xref: /openbmc/qemu/hw/riscv/spike.c (revision 72f463bc0803b74cabf0655df1ef4b749ef8dbbd)
1 /*
2  * QEMU RISC-V Spike Board
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This provides a RISC-V Board with the following devices:
8  *
9  * 0) HTIF Console and Poweroff
10  * 1) CLINT (Timer and IPI)
11  * 2) PLIC (Platform Level Interrupt Controller)
12  *
13  * This program is free software; you can redistribute it and/or modify it
14  * under the terms and conditions of the GNU General Public License,
15  * version 2 or later, as published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope it will be useful, but WITHOUT
18  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
20  * more details.
21  *
22  * You should have received a copy of the GNU General Public License along with
23  * this program.  If not, see <http://www.gnu.org/licenses/>.
24  */
25 
26 #include "qemu/osdep.h"
27 #include "qemu/log.h"
28 #include "qemu/error-report.h"
29 #include "qapi/error.h"
30 #include "hw/hw.h"
31 #include "hw/boards.h"
32 #include "hw/loader.h"
33 #include "hw/sysbus.h"
34 #include "target/riscv/cpu.h"
35 #include "hw/riscv/riscv_htif.h"
36 #include "hw/riscv/riscv_hart.h"
37 #include "hw/riscv/sifive_clint.h"
38 #include "hw/riscv/spike.h"
39 #include "chardev/char.h"
40 #include "sysemu/arch_init.h"
41 #include "sysemu/device_tree.h"
42 #include "exec/address-spaces.h"
43 #include "elf.h"
44 
45 #include <libfdt.h>
46 
47 static const struct MemmapEntry {
48     hwaddr base;
49     hwaddr size;
50 } spike_memmap[] = {
51     [SPIKE_MROM] =     {     0x1000,    0x11000 },
52     [SPIKE_CLINT] =    {  0x2000000,    0x10000 },
53     [SPIKE_DRAM] =     { 0x80000000,        0x0 },
54 };
55 
56 static target_ulong load_kernel(const char *kernel_filename)
57 {
58     uint64_t kernel_entry, kernel_high;
59 
60     if (load_elf_ram_sym(kernel_filename, NULL, NULL, NULL,
61             &kernel_entry, NULL, &kernel_high, 0, EM_RISCV, 1, 0,
62             NULL, true, htif_symbol_callback) < 0) {
63         error_report("could not load kernel '%s'", kernel_filename);
64         exit(1);
65     }
66     return kernel_entry;
67 }
68 
69 static void create_fdt(SpikeState *s, const struct MemmapEntry *memmap,
70     uint64_t mem_size, const char *cmdline)
71 {
72     void *fdt;
73     int cpu;
74     uint32_t *cells;
75     char *nodename;
76 
77     fdt = s->fdt = create_device_tree(&s->fdt_size);
78     if (!fdt) {
79         error_report("create_device_tree() failed");
80         exit(1);
81     }
82 
83     qemu_fdt_setprop_string(fdt, "/", "model", "ucbbar,spike-bare,qemu");
84     qemu_fdt_setprop_string(fdt, "/", "compatible", "ucbbar,spike-bare-dev");
85     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
86     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
87 
88     qemu_fdt_add_subnode(fdt, "/htif");
89     qemu_fdt_setprop_string(fdt, "/htif", "compatible", "ucb,htif0");
90 
91     qemu_fdt_add_subnode(fdt, "/soc");
92     qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
93     qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
94     qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2);
95     qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2);
96 
97     nodename = g_strdup_printf("/memory@%lx",
98         (long)memmap[SPIKE_DRAM].base);
99     qemu_fdt_add_subnode(fdt, nodename);
100     qemu_fdt_setprop_cells(fdt, nodename, "reg",
101         memmap[SPIKE_DRAM].base >> 32, memmap[SPIKE_DRAM].base,
102         mem_size >> 32, mem_size);
103     qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
104     g_free(nodename);
105 
106     qemu_fdt_add_subnode(fdt, "/cpus");
107     qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency",
108         SIFIVE_CLINT_TIMEBASE_FREQ);
109     qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
110     qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
111 
112     for (cpu = s->soc.num_harts - 1; cpu >= 0; cpu--) {
113         nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
114         char *intc = g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu);
115         char *isa = riscv_isa_string(&s->soc.harts[cpu]);
116         qemu_fdt_add_subnode(fdt, nodename);
117         qemu_fdt_setprop_cell(fdt, nodename, "clock-frequency",
118                               SPIKE_CLOCK_FREQ);
119         qemu_fdt_setprop_string(fdt, nodename, "mmu-type", "riscv,sv48");
120         qemu_fdt_setprop_string(fdt, nodename, "riscv,isa", isa);
121         qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv");
122         qemu_fdt_setprop_string(fdt, nodename, "status", "okay");
123         qemu_fdt_setprop_cell(fdt, nodename, "reg", cpu);
124         qemu_fdt_setprop_string(fdt, nodename, "device_type", "cpu");
125         qemu_fdt_add_subnode(fdt, intc);
126         qemu_fdt_setprop_cell(fdt, intc, "phandle", 1);
127         qemu_fdt_setprop_cell(fdt, intc, "linux,phandle", 1);
128         qemu_fdt_setprop_string(fdt, intc, "compatible", "riscv,cpu-intc");
129         qemu_fdt_setprop(fdt, intc, "interrupt-controller", NULL, 0);
130         qemu_fdt_setprop_cell(fdt, intc, "#interrupt-cells", 1);
131         g_free(isa);
132         g_free(intc);
133         g_free(nodename);
134     }
135 
136     cells =  g_new0(uint32_t, s->soc.num_harts * 4);
137     for (cpu = 0; cpu < s->soc.num_harts; cpu++) {
138         nodename =
139             g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu);
140         uint32_t intc_phandle = qemu_fdt_get_phandle(fdt, nodename);
141         cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
142         cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
143         cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
144         cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
145         g_free(nodename);
146     }
147     nodename = g_strdup_printf("/soc/clint@%lx",
148         (long)memmap[SPIKE_CLINT].base);
149     qemu_fdt_add_subnode(fdt, nodename);
150     qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv,clint0");
151     qemu_fdt_setprop_cells(fdt, nodename, "reg",
152         0x0, memmap[SPIKE_CLINT].base,
153         0x0, memmap[SPIKE_CLINT].size);
154     qemu_fdt_setprop(fdt, nodename, "interrupts-extended",
155         cells, s->soc.num_harts * sizeof(uint32_t) * 4);
156     g_free(cells);
157     g_free(nodename);
158 
159     if (cmdline) {
160         qemu_fdt_add_subnode(fdt, "/chosen");
161         qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
162     }
163  }
164 
165 static void spike_v1_10_0_board_init(MachineState *machine)
166 {
167     const struct MemmapEntry *memmap = spike_memmap;
168 
169     SpikeState *s = g_new0(SpikeState, 1);
170     MemoryRegion *system_memory = get_system_memory();
171     MemoryRegion *main_mem = g_new(MemoryRegion, 1);
172     MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
173     int i;
174 
175     /* Initialize SOC */
176     object_initialize_child(OBJECT(machine), "soc", &s->soc, sizeof(s->soc),
177                             TYPE_RISCV_HART_ARRAY, &error_abort, NULL);
178     object_property_set_str(OBJECT(&s->soc), SPIKE_V1_10_0_CPU, "cpu-type",
179                             &error_abort);
180     object_property_set_int(OBJECT(&s->soc), smp_cpus, "num-harts",
181                             &error_abort);
182     object_property_set_bool(OBJECT(&s->soc), true, "realized",
183                             &error_abort);
184 
185     /* register system main memory (actual RAM) */
186     memory_region_init_ram(main_mem, NULL, "riscv.spike.ram",
187                            machine->ram_size, &error_fatal);
188     memory_region_add_subregion(system_memory, memmap[SPIKE_DRAM].base,
189         main_mem);
190 
191     /* create device tree */
192     create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline);
193 
194     /* boot rom */
195     memory_region_init_rom(mask_rom, NULL, "riscv.spike.mrom",
196                            memmap[SPIKE_MROM].size, &error_fatal);
197     memory_region_add_subregion(system_memory, memmap[SPIKE_MROM].base,
198                                 mask_rom);
199 
200     if (machine->kernel_filename) {
201         load_kernel(machine->kernel_filename);
202     }
203 
204     /* reset vector */
205     uint32_t reset_vec[8] = {
206         0x00000297,                  /* 1:  auipc  t0, %pcrel_hi(dtb) */
207         0x02028593,                  /*     addi   a1, t0, %pcrel_lo(1b) */
208         0xf1402573,                  /*     csrr   a0, mhartid  */
209 #if defined(TARGET_RISCV32)
210         0x0182a283,                  /*     lw     t0, 24(t0) */
211 #elif defined(TARGET_RISCV64)
212         0x0182b283,                  /*     ld     t0, 24(t0) */
213 #endif
214         0x00028067,                  /*     jr     t0 */
215         0x00000000,
216         memmap[SPIKE_DRAM].base,     /* start: .dword DRAM_BASE */
217         0x00000000,
218                                      /* dtb: */
219     };
220 
221     /* copy in the reset vector in little_endian byte order */
222     for (i = 0; i < sizeof(reset_vec) >> 2; i++) {
223         reset_vec[i] = cpu_to_le32(reset_vec[i]);
224     }
225     rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec),
226                           memmap[SPIKE_MROM].base, &address_space_memory);
227 
228     /* copy in the device tree */
229     if (fdt_pack(s->fdt) || fdt_totalsize(s->fdt) >
230             memmap[SPIKE_MROM].size - sizeof(reset_vec)) {
231         error_report("not enough space to store device-tree");
232         exit(1);
233     }
234     qemu_fdt_dumpdtb(s->fdt, fdt_totalsize(s->fdt));
235     rom_add_blob_fixed_as("mrom.fdt", s->fdt, fdt_totalsize(s->fdt),
236                           memmap[SPIKE_MROM].base + sizeof(reset_vec),
237                           &address_space_memory);
238 
239     /* initialize HTIF using symbols found in load_kernel */
240     htif_mm_init(system_memory, mask_rom, &s->soc.harts[0].env, serial_hd(0));
241 
242     /* Core Local Interruptor (timer and IPI) */
243     sifive_clint_create(memmap[SPIKE_CLINT].base, memmap[SPIKE_CLINT].size,
244         smp_cpus, SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE);
245 }
246 
247 static void spike_v1_09_1_board_init(MachineState *machine)
248 {
249     const struct MemmapEntry *memmap = spike_memmap;
250 
251     SpikeState *s = g_new0(SpikeState, 1);
252     MemoryRegion *system_memory = get_system_memory();
253     MemoryRegion *main_mem = g_new(MemoryRegion, 1);
254     MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
255     int i;
256 
257     /* Initialize SOC */
258     object_initialize_child(OBJECT(machine), "soc", &s->soc, sizeof(s->soc),
259                             TYPE_RISCV_HART_ARRAY, &error_abort, NULL);
260     object_property_set_str(OBJECT(&s->soc), SPIKE_V1_09_1_CPU, "cpu-type",
261                             &error_abort);
262     object_property_set_int(OBJECT(&s->soc), smp_cpus, "num-harts",
263                             &error_abort);
264     object_property_set_bool(OBJECT(&s->soc), true, "realized",
265                             &error_abort);
266 
267     /* register system main memory (actual RAM) */
268     memory_region_init_ram(main_mem, NULL, "riscv.spike.ram",
269                            machine->ram_size, &error_fatal);
270     memory_region_add_subregion(system_memory, memmap[SPIKE_DRAM].base,
271         main_mem);
272 
273     /* boot rom */
274     memory_region_init_rom(mask_rom, NULL, "riscv.spike.mrom",
275                            memmap[SPIKE_MROM].size, &error_fatal);
276     memory_region_add_subregion(system_memory, memmap[SPIKE_MROM].base,
277                                 mask_rom);
278 
279     if (machine->kernel_filename) {
280         load_kernel(machine->kernel_filename);
281     }
282 
283     /* reset vector */
284     uint32_t reset_vec[8] = {
285         0x297 + memmap[SPIKE_DRAM].base - memmap[SPIKE_MROM].base, /* lui */
286         0x00028067,                   /* jump to DRAM_BASE */
287         0x00000000,                   /* reserved */
288         memmap[SPIKE_MROM].base + sizeof(reset_vec), /* config string pointer */
289         0, 0, 0, 0                    /* trap vector */
290     };
291 
292     /* part one of config string - before memory size specified */
293     const char *config_string_tmpl =
294         "platform {\n"
295         "  vendor ucb;\n"
296         "  arch spike;\n"
297         "};\n"
298         "rtc {\n"
299         "  addr 0x%" PRIx64 "x;\n"
300         "};\n"
301         "ram {\n"
302         "  0 {\n"
303         "    addr 0x%" PRIx64 "x;\n"
304         "    size 0x%" PRIx64 "x;\n"
305         "  };\n"
306         "};\n"
307         "core {\n"
308         "  0" " {\n"
309         "    " "0 {\n"
310         "      isa %s;\n"
311         "      timecmp 0x%" PRIx64 "x;\n"
312         "      ipi 0x%" PRIx64 "x;\n"
313         "    };\n"
314         "  };\n"
315         "};\n";
316 
317     /* build config string with supplied memory size */
318     char *isa = riscv_isa_string(&s->soc.harts[0]);
319     char *config_string = g_strdup_printf(config_string_tmpl,
320         (uint64_t)memmap[SPIKE_CLINT].base + SIFIVE_TIME_BASE,
321         (uint64_t)memmap[SPIKE_DRAM].base,
322         (uint64_t)ram_size, isa,
323         (uint64_t)memmap[SPIKE_CLINT].base + SIFIVE_TIMECMP_BASE,
324         (uint64_t)memmap[SPIKE_CLINT].base + SIFIVE_SIP_BASE);
325     g_free(isa);
326     size_t config_string_len = strlen(config_string);
327 
328     /* copy in the reset vector in little_endian byte order */
329     for (i = 0; i < sizeof(reset_vec) >> 2; i++) {
330         reset_vec[i] = cpu_to_le32(reset_vec[i]);
331     }
332     rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec),
333                           memmap[SPIKE_MROM].base, &address_space_memory);
334 
335     /* copy in the config string */
336     rom_add_blob_fixed_as("mrom.reset", config_string, config_string_len,
337                           memmap[SPIKE_MROM].base + sizeof(reset_vec),
338                           &address_space_memory);
339 
340     /* initialize HTIF using symbols found in load_kernel */
341     htif_mm_init(system_memory, mask_rom, &s->soc.harts[0].env, serial_hd(0));
342 
343     /* Core Local Interruptor (timer and IPI) */
344     sifive_clint_create(memmap[SPIKE_CLINT].base, memmap[SPIKE_CLINT].size,
345         smp_cpus, SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE);
346 
347     g_free(config_string);
348 }
349 
350 static void spike_v1_09_1_machine_init(MachineClass *mc)
351 {
352     mc->desc = "RISC-V Spike Board (Privileged ISA v1.9.1)";
353     mc->init = spike_v1_09_1_board_init;
354     mc->max_cpus = 1;
355 }
356 
357 static void spike_v1_10_0_machine_init(MachineClass *mc)
358 {
359     mc->desc = "RISC-V Spike Board (Privileged ISA v1.10)";
360     mc->init = spike_v1_10_0_board_init;
361     mc->max_cpus = 1;
362     mc->is_default = 1;
363 }
364 
365 DEFINE_MACHINE("spike_v1.9.1", spike_v1_09_1_machine_init)
366 DEFINE_MACHINE("spike_v1.10", spike_v1_10_0_machine_init)
367