xref: /openbmc/qemu/hw/ppc/spapr_numa.c (revision 623d7e3551a6fc5693c06ea938c60fe281b52e27)
1 /*
2  * QEMU PowerPC pSeries Logical Partition NUMA associativity handling
3  *
4  * Copyright IBM Corp. 2020
5  *
6  * Authors:
7  *  Daniel Henrique Barboza      <danielhb413@gmail.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "hw/ppc/spapr_numa.h"
15 #include "hw/pci-host/spapr.h"
16 #include "hw/ppc/fdt.h"
17 
18 /* Moved from hw/ppc/spapr_pci_nvlink2.c */
19 #define SPAPR_GPU_NUMA_ID           (cpu_to_be32(1))
20 
21 /*
22  * Retrieves max_dist_ref_points of the current NUMA affinity.
23  */
24 static int get_max_dist_ref_points(SpaprMachineState *spapr)
25 {
26     if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
27         return FORM2_DIST_REF_POINTS;
28     }
29 
30     return FORM1_DIST_REF_POINTS;
31 }
32 
33 /*
34  * Retrieves numa_assoc_size of the current NUMA affinity.
35  */
36 static int get_numa_assoc_size(SpaprMachineState *spapr)
37 {
38     if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
39         return FORM2_NUMA_ASSOC_SIZE;
40     }
41 
42     return FORM1_NUMA_ASSOC_SIZE;
43 }
44 
45 /*
46  * Retrieves vcpu_assoc_size of the current NUMA affinity.
47  *
48  * vcpu_assoc_size is the size of ibm,associativity array
49  * for CPUs, which has an extra element (vcpu_id) in the end.
50  */
51 static int get_vcpu_assoc_size(SpaprMachineState *spapr)
52 {
53     return get_numa_assoc_size(spapr) + 1;
54 }
55 
56 /*
57  * Retrieves the ibm,associativity array of NUMA node 'node_id'
58  * for the current NUMA affinity.
59  */
60 static const uint32_t *get_associativity(SpaprMachineState *spapr, int node_id)
61 {
62     if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
63         return spapr->FORM2_assoc_array[node_id];
64     }
65     return spapr->FORM1_assoc_array[node_id];
66 }
67 
68 /*
69  * Wrapper that returns node distance from ms->numa_state->nodes
70  * after handling edge cases where the distance might be absent.
71  */
72 static int get_numa_distance(MachineState *ms, int src, int dst)
73 {
74     NodeInfo *numa_info = ms->numa_state->nodes;
75     int ret = numa_info[src].distance[dst];
76 
77     if (ret != 0) {
78         return ret;
79     }
80 
81     /*
82      * In case QEMU adds a default NUMA single node when the user
83      * did not add any, or where the user did not supply distances,
84      * the distance will be absent (zero). Return local/remote
85      * distance in this case.
86      */
87     if (src == dst) {
88         return NUMA_DISTANCE_MIN;
89     }
90 
91     return NUMA_DISTANCE_DEFAULT;
92 }
93 
94 static bool spapr_numa_is_symmetrical(MachineState *ms)
95 {
96     int nb_numa_nodes = ms->numa_state->num_nodes;
97     int src, dst;
98 
99     for (src = 0; src < nb_numa_nodes; src++) {
100         for (dst = src; dst < nb_numa_nodes; dst++) {
101             if (get_numa_distance(ms, src, dst) !=
102                 get_numa_distance(ms, dst, src)) {
103                 return false;
104             }
105         }
106     }
107 
108     return true;
109 }
110 
111 /*
112  * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
113  * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
114  * called from vPHB reset handler so we initialize the counter here.
115  * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
116  * must be equally distant from any other node.
117  * The final value of spapr->gpu_numa_id is going to be written to
118  * max-associativity-domains in spapr_build_fdt().
119  */
120 unsigned int spapr_numa_initial_nvgpu_numa_id(MachineState *machine)
121 {
122     return MAX(1, machine->numa_state->num_nodes);
123 }
124 
125 /*
126  * This function will translate the user distances into
127  * what the kernel understand as possible values: 10
128  * (local distance), 20, 40, 80 and 160, and return the equivalent
129  * NUMA level for each. Current heuristic is:
130  *  - local distance (10) returns numa_level = 0x4, meaning there is
131  *    no rounding for local distance
132  *  - distances between 11 and 30 inclusive -> rounded to 20,
133  *    numa_level = 0x3
134  *  - distances between 31 and 60 inclusive -> rounded to 40,
135  *    numa_level = 0x2
136  *  - distances between 61 and 120 inclusive -> rounded to 80,
137  *    numa_level = 0x1
138  *  - everything above 120 returns numa_level = 0 to indicate that
139  *    there is no match. This will be calculated as disntace = 160
140  *    by the kernel (as of v5.9)
141  */
142 static uint8_t spapr_numa_get_numa_level(uint8_t distance)
143 {
144     if (distance == 10) {
145         return 0x4;
146     } else if (distance > 11 && distance <= 30) {
147         return 0x3;
148     } else if (distance > 31 && distance <= 60) {
149         return 0x2;
150     } else if (distance > 61 && distance <= 120) {
151         return 0x1;
152     }
153 
154     return 0;
155 }
156 
157 static void spapr_numa_define_FORM1_domains(SpaprMachineState *spapr)
158 {
159     MachineState *ms = MACHINE(spapr);
160     int nb_numa_nodes = ms->numa_state->num_nodes;
161     int src, dst, i, j;
162 
163     /*
164      * Fill all associativity domains of non-zero NUMA nodes with
165      * node_id. This is required because the default value (0) is
166      * considered a match with associativity domains of node 0.
167      */
168     for (i = 1; i < nb_numa_nodes; i++) {
169         for (j = 1; j < FORM1_DIST_REF_POINTS; j++) {
170             spapr->FORM1_assoc_array[i][j] = cpu_to_be32(i);
171         }
172     }
173 
174     for (src = 0; src < nb_numa_nodes; src++) {
175         for (dst = src; dst < nb_numa_nodes; dst++) {
176             /*
177              * This is how the associativity domain between A and B
178              * is calculated:
179              *
180              * - get the distance D between them
181              * - get the correspondent NUMA level 'n_level' for D
182              * - all associativity arrays were initialized with their own
183              * numa_ids, and we're calculating the distance in node_id
184              * ascending order, starting from node id 0 (the first node
185              * retrieved by numa_state). This will have a cascade effect in
186              * the algorithm because the associativity domains that node 0
187              * defines will be carried over to other nodes, and node 1
188              * associativities will be carried over after taking node 0
189              * associativities into account, and so on. This happens because
190              * we'll assign assoc_src as the associativity domain of dst
191              * as well, for all NUMA levels beyond and including n_level.
192              *
193              * The PPC kernel expects the associativity domains of node 0 to
194              * be always 0, and this algorithm will grant that by default.
195              */
196             uint8_t distance = get_numa_distance(ms, src, dst);
197             uint8_t n_level = spapr_numa_get_numa_level(distance);
198             uint32_t assoc_src;
199 
200             /*
201              * n_level = 0 means that the distance is greater than our last
202              * rounded value (120). In this case there is no NUMA level match
203              * between src and dst and we can skip the remaining of the loop.
204              *
205              * The Linux kernel will assume that the distance between src and
206              * dst, in this case of no match, is 10 (local distance) doubled
207              * for each NUMA it didn't match. We have FORM1_DIST_REF_POINTS
208              * levels (4), so this gives us 10*2*2*2*2 = 160.
209              *
210              * This logic can be seen in the Linux kernel source code, as of
211              * v5.9, in arch/powerpc/mm/numa.c, function __node_distance().
212              */
213             if (n_level == 0) {
214                 continue;
215             }
216 
217             /*
218              * We must assign all assoc_src to dst, starting from n_level
219              * and going up to 0x1.
220              */
221             for (i = n_level; i > 0; i--) {
222                 assoc_src = spapr->FORM1_assoc_array[src][i];
223                 spapr->FORM1_assoc_array[dst][i] = assoc_src;
224             }
225         }
226     }
227 
228 }
229 
230 static void spapr_numa_FORM1_affinity_check(MachineState *machine)
231 {
232     int i;
233 
234     /*
235      * Check we don't have a memory-less/cpu-less NUMA node
236      * Firmware relies on the existing memory/cpu topology to provide the
237      * NUMA topology to the kernel.
238      * And the linux kernel needs to know the NUMA topology at start
239      * to be able to hotplug CPUs later.
240      */
241     if (machine->numa_state->num_nodes) {
242         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
243             /* check for memory-less node */
244             if (machine->numa_state->nodes[i].node_mem == 0) {
245                 CPUState *cs;
246                 int found = 0;
247                 /* check for cpu-less node */
248                 CPU_FOREACH(cs) {
249                     PowerPCCPU *cpu = POWERPC_CPU(cs);
250                     if (cpu->node_id == i) {
251                         found = 1;
252                         break;
253                     }
254                 }
255                 /* memory-less and cpu-less node */
256                 if (!found) {
257                     error_report(
258 "Memory-less/cpu-less nodes are not supported with FORM1 NUMA (node %d)", i);
259                     exit(EXIT_FAILURE);
260                 }
261             }
262         }
263     }
264 
265     if (!spapr_numa_is_symmetrical(machine)) {
266         error_report(
267 "Asymmetrical NUMA topologies aren't supported in the pSeries machine using FORM1 NUMA");
268         exit(EXIT_FAILURE);
269     }
270 }
271 
272 /*
273  * Set NUMA machine state data based on FORM1 affinity semantics.
274  */
275 static void spapr_numa_FORM1_affinity_init(SpaprMachineState *spapr,
276                                            MachineState *machine)
277 {
278     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
279     int nb_numa_nodes = machine->numa_state->num_nodes;
280     int i, j, max_nodes_with_gpus;
281 
282     /*
283      * For all associativity arrays: first position is the size,
284      * position FORM1_DIST_REF_POINTS is always the numa_id,
285      * represented by the index 'i'.
286      *
287      * This will break on sparse NUMA setups, when/if QEMU starts
288      * to support it, because there will be no more guarantee that
289      * 'i' will be a valid node_id set by the user.
290      */
291     for (i = 0; i < nb_numa_nodes; i++) {
292         spapr->FORM1_assoc_array[i][0] = cpu_to_be32(FORM1_DIST_REF_POINTS);
293         spapr->FORM1_assoc_array[i][FORM1_DIST_REF_POINTS] = cpu_to_be32(i);
294     }
295 
296     /*
297      * Initialize NVLink GPU associativity arrays. We know that
298      * the first GPU will take the first available NUMA id, and
299      * we'll have a maximum of NVGPU_MAX_NUM GPUs in the machine.
300      * At this point we're not sure if there are GPUs or not, but
301      * let's initialize the associativity arrays and allow NVLink
302      * GPUs to be handled like regular NUMA nodes later on.
303      */
304     max_nodes_with_gpus = nb_numa_nodes + NVGPU_MAX_NUM;
305 
306     for (i = nb_numa_nodes; i < max_nodes_with_gpus; i++) {
307         spapr->FORM1_assoc_array[i][0] = cpu_to_be32(FORM1_DIST_REF_POINTS);
308 
309         for (j = 1; j < FORM1_DIST_REF_POINTS; j++) {
310             uint32_t gpu_assoc = smc->pre_5_1_assoc_refpoints ?
311                                  SPAPR_GPU_NUMA_ID : cpu_to_be32(i);
312             spapr->FORM1_assoc_array[i][j] = gpu_assoc;
313         }
314 
315         spapr->FORM1_assoc_array[i][FORM1_DIST_REF_POINTS] = cpu_to_be32(i);
316     }
317 
318     /*
319      * Guests pseries-5.1 and older uses zeroed associativity domains,
320      * i.e. no domain definition based on NUMA distance input.
321      *
322      * Same thing with guests that have only one NUMA node.
323      */
324     if (smc->pre_5_2_numa_associativity ||
325         machine->numa_state->num_nodes <= 1) {
326         return;
327     }
328 
329     spapr_numa_define_FORM1_domains(spapr);
330 }
331 
332 /*
333  * Init NUMA FORM2 machine state data
334  */
335 static void spapr_numa_FORM2_affinity_init(SpaprMachineState *spapr)
336 {
337     int i;
338 
339     /*
340      * For all resources but CPUs, FORM2 associativity arrays will
341      * be a size 2 array with the following format:
342      *
343      * ibm,associativity = {1, numa_id}
344      *
345      * CPUs will write an additional 'vcpu_id' on top of the arrays
346      * being initialized here. 'numa_id' is represented by the
347      * index 'i' of the loop.
348      *
349      * Given that this initialization is also valid for GPU associativity
350      * arrays, handle everything in one single step by populating the
351      * arrays up to NUMA_NODES_MAX_NUM.
352      */
353     for (i = 0; i < NUMA_NODES_MAX_NUM; i++) {
354         spapr->FORM2_assoc_array[i][0] = cpu_to_be32(1);
355         spapr->FORM2_assoc_array[i][1] = cpu_to_be32(i);
356     }
357 }
358 
359 void spapr_numa_associativity_init(SpaprMachineState *spapr,
360                                    MachineState *machine)
361 {
362     spapr_numa_FORM1_affinity_init(spapr, machine);
363     spapr_numa_FORM2_affinity_init(spapr);
364 }
365 
366 void spapr_numa_associativity_check(SpaprMachineState *spapr)
367 {
368     /*
369      * FORM2 does not have any restrictions we need to handle
370      * at CAS time, for now.
371      */
372     if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
373         return;
374     }
375 
376     spapr_numa_FORM1_affinity_check(MACHINE(spapr));
377 }
378 
379 void spapr_numa_write_associativity_dt(SpaprMachineState *spapr, void *fdt,
380                                        int offset, int nodeid)
381 {
382     const uint32_t *associativity = get_associativity(spapr, nodeid);
383 
384     _FDT((fdt_setprop(fdt, offset, "ibm,associativity",
385                       associativity,
386                       get_numa_assoc_size(spapr) * sizeof(uint32_t))));
387 }
388 
389 static uint32_t *spapr_numa_get_vcpu_assoc(SpaprMachineState *spapr,
390                                            PowerPCCPU *cpu)
391 {
392     const uint32_t *associativity = get_associativity(spapr, cpu->node_id);
393     int max_distance_ref_points = get_max_dist_ref_points(spapr);
394     int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
395     uint32_t *vcpu_assoc = g_new(uint32_t, vcpu_assoc_size);
396     int index = spapr_get_vcpu_id(cpu);
397 
398     /*
399      * VCPUs have an extra 'cpu_id' value in ibm,associativity
400      * compared to other resources. Increment the size at index
401      * 0, put cpu_id last, then copy the remaining associativity
402      * domains.
403      */
404     vcpu_assoc[0] = cpu_to_be32(max_distance_ref_points + 1);
405     vcpu_assoc[vcpu_assoc_size - 1] = cpu_to_be32(index);
406     memcpy(vcpu_assoc + 1, associativity + 1,
407            (vcpu_assoc_size - 2) * sizeof(uint32_t));
408 
409     return vcpu_assoc;
410 }
411 
412 int spapr_numa_fixup_cpu_dt(SpaprMachineState *spapr, void *fdt,
413                             int offset, PowerPCCPU *cpu)
414 {
415     g_autofree uint32_t *vcpu_assoc = NULL;
416     int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
417 
418     vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, cpu);
419 
420     /* Advertise NUMA via ibm,associativity */
421     return fdt_setprop(fdt, offset, "ibm,associativity", vcpu_assoc,
422                        vcpu_assoc_size * sizeof(uint32_t));
423 }
424 
425 
426 int spapr_numa_write_assoc_lookup_arrays(SpaprMachineState *spapr, void *fdt,
427                                          int offset)
428 {
429     MachineState *machine = MACHINE(spapr);
430     int max_distance_ref_points = get_max_dist_ref_points(spapr);
431     int nb_numa_nodes = machine->numa_state->num_nodes;
432     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
433     g_autofree uint32_t *int_buf = NULL;
434     uint32_t *cur_index;
435     int i;
436 
437     /* ibm,associativity-lookup-arrays */
438     int_buf = g_new0(uint32_t, nr_nodes * max_distance_ref_points + 2);
439     cur_index = int_buf;
440     int_buf[0] = cpu_to_be32(nr_nodes);
441      /* Number of entries per associativity list */
442     int_buf[1] = cpu_to_be32(max_distance_ref_points);
443     cur_index += 2;
444     for (i = 0; i < nr_nodes; i++) {
445         /*
446          * For the lookup-array we use the ibm,associativity array of the
447          * current NUMA affinity, without the first element (size).
448          */
449         const uint32_t *associativity = get_associativity(spapr, i);
450         memcpy(cur_index, ++associativity,
451                sizeof(uint32_t) * max_distance_ref_points);
452         cur_index += max_distance_ref_points;
453     }
454 
455     return fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays",
456                        int_buf, (cur_index - int_buf) * sizeof(uint32_t));
457 }
458 
459 static void spapr_numa_FORM1_write_rtas_dt(SpaprMachineState *spapr,
460                                            void *fdt, int rtas)
461 {
462     MachineState *ms = MACHINE(spapr);
463     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
464     uint32_t number_nvgpus_nodes = spapr->gpu_numa_id -
465                                    spapr_numa_initial_nvgpu_numa_id(ms);
466     uint32_t refpoints[] = {
467         cpu_to_be32(0x4),
468         cpu_to_be32(0x3),
469         cpu_to_be32(0x2),
470         cpu_to_be32(0x1),
471     };
472     uint32_t nr_refpoints = ARRAY_SIZE(refpoints);
473     uint32_t maxdomain = ms->numa_state->num_nodes + number_nvgpus_nodes;
474     uint32_t maxdomains[] = {
475         cpu_to_be32(4),
476         cpu_to_be32(maxdomain),
477         cpu_to_be32(maxdomain),
478         cpu_to_be32(maxdomain),
479         cpu_to_be32(maxdomain)
480     };
481 
482     if (smc->pre_5_2_numa_associativity ||
483         ms->numa_state->num_nodes <= 1) {
484         uint32_t legacy_refpoints[] = {
485             cpu_to_be32(0x4),
486             cpu_to_be32(0x4),
487             cpu_to_be32(0x2),
488         };
489         uint32_t legacy_maxdomain = spapr->gpu_numa_id > 1 ? 1 : 0;
490         uint32_t legacy_maxdomains[] = {
491             cpu_to_be32(4),
492             cpu_to_be32(legacy_maxdomain),
493             cpu_to_be32(legacy_maxdomain),
494             cpu_to_be32(legacy_maxdomain),
495             cpu_to_be32(spapr->gpu_numa_id),
496         };
497 
498         G_STATIC_ASSERT(sizeof(legacy_refpoints) <= sizeof(refpoints));
499         G_STATIC_ASSERT(sizeof(legacy_maxdomains) <= sizeof(maxdomains));
500 
501         nr_refpoints = 3;
502 
503         memcpy(refpoints, legacy_refpoints, sizeof(legacy_refpoints));
504         memcpy(maxdomains, legacy_maxdomains, sizeof(legacy_maxdomains));
505 
506         /* pseries-5.0 and older reference-points array is {0x4, 0x4} */
507         if (smc->pre_5_1_assoc_refpoints) {
508             nr_refpoints = 2;
509         }
510     }
511 
512     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
513                      refpoints, nr_refpoints * sizeof(refpoints[0])));
514 
515     _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
516                      maxdomains, sizeof(maxdomains)));
517 }
518 
519 static void spapr_numa_FORM2_write_rtas_tables(SpaprMachineState *spapr,
520                                                void *fdt, int rtas)
521 {
522     MachineState *ms = MACHINE(spapr);
523     int nb_numa_nodes = ms->numa_state->num_nodes;
524     int distance_table_entries = nb_numa_nodes * nb_numa_nodes;
525     g_autofree uint32_t *lookup_index_table = NULL;
526     g_autofree uint8_t *distance_table = NULL;
527     int src, dst, i, distance_table_size;
528 
529     /*
530      * ibm,numa-lookup-index-table: array with length and a
531      * list of NUMA ids present in the guest.
532      */
533     lookup_index_table = g_new0(uint32_t, nb_numa_nodes + 1);
534     lookup_index_table[0] = cpu_to_be32(nb_numa_nodes);
535 
536     for (i = 0; i < nb_numa_nodes; i++) {
537         lookup_index_table[i + 1] = cpu_to_be32(i);
538     }
539 
540     _FDT(fdt_setprop(fdt, rtas, "ibm,numa-lookup-index-table",
541                      lookup_index_table,
542                      (nb_numa_nodes + 1) * sizeof(uint32_t)));
543 
544     /*
545      * ibm,numa-distance-table: contains all node distances. First
546      * element is the size of the table as uint32, followed up
547      * by all the uint8 distances from the first NUMA node, then all
548      * distances from the second NUMA node and so on.
549      *
550      * ibm,numa-lookup-index-table is used by guest to navigate this
551      * array because NUMA ids can be sparse (node 0 is the first,
552      * node 8 is the second ...).
553      */
554     distance_table_size = distance_table_entries * sizeof(uint8_t) +
555                           sizeof(uint32_t);
556     distance_table = g_new0(uint8_t, distance_table_size);
557     stl_be_p(distance_table, distance_table_entries);
558 
559     /* Skip the uint32_t array length at the start */
560     i = sizeof(uint32_t);
561 
562     for (src = 0; src < nb_numa_nodes; src++) {
563         for (dst = 0; dst < nb_numa_nodes; dst++) {
564             distance_table[i++] = get_numa_distance(ms, src, dst);
565         }
566     }
567 
568     _FDT(fdt_setprop(fdt, rtas, "ibm,numa-distance-table",
569                      distance_table, distance_table_size));
570 }
571 
572 /*
573  * This helper could be compressed in a single function with
574  * FORM1 logic since we're setting the same DT values, with the
575  * difference being a call to spapr_numa_FORM2_write_rtas_tables()
576  * in the end. The separation was made to avoid clogging FORM1 code
577  * which already has to deal with compat modes from previous
578  * QEMU machine types.
579  */
580 static void spapr_numa_FORM2_write_rtas_dt(SpaprMachineState *spapr,
581                                            void *fdt, int rtas)
582 {
583     MachineState *ms = MACHINE(spapr);
584     uint32_t number_nvgpus_nodes = spapr->gpu_numa_id -
585                                    spapr_numa_initial_nvgpu_numa_id(ms);
586 
587     /*
588      * In FORM2, ibm,associativity-reference-points will point to
589      * the element in the ibm,associativity array that contains the
590      * primary domain index (for FORM2, the first element).
591      *
592      * This value (in our case, the numa-id) is then used as an index
593      * to retrieve all other attributes of the node (distance,
594      * bandwidth, latency) via ibm,numa-lookup-index-table and other
595      * ibm,numa-*-table properties.
596      */
597     uint32_t refpoints[] = { cpu_to_be32(1) };
598 
599     uint32_t maxdomain = ms->numa_state->num_nodes + number_nvgpus_nodes;
600     uint32_t maxdomains[] = { cpu_to_be32(1), cpu_to_be32(maxdomain) };
601 
602     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
603                      refpoints, sizeof(refpoints)));
604 
605     _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
606                      maxdomains, sizeof(maxdomains)));
607 
608     spapr_numa_FORM2_write_rtas_tables(spapr, fdt, rtas);
609 }
610 
611 /*
612  * Helper that writes ibm,associativity-reference-points and
613  * max-associativity-domains in the RTAS pointed by @rtas
614  * in the DT @fdt.
615  */
616 void spapr_numa_write_rtas_dt(SpaprMachineState *spapr, void *fdt, int rtas)
617 {
618     if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
619         spapr_numa_FORM2_write_rtas_dt(spapr, fdt, rtas);
620         return;
621     }
622 
623     spapr_numa_FORM1_write_rtas_dt(spapr, fdt, rtas);
624 }
625 
626 static target_ulong h_home_node_associativity(PowerPCCPU *cpu,
627                                               SpaprMachineState *spapr,
628                                               target_ulong opcode,
629                                               target_ulong *args)
630 {
631     g_autofree uint32_t *vcpu_assoc = NULL;
632     target_ulong flags = args[0];
633     target_ulong procno = args[1];
634     PowerPCCPU *tcpu;
635     int idx, assoc_idx;
636     int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
637 
638     /* only support procno from H_REGISTER_VPA */
639     if (flags != 0x1) {
640         return H_FUNCTION;
641     }
642 
643     tcpu = spapr_find_cpu(procno);
644     if (tcpu == NULL) {
645         return H_P2;
646     }
647 
648     /*
649      * Given that we want to be flexible with the sizes and indexes,
650      * we must consider that there is a hard limit of how many
651      * associativities domain we can fit in R4 up to R9, which would be
652      * 12 associativity domains for vcpus. Assert and bail if that's
653      * not the case.
654      */
655     g_assert((vcpu_assoc_size - 1) <= 12);
656 
657     vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, tcpu);
658     /* assoc_idx starts at 1 to skip associativity size */
659     assoc_idx = 1;
660 
661 #define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \
662                              ((uint64_t)(b) & 0xffffffff))
663 
664     for (idx = 0; idx < 6; idx++) {
665         int32_t a, b;
666 
667         /*
668          * vcpu_assoc[] will contain the associativity domains for tcpu,
669          * including tcpu->node_id and procno, meaning that we don't
670          * need to use these variables here.
671          *
672          * We'll read 2 values at a time to fill up the ASSOCIATIVITY()
673          * macro. The ternary will fill the remaining registers with -1
674          * after we went through vcpu_assoc[].
675          */
676         a = assoc_idx < vcpu_assoc_size ?
677             be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
678         b = assoc_idx < vcpu_assoc_size ?
679             be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
680 
681         args[idx] = ASSOCIATIVITY(a, b);
682     }
683 #undef ASSOCIATIVITY
684 
685     return H_SUCCESS;
686 }
687 
688 static void spapr_numa_register_types(void)
689 {
690     /* Virtual Processor Home Node */
691     spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY,
692                              h_home_node_associativity);
693 }
694 
695 type_init(spapr_numa_register_types)
696