x1fffUL) == 0 || (sccb & ~0x1fffUL) == env->psa
419         || (sccb & ~0x7ffffff8UL) != 0) {
420         r = -PGM_SPECIFICATION;
421         goto out;
422     }
423 
424     /*
425      * we want to work on a private copy of the sccb, to prevent guests
426      * from playing dirty tricks by modifying the memory content after
427      * the host has checked the values
428      */
429     cpu_physical_memory_read(sccb, &work_sccb, sccb_len);
430 
431     /* Valid sccb sizes */
432     if (be16_to_cpu(work_sccb.h.length) < sizeof(SCCBHeader) ||
433         be16_to_cpu(work_sccb.h.length) > SCCB_SIZE) {
434         r = -PGM_SPECIFICATION;
435         goto out;
436     }
437 
438     sclp_c->execute(sclp, &work_sccb, code);
439 
440     cpu_physical_memory_write(sccb, &work_sccb,
441                               be16_to_cpu(work_sccb.h.length));
442 
443     sclp_c->service_interrupt(sclp, sccb);
444 
445 out:
446     return r;
447 }
448 
449 static void service_interrupt(SCLPDevice *sclp, uint32_t sccb)
450 {
451     SCLPEventFacility *ef = sclp->event_facility;
452     SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef);
453 
454     uint32_t param = sccb & ~3;
455 
456     /* Indicate whether an event is still pending */
457     param |= efc->event_pending(ef) ? 1 : 0;
458 
459     if (!param) {
460         /* No need to send an interrupt, there's nothing to be notified about */
461         return;
462     }
463     s390_sclp_extint(param);
464 }
465 
466 void sclp_service_interrupt(uint32_t sccb)
467 {
468     SCLPDevice *sclp = get_sclp_device();
469     SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp);
470 
471     sclp_c->service_interrupt(sclp, sccb);
472 }
473 
474 /* qemu object creation and initialization functions */
475 
476 void s390_sclp_init(void)
477 {
478     Object *new = object_new(TYPE_SCLP);
479 
480     object_property_add_child(qdev_get_machine(), TYPE_SCLP, new,
481                               NULL);
482     object_unref(OBJECT(new));
483     qdev_init_nofail(DEVICE(new));
484 }
485 
486 static void sclp_realize(DeviceState *dev, Error **errp)
487 {
488     MachineState *machine = MACHINE(qdev_get_machine());
489     SCLPDevice *sclp = SCLP(dev);
490     Error *err = NULL;
491     uint64_t hw_limit;
492     int ret;
493 
494     object_property_set_bool(OBJECT(sclp->event_facility), true, "realized",
495                              &err);
496     if (err) {
497         goto out;
498     }
499     /*
500      * qdev_device_add searches the sysbus for TYPE_SCLP_EVENTS_BUS. As long
501      * as we can't find a fitting bus via the qom tree, we have to add the
502      * event facility to the sysbus, so e.g. a sclp console can be created.
503      */
504     qdev_set_parent_bus(DEVICE(sclp->event_facility), sysbus_get_default());
505 
506     ret = s390_set_memory_limit(machine->maxram_size, &hw_limit);
507     if (ret == -E2BIG) {
508         error_setg(&err, "qemu: host supports a maximum of %" PRIu64 " GB",
509                    hw_limit >> 30);
510     } else if (ret) {
511         error_setg(&err, "qemu: setting the guest size failed");
512     }
513 
514 out:
515     error_propagate(errp, err);
516 }
517 
518 static void sclp_memory_init(SCLPDevice *sclp)
519 {
520     MachineState *machine = MACHINE(qdev_get_machine());
521     ram_addr_t initial_mem = machine->ram_size;
522     ram_addr_t max_mem = machine->maxram_size;
523     ram_addr_t standby_mem = max_mem - initial_mem;
524     ram_addr_t pad_mem = 0;
525     int increment_size = 20;
526 
527     /* The storage increment size is a multiple of 1M and is a power of 2.
528      * The number of storage increments must be MAX_STORAGE_INCREMENTS or fewer.
529      * The variable 'increment_size' is an exponent of 2 that can be
530      * used to calculate the size (in bytes) of an increment. */
531     while ((initial_mem >> increment_size) > MAX_STORAGE_INCREMENTS) {
532         increment_size++;
533     }
534     if (machine->ram_slots) {
535         while ((standby_mem >> increment_size) > MAX_STORAGE_INCREMENTS) {
536             increment_size++;
537         }
538     }
539     sclp->increment_size = increment_size;
540 
541     /* The core and standby memory areas need to be aligned with
542      * the increment size.  In effect, this can cause the
543      * user-specified memory size to be rounded down to align
544      * with the nearest increment boundary. */
545     initial_mem = initial_mem >> increment_size << increment_size;
546     standby_mem = standby_mem >> increment_size << increment_size;
547 
548     /* If the size of ram is not on a MEM_SECTION_SIZE boundary,
549        calculate the pad size necessary to force this boundary. */
550     if (machine->ram_slots && standby_mem) {
551         sclpMemoryHotplugDev *mhd = init_sclp_memory_hotplug_dev();
552 
553         if (initial_mem % MEM_SECTION_SIZE) {
554             pad_mem = MEM_SECTION_SIZE - initial_mem % MEM_SECTION_SIZE;
555         }
556         mhd->increment_size = increment_size;
557         mhd->pad_size = pad_mem;
558         mhd->standby_mem_size = standby_mem;
559     }
560     machine->ram_size = initial_mem;
561     machine->maxram_size = initial_mem + pad_mem + standby_mem;
562     /* let's propagate the changed ram size into the global variable. */
563     ram_size = initial_mem;
564 }
565 
566 static void sclp_init(Object *obj)
567 {
568     SCLPDevice *sclp = SCLP(obj);
569     Object *new;
570 
571     new = object_new(TYPE_SCLP_EVENT_FACILITY);
572     object_property_add_child(obj, TYPE_SCLP_EVENT_FACILITY, new, NULL);
573     object_unref(new);
574     sclp->event_facility = EVENT_FACILITY(new);
575 
576     sclp_memory_init(sclp);
577 }
578 
579 static void sclp_class_init(ObjectClass *oc, void *data)
580 {
581     SCLPDeviceClass *sc = SCLP_CLASS(oc);
582     DeviceClass *dc = DEVICE_CLASS(oc);
583 
584     dc->desc = "SCLP (Service-Call Logical Processor)";
585     dc->realize = sclp_realize;
586     dc->hotpluggable = false;
587     set_bit(DEVICE_CATEGORY_MISC, dc->categories);
588 
589     sc->read_SCP_info = read_SCP_info;
590     sc->read_storage_element0_info = read_storage_element0_info;
591     sc->read_storage_element1_info = read_storage_element1_info;
592     sc->attach_storage_element = attach_storage_element;
593     sc->assign_storage = assign_storage;
594     sc->unassign_storage = unassign_storage;
595     sc->read_cpu_info = sclp_read_cpu_info;
596     sc->execute = sclp_execute;
597     sc->service_interrupt = service_interrupt;
598 }
599 
600 static TypeInfo sclp_info = {
601     .name = TYPE_SCLP,
602     .parent = TYPE_DEVICE,
603     .instance_init = sclp_init,
604     .instance_size = sizeof(SCLPDevice),
605     .class_init = sclp_class_init,
606     .class_size = sizeof(SCLPDeviceClass),
607 };
608 
609 sclpMemoryHotplugDev *init_sclp_memory_hotplug_dev(void)
610 {
611     DeviceState *dev;
612     dev = qdev_create(NULL, TYPE_SCLP_MEMORY_HOTPLUG_DEV);
613     object_property_add_child(qdev_get_machine(),
614                               TYPE_SCLP_MEMORY_HOTPLUG_DEV,
615                               OBJECT(dev), NULL);
616     qdev_init_nofail(dev);
617     return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path(
618                                    TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL));
619 }
620 
621 sclpMemoryHotplugDev *get_sclp_memory_hotplug_dev(void)
622 {
623     return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path(
624                                    TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL));
625 }
626 
627 static void sclp_memory_hotplug_dev_class_init(ObjectClass *klass,
628                                                void *data)
629 {
630     DeviceClass *dc = DEVICE_CLASS(klass);
631 
632     set_bit(DEVICE_CATEGORY_MISC, dc->categories);
633 }
634 
635 static TypeInfo sclp_memory_hotplug_dev_info = {
636     .name = TYPE_SCLP_MEMORY_HOTPLUG_DEV,
637     .parent = TYPE_SYS_BUS_DEVICE,
638     .instance_size = sizeof(sclpMemoryHotplugDev),
639     .class_init = sclp_memory_hotplug_dev_class_init,
640 };
641 
642 static void register_types(void)
643 {
644     type_register_static(&sclp_memory_hotplug_dev_info);
645     type_register_static(&sclp_info);
646 }
647 type_init(register_types);
648