1 /* 2 * QEMU sPAPR PCI host originated from Uninorth PCI host 3 * 4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation. 5 * Copyright (C) 2011 David Gibson, IBM Corporation. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 */ 25 #include "qemu/osdep.h" 26 #include "qapi/error.h" 27 #include "qemu-common.h" 28 #include "cpu.h" 29 #include "hw/hw.h" 30 #include "hw/sysbus.h" 31 #include "hw/pci/pci.h" 32 #include "hw/pci/msi.h" 33 #include "hw/pci/msix.h" 34 #include "hw/pci/pci_host.h" 35 #include "hw/ppc/spapr.h" 36 #include "hw/pci-host/spapr.h" 37 #include "exec/address-spaces.h" 38 #include "exec/ram_addr.h" 39 #include <libfdt.h> 40 #include "trace.h" 41 #include "qemu/error-report.h" 42 #include "qapi/qmp/qerror.h" 43 #include "hw/ppc/fdt.h" 44 #include "hw/pci/pci_bridge.h" 45 #include "hw/pci/pci_bus.h" 46 #include "hw/pci/pci_ids.h" 47 #include "hw/ppc/spapr_drc.h" 48 #include "sysemu/device_tree.h" 49 #include "sysemu/kvm.h" 50 #include "sysemu/hostmem.h" 51 #include "sysemu/numa.h" 52 53 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */ 54 #define RTAS_QUERY_FN 0 55 #define RTAS_CHANGE_FN 1 56 #define RTAS_RESET_FN 2 57 #define RTAS_CHANGE_MSI_FN 3 58 #define RTAS_CHANGE_MSIX_FN 4 59 60 /* Interrupt types to return on RTAS_CHANGE_* */ 61 #define RTAS_TYPE_MSI 1 62 #define RTAS_TYPE_MSIX 2 63 64 sPAPRPHBState *spapr_pci_find_phb(sPAPRMachineState *spapr, uint64_t buid) 65 { 66 sPAPRPHBState *sphb; 67 68 QLIST_FOREACH(sphb, &spapr->phbs, list) { 69 if (sphb->buid != buid) { 70 continue; 71 } 72 return sphb; 73 } 74 75 return NULL; 76 } 77 78 PCIDevice *spapr_pci_find_dev(sPAPRMachineState *spapr, uint64_t buid, 79 uint32_t config_addr) 80 { 81 sPAPRPHBState *sphb = spapr_pci_find_phb(spapr, buid); 82 PCIHostState *phb = PCI_HOST_BRIDGE(sphb); 83 int bus_num = (config_addr >> 16) & 0xFF; 84 int devfn = (config_addr >> 8) & 0xFF; 85 86 if (!phb) { 87 return NULL; 88 } 89 90 return pci_find_device(phb->bus, bus_num, devfn); 91 } 92 93 static uint32_t rtas_pci_cfgaddr(uint32_t arg) 94 { 95 /* This handles the encoding of extended config space addresses */ 96 return ((arg >> 20) & 0xf00) | (arg & 0xff); 97 } 98 99 static void finish_read_pci_config(sPAPRMachineState *spapr, uint64_t buid, 100 uint32_t addr, uint32_t size, 101 target_ulong rets) 102 { 103 PCIDevice *pci_dev; 104 uint32_t val; 105 106 if ((size != 1) && (size != 2) && (size != 4)) { 107 /* access must be 1, 2 or 4 bytes */ 108 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 109 return; 110 } 111 112 pci_dev = spapr_pci_find_dev(spapr, buid, addr); 113 addr = rtas_pci_cfgaddr(addr); 114 115 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) { 116 /* Access must be to a valid device, within bounds and 117 * naturally aligned */ 118 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 119 return; 120 } 121 122 val = pci_host_config_read_common(pci_dev, addr, 123 pci_config_size(pci_dev), size); 124 125 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 126 rtas_st(rets, 1, val); 127 } 128 129 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr, 130 uint32_t token, uint32_t nargs, 131 target_ulong args, 132 uint32_t nret, target_ulong rets) 133 { 134 uint64_t buid; 135 uint32_t size, addr; 136 137 if ((nargs != 4) || (nret != 2)) { 138 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 139 return; 140 } 141 142 buid = rtas_ldq(args, 1); 143 size = rtas_ld(args, 3); 144 addr = rtas_ld(args, 0); 145 146 finish_read_pci_config(spapr, buid, addr, size, rets); 147 } 148 149 static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr, 150 uint32_t token, uint32_t nargs, 151 target_ulong args, 152 uint32_t nret, target_ulong rets) 153 { 154 uint32_t size, addr; 155 156 if ((nargs != 2) || (nret != 2)) { 157 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 158 return; 159 } 160 161 size = rtas_ld(args, 1); 162 addr = rtas_ld(args, 0); 163 164 finish_read_pci_config(spapr, 0, addr, size, rets); 165 } 166 167 static void finish_write_pci_config(sPAPRMachineState *spapr, uint64_t buid, 168 uint32_t addr, uint32_t size, 169 uint32_t val, target_ulong rets) 170 { 171 PCIDevice *pci_dev; 172 173 if ((size != 1) && (size != 2) && (size != 4)) { 174 /* access must be 1, 2 or 4 bytes */ 175 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 176 return; 177 } 178 179 pci_dev = spapr_pci_find_dev(spapr, buid, addr); 180 addr = rtas_pci_cfgaddr(addr); 181 182 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) { 183 /* Access must be to a valid device, within bounds and 184 * naturally aligned */ 185 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 186 return; 187 } 188 189 pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev), 190 val, size); 191 192 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 193 } 194 195 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr, 196 uint32_t token, uint32_t nargs, 197 target_ulong args, 198 uint32_t nret, target_ulong rets) 199 { 200 uint64_t buid; 201 uint32_t val, size, addr; 202 203 if ((nargs != 5) || (nret != 1)) { 204 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 205 return; 206 } 207 208 buid = rtas_ldq(args, 1); 209 val = rtas_ld(args, 4); 210 size = rtas_ld(args, 3); 211 addr = rtas_ld(args, 0); 212 213 finish_write_pci_config(spapr, buid, addr, size, val, rets); 214 } 215 216 static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr, 217 uint32_t token, uint32_t nargs, 218 target_ulong args, 219 uint32_t nret, target_ulong rets) 220 { 221 uint32_t val, size, addr; 222 223 if ((nargs != 3) || (nret != 1)) { 224 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 225 return; 226 } 227 228 229 val = rtas_ld(args, 2); 230 size = rtas_ld(args, 1); 231 addr = rtas_ld(args, 0); 232 233 finish_write_pci_config(spapr, 0, addr, size, val, rets); 234 } 235 236 /* 237 * Set MSI/MSIX message data. 238 * This is required for msi_notify()/msix_notify() which 239 * will write at the addresses via spapr_msi_write(). 240 * 241 * If hwaddr == 0, all entries will have .data == first_irq i.e. 242 * table will be reset. 243 */ 244 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix, 245 unsigned first_irq, unsigned req_num) 246 { 247 unsigned i; 248 MSIMessage msg = { .address = addr, .data = first_irq }; 249 250 if (!msix) { 251 msi_set_message(pdev, msg); 252 trace_spapr_pci_msi_setup(pdev->name, 0, msg.address); 253 return; 254 } 255 256 for (i = 0; i < req_num; ++i) { 257 msix_set_message(pdev, i, msg); 258 trace_spapr_pci_msi_setup(pdev->name, i, msg.address); 259 if (addr) { 260 ++msg.data; 261 } 262 } 263 } 264 265 static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPRMachineState *spapr, 266 uint32_t token, uint32_t nargs, 267 target_ulong args, uint32_t nret, 268 target_ulong rets) 269 { 270 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 271 uint32_t config_addr = rtas_ld(args, 0); 272 uint64_t buid = rtas_ldq(args, 1); 273 unsigned int func = rtas_ld(args, 3); 274 unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */ 275 unsigned int seq_num = rtas_ld(args, 5); 276 unsigned int ret_intr_type; 277 unsigned int irq, max_irqs = 0; 278 sPAPRPHBState *phb = NULL; 279 PCIDevice *pdev = NULL; 280 spapr_pci_msi *msi; 281 int *config_addr_key; 282 Error *err = NULL; 283 int i; 284 285 /* Fins sPAPRPHBState */ 286 phb = spapr_pci_find_phb(spapr, buid); 287 if (phb) { 288 pdev = spapr_pci_find_dev(spapr, buid, config_addr); 289 } 290 if (!phb || !pdev) { 291 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 292 return; 293 } 294 295 switch (func) { 296 case RTAS_CHANGE_FN: 297 if (msi_present(pdev)) { 298 ret_intr_type = RTAS_TYPE_MSI; 299 } else if (msix_present(pdev)) { 300 ret_intr_type = RTAS_TYPE_MSIX; 301 } else { 302 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 303 return; 304 } 305 break; 306 case RTAS_CHANGE_MSI_FN: 307 if (msi_present(pdev)) { 308 ret_intr_type = RTAS_TYPE_MSI; 309 } else { 310 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 311 return; 312 } 313 break; 314 case RTAS_CHANGE_MSIX_FN: 315 if (msix_present(pdev)) { 316 ret_intr_type = RTAS_TYPE_MSIX; 317 } else { 318 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 319 return; 320 } 321 break; 322 default: 323 error_report("rtas_ibm_change_msi(%u) is not implemented", func); 324 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 325 return; 326 } 327 328 msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr); 329 330 /* Releasing MSIs */ 331 if (!req_num) { 332 if (!msi) { 333 trace_spapr_pci_msi("Releasing wrong config", config_addr); 334 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 335 return; 336 } 337 338 if (!smc->legacy_irq_allocation) { 339 spapr_irq_msi_free(spapr, msi->first_irq, msi->num); 340 } 341 spapr_irq_free(spapr, msi->first_irq, msi->num); 342 if (msi_present(pdev)) { 343 spapr_msi_setmsg(pdev, 0, false, 0, 0); 344 } 345 if (msix_present(pdev)) { 346 spapr_msi_setmsg(pdev, 0, true, 0, 0); 347 } 348 g_hash_table_remove(phb->msi, &config_addr); 349 350 trace_spapr_pci_msi("Released MSIs", config_addr); 351 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 352 rtas_st(rets, 1, 0); 353 return; 354 } 355 356 /* Enabling MSI */ 357 358 /* Check if the device supports as many IRQs as requested */ 359 if (ret_intr_type == RTAS_TYPE_MSI) { 360 max_irqs = msi_nr_vectors_allocated(pdev); 361 } else if (ret_intr_type == RTAS_TYPE_MSIX) { 362 max_irqs = pdev->msix_entries_nr; 363 } 364 if (!max_irqs) { 365 error_report("Requested interrupt type %d is not enabled for device %x", 366 ret_intr_type, config_addr); 367 rtas_st(rets, 0, -1); /* Hardware error */ 368 return; 369 } 370 /* Correct the number if the guest asked for too many */ 371 if (req_num > max_irqs) { 372 trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs); 373 req_num = max_irqs; 374 irq = 0; /* to avoid misleading trace */ 375 goto out; 376 } 377 378 /* Allocate MSIs */ 379 if (smc->legacy_irq_allocation) { 380 irq = spapr_irq_find(spapr, req_num, ret_intr_type == RTAS_TYPE_MSI, 381 &err); 382 } else { 383 irq = spapr_irq_msi_alloc(spapr, req_num, 384 ret_intr_type == RTAS_TYPE_MSI, &err); 385 } 386 if (err) { 387 error_reportf_err(err, "Can't allocate MSIs for device %x: ", 388 config_addr); 389 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 390 return; 391 } 392 393 for (i = 0; i < req_num; i++) { 394 spapr_irq_claim(spapr, irq + i, false, &err); 395 if (err) { 396 error_reportf_err(err, "Can't allocate MSIs for device %x: ", 397 config_addr); 398 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 399 return; 400 } 401 } 402 403 /* Release previous MSIs */ 404 if (msi) { 405 if (!smc->legacy_irq_allocation) { 406 spapr_irq_msi_free(spapr, msi->first_irq, msi->num); 407 } 408 spapr_irq_free(spapr, msi->first_irq, msi->num); 409 g_hash_table_remove(phb->msi, &config_addr); 410 } 411 412 /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */ 413 spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX, 414 irq, req_num); 415 416 /* Add MSI device to cache */ 417 msi = g_new(spapr_pci_msi, 1); 418 msi->first_irq = irq; 419 msi->num = req_num; 420 config_addr_key = g_new(int, 1); 421 *config_addr_key = config_addr; 422 g_hash_table_insert(phb->msi, config_addr_key, msi); 423 424 out: 425 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 426 rtas_st(rets, 1, req_num); 427 rtas_st(rets, 2, ++seq_num); 428 if (nret > 3) { 429 rtas_st(rets, 3, ret_intr_type); 430 } 431 432 trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq); 433 } 434 435 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu, 436 sPAPRMachineState *spapr, 437 uint32_t token, 438 uint32_t nargs, 439 target_ulong args, 440 uint32_t nret, 441 target_ulong rets) 442 { 443 uint32_t config_addr = rtas_ld(args, 0); 444 uint64_t buid = rtas_ldq(args, 1); 445 unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3); 446 sPAPRPHBState *phb = NULL; 447 PCIDevice *pdev = NULL; 448 spapr_pci_msi *msi; 449 450 /* Find sPAPRPHBState */ 451 phb = spapr_pci_find_phb(spapr, buid); 452 if (phb) { 453 pdev = spapr_pci_find_dev(spapr, buid, config_addr); 454 } 455 if (!phb || !pdev) { 456 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 457 return; 458 } 459 460 /* Find device descriptor and start IRQ */ 461 msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr); 462 if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) { 463 trace_spapr_pci_msi("Failed to return vector", config_addr); 464 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 465 return; 466 } 467 intr_src_num = msi->first_irq + ioa_intr_num; 468 trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num, 469 intr_src_num); 470 471 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 472 rtas_st(rets, 1, intr_src_num); 473 rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */ 474 } 475 476 static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu, 477 sPAPRMachineState *spapr, 478 uint32_t token, uint32_t nargs, 479 target_ulong args, uint32_t nret, 480 target_ulong rets) 481 { 482 sPAPRPHBState *sphb; 483 uint32_t addr, option; 484 uint64_t buid; 485 int ret; 486 487 if ((nargs != 4) || (nret != 1)) { 488 goto param_error_exit; 489 } 490 491 buid = rtas_ldq(args, 1); 492 addr = rtas_ld(args, 0); 493 option = rtas_ld(args, 3); 494 495 sphb = spapr_pci_find_phb(spapr, buid); 496 if (!sphb) { 497 goto param_error_exit; 498 } 499 500 if (!spapr_phb_eeh_available(sphb)) { 501 goto param_error_exit; 502 } 503 504 ret = spapr_phb_vfio_eeh_set_option(sphb, addr, option); 505 rtas_st(rets, 0, ret); 506 return; 507 508 param_error_exit: 509 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 510 } 511 512 static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu, 513 sPAPRMachineState *spapr, 514 uint32_t token, uint32_t nargs, 515 target_ulong args, uint32_t nret, 516 target_ulong rets) 517 { 518 sPAPRPHBState *sphb; 519 PCIDevice *pdev; 520 uint32_t addr, option; 521 uint64_t buid; 522 523 if ((nargs != 4) || (nret != 2)) { 524 goto param_error_exit; 525 } 526 527 buid = rtas_ldq(args, 1); 528 sphb = spapr_pci_find_phb(spapr, buid); 529 if (!sphb) { 530 goto param_error_exit; 531 } 532 533 if (!spapr_phb_eeh_available(sphb)) { 534 goto param_error_exit; 535 } 536 537 /* 538 * We always have PE address of form "00BB0001". "BB" 539 * represents the bus number of PE's primary bus. 540 */ 541 option = rtas_ld(args, 3); 542 switch (option) { 543 case RTAS_GET_PE_ADDR: 544 addr = rtas_ld(args, 0); 545 pdev = spapr_pci_find_dev(spapr, buid, addr); 546 if (!pdev) { 547 goto param_error_exit; 548 } 549 550 rtas_st(rets, 1, (pci_bus_num(pci_get_bus(pdev)) << 16) + 1); 551 break; 552 case RTAS_GET_PE_MODE: 553 rtas_st(rets, 1, RTAS_PE_MODE_SHARED); 554 break; 555 default: 556 goto param_error_exit; 557 } 558 559 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 560 return; 561 562 param_error_exit: 563 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 564 } 565 566 static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu, 567 sPAPRMachineState *spapr, 568 uint32_t token, uint32_t nargs, 569 target_ulong args, uint32_t nret, 570 target_ulong rets) 571 { 572 sPAPRPHBState *sphb; 573 uint64_t buid; 574 int state, ret; 575 576 if ((nargs != 3) || (nret != 4 && nret != 5)) { 577 goto param_error_exit; 578 } 579 580 buid = rtas_ldq(args, 1); 581 sphb = spapr_pci_find_phb(spapr, buid); 582 if (!sphb) { 583 goto param_error_exit; 584 } 585 586 if (!spapr_phb_eeh_available(sphb)) { 587 goto param_error_exit; 588 } 589 590 ret = spapr_phb_vfio_eeh_get_state(sphb, &state); 591 rtas_st(rets, 0, ret); 592 if (ret != RTAS_OUT_SUCCESS) { 593 return; 594 } 595 596 rtas_st(rets, 1, state); 597 rtas_st(rets, 2, RTAS_EEH_SUPPORT); 598 rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO); 599 if (nret >= 5) { 600 rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO); 601 } 602 return; 603 604 param_error_exit: 605 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 606 } 607 608 static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu, 609 sPAPRMachineState *spapr, 610 uint32_t token, uint32_t nargs, 611 target_ulong args, uint32_t nret, 612 target_ulong rets) 613 { 614 sPAPRPHBState *sphb; 615 uint32_t option; 616 uint64_t buid; 617 int ret; 618 619 if ((nargs != 4) || (nret != 1)) { 620 goto param_error_exit; 621 } 622 623 buid = rtas_ldq(args, 1); 624 option = rtas_ld(args, 3); 625 sphb = spapr_pci_find_phb(spapr, buid); 626 if (!sphb) { 627 goto param_error_exit; 628 } 629 630 if (!spapr_phb_eeh_available(sphb)) { 631 goto param_error_exit; 632 } 633 634 ret = spapr_phb_vfio_eeh_reset(sphb, option); 635 rtas_st(rets, 0, ret); 636 return; 637 638 param_error_exit: 639 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 640 } 641 642 static void rtas_ibm_configure_pe(PowerPCCPU *cpu, 643 sPAPRMachineState *spapr, 644 uint32_t token, uint32_t nargs, 645 target_ulong args, uint32_t nret, 646 target_ulong rets) 647 { 648 sPAPRPHBState *sphb; 649 uint64_t buid; 650 int ret; 651 652 if ((nargs != 3) || (nret != 1)) { 653 goto param_error_exit; 654 } 655 656 buid = rtas_ldq(args, 1); 657 sphb = spapr_pci_find_phb(spapr, buid); 658 if (!sphb) { 659 goto param_error_exit; 660 } 661 662 if (!spapr_phb_eeh_available(sphb)) { 663 goto param_error_exit; 664 } 665 666 ret = spapr_phb_vfio_eeh_configure(sphb); 667 rtas_st(rets, 0, ret); 668 return; 669 670 param_error_exit: 671 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 672 } 673 674 /* To support it later */ 675 static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu, 676 sPAPRMachineState *spapr, 677 uint32_t token, uint32_t nargs, 678 target_ulong args, uint32_t nret, 679 target_ulong rets) 680 { 681 sPAPRPHBState *sphb; 682 int option; 683 uint64_t buid; 684 685 if ((nargs != 8) || (nret != 1)) { 686 goto param_error_exit; 687 } 688 689 buid = rtas_ldq(args, 1); 690 sphb = spapr_pci_find_phb(spapr, buid); 691 if (!sphb) { 692 goto param_error_exit; 693 } 694 695 if (!spapr_phb_eeh_available(sphb)) { 696 goto param_error_exit; 697 } 698 699 option = rtas_ld(args, 7); 700 switch (option) { 701 case RTAS_SLOT_TEMP_ERR_LOG: 702 case RTAS_SLOT_PERM_ERR_LOG: 703 break; 704 default: 705 goto param_error_exit; 706 } 707 708 /* We don't have error log yet */ 709 rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND); 710 return; 711 712 param_error_exit: 713 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 714 } 715 716 static int pci_spapr_swizzle(int slot, int pin) 717 { 718 return (slot + pin) % PCI_NUM_PINS; 719 } 720 721 static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num) 722 { 723 /* 724 * Here we need to convert pci_dev + irq_num to some unique value 725 * which is less than number of IRQs on the specific bus (4). We 726 * use standard PCI swizzling, that is (slot number + pin number) 727 * % 4. 728 */ 729 return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num); 730 } 731 732 static void pci_spapr_set_irq(void *opaque, int irq_num, int level) 733 { 734 /* 735 * Here we use the number returned by pci_spapr_map_irq to find a 736 * corresponding qemu_irq. 737 */ 738 sPAPRPHBState *phb = opaque; 739 740 trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq); 741 qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level); 742 } 743 744 static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin) 745 { 746 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque); 747 PCIINTxRoute route; 748 749 route.mode = PCI_INTX_ENABLED; 750 route.irq = sphb->lsi_table[pin].irq; 751 752 return route; 753 } 754 755 /* 756 * MSI/MSIX memory region implementation. 757 * The handler handles both MSI and MSIX. 758 * The vector number is encoded in least bits in data. 759 */ 760 static void spapr_msi_write(void *opaque, hwaddr addr, 761 uint64_t data, unsigned size) 762 { 763 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 764 uint32_t irq = data; 765 766 trace_spapr_pci_msi_write(addr, data, irq); 767 768 qemu_irq_pulse(spapr_qirq(spapr, irq)); 769 } 770 771 static const MemoryRegionOps spapr_msi_ops = { 772 /* There is no .read as the read result is undefined by PCI spec */ 773 .read = NULL, 774 .write = spapr_msi_write, 775 .endianness = DEVICE_LITTLE_ENDIAN 776 }; 777 778 /* 779 * PHB PCI device 780 */ 781 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn) 782 { 783 sPAPRPHBState *phb = opaque; 784 785 return &phb->iommu_as; 786 } 787 788 static char *spapr_phb_vfio_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev) 789 { 790 char *path = NULL, *buf = NULL, *host = NULL; 791 792 /* Get the PCI VFIO host id */ 793 host = object_property_get_str(OBJECT(pdev), "host", NULL); 794 if (!host) { 795 goto err_out; 796 } 797 798 /* Construct the path of the file that will give us the DT location */ 799 path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host); 800 g_free(host); 801 if (!g_file_get_contents(path, &buf, NULL, NULL)) { 802 goto err_out; 803 } 804 g_free(path); 805 806 /* Construct and read from host device tree the loc-code */ 807 path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", buf); 808 g_free(buf); 809 if (!g_file_get_contents(path, &buf, NULL, NULL)) { 810 goto err_out; 811 } 812 return buf; 813 814 err_out: 815 g_free(path); 816 return NULL; 817 } 818 819 static char *spapr_phb_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev) 820 { 821 char *buf; 822 const char *devtype = "qemu"; 823 uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)))); 824 825 if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) { 826 buf = spapr_phb_vfio_get_loc_code(sphb, pdev); 827 if (buf) { 828 return buf; 829 } 830 devtype = "vfio"; 831 } 832 /* 833 * For emulated devices and VFIO-failure case, make up 834 * the loc-code. 835 */ 836 buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x", 837 devtype, pdev->name, sphb->index, busnr, 838 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); 839 return buf; 840 } 841 842 /* Macros to operate with address in OF binding to PCI */ 843 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p)) 844 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */ 845 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */ 846 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */ 847 #define b_ss(x) b_x((x), 24, 2) /* the space code */ 848 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */ 849 #define b_ddddd(x) b_x((x), 11, 5) /* device number */ 850 #define b_fff(x) b_x((x), 8, 3) /* function number */ 851 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */ 852 853 /* for 'reg'/'assigned-addresses' OF properties */ 854 #define RESOURCE_CELLS_SIZE 2 855 #define RESOURCE_CELLS_ADDRESS 3 856 857 typedef struct ResourceFields { 858 uint32_t phys_hi; 859 uint32_t phys_mid; 860 uint32_t phys_lo; 861 uint32_t size_hi; 862 uint32_t size_lo; 863 } QEMU_PACKED ResourceFields; 864 865 typedef struct ResourceProps { 866 ResourceFields reg[8]; 867 ResourceFields assigned[7]; 868 uint32_t reg_len; 869 uint32_t assigned_len; 870 } ResourceProps; 871 872 /* fill in the 'reg'/'assigned-resources' OF properties for 873 * a PCI device. 'reg' describes resource requirements for a 874 * device's IO/MEM regions, 'assigned-addresses' describes the 875 * actual resource assignments. 876 * 877 * the properties are arrays of ('phys-addr', 'size') pairs describing 878 * the addressable regions of the PCI device, where 'phys-addr' is a 879 * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to 880 * (phys.hi, phys.mid, phys.lo), and 'size' is a 881 * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo). 882 * 883 * phys.hi = 0xYYXXXXZZ, where: 884 * 0xYY = npt000ss 885 * ||| | 886 * ||| +-- space code 887 * ||| | 888 * ||| + 00 if configuration space 889 * ||| + 01 if IO region, 890 * ||| + 10 if 32-bit MEM region 891 * ||| + 11 if 64-bit MEM region 892 * ||| 893 * ||+------ for non-relocatable IO: 1 if aliased 894 * || for relocatable IO: 1 if below 64KB 895 * || for MEM: 1 if below 1MB 896 * |+------- 1 if region is prefetchable 897 * +-------- 1 if region is non-relocatable 898 * 0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function 899 * bits respectively 900 * 0xZZ = rrrrrrrr, the register number of the BAR corresponding 901 * to the region 902 * 903 * phys.mid and phys.lo correspond respectively to the hi/lo portions 904 * of the actual address of the region. 905 * 906 * how the phys-addr/size values are used differ slightly between 907 * 'reg' and 'assigned-addresses' properties. namely, 'reg' has 908 * an additional description for the config space region of the 909 * device, and in the case of QEMU has n=0 and phys.mid=phys.lo=0 910 * to describe the region as relocatable, with an address-mapping 911 * that corresponds directly to the PHB's address space for the 912 * resource. 'assigned-addresses' always has n=1 set with an absolute 913 * address assigned for the resource. in general, 'assigned-addresses' 914 * won't be populated, since addresses for PCI devices are generally 915 * unmapped initially and left to the guest to assign. 916 * 917 * note also that addresses defined in these properties are, at least 918 * for PAPR guests, relative to the PHBs IO/MEM windows, and 919 * correspond directly to the addresses in the BARs. 920 * 921 * in accordance with PCI Bus Binding to Open Firmware, 922 * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7, 923 * Appendix C. 924 */ 925 static void populate_resource_props(PCIDevice *d, ResourceProps *rp) 926 { 927 int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d)))); 928 uint32_t dev_id = (b_bbbbbbbb(bus_num) | 929 b_ddddd(PCI_SLOT(d->devfn)) | 930 b_fff(PCI_FUNC(d->devfn))); 931 ResourceFields *reg, *assigned; 932 int i, reg_idx = 0, assigned_idx = 0; 933 934 /* config space region */ 935 reg = &rp->reg[reg_idx++]; 936 reg->phys_hi = cpu_to_be32(dev_id); 937 reg->phys_mid = 0; 938 reg->phys_lo = 0; 939 reg->size_hi = 0; 940 reg->size_lo = 0; 941 942 for (i = 0; i < PCI_NUM_REGIONS; i++) { 943 if (!d->io_regions[i].size) { 944 continue; 945 } 946 947 reg = &rp->reg[reg_idx++]; 948 949 reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i))); 950 if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) { 951 reg->phys_hi |= cpu_to_be32(b_ss(1)); 952 } else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) { 953 reg->phys_hi |= cpu_to_be32(b_ss(3)); 954 } else { 955 reg->phys_hi |= cpu_to_be32(b_ss(2)); 956 } 957 reg->phys_mid = 0; 958 reg->phys_lo = 0; 959 reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32); 960 reg->size_lo = cpu_to_be32(d->io_regions[i].size); 961 962 if (d->io_regions[i].addr == PCI_BAR_UNMAPPED) { 963 continue; 964 } 965 966 assigned = &rp->assigned[assigned_idx++]; 967 assigned->phys_hi = cpu_to_be32(reg->phys_hi | b_n(1)); 968 assigned->phys_mid = cpu_to_be32(d->io_regions[i].addr >> 32); 969 assigned->phys_lo = cpu_to_be32(d->io_regions[i].addr); 970 assigned->size_hi = reg->size_hi; 971 assigned->size_lo = reg->size_lo; 972 } 973 974 rp->reg_len = reg_idx * sizeof(ResourceFields); 975 rp->assigned_len = assigned_idx * sizeof(ResourceFields); 976 } 977 978 typedef struct PCIClass PCIClass; 979 typedef struct PCISubClass PCISubClass; 980 typedef struct PCIIFace PCIIFace; 981 982 struct PCIIFace { 983 int iface; 984 const char *name; 985 }; 986 987 struct PCISubClass { 988 int subclass; 989 const char *name; 990 const PCIIFace *iface; 991 }; 992 993 struct PCIClass { 994 const char *name; 995 const PCISubClass *subc; 996 }; 997 998 static const PCISubClass undef_subclass[] = { 999 { PCI_CLASS_NOT_DEFINED_VGA, "display", NULL }, 1000 { 0xFF, NULL, NULL }, 1001 }; 1002 1003 static const PCISubClass mass_subclass[] = { 1004 { PCI_CLASS_STORAGE_SCSI, "scsi", NULL }, 1005 { PCI_CLASS_STORAGE_IDE, "ide", NULL }, 1006 { PCI_CLASS_STORAGE_FLOPPY, "fdc", NULL }, 1007 { PCI_CLASS_STORAGE_IPI, "ipi", NULL }, 1008 { PCI_CLASS_STORAGE_RAID, "raid", NULL }, 1009 { PCI_CLASS_STORAGE_ATA, "ata", NULL }, 1010 { PCI_CLASS_STORAGE_SATA, "sata", NULL }, 1011 { PCI_CLASS_STORAGE_SAS, "sas", NULL }, 1012 { 0xFF, NULL, NULL }, 1013 }; 1014 1015 static const PCISubClass net_subclass[] = { 1016 { PCI_CLASS_NETWORK_ETHERNET, "ethernet", NULL }, 1017 { PCI_CLASS_NETWORK_TOKEN_RING, "token-ring", NULL }, 1018 { PCI_CLASS_NETWORK_FDDI, "fddi", NULL }, 1019 { PCI_CLASS_NETWORK_ATM, "atm", NULL }, 1020 { PCI_CLASS_NETWORK_ISDN, "isdn", NULL }, 1021 { PCI_CLASS_NETWORK_WORLDFIP, "worldfip", NULL }, 1022 { PCI_CLASS_NETWORK_PICMG214, "picmg", NULL }, 1023 { 0xFF, NULL, NULL }, 1024 }; 1025 1026 static const PCISubClass displ_subclass[] = { 1027 { PCI_CLASS_DISPLAY_VGA, "vga", NULL }, 1028 { PCI_CLASS_DISPLAY_XGA, "xga", NULL }, 1029 { PCI_CLASS_DISPLAY_3D, "3d-controller", NULL }, 1030 { 0xFF, NULL, NULL }, 1031 }; 1032 1033 static const PCISubClass media_subclass[] = { 1034 { PCI_CLASS_MULTIMEDIA_VIDEO, "video", NULL }, 1035 { PCI_CLASS_MULTIMEDIA_AUDIO, "sound", NULL }, 1036 { PCI_CLASS_MULTIMEDIA_PHONE, "telephony", NULL }, 1037 { 0xFF, NULL, NULL }, 1038 }; 1039 1040 static const PCISubClass mem_subclass[] = { 1041 { PCI_CLASS_MEMORY_RAM, "memory", NULL }, 1042 { PCI_CLASS_MEMORY_FLASH, "flash", NULL }, 1043 { 0xFF, NULL, NULL }, 1044 }; 1045 1046 static const PCISubClass bridg_subclass[] = { 1047 { PCI_CLASS_BRIDGE_HOST, "host", NULL }, 1048 { PCI_CLASS_BRIDGE_ISA, "isa", NULL }, 1049 { PCI_CLASS_BRIDGE_EISA, "eisa", NULL }, 1050 { PCI_CLASS_BRIDGE_MC, "mca", NULL }, 1051 { PCI_CLASS_BRIDGE_PCI, "pci", NULL }, 1052 { PCI_CLASS_BRIDGE_PCMCIA, "pcmcia", NULL }, 1053 { PCI_CLASS_BRIDGE_NUBUS, "nubus", NULL }, 1054 { PCI_CLASS_BRIDGE_CARDBUS, "cardbus", NULL }, 1055 { PCI_CLASS_BRIDGE_RACEWAY, "raceway", NULL }, 1056 { PCI_CLASS_BRIDGE_PCI_SEMITP, "semi-transparent-pci", NULL }, 1057 { PCI_CLASS_BRIDGE_IB_PCI, "infiniband", NULL }, 1058 { 0xFF, NULL, NULL }, 1059 }; 1060 1061 static const PCISubClass comm_subclass[] = { 1062 { PCI_CLASS_COMMUNICATION_SERIAL, "serial", NULL }, 1063 { PCI_CLASS_COMMUNICATION_PARALLEL, "parallel", NULL }, 1064 { PCI_CLASS_COMMUNICATION_MULTISERIAL, "multiport-serial", NULL }, 1065 { PCI_CLASS_COMMUNICATION_MODEM, "modem", NULL }, 1066 { PCI_CLASS_COMMUNICATION_GPIB, "gpib", NULL }, 1067 { PCI_CLASS_COMMUNICATION_SC, "smart-card", NULL }, 1068 { 0xFF, NULL, NULL, }, 1069 }; 1070 1071 static const PCIIFace pic_iface[] = { 1072 { PCI_CLASS_SYSTEM_PIC_IOAPIC, "io-apic" }, 1073 { PCI_CLASS_SYSTEM_PIC_IOXAPIC, "io-xapic" }, 1074 { 0xFF, NULL }, 1075 }; 1076 1077 static const PCISubClass sys_subclass[] = { 1078 { PCI_CLASS_SYSTEM_PIC, "interrupt-controller", pic_iface }, 1079 { PCI_CLASS_SYSTEM_DMA, "dma-controller", NULL }, 1080 { PCI_CLASS_SYSTEM_TIMER, "timer", NULL }, 1081 { PCI_CLASS_SYSTEM_RTC, "rtc", NULL }, 1082 { PCI_CLASS_SYSTEM_PCI_HOTPLUG, "hot-plug-controller", NULL }, 1083 { PCI_CLASS_SYSTEM_SDHCI, "sd-host-controller", NULL }, 1084 { 0xFF, NULL, NULL }, 1085 }; 1086 1087 static const PCISubClass inp_subclass[] = { 1088 { PCI_CLASS_INPUT_KEYBOARD, "keyboard", NULL }, 1089 { PCI_CLASS_INPUT_PEN, "pen", NULL }, 1090 { PCI_CLASS_INPUT_MOUSE, "mouse", NULL }, 1091 { PCI_CLASS_INPUT_SCANNER, "scanner", NULL }, 1092 { PCI_CLASS_INPUT_GAMEPORT, "gameport", NULL }, 1093 { 0xFF, NULL, NULL }, 1094 }; 1095 1096 static const PCISubClass dock_subclass[] = { 1097 { PCI_CLASS_DOCKING_GENERIC, "dock", NULL }, 1098 { 0xFF, NULL, NULL }, 1099 }; 1100 1101 static const PCISubClass cpu_subclass[] = { 1102 { PCI_CLASS_PROCESSOR_PENTIUM, "pentium", NULL }, 1103 { PCI_CLASS_PROCESSOR_POWERPC, "powerpc", NULL }, 1104 { PCI_CLASS_PROCESSOR_MIPS, "mips", NULL }, 1105 { PCI_CLASS_PROCESSOR_CO, "co-processor", NULL }, 1106 { 0xFF, NULL, NULL }, 1107 }; 1108 1109 static const PCIIFace usb_iface[] = { 1110 { PCI_CLASS_SERIAL_USB_UHCI, "usb-uhci" }, 1111 { PCI_CLASS_SERIAL_USB_OHCI, "usb-ohci", }, 1112 { PCI_CLASS_SERIAL_USB_EHCI, "usb-ehci" }, 1113 { PCI_CLASS_SERIAL_USB_XHCI, "usb-xhci" }, 1114 { PCI_CLASS_SERIAL_USB_UNKNOWN, "usb-unknown" }, 1115 { PCI_CLASS_SERIAL_USB_DEVICE, "usb-device" }, 1116 { 0xFF, NULL }, 1117 }; 1118 1119 static const PCISubClass ser_subclass[] = { 1120 { PCI_CLASS_SERIAL_FIREWIRE, "firewire", NULL }, 1121 { PCI_CLASS_SERIAL_ACCESS, "access-bus", NULL }, 1122 { PCI_CLASS_SERIAL_SSA, "ssa", NULL }, 1123 { PCI_CLASS_SERIAL_USB, "usb", usb_iface }, 1124 { PCI_CLASS_SERIAL_FIBER, "fibre-channel", NULL }, 1125 { PCI_CLASS_SERIAL_SMBUS, "smb", NULL }, 1126 { PCI_CLASS_SERIAL_IB, "infiniband", NULL }, 1127 { PCI_CLASS_SERIAL_IPMI, "ipmi", NULL }, 1128 { PCI_CLASS_SERIAL_SERCOS, "sercos", NULL }, 1129 { PCI_CLASS_SERIAL_CANBUS, "canbus", NULL }, 1130 { 0xFF, NULL, NULL }, 1131 }; 1132 1133 static const PCISubClass wrl_subclass[] = { 1134 { PCI_CLASS_WIRELESS_IRDA, "irda", NULL }, 1135 { PCI_CLASS_WIRELESS_CIR, "consumer-ir", NULL }, 1136 { PCI_CLASS_WIRELESS_RF_CONTROLLER, "rf-controller", NULL }, 1137 { PCI_CLASS_WIRELESS_BLUETOOTH, "bluetooth", NULL }, 1138 { PCI_CLASS_WIRELESS_BROADBAND, "broadband", NULL }, 1139 { 0xFF, NULL, NULL }, 1140 }; 1141 1142 static const PCISubClass sat_subclass[] = { 1143 { PCI_CLASS_SATELLITE_TV, "satellite-tv", NULL }, 1144 { PCI_CLASS_SATELLITE_AUDIO, "satellite-audio", NULL }, 1145 { PCI_CLASS_SATELLITE_VOICE, "satellite-voice", NULL }, 1146 { PCI_CLASS_SATELLITE_DATA, "satellite-data", NULL }, 1147 { 0xFF, NULL, NULL }, 1148 }; 1149 1150 static const PCISubClass crypt_subclass[] = { 1151 { PCI_CLASS_CRYPT_NETWORK, "network-encryption", NULL }, 1152 { PCI_CLASS_CRYPT_ENTERTAINMENT, 1153 "entertainment-encryption", NULL }, 1154 { 0xFF, NULL, NULL }, 1155 }; 1156 1157 static const PCISubClass spc_subclass[] = { 1158 { PCI_CLASS_SP_DPIO, "dpio", NULL }, 1159 { PCI_CLASS_SP_PERF, "counter", NULL }, 1160 { PCI_CLASS_SP_SYNCH, "measurement", NULL }, 1161 { PCI_CLASS_SP_MANAGEMENT, "management-card", NULL }, 1162 { 0xFF, NULL, NULL }, 1163 }; 1164 1165 static const PCIClass pci_classes[] = { 1166 { "legacy-device", undef_subclass }, 1167 { "mass-storage", mass_subclass }, 1168 { "network", net_subclass }, 1169 { "display", displ_subclass, }, 1170 { "multimedia-device", media_subclass }, 1171 { "memory-controller", mem_subclass }, 1172 { "unknown-bridge", bridg_subclass }, 1173 { "communication-controller", comm_subclass}, 1174 { "system-peripheral", sys_subclass }, 1175 { "input-controller", inp_subclass }, 1176 { "docking-station", dock_subclass }, 1177 { "cpu", cpu_subclass }, 1178 { "serial-bus", ser_subclass }, 1179 { "wireless-controller", wrl_subclass }, 1180 { "intelligent-io", NULL }, 1181 { "satellite-device", sat_subclass }, 1182 { "encryption", crypt_subclass }, 1183 { "data-processing-controller", spc_subclass }, 1184 }; 1185 1186 static const char *pci_find_device_name(uint8_t class, uint8_t subclass, 1187 uint8_t iface) 1188 { 1189 const PCIClass *pclass; 1190 const PCISubClass *psubclass; 1191 const PCIIFace *piface; 1192 const char *name; 1193 1194 if (class >= ARRAY_SIZE(pci_classes)) { 1195 return "pci"; 1196 } 1197 1198 pclass = pci_classes + class; 1199 name = pclass->name; 1200 1201 if (pclass->subc == NULL) { 1202 return name; 1203 } 1204 1205 psubclass = pclass->subc; 1206 while ((psubclass->subclass & 0xff) != 0xff) { 1207 if ((psubclass->subclass & 0xff) == subclass) { 1208 name = psubclass->name; 1209 break; 1210 } 1211 psubclass++; 1212 } 1213 1214 piface = psubclass->iface; 1215 if (piface == NULL) { 1216 return name; 1217 } 1218 while ((piface->iface & 0xff) != 0xff) { 1219 if ((piface->iface & 0xff) == iface) { 1220 name = piface->name; 1221 break; 1222 } 1223 piface++; 1224 } 1225 1226 return name; 1227 } 1228 1229 static gchar *pci_get_node_name(PCIDevice *dev) 1230 { 1231 int slot = PCI_SLOT(dev->devfn); 1232 int func = PCI_FUNC(dev->devfn); 1233 uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3); 1234 const char *name; 1235 1236 name = pci_find_device_name((ccode >> 16) & 0xff, (ccode >> 8) & 0xff, 1237 ccode & 0xff); 1238 1239 if (func != 0) { 1240 return g_strdup_printf("%s@%x,%x", name, slot, func); 1241 } else { 1242 return g_strdup_printf("%s@%x", name, slot); 1243 } 1244 } 1245 1246 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb, 1247 PCIDevice *pdev); 1248 1249 static void spapr_populate_pci_child_dt(PCIDevice *dev, void *fdt, int offset, 1250 sPAPRPHBState *sphb) 1251 { 1252 ResourceProps rp; 1253 bool is_bridge = false; 1254 int pci_status; 1255 char *buf = NULL; 1256 uint32_t drc_index = spapr_phb_get_pci_drc_index(sphb, dev); 1257 uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3); 1258 uint32_t max_msi, max_msix; 1259 1260 if (pci_default_read_config(dev, PCI_HEADER_TYPE, 1) == 1261 PCI_HEADER_TYPE_BRIDGE) { 1262 is_bridge = true; 1263 } 1264 1265 /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */ 1266 _FDT(fdt_setprop_cell(fdt, offset, "vendor-id", 1267 pci_default_read_config(dev, PCI_VENDOR_ID, 2))); 1268 _FDT(fdt_setprop_cell(fdt, offset, "device-id", 1269 pci_default_read_config(dev, PCI_DEVICE_ID, 2))); 1270 _FDT(fdt_setprop_cell(fdt, offset, "revision-id", 1271 pci_default_read_config(dev, PCI_REVISION_ID, 1))); 1272 _FDT(fdt_setprop_cell(fdt, offset, "class-code", ccode)); 1273 if (pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)) { 1274 _FDT(fdt_setprop_cell(fdt, offset, "interrupts", 1275 pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1))); 1276 } 1277 1278 if (!is_bridge) { 1279 _FDT(fdt_setprop_cell(fdt, offset, "min-grant", 1280 pci_default_read_config(dev, PCI_MIN_GNT, 1))); 1281 _FDT(fdt_setprop_cell(fdt, offset, "max-latency", 1282 pci_default_read_config(dev, PCI_MAX_LAT, 1))); 1283 } 1284 1285 if (pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)) { 1286 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-id", 1287 pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2))); 1288 } 1289 1290 if (pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)) { 1291 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id", 1292 pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2))); 1293 } 1294 1295 _FDT(fdt_setprop_cell(fdt, offset, "cache-line-size", 1296 pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1))); 1297 1298 /* the following fdt cells are masked off the pci status register */ 1299 pci_status = pci_default_read_config(dev, PCI_STATUS, 2); 1300 _FDT(fdt_setprop_cell(fdt, offset, "devsel-speed", 1301 PCI_STATUS_DEVSEL_MASK & pci_status)); 1302 1303 if (pci_status & PCI_STATUS_FAST_BACK) { 1304 _FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0)); 1305 } 1306 if (pci_status & PCI_STATUS_66MHZ) { 1307 _FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0)); 1308 } 1309 if (pci_status & PCI_STATUS_UDF) { 1310 _FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0)); 1311 } 1312 1313 _FDT(fdt_setprop_string(fdt, offset, "name", 1314 pci_find_device_name((ccode >> 16) & 0xff, 1315 (ccode >> 8) & 0xff, 1316 ccode & 0xff))); 1317 1318 buf = spapr_phb_get_loc_code(sphb, dev); 1319 _FDT(fdt_setprop_string(fdt, offset, "ibm,loc-code", buf)); 1320 g_free(buf); 1321 1322 if (drc_index) { 1323 _FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)); 1324 } 1325 1326 _FDT(fdt_setprop_cell(fdt, offset, "#address-cells", 1327 RESOURCE_CELLS_ADDRESS)); 1328 _FDT(fdt_setprop_cell(fdt, offset, "#size-cells", 1329 RESOURCE_CELLS_SIZE)); 1330 1331 if (msi_present(dev)) { 1332 max_msi = msi_nr_vectors_allocated(dev); 1333 if (max_msi) { 1334 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi", max_msi)); 1335 } 1336 } 1337 if (msix_present(dev)) { 1338 max_msix = dev->msix_entries_nr; 1339 if (max_msix) { 1340 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x", max_msix)); 1341 } 1342 } 1343 1344 populate_resource_props(dev, &rp); 1345 _FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len)); 1346 _FDT(fdt_setprop(fdt, offset, "assigned-addresses", 1347 (uint8_t *)rp.assigned, rp.assigned_len)); 1348 1349 if (sphb->pcie_ecs && pci_is_express(dev)) { 1350 _FDT(fdt_setprop_cell(fdt, offset, "ibm,pci-config-space-type", 0x1)); 1351 } 1352 } 1353 1354 /* create OF node for pci device and required OF DT properties */ 1355 static int spapr_create_pci_child_dt(sPAPRPHBState *phb, PCIDevice *dev, 1356 void *fdt, int node_offset) 1357 { 1358 int offset; 1359 gchar *nodename; 1360 1361 nodename = pci_get_node_name(dev); 1362 _FDT(offset = fdt_add_subnode(fdt, node_offset, nodename)); 1363 g_free(nodename); 1364 1365 spapr_populate_pci_child_dt(dev, fdt, offset, phb); 1366 1367 return offset; 1368 } 1369 1370 /* Callback to be called during DRC release. */ 1371 void spapr_phb_remove_pci_device_cb(DeviceState *dev) 1372 { 1373 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 1374 1375 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 1376 } 1377 1378 static sPAPRDRConnector *spapr_phb_get_pci_func_drc(sPAPRPHBState *phb, 1379 uint32_t busnr, 1380 int32_t devfn) 1381 { 1382 return spapr_drc_by_id(TYPE_SPAPR_DRC_PCI, 1383 (phb->index << 16) | (busnr << 8) | devfn); 1384 } 1385 1386 static sPAPRDRConnector *spapr_phb_get_pci_drc(sPAPRPHBState *phb, 1387 PCIDevice *pdev) 1388 { 1389 uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)))); 1390 return spapr_phb_get_pci_func_drc(phb, busnr, pdev->devfn); 1391 } 1392 1393 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb, 1394 PCIDevice *pdev) 1395 { 1396 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev); 1397 1398 if (!drc) { 1399 return 0; 1400 } 1401 1402 return spapr_drc_index(drc); 1403 } 1404 1405 static void spapr_pci_plug(HotplugHandler *plug_handler, 1406 DeviceState *plugged_dev, Error **errp) 1407 { 1408 sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler)); 1409 PCIDevice *pdev = PCI_DEVICE(plugged_dev); 1410 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev); 1411 Error *local_err = NULL; 1412 PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))); 1413 uint32_t slotnr = PCI_SLOT(pdev->devfn); 1414 void *fdt = NULL; 1415 int fdt_start_offset, fdt_size; 1416 1417 /* if DR is disabled we don't need to do anything in the case of 1418 * hotplug or coldplug callbacks 1419 */ 1420 if (!phb->dr_enabled) { 1421 /* if this is a hotplug operation initiated by the user 1422 * we need to let them know it's not enabled 1423 */ 1424 if (plugged_dev->hotplugged) { 1425 error_setg(&local_err, QERR_BUS_NO_HOTPLUG, 1426 object_get_typename(OBJECT(phb))); 1427 } 1428 goto out; 1429 } 1430 1431 g_assert(drc); 1432 1433 /* Following the QEMU convention used for PCIe multifunction 1434 * hotplug, we do not allow functions to be hotplugged to a 1435 * slot that already has function 0 present 1436 */ 1437 if (plugged_dev->hotplugged && bus->devices[PCI_DEVFN(slotnr, 0)] && 1438 PCI_FUNC(pdev->devfn) != 0) { 1439 error_setg(&local_err, "PCI: slot %d function 0 already ocuppied by %s," 1440 " additional functions can no longer be exposed to guest.", 1441 slotnr, bus->devices[PCI_DEVFN(slotnr, 0)]->name); 1442 goto out; 1443 } 1444 1445 fdt = create_device_tree(&fdt_size); 1446 fdt_start_offset = spapr_create_pci_child_dt(phb, pdev, fdt, 0); 1447 1448 spapr_drc_attach(drc, DEVICE(pdev), fdt, fdt_start_offset, &local_err); 1449 if (local_err) { 1450 goto out; 1451 } 1452 1453 /* If this is function 0, signal hotplug for all the device functions. 1454 * Otherwise defer sending the hotplug event. 1455 */ 1456 if (!spapr_drc_hotplugged(plugged_dev)) { 1457 spapr_drc_reset(drc); 1458 } else if (PCI_FUNC(pdev->devfn) == 0) { 1459 int i; 1460 1461 for (i = 0; i < 8; i++) { 1462 sPAPRDRConnector *func_drc; 1463 sPAPRDRConnectorClass *func_drck; 1464 sPAPRDREntitySense state; 1465 1466 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus), 1467 PCI_DEVFN(slotnr, i)); 1468 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc); 1469 state = func_drck->dr_entity_sense(func_drc); 1470 1471 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) { 1472 spapr_hotplug_req_add_by_index(func_drc); 1473 } 1474 } 1475 } 1476 1477 out: 1478 if (local_err) { 1479 error_propagate(errp, local_err); 1480 g_free(fdt); 1481 } 1482 } 1483 1484 static void spapr_pci_unplug(HotplugHandler *plug_handler, 1485 DeviceState *plugged_dev, Error **errp) 1486 { 1487 /* some version guests do not wait for completion of a device 1488 * cleanup (generally done asynchronously by the kernel) before 1489 * signaling to QEMU that the device is safe, but instead sleep 1490 * for some 'safe' period of time. unfortunately on a busy host 1491 * this sleep isn't guaranteed to be long enough, resulting in 1492 * bad things like IRQ lines being left asserted during final 1493 * device removal. to deal with this we call reset just prior 1494 * to finalizing the device, which will put the device back into 1495 * an 'idle' state, as the device cleanup code expects. 1496 */ 1497 pci_device_reset(PCI_DEVICE(plugged_dev)); 1498 object_unparent(OBJECT(plugged_dev)); 1499 } 1500 1501 static void spapr_pci_unplug_request(HotplugHandler *plug_handler, 1502 DeviceState *plugged_dev, Error **errp) 1503 { 1504 sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler)); 1505 PCIDevice *pdev = PCI_DEVICE(plugged_dev); 1506 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev); 1507 1508 if (!phb->dr_enabled) { 1509 error_setg(errp, QERR_BUS_NO_HOTPLUG, 1510 object_get_typename(OBJECT(phb))); 1511 return; 1512 } 1513 1514 g_assert(drc); 1515 g_assert(drc->dev == plugged_dev); 1516 1517 if (!spapr_drc_unplug_requested(drc)) { 1518 PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))); 1519 uint32_t slotnr = PCI_SLOT(pdev->devfn); 1520 sPAPRDRConnector *func_drc; 1521 sPAPRDRConnectorClass *func_drck; 1522 sPAPRDREntitySense state; 1523 int i; 1524 1525 /* ensure any other present functions are pending unplug */ 1526 if (PCI_FUNC(pdev->devfn) == 0) { 1527 for (i = 1; i < 8; i++) { 1528 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus), 1529 PCI_DEVFN(slotnr, i)); 1530 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc); 1531 state = func_drck->dr_entity_sense(func_drc); 1532 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT 1533 && !spapr_drc_unplug_requested(func_drc)) { 1534 error_setg(errp, 1535 "PCI: slot %d, function %d still present. " 1536 "Must unplug all non-0 functions first.", 1537 slotnr, i); 1538 return; 1539 } 1540 } 1541 } 1542 1543 spapr_drc_detach(drc); 1544 1545 /* if this isn't func 0, defer unplug event. otherwise signal removal 1546 * for all present functions 1547 */ 1548 if (PCI_FUNC(pdev->devfn) == 0) { 1549 for (i = 7; i >= 0; i--) { 1550 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus), 1551 PCI_DEVFN(slotnr, i)); 1552 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc); 1553 state = func_drck->dr_entity_sense(func_drc); 1554 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) { 1555 spapr_hotplug_req_remove_by_index(func_drc); 1556 } 1557 } 1558 } 1559 } 1560 } 1561 1562 static void spapr_phb_realize(DeviceState *dev, Error **errp) 1563 { 1564 /* We don't use SPAPR_MACHINE() in order to exit gracefully if the user 1565 * tries to add a sPAPR PHB to a non-pseries machine. 1566 */ 1567 sPAPRMachineState *spapr = 1568 (sPAPRMachineState *) object_dynamic_cast(qdev_get_machine(), 1569 TYPE_SPAPR_MACHINE); 1570 sPAPRMachineClass *smc = spapr ? SPAPR_MACHINE_GET_CLASS(spapr) : NULL; 1571 SysBusDevice *s = SYS_BUS_DEVICE(dev); 1572 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s); 1573 PCIHostState *phb = PCI_HOST_BRIDGE(s); 1574 char *namebuf; 1575 int i; 1576 PCIBus *bus; 1577 uint64_t msi_window_size = 4096; 1578 sPAPRTCETable *tcet; 1579 const unsigned windows_supported = 1580 sphb->ddw_enabled ? SPAPR_PCI_DMA_MAX_WINDOWS : 1; 1581 1582 if (!spapr) { 1583 error_setg(errp, TYPE_SPAPR_PCI_HOST_BRIDGE " needs a pseries machine"); 1584 return; 1585 } 1586 1587 if (sphb->index != (uint32_t)-1) { 1588 Error *local_err = NULL; 1589 1590 smc->phb_placement(spapr, sphb->index, 1591 &sphb->buid, &sphb->io_win_addr, 1592 &sphb->mem_win_addr, &sphb->mem64_win_addr, 1593 windows_supported, sphb->dma_liobn, &local_err); 1594 if (local_err) { 1595 error_propagate(errp, local_err); 1596 return; 1597 } 1598 } else { 1599 error_setg(errp, "\"index\" for PAPR PHB is mandatory"); 1600 return; 1601 } 1602 1603 if (sphb->mem64_win_size != 0) { 1604 if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) { 1605 error_setg(errp, "32-bit memory window of size 0x%"HWADDR_PRIx 1606 " (max 2 GiB)", sphb->mem_win_size); 1607 return; 1608 } 1609 1610 /* 64-bit window defaults to identity mapping */ 1611 sphb->mem64_win_pciaddr = sphb->mem64_win_addr; 1612 } else if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) { 1613 /* 1614 * For compatibility with old configuration, if no 64-bit MMIO 1615 * window is specified, but the ordinary (32-bit) memory 1616 * window is specified as > 2GiB, we treat it as a 2GiB 32-bit 1617 * window, with a 64-bit MMIO window following on immediately 1618 * afterwards 1619 */ 1620 sphb->mem64_win_size = sphb->mem_win_size - SPAPR_PCI_MEM32_WIN_SIZE; 1621 sphb->mem64_win_addr = sphb->mem_win_addr + SPAPR_PCI_MEM32_WIN_SIZE; 1622 sphb->mem64_win_pciaddr = 1623 SPAPR_PCI_MEM_WIN_BUS_OFFSET + SPAPR_PCI_MEM32_WIN_SIZE; 1624 sphb->mem_win_size = SPAPR_PCI_MEM32_WIN_SIZE; 1625 } 1626 1627 if (spapr_pci_find_phb(spapr, sphb->buid)) { 1628 error_setg(errp, "PCI host bridges must have unique BUIDs"); 1629 return; 1630 } 1631 1632 if (sphb->numa_node != -1 && 1633 (sphb->numa_node >= MAX_NODES || !numa_info[sphb->numa_node].present)) { 1634 error_setg(errp, "Invalid NUMA node ID for PCI host bridge"); 1635 return; 1636 } 1637 1638 sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid); 1639 1640 /* Initialize memory regions */ 1641 namebuf = g_strdup_printf("%s.mmio", sphb->dtbusname); 1642 memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX); 1643 g_free(namebuf); 1644 1645 namebuf = g_strdup_printf("%s.mmio32-alias", sphb->dtbusname); 1646 memory_region_init_alias(&sphb->mem32window, OBJECT(sphb), 1647 namebuf, &sphb->memspace, 1648 SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size); 1649 g_free(namebuf); 1650 memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr, 1651 &sphb->mem32window); 1652 1653 if (sphb->mem64_win_size != 0) { 1654 namebuf = g_strdup_printf("%s.mmio64-alias", sphb->dtbusname); 1655 memory_region_init_alias(&sphb->mem64window, OBJECT(sphb), 1656 namebuf, &sphb->memspace, 1657 sphb->mem64_win_pciaddr, sphb->mem64_win_size); 1658 g_free(namebuf); 1659 1660 memory_region_add_subregion(get_system_memory(), 1661 sphb->mem64_win_addr, 1662 &sphb->mem64window); 1663 } 1664 1665 /* Initialize IO regions */ 1666 namebuf = g_strdup_printf("%s.io", sphb->dtbusname); 1667 memory_region_init(&sphb->iospace, OBJECT(sphb), 1668 namebuf, SPAPR_PCI_IO_WIN_SIZE); 1669 g_free(namebuf); 1670 1671 namebuf = g_strdup_printf("%s.io-alias", sphb->dtbusname); 1672 memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf, 1673 &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE); 1674 g_free(namebuf); 1675 memory_region_add_subregion(get_system_memory(), sphb->io_win_addr, 1676 &sphb->iowindow); 1677 1678 bus = pci_register_root_bus(dev, NULL, 1679 pci_spapr_set_irq, pci_spapr_map_irq, sphb, 1680 &sphb->memspace, &sphb->iospace, 1681 PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS); 1682 phb->bus = bus; 1683 qbus_set_hotplug_handler(BUS(phb->bus), DEVICE(sphb), NULL); 1684 1685 /* 1686 * Initialize PHB address space. 1687 * By default there will be at least one subregion for default 1688 * 32bit DMA window. 1689 * Later the guest might want to create another DMA window 1690 * which will become another memory subregion. 1691 */ 1692 namebuf = g_strdup_printf("%s.iommu-root", sphb->dtbusname); 1693 memory_region_init(&sphb->iommu_root, OBJECT(sphb), 1694 namebuf, UINT64_MAX); 1695 g_free(namebuf); 1696 address_space_init(&sphb->iommu_as, &sphb->iommu_root, 1697 sphb->dtbusname); 1698 1699 /* 1700 * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors, 1701 * we need to allocate some memory to catch those writes coming 1702 * from msi_notify()/msix_notify(). 1703 * As MSIMessage:addr is going to be the same and MSIMessage:data 1704 * is going to be a VIRQ number, 4 bytes of the MSI MR will only 1705 * be used. 1706 * 1707 * For KVM we want to ensure that this memory is a full page so that 1708 * our memory slot is of page size granularity. 1709 */ 1710 #ifdef CONFIG_KVM 1711 if (kvm_enabled()) { 1712 msi_window_size = getpagesize(); 1713 } 1714 #endif 1715 1716 memory_region_init_io(&sphb->msiwindow, OBJECT(sphb), &spapr_msi_ops, spapr, 1717 "msi", msi_window_size); 1718 memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW, 1719 &sphb->msiwindow); 1720 1721 pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb); 1722 1723 pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq); 1724 1725 QLIST_INSERT_HEAD(&spapr->phbs, sphb, list); 1726 1727 /* Initialize the LSI table */ 1728 for (i = 0; i < PCI_NUM_PINS; i++) { 1729 uint32_t irq = SPAPR_IRQ_PCI_LSI + sphb->index * PCI_NUM_PINS + i; 1730 Error *local_err = NULL; 1731 1732 if (smc->legacy_irq_allocation) { 1733 irq = spapr_irq_findone(spapr, &local_err); 1734 if (local_err) { 1735 error_propagate_prepend(errp, local_err, 1736 "can't allocate LSIs: "); 1737 return; 1738 } 1739 } 1740 1741 spapr_irq_claim(spapr, irq, true, &local_err); 1742 if (local_err) { 1743 error_propagate_prepend(errp, local_err, "can't allocate LSIs: "); 1744 return; 1745 } 1746 1747 sphb->lsi_table[i].irq = irq; 1748 } 1749 1750 /* allocate connectors for child PCI devices */ 1751 if (sphb->dr_enabled) { 1752 for (i = 0; i < PCI_SLOT_MAX * 8; i++) { 1753 spapr_dr_connector_new(OBJECT(phb), TYPE_SPAPR_DRC_PCI, 1754 (sphb->index << 16) | i); 1755 } 1756 } 1757 1758 /* DMA setup */ 1759 for (i = 0; i < windows_supported; ++i) { 1760 tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn[i]); 1761 if (!tcet) { 1762 error_setg(errp, "Creating window#%d failed for %s", 1763 i, sphb->dtbusname); 1764 return; 1765 } 1766 memory_region_add_subregion(&sphb->iommu_root, 0, 1767 spapr_tce_get_iommu(tcet)); 1768 } 1769 1770 sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, g_free); 1771 } 1772 1773 static int spapr_phb_children_reset(Object *child, void *opaque) 1774 { 1775 DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE); 1776 1777 if (dev) { 1778 device_reset(dev); 1779 } 1780 1781 return 0; 1782 } 1783 1784 void spapr_phb_dma_reset(sPAPRPHBState *sphb) 1785 { 1786 int i; 1787 sPAPRTCETable *tcet; 1788 1789 for (i = 0; i < SPAPR_PCI_DMA_MAX_WINDOWS; ++i) { 1790 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]); 1791 1792 if (tcet && tcet->nb_table) { 1793 spapr_tce_table_disable(tcet); 1794 } 1795 } 1796 1797 /* Register default 32bit DMA window */ 1798 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[0]); 1799 spapr_tce_table_enable(tcet, SPAPR_TCE_PAGE_SHIFT, sphb->dma_win_addr, 1800 sphb->dma_win_size >> SPAPR_TCE_PAGE_SHIFT); 1801 } 1802 1803 static void spapr_phb_reset(DeviceState *qdev) 1804 { 1805 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(qdev); 1806 1807 spapr_phb_dma_reset(sphb); 1808 1809 /* Reset the IOMMU state */ 1810 object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL); 1811 1812 if (spapr_phb_eeh_available(SPAPR_PCI_HOST_BRIDGE(qdev))) { 1813 spapr_phb_vfio_reset(qdev); 1814 } 1815 } 1816 1817 static Property spapr_phb_properties[] = { 1818 DEFINE_PROP_UINT32("index", sPAPRPHBState, index, -1), 1819 DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState, mem_win_size, 1820 SPAPR_PCI_MEM32_WIN_SIZE), 1821 DEFINE_PROP_UINT64("mem64_win_size", sPAPRPHBState, mem64_win_size, 1822 SPAPR_PCI_MEM64_WIN_SIZE), 1823 DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState, io_win_size, 1824 SPAPR_PCI_IO_WIN_SIZE), 1825 DEFINE_PROP_BOOL("dynamic-reconfiguration", sPAPRPHBState, dr_enabled, 1826 true), 1827 /* Default DMA window is 0..1GB */ 1828 DEFINE_PROP_UINT64("dma_win_addr", sPAPRPHBState, dma_win_addr, 0), 1829 DEFINE_PROP_UINT64("dma_win_size", sPAPRPHBState, dma_win_size, 0x40000000), 1830 DEFINE_PROP_UINT64("dma64_win_addr", sPAPRPHBState, dma64_win_addr, 1831 0x800000000000000ULL), 1832 DEFINE_PROP_BOOL("ddw", sPAPRPHBState, ddw_enabled, true), 1833 DEFINE_PROP_UINT64("pgsz", sPAPRPHBState, page_size_mask, 1834 (1ULL << 12) | (1ULL << 16)), 1835 DEFINE_PROP_UINT32("numa_node", sPAPRPHBState, numa_node, -1), 1836 DEFINE_PROP_BOOL("pre-2.8-migration", sPAPRPHBState, 1837 pre_2_8_migration, false), 1838 DEFINE_PROP_BOOL("pcie-extended-configuration-space", sPAPRPHBState, 1839 pcie_ecs, true), 1840 DEFINE_PROP_END_OF_LIST(), 1841 }; 1842 1843 static const VMStateDescription vmstate_spapr_pci_lsi = { 1844 .name = "spapr_pci/lsi", 1845 .version_id = 1, 1846 .minimum_version_id = 1, 1847 .fields = (VMStateField[]) { 1848 VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi, NULL), 1849 1850 VMSTATE_END_OF_LIST() 1851 }, 1852 }; 1853 1854 static const VMStateDescription vmstate_spapr_pci_msi = { 1855 .name = "spapr_pci/msi", 1856 .version_id = 1, 1857 .minimum_version_id = 1, 1858 .fields = (VMStateField []) { 1859 VMSTATE_UINT32(key, spapr_pci_msi_mig), 1860 VMSTATE_UINT32(value.first_irq, spapr_pci_msi_mig), 1861 VMSTATE_UINT32(value.num, spapr_pci_msi_mig), 1862 VMSTATE_END_OF_LIST() 1863 }, 1864 }; 1865 1866 static int spapr_pci_pre_save(void *opaque) 1867 { 1868 sPAPRPHBState *sphb = opaque; 1869 GHashTableIter iter; 1870 gpointer key, value; 1871 int i; 1872 1873 if (sphb->pre_2_8_migration) { 1874 sphb->mig_liobn = sphb->dma_liobn[0]; 1875 sphb->mig_mem_win_addr = sphb->mem_win_addr; 1876 sphb->mig_mem_win_size = sphb->mem_win_size; 1877 sphb->mig_io_win_addr = sphb->io_win_addr; 1878 sphb->mig_io_win_size = sphb->io_win_size; 1879 1880 if ((sphb->mem64_win_size != 0) 1881 && (sphb->mem64_win_addr 1882 == (sphb->mem_win_addr + sphb->mem_win_size))) { 1883 sphb->mig_mem_win_size += sphb->mem64_win_size; 1884 } 1885 } 1886 1887 g_free(sphb->msi_devs); 1888 sphb->msi_devs = NULL; 1889 sphb->msi_devs_num = g_hash_table_size(sphb->msi); 1890 if (!sphb->msi_devs_num) { 1891 return 0; 1892 } 1893 sphb->msi_devs = g_new(spapr_pci_msi_mig, sphb->msi_devs_num); 1894 1895 g_hash_table_iter_init(&iter, sphb->msi); 1896 for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) { 1897 sphb->msi_devs[i].key = *(uint32_t *) key; 1898 sphb->msi_devs[i].value = *(spapr_pci_msi *) value; 1899 } 1900 1901 return 0; 1902 } 1903 1904 static int spapr_pci_post_load(void *opaque, int version_id) 1905 { 1906 sPAPRPHBState *sphb = opaque; 1907 gpointer key, value; 1908 int i; 1909 1910 for (i = 0; i < sphb->msi_devs_num; ++i) { 1911 key = g_memdup(&sphb->msi_devs[i].key, 1912 sizeof(sphb->msi_devs[i].key)); 1913 value = g_memdup(&sphb->msi_devs[i].value, 1914 sizeof(sphb->msi_devs[i].value)); 1915 g_hash_table_insert(sphb->msi, key, value); 1916 } 1917 g_free(sphb->msi_devs); 1918 sphb->msi_devs = NULL; 1919 sphb->msi_devs_num = 0; 1920 1921 return 0; 1922 } 1923 1924 static bool pre_2_8_migration(void *opaque, int version_id) 1925 { 1926 sPAPRPHBState *sphb = opaque; 1927 1928 return sphb->pre_2_8_migration; 1929 } 1930 1931 static const VMStateDescription vmstate_spapr_pci = { 1932 .name = "spapr_pci", 1933 .version_id = 2, 1934 .minimum_version_id = 2, 1935 .pre_save = spapr_pci_pre_save, 1936 .post_load = spapr_pci_post_load, 1937 .fields = (VMStateField[]) { 1938 VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState, NULL), 1939 VMSTATE_UINT32_TEST(mig_liobn, sPAPRPHBState, pre_2_8_migration), 1940 VMSTATE_UINT64_TEST(mig_mem_win_addr, sPAPRPHBState, pre_2_8_migration), 1941 VMSTATE_UINT64_TEST(mig_mem_win_size, sPAPRPHBState, pre_2_8_migration), 1942 VMSTATE_UINT64_TEST(mig_io_win_addr, sPAPRPHBState, pre_2_8_migration), 1943 VMSTATE_UINT64_TEST(mig_io_win_size, sPAPRPHBState, pre_2_8_migration), 1944 VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0, 1945 vmstate_spapr_pci_lsi, struct spapr_pci_lsi), 1946 VMSTATE_INT32(msi_devs_num, sPAPRPHBState), 1947 VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, sPAPRPHBState, msi_devs_num, 0, 1948 vmstate_spapr_pci_msi, spapr_pci_msi_mig), 1949 VMSTATE_END_OF_LIST() 1950 }, 1951 }; 1952 1953 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge, 1954 PCIBus *rootbus) 1955 { 1956 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge); 1957 1958 return sphb->dtbusname; 1959 } 1960 1961 static void spapr_phb_class_init(ObjectClass *klass, void *data) 1962 { 1963 PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass); 1964 DeviceClass *dc = DEVICE_CLASS(klass); 1965 HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass); 1966 1967 hc->root_bus_path = spapr_phb_root_bus_path; 1968 dc->realize = spapr_phb_realize; 1969 dc->props = spapr_phb_properties; 1970 dc->reset = spapr_phb_reset; 1971 dc->vmsd = &vmstate_spapr_pci; 1972 /* Supported by TYPE_SPAPR_MACHINE */ 1973 dc->user_creatable = true; 1974 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories); 1975 hp->plug = spapr_pci_plug; 1976 hp->unplug = spapr_pci_unplug; 1977 hp->unplug_request = spapr_pci_unplug_request; 1978 } 1979 1980 static const TypeInfo spapr_phb_info = { 1981 .name = TYPE_SPAPR_PCI_HOST_BRIDGE, 1982 .parent = TYPE_PCI_HOST_BRIDGE, 1983 .instance_size = sizeof(sPAPRPHBState), 1984 .class_init = spapr_phb_class_init, 1985 .interfaces = (InterfaceInfo[]) { 1986 { TYPE_HOTPLUG_HANDLER }, 1987 { } 1988 } 1989 }; 1990 1991 typedef struct sPAPRFDT { 1992 void *fdt; 1993 int node_off; 1994 sPAPRPHBState *sphb; 1995 } sPAPRFDT; 1996 1997 static void spapr_populate_pci_devices_dt(PCIBus *bus, PCIDevice *pdev, 1998 void *opaque) 1999 { 2000 PCIBus *sec_bus; 2001 sPAPRFDT *p = opaque; 2002 int offset; 2003 sPAPRFDT s_fdt; 2004 2005 offset = spapr_create_pci_child_dt(p->sphb, pdev, p->fdt, p->node_off); 2006 if (!offset) { 2007 error_report("Failed to create pci child device tree node"); 2008 return; 2009 } 2010 2011 if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) != 2012 PCI_HEADER_TYPE_BRIDGE)) { 2013 return; 2014 } 2015 2016 sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev)); 2017 if (!sec_bus) { 2018 return; 2019 } 2020 2021 s_fdt.fdt = p->fdt; 2022 s_fdt.node_off = offset; 2023 s_fdt.sphb = p->sphb; 2024 pci_for_each_device_reverse(sec_bus, pci_bus_num(sec_bus), 2025 spapr_populate_pci_devices_dt, 2026 &s_fdt); 2027 } 2028 2029 static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev, 2030 void *opaque) 2031 { 2032 unsigned int *bus_no = opaque; 2033 PCIBus *sec_bus = NULL; 2034 2035 if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) != 2036 PCI_HEADER_TYPE_BRIDGE)) { 2037 return; 2038 } 2039 2040 (*bus_no)++; 2041 pci_default_write_config(pdev, PCI_PRIMARY_BUS, pci_dev_bus_num(pdev), 1); 2042 pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1); 2043 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1); 2044 2045 sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev)); 2046 if (!sec_bus) { 2047 return; 2048 } 2049 2050 pci_for_each_device(sec_bus, pci_bus_num(sec_bus), 2051 spapr_phb_pci_enumerate_bridge, bus_no); 2052 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1); 2053 } 2054 2055 static void spapr_phb_pci_enumerate(sPAPRPHBState *phb) 2056 { 2057 PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus; 2058 unsigned int bus_no = 0; 2059 2060 pci_for_each_device(bus, pci_bus_num(bus), 2061 spapr_phb_pci_enumerate_bridge, 2062 &bus_no); 2063 2064 } 2065 2066 int spapr_populate_pci_dt(sPAPRPHBState *phb, uint32_t xics_phandle, void *fdt, 2067 uint32_t nr_msis) 2068 { 2069 int bus_off, i, j, ret; 2070 gchar *nodename; 2071 uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) }; 2072 struct { 2073 uint32_t hi; 2074 uint64_t child; 2075 uint64_t parent; 2076 uint64_t size; 2077 } QEMU_PACKED ranges[] = { 2078 { 2079 cpu_to_be32(b_ss(1)), cpu_to_be64(0), 2080 cpu_to_be64(phb->io_win_addr), 2081 cpu_to_be64(memory_region_size(&phb->iospace)), 2082 }, 2083 { 2084 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET), 2085 cpu_to_be64(phb->mem_win_addr), 2086 cpu_to_be64(phb->mem_win_size), 2087 }, 2088 { 2089 cpu_to_be32(b_ss(3)), cpu_to_be64(phb->mem64_win_pciaddr), 2090 cpu_to_be64(phb->mem64_win_addr), 2091 cpu_to_be64(phb->mem64_win_size), 2092 }, 2093 }; 2094 const unsigned sizeof_ranges = 2095 (phb->mem64_win_size ? 3 : 2) * sizeof(ranges[0]); 2096 uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 }; 2097 uint32_t interrupt_map_mask[] = { 2098 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)}; 2099 uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7]; 2100 uint32_t ddw_applicable[] = { 2101 cpu_to_be32(RTAS_IBM_QUERY_PE_DMA_WINDOW), 2102 cpu_to_be32(RTAS_IBM_CREATE_PE_DMA_WINDOW), 2103 cpu_to_be32(RTAS_IBM_REMOVE_PE_DMA_WINDOW) 2104 }; 2105 uint32_t ddw_extensions[] = { 2106 cpu_to_be32(1), 2107 cpu_to_be32(RTAS_IBM_RESET_PE_DMA_WINDOW) 2108 }; 2109 uint32_t associativity[] = {cpu_to_be32(0x4), 2110 cpu_to_be32(0x0), 2111 cpu_to_be32(0x0), 2112 cpu_to_be32(0x0), 2113 cpu_to_be32(phb->numa_node)}; 2114 sPAPRTCETable *tcet; 2115 PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus; 2116 sPAPRFDT s_fdt; 2117 2118 /* Start populating the FDT */ 2119 nodename = g_strdup_printf("pci@%" PRIx64, phb->buid); 2120 _FDT(bus_off = fdt_add_subnode(fdt, 0, nodename)); 2121 g_free(nodename); 2122 2123 /* Write PHB properties */ 2124 _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci")); 2125 _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB")); 2126 _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3)); 2127 _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2)); 2128 _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1)); 2129 _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0)); 2130 _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range))); 2131 _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges)); 2132 _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg))); 2133 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1)); 2134 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", nr_msis)); 2135 2136 /* Dynamic DMA window */ 2137 if (phb->ddw_enabled) { 2138 _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-applicable", &ddw_applicable, 2139 sizeof(ddw_applicable))); 2140 _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-extensions", 2141 &ddw_extensions, sizeof(ddw_extensions))); 2142 } 2143 2144 /* Advertise NUMA via ibm,associativity */ 2145 if (phb->numa_node != -1) { 2146 _FDT(fdt_setprop(fdt, bus_off, "ibm,associativity", associativity, 2147 sizeof(associativity))); 2148 } 2149 2150 /* Build the interrupt-map, this must matches what is done 2151 * in pci_spapr_map_irq 2152 */ 2153 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask", 2154 &interrupt_map_mask, sizeof(interrupt_map_mask))); 2155 for (i = 0; i < PCI_SLOT_MAX; i++) { 2156 for (j = 0; j < PCI_NUM_PINS; j++) { 2157 uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j]; 2158 int lsi_num = pci_spapr_swizzle(i, j); 2159 2160 irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0)); 2161 irqmap[1] = 0; 2162 irqmap[2] = 0; 2163 irqmap[3] = cpu_to_be32(j+1); 2164 irqmap[4] = cpu_to_be32(xics_phandle); 2165 spapr_dt_xics_irq(&irqmap[5], phb->lsi_table[lsi_num].irq, true); 2166 } 2167 } 2168 /* Write interrupt map */ 2169 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map, 2170 sizeof(interrupt_map))); 2171 2172 tcet = spapr_tce_find_by_liobn(phb->dma_liobn[0]); 2173 if (!tcet) { 2174 return -1; 2175 } 2176 spapr_dma_dt(fdt, bus_off, "ibm,dma-window", 2177 tcet->liobn, tcet->bus_offset, 2178 tcet->nb_table << tcet->page_shift); 2179 2180 /* Walk the bridges and program the bus numbers*/ 2181 spapr_phb_pci_enumerate(phb); 2182 _FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1)); 2183 2184 /* Populate tree nodes with PCI devices attached */ 2185 s_fdt.fdt = fdt; 2186 s_fdt.node_off = bus_off; 2187 s_fdt.sphb = phb; 2188 pci_for_each_device_reverse(bus, pci_bus_num(bus), 2189 spapr_populate_pci_devices_dt, 2190 &s_fdt); 2191 2192 ret = spapr_drc_populate_dt(fdt, bus_off, OBJECT(phb), 2193 SPAPR_DR_CONNECTOR_TYPE_PCI); 2194 if (ret) { 2195 return ret; 2196 } 2197 2198 return 0; 2199 } 2200 2201 void spapr_pci_rtas_init(void) 2202 { 2203 spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config", 2204 rtas_read_pci_config); 2205 spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config", 2206 rtas_write_pci_config); 2207 spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config", 2208 rtas_ibm_read_pci_config); 2209 spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config", 2210 rtas_ibm_write_pci_config); 2211 if (msi_nonbroken) { 2212 spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER, 2213 "ibm,query-interrupt-source-number", 2214 rtas_ibm_query_interrupt_source_number); 2215 spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi", 2216 rtas_ibm_change_msi); 2217 } 2218 2219 spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION, 2220 "ibm,set-eeh-option", 2221 rtas_ibm_set_eeh_option); 2222 spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2, 2223 "ibm,get-config-addr-info2", 2224 rtas_ibm_get_config_addr_info2); 2225 spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2, 2226 "ibm,read-slot-reset-state2", 2227 rtas_ibm_read_slot_reset_state2); 2228 spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET, 2229 "ibm,set-slot-reset", 2230 rtas_ibm_set_slot_reset); 2231 spapr_rtas_register(RTAS_IBM_CONFIGURE_PE, 2232 "ibm,configure-pe", 2233 rtas_ibm_configure_pe); 2234 spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL, 2235 "ibm,slot-error-detail", 2236 rtas_ibm_slot_error_detail); 2237 } 2238 2239 static void spapr_pci_register_types(void) 2240 { 2241 type_register_static(&spapr_phb_info); 2242 } 2243 2244 type_init(spapr_pci_register_types) 2245 2246 static int spapr_switch_one_vga(DeviceState *dev, void *opaque) 2247 { 2248 bool be = *(bool *)opaque; 2249 2250 if (object_dynamic_cast(OBJECT(dev), "VGA") 2251 || object_dynamic_cast(OBJECT(dev), "secondary-vga")) { 2252 object_property_set_bool(OBJECT(dev), be, "big-endian-framebuffer", 2253 &error_abort); 2254 } 2255 return 0; 2256 } 2257 2258 void spapr_pci_switch_vga(bool big_endian) 2259 { 2260 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 2261 sPAPRPHBState *sphb; 2262 2263 /* 2264 * For backward compatibility with existing guests, we switch 2265 * the endianness of the VGA controller when changing the guest 2266 * interrupt mode 2267 */ 2268 QLIST_FOREACH(sphb, &spapr->phbs, list) { 2269 BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus; 2270 qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL, 2271 &big_endian); 2272 } 2273 } 2274