xref: /openbmc/qemu/hw/riscv/spike.c (revision 2a8756ed7d64f8fed6ad50fb062f7118e47c856c)
1 /*
2  * QEMU RISC-V Spike Board
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This provides a RISC-V Board with the following devices:
8  *
9  * 0) HTIF Console and Poweroff
10  * 1) CLINT (Timer and IPI)
11  * 2) PLIC (Platform Level Interrupt Controller)
12  *
13  * This program is free software; you can redistribute it and/or modify it
14  * under the terms and conditions of the GNU General Public License,
15  * version 2 or later, as published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope it will be useful, but WITHOUT
18  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
20  * more details.
21  *
22  * You should have received a copy of the GNU General Public License along with
23  * this program.  If not, see <http://www.gnu.org/licenses/>.
24  */
25 
26 #include "qemu/osdep.h"
27 #include "qemu/log.h"
28 #include "qemu/error-report.h"
29 #include "qapi/error.h"
30 #include "hw/hw.h"
31 #include "hw/boards.h"
32 #include "hw/loader.h"
33 #include "hw/sysbus.h"
34 #include "target/riscv/cpu.h"
35 #include "hw/riscv/riscv_htif.h"
36 #include "hw/riscv/riscv_hart.h"
37 #include "hw/riscv/sifive_clint.h"
38 #include "hw/riscv/spike.h"
39 #include "chardev/char.h"
40 #include "sysemu/arch_init.h"
41 #include "sysemu/device_tree.h"
42 #include "exec/address-spaces.h"
43 #include "elf.h"
44 
45 static const struct MemmapEntry {
46     hwaddr base;
47     hwaddr size;
48 } spike_memmap[] = {
49     [SPIKE_MROM] =     {     0x1000,     0x2000 },
50     [SPIKE_CLINT] =    {  0x2000000,    0x10000 },
51     [SPIKE_DRAM] =     { 0x80000000,        0x0 },
52 };
53 
54 static void copy_le32_to_phys(hwaddr pa, uint32_t *rom, size_t len)
55 {
56     int i;
57     for (i = 0; i < (len >> 2); i++) {
58         stl_phys(&address_space_memory, pa + (i << 2), rom[i]);
59     }
60 }
61 
62 static uint64_t identity_translate(void *opaque, uint64_t addr)
63 {
64     return addr;
65 }
66 
67 static uint64_t load_kernel(const char *kernel_filename)
68 {
69     uint64_t kernel_entry, kernel_high;
70 
71     if (load_elf_ram_sym(kernel_filename, identity_translate, NULL,
72             &kernel_entry, NULL, &kernel_high, 0, ELF_MACHINE, 1, 0,
73             NULL, true, htif_symbol_callback) < 0) {
74         error_report("qemu: could not load kernel '%s'", kernel_filename);
75         exit(1);
76     }
77     return kernel_entry;
78 }
79 
80 static void create_fdt(SpikeState *s, const struct MemmapEntry *memmap,
81     uint64_t mem_size, const char *cmdline)
82 {
83     void *fdt;
84     int cpu;
85     uint32_t *cells;
86     char *nodename;
87 
88     fdt = s->fdt = create_device_tree(&s->fdt_size);
89     if (!fdt) {
90         error_report("create_device_tree() failed");
91         exit(1);
92     }
93 
94     qemu_fdt_setprop_string(fdt, "/", "model", "ucbbar,spike-bare,qemu");
95     qemu_fdt_setprop_string(fdt, "/", "compatible", "ucbbar,spike-bare-dev");
96     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
97     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
98 
99     qemu_fdt_add_subnode(fdt, "/htif");
100     qemu_fdt_setprop_string(fdt, "/htif", "compatible", "ucb,htif0");
101 
102     qemu_fdt_add_subnode(fdt, "/soc");
103     qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
104     qemu_fdt_setprop_string(fdt, "/soc", "compatible", "ucbbar,spike-bare-soc");
105     qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2);
106     qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2);
107 
108     nodename = g_strdup_printf("/memory@%lx",
109         (long)memmap[SPIKE_DRAM].base);
110     qemu_fdt_add_subnode(fdt, nodename);
111     qemu_fdt_setprop_cells(fdt, nodename, "reg",
112         memmap[SPIKE_DRAM].base >> 32, memmap[SPIKE_DRAM].base,
113         mem_size >> 32, mem_size);
114     qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
115     g_free(nodename);
116 
117     qemu_fdt_add_subnode(fdt, "/cpus");
118     qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency",
119         SIFIVE_CLINT_TIMEBASE_FREQ);
120     qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
121     qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
122 
123     for (cpu = s->soc.num_harts - 1; cpu >= 0; cpu--) {
124         nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
125         char *intc = g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu);
126         char *isa = riscv_isa_string(&s->soc.harts[cpu]);
127         qemu_fdt_add_subnode(fdt, nodename);
128         qemu_fdt_setprop_cell(fdt, nodename, "clock-frequency",
129                               SPIKE_CLOCK_FREQ);
130         qemu_fdt_setprop_string(fdt, nodename, "mmu-type", "riscv,sv48");
131         qemu_fdt_setprop_string(fdt, nodename, "riscv,isa", isa);
132         qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv");
133         qemu_fdt_setprop_string(fdt, nodename, "status", "okay");
134         qemu_fdt_setprop_cell(fdt, nodename, "reg", cpu);
135         qemu_fdt_setprop_string(fdt, nodename, "device_type", "cpu");
136         qemu_fdt_add_subnode(fdt, intc);
137         qemu_fdt_setprop_cell(fdt, intc, "phandle", 1);
138         qemu_fdt_setprop_cell(fdt, intc, "linux,phandle", 1);
139         qemu_fdt_setprop_string(fdt, intc, "compatible", "riscv,cpu-intc");
140         qemu_fdt_setprop(fdt, intc, "interrupt-controller", NULL, 0);
141         qemu_fdt_setprop_cell(fdt, intc, "#interrupt-cells", 1);
142         g_free(isa);
143         g_free(intc);
144         g_free(nodename);
145     }
146 
147     cells =  g_new0(uint32_t, s->soc.num_harts * 4);
148     for (cpu = 0; cpu < s->soc.num_harts; cpu++) {
149         nodename =
150             g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu);
151         uint32_t intc_phandle = qemu_fdt_get_phandle(fdt, nodename);
152         cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
153         cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
154         cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
155         cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
156         g_free(nodename);
157     }
158     nodename = g_strdup_printf("/soc/clint@%lx",
159         (long)memmap[SPIKE_CLINT].base);
160     qemu_fdt_add_subnode(fdt, nodename);
161     qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv,clint0");
162     qemu_fdt_setprop_cells(fdt, nodename, "reg",
163         0x0, memmap[SPIKE_CLINT].base,
164         0x0, memmap[SPIKE_CLINT].size);
165     qemu_fdt_setprop(fdt, nodename, "interrupts-extended",
166         cells, s->soc.num_harts * sizeof(uint32_t) * 4);
167     g_free(cells);
168     g_free(nodename);
169 
170     qemu_fdt_add_subnode(fdt, "/chosen");
171     qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
172  }
173 
174 static void spike_v1_10_0_board_init(MachineState *machine)
175 {
176     const struct MemmapEntry *memmap = spike_memmap;
177 
178     SpikeState *s = g_new0(SpikeState, 1);
179     MemoryRegion *system_memory = get_system_memory();
180     MemoryRegion *main_mem = g_new(MemoryRegion, 1);
181     MemoryRegion *boot_rom = g_new(MemoryRegion, 1);
182 
183     /* Initialize SOC */
184     object_initialize(&s->soc, sizeof(s->soc), TYPE_RISCV_HART_ARRAY);
185     object_property_add_child(OBJECT(machine), "soc", OBJECT(&s->soc),
186                               &error_abort);
187     object_property_set_str(OBJECT(&s->soc), SPIKE_V1_10_0_CPU, "cpu-type",
188                             &error_abort);
189     object_property_set_int(OBJECT(&s->soc), smp_cpus, "num-harts",
190                             &error_abort);
191     object_property_set_bool(OBJECT(&s->soc), true, "realized",
192                             &error_abort);
193 
194     /* register system main memory (actual RAM) */
195     memory_region_init_ram(main_mem, NULL, "riscv.spike.ram",
196                            machine->ram_size, &error_fatal);
197     memory_region_add_subregion(system_memory, memmap[SPIKE_DRAM].base,
198         main_mem);
199 
200     /* create device tree */
201     create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline);
202 
203     /* boot rom */
204     memory_region_init_ram(boot_rom, NULL, "riscv.spike.bootrom",
205                            s->fdt_size + 0x2000, &error_fatal);
206     memory_region_add_subregion(system_memory, 0x0, boot_rom);
207 
208     if (machine->kernel_filename) {
209         load_kernel(machine->kernel_filename);
210     }
211 
212     /* reset vector */
213     uint32_t reset_vec[8] = {
214         0x00000297,                  /* 1:  auipc  t0, %pcrel_hi(dtb) */
215         0x02028593,                  /*     addi   a1, t0, %pcrel_lo(1b) */
216         0xf1402573,                  /*     csrr   a0, mhartid  */
217 #if defined(TARGET_RISCV32)
218         0x0182a283,                  /*     lw     t0, 24(t0) */
219 #elif defined(TARGET_RISCV64)
220         0x0182b283,                  /*     ld     t0, 24(t0) */
221 #endif
222         0x00028067,                  /*     jr     t0 */
223         0x00000000,
224         memmap[SPIKE_DRAM].base,     /* start: .dword DRAM_BASE */
225         0x00000000,
226                                      /* dtb: */
227     };
228 
229     /* copy in the reset vector */
230     copy_le32_to_phys(memmap[SPIKE_MROM].base, reset_vec, sizeof(reset_vec));
231 
232     /* copy in the device tree */
233     qemu_fdt_dumpdtb(s->fdt, s->fdt_size);
234     cpu_physical_memory_write(memmap[SPIKE_MROM].base + sizeof(reset_vec),
235         s->fdt, s->fdt_size);
236 
237     /* initialize HTIF using symbols found in load_kernel */
238     htif_mm_init(system_memory, boot_rom, &s->soc.harts[0].env, serial_hd(0));
239 
240     /* Core Local Interruptor (timer and IPI) */
241     sifive_clint_create(memmap[SPIKE_CLINT].base, memmap[SPIKE_CLINT].size,
242         smp_cpus, SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE);
243 }
244 
245 static void spike_v1_09_1_board_init(MachineState *machine)
246 {
247     const struct MemmapEntry *memmap = spike_memmap;
248 
249     SpikeState *s = g_new0(SpikeState, 1);
250     MemoryRegion *system_memory = get_system_memory();
251     MemoryRegion *main_mem = g_new(MemoryRegion, 1);
252     MemoryRegion *boot_rom = g_new(MemoryRegion, 1);
253 
254     /* Initialize SOC */
255     object_initialize(&s->soc, sizeof(s->soc), TYPE_RISCV_HART_ARRAY);
256     object_property_add_child(OBJECT(machine), "soc", OBJECT(&s->soc),
257                               &error_abort);
258     object_property_set_str(OBJECT(&s->soc), SPIKE_V1_09_1_CPU, "cpu-type",
259                             &error_abort);
260     object_property_set_int(OBJECT(&s->soc), smp_cpus, "num-harts",
261                             &error_abort);
262     object_property_set_bool(OBJECT(&s->soc), true, "realized",
263                             &error_abort);
264 
265     /* register system main memory (actual RAM) */
266     memory_region_init_ram(main_mem, NULL, "riscv.spike.ram",
267                            machine->ram_size, &error_fatal);
268     memory_region_add_subregion(system_memory, memmap[SPIKE_DRAM].base,
269         main_mem);
270 
271     /* boot rom */
272     memory_region_init_ram(boot_rom, NULL, "riscv.spike.bootrom",
273                            0x40000, &error_fatal);
274     memory_region_add_subregion(system_memory, 0x0, boot_rom);
275 
276     if (machine->kernel_filename) {
277         load_kernel(machine->kernel_filename);
278     }
279 
280     /* reset vector */
281     uint32_t reset_vec[8] = {
282         0x297 + memmap[SPIKE_DRAM].base - memmap[SPIKE_MROM].base, /* lui */
283         0x00028067,                   /* jump to DRAM_BASE */
284         0x00000000,                   /* reserved */
285         memmap[SPIKE_MROM].base + sizeof(reset_vec), /* config string pointer */
286         0, 0, 0, 0                    /* trap vector */
287     };
288 
289     /* part one of config string - before memory size specified */
290     const char *config_string_tmpl =
291         "platform {\n"
292         "  vendor ucb;\n"
293         "  arch spike;\n"
294         "};\n"
295         "rtc {\n"
296         "  addr 0x%" PRIx64 "x;\n"
297         "};\n"
298         "ram {\n"
299         "  0 {\n"
300         "    addr 0x%" PRIx64 "x;\n"
301         "    size 0x%" PRIx64 "x;\n"
302         "  };\n"
303         "};\n"
304         "core {\n"
305         "  0" " {\n"
306         "    " "0 {\n"
307         "      isa %s;\n"
308         "      timecmp 0x%" PRIx64 "x;\n"
309         "      ipi 0x%" PRIx64 "x;\n"
310         "    };\n"
311         "  };\n"
312         "};\n";
313 
314     /* build config string with supplied memory size */
315     char *isa = riscv_isa_string(&s->soc.harts[0]);
316     size_t config_string_size = strlen(config_string_tmpl) + 48;
317     char *config_string = malloc(config_string_size);
318     snprintf(config_string, config_string_size, config_string_tmpl,
319         (uint64_t)memmap[SPIKE_CLINT].base + SIFIVE_TIME_BASE,
320         (uint64_t)memmap[SPIKE_DRAM].base,
321         (uint64_t)ram_size, isa,
322         (uint64_t)memmap[SPIKE_CLINT].base + SIFIVE_TIMECMP_BASE,
323         (uint64_t)memmap[SPIKE_CLINT].base + SIFIVE_SIP_BASE);
324     g_free(isa);
325     size_t config_string_len = strlen(config_string);
326 
327     /* copy in the reset vector */
328     copy_le32_to_phys(memmap[SPIKE_MROM].base, reset_vec, sizeof(reset_vec));
329 
330     /* copy in the config string */
331     cpu_physical_memory_write(memmap[SPIKE_MROM].base + sizeof(reset_vec),
332         config_string, config_string_len);
333 
334     /* initialize HTIF using symbols found in load_kernel */
335     htif_mm_init(system_memory, boot_rom, &s->soc.harts[0].env, serial_hd(0));
336 
337     /* Core Local Interruptor (timer and IPI) */
338     sifive_clint_create(memmap[SPIKE_CLINT].base, memmap[SPIKE_CLINT].size,
339         smp_cpus, SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE);
340 }
341 
342 static const TypeInfo spike_v_1_09_1_device = {
343     .name          = TYPE_RISCV_SPIKE_V1_09_1_BOARD,
344     .parent        = TYPE_SYS_BUS_DEVICE,
345     .instance_size = sizeof(SpikeState),
346 };
347 
348 static const TypeInfo spike_v_1_10_0_device = {
349     .name          = TYPE_RISCV_SPIKE_V1_10_0_BOARD,
350     .parent        = TYPE_SYS_BUS_DEVICE,
351     .instance_size = sizeof(SpikeState),
352 };
353 
354 static void spike_v1_09_1_machine_init(MachineClass *mc)
355 {
356     mc->desc = "RISC-V Spike Board (Privileged ISA v1.9.1)";
357     mc->init = spike_v1_09_1_board_init;
358     mc->max_cpus = 1;
359 }
360 
361 static void spike_v1_10_0_machine_init(MachineClass *mc)
362 {
363     mc->desc = "RISC-V Spike Board (Privileged ISA v1.10)";
364     mc->init = spike_v1_10_0_board_init;
365     mc->max_cpus = 1;
366     mc->is_default = 1;
367 }
368 
369 DEFINE_MACHINE("spike_v1.9.1", spike_v1_09_1_machine_init)
370 DEFINE_MACHINE("spike_v1.10", spike_v1_10_0_machine_init)
371 
372 static void riscv_spike_board_register_types(void)
373 {
374     type_register_static(&spike_v_1_09_1_device);
375     type_register_static(&spike_v_1_10_0_device);
376 }
377 
378 type_init(riscv_spike_board_register_types);
379