xref: /openbmc/qemu/hw/ppc/spapr_numa.c (revision 812b31d3f91507160c367440c17715b62d5e0869)
1 /*
2  * QEMU PowerPC pSeries Logical Partition NUMA associativity handling
3  *
4  * Copyright IBM Corp. 2020
5  *
6  * Authors:
7  *  Daniel Henrique Barboza      <danielhb413@gmail.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qemu-common.h"
15 #include "hw/ppc/spapr_numa.h"
16 #include "hw/pci-host/spapr.h"
17 #include "hw/ppc/fdt.h"
18 
19 /* Moved from hw/ppc/spapr_pci_nvlink2.c */
20 #define SPAPR_GPU_NUMA_ID           (cpu_to_be32(1))
21 
22 static bool spapr_machine_using_legacy_numa(SpaprMachineState *spapr)
23 {
24     MachineState *machine = MACHINE(spapr);
25     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
26 
27     return smc->pre_5_2_numa_associativity ||
28            machine->numa_state->num_nodes <= 1;
29 }
30 
31 static bool spapr_numa_is_symmetrical(MachineState *ms)
32 {
33     int src, dst;
34     int nb_numa_nodes = ms->numa_state->num_nodes;
35     NodeInfo *numa_info = ms->numa_state->nodes;
36 
37     for (src = 0; src < nb_numa_nodes; src++) {
38         for (dst = src; dst < nb_numa_nodes; dst++) {
39             if (numa_info[src].distance[dst] !=
40                 numa_info[dst].distance[src]) {
41                 return false;
42             }
43         }
44     }
45 
46     return true;
47 }
48 
49 /*
50  * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
51  * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
52  * called from vPHB reset handler so we initialize the counter here.
53  * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
54  * must be equally distant from any other node.
55  * The final value of spapr->gpu_numa_id is going to be written to
56  * max-associativity-domains in spapr_build_fdt().
57  */
58 unsigned int spapr_numa_initial_nvgpu_numa_id(MachineState *machine)
59 {
60     return MAX(1, machine->numa_state->num_nodes);
61 }
62 
63 /*
64  * This function will translate the user distances into
65  * what the kernel understand as possible values: 10
66  * (local distance), 20, 40, 80 and 160, and return the equivalent
67  * NUMA level for each. Current heuristic is:
68  *  - local distance (10) returns numa_level = 0x4, meaning there is
69  *    no rounding for local distance
70  *  - distances between 11 and 30 inclusive -> rounded to 20,
71  *    numa_level = 0x3
72  *  - distances between 31 and 60 inclusive -> rounded to 40,
73  *    numa_level = 0x2
74  *  - distances between 61 and 120 inclusive -> rounded to 80,
75  *    numa_level = 0x1
76  *  - everything above 120 returns numa_level = 0 to indicate that
77  *    there is no match. This will be calculated as disntace = 160
78  *    by the kernel (as of v5.9)
79  */
80 static uint8_t spapr_numa_get_numa_level(uint8_t distance)
81 {
82     if (distance == 10) {
83         return 0x4;
84     } else if (distance > 11 && distance <= 30) {
85         return 0x3;
86     } else if (distance > 31 && distance <= 60) {
87         return 0x2;
88     } else if (distance > 61 && distance <= 120) {
89         return 0x1;
90     }
91 
92     return 0;
93 }
94 
95 static void spapr_numa_define_associativity_domains(SpaprMachineState *spapr)
96 {
97     MachineState *ms = MACHINE(spapr);
98     NodeInfo *numa_info = ms->numa_state->nodes;
99     int nb_numa_nodes = ms->numa_state->num_nodes;
100     int src, dst, i;
101 
102     for (src = 0; src < nb_numa_nodes; src++) {
103         for (dst = src; dst < nb_numa_nodes; dst++) {
104             /*
105              * This is how the associativity domain between A and B
106              * is calculated:
107              *
108              * - get the distance D between them
109              * - get the correspondent NUMA level 'n_level' for D
110              * - all associativity arrays were initialized with their own
111              * numa_ids, and we're calculating the distance in node_id
112              * ascending order, starting from node id 0 (the first node
113              * retrieved by numa_state). This will have a cascade effect in
114              * the algorithm because the associativity domains that node 0
115              * defines will be carried over to other nodes, and node 1
116              * associativities will be carried over after taking node 0
117              * associativities into account, and so on. This happens because
118              * we'll assign assoc_src as the associativity domain of dst
119              * as well, for all NUMA levels beyond and including n_level.
120              *
121              * The PPC kernel expects the associativity domains of node 0 to
122              * be always 0, and this algorithm will grant that by default.
123              */
124             uint8_t distance = numa_info[src].distance[dst];
125             uint8_t n_level = spapr_numa_get_numa_level(distance);
126             uint32_t assoc_src;
127 
128             /*
129              * n_level = 0 means that the distance is greater than our last
130              * rounded value (120). In this case there is no NUMA level match
131              * between src and dst and we can skip the remaining of the loop.
132              *
133              * The Linux kernel will assume that the distance between src and
134              * dst, in this case of no match, is 10 (local distance) doubled
135              * for each NUMA it didn't match. We have MAX_DISTANCE_REF_POINTS
136              * levels (4), so this gives us 10*2*2*2*2 = 160.
137              *
138              * This logic can be seen in the Linux kernel source code, as of
139              * v5.9, in arch/powerpc/mm/numa.c, function __node_distance().
140              */
141             if (n_level == 0) {
142                 continue;
143             }
144 
145             /*
146              * We must assign all assoc_src to dst, starting from n_level
147              * and going up to 0x1.
148              */
149             for (i = n_level; i > 0; i--) {
150                 assoc_src = spapr->numa_assoc_array[src][i];
151                 spapr->numa_assoc_array[dst][i] = assoc_src;
152             }
153         }
154     }
155 
156 }
157 
158 void spapr_numa_associativity_init(SpaprMachineState *spapr,
159                                    MachineState *machine)
160 {
161     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
162     int nb_numa_nodes = machine->numa_state->num_nodes;
163     int i, j, max_nodes_with_gpus;
164     bool using_legacy_numa = spapr_machine_using_legacy_numa(spapr);
165 
166     /*
167      * For all associativity arrays: first position is the size,
168      * position MAX_DISTANCE_REF_POINTS is always the numa_id,
169      * represented by the index 'i'.
170      *
171      * This will break on sparse NUMA setups, when/if QEMU starts
172      * to support it, because there will be no more guarantee that
173      * 'i' will be a valid node_id set by the user.
174      */
175     for (i = 0; i < nb_numa_nodes; i++) {
176         spapr->numa_assoc_array[i][0] = cpu_to_be32(MAX_DISTANCE_REF_POINTS);
177         spapr->numa_assoc_array[i][MAX_DISTANCE_REF_POINTS] = cpu_to_be32(i);
178 
179         /*
180          * Fill all associativity domains of non-zero NUMA nodes with
181          * node_id. This is required because the default value (0) is
182          * considered a match with associativity domains of node 0.
183          */
184         if (!using_legacy_numa && i != 0) {
185             for (j = 1; j < MAX_DISTANCE_REF_POINTS; j++) {
186                 spapr->numa_assoc_array[i][j] = cpu_to_be32(i);
187             }
188         }
189     }
190 
191     /*
192      * Initialize NVLink GPU associativity arrays. We know that
193      * the first GPU will take the first available NUMA id, and
194      * we'll have a maximum of NVGPU_MAX_NUM GPUs in the machine.
195      * At this point we're not sure if there are GPUs or not, but
196      * let's initialize the associativity arrays and allow NVLink
197      * GPUs to be handled like regular NUMA nodes later on.
198      */
199     max_nodes_with_gpus = nb_numa_nodes + NVGPU_MAX_NUM;
200 
201     for (i = nb_numa_nodes; i < max_nodes_with_gpus; i++) {
202         spapr->numa_assoc_array[i][0] = cpu_to_be32(MAX_DISTANCE_REF_POINTS);
203 
204         for (j = 1; j < MAX_DISTANCE_REF_POINTS; j++) {
205             uint32_t gpu_assoc = smc->pre_5_1_assoc_refpoints ?
206                                  SPAPR_GPU_NUMA_ID : cpu_to_be32(i);
207             spapr->numa_assoc_array[i][j] = gpu_assoc;
208         }
209 
210         spapr->numa_assoc_array[i][MAX_DISTANCE_REF_POINTS] = cpu_to_be32(i);
211     }
212 
213     /*
214      * Legacy NUMA guests (pseries-5.1 and older, or guests with only
215      * 1 NUMA node) will not benefit from anything we're going to do
216      * after this point.
217      */
218     if (using_legacy_numa) {
219         return;
220     }
221 
222     if (!spapr_numa_is_symmetrical(machine)) {
223         error_report("Asymmetrical NUMA topologies aren't supported "
224                      "in the pSeries machine");
225         exit(EXIT_FAILURE);
226     }
227 
228     spapr_numa_define_associativity_domains(spapr);
229 }
230 
231 void spapr_numa_write_associativity_dt(SpaprMachineState *spapr, void *fdt,
232                                        int offset, int nodeid)
233 {
234     _FDT((fdt_setprop(fdt, offset, "ibm,associativity",
235                       spapr->numa_assoc_array[nodeid],
236                       sizeof(spapr->numa_assoc_array[nodeid]))));
237 }
238 
239 static uint32_t *spapr_numa_get_vcpu_assoc(SpaprMachineState *spapr,
240                                            PowerPCCPU *cpu)
241 {
242     uint32_t *vcpu_assoc = g_new(uint32_t, VCPU_ASSOC_SIZE);
243     int index = spapr_get_vcpu_id(cpu);
244 
245     /*
246      * VCPUs have an extra 'cpu_id' value in ibm,associativity
247      * compared to other resources. Increment the size at index
248      * 0, put cpu_id last, then copy the remaining associativity
249      * domains.
250      */
251     vcpu_assoc[0] = cpu_to_be32(MAX_DISTANCE_REF_POINTS + 1);
252     vcpu_assoc[VCPU_ASSOC_SIZE - 1] = cpu_to_be32(index);
253     memcpy(vcpu_assoc + 1, spapr->numa_assoc_array[cpu->node_id] + 1,
254            (VCPU_ASSOC_SIZE - 2) * sizeof(uint32_t));
255 
256     return vcpu_assoc;
257 }
258 
259 int spapr_numa_fixup_cpu_dt(SpaprMachineState *spapr, void *fdt,
260                             int offset, PowerPCCPU *cpu)
261 {
262     g_autofree uint32_t *vcpu_assoc = NULL;
263 
264     vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, cpu);
265 
266     /* Advertise NUMA via ibm,associativity */
267     return fdt_setprop(fdt, offset, "ibm,associativity", vcpu_assoc,
268                        VCPU_ASSOC_SIZE * sizeof(uint32_t));
269 }
270 
271 
272 int spapr_numa_write_assoc_lookup_arrays(SpaprMachineState *spapr, void *fdt,
273                                          int offset)
274 {
275     MachineState *machine = MACHINE(spapr);
276     int nb_numa_nodes = machine->numa_state->num_nodes;
277     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
278     uint32_t *int_buf, *cur_index, buf_len;
279     int ret, i;
280 
281     /* ibm,associativity-lookup-arrays */
282     buf_len = (nr_nodes * MAX_DISTANCE_REF_POINTS + 2) * sizeof(uint32_t);
283     cur_index = int_buf = g_malloc0(buf_len);
284     int_buf[0] = cpu_to_be32(nr_nodes);
285      /* Number of entries per associativity list */
286     int_buf[1] = cpu_to_be32(MAX_DISTANCE_REF_POINTS);
287     cur_index += 2;
288     for (i = 0; i < nr_nodes; i++) {
289         /*
290          * For the lookup-array we use the ibm,associativity array,
291          * from numa_assoc_array. without the first element (size).
292          */
293         uint32_t *associativity = spapr->numa_assoc_array[i];
294         memcpy(cur_index, ++associativity,
295                sizeof(uint32_t) * MAX_DISTANCE_REF_POINTS);
296         cur_index += MAX_DISTANCE_REF_POINTS;
297     }
298     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
299                       (cur_index - int_buf) * sizeof(uint32_t));
300     g_free(int_buf);
301 
302     return ret;
303 }
304 
305 /*
306  * Helper that writes ibm,associativity-reference-points and
307  * max-associativity-domains in the RTAS pointed by @rtas
308  * in the DT @fdt.
309  */
310 void spapr_numa_write_rtas_dt(SpaprMachineState *spapr, void *fdt, int rtas)
311 {
312     MachineState *ms = MACHINE(spapr);
313     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
314     uint32_t number_nvgpus_nodes = spapr->gpu_numa_id -
315                                    spapr_numa_initial_nvgpu_numa_id(ms);
316     uint32_t refpoints[] = {
317         cpu_to_be32(0x4),
318         cpu_to_be32(0x3),
319         cpu_to_be32(0x2),
320         cpu_to_be32(0x1),
321     };
322     uint32_t nr_refpoints = ARRAY_SIZE(refpoints);
323     uint32_t maxdomain = ms->numa_state->num_nodes + number_nvgpus_nodes;
324     uint32_t maxdomains[] = {
325         cpu_to_be32(4),
326         cpu_to_be32(maxdomain),
327         cpu_to_be32(maxdomain),
328         cpu_to_be32(maxdomain),
329         cpu_to_be32(maxdomain)
330     };
331 
332     if (spapr_machine_using_legacy_numa(spapr)) {
333         uint32_t legacy_refpoints[] = {
334             cpu_to_be32(0x4),
335             cpu_to_be32(0x4),
336             cpu_to_be32(0x2),
337         };
338         uint32_t legacy_maxdomain = spapr->gpu_numa_id > 1 ? 1 : 0;
339         uint32_t legacy_maxdomains[] = {
340             cpu_to_be32(4),
341             cpu_to_be32(legacy_maxdomain),
342             cpu_to_be32(legacy_maxdomain),
343             cpu_to_be32(legacy_maxdomain),
344             cpu_to_be32(spapr->gpu_numa_id),
345         };
346 
347         G_STATIC_ASSERT(sizeof(legacy_refpoints) <= sizeof(refpoints));
348         G_STATIC_ASSERT(sizeof(legacy_maxdomains) <= sizeof(maxdomains));
349 
350         nr_refpoints = 3;
351 
352         memcpy(refpoints, legacy_refpoints, sizeof(legacy_refpoints));
353         memcpy(maxdomains, legacy_maxdomains, sizeof(legacy_maxdomains));
354 
355         /* pseries-5.0 and older reference-points array is {0x4, 0x4} */
356         if (smc->pre_5_1_assoc_refpoints) {
357             nr_refpoints = 2;
358         }
359     }
360 
361     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
362                      refpoints, nr_refpoints * sizeof(refpoints[0])));
363 
364     _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
365                      maxdomains, sizeof(maxdomains)));
366 }
367 
368 static target_ulong h_home_node_associativity(PowerPCCPU *cpu,
369                                               SpaprMachineState *spapr,
370                                               target_ulong opcode,
371                                               target_ulong *args)
372 {
373     g_autofree uint32_t *vcpu_assoc = NULL;
374     target_ulong flags = args[0];
375     target_ulong procno = args[1];
376     PowerPCCPU *tcpu;
377     int idx, assoc_idx;
378 
379     /* only support procno from H_REGISTER_VPA */
380     if (flags != 0x1) {
381         return H_FUNCTION;
382     }
383 
384     tcpu = spapr_find_cpu(procno);
385     if (tcpu == NULL) {
386         return H_P2;
387     }
388 
389     /*
390      * Given that we want to be flexible with the sizes and indexes,
391      * we must consider that there is a hard limit of how many
392      * associativities domain we can fit in R4 up to R9, which would be
393      * 12 associativity domains for vcpus. Assert and bail if that's
394      * not the case.
395      */
396     G_STATIC_ASSERT((VCPU_ASSOC_SIZE - 1) <= 12);
397 
398     vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, tcpu);
399     /* assoc_idx starts at 1 to skip associativity size */
400     assoc_idx = 1;
401 
402 #define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \
403                              ((uint64_t)(b) & 0xffffffff))
404 
405     for (idx = 0; idx < 6; idx++) {
406         int32_t a, b;
407 
408         /*
409          * vcpu_assoc[] will contain the associativity domains for tcpu,
410          * including tcpu->node_id and procno, meaning that we don't
411          * need to use these variables here.
412          *
413          * We'll read 2 values at a time to fill up the ASSOCIATIVITY()
414          * macro. The ternary will fill the remaining registers with -1
415          * after we went through vcpu_assoc[].
416          */
417         a = assoc_idx < VCPU_ASSOC_SIZE ?
418             be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
419         b = assoc_idx < VCPU_ASSOC_SIZE ?
420             be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
421 
422         args[idx] = ASSOCIATIVITY(a, b);
423     }
424 #undef ASSOCIATIVITY
425 
426     return H_SUCCESS;
427 }
428 
429 static void spapr_numa_register_types(void)
430 {
431     /* Virtual Processor Home Node */
432     spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY,
433                              h_home_node_associativity);
434 }
435 
436 type_init(spapr_numa_register_types)
437