xref: /openbmc/qemu/hw/riscv/microchip_pfsoc.c (revision e6a19a6477407e57b4deb61aaa497a14d7db9626)
1 /*
2  * QEMU RISC-V Board Compatible with Microchip PolarFire SoC Icicle Kit
3  *
4  * Copyright (c) 2020 Wind River Systems, Inc.
5  *
6  * Author:
7  *   Bin Meng <bin.meng@windriver.com>
8  *
9  * Provides a board compatible with the Microchip PolarFire SoC Icicle Kit
10  *
11  * 0) CLINT (Core Level Interruptor)
12  * 1) PLIC (Platform Level Interrupt Controller)
13  * 2) eNVM (Embedded Non-Volatile Memory)
14  * 3) MMUARTs (Multi-Mode UART)
15  * 4) Cadence eMMC/SDHC controller and an SD card connected to it
16  * 5) SiFive Platform DMA (Direct Memory Access Controller)
17  * 6) GEM (Gigabit Ethernet MAC Controller)
18  * 7) DMC (DDR Memory Controller)
19  * 8) IOSCB modules
20  *
21  * This board currently generates devicetree dynamically that indicates at least
22  * two harts and up to five harts.
23  *
24  * This program is free software; you can redistribute it and/or modify it
25  * under the terms and conditions of the GNU General Public License,
26  * version 2 or later, as published by the Free Software Foundation.
27  *
28  * This program is distributed in the hope it will be useful, but WITHOUT
29  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
30  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
31  * more details.
32  *
33  * You should have received a copy of the GNU General Public License along with
34  * this program.  If not, see <http://www.gnu.org/licenses/>.
35  */
36 
37 #include "qemu/osdep.h"
38 #include "qemu/error-report.h"
39 #include "qemu/units.h"
40 #include "qemu/cutils.h"
41 #include "qapi/error.h"
42 #include "hw/boards.h"
43 #include "hw/loader.h"
44 #include "hw/sysbus.h"
45 #include "chardev/char.h"
46 #include "hw/cpu/cluster.h"
47 #include "target/riscv/cpu.h"
48 #include "hw/misc/unimp.h"
49 #include "hw/riscv/boot.h"
50 #include "hw/riscv/riscv_hart.h"
51 #include "hw/riscv/microchip_pfsoc.h"
52 #include "hw/intc/riscv_aclint.h"
53 #include "hw/intc/sifive_plic.h"
54 #include "sysemu/device_tree.h"
55 #include "sysemu/sysemu.h"
56 
57 /*
58  * The BIOS image used by this machine is called Hart Software Services (HSS).
59  * See https://github.com/polarfire-soc/hart-software-services
60  */
61 #define BIOS_FILENAME   "hss.bin"
62 #define RESET_VECTOR    0x20220000
63 
64 /* CLINT timebase frequency */
65 #define CLINT_TIMEBASE_FREQ 1000000
66 
67 /* GEM version */
68 #define GEM_REVISION    0x0107010c
69 
70 /*
71  * The complete description of the whole PolarFire SoC memory map is scattered
72  * in different documents. There are several places to look at for memory maps:
73  *
74  * 1 Chapter 11 "MSS Memory Map", in the doc "UG0880: PolarFire SoC FPGA
75  *   Microprocessor Subsystem (MSS) User Guide", which can be downloaded from
76  *   https://www.microsemi.com/document-portal/doc_download/
77  *   1244570-ug0880-polarfire-soc-fpga-microprocessor-subsystem-mss-user-guide,
78  *   describes the whole picture of the PolarFire SoC memory map.
79  *
80  * 2 A zip file for PolarFire soC memory map, which can be downloaded from
81  *   https://www.microsemi.com/document-portal/doc_download/
82  *   1244581-polarfire-soc-register-map, contains the following 2 major parts:
83  *   - Register Map/PF_SoC_RegMap_V1_1/pfsoc_regmap.htm
84  *     describes the complete integrated peripherals memory map
85  *   - Register Map/PF_SoC_RegMap_V1_1/MPFS250T/mpfs250t_ioscb_memmap_dri.htm
86  *     describes the complete IOSCB modules memory maps
87  */
88 static const MemMapEntry microchip_pfsoc_memmap[] = {
89     [MICROCHIP_PFSOC_RSVD0] =           {        0x0,        0x100 },
90     [MICROCHIP_PFSOC_DEBUG] =           {      0x100,        0xf00 },
91     [MICROCHIP_PFSOC_E51_DTIM] =        {  0x1000000,       0x2000 },
92     [MICROCHIP_PFSOC_BUSERR_UNIT0] =    {  0x1700000,       0x1000 },
93     [MICROCHIP_PFSOC_BUSERR_UNIT1] =    {  0x1701000,       0x1000 },
94     [MICROCHIP_PFSOC_BUSERR_UNIT2] =    {  0x1702000,       0x1000 },
95     [MICROCHIP_PFSOC_BUSERR_UNIT3] =    {  0x1703000,       0x1000 },
96     [MICROCHIP_PFSOC_BUSERR_UNIT4] =    {  0x1704000,       0x1000 },
97     [MICROCHIP_PFSOC_CLINT] =           {  0x2000000,      0x10000 },
98     [MICROCHIP_PFSOC_L2CC] =            {  0x2010000,       0x1000 },
99     [MICROCHIP_PFSOC_DMA] =             {  0x3000000,     0x100000 },
100     [MICROCHIP_PFSOC_L2LIM] =           {  0x8000000,    0x2000000 },
101     [MICROCHIP_PFSOC_PLIC] =            {  0xc000000,    0x4000000 },
102     [MICROCHIP_PFSOC_MMUART0] =         { 0x20000000,       0x1000 },
103     [MICROCHIP_PFSOC_WDOG0] =           { 0x20001000,       0x1000 },
104     [MICROCHIP_PFSOC_SYSREG] =          { 0x20002000,       0x2000 },
105     [MICROCHIP_PFSOC_AXISW] =           { 0x20004000,       0x1000 },
106     [MICROCHIP_PFSOC_MPUCFG] =          { 0x20005000,       0x1000 },
107     [MICROCHIP_PFSOC_FMETER] =          { 0x20006000,       0x1000 },
108     [MICROCHIP_PFSOC_DDR_SGMII_PHY] =   { 0x20007000,       0x1000 },
109     [MICROCHIP_PFSOC_EMMC_SD] =         { 0x20008000,       0x1000 },
110     [MICROCHIP_PFSOC_DDR_CFG] =         { 0x20080000,      0x40000 },
111     [MICROCHIP_PFSOC_MMUART1] =         { 0x20100000,       0x1000 },
112     [MICROCHIP_PFSOC_MMUART2] =         { 0x20102000,       0x1000 },
113     [MICROCHIP_PFSOC_MMUART3] =         { 0x20104000,       0x1000 },
114     [MICROCHIP_PFSOC_MMUART4] =         { 0x20106000,       0x1000 },
115     [MICROCHIP_PFSOC_WDOG1] =           { 0x20101000,       0x1000 },
116     [MICROCHIP_PFSOC_WDOG2] =           { 0x20103000,       0x1000 },
117     [MICROCHIP_PFSOC_WDOG3] =           { 0x20105000,       0x1000 },
118     [MICROCHIP_PFSOC_WDOG4] =           { 0x20106000,       0x1000 },
119     [MICROCHIP_PFSOC_SPI0] =            { 0x20108000,       0x1000 },
120     [MICROCHIP_PFSOC_SPI1] =            { 0x20109000,       0x1000 },
121     [MICROCHIP_PFSOC_I2C0] =            { 0x2010a000,       0x1000 },
122     [MICROCHIP_PFSOC_I2C1] =            { 0x2010b000,       0x1000 },
123     [MICROCHIP_PFSOC_CAN0] =            { 0x2010c000,       0x1000 },
124     [MICROCHIP_PFSOC_CAN1] =            { 0x2010d000,       0x1000 },
125     [MICROCHIP_PFSOC_GEM0] =            { 0x20110000,       0x2000 },
126     [MICROCHIP_PFSOC_GEM1] =            { 0x20112000,       0x2000 },
127     [MICROCHIP_PFSOC_GPIO0] =           { 0x20120000,       0x1000 },
128     [MICROCHIP_PFSOC_GPIO1] =           { 0x20121000,       0x1000 },
129     [MICROCHIP_PFSOC_GPIO2] =           { 0x20122000,       0x1000 },
130     [MICROCHIP_PFSOC_RTC] =             { 0x20124000,       0x1000 },
131     [MICROCHIP_PFSOC_ENVM_CFG] =        { 0x20200000,       0x1000 },
132     [MICROCHIP_PFSOC_ENVM_DATA] =       { 0x20220000,      0x20000 },
133     [MICROCHIP_PFSOC_USB] =             { 0x20201000,       0x1000 },
134     [MICROCHIP_PFSOC_QSPI_XIP] =        { 0x21000000,    0x1000000 },
135     [MICROCHIP_PFSOC_IOSCB] =           { 0x30000000,   0x10000000 },
136     [MICROCHIP_PFSOC_FABRIC_FIC0] =   { 0x2000000000, 0x1000000000 },
137     [MICROCHIP_PFSOC_FABRIC_FIC1] =   { 0x3000000000, 0x1000000000 },
138     [MICROCHIP_PFSOC_FABRIC_FIC3] =     { 0x40000000,   0x20000000 },
139     [MICROCHIP_PFSOC_DRAM_LO] =         { 0x80000000,   0x40000000 },
140     [MICROCHIP_PFSOC_DRAM_LO_ALIAS] =   { 0xc0000000,   0x40000000 },
141     [MICROCHIP_PFSOC_DRAM_HI] =       { 0x1000000000,          0x0 },
142     [MICROCHIP_PFSOC_DRAM_HI_ALIAS] = { 0x1400000000,          0x0 },
143 
144 };
145 
146 static void microchip_pfsoc_soc_instance_init(Object *obj)
147 {
148     MachineState *ms = MACHINE(qdev_get_machine());
149     MicrochipPFSoCState *s = MICROCHIP_PFSOC(obj);
150 
151     object_initialize_child(obj, "e-cluster", &s->e_cluster, TYPE_CPU_CLUSTER);
152     qdev_prop_set_uint32(DEVICE(&s->e_cluster), "cluster-id", 0);
153 
154     object_initialize_child(OBJECT(&s->e_cluster), "e-cpus", &s->e_cpus,
155                             TYPE_RISCV_HART_ARRAY);
156     qdev_prop_set_uint32(DEVICE(&s->e_cpus), "num-harts", 1);
157     qdev_prop_set_uint32(DEVICE(&s->e_cpus), "hartid-base", 0);
158     qdev_prop_set_string(DEVICE(&s->e_cpus), "cpu-type",
159                          TYPE_RISCV_CPU_SIFIVE_E51);
160     qdev_prop_set_uint64(DEVICE(&s->e_cpus), "resetvec", RESET_VECTOR);
161 
162     object_initialize_child(obj, "u-cluster", &s->u_cluster, TYPE_CPU_CLUSTER);
163     qdev_prop_set_uint32(DEVICE(&s->u_cluster), "cluster-id", 1);
164 
165     object_initialize_child(OBJECT(&s->u_cluster), "u-cpus", &s->u_cpus,
166                             TYPE_RISCV_HART_ARRAY);
167     qdev_prop_set_uint32(DEVICE(&s->u_cpus), "num-harts", ms->smp.cpus - 1);
168     qdev_prop_set_uint32(DEVICE(&s->u_cpus), "hartid-base", 1);
169     qdev_prop_set_string(DEVICE(&s->u_cpus), "cpu-type",
170                          TYPE_RISCV_CPU_SIFIVE_U54);
171     qdev_prop_set_uint64(DEVICE(&s->u_cpus), "resetvec", RESET_VECTOR);
172 
173     object_initialize_child(obj, "dma-controller", &s->dma,
174                             TYPE_SIFIVE_PDMA);
175 
176     object_initialize_child(obj, "sysreg", &s->sysreg,
177                             TYPE_MCHP_PFSOC_SYSREG);
178 
179     object_initialize_child(obj, "ddr-sgmii-phy", &s->ddr_sgmii_phy,
180                             TYPE_MCHP_PFSOC_DDR_SGMII_PHY);
181     object_initialize_child(obj, "ddr-cfg", &s->ddr_cfg,
182                             TYPE_MCHP_PFSOC_DDR_CFG);
183 
184     object_initialize_child(obj, "gem0", &s->gem0, TYPE_CADENCE_GEM);
185     object_initialize_child(obj, "gem1", &s->gem1, TYPE_CADENCE_GEM);
186 
187     object_initialize_child(obj, "sd-controller", &s->sdhci,
188                             TYPE_CADENCE_SDHCI);
189 
190     object_initialize_child(obj, "ioscb", &s->ioscb, TYPE_MCHP_PFSOC_IOSCB);
191 }
192 
193 static void microchip_pfsoc_soc_realize(DeviceState *dev, Error **errp)
194 {
195     MachineState *ms = MACHINE(qdev_get_machine());
196     MicrochipPFSoCState *s = MICROCHIP_PFSOC(dev);
197     const MemMapEntry *memmap = microchip_pfsoc_memmap;
198     MemoryRegion *system_memory = get_system_memory();
199     MemoryRegion *rsvd0_mem = g_new(MemoryRegion, 1);
200     MemoryRegion *e51_dtim_mem = g_new(MemoryRegion, 1);
201     MemoryRegion *l2lim_mem = g_new(MemoryRegion, 1);
202     MemoryRegion *envm_data = g_new(MemoryRegion, 1);
203     MemoryRegion *qspi_xip_mem = g_new(MemoryRegion, 1);
204     char *plic_hart_config;
205     NICInfo *nd;
206     int i;
207 
208     sysbus_realize(SYS_BUS_DEVICE(&s->e_cpus), &error_abort);
209     sysbus_realize(SYS_BUS_DEVICE(&s->u_cpus), &error_abort);
210     /*
211      * The cluster must be realized after the RISC-V hart array container,
212      * as the container's CPU object is only created on realize, and the
213      * CPU must exist and have been parented into the cluster before the
214      * cluster is realized.
215      */
216     qdev_realize(DEVICE(&s->e_cluster), NULL, &error_abort);
217     qdev_realize(DEVICE(&s->u_cluster), NULL, &error_abort);
218 
219     /* Reserved Memory at address 0 */
220     memory_region_init_ram(rsvd0_mem, NULL, "microchip.pfsoc.rsvd0_mem",
221                            memmap[MICROCHIP_PFSOC_RSVD0].size, &error_fatal);
222     memory_region_add_subregion(system_memory,
223                                 memmap[MICROCHIP_PFSOC_RSVD0].base,
224                                 rsvd0_mem);
225 
226     /* E51 DTIM */
227     memory_region_init_ram(e51_dtim_mem, NULL, "microchip.pfsoc.e51_dtim_mem",
228                            memmap[MICROCHIP_PFSOC_E51_DTIM].size, &error_fatal);
229     memory_region_add_subregion(system_memory,
230                                 memmap[MICROCHIP_PFSOC_E51_DTIM].base,
231                                 e51_dtim_mem);
232 
233     /* Bus Error Units */
234     create_unimplemented_device("microchip.pfsoc.buserr_unit0_mem",
235         memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].base,
236         memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].size);
237     create_unimplemented_device("microchip.pfsoc.buserr_unit1_mem",
238         memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].base,
239         memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].size);
240     create_unimplemented_device("microchip.pfsoc.buserr_unit2_mem",
241         memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].base,
242         memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].size);
243     create_unimplemented_device("microchip.pfsoc.buserr_unit3_mem",
244         memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].base,
245         memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].size);
246     create_unimplemented_device("microchip.pfsoc.buserr_unit4_mem",
247         memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].base,
248         memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].size);
249 
250     /* CLINT */
251     riscv_aclint_swi_create(memmap[MICROCHIP_PFSOC_CLINT].base,
252         0, ms->smp.cpus, false);
253     riscv_aclint_mtimer_create(
254         memmap[MICROCHIP_PFSOC_CLINT].base + RISCV_ACLINT_SWI_SIZE,
255         RISCV_ACLINT_DEFAULT_MTIMER_SIZE, 0, ms->smp.cpus,
256         RISCV_ACLINT_DEFAULT_MTIMECMP, RISCV_ACLINT_DEFAULT_MTIME,
257         CLINT_TIMEBASE_FREQ, false);
258 
259     /* L2 cache controller */
260     create_unimplemented_device("microchip.pfsoc.l2cc",
261         memmap[MICROCHIP_PFSOC_L2CC].base, memmap[MICROCHIP_PFSOC_L2CC].size);
262 
263     /*
264      * Add L2-LIM at reset size.
265      * This should be reduced in size as the L2 Cache Controller WayEnable
266      * register is incremented. Unfortunately I don't see a nice (or any) way
267      * to handle reducing or blocking out the L2 LIM while still allowing it
268      * be re returned to all enabled after a reset. For the time being, just
269      * leave it enabled all the time. This won't break anything, but will be
270      * too generous to misbehaving guests.
271      */
272     memory_region_init_ram(l2lim_mem, NULL, "microchip.pfsoc.l2lim",
273                            memmap[MICROCHIP_PFSOC_L2LIM].size, &error_fatal);
274     memory_region_add_subregion(system_memory,
275                                 memmap[MICROCHIP_PFSOC_L2LIM].base,
276                                 l2lim_mem);
277 
278     /* create PLIC hart topology configuration string */
279     plic_hart_config = riscv_plic_hart_config_string(ms->smp.cpus);
280 
281     /* PLIC */
282     s->plic = sifive_plic_create(memmap[MICROCHIP_PFSOC_PLIC].base,
283         plic_hart_config, ms->smp.cpus, 0,
284         MICROCHIP_PFSOC_PLIC_NUM_SOURCES,
285         MICROCHIP_PFSOC_PLIC_NUM_PRIORITIES,
286         MICROCHIP_PFSOC_PLIC_PRIORITY_BASE,
287         MICROCHIP_PFSOC_PLIC_PENDING_BASE,
288         MICROCHIP_PFSOC_PLIC_ENABLE_BASE,
289         MICROCHIP_PFSOC_PLIC_ENABLE_STRIDE,
290         MICROCHIP_PFSOC_PLIC_CONTEXT_BASE,
291         MICROCHIP_PFSOC_PLIC_CONTEXT_STRIDE,
292         memmap[MICROCHIP_PFSOC_PLIC].size);
293     g_free(plic_hart_config);
294 
295     /* DMA */
296     sysbus_realize(SYS_BUS_DEVICE(&s->dma), errp);
297     sysbus_mmio_map(SYS_BUS_DEVICE(&s->dma), 0,
298                     memmap[MICROCHIP_PFSOC_DMA].base);
299     for (i = 0; i < SIFIVE_PDMA_IRQS; i++) {
300         sysbus_connect_irq(SYS_BUS_DEVICE(&s->dma), i,
301                            qdev_get_gpio_in(DEVICE(s->plic),
302                                             MICROCHIP_PFSOC_DMA_IRQ0 + i));
303     }
304 
305     /* SYSREG */
306     sysbus_realize(SYS_BUS_DEVICE(&s->sysreg), errp);
307     sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysreg), 0,
308                     memmap[MICROCHIP_PFSOC_SYSREG].base);
309     sysbus_connect_irq(SYS_BUS_DEVICE(&s->sysreg), 0,
310                        qdev_get_gpio_in(DEVICE(s->plic),
311                        MICROCHIP_PFSOC_MAILBOX_IRQ));
312 
313     /* AXISW */
314     create_unimplemented_device("microchip.pfsoc.axisw",
315         memmap[MICROCHIP_PFSOC_AXISW].base,
316         memmap[MICROCHIP_PFSOC_AXISW].size);
317 
318     /* MPUCFG */
319     create_unimplemented_device("microchip.pfsoc.mpucfg",
320         memmap[MICROCHIP_PFSOC_MPUCFG].base,
321         memmap[MICROCHIP_PFSOC_MPUCFG].size);
322 
323     /* FMETER */
324     create_unimplemented_device("microchip.pfsoc.fmeter",
325         memmap[MICROCHIP_PFSOC_FMETER].base,
326         memmap[MICROCHIP_PFSOC_FMETER].size);
327 
328     /* DDR SGMII PHY */
329     sysbus_realize(SYS_BUS_DEVICE(&s->ddr_sgmii_phy), errp);
330     sysbus_mmio_map(SYS_BUS_DEVICE(&s->ddr_sgmii_phy), 0,
331                     memmap[MICROCHIP_PFSOC_DDR_SGMII_PHY].base);
332 
333     /* DDR CFG */
334     sysbus_realize(SYS_BUS_DEVICE(&s->ddr_cfg), errp);
335     sysbus_mmio_map(SYS_BUS_DEVICE(&s->ddr_cfg), 0,
336                     memmap[MICROCHIP_PFSOC_DDR_CFG].base);
337 
338     /* SDHCI */
339     sysbus_realize(SYS_BUS_DEVICE(&s->sdhci), errp);
340     sysbus_mmio_map(SYS_BUS_DEVICE(&s->sdhci), 0,
341                     memmap[MICROCHIP_PFSOC_EMMC_SD].base);
342     sysbus_connect_irq(SYS_BUS_DEVICE(&s->sdhci), 0,
343         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_EMMC_SD_IRQ));
344 
345     /* MMUARTs */
346     s->serial0 = mchp_pfsoc_mmuart_create(system_memory,
347         memmap[MICROCHIP_PFSOC_MMUART0].base,
348         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART0_IRQ),
349         serial_hd(0));
350     s->serial1 = mchp_pfsoc_mmuart_create(system_memory,
351         memmap[MICROCHIP_PFSOC_MMUART1].base,
352         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART1_IRQ),
353         serial_hd(1));
354     s->serial2 = mchp_pfsoc_mmuart_create(system_memory,
355         memmap[MICROCHIP_PFSOC_MMUART2].base,
356         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART2_IRQ),
357         serial_hd(2));
358     s->serial3 = mchp_pfsoc_mmuart_create(system_memory,
359         memmap[MICROCHIP_PFSOC_MMUART3].base,
360         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART3_IRQ),
361         serial_hd(3));
362     s->serial4 = mchp_pfsoc_mmuart_create(system_memory,
363         memmap[MICROCHIP_PFSOC_MMUART4].base,
364         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART4_IRQ),
365         serial_hd(4));
366 
367     /* Watchdogs */
368     create_unimplemented_device("microchip.pfsoc.watchdog0",
369         memmap[MICROCHIP_PFSOC_WDOG0].base,
370         memmap[MICROCHIP_PFSOC_WDOG0].size);
371     create_unimplemented_device("microchip.pfsoc.watchdog1",
372         memmap[MICROCHIP_PFSOC_WDOG1].base,
373         memmap[MICROCHIP_PFSOC_WDOG1].size);
374     create_unimplemented_device("microchip.pfsoc.watchdog2",
375         memmap[MICROCHIP_PFSOC_WDOG2].base,
376         memmap[MICROCHIP_PFSOC_WDOG2].size);
377     create_unimplemented_device("microchip.pfsoc.watchdog3",
378         memmap[MICROCHIP_PFSOC_WDOG3].base,
379         memmap[MICROCHIP_PFSOC_WDOG3].size);
380     create_unimplemented_device("microchip.pfsoc.watchdog4",
381         memmap[MICROCHIP_PFSOC_WDOG4].base,
382         memmap[MICROCHIP_PFSOC_WDOG4].size);
383 
384     /* SPI */
385     create_unimplemented_device("microchip.pfsoc.spi0",
386         memmap[MICROCHIP_PFSOC_SPI0].base,
387         memmap[MICROCHIP_PFSOC_SPI0].size);
388     create_unimplemented_device("microchip.pfsoc.spi1",
389         memmap[MICROCHIP_PFSOC_SPI1].base,
390         memmap[MICROCHIP_PFSOC_SPI1].size);
391 
392     /* I2C */
393     create_unimplemented_device("microchip.pfsoc.i2c0",
394         memmap[MICROCHIP_PFSOC_I2C0].base,
395         memmap[MICROCHIP_PFSOC_I2C0].size);
396     create_unimplemented_device("microchip.pfsoc.i2c1",
397         memmap[MICROCHIP_PFSOC_I2C1].base,
398         memmap[MICROCHIP_PFSOC_I2C1].size);
399 
400     /* CAN */
401     create_unimplemented_device("microchip.pfsoc.can0",
402         memmap[MICROCHIP_PFSOC_CAN0].base,
403         memmap[MICROCHIP_PFSOC_CAN0].size);
404     create_unimplemented_device("microchip.pfsoc.can1",
405         memmap[MICROCHIP_PFSOC_CAN1].base,
406         memmap[MICROCHIP_PFSOC_CAN1].size);
407 
408     /* USB */
409     create_unimplemented_device("microchip.pfsoc.usb",
410         memmap[MICROCHIP_PFSOC_USB].base,
411         memmap[MICROCHIP_PFSOC_USB].size);
412 
413     /* GEMs */
414 
415     nd = &nd_table[0];
416     if (nd->used) {
417         qemu_check_nic_model(nd, TYPE_CADENCE_GEM);
418         qdev_set_nic_properties(DEVICE(&s->gem0), nd);
419     }
420     nd = &nd_table[1];
421     if (nd->used) {
422         qemu_check_nic_model(nd, TYPE_CADENCE_GEM);
423         qdev_set_nic_properties(DEVICE(&s->gem1), nd);
424     }
425 
426     object_property_set_int(OBJECT(&s->gem0), "revision", GEM_REVISION, errp);
427     object_property_set_int(OBJECT(&s->gem0), "phy-addr", 8, errp);
428     sysbus_realize(SYS_BUS_DEVICE(&s->gem0), errp);
429     sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem0), 0,
430                     memmap[MICROCHIP_PFSOC_GEM0].base);
431     sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem0), 0,
432         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM0_IRQ));
433 
434     object_property_set_int(OBJECT(&s->gem1), "revision", GEM_REVISION, errp);
435     object_property_set_int(OBJECT(&s->gem1), "phy-addr", 9, errp);
436     sysbus_realize(SYS_BUS_DEVICE(&s->gem1), errp);
437     sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem1), 0,
438                     memmap[MICROCHIP_PFSOC_GEM1].base);
439     sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem1), 0,
440         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM1_IRQ));
441 
442     /* GPIOs */
443     create_unimplemented_device("microchip.pfsoc.gpio0",
444         memmap[MICROCHIP_PFSOC_GPIO0].base,
445         memmap[MICROCHIP_PFSOC_GPIO0].size);
446     create_unimplemented_device("microchip.pfsoc.gpio1",
447         memmap[MICROCHIP_PFSOC_GPIO1].base,
448         memmap[MICROCHIP_PFSOC_GPIO1].size);
449     create_unimplemented_device("microchip.pfsoc.gpio2",
450         memmap[MICROCHIP_PFSOC_GPIO2].base,
451         memmap[MICROCHIP_PFSOC_GPIO2].size);
452 
453     /* eNVM */
454     memory_region_init_rom(envm_data, OBJECT(dev), "microchip.pfsoc.envm.data",
455                            memmap[MICROCHIP_PFSOC_ENVM_DATA].size,
456                            &error_fatal);
457     memory_region_add_subregion(system_memory,
458                                 memmap[MICROCHIP_PFSOC_ENVM_DATA].base,
459                                 envm_data);
460 
461     /* IOSCB */
462     sysbus_realize(SYS_BUS_DEVICE(&s->ioscb), errp);
463     sysbus_mmio_map(SYS_BUS_DEVICE(&s->ioscb), 0,
464                     memmap[MICROCHIP_PFSOC_IOSCB].base);
465     sysbus_connect_irq(SYS_BUS_DEVICE(&s->ioscb), 0,
466                        qdev_get_gpio_in(DEVICE(s->plic),
467                        MICROCHIP_PFSOC_MAILBOX_IRQ));
468 
469     /* FPGA Fabric */
470     create_unimplemented_device("microchip.pfsoc.fabricfic3",
471         memmap[MICROCHIP_PFSOC_FABRIC_FIC3].base,
472         memmap[MICROCHIP_PFSOC_FABRIC_FIC3].size);
473     /* FPGA Fabric */
474     create_unimplemented_device("microchip.pfsoc.fabricfic0",
475         memmap[MICROCHIP_PFSOC_FABRIC_FIC0].base,
476         memmap[MICROCHIP_PFSOC_FABRIC_FIC0].size);
477     /* FPGA Fabric */
478     create_unimplemented_device("microchip.pfsoc.fabricfic1",
479         memmap[MICROCHIP_PFSOC_FABRIC_FIC1].base,
480         memmap[MICROCHIP_PFSOC_FABRIC_FIC1].size);
481 
482     /* QSPI Flash */
483     memory_region_init_rom(qspi_xip_mem, OBJECT(dev),
484                            "microchip.pfsoc.qspi_xip",
485                            memmap[MICROCHIP_PFSOC_QSPI_XIP].size,
486                            &error_fatal);
487     memory_region_add_subregion(system_memory,
488                                 memmap[MICROCHIP_PFSOC_QSPI_XIP].base,
489                                 qspi_xip_mem);
490 }
491 
492 static void microchip_pfsoc_soc_class_init(ObjectClass *oc, void *data)
493 {
494     DeviceClass *dc = DEVICE_CLASS(oc);
495 
496     dc->realize = microchip_pfsoc_soc_realize;
497     /* Reason: Uses serial_hds in realize function, thus can't be used twice */
498     dc->user_creatable = false;
499 }
500 
501 static const TypeInfo microchip_pfsoc_soc_type_info = {
502     .name = TYPE_MICROCHIP_PFSOC,
503     .parent = TYPE_DEVICE,
504     .instance_size = sizeof(MicrochipPFSoCState),
505     .instance_init = microchip_pfsoc_soc_instance_init,
506     .class_init = microchip_pfsoc_soc_class_init,
507 };
508 
509 static void microchip_pfsoc_soc_register_types(void)
510 {
511     type_register_static(&microchip_pfsoc_soc_type_info);
512 }
513 
514 type_init(microchip_pfsoc_soc_register_types)
515 
516 static void microchip_icicle_kit_machine_init(MachineState *machine)
517 {
518     MachineClass *mc = MACHINE_GET_CLASS(machine);
519     const MemMapEntry *memmap = microchip_pfsoc_memmap;
520     MicrochipIcicleKitState *s = MICROCHIP_ICICLE_KIT_MACHINE(machine);
521     MemoryRegion *system_memory = get_system_memory();
522     MemoryRegion *mem_low = g_new(MemoryRegion, 1);
523     MemoryRegion *mem_low_alias = g_new(MemoryRegion, 1);
524     MemoryRegion *mem_high = g_new(MemoryRegion, 1);
525     MemoryRegion *mem_high_alias = g_new(MemoryRegion, 1);
526     uint64_t mem_low_size, mem_high_size;
527     hwaddr firmware_load_addr;
528     const char *firmware_name;
529     bool kernel_as_payload = false;
530     target_ulong firmware_end_addr, kernel_start_addr;
531     uint64_t kernel_entry;
532     uint32_t fdt_load_addr;
533     DriveInfo *dinfo = drive_get(IF_SD, 0, 0);
534 
535     /* Sanity check on RAM size */
536     if (machine->ram_size < mc->default_ram_size) {
537         char *sz = size_to_str(mc->default_ram_size);
538         error_report("Invalid RAM size, should be bigger than %s", sz);
539         g_free(sz);
540         exit(EXIT_FAILURE);
541     }
542 
543     /* Initialize SoC */
544     object_initialize_child(OBJECT(machine), "soc", &s->soc,
545                             TYPE_MICROCHIP_PFSOC);
546     qdev_realize(DEVICE(&s->soc), NULL, &error_fatal);
547 
548     /* Split RAM into low and high regions using aliases to machine->ram */
549     mem_low_size = memmap[MICROCHIP_PFSOC_DRAM_LO].size;
550     mem_high_size = machine->ram_size - mem_low_size;
551     memory_region_init_alias(mem_low, NULL,
552                              "microchip.icicle.kit.ram_low", machine->ram,
553                              0, mem_low_size);
554     memory_region_init_alias(mem_high, NULL,
555                              "microchip.icicle.kit.ram_high", machine->ram,
556                              mem_low_size, mem_high_size);
557 
558     /* Register RAM */
559     memory_region_add_subregion(system_memory,
560                                 memmap[MICROCHIP_PFSOC_DRAM_LO].base,
561                                 mem_low);
562     memory_region_add_subregion(system_memory,
563                                 memmap[MICROCHIP_PFSOC_DRAM_HI].base,
564                                 mem_high);
565 
566     /* Create aliases for the low and high RAM regions */
567     memory_region_init_alias(mem_low_alias, NULL,
568                              "microchip.icicle.kit.ram_low.alias",
569                              mem_low, 0, mem_low_size);
570     memory_region_add_subregion(system_memory,
571                                 memmap[MICROCHIP_PFSOC_DRAM_LO_ALIAS].base,
572                                 mem_low_alias);
573     memory_region_init_alias(mem_high_alias, NULL,
574                              "microchip.icicle.kit.ram_high.alias",
575                              mem_high, 0, mem_high_size);
576     memory_region_add_subregion(system_memory,
577                                 memmap[MICROCHIP_PFSOC_DRAM_HI_ALIAS].base,
578                                 mem_high_alias);
579 
580     /* Attach an SD card */
581     if (dinfo) {
582         CadenceSDHCIState *sdhci = &(s->soc.sdhci);
583         DeviceState *card = qdev_new(TYPE_SD_CARD);
584 
585         qdev_prop_set_drive_err(card, "drive", blk_by_legacy_dinfo(dinfo),
586                                 &error_fatal);
587         qdev_realize_and_unref(card, sdhci->bus, &error_fatal);
588     }
589 
590     /*
591      * We follow the following table to select which payload we execute.
592      *
593      *  -bios |    -kernel | payload
594      * -------+------------+--------
595      *      N |          N | HSS
596      *      Y | don't care | HSS
597      *      N |          Y | kernel
598      *
599      * This ensures backwards compatibility with how we used to expose -bios
600      * to users but allows them to run through direct kernel booting as well.
601      *
602      * When -kernel is used for direct boot, -dtb must be present to provide
603      * a valid device tree for the board, as we don't generate device tree.
604      */
605 
606     if (machine->kernel_filename && machine->dtb) {
607         int fdt_size;
608         machine->fdt = load_device_tree(machine->dtb, &fdt_size);
609         if (!machine->fdt) {
610             error_report("load_device_tree() failed");
611             exit(1);
612         }
613 
614         firmware_name = RISCV64_BIOS_BIN;
615         firmware_load_addr = memmap[MICROCHIP_PFSOC_DRAM_LO].base;
616         kernel_as_payload = true;
617     }
618 
619     if (!kernel_as_payload) {
620         firmware_name = BIOS_FILENAME;
621         firmware_load_addr = RESET_VECTOR;
622     }
623 
624     /* Load the firmware */
625     firmware_end_addr = riscv_find_and_load_firmware(machine, firmware_name,
626                                                      firmware_load_addr, NULL);
627 
628     if (kernel_as_payload) {
629         kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc.u_cpus,
630                                                          firmware_end_addr);
631 
632         kernel_entry = riscv_load_kernel(machine, &s->soc.u_cpus,
633                                          kernel_start_addr, true, NULL);
634 
635         /* Compute the fdt load address in dram */
636         fdt_load_addr = riscv_compute_fdt_addr(memmap[MICROCHIP_PFSOC_DRAM_LO].base,
637                                                memmap[MICROCHIP_PFSOC_DRAM_LO].size,
638                                                machine);
639         riscv_load_fdt(fdt_load_addr, machine->fdt);
640 
641         /* Load the reset vector */
642         riscv_setup_rom_reset_vec(machine, &s->soc.u_cpus, firmware_load_addr,
643                                   memmap[MICROCHIP_PFSOC_ENVM_DATA].base,
644                                   memmap[MICROCHIP_PFSOC_ENVM_DATA].size,
645                                   kernel_entry, fdt_load_addr);
646     }
647 }
648 
649 static void microchip_icicle_kit_machine_class_init(ObjectClass *oc, void *data)
650 {
651     MachineClass *mc = MACHINE_CLASS(oc);
652 
653     mc->desc = "Microchip PolarFire SoC Icicle Kit";
654     mc->init = microchip_icicle_kit_machine_init;
655     mc->max_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT +
656                    MICROCHIP_PFSOC_COMPUTE_CPU_COUNT;
657     mc->min_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT + 1;
658     mc->default_cpus = mc->min_cpus;
659     mc->default_ram_id = "microchip.icicle.kit.ram";
660 
661     /*
662      * Map 513 MiB high memory, the minimum required high memory size, because
663      * HSS will do memory test against the high memory address range regardless
664      * of physical memory installed.
665      *
666      * See memory_tests() in mss_ddr.c in the HSS source code.
667      */
668     mc->default_ram_size = 1537 * MiB;
669 }
670 
671 static const TypeInfo microchip_icicle_kit_machine_typeinfo = {
672     .name       = MACHINE_TYPE_NAME("microchip-icicle-kit"),
673     .parent     = TYPE_MACHINE,
674     .class_init = microchip_icicle_kit_machine_class_init,
675     .instance_size = sizeof(MicrochipIcicleKitState),
676 };
677 
678 static void microchip_icicle_kit_machine_init_register_types(void)
679 {
680     type_register_static(&microchip_icicle_kit_machine_typeinfo);
681 }
682 
683 type_init(microchip_icicle_kit_machine_init_register_types)
684