xref: /openbmc/qemu/hw/ppc/spapr_pci.c (revision 200280af0e19bfaeb9431eb0ee1ee2d8bf8d3a0a)
1 /*
2  * QEMU sPAPR PCI host originated from Uninorth PCI host
3  *
4  * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5  * Copyright (C) 2011 David Gibson, IBM Corporation.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 #include "qemu/osdep.h"
26 #include "qapi/error.h"
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "hw/hw.h"
30 #include "hw/sysbus.h"
31 #include "hw/pci/pci.h"
32 #include "hw/pci/msi.h"
33 #include "hw/pci/msix.h"
34 #include "hw/pci/pci_host.h"
35 #include "hw/ppc/spapr.h"
36 #include "hw/pci-host/spapr.h"
37 #include "exec/address-spaces.h"
38 #include "exec/ram_addr.h"
39 #include <libfdt.h>
40 #include "trace.h"
41 #include "qemu/error-report.h"
42 #include "qapi/qmp/qerror.h"
43 #include "hw/ppc/fdt.h"
44 #include "hw/pci/pci_bridge.h"
45 #include "hw/pci/pci_bus.h"
46 #include "hw/pci/pci_ids.h"
47 #include "hw/ppc/spapr_drc.h"
48 #include "sysemu/device_tree.h"
49 #include "sysemu/kvm.h"
50 #include "sysemu/hostmem.h"
51 #include "sysemu/numa.h"
52 
53 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
54 #define RTAS_QUERY_FN           0
55 #define RTAS_CHANGE_FN          1
56 #define RTAS_RESET_FN           2
57 #define RTAS_CHANGE_MSI_FN      3
58 #define RTAS_CHANGE_MSIX_FN     4
59 
60 /* Interrupt types to return on RTAS_CHANGE_* */
61 #define RTAS_TYPE_MSI           1
62 #define RTAS_TYPE_MSIX          2
63 
64 sPAPRPHBState *spapr_pci_find_phb(sPAPRMachineState *spapr, uint64_t buid)
65 {
66     sPAPRPHBState *sphb;
67 
68     QLIST_FOREACH(sphb, &spapr->phbs, list) {
69         if (sphb->buid != buid) {
70             continue;
71         }
72         return sphb;
73     }
74 
75     return NULL;
76 }
77 
78 PCIDevice *spapr_pci_find_dev(sPAPRMachineState *spapr, uint64_t buid,
79                               uint32_t config_addr)
80 {
81     sPAPRPHBState *sphb = spapr_pci_find_phb(spapr, buid);
82     PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
83     int bus_num = (config_addr >> 16) & 0xFF;
84     int devfn = (config_addr >> 8) & 0xFF;
85 
86     if (!phb) {
87         return NULL;
88     }
89 
90     return pci_find_device(phb->bus, bus_num, devfn);
91 }
92 
93 static uint32_t rtas_pci_cfgaddr(uint32_t arg)
94 {
95     /* This handles the encoding of extended config space addresses */
96     return ((arg >> 20) & 0xf00) | (arg & 0xff);
97 }
98 
99 static void finish_read_pci_config(sPAPRMachineState *spapr, uint64_t buid,
100                                    uint32_t addr, uint32_t size,
101                                    target_ulong rets)
102 {
103     PCIDevice *pci_dev;
104     uint32_t val;
105 
106     if ((size != 1) && (size != 2) && (size != 4)) {
107         /* access must be 1, 2 or 4 bytes */
108         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
109         return;
110     }
111 
112     pci_dev = spapr_pci_find_dev(spapr, buid, addr);
113     addr = rtas_pci_cfgaddr(addr);
114 
115     if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
116         /* Access must be to a valid device, within bounds and
117          * naturally aligned */
118         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
119         return;
120     }
121 
122     val = pci_host_config_read_common(pci_dev, addr,
123                                       pci_config_size(pci_dev), size);
124 
125     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
126     rtas_st(rets, 1, val);
127 }
128 
129 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
130                                      uint32_t token, uint32_t nargs,
131                                      target_ulong args,
132                                      uint32_t nret, target_ulong rets)
133 {
134     uint64_t buid;
135     uint32_t size, addr;
136 
137     if ((nargs != 4) || (nret != 2)) {
138         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
139         return;
140     }
141 
142     buid = rtas_ldq(args, 1);
143     size = rtas_ld(args, 3);
144     addr = rtas_ld(args, 0);
145 
146     finish_read_pci_config(spapr, buid, addr, size, rets);
147 }
148 
149 static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
150                                  uint32_t token, uint32_t nargs,
151                                  target_ulong args,
152                                  uint32_t nret, target_ulong rets)
153 {
154     uint32_t size, addr;
155 
156     if ((nargs != 2) || (nret != 2)) {
157         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
158         return;
159     }
160 
161     size = rtas_ld(args, 1);
162     addr = rtas_ld(args, 0);
163 
164     finish_read_pci_config(spapr, 0, addr, size, rets);
165 }
166 
167 static void finish_write_pci_config(sPAPRMachineState *spapr, uint64_t buid,
168                                     uint32_t addr, uint32_t size,
169                                     uint32_t val, target_ulong rets)
170 {
171     PCIDevice *pci_dev;
172 
173     if ((size != 1) && (size != 2) && (size != 4)) {
174         /* access must be 1, 2 or 4 bytes */
175         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
176         return;
177     }
178 
179     pci_dev = spapr_pci_find_dev(spapr, buid, addr);
180     addr = rtas_pci_cfgaddr(addr);
181 
182     if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
183         /* Access must be to a valid device, within bounds and
184          * naturally aligned */
185         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
186         return;
187     }
188 
189     pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
190                                  val, size);
191 
192     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
193 }
194 
195 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
196                                       uint32_t token, uint32_t nargs,
197                                       target_ulong args,
198                                       uint32_t nret, target_ulong rets)
199 {
200     uint64_t buid;
201     uint32_t val, size, addr;
202 
203     if ((nargs != 5) || (nret != 1)) {
204         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
205         return;
206     }
207 
208     buid = rtas_ldq(args, 1);
209     val = rtas_ld(args, 4);
210     size = rtas_ld(args, 3);
211     addr = rtas_ld(args, 0);
212 
213     finish_write_pci_config(spapr, buid, addr, size, val, rets);
214 }
215 
216 static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
217                                   uint32_t token, uint32_t nargs,
218                                   target_ulong args,
219                                   uint32_t nret, target_ulong rets)
220 {
221     uint32_t val, size, addr;
222 
223     if ((nargs != 3) || (nret != 1)) {
224         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
225         return;
226     }
227 
228 
229     val = rtas_ld(args, 2);
230     size = rtas_ld(args, 1);
231     addr = rtas_ld(args, 0);
232 
233     finish_write_pci_config(spapr, 0, addr, size, val, rets);
234 }
235 
236 /*
237  * Set MSI/MSIX message data.
238  * This is required for msi_notify()/msix_notify() which
239  * will write at the addresses via spapr_msi_write().
240  *
241  * If hwaddr == 0, all entries will have .data == first_irq i.e.
242  * table will be reset.
243  */
244 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix,
245                              unsigned first_irq, unsigned req_num)
246 {
247     unsigned i;
248     MSIMessage msg = { .address = addr, .data = first_irq };
249 
250     if (!msix) {
251         msi_set_message(pdev, msg);
252         trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
253         return;
254     }
255 
256     for (i = 0; i < req_num; ++i) {
257         msix_set_message(pdev, i, msg);
258         trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
259         if (addr) {
260             ++msg.data;
261         }
262     }
263 }
264 
265 static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPRMachineState *spapr,
266                                 uint32_t token, uint32_t nargs,
267                                 target_ulong args, uint32_t nret,
268                                 target_ulong rets)
269 {
270     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
271     uint32_t config_addr = rtas_ld(args, 0);
272     uint64_t buid = rtas_ldq(args, 1);
273     unsigned int func = rtas_ld(args, 3);
274     unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
275     unsigned int seq_num = rtas_ld(args, 5);
276     unsigned int ret_intr_type;
277     unsigned int irq, max_irqs = 0;
278     sPAPRPHBState *phb = NULL;
279     PCIDevice *pdev = NULL;
280     spapr_pci_msi *msi;
281     int *config_addr_key;
282     Error *err = NULL;
283     int i;
284 
285     /* Fins sPAPRPHBState */
286     phb = spapr_pci_find_phb(spapr, buid);
287     if (phb) {
288         pdev = spapr_pci_find_dev(spapr, buid, config_addr);
289     }
290     if (!phb || !pdev) {
291         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
292         return;
293     }
294 
295     switch (func) {
296     case RTAS_CHANGE_FN:
297         if (msi_present(pdev)) {
298             ret_intr_type = RTAS_TYPE_MSI;
299         } else if (msix_present(pdev)) {
300             ret_intr_type = RTAS_TYPE_MSIX;
301         } else {
302             rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
303             return;
304         }
305         break;
306     case RTAS_CHANGE_MSI_FN:
307         if (msi_present(pdev)) {
308             ret_intr_type = RTAS_TYPE_MSI;
309         } else {
310             rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
311             return;
312         }
313         break;
314     case RTAS_CHANGE_MSIX_FN:
315         if (msix_present(pdev)) {
316             ret_intr_type = RTAS_TYPE_MSIX;
317         } else {
318             rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
319             return;
320         }
321         break;
322     default:
323         error_report("rtas_ibm_change_msi(%u) is not implemented", func);
324         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
325         return;
326     }
327 
328     msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
329 
330     /* Releasing MSIs */
331     if (!req_num) {
332         if (!msi) {
333             trace_spapr_pci_msi("Releasing wrong config", config_addr);
334             rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
335             return;
336         }
337 
338         if (!smc->legacy_irq_allocation) {
339             spapr_irq_msi_free(spapr, msi->first_irq, msi->num);
340         }
341         spapr_irq_free(spapr, msi->first_irq, msi->num);
342         if (msi_present(pdev)) {
343             spapr_msi_setmsg(pdev, 0, false, 0, 0);
344         }
345         if (msix_present(pdev)) {
346             spapr_msi_setmsg(pdev, 0, true, 0, 0);
347         }
348         g_hash_table_remove(phb->msi, &config_addr);
349 
350         trace_spapr_pci_msi("Released MSIs", config_addr);
351         rtas_st(rets, 0, RTAS_OUT_SUCCESS);
352         rtas_st(rets, 1, 0);
353         return;
354     }
355 
356     /* Enabling MSI */
357 
358     /* Check if the device supports as many IRQs as requested */
359     if (ret_intr_type == RTAS_TYPE_MSI) {
360         max_irqs = msi_nr_vectors_allocated(pdev);
361     } else if (ret_intr_type == RTAS_TYPE_MSIX) {
362         max_irqs = pdev->msix_entries_nr;
363     }
364     if (!max_irqs) {
365         error_report("Requested interrupt type %d is not enabled for device %x",
366                      ret_intr_type, config_addr);
367         rtas_st(rets, 0, -1); /* Hardware error */
368         return;
369     }
370     /* Correct the number if the guest asked for too many */
371     if (req_num > max_irqs) {
372         trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs);
373         req_num = max_irqs;
374         irq = 0; /* to avoid misleading trace */
375         goto out;
376     }
377 
378     /* Allocate MSIs */
379     if (smc->legacy_irq_allocation) {
380         irq = spapr_irq_find(spapr, req_num, ret_intr_type == RTAS_TYPE_MSI,
381                              &err);
382     } else {
383         irq = spapr_irq_msi_alloc(spapr, req_num,
384                                   ret_intr_type == RTAS_TYPE_MSI, &err);
385     }
386     if (err) {
387         error_reportf_err(err, "Can't allocate MSIs for device %x: ",
388                           config_addr);
389         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
390         return;
391     }
392 
393     for (i = 0; i < req_num; i++) {
394         spapr_irq_claim(spapr, irq + i, false, &err);
395         if (err) {
396             error_reportf_err(err, "Can't allocate MSIs for device %x: ",
397                               config_addr);
398             rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
399             return;
400         }
401     }
402 
403     /* Release previous MSIs */
404     if (msi) {
405         if (!smc->legacy_irq_allocation) {
406             spapr_irq_msi_free(spapr, msi->first_irq, msi->num);
407         }
408         spapr_irq_free(spapr, msi->first_irq, msi->num);
409         g_hash_table_remove(phb->msi, &config_addr);
410     }
411 
412     /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
413     spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX,
414                      irq, req_num);
415 
416     /* Add MSI device to cache */
417     msi = g_new(spapr_pci_msi, 1);
418     msi->first_irq = irq;
419     msi->num = req_num;
420     config_addr_key = g_new(int, 1);
421     *config_addr_key = config_addr;
422     g_hash_table_insert(phb->msi, config_addr_key, msi);
423 
424 out:
425     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
426     rtas_st(rets, 1, req_num);
427     rtas_st(rets, 2, ++seq_num);
428     if (nret > 3) {
429         rtas_st(rets, 3, ret_intr_type);
430     }
431 
432     trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq);
433 }
434 
435 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
436                                                    sPAPRMachineState *spapr,
437                                                    uint32_t token,
438                                                    uint32_t nargs,
439                                                    target_ulong args,
440                                                    uint32_t nret,
441                                                    target_ulong rets)
442 {
443     uint32_t config_addr = rtas_ld(args, 0);
444     uint64_t buid = rtas_ldq(args, 1);
445     unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
446     sPAPRPHBState *phb = NULL;
447     PCIDevice *pdev = NULL;
448     spapr_pci_msi *msi;
449 
450     /* Find sPAPRPHBState */
451     phb = spapr_pci_find_phb(spapr, buid);
452     if (phb) {
453         pdev = spapr_pci_find_dev(spapr, buid, config_addr);
454     }
455     if (!phb || !pdev) {
456         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
457         return;
458     }
459 
460     /* Find device descriptor and start IRQ */
461     msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
462     if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) {
463         trace_spapr_pci_msi("Failed to return vector", config_addr);
464         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
465         return;
466     }
467     intr_src_num = msi->first_irq + ioa_intr_num;
468     trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
469                                                            intr_src_num);
470 
471     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
472     rtas_st(rets, 1, intr_src_num);
473     rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
474 }
475 
476 static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu,
477                                     sPAPRMachineState *spapr,
478                                     uint32_t token, uint32_t nargs,
479                                     target_ulong args, uint32_t nret,
480                                     target_ulong rets)
481 {
482     sPAPRPHBState *sphb;
483     uint32_t addr, option;
484     uint64_t buid;
485     int ret;
486 
487     if ((nargs != 4) || (nret != 1)) {
488         goto param_error_exit;
489     }
490 
491     buid = rtas_ldq(args, 1);
492     addr = rtas_ld(args, 0);
493     option = rtas_ld(args, 3);
494 
495     sphb = spapr_pci_find_phb(spapr, buid);
496     if (!sphb) {
497         goto param_error_exit;
498     }
499 
500     if (!spapr_phb_eeh_available(sphb)) {
501         goto param_error_exit;
502     }
503 
504     ret = spapr_phb_vfio_eeh_set_option(sphb, addr, option);
505     rtas_st(rets, 0, ret);
506     return;
507 
508 param_error_exit:
509     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
510 }
511 
512 static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu,
513                                            sPAPRMachineState *spapr,
514                                            uint32_t token, uint32_t nargs,
515                                            target_ulong args, uint32_t nret,
516                                            target_ulong rets)
517 {
518     sPAPRPHBState *sphb;
519     PCIDevice *pdev;
520     uint32_t addr, option;
521     uint64_t buid;
522 
523     if ((nargs != 4) || (nret != 2)) {
524         goto param_error_exit;
525     }
526 
527     buid = rtas_ldq(args, 1);
528     sphb = spapr_pci_find_phb(spapr, buid);
529     if (!sphb) {
530         goto param_error_exit;
531     }
532 
533     if (!spapr_phb_eeh_available(sphb)) {
534         goto param_error_exit;
535     }
536 
537     /*
538      * We always have PE address of form "00BB0001". "BB"
539      * represents the bus number of PE's primary bus.
540      */
541     option = rtas_ld(args, 3);
542     switch (option) {
543     case RTAS_GET_PE_ADDR:
544         addr = rtas_ld(args, 0);
545         pdev = spapr_pci_find_dev(spapr, buid, addr);
546         if (!pdev) {
547             goto param_error_exit;
548         }
549 
550         rtas_st(rets, 1, (pci_bus_num(pci_get_bus(pdev)) << 16) + 1);
551         break;
552     case RTAS_GET_PE_MODE:
553         rtas_st(rets, 1, RTAS_PE_MODE_SHARED);
554         break;
555     default:
556         goto param_error_exit;
557     }
558 
559     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
560     return;
561 
562 param_error_exit:
563     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
564 }
565 
566 static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu,
567                                             sPAPRMachineState *spapr,
568                                             uint32_t token, uint32_t nargs,
569                                             target_ulong args, uint32_t nret,
570                                             target_ulong rets)
571 {
572     sPAPRPHBState *sphb;
573     uint64_t buid;
574     int state, ret;
575 
576     if ((nargs != 3) || (nret != 4 && nret != 5)) {
577         goto param_error_exit;
578     }
579 
580     buid = rtas_ldq(args, 1);
581     sphb = spapr_pci_find_phb(spapr, buid);
582     if (!sphb) {
583         goto param_error_exit;
584     }
585 
586     if (!spapr_phb_eeh_available(sphb)) {
587         goto param_error_exit;
588     }
589 
590     ret = spapr_phb_vfio_eeh_get_state(sphb, &state);
591     rtas_st(rets, 0, ret);
592     if (ret != RTAS_OUT_SUCCESS) {
593         return;
594     }
595 
596     rtas_st(rets, 1, state);
597     rtas_st(rets, 2, RTAS_EEH_SUPPORT);
598     rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO);
599     if (nret >= 5) {
600         rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO);
601     }
602     return;
603 
604 param_error_exit:
605     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
606 }
607 
608 static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu,
609                                     sPAPRMachineState *spapr,
610                                     uint32_t token, uint32_t nargs,
611                                     target_ulong args, uint32_t nret,
612                                     target_ulong rets)
613 {
614     sPAPRPHBState *sphb;
615     uint32_t option;
616     uint64_t buid;
617     int ret;
618 
619     if ((nargs != 4) || (nret != 1)) {
620         goto param_error_exit;
621     }
622 
623     buid = rtas_ldq(args, 1);
624     option = rtas_ld(args, 3);
625     sphb = spapr_pci_find_phb(spapr, buid);
626     if (!sphb) {
627         goto param_error_exit;
628     }
629 
630     if (!spapr_phb_eeh_available(sphb)) {
631         goto param_error_exit;
632     }
633 
634     ret = spapr_phb_vfio_eeh_reset(sphb, option);
635     rtas_st(rets, 0, ret);
636     return;
637 
638 param_error_exit:
639     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
640 }
641 
642 static void rtas_ibm_configure_pe(PowerPCCPU *cpu,
643                                   sPAPRMachineState *spapr,
644                                   uint32_t token, uint32_t nargs,
645                                   target_ulong args, uint32_t nret,
646                                   target_ulong rets)
647 {
648     sPAPRPHBState *sphb;
649     uint64_t buid;
650     int ret;
651 
652     if ((nargs != 3) || (nret != 1)) {
653         goto param_error_exit;
654     }
655 
656     buid = rtas_ldq(args, 1);
657     sphb = spapr_pci_find_phb(spapr, buid);
658     if (!sphb) {
659         goto param_error_exit;
660     }
661 
662     if (!spapr_phb_eeh_available(sphb)) {
663         goto param_error_exit;
664     }
665 
666     ret = spapr_phb_vfio_eeh_configure(sphb);
667     rtas_st(rets, 0, ret);
668     return;
669 
670 param_error_exit:
671     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
672 }
673 
674 /* To support it later */
675 static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu,
676                                        sPAPRMachineState *spapr,
677                                        uint32_t token, uint32_t nargs,
678                                        target_ulong args, uint32_t nret,
679                                        target_ulong rets)
680 {
681     sPAPRPHBState *sphb;
682     int option;
683     uint64_t buid;
684 
685     if ((nargs != 8) || (nret != 1)) {
686         goto param_error_exit;
687     }
688 
689     buid = rtas_ldq(args, 1);
690     sphb = spapr_pci_find_phb(spapr, buid);
691     if (!sphb) {
692         goto param_error_exit;
693     }
694 
695     if (!spapr_phb_eeh_available(sphb)) {
696         goto param_error_exit;
697     }
698 
699     option = rtas_ld(args, 7);
700     switch (option) {
701     case RTAS_SLOT_TEMP_ERR_LOG:
702     case RTAS_SLOT_PERM_ERR_LOG:
703         break;
704     default:
705         goto param_error_exit;
706     }
707 
708     /* We don't have error log yet */
709     rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
710     return;
711 
712 param_error_exit:
713     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
714 }
715 
716 static int pci_spapr_swizzle(int slot, int pin)
717 {
718     return (slot + pin) % PCI_NUM_PINS;
719 }
720 
721 static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
722 {
723     /*
724      * Here we need to convert pci_dev + irq_num to some unique value
725      * which is less than number of IRQs on the specific bus (4).  We
726      * use standard PCI swizzling, that is (slot number + pin number)
727      * % 4.
728      */
729     return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
730 }
731 
732 static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
733 {
734     /*
735      * Here we use the number returned by pci_spapr_map_irq to find a
736      * corresponding qemu_irq.
737      */
738     sPAPRPHBState *phb = opaque;
739 
740     trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
741     qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
742 }
743 
744 static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin)
745 {
746     sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque);
747     PCIINTxRoute route;
748 
749     route.mode = PCI_INTX_ENABLED;
750     route.irq = sphb->lsi_table[pin].irq;
751 
752     return route;
753 }
754 
755 /*
756  * MSI/MSIX memory region implementation.
757  * The handler handles both MSI and MSIX.
758  * The vector number is encoded in least bits in data.
759  */
760 static void spapr_msi_write(void *opaque, hwaddr addr,
761                             uint64_t data, unsigned size)
762 {
763     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
764     uint32_t irq = data;
765 
766     trace_spapr_pci_msi_write(addr, data, irq);
767 
768     qemu_irq_pulse(spapr_qirq(spapr, irq));
769 }
770 
771 static const MemoryRegionOps spapr_msi_ops = {
772     /* There is no .read as the read result is undefined by PCI spec */
773     .read = NULL,
774     .write = spapr_msi_write,
775     .endianness = DEVICE_LITTLE_ENDIAN
776 };
777 
778 /*
779  * PHB PCI device
780  */
781 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
782 {
783     sPAPRPHBState *phb = opaque;
784 
785     return &phb->iommu_as;
786 }
787 
788 static char *spapr_phb_vfio_get_loc_code(sPAPRPHBState *sphb,  PCIDevice *pdev)
789 {
790     char *path = NULL, *buf = NULL, *host = NULL;
791 
792     /* Get the PCI VFIO host id */
793     host = object_property_get_str(OBJECT(pdev), "host", NULL);
794     if (!host) {
795         goto err_out;
796     }
797 
798     /* Construct the path of the file that will give us the DT location */
799     path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host);
800     g_free(host);
801     if (!g_file_get_contents(path, &buf, NULL, NULL)) {
802         goto err_out;
803     }
804     g_free(path);
805 
806     /* Construct and read from host device tree the loc-code */
807     path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", buf);
808     g_free(buf);
809     if (!g_file_get_contents(path, &buf, NULL, NULL)) {
810         goto err_out;
811     }
812     return buf;
813 
814 err_out:
815     g_free(path);
816     return NULL;
817 }
818 
819 static char *spapr_phb_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev)
820 {
821     char *buf;
822     const char *devtype = "qemu";
823     uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
824 
825     if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) {
826         buf = spapr_phb_vfio_get_loc_code(sphb, pdev);
827         if (buf) {
828             return buf;
829         }
830         devtype = "vfio";
831     }
832     /*
833      * For emulated devices and VFIO-failure case, make up
834      * the loc-code.
835      */
836     buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x",
837                           devtype, pdev->name, sphb->index, busnr,
838                           PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
839     return buf;
840 }
841 
842 /* Macros to operate with address in OF binding to PCI */
843 #define b_x(x, p, l)    (((x) & ((1<<(l))-1)) << (p))
844 #define b_n(x)          b_x((x), 31, 1) /* 0 if relocatable */
845 #define b_p(x)          b_x((x), 30, 1) /* 1 if prefetchable */
846 #define b_t(x)          b_x((x), 29, 1) /* 1 if the address is aliased */
847 #define b_ss(x)         b_x((x), 24, 2) /* the space code */
848 #define b_bbbbbbbb(x)   b_x((x), 16, 8) /* bus number */
849 #define b_ddddd(x)      b_x((x), 11, 5) /* device number */
850 #define b_fff(x)        b_x((x), 8, 3)  /* function number */
851 #define b_rrrrrrrr(x)   b_x((x), 0, 8)  /* register number */
852 
853 /* for 'reg'/'assigned-addresses' OF properties */
854 #define RESOURCE_CELLS_SIZE 2
855 #define RESOURCE_CELLS_ADDRESS 3
856 
857 typedef struct ResourceFields {
858     uint32_t phys_hi;
859     uint32_t phys_mid;
860     uint32_t phys_lo;
861     uint32_t size_hi;
862     uint32_t size_lo;
863 } QEMU_PACKED ResourceFields;
864 
865 typedef struct ResourceProps {
866     ResourceFields reg[8];
867     ResourceFields assigned[7];
868     uint32_t reg_len;
869     uint32_t assigned_len;
870 } ResourceProps;
871 
872 /* fill in the 'reg'/'assigned-resources' OF properties for
873  * a PCI device. 'reg' describes resource requirements for a
874  * device's IO/MEM regions, 'assigned-addresses' describes the
875  * actual resource assignments.
876  *
877  * the properties are arrays of ('phys-addr', 'size') pairs describing
878  * the addressable regions of the PCI device, where 'phys-addr' is a
879  * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to
880  * (phys.hi, phys.mid, phys.lo), and 'size' is a
881  * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo).
882  *
883  * phys.hi = 0xYYXXXXZZ, where:
884  *   0xYY = npt000ss
885  *          |||   |
886  *          |||   +-- space code
887  *          |||               |
888  *          |||               +  00 if configuration space
889  *          |||               +  01 if IO region,
890  *          |||               +  10 if 32-bit MEM region
891  *          |||               +  11 if 64-bit MEM region
892  *          |||
893  *          ||+------ for non-relocatable IO: 1 if aliased
894  *          ||        for relocatable IO: 1 if below 64KB
895  *          ||        for MEM: 1 if below 1MB
896  *          |+------- 1 if region is prefetchable
897  *          +-------- 1 if region is non-relocatable
898  *   0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function
899  *            bits respectively
900  *   0xZZ = rrrrrrrr, the register number of the BAR corresponding
901  *          to the region
902  *
903  * phys.mid and phys.lo correspond respectively to the hi/lo portions
904  * of the actual address of the region.
905  *
906  * how the phys-addr/size values are used differ slightly between
907  * 'reg' and 'assigned-addresses' properties. namely, 'reg' has
908  * an additional description for the config space region of the
909  * device, and in the case of QEMU has n=0 and phys.mid=phys.lo=0
910  * to describe the region as relocatable, with an address-mapping
911  * that corresponds directly to the PHB's address space for the
912  * resource. 'assigned-addresses' always has n=1 set with an absolute
913  * address assigned for the resource. in general, 'assigned-addresses'
914  * won't be populated, since addresses for PCI devices are generally
915  * unmapped initially and left to the guest to assign.
916  *
917  * note also that addresses defined in these properties are, at least
918  * for PAPR guests, relative to the PHBs IO/MEM windows, and
919  * correspond directly to the addresses in the BARs.
920  *
921  * in accordance with PCI Bus Binding to Open Firmware,
922  * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7,
923  * Appendix C.
924  */
925 static void populate_resource_props(PCIDevice *d, ResourceProps *rp)
926 {
927     int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d))));
928     uint32_t dev_id = (b_bbbbbbbb(bus_num) |
929                        b_ddddd(PCI_SLOT(d->devfn)) |
930                        b_fff(PCI_FUNC(d->devfn)));
931     ResourceFields *reg, *assigned;
932     int i, reg_idx = 0, assigned_idx = 0;
933 
934     /* config space region */
935     reg = &rp->reg[reg_idx++];
936     reg->phys_hi = cpu_to_be32(dev_id);
937     reg->phys_mid = 0;
938     reg->phys_lo = 0;
939     reg->size_hi = 0;
940     reg->size_lo = 0;
941 
942     for (i = 0; i < PCI_NUM_REGIONS; i++) {
943         if (!d->io_regions[i].size) {
944             continue;
945         }
946 
947         reg = &rp->reg[reg_idx++];
948 
949         reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i)));
950         if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) {
951             reg->phys_hi |= cpu_to_be32(b_ss(1));
952         } else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) {
953             reg->phys_hi |= cpu_to_be32(b_ss(3));
954         } else {
955             reg->phys_hi |= cpu_to_be32(b_ss(2));
956         }
957         reg->phys_mid = 0;
958         reg->phys_lo = 0;
959         reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32);
960         reg->size_lo = cpu_to_be32(d->io_regions[i].size);
961 
962         if (d->io_regions[i].addr == PCI_BAR_UNMAPPED) {
963             continue;
964         }
965 
966         assigned = &rp->assigned[assigned_idx++];
967         assigned->phys_hi = cpu_to_be32(reg->phys_hi | b_n(1));
968         assigned->phys_mid = cpu_to_be32(d->io_regions[i].addr >> 32);
969         assigned->phys_lo = cpu_to_be32(d->io_regions[i].addr);
970         assigned->size_hi = reg->size_hi;
971         assigned->size_lo = reg->size_lo;
972     }
973 
974     rp->reg_len = reg_idx * sizeof(ResourceFields);
975     rp->assigned_len = assigned_idx * sizeof(ResourceFields);
976 }
977 
978 typedef struct PCIClass PCIClass;
979 typedef struct PCISubClass PCISubClass;
980 typedef struct PCIIFace PCIIFace;
981 
982 struct PCIIFace {
983     int iface;
984     const char *name;
985 };
986 
987 struct PCISubClass {
988     int subclass;
989     const char *name;
990     const PCIIFace *iface;
991 };
992 
993 struct PCIClass {
994     const char *name;
995     const PCISubClass *subc;
996 };
997 
998 static const PCISubClass undef_subclass[] = {
999     { PCI_CLASS_NOT_DEFINED_VGA, "display", NULL },
1000     { 0xFF, NULL, NULL },
1001 };
1002 
1003 static const PCISubClass mass_subclass[] = {
1004     { PCI_CLASS_STORAGE_SCSI, "scsi", NULL },
1005     { PCI_CLASS_STORAGE_IDE, "ide", NULL },
1006     { PCI_CLASS_STORAGE_FLOPPY, "fdc", NULL },
1007     { PCI_CLASS_STORAGE_IPI, "ipi", NULL },
1008     { PCI_CLASS_STORAGE_RAID, "raid", NULL },
1009     { PCI_CLASS_STORAGE_ATA, "ata", NULL },
1010     { PCI_CLASS_STORAGE_SATA, "sata", NULL },
1011     { PCI_CLASS_STORAGE_SAS, "sas", NULL },
1012     { 0xFF, NULL, NULL },
1013 };
1014 
1015 static const PCISubClass net_subclass[] = {
1016     { PCI_CLASS_NETWORK_ETHERNET, "ethernet", NULL },
1017     { PCI_CLASS_NETWORK_TOKEN_RING, "token-ring", NULL },
1018     { PCI_CLASS_NETWORK_FDDI, "fddi", NULL },
1019     { PCI_CLASS_NETWORK_ATM, "atm", NULL },
1020     { PCI_CLASS_NETWORK_ISDN, "isdn", NULL },
1021     { PCI_CLASS_NETWORK_WORLDFIP, "worldfip", NULL },
1022     { PCI_CLASS_NETWORK_PICMG214, "picmg", NULL },
1023     { 0xFF, NULL, NULL },
1024 };
1025 
1026 static const PCISubClass displ_subclass[] = {
1027     { PCI_CLASS_DISPLAY_VGA, "vga", NULL },
1028     { PCI_CLASS_DISPLAY_XGA, "xga", NULL },
1029     { PCI_CLASS_DISPLAY_3D, "3d-controller", NULL },
1030     { 0xFF, NULL, NULL },
1031 };
1032 
1033 static const PCISubClass media_subclass[] = {
1034     { PCI_CLASS_MULTIMEDIA_VIDEO, "video", NULL },
1035     { PCI_CLASS_MULTIMEDIA_AUDIO, "sound", NULL },
1036     { PCI_CLASS_MULTIMEDIA_PHONE, "telephony", NULL },
1037     { 0xFF, NULL, NULL },
1038 };
1039 
1040 static const PCISubClass mem_subclass[] = {
1041     { PCI_CLASS_MEMORY_RAM, "memory", NULL },
1042     { PCI_CLASS_MEMORY_FLASH, "flash", NULL },
1043     { 0xFF, NULL, NULL },
1044 };
1045 
1046 static const PCISubClass bridg_subclass[] = {
1047     { PCI_CLASS_BRIDGE_HOST, "host", NULL },
1048     { PCI_CLASS_BRIDGE_ISA, "isa", NULL },
1049     { PCI_CLASS_BRIDGE_EISA, "eisa", NULL },
1050     { PCI_CLASS_BRIDGE_MC, "mca", NULL },
1051     { PCI_CLASS_BRIDGE_PCI, "pci", NULL },
1052     { PCI_CLASS_BRIDGE_PCMCIA, "pcmcia", NULL },
1053     { PCI_CLASS_BRIDGE_NUBUS, "nubus", NULL },
1054     { PCI_CLASS_BRIDGE_CARDBUS, "cardbus", NULL },
1055     { PCI_CLASS_BRIDGE_RACEWAY, "raceway", NULL },
1056     { PCI_CLASS_BRIDGE_PCI_SEMITP, "semi-transparent-pci", NULL },
1057     { PCI_CLASS_BRIDGE_IB_PCI, "infiniband", NULL },
1058     { 0xFF, NULL, NULL },
1059 };
1060 
1061 static const PCISubClass comm_subclass[] = {
1062     { PCI_CLASS_COMMUNICATION_SERIAL, "serial", NULL },
1063     { PCI_CLASS_COMMUNICATION_PARALLEL, "parallel", NULL },
1064     { PCI_CLASS_COMMUNICATION_MULTISERIAL, "multiport-serial", NULL },
1065     { PCI_CLASS_COMMUNICATION_MODEM, "modem", NULL },
1066     { PCI_CLASS_COMMUNICATION_GPIB, "gpib", NULL },
1067     { PCI_CLASS_COMMUNICATION_SC, "smart-card", NULL },
1068     { 0xFF, NULL, NULL, },
1069 };
1070 
1071 static const PCIIFace pic_iface[] = {
1072     { PCI_CLASS_SYSTEM_PIC_IOAPIC, "io-apic" },
1073     { PCI_CLASS_SYSTEM_PIC_IOXAPIC, "io-xapic" },
1074     { 0xFF, NULL },
1075 };
1076 
1077 static const PCISubClass sys_subclass[] = {
1078     { PCI_CLASS_SYSTEM_PIC, "interrupt-controller", pic_iface },
1079     { PCI_CLASS_SYSTEM_DMA, "dma-controller", NULL },
1080     { PCI_CLASS_SYSTEM_TIMER, "timer", NULL },
1081     { PCI_CLASS_SYSTEM_RTC, "rtc", NULL },
1082     { PCI_CLASS_SYSTEM_PCI_HOTPLUG, "hot-plug-controller", NULL },
1083     { PCI_CLASS_SYSTEM_SDHCI, "sd-host-controller", NULL },
1084     { 0xFF, NULL, NULL },
1085 };
1086 
1087 static const PCISubClass inp_subclass[] = {
1088     { PCI_CLASS_INPUT_KEYBOARD, "keyboard", NULL },
1089     { PCI_CLASS_INPUT_PEN, "pen", NULL },
1090     { PCI_CLASS_INPUT_MOUSE, "mouse", NULL },
1091     { PCI_CLASS_INPUT_SCANNER, "scanner", NULL },
1092     { PCI_CLASS_INPUT_GAMEPORT, "gameport", NULL },
1093     { 0xFF, NULL, NULL },
1094 };
1095 
1096 static const PCISubClass dock_subclass[] = {
1097     { PCI_CLASS_DOCKING_GENERIC, "dock", NULL },
1098     { 0xFF, NULL, NULL },
1099 };
1100 
1101 static const PCISubClass cpu_subclass[] = {
1102     { PCI_CLASS_PROCESSOR_PENTIUM, "pentium", NULL },
1103     { PCI_CLASS_PROCESSOR_POWERPC, "powerpc", NULL },
1104     { PCI_CLASS_PROCESSOR_MIPS, "mips", NULL },
1105     { PCI_CLASS_PROCESSOR_CO, "co-processor", NULL },
1106     { 0xFF, NULL, NULL },
1107 };
1108 
1109 static const PCIIFace usb_iface[] = {
1110     { PCI_CLASS_SERIAL_USB_UHCI, "usb-uhci" },
1111     { PCI_CLASS_SERIAL_USB_OHCI, "usb-ohci", },
1112     { PCI_CLASS_SERIAL_USB_EHCI, "usb-ehci" },
1113     { PCI_CLASS_SERIAL_USB_XHCI, "usb-xhci" },
1114     { PCI_CLASS_SERIAL_USB_UNKNOWN, "usb-unknown" },
1115     { PCI_CLASS_SERIAL_USB_DEVICE, "usb-device" },
1116     { 0xFF, NULL },
1117 };
1118 
1119 static const PCISubClass ser_subclass[] = {
1120     { PCI_CLASS_SERIAL_FIREWIRE, "firewire", NULL },
1121     { PCI_CLASS_SERIAL_ACCESS, "access-bus", NULL },
1122     { PCI_CLASS_SERIAL_SSA, "ssa", NULL },
1123     { PCI_CLASS_SERIAL_USB, "usb", usb_iface },
1124     { PCI_CLASS_SERIAL_FIBER, "fibre-channel", NULL },
1125     { PCI_CLASS_SERIAL_SMBUS, "smb", NULL },
1126     { PCI_CLASS_SERIAL_IB, "infiniband", NULL },
1127     { PCI_CLASS_SERIAL_IPMI, "ipmi", NULL },
1128     { PCI_CLASS_SERIAL_SERCOS, "sercos", NULL },
1129     { PCI_CLASS_SERIAL_CANBUS, "canbus", NULL },
1130     { 0xFF, NULL, NULL },
1131 };
1132 
1133 static const PCISubClass wrl_subclass[] = {
1134     { PCI_CLASS_WIRELESS_IRDA, "irda", NULL },
1135     { PCI_CLASS_WIRELESS_CIR, "consumer-ir", NULL },
1136     { PCI_CLASS_WIRELESS_RF_CONTROLLER, "rf-controller", NULL },
1137     { PCI_CLASS_WIRELESS_BLUETOOTH, "bluetooth", NULL },
1138     { PCI_CLASS_WIRELESS_BROADBAND, "broadband", NULL },
1139     { 0xFF, NULL, NULL },
1140 };
1141 
1142 static const PCISubClass sat_subclass[] = {
1143     { PCI_CLASS_SATELLITE_TV, "satellite-tv", NULL },
1144     { PCI_CLASS_SATELLITE_AUDIO, "satellite-audio", NULL },
1145     { PCI_CLASS_SATELLITE_VOICE, "satellite-voice", NULL },
1146     { PCI_CLASS_SATELLITE_DATA, "satellite-data", NULL },
1147     { 0xFF, NULL, NULL },
1148 };
1149 
1150 static const PCISubClass crypt_subclass[] = {
1151     { PCI_CLASS_CRYPT_NETWORK, "network-encryption", NULL },
1152     { PCI_CLASS_CRYPT_ENTERTAINMENT,
1153       "entertainment-encryption", NULL },
1154     { 0xFF, NULL, NULL },
1155 };
1156 
1157 static const PCISubClass spc_subclass[] = {
1158     { PCI_CLASS_SP_DPIO, "dpio", NULL },
1159     { PCI_CLASS_SP_PERF, "counter", NULL },
1160     { PCI_CLASS_SP_SYNCH, "measurement", NULL },
1161     { PCI_CLASS_SP_MANAGEMENT, "management-card", NULL },
1162     { 0xFF, NULL, NULL },
1163 };
1164 
1165 static const PCIClass pci_classes[] = {
1166     { "legacy-device", undef_subclass },
1167     { "mass-storage",  mass_subclass },
1168     { "network", net_subclass },
1169     { "display", displ_subclass, },
1170     { "multimedia-device", media_subclass },
1171     { "memory-controller", mem_subclass },
1172     { "unknown-bridge", bridg_subclass },
1173     { "communication-controller", comm_subclass},
1174     { "system-peripheral", sys_subclass },
1175     { "input-controller", inp_subclass },
1176     { "docking-station", dock_subclass },
1177     { "cpu", cpu_subclass },
1178     { "serial-bus", ser_subclass },
1179     { "wireless-controller", wrl_subclass },
1180     { "intelligent-io", NULL },
1181     { "satellite-device", sat_subclass },
1182     { "encryption", crypt_subclass },
1183     { "data-processing-controller", spc_subclass },
1184 };
1185 
1186 static const char *pci_find_device_name(uint8_t class, uint8_t subclass,
1187                                         uint8_t iface)
1188 {
1189     const PCIClass *pclass;
1190     const PCISubClass *psubclass;
1191     const PCIIFace *piface;
1192     const char *name;
1193 
1194     if (class >= ARRAY_SIZE(pci_classes)) {
1195         return "pci";
1196     }
1197 
1198     pclass = pci_classes + class;
1199     name = pclass->name;
1200 
1201     if (pclass->subc == NULL) {
1202         return name;
1203     }
1204 
1205     psubclass = pclass->subc;
1206     while ((psubclass->subclass & 0xff) != 0xff) {
1207         if ((psubclass->subclass & 0xff) == subclass) {
1208             name = psubclass->name;
1209             break;
1210         }
1211         psubclass++;
1212     }
1213 
1214     piface = psubclass->iface;
1215     if (piface == NULL) {
1216         return name;
1217     }
1218     while ((piface->iface & 0xff) != 0xff) {
1219         if ((piface->iface & 0xff) == iface) {
1220             name = piface->name;
1221             break;
1222         }
1223         piface++;
1224     }
1225 
1226     return name;
1227 }
1228 
1229 static gchar *pci_get_node_name(PCIDevice *dev)
1230 {
1231     int slot = PCI_SLOT(dev->devfn);
1232     int func = PCI_FUNC(dev->devfn);
1233     uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3);
1234     const char *name;
1235 
1236     name = pci_find_device_name((ccode >> 16) & 0xff, (ccode >> 8) & 0xff,
1237                                 ccode & 0xff);
1238 
1239     if (func != 0) {
1240         return g_strdup_printf("%s@%x,%x", name, slot, func);
1241     } else {
1242         return g_strdup_printf("%s@%x", name, slot);
1243     }
1244 }
1245 
1246 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
1247                                             PCIDevice *pdev);
1248 
1249 static void spapr_populate_pci_child_dt(PCIDevice *dev, void *fdt, int offset,
1250                                        sPAPRPHBState *sphb)
1251 {
1252     ResourceProps rp;
1253     bool is_bridge = false;
1254     int pci_status;
1255     char *buf = NULL;
1256     uint32_t drc_index = spapr_phb_get_pci_drc_index(sphb, dev);
1257     uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3);
1258     uint32_t max_msi, max_msix;
1259 
1260     if (pci_default_read_config(dev, PCI_HEADER_TYPE, 1) ==
1261         PCI_HEADER_TYPE_BRIDGE) {
1262         is_bridge = true;
1263     }
1264 
1265     /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */
1266     _FDT(fdt_setprop_cell(fdt, offset, "vendor-id",
1267                           pci_default_read_config(dev, PCI_VENDOR_ID, 2)));
1268     _FDT(fdt_setprop_cell(fdt, offset, "device-id",
1269                           pci_default_read_config(dev, PCI_DEVICE_ID, 2)));
1270     _FDT(fdt_setprop_cell(fdt, offset, "revision-id",
1271                           pci_default_read_config(dev, PCI_REVISION_ID, 1)));
1272     _FDT(fdt_setprop_cell(fdt, offset, "class-code", ccode));
1273     if (pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)) {
1274         _FDT(fdt_setprop_cell(fdt, offset, "interrupts",
1275                  pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)));
1276     }
1277 
1278     if (!is_bridge) {
1279         _FDT(fdt_setprop_cell(fdt, offset, "min-grant",
1280             pci_default_read_config(dev, PCI_MIN_GNT, 1)));
1281         _FDT(fdt_setprop_cell(fdt, offset, "max-latency",
1282             pci_default_read_config(dev, PCI_MAX_LAT, 1)));
1283     }
1284 
1285     if (pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)) {
1286         _FDT(fdt_setprop_cell(fdt, offset, "subsystem-id",
1287                  pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)));
1288     }
1289 
1290     if (pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)) {
1291         _FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id",
1292                  pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)));
1293     }
1294 
1295     _FDT(fdt_setprop_cell(fdt, offset, "cache-line-size",
1296         pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1)));
1297 
1298     /* the following fdt cells are masked off the pci status register */
1299     pci_status = pci_default_read_config(dev, PCI_STATUS, 2);
1300     _FDT(fdt_setprop_cell(fdt, offset, "devsel-speed",
1301                           PCI_STATUS_DEVSEL_MASK & pci_status));
1302 
1303     if (pci_status & PCI_STATUS_FAST_BACK) {
1304         _FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0));
1305     }
1306     if (pci_status & PCI_STATUS_66MHZ) {
1307         _FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0));
1308     }
1309     if (pci_status & PCI_STATUS_UDF) {
1310         _FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0));
1311     }
1312 
1313     _FDT(fdt_setprop_string(fdt, offset, "name",
1314                             pci_find_device_name((ccode >> 16) & 0xff,
1315                                                  (ccode >> 8) & 0xff,
1316                                                  ccode & 0xff)));
1317 
1318     buf = spapr_phb_get_loc_code(sphb, dev);
1319     _FDT(fdt_setprop_string(fdt, offset, "ibm,loc-code", buf));
1320     g_free(buf);
1321 
1322     if (drc_index) {
1323         _FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index));
1324     }
1325 
1326     _FDT(fdt_setprop_cell(fdt, offset, "#address-cells",
1327                           RESOURCE_CELLS_ADDRESS));
1328     _FDT(fdt_setprop_cell(fdt, offset, "#size-cells",
1329                           RESOURCE_CELLS_SIZE));
1330 
1331     if (msi_present(dev)) {
1332         max_msi = msi_nr_vectors_allocated(dev);
1333         if (max_msi) {
1334             _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi", max_msi));
1335         }
1336     }
1337     if (msix_present(dev)) {
1338         max_msix = dev->msix_entries_nr;
1339         if (max_msix) {
1340             _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x", max_msix));
1341         }
1342     }
1343 
1344     populate_resource_props(dev, &rp);
1345     _FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len));
1346     _FDT(fdt_setprop(fdt, offset, "assigned-addresses",
1347                      (uint8_t *)rp.assigned, rp.assigned_len));
1348 
1349     if (sphb->pcie_ecs && pci_is_express(dev)) {
1350         _FDT(fdt_setprop_cell(fdt, offset, "ibm,pci-config-space-type", 0x1));
1351     }
1352 }
1353 
1354 /* create OF node for pci device and required OF DT properties */
1355 static int spapr_create_pci_child_dt(sPAPRPHBState *phb, PCIDevice *dev,
1356                                      void *fdt, int node_offset)
1357 {
1358     int offset;
1359     gchar *nodename;
1360 
1361     nodename = pci_get_node_name(dev);
1362     _FDT(offset = fdt_add_subnode(fdt, node_offset, nodename));
1363     g_free(nodename);
1364 
1365     spapr_populate_pci_child_dt(dev, fdt, offset, phb);
1366 
1367     return offset;
1368 }
1369 
1370 /* Callback to be called during DRC release. */
1371 void spapr_phb_remove_pci_device_cb(DeviceState *dev)
1372 {
1373     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
1374 
1375     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
1376 }
1377 
1378 static sPAPRDRConnector *spapr_phb_get_pci_func_drc(sPAPRPHBState *phb,
1379                                                     uint32_t busnr,
1380                                                     int32_t devfn)
1381 {
1382     return spapr_drc_by_id(TYPE_SPAPR_DRC_PCI,
1383                            (phb->index << 16) | (busnr << 8) | devfn);
1384 }
1385 
1386 static sPAPRDRConnector *spapr_phb_get_pci_drc(sPAPRPHBState *phb,
1387                                                PCIDevice *pdev)
1388 {
1389     uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
1390     return spapr_phb_get_pci_func_drc(phb, busnr, pdev->devfn);
1391 }
1392 
1393 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
1394                                             PCIDevice *pdev)
1395 {
1396     sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1397 
1398     if (!drc) {
1399         return 0;
1400     }
1401 
1402     return spapr_drc_index(drc);
1403 }
1404 
1405 static void spapr_pci_plug(HotplugHandler *plug_handler,
1406                            DeviceState *plugged_dev, Error **errp)
1407 {
1408     sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1409     PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1410     sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1411     Error *local_err = NULL;
1412     PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
1413     uint32_t slotnr = PCI_SLOT(pdev->devfn);
1414     void *fdt = NULL;
1415     int fdt_start_offset, fdt_size;
1416 
1417     /* if DR is disabled we don't need to do anything in the case of
1418      * hotplug or coldplug callbacks
1419      */
1420     if (!phb->dr_enabled) {
1421         /* if this is a hotplug operation initiated by the user
1422          * we need to let them know it's not enabled
1423          */
1424         if (plugged_dev->hotplugged) {
1425             error_setg(&local_err, QERR_BUS_NO_HOTPLUG,
1426                        object_get_typename(OBJECT(phb)));
1427         }
1428         goto out;
1429     }
1430 
1431     g_assert(drc);
1432 
1433     /* Following the QEMU convention used for PCIe multifunction
1434      * hotplug, we do not allow functions to be hotplugged to a
1435      * slot that already has function 0 present
1436      */
1437     if (plugged_dev->hotplugged && bus->devices[PCI_DEVFN(slotnr, 0)] &&
1438         PCI_FUNC(pdev->devfn) != 0) {
1439         error_setg(&local_err, "PCI: slot %d function 0 already ocuppied by %s,"
1440                    " additional functions can no longer be exposed to guest.",
1441                    slotnr, bus->devices[PCI_DEVFN(slotnr, 0)]->name);
1442         goto out;
1443     }
1444 
1445     fdt = create_device_tree(&fdt_size);
1446     fdt_start_offset = spapr_create_pci_child_dt(phb, pdev, fdt, 0);
1447 
1448     spapr_drc_attach(drc, DEVICE(pdev), fdt, fdt_start_offset, &local_err);
1449     if (local_err) {
1450         goto out;
1451     }
1452 
1453     /* If this is function 0, signal hotplug for all the device functions.
1454      * Otherwise defer sending the hotplug event.
1455      */
1456     if (!spapr_drc_hotplugged(plugged_dev)) {
1457         spapr_drc_reset(drc);
1458     } else if (PCI_FUNC(pdev->devfn) == 0) {
1459         int i;
1460 
1461         for (i = 0; i < 8; i++) {
1462             sPAPRDRConnector *func_drc;
1463             sPAPRDRConnectorClass *func_drck;
1464             sPAPRDREntitySense state;
1465 
1466             func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1467                                                   PCI_DEVFN(slotnr, i));
1468             func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1469             state = func_drck->dr_entity_sense(func_drc);
1470 
1471             if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1472                 spapr_hotplug_req_add_by_index(func_drc);
1473             }
1474         }
1475     }
1476 
1477 out:
1478     if (local_err) {
1479         error_propagate(errp, local_err);
1480         g_free(fdt);
1481     }
1482 }
1483 
1484 static void spapr_pci_unplug(HotplugHandler *plug_handler,
1485                              DeviceState *plugged_dev, Error **errp)
1486 {
1487     /* some version guests do not wait for completion of a device
1488      * cleanup (generally done asynchronously by the kernel) before
1489      * signaling to QEMU that the device is safe, but instead sleep
1490      * for some 'safe' period of time. unfortunately on a busy host
1491      * this sleep isn't guaranteed to be long enough, resulting in
1492      * bad things like IRQ lines being left asserted during final
1493      * device removal. to deal with this we call reset just prior
1494      * to finalizing the device, which will put the device back into
1495      * an 'idle' state, as the device cleanup code expects.
1496      */
1497     pci_device_reset(PCI_DEVICE(plugged_dev));
1498     object_unparent(OBJECT(plugged_dev));
1499 }
1500 
1501 static void spapr_pci_unplug_request(HotplugHandler *plug_handler,
1502                                      DeviceState *plugged_dev, Error **errp)
1503 {
1504     sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1505     PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1506     sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1507 
1508     if (!phb->dr_enabled) {
1509         error_setg(errp, QERR_BUS_NO_HOTPLUG,
1510                    object_get_typename(OBJECT(phb)));
1511         return;
1512     }
1513 
1514     g_assert(drc);
1515     g_assert(drc->dev == plugged_dev);
1516 
1517     if (!spapr_drc_unplug_requested(drc)) {
1518         PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
1519         uint32_t slotnr = PCI_SLOT(pdev->devfn);
1520         sPAPRDRConnector *func_drc;
1521         sPAPRDRConnectorClass *func_drck;
1522         sPAPRDREntitySense state;
1523         int i;
1524 
1525         /* ensure any other present functions are pending unplug */
1526         if (PCI_FUNC(pdev->devfn) == 0) {
1527             for (i = 1; i < 8; i++) {
1528                 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1529                                                       PCI_DEVFN(slotnr, i));
1530                 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1531                 state = func_drck->dr_entity_sense(func_drc);
1532                 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT
1533                     && !spapr_drc_unplug_requested(func_drc)) {
1534                     error_setg(errp,
1535                                "PCI: slot %d, function %d still present. "
1536                                "Must unplug all non-0 functions first.",
1537                                slotnr, i);
1538                     return;
1539                 }
1540             }
1541         }
1542 
1543         spapr_drc_detach(drc);
1544 
1545         /* if this isn't func 0, defer unplug event. otherwise signal removal
1546          * for all present functions
1547          */
1548         if (PCI_FUNC(pdev->devfn) == 0) {
1549             for (i = 7; i >= 0; i--) {
1550                 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1551                                                       PCI_DEVFN(slotnr, i));
1552                 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1553                 state = func_drck->dr_entity_sense(func_drc);
1554                 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1555                     spapr_hotplug_req_remove_by_index(func_drc);
1556                 }
1557             }
1558         }
1559     }
1560 }
1561 
1562 static void spapr_phb_realize(DeviceState *dev, Error **errp)
1563 {
1564     /* We don't use SPAPR_MACHINE() in order to exit gracefully if the user
1565      * tries to add a sPAPR PHB to a non-pseries machine.
1566      */
1567     sPAPRMachineState *spapr =
1568         (sPAPRMachineState *) object_dynamic_cast(qdev_get_machine(),
1569                                                   TYPE_SPAPR_MACHINE);
1570     sPAPRMachineClass *smc = spapr ? SPAPR_MACHINE_GET_CLASS(spapr) : NULL;
1571     SysBusDevice *s = SYS_BUS_DEVICE(dev);
1572     sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
1573     PCIHostState *phb = PCI_HOST_BRIDGE(s);
1574     char *namebuf;
1575     int i;
1576     PCIBus *bus;
1577     uint64_t msi_window_size = 4096;
1578     sPAPRTCETable *tcet;
1579     const unsigned windows_supported =
1580         sphb->ddw_enabled ? SPAPR_PCI_DMA_MAX_WINDOWS : 1;
1581 
1582     if (!spapr) {
1583         error_setg(errp, TYPE_SPAPR_PCI_HOST_BRIDGE " needs a pseries machine");
1584         return;
1585     }
1586 
1587     if (sphb->index != (uint32_t)-1) {
1588         Error *local_err = NULL;
1589 
1590         smc->phb_placement(spapr, sphb->index,
1591                            &sphb->buid, &sphb->io_win_addr,
1592                            &sphb->mem_win_addr, &sphb->mem64_win_addr,
1593                            windows_supported, sphb->dma_liobn, &local_err);
1594         if (local_err) {
1595             error_propagate(errp, local_err);
1596             return;
1597         }
1598     } else {
1599         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
1600         return;
1601     }
1602 
1603     if (sphb->mem64_win_size != 0) {
1604         if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) {
1605             error_setg(errp, "32-bit memory window of size 0x%"HWADDR_PRIx
1606                        " (max 2 GiB)", sphb->mem_win_size);
1607             return;
1608         }
1609 
1610         /* 64-bit window defaults to identity mapping */
1611         sphb->mem64_win_pciaddr = sphb->mem64_win_addr;
1612     } else if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) {
1613         /*
1614          * For compatibility with old configuration, if no 64-bit MMIO
1615          * window is specified, but the ordinary (32-bit) memory
1616          * window is specified as > 2GiB, we treat it as a 2GiB 32-bit
1617          * window, with a 64-bit MMIO window following on immediately
1618          * afterwards
1619          */
1620         sphb->mem64_win_size = sphb->mem_win_size - SPAPR_PCI_MEM32_WIN_SIZE;
1621         sphb->mem64_win_addr = sphb->mem_win_addr + SPAPR_PCI_MEM32_WIN_SIZE;
1622         sphb->mem64_win_pciaddr =
1623             SPAPR_PCI_MEM_WIN_BUS_OFFSET + SPAPR_PCI_MEM32_WIN_SIZE;
1624         sphb->mem_win_size = SPAPR_PCI_MEM32_WIN_SIZE;
1625     }
1626 
1627     if (spapr_pci_find_phb(spapr, sphb->buid)) {
1628         error_setg(errp, "PCI host bridges must have unique BUIDs");
1629         return;
1630     }
1631 
1632     if (sphb->numa_node != -1 &&
1633         (sphb->numa_node >= MAX_NODES || !numa_info[sphb->numa_node].present)) {
1634         error_setg(errp, "Invalid NUMA node ID for PCI host bridge");
1635         return;
1636     }
1637 
1638     sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
1639 
1640     /* Initialize memory regions */
1641     namebuf = g_strdup_printf("%s.mmio", sphb->dtbusname);
1642     memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX);
1643     g_free(namebuf);
1644 
1645     namebuf = g_strdup_printf("%s.mmio32-alias", sphb->dtbusname);
1646     memory_region_init_alias(&sphb->mem32window, OBJECT(sphb),
1647                              namebuf, &sphb->memspace,
1648                              SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
1649     g_free(namebuf);
1650     memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
1651                                 &sphb->mem32window);
1652 
1653     if (sphb->mem64_win_size != 0) {
1654         namebuf = g_strdup_printf("%s.mmio64-alias", sphb->dtbusname);
1655         memory_region_init_alias(&sphb->mem64window, OBJECT(sphb),
1656                                  namebuf, &sphb->memspace,
1657                                  sphb->mem64_win_pciaddr, sphb->mem64_win_size);
1658         g_free(namebuf);
1659 
1660         memory_region_add_subregion(get_system_memory(),
1661                                     sphb->mem64_win_addr,
1662                                     &sphb->mem64window);
1663     }
1664 
1665     /* Initialize IO regions */
1666     namebuf = g_strdup_printf("%s.io", sphb->dtbusname);
1667     memory_region_init(&sphb->iospace, OBJECT(sphb),
1668                        namebuf, SPAPR_PCI_IO_WIN_SIZE);
1669     g_free(namebuf);
1670 
1671     namebuf = g_strdup_printf("%s.io-alias", sphb->dtbusname);
1672     memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf,
1673                              &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE);
1674     g_free(namebuf);
1675     memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
1676                                 &sphb->iowindow);
1677 
1678     bus = pci_register_root_bus(dev, NULL,
1679                                 pci_spapr_set_irq, pci_spapr_map_irq, sphb,
1680                                 &sphb->memspace, &sphb->iospace,
1681                                 PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS);
1682     phb->bus = bus;
1683     qbus_set_hotplug_handler(BUS(phb->bus), DEVICE(sphb), NULL);
1684 
1685     /*
1686      * Initialize PHB address space.
1687      * By default there will be at least one subregion for default
1688      * 32bit DMA window.
1689      * Later the guest might want to create another DMA window
1690      * which will become another memory subregion.
1691      */
1692     namebuf = g_strdup_printf("%s.iommu-root", sphb->dtbusname);
1693     memory_region_init(&sphb->iommu_root, OBJECT(sphb),
1694                        namebuf, UINT64_MAX);
1695     g_free(namebuf);
1696     address_space_init(&sphb->iommu_as, &sphb->iommu_root,
1697                        sphb->dtbusname);
1698 
1699     /*
1700      * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
1701      * we need to allocate some memory to catch those writes coming
1702      * from msi_notify()/msix_notify().
1703      * As MSIMessage:addr is going to be the same and MSIMessage:data
1704      * is going to be a VIRQ number, 4 bytes of the MSI MR will only
1705      * be used.
1706      *
1707      * For KVM we want to ensure that this memory is a full page so that
1708      * our memory slot is of page size granularity.
1709      */
1710 #ifdef CONFIG_KVM
1711     if (kvm_enabled()) {
1712         msi_window_size = getpagesize();
1713     }
1714 #endif
1715 
1716     memory_region_init_io(&sphb->msiwindow, OBJECT(sphb), &spapr_msi_ops, spapr,
1717                           "msi", msi_window_size);
1718     memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW,
1719                                 &sphb->msiwindow);
1720 
1721     pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb);
1722 
1723     pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq);
1724 
1725     QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
1726 
1727     /* Initialize the LSI table */
1728     for (i = 0; i < PCI_NUM_PINS; i++) {
1729         uint32_t irq = SPAPR_IRQ_PCI_LSI + sphb->index * PCI_NUM_PINS + i;
1730         Error *local_err = NULL;
1731 
1732         if (smc->legacy_irq_allocation) {
1733             irq = spapr_irq_findone(spapr, &local_err);
1734             if (local_err) {
1735                 error_propagate_prepend(errp, local_err,
1736                                         "can't allocate LSIs: ");
1737                 return;
1738             }
1739         }
1740 
1741         spapr_irq_claim(spapr, irq, true, &local_err);
1742         if (local_err) {
1743             error_propagate_prepend(errp, local_err, "can't allocate LSIs: ");
1744             return;
1745         }
1746 
1747         sphb->lsi_table[i].irq = irq;
1748     }
1749 
1750     /* allocate connectors for child PCI devices */
1751     if (sphb->dr_enabled) {
1752         for (i = 0; i < PCI_SLOT_MAX * 8; i++) {
1753             spapr_dr_connector_new(OBJECT(phb), TYPE_SPAPR_DRC_PCI,
1754                                    (sphb->index << 16) | i);
1755         }
1756     }
1757 
1758     /* DMA setup */
1759     for (i = 0; i < windows_supported; ++i) {
1760         tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn[i]);
1761         if (!tcet) {
1762             error_setg(errp, "Creating window#%d failed for %s",
1763                        i, sphb->dtbusname);
1764             return;
1765         }
1766         memory_region_add_subregion(&sphb->iommu_root, 0,
1767                                     spapr_tce_get_iommu(tcet));
1768     }
1769 
1770     sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, g_free);
1771 }
1772 
1773 static int spapr_phb_children_reset(Object *child, void *opaque)
1774 {
1775     DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE);
1776 
1777     if (dev) {
1778         device_reset(dev);
1779     }
1780 
1781     return 0;
1782 }
1783 
1784 void spapr_phb_dma_reset(sPAPRPHBState *sphb)
1785 {
1786     int i;
1787     sPAPRTCETable *tcet;
1788 
1789     for (i = 0; i < SPAPR_PCI_DMA_MAX_WINDOWS; ++i) {
1790         tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]);
1791 
1792         if (tcet && tcet->nb_table) {
1793             spapr_tce_table_disable(tcet);
1794         }
1795     }
1796 
1797     /* Register default 32bit DMA window */
1798     tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[0]);
1799     spapr_tce_table_enable(tcet, SPAPR_TCE_PAGE_SHIFT, sphb->dma_win_addr,
1800                            sphb->dma_win_size >> SPAPR_TCE_PAGE_SHIFT);
1801 }
1802 
1803 static void spapr_phb_reset(DeviceState *qdev)
1804 {
1805     sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(qdev);
1806 
1807     spapr_phb_dma_reset(sphb);
1808 
1809     /* Reset the IOMMU state */
1810     object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL);
1811 
1812     if (spapr_phb_eeh_available(SPAPR_PCI_HOST_BRIDGE(qdev))) {
1813         spapr_phb_vfio_reset(qdev);
1814     }
1815 }
1816 
1817 static Property spapr_phb_properties[] = {
1818     DEFINE_PROP_UINT32("index", sPAPRPHBState, index, -1),
1819     DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState, mem_win_size,
1820                        SPAPR_PCI_MEM32_WIN_SIZE),
1821     DEFINE_PROP_UINT64("mem64_win_size", sPAPRPHBState, mem64_win_size,
1822                        SPAPR_PCI_MEM64_WIN_SIZE),
1823     DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState, io_win_size,
1824                        SPAPR_PCI_IO_WIN_SIZE),
1825     DEFINE_PROP_BOOL("dynamic-reconfiguration", sPAPRPHBState, dr_enabled,
1826                      true),
1827     /* Default DMA window is 0..1GB */
1828     DEFINE_PROP_UINT64("dma_win_addr", sPAPRPHBState, dma_win_addr, 0),
1829     DEFINE_PROP_UINT64("dma_win_size", sPAPRPHBState, dma_win_size, 0x40000000),
1830     DEFINE_PROP_UINT64("dma64_win_addr", sPAPRPHBState, dma64_win_addr,
1831                        0x800000000000000ULL),
1832     DEFINE_PROP_BOOL("ddw", sPAPRPHBState, ddw_enabled, true),
1833     DEFINE_PROP_UINT64("pgsz", sPAPRPHBState, page_size_mask,
1834                        (1ULL << 12) | (1ULL << 16)),
1835     DEFINE_PROP_UINT32("numa_node", sPAPRPHBState, numa_node, -1),
1836     DEFINE_PROP_BOOL("pre-2.8-migration", sPAPRPHBState,
1837                      pre_2_8_migration, false),
1838     DEFINE_PROP_BOOL("pcie-extended-configuration-space", sPAPRPHBState,
1839                      pcie_ecs, true),
1840     DEFINE_PROP_END_OF_LIST(),
1841 };
1842 
1843 static const VMStateDescription vmstate_spapr_pci_lsi = {
1844     .name = "spapr_pci/lsi",
1845     .version_id = 1,
1846     .minimum_version_id = 1,
1847     .fields = (VMStateField[]) {
1848         VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi, NULL),
1849 
1850         VMSTATE_END_OF_LIST()
1851     },
1852 };
1853 
1854 static const VMStateDescription vmstate_spapr_pci_msi = {
1855     .name = "spapr_pci/msi",
1856     .version_id = 1,
1857     .minimum_version_id = 1,
1858     .fields = (VMStateField []) {
1859         VMSTATE_UINT32(key, spapr_pci_msi_mig),
1860         VMSTATE_UINT32(value.first_irq, spapr_pci_msi_mig),
1861         VMSTATE_UINT32(value.num, spapr_pci_msi_mig),
1862         VMSTATE_END_OF_LIST()
1863     },
1864 };
1865 
1866 static int spapr_pci_pre_save(void *opaque)
1867 {
1868     sPAPRPHBState *sphb = opaque;
1869     GHashTableIter iter;
1870     gpointer key, value;
1871     int i;
1872 
1873     if (sphb->pre_2_8_migration) {
1874         sphb->mig_liobn = sphb->dma_liobn[0];
1875         sphb->mig_mem_win_addr = sphb->mem_win_addr;
1876         sphb->mig_mem_win_size = sphb->mem_win_size;
1877         sphb->mig_io_win_addr = sphb->io_win_addr;
1878         sphb->mig_io_win_size = sphb->io_win_size;
1879 
1880         if ((sphb->mem64_win_size != 0)
1881             && (sphb->mem64_win_addr
1882                 == (sphb->mem_win_addr + sphb->mem_win_size))) {
1883             sphb->mig_mem_win_size += sphb->mem64_win_size;
1884         }
1885     }
1886 
1887     g_free(sphb->msi_devs);
1888     sphb->msi_devs = NULL;
1889     sphb->msi_devs_num = g_hash_table_size(sphb->msi);
1890     if (!sphb->msi_devs_num) {
1891         return 0;
1892     }
1893     sphb->msi_devs = g_new(spapr_pci_msi_mig, sphb->msi_devs_num);
1894 
1895     g_hash_table_iter_init(&iter, sphb->msi);
1896     for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) {
1897         sphb->msi_devs[i].key = *(uint32_t *) key;
1898         sphb->msi_devs[i].value = *(spapr_pci_msi *) value;
1899     }
1900 
1901     return 0;
1902 }
1903 
1904 static int spapr_pci_post_load(void *opaque, int version_id)
1905 {
1906     sPAPRPHBState *sphb = opaque;
1907     gpointer key, value;
1908     int i;
1909 
1910     for (i = 0; i < sphb->msi_devs_num; ++i) {
1911         key = g_memdup(&sphb->msi_devs[i].key,
1912                        sizeof(sphb->msi_devs[i].key));
1913         value = g_memdup(&sphb->msi_devs[i].value,
1914                          sizeof(sphb->msi_devs[i].value));
1915         g_hash_table_insert(sphb->msi, key, value);
1916     }
1917     g_free(sphb->msi_devs);
1918     sphb->msi_devs = NULL;
1919     sphb->msi_devs_num = 0;
1920 
1921     return 0;
1922 }
1923 
1924 static bool pre_2_8_migration(void *opaque, int version_id)
1925 {
1926     sPAPRPHBState *sphb = opaque;
1927 
1928     return sphb->pre_2_8_migration;
1929 }
1930 
1931 static const VMStateDescription vmstate_spapr_pci = {
1932     .name = "spapr_pci",
1933     .version_id = 2,
1934     .minimum_version_id = 2,
1935     .pre_save = spapr_pci_pre_save,
1936     .post_load = spapr_pci_post_load,
1937     .fields = (VMStateField[]) {
1938         VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState, NULL),
1939         VMSTATE_UINT32_TEST(mig_liobn, sPAPRPHBState, pre_2_8_migration),
1940         VMSTATE_UINT64_TEST(mig_mem_win_addr, sPAPRPHBState, pre_2_8_migration),
1941         VMSTATE_UINT64_TEST(mig_mem_win_size, sPAPRPHBState, pre_2_8_migration),
1942         VMSTATE_UINT64_TEST(mig_io_win_addr, sPAPRPHBState, pre_2_8_migration),
1943         VMSTATE_UINT64_TEST(mig_io_win_size, sPAPRPHBState, pre_2_8_migration),
1944         VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0,
1945                              vmstate_spapr_pci_lsi, struct spapr_pci_lsi),
1946         VMSTATE_INT32(msi_devs_num, sPAPRPHBState),
1947         VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, sPAPRPHBState, msi_devs_num, 0,
1948                                     vmstate_spapr_pci_msi, spapr_pci_msi_mig),
1949         VMSTATE_END_OF_LIST()
1950     },
1951 };
1952 
1953 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
1954                                            PCIBus *rootbus)
1955 {
1956     sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
1957 
1958     return sphb->dtbusname;
1959 }
1960 
1961 static void spapr_phb_class_init(ObjectClass *klass, void *data)
1962 {
1963     PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
1964     DeviceClass *dc = DEVICE_CLASS(klass);
1965     HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass);
1966 
1967     hc->root_bus_path = spapr_phb_root_bus_path;
1968     dc->realize = spapr_phb_realize;
1969     dc->props = spapr_phb_properties;
1970     dc->reset = spapr_phb_reset;
1971     dc->vmsd = &vmstate_spapr_pci;
1972     /* Supported by TYPE_SPAPR_MACHINE */
1973     dc->user_creatable = true;
1974     set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
1975     hp->plug = spapr_pci_plug;
1976     hp->unplug = spapr_pci_unplug;
1977     hp->unplug_request = spapr_pci_unplug_request;
1978 }
1979 
1980 static const TypeInfo spapr_phb_info = {
1981     .name          = TYPE_SPAPR_PCI_HOST_BRIDGE,
1982     .parent        = TYPE_PCI_HOST_BRIDGE,
1983     .instance_size = sizeof(sPAPRPHBState),
1984     .class_init    = spapr_phb_class_init,
1985     .interfaces    = (InterfaceInfo[]) {
1986         { TYPE_HOTPLUG_HANDLER },
1987         { }
1988     }
1989 };
1990 
1991 typedef struct sPAPRFDT {
1992     void *fdt;
1993     int node_off;
1994     sPAPRPHBState *sphb;
1995 } sPAPRFDT;
1996 
1997 static void spapr_populate_pci_devices_dt(PCIBus *bus, PCIDevice *pdev,
1998                                           void *opaque)
1999 {
2000     PCIBus *sec_bus;
2001     sPAPRFDT *p = opaque;
2002     int offset;
2003     sPAPRFDT s_fdt;
2004 
2005     offset = spapr_create_pci_child_dt(p->sphb, pdev, p->fdt, p->node_off);
2006     if (!offset) {
2007         error_report("Failed to create pci child device tree node");
2008         return;
2009     }
2010 
2011     if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
2012          PCI_HEADER_TYPE_BRIDGE)) {
2013         return;
2014     }
2015 
2016     sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
2017     if (!sec_bus) {
2018         return;
2019     }
2020 
2021     s_fdt.fdt = p->fdt;
2022     s_fdt.node_off = offset;
2023     s_fdt.sphb = p->sphb;
2024     pci_for_each_device_reverse(sec_bus, pci_bus_num(sec_bus),
2025                                 spapr_populate_pci_devices_dt,
2026                                 &s_fdt);
2027 }
2028 
2029 static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev,
2030                                            void *opaque)
2031 {
2032     unsigned int *bus_no = opaque;
2033     PCIBus *sec_bus = NULL;
2034 
2035     if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
2036          PCI_HEADER_TYPE_BRIDGE)) {
2037         return;
2038     }
2039 
2040     (*bus_no)++;
2041     pci_default_write_config(pdev, PCI_PRIMARY_BUS, pci_dev_bus_num(pdev), 1);
2042     pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1);
2043     pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
2044 
2045     sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
2046     if (!sec_bus) {
2047         return;
2048     }
2049 
2050     pci_for_each_device(sec_bus, pci_bus_num(sec_bus),
2051                         spapr_phb_pci_enumerate_bridge, bus_no);
2052     pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
2053 }
2054 
2055 static void spapr_phb_pci_enumerate(sPAPRPHBState *phb)
2056 {
2057     PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
2058     unsigned int bus_no = 0;
2059 
2060     pci_for_each_device(bus, pci_bus_num(bus),
2061                         spapr_phb_pci_enumerate_bridge,
2062                         &bus_no);
2063 
2064 }
2065 
2066 int spapr_populate_pci_dt(sPAPRPHBState *phb, uint32_t xics_phandle, void *fdt,
2067                           uint32_t nr_msis)
2068 {
2069     int bus_off, i, j, ret;
2070     gchar *nodename;
2071     uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
2072     struct {
2073         uint32_t hi;
2074         uint64_t child;
2075         uint64_t parent;
2076         uint64_t size;
2077     } QEMU_PACKED ranges[] = {
2078         {
2079             cpu_to_be32(b_ss(1)), cpu_to_be64(0),
2080             cpu_to_be64(phb->io_win_addr),
2081             cpu_to_be64(memory_region_size(&phb->iospace)),
2082         },
2083         {
2084             cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
2085             cpu_to_be64(phb->mem_win_addr),
2086             cpu_to_be64(phb->mem_win_size),
2087         },
2088         {
2089             cpu_to_be32(b_ss(3)), cpu_to_be64(phb->mem64_win_pciaddr),
2090             cpu_to_be64(phb->mem64_win_addr),
2091             cpu_to_be64(phb->mem64_win_size),
2092         },
2093     };
2094     const unsigned sizeof_ranges =
2095         (phb->mem64_win_size ? 3 : 2) * sizeof(ranges[0]);
2096     uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
2097     uint32_t interrupt_map_mask[] = {
2098         cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
2099     uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
2100     uint32_t ddw_applicable[] = {
2101         cpu_to_be32(RTAS_IBM_QUERY_PE_DMA_WINDOW),
2102         cpu_to_be32(RTAS_IBM_CREATE_PE_DMA_WINDOW),
2103         cpu_to_be32(RTAS_IBM_REMOVE_PE_DMA_WINDOW)
2104     };
2105     uint32_t ddw_extensions[] = {
2106         cpu_to_be32(1),
2107         cpu_to_be32(RTAS_IBM_RESET_PE_DMA_WINDOW)
2108     };
2109     uint32_t associativity[] = {cpu_to_be32(0x4),
2110                                 cpu_to_be32(0x0),
2111                                 cpu_to_be32(0x0),
2112                                 cpu_to_be32(0x0),
2113                                 cpu_to_be32(phb->numa_node)};
2114     sPAPRTCETable *tcet;
2115     PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
2116     sPAPRFDT s_fdt;
2117 
2118     /* Start populating the FDT */
2119     nodename = g_strdup_printf("pci@%" PRIx64, phb->buid);
2120     _FDT(bus_off = fdt_add_subnode(fdt, 0, nodename));
2121     g_free(nodename);
2122 
2123     /* Write PHB properties */
2124     _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
2125     _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
2126     _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
2127     _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
2128     _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
2129     _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
2130     _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
2131     _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges));
2132     _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
2133     _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
2134     _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", nr_msis));
2135 
2136     /* Dynamic DMA window */
2137     if (phb->ddw_enabled) {
2138         _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-applicable", &ddw_applicable,
2139                          sizeof(ddw_applicable)));
2140         _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-extensions",
2141                          &ddw_extensions, sizeof(ddw_extensions)));
2142     }
2143 
2144     /* Advertise NUMA via ibm,associativity */
2145     if (phb->numa_node != -1) {
2146         _FDT(fdt_setprop(fdt, bus_off, "ibm,associativity", associativity,
2147                          sizeof(associativity)));
2148     }
2149 
2150     /* Build the interrupt-map, this must matches what is done
2151      * in pci_spapr_map_irq
2152      */
2153     _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
2154                      &interrupt_map_mask, sizeof(interrupt_map_mask)));
2155     for (i = 0; i < PCI_SLOT_MAX; i++) {
2156         for (j = 0; j < PCI_NUM_PINS; j++) {
2157             uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
2158             int lsi_num = pci_spapr_swizzle(i, j);
2159 
2160             irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
2161             irqmap[1] = 0;
2162             irqmap[2] = 0;
2163             irqmap[3] = cpu_to_be32(j+1);
2164             irqmap[4] = cpu_to_be32(xics_phandle);
2165             spapr_dt_xics_irq(&irqmap[5], phb->lsi_table[lsi_num].irq, true);
2166         }
2167     }
2168     /* Write interrupt map */
2169     _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
2170                      sizeof(interrupt_map)));
2171 
2172     tcet = spapr_tce_find_by_liobn(phb->dma_liobn[0]);
2173     if (!tcet) {
2174         return -1;
2175     }
2176     spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
2177                  tcet->liobn, tcet->bus_offset,
2178                  tcet->nb_table << tcet->page_shift);
2179 
2180     /* Walk the bridges and program the bus numbers*/
2181     spapr_phb_pci_enumerate(phb);
2182     _FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1));
2183 
2184     /* Populate tree nodes with PCI devices attached */
2185     s_fdt.fdt = fdt;
2186     s_fdt.node_off = bus_off;
2187     s_fdt.sphb = phb;
2188     pci_for_each_device_reverse(bus, pci_bus_num(bus),
2189                                 spapr_populate_pci_devices_dt,
2190                                 &s_fdt);
2191 
2192     ret = spapr_drc_populate_dt(fdt, bus_off, OBJECT(phb),
2193                                 SPAPR_DR_CONNECTOR_TYPE_PCI);
2194     if (ret) {
2195         return ret;
2196     }
2197 
2198     return 0;
2199 }
2200 
2201 void spapr_pci_rtas_init(void)
2202 {
2203     spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config",
2204                         rtas_read_pci_config);
2205     spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config",
2206                         rtas_write_pci_config);
2207     spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config",
2208                         rtas_ibm_read_pci_config);
2209     spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config",
2210                         rtas_ibm_write_pci_config);
2211     if (msi_nonbroken) {
2212         spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER,
2213                             "ibm,query-interrupt-source-number",
2214                             rtas_ibm_query_interrupt_source_number);
2215         spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi",
2216                             rtas_ibm_change_msi);
2217     }
2218 
2219     spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION,
2220                         "ibm,set-eeh-option",
2221                         rtas_ibm_set_eeh_option);
2222     spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2,
2223                         "ibm,get-config-addr-info2",
2224                         rtas_ibm_get_config_addr_info2);
2225     spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2,
2226                         "ibm,read-slot-reset-state2",
2227                         rtas_ibm_read_slot_reset_state2);
2228     spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET,
2229                         "ibm,set-slot-reset",
2230                         rtas_ibm_set_slot_reset);
2231     spapr_rtas_register(RTAS_IBM_CONFIGURE_PE,
2232                         "ibm,configure-pe",
2233                         rtas_ibm_configure_pe);
2234     spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL,
2235                         "ibm,slot-error-detail",
2236                         rtas_ibm_slot_error_detail);
2237 }
2238 
2239 static void spapr_pci_register_types(void)
2240 {
2241     type_register_static(&spapr_phb_info);
2242 }
2243 
2244 type_init(spapr_pci_register_types)
2245 
2246 static int spapr_switch_one_vga(DeviceState *dev, void *opaque)
2247 {
2248     bool be = *(bool *)opaque;
2249 
2250     if (object_dynamic_cast(OBJECT(dev), "VGA")
2251         || object_dynamic_cast(OBJECT(dev), "secondary-vga")) {
2252         object_property_set_bool(OBJECT(dev), be, "big-endian-framebuffer",
2253                                  &error_abort);
2254     }
2255     return 0;
2256 }
2257 
2258 void spapr_pci_switch_vga(bool big_endian)
2259 {
2260     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
2261     sPAPRPHBState *sphb;
2262 
2263     /*
2264      * For backward compatibility with existing guests, we switch
2265      * the endianness of the VGA controller when changing the guest
2266      * interrupt mode
2267      */
2268     QLIST_FOREACH(sphb, &spapr->phbs, list) {
2269         BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus;
2270         qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL,
2271                            &big_endian);
2272     }
2273 }
2274