xref: /openbmc/qemu/hw/riscv/spike.c (revision a976a99a29755e8c7a275ac269db8a0a20d79e95)
1 /*
2  * QEMU RISC-V Spike Board
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This provides a RISC-V Board with the following devices:
8  *
9  * 0) HTIF Console and Poweroff
10  * 1) CLINT (Timer and IPI)
11  * 2) PLIC (Platform Level Interrupt Controller)
12  *
13  * This program is free software; you can redistribute it and/or modify it
14  * under the terms and conditions of the GNU General Public License,
15  * version 2 or later, as published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope it will be useful, but WITHOUT
18  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
20  * more details.
21  *
22  * You should have received a copy of the GNU General Public License along with
23  * this program.  If not, see <http://www.gnu.org/licenses/>.
24  */
25 
26 #include "qemu/osdep.h"
27 #include "qemu/error-report.h"
28 #include "qapi/error.h"
29 #include "hw/boards.h"
30 #include "hw/loader.h"
31 #include "hw/sysbus.h"
32 #include "target/riscv/cpu.h"
33 #include "hw/riscv/riscv_hart.h"
34 #include "hw/riscv/spike.h"
35 #include "hw/riscv/boot.h"
36 #include "hw/riscv/numa.h"
37 #include "hw/char/riscv_htif.h"
38 #include "hw/intc/riscv_aclint.h"
39 #include "chardev/char.h"
40 #include "sysemu/device_tree.h"
41 #include "sysemu/sysemu.h"
42 
43 static const MemMapEntry spike_memmap[] = {
44     [SPIKE_MROM] =     {     0x1000,     0xf000 },
45     [SPIKE_HTIF] =     {  0x1000000,     0x1000 },
46     [SPIKE_CLINT] =    {  0x2000000,    0x10000 },
47     [SPIKE_DRAM] =     { 0x80000000,        0x0 },
48 };
49 
50 static void create_fdt(SpikeState *s, const MemMapEntry *memmap,
51                        uint64_t mem_size, const char *cmdline, bool is_32_bit)
52 {
53     void *fdt;
54     uint64_t addr, size;
55     unsigned long clint_addr;
56     int cpu, socket;
57     MachineState *mc = MACHINE(s);
58     uint32_t *clint_cells;
59     uint32_t cpu_phandle, intc_phandle, phandle = 1;
60     char *name, *mem_name, *clint_name, *clust_name;
61     char *core_name, *cpu_name, *intc_name;
62     static const char * const clint_compat[2] = {
63         "sifive,clint0", "riscv,clint0"
64     };
65 
66     fdt = s->fdt = create_device_tree(&s->fdt_size);
67     if (!fdt) {
68         error_report("create_device_tree() failed");
69         exit(1);
70     }
71 
72     qemu_fdt_setprop_string(fdt, "/", "model", "ucbbar,spike-bare,qemu");
73     qemu_fdt_setprop_string(fdt, "/", "compatible", "ucbbar,spike-bare-dev");
74     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
75     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
76 
77     qemu_fdt_add_subnode(fdt, "/htif");
78     qemu_fdt_setprop_string(fdt, "/htif", "compatible", "ucb,htif0");
79     if (!htif_uses_elf_symbols()) {
80         qemu_fdt_setprop_cells(fdt, "/htif", "reg",
81             0x0, memmap[SPIKE_HTIF].base, 0x0, memmap[SPIKE_HTIF].size);
82     }
83 
84     qemu_fdt_add_subnode(fdt, "/soc");
85     qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
86     qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
87     qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2);
88     qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2);
89 
90     qemu_fdt_add_subnode(fdt, "/cpus");
91     qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency",
92         RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ);
93     qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
94     qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
95     qemu_fdt_add_subnode(fdt, "/cpus/cpu-map");
96 
97     for (socket = (riscv_socket_count(mc) - 1); socket >= 0; socket--) {
98         clust_name = g_strdup_printf("/cpus/cpu-map/cluster%d", socket);
99         qemu_fdt_add_subnode(fdt, clust_name);
100 
101         clint_cells =  g_new0(uint32_t, s->soc[socket].num_harts * 4);
102 
103         for (cpu = s->soc[socket].num_harts - 1; cpu >= 0; cpu--) {
104             cpu_phandle = phandle++;
105 
106             cpu_name = g_strdup_printf("/cpus/cpu@%d",
107                 s->soc[socket].hartid_base + cpu);
108             qemu_fdt_add_subnode(fdt, cpu_name);
109             if (is_32_bit) {
110                 qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv32");
111             } else {
112                 qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv48");
113             }
114             name = riscv_isa_string(&s->soc[socket].harts[cpu]);
115             qemu_fdt_setprop_string(fdt, cpu_name, "riscv,isa", name);
116             g_free(name);
117             qemu_fdt_setprop_string(fdt, cpu_name, "compatible", "riscv");
118             qemu_fdt_setprop_string(fdt, cpu_name, "status", "okay");
119             qemu_fdt_setprop_cell(fdt, cpu_name, "reg",
120                 s->soc[socket].hartid_base + cpu);
121             qemu_fdt_setprop_string(fdt, cpu_name, "device_type", "cpu");
122             riscv_socket_fdt_write_id(mc, fdt, cpu_name, socket);
123             qemu_fdt_setprop_cell(fdt, cpu_name, "phandle", cpu_phandle);
124 
125             intc_name = g_strdup_printf("%s/interrupt-controller", cpu_name);
126             qemu_fdt_add_subnode(fdt, intc_name);
127             intc_phandle = phandle++;
128             qemu_fdt_setprop_cell(fdt, intc_name, "phandle", intc_phandle);
129             qemu_fdt_setprop_string(fdt, intc_name, "compatible",
130                 "riscv,cpu-intc");
131             qemu_fdt_setprop(fdt, intc_name, "interrupt-controller", NULL, 0);
132             qemu_fdt_setprop_cell(fdt, intc_name, "#interrupt-cells", 1);
133 
134             clint_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
135             clint_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
136             clint_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
137             clint_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
138 
139             core_name = g_strdup_printf("%s/core%d", clust_name, cpu);
140             qemu_fdt_add_subnode(fdt, core_name);
141             qemu_fdt_setprop_cell(fdt, core_name, "cpu", cpu_phandle);
142 
143             g_free(core_name);
144             g_free(intc_name);
145             g_free(cpu_name);
146         }
147 
148         addr = memmap[SPIKE_DRAM].base + riscv_socket_mem_offset(mc, socket);
149         size = riscv_socket_mem_size(mc, socket);
150         mem_name = g_strdup_printf("/memory@%lx", (long)addr);
151         qemu_fdt_add_subnode(fdt, mem_name);
152         qemu_fdt_setprop_cells(fdt, mem_name, "reg",
153             addr >> 32, addr, size >> 32, size);
154         qemu_fdt_setprop_string(fdt, mem_name, "device_type", "memory");
155         riscv_socket_fdt_write_id(mc, fdt, mem_name, socket);
156         g_free(mem_name);
157 
158         clint_addr = memmap[SPIKE_CLINT].base +
159             (memmap[SPIKE_CLINT].size * socket);
160         clint_name = g_strdup_printf("/soc/clint@%lx", clint_addr);
161         qemu_fdt_add_subnode(fdt, clint_name);
162         qemu_fdt_setprop_string_array(fdt, clint_name, "compatible",
163             (char **)&clint_compat, ARRAY_SIZE(clint_compat));
164         qemu_fdt_setprop_cells(fdt, clint_name, "reg",
165             0x0, clint_addr, 0x0, memmap[SPIKE_CLINT].size);
166         qemu_fdt_setprop(fdt, clint_name, "interrupts-extended",
167             clint_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
168         riscv_socket_fdt_write_id(mc, fdt, clint_name, socket);
169 
170         g_free(clint_name);
171         g_free(clint_cells);
172         g_free(clust_name);
173     }
174 
175     riscv_socket_fdt_write_distance_matrix(mc, fdt);
176 
177     qemu_fdt_add_subnode(fdt, "/chosen");
178     qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", "/htif");
179 
180     if (cmdline && *cmdline) {
181         qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
182     }
183 }
184 
185 static void spike_board_init(MachineState *machine)
186 {
187     const MemMapEntry *memmap = spike_memmap;
188     SpikeState *s = SPIKE_MACHINE(machine);
189     MemoryRegion *system_memory = get_system_memory();
190     MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
191     target_ulong firmware_end_addr, kernel_start_addr;
192     uint32_t fdt_load_addr;
193     uint64_t kernel_entry;
194     char *soc_name;
195     int i, base_hartid, hart_count;
196 
197     /* Check socket count limit */
198     if (SPIKE_SOCKETS_MAX < riscv_socket_count(machine)) {
199         error_report("number of sockets/nodes should be less than %d",
200             SPIKE_SOCKETS_MAX);
201         exit(1);
202     }
203 
204     /* Initialize sockets */
205     for (i = 0; i < riscv_socket_count(machine); i++) {
206         if (!riscv_socket_check_hartids(machine, i)) {
207             error_report("discontinuous hartids in socket%d", i);
208             exit(1);
209         }
210 
211         base_hartid = riscv_socket_first_hartid(machine, i);
212         if (base_hartid < 0) {
213             error_report("can't find hartid base for socket%d", i);
214             exit(1);
215         }
216 
217         hart_count = riscv_socket_hart_count(machine, i);
218         if (hart_count < 0) {
219             error_report("can't find hart count for socket%d", i);
220             exit(1);
221         }
222 
223         soc_name = g_strdup_printf("soc%d", i);
224         object_initialize_child(OBJECT(machine), soc_name, &s->soc[i],
225                                 TYPE_RISCV_HART_ARRAY);
226         g_free(soc_name);
227         object_property_set_str(OBJECT(&s->soc[i]), "cpu-type",
228                                 machine->cpu_type, &error_abort);
229         object_property_set_int(OBJECT(&s->soc[i]), "hartid-base",
230                                 base_hartid, &error_abort);
231         object_property_set_int(OBJECT(&s->soc[i]), "num-harts",
232                                 hart_count, &error_abort);
233         sysbus_realize(SYS_BUS_DEVICE(&s->soc[i]), &error_fatal);
234 
235         /* Core Local Interruptor (timer and IPI) for each socket */
236         riscv_aclint_swi_create(
237             memmap[SPIKE_CLINT].base + i * memmap[SPIKE_CLINT].size,
238             base_hartid, hart_count, false);
239         riscv_aclint_mtimer_create(
240             memmap[SPIKE_CLINT].base + i * memmap[SPIKE_CLINT].size +
241                 RISCV_ACLINT_SWI_SIZE,
242             RISCV_ACLINT_DEFAULT_MTIMER_SIZE, base_hartid, hart_count,
243             RISCV_ACLINT_DEFAULT_MTIMECMP, RISCV_ACLINT_DEFAULT_MTIME,
244             RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ, false);
245     }
246 
247     /* register system main memory (actual RAM) */
248     memory_region_add_subregion(system_memory, memmap[SPIKE_DRAM].base,
249         machine->ram);
250 
251     /* boot rom */
252     memory_region_init_rom(mask_rom, NULL, "riscv.spike.mrom",
253                            memmap[SPIKE_MROM].size, &error_fatal);
254     memory_region_add_subregion(system_memory, memmap[SPIKE_MROM].base,
255                                 mask_rom);
256 
257     /*
258      * Not like other RISC-V machines that use plain binary bios images,
259      * keeping ELF files here was intentional because BIN files don't work
260      * for the Spike machine as HTIF emulation depends on ELF parsing.
261      */
262     if (riscv_is_32bit(&s->soc[0])) {
263         firmware_end_addr = riscv_find_and_load_firmware(machine,
264                                     RISCV32_BIOS_BIN, memmap[SPIKE_DRAM].base,
265                                     htif_symbol_callback);
266     } else {
267         firmware_end_addr = riscv_find_and_load_firmware(machine,
268                                     RISCV64_BIOS_BIN, memmap[SPIKE_DRAM].base,
269                                     htif_symbol_callback);
270     }
271 
272     /* Load kernel */
273     if (machine->kernel_filename) {
274         kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc[0],
275                                                          firmware_end_addr);
276 
277         kernel_entry = riscv_load_kernel(machine->kernel_filename,
278                                          kernel_start_addr,
279                                          htif_symbol_callback);
280     } else {
281        /*
282         * If dynamic firmware is used, it doesn't know where is the next mode
283         * if kernel argument is not set.
284         */
285         kernel_entry = 0;
286     }
287 
288     /* Create device tree */
289     create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline,
290                riscv_is_32bit(&s->soc[0]));
291 
292     /* Load initrd */
293     if (machine->kernel_filename && machine->initrd_filename) {
294         hwaddr start;
295         hwaddr end = riscv_load_initrd(machine->initrd_filename,
296                                        machine->ram_size, kernel_entry,
297                                        &start);
298         qemu_fdt_setprop_cell(s->fdt, "/chosen",
299                               "linux,initrd-start", start);
300         qemu_fdt_setprop_cell(s->fdt, "/chosen", "linux,initrd-end",
301                               end);
302     }
303 
304     /* Compute the fdt load address in dram */
305     fdt_load_addr = riscv_load_fdt(memmap[SPIKE_DRAM].base,
306                                    machine->ram_size, s->fdt);
307     /* load the reset vector */
308     riscv_setup_rom_reset_vec(machine, &s->soc[0], memmap[SPIKE_DRAM].base,
309                               memmap[SPIKE_MROM].base,
310                               memmap[SPIKE_MROM].size, kernel_entry,
311                               fdt_load_addr);
312 
313     /* initialize HTIF using symbols found in load_kernel */
314     htif_mm_init(system_memory, mask_rom,
315                  &s->soc[0].harts[0].env, serial_hd(0),
316                  memmap[SPIKE_HTIF].base);
317 }
318 
319 static void spike_machine_instance_init(Object *obj)
320 {
321 }
322 
323 static void spike_machine_class_init(ObjectClass *oc, void *data)
324 {
325     MachineClass *mc = MACHINE_CLASS(oc);
326 
327     mc->desc = "RISC-V Spike board";
328     mc->init = spike_board_init;
329     mc->max_cpus = SPIKE_CPUS_MAX;
330     mc->is_default = true;
331     mc->default_cpu_type = TYPE_RISCV_CPU_BASE;
332     mc->possible_cpu_arch_ids = riscv_numa_possible_cpu_arch_ids;
333     mc->cpu_index_to_instance_props = riscv_numa_cpu_index_to_props;
334     mc->get_default_cpu_node_id = riscv_numa_get_default_cpu_node_id;
335     mc->numa_mem_supported = true;
336     mc->default_ram_id = "riscv.spike.ram";
337 }
338 
339 static const TypeInfo spike_machine_typeinfo = {
340     .name       = MACHINE_TYPE_NAME("spike"),
341     .parent     = TYPE_MACHINE,
342     .class_init = spike_machine_class_init,
343     .instance_init = spike_machine_instance_init,
344     .instance_size = sizeof(SpikeState),
345 };
346 
347 static void spike_machine_init_register_types(void)
348 {
349     type_register_static(&spike_machine_typeinfo);
350 }
351 
352 type_init(spike_machine_init_register_types)
353