xref: /openbmc/qemu/hw/ppc/spapr_hcall.c (revision 05a248715cef192336a594afed812871a52efc1f)
1 #include "qemu/osdep.h"
2 #include "qemu/cutils.h"
3 #include "qapi/error.h"
4 #include "sysemu/hw_accel.h"
5 #include "sysemu/runstate.h"
6 #include "qemu/log.h"
7 #include "qemu/main-loop.h"
8 #include "qemu/module.h"
9 #include "qemu/error-report.h"
10 #include "exec/exec-all.h"
11 #include "helper_regs.h"
12 #include "hw/ppc/spapr.h"
13 #include "hw/ppc/spapr_cpu_core.h"
14 #include "mmu-hash64.h"
15 #include "cpu-models.h"
16 #include "trace.h"
17 #include "kvm_ppc.h"
18 #include "hw/ppc/fdt.h"
19 #include "hw/ppc/spapr_ovec.h"
20 #include "hw/ppc/spapr_numa.h"
21 #include "mmu-book3s-v3.h"
22 #include "hw/mem/memory-device.h"
23 
24 bool is_ram_address(SpaprMachineState *spapr, hwaddr addr)
25 {
26     MachineState *machine = MACHINE(spapr);
27     DeviceMemoryState *dms = machine->device_memory;
28 
29     if (addr < machine->ram_size) {
30         return true;
31     }
32     if ((addr >= dms->base)
33         && ((addr - dms->base) < memory_region_size(&dms->mr))) {
34         return true;
35     }
36 
37     return false;
38 }
39 
40 /* Convert a return code from the KVM ioctl()s implementing resize HPT
41  * into a PAPR hypercall return code */
42 static target_ulong resize_hpt_convert_rc(int ret)
43 {
44     if (ret >= 100000) {
45         return H_LONG_BUSY_ORDER_100_SEC;
46     } else if (ret >= 10000) {
47         return H_LONG_BUSY_ORDER_10_SEC;
48     } else if (ret >= 1000) {
49         return H_LONG_BUSY_ORDER_1_SEC;
50     } else if (ret >= 100) {
51         return H_LONG_BUSY_ORDER_100_MSEC;
52     } else if (ret >= 10) {
53         return H_LONG_BUSY_ORDER_10_MSEC;
54     } else if (ret > 0) {
55         return H_LONG_BUSY_ORDER_1_MSEC;
56     }
57 
58     switch (ret) {
59     case 0:
60         return H_SUCCESS;
61     case -EPERM:
62         return H_AUTHORITY;
63     case -EINVAL:
64         return H_PARAMETER;
65     case -ENXIO:
66         return H_CLOSED;
67     case -ENOSPC:
68         return H_PTEG_FULL;
69     case -EBUSY:
70         return H_BUSY;
71     case -ENOMEM:
72         return H_NO_MEM;
73     default:
74         return H_HARDWARE;
75     }
76 }
77 
78 static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu,
79                                          SpaprMachineState *spapr,
80                                          target_ulong opcode,
81                                          target_ulong *args)
82 {
83     target_ulong flags = args[0];
84     int shift = args[1];
85     uint64_t current_ram_size;
86     int rc;
87 
88     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
89         return H_AUTHORITY;
90     }
91 
92     if (!spapr->htab_shift) {
93         /* Radix guest, no HPT */
94         return H_NOT_AVAILABLE;
95     }
96 
97     trace_spapr_h_resize_hpt_prepare(flags, shift);
98 
99     if (flags != 0) {
100         return H_PARAMETER;
101     }
102 
103     if (shift && ((shift < 18) || (shift > 46))) {
104         return H_PARAMETER;
105     }
106 
107     current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
108 
109     /* We only allow the guest to allocate an HPT one order above what
110      * we'd normally give them (to stop a small guest claiming a huge
111      * chunk of resources in the HPT */
112     if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) {
113         return H_RESOURCE;
114     }
115 
116     rc = kvmppc_resize_hpt_prepare(cpu, flags, shift);
117     if (rc != -ENOSYS) {
118         return resize_hpt_convert_rc(rc);
119     }
120 
121     if (kvm_enabled()) {
122         return H_HARDWARE;
123     }
124 
125     return softmmu_resize_hpt_prepare(cpu, spapr, shift);
126 }
127 
128 static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data)
129 {
130     int ret;
131 
132     cpu_synchronize_state(cs);
133 
134     ret = kvmppc_put_books_sregs(POWERPC_CPU(cs));
135     if (ret < 0) {
136         error_report("failed to push sregs to KVM: %s", strerror(-ret));
137         exit(1);
138     }
139 }
140 
141 void push_sregs_to_kvm_pr(SpaprMachineState *spapr)
142 {
143     CPUState *cs;
144 
145     /*
146      * This is a hack for the benefit of KVM PR - it abuses the SDR1
147      * slot in kvm_sregs to communicate the userspace address of the
148      * HPT
149      */
150     if (!kvm_enabled() || !spapr->htab) {
151         return;
152     }
153 
154     CPU_FOREACH(cs) {
155         run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL);
156     }
157 }
158 
159 static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu,
160                                         SpaprMachineState *spapr,
161                                         target_ulong opcode,
162                                         target_ulong *args)
163 {
164     target_ulong flags = args[0];
165     target_ulong shift = args[1];
166     int rc;
167 
168     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
169         return H_AUTHORITY;
170     }
171 
172     if (!spapr->htab_shift) {
173         /* Radix guest, no HPT */
174         return H_NOT_AVAILABLE;
175     }
176 
177     trace_spapr_h_resize_hpt_commit(flags, shift);
178 
179     rc = kvmppc_resize_hpt_commit(cpu, flags, shift);
180     if (rc != -ENOSYS) {
181         rc = resize_hpt_convert_rc(rc);
182         if (rc == H_SUCCESS) {
183             /* Need to set the new htab_shift in the machine state */
184             spapr->htab_shift = shift;
185         }
186         return rc;
187     }
188 
189     if (kvm_enabled()) {
190         return H_HARDWARE;
191     }
192 
193     return softmmu_resize_hpt_commit(cpu, spapr, flags, shift);
194 }
195 
196 
197 
198 static target_ulong h_set_sprg0(PowerPCCPU *cpu, SpaprMachineState *spapr,
199                                 target_ulong opcode, target_ulong *args)
200 {
201     cpu_synchronize_state(CPU(cpu));
202     cpu->env.spr[SPR_SPRG0] = args[0];
203 
204     return H_SUCCESS;
205 }
206 
207 static target_ulong h_set_dabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
208                                target_ulong opcode, target_ulong *args)
209 {
210     if (!ppc_has_spr(cpu, SPR_DABR)) {
211         return H_HARDWARE;              /* DABR register not available */
212     }
213     cpu_synchronize_state(CPU(cpu));
214 
215     if (ppc_has_spr(cpu, SPR_DABRX)) {
216         cpu->env.spr[SPR_DABRX] = 0x3;  /* Use Problem and Privileged state */
217     } else if (!(args[0] & 0x4)) {      /* Breakpoint Translation set? */
218         return H_RESERVED_DABR;
219     }
220 
221     cpu->env.spr[SPR_DABR] = args[0];
222     return H_SUCCESS;
223 }
224 
225 static target_ulong h_set_xdabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
226                                 target_ulong opcode, target_ulong *args)
227 {
228     target_ulong dabrx = args[1];
229 
230     if (!ppc_has_spr(cpu, SPR_DABR) || !ppc_has_spr(cpu, SPR_DABRX)) {
231         return H_HARDWARE;
232     }
233 
234     if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
235         || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
236         return H_PARAMETER;
237     }
238 
239     cpu_synchronize_state(CPU(cpu));
240     cpu->env.spr[SPR_DABRX] = dabrx;
241     cpu->env.spr[SPR_DABR] = args[0];
242 
243     return H_SUCCESS;
244 }
245 
246 static target_ulong h_page_init(PowerPCCPU *cpu, SpaprMachineState *spapr,
247                                 target_ulong opcode, target_ulong *args)
248 {
249     target_ulong flags = args[0];
250     hwaddr dst = args[1];
251     hwaddr src = args[2];
252     hwaddr len = TARGET_PAGE_SIZE;
253     uint8_t *pdst, *psrc;
254     target_long ret = H_SUCCESS;
255 
256     if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
257                   | H_COPY_PAGE | H_ZERO_PAGE)) {
258         qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
259                       flags);
260         return H_PARAMETER;
261     }
262 
263     /* Map-in destination */
264     if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
265         return H_PARAMETER;
266     }
267     pdst = cpu_physical_memory_map(dst, &len, true);
268     if (!pdst || len != TARGET_PAGE_SIZE) {
269         return H_PARAMETER;
270     }
271 
272     if (flags & H_COPY_PAGE) {
273         /* Map-in source, copy to destination, and unmap source again */
274         if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
275             ret = H_PARAMETER;
276             goto unmap_out;
277         }
278         psrc = cpu_physical_memory_map(src, &len, false);
279         if (!psrc || len != TARGET_PAGE_SIZE) {
280             ret = H_PARAMETER;
281             goto unmap_out;
282         }
283         memcpy(pdst, psrc, len);
284         cpu_physical_memory_unmap(psrc, len, 0, len);
285     } else if (flags & H_ZERO_PAGE) {
286         memset(pdst, 0, len);          /* Just clear the destination page */
287     }
288 
289     if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
290         kvmppc_dcbst_range(cpu, pdst, len);
291     }
292     if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
293         if (kvm_enabled()) {
294             kvmppc_icbi_range(cpu, pdst, len);
295         } else {
296             tb_flush(CPU(cpu));
297         }
298     }
299 
300 unmap_out:
301     cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
302     return ret;
303 }
304 
305 #define FLAGS_REGISTER_VPA         0x0000200000000000ULL
306 #define FLAGS_REGISTER_DTL         0x0000400000000000ULL
307 #define FLAGS_REGISTER_SLBSHADOW   0x0000600000000000ULL
308 #define FLAGS_DEREGISTER_VPA       0x0000a00000000000ULL
309 #define FLAGS_DEREGISTER_DTL       0x0000c00000000000ULL
310 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
311 
312 static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa)
313 {
314     CPUState *cs = CPU(cpu);
315     CPUPPCState *env = &cpu->env;
316     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
317     uint16_t size;
318     uint8_t tmp;
319 
320     if (vpa == 0) {
321         hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
322         return H_HARDWARE;
323     }
324 
325     if (vpa % env->dcache_line_size) {
326         return H_PARAMETER;
327     }
328     /* FIXME: bounds check the address */
329 
330     size = lduw_be_phys(cs->as, vpa + 0x4);
331 
332     if (size < VPA_MIN_SIZE) {
333         return H_PARAMETER;
334     }
335 
336     /* VPA is not allowed to cross a page boundary */
337     if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
338         return H_PARAMETER;
339     }
340 
341     spapr_cpu->vpa_addr = vpa;
342 
343     tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET);
344     tmp |= VPA_SHARED_PROC_VAL;
345     stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
346 
347     return H_SUCCESS;
348 }
349 
350 static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa)
351 {
352     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
353 
354     if (spapr_cpu->slb_shadow_addr) {
355         return H_RESOURCE;
356     }
357 
358     if (spapr_cpu->dtl_addr) {
359         return H_RESOURCE;
360     }
361 
362     spapr_cpu->vpa_addr = 0;
363     return H_SUCCESS;
364 }
365 
366 static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
367 {
368     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
369     uint32_t size;
370 
371     if (addr == 0) {
372         hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
373         return H_HARDWARE;
374     }
375 
376     size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
377     if (size < 0x8) {
378         return H_PARAMETER;
379     }
380 
381     if ((addr / 4096) != ((addr + size - 1) / 4096)) {
382         return H_PARAMETER;
383     }
384 
385     if (!spapr_cpu->vpa_addr) {
386         return H_RESOURCE;
387     }
388 
389     spapr_cpu->slb_shadow_addr = addr;
390     spapr_cpu->slb_shadow_size = size;
391 
392     return H_SUCCESS;
393 }
394 
395 static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
396 {
397     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
398 
399     spapr_cpu->slb_shadow_addr = 0;
400     spapr_cpu->slb_shadow_size = 0;
401     return H_SUCCESS;
402 }
403 
404 static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr)
405 {
406     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
407     uint32_t size;
408 
409     if (addr == 0) {
410         hcall_dprintf("Can't cope with DTL at logical 0\n");
411         return H_HARDWARE;
412     }
413 
414     size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
415 
416     if (size < 48) {
417         return H_PARAMETER;
418     }
419 
420     if (!spapr_cpu->vpa_addr) {
421         return H_RESOURCE;
422     }
423 
424     spapr_cpu->dtl_addr = addr;
425     spapr_cpu->dtl_size = size;
426 
427     return H_SUCCESS;
428 }
429 
430 static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr)
431 {
432     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
433 
434     spapr_cpu->dtl_addr = 0;
435     spapr_cpu->dtl_size = 0;
436 
437     return H_SUCCESS;
438 }
439 
440 static target_ulong h_register_vpa(PowerPCCPU *cpu, SpaprMachineState *spapr,
441                                    target_ulong opcode, target_ulong *args)
442 {
443     target_ulong flags = args[0];
444     target_ulong procno = args[1];
445     target_ulong vpa = args[2];
446     target_ulong ret = H_PARAMETER;
447     PowerPCCPU *tcpu;
448 
449     tcpu = spapr_find_cpu(procno);
450     if (!tcpu) {
451         return H_PARAMETER;
452     }
453 
454     switch (flags) {
455     case FLAGS_REGISTER_VPA:
456         ret = register_vpa(tcpu, vpa);
457         break;
458 
459     case FLAGS_DEREGISTER_VPA:
460         ret = deregister_vpa(tcpu, vpa);
461         break;
462 
463     case FLAGS_REGISTER_SLBSHADOW:
464         ret = register_slb_shadow(tcpu, vpa);
465         break;
466 
467     case FLAGS_DEREGISTER_SLBSHADOW:
468         ret = deregister_slb_shadow(tcpu, vpa);
469         break;
470 
471     case FLAGS_REGISTER_DTL:
472         ret = register_dtl(tcpu, vpa);
473         break;
474 
475     case FLAGS_DEREGISTER_DTL:
476         ret = deregister_dtl(tcpu, vpa);
477         break;
478     }
479 
480     return ret;
481 }
482 
483 static target_ulong h_cede(PowerPCCPU *cpu, SpaprMachineState *spapr,
484                            target_ulong opcode, target_ulong *args)
485 {
486     CPUPPCState *env = &cpu->env;
487     CPUState *cs = CPU(cpu);
488     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
489 
490     env->msr |= (1ULL << MSR_EE);
491     hreg_compute_hflags(env);
492 
493     if (spapr_cpu->prod) {
494         spapr_cpu->prod = false;
495         return H_SUCCESS;
496     }
497 
498     if (!cpu_has_work(cs)) {
499         cs->halted = 1;
500         cs->exception_index = EXCP_HLT;
501         cs->exit_request = 1;
502     }
503 
504     return H_SUCCESS;
505 }
506 
507 /*
508  * Confer to self, aka join. Cede could use the same pattern as well, if
509  * EXCP_HLT can be changed to ECXP_HALTED.
510  */
511 static target_ulong h_confer_self(PowerPCCPU *cpu)
512 {
513     CPUState *cs = CPU(cpu);
514     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
515 
516     if (spapr_cpu->prod) {
517         spapr_cpu->prod = false;
518         return H_SUCCESS;
519     }
520     cs->halted = 1;
521     cs->exception_index = EXCP_HALTED;
522     cs->exit_request = 1;
523 
524     return H_SUCCESS;
525 }
526 
527 static target_ulong h_join(PowerPCCPU *cpu, SpaprMachineState *spapr,
528                            target_ulong opcode, target_ulong *args)
529 {
530     CPUPPCState *env = &cpu->env;
531     CPUState *cs;
532     bool last_unjoined = true;
533 
534     if (env->msr & (1ULL << MSR_EE)) {
535         return H_BAD_MODE;
536     }
537 
538     /*
539      * Must not join the last CPU running. Interestingly, no such restriction
540      * for H_CONFER-to-self, but that is probably not intended to be used
541      * when H_JOIN is available.
542      */
543     CPU_FOREACH(cs) {
544         PowerPCCPU *c = POWERPC_CPU(cs);
545         CPUPPCState *e = &c->env;
546         if (c == cpu) {
547             continue;
548         }
549 
550         /* Don't have a way to indicate joined, so use halted && MSR[EE]=0 */
551         if (!cs->halted || (e->msr & (1ULL << MSR_EE))) {
552             last_unjoined = false;
553             break;
554         }
555     }
556     if (last_unjoined) {
557         return H_CONTINUE;
558     }
559 
560     return h_confer_self(cpu);
561 }
562 
563 static target_ulong h_confer(PowerPCCPU *cpu, SpaprMachineState *spapr,
564                            target_ulong opcode, target_ulong *args)
565 {
566     target_long target = args[0];
567     uint32_t dispatch = args[1];
568     CPUState *cs = CPU(cpu);
569     SpaprCpuState *spapr_cpu;
570 
571     /*
572      * -1 means confer to all other CPUs without dispatch counter check,
573      *  otherwise it's a targeted confer.
574      */
575     if (target != -1) {
576         PowerPCCPU *target_cpu = spapr_find_cpu(target);
577         uint32_t target_dispatch;
578 
579         if (!target_cpu) {
580             return H_PARAMETER;
581         }
582 
583         /*
584          * target == self is a special case, we wait until prodded, without
585          * dispatch counter check.
586          */
587         if (cpu == target_cpu) {
588             return h_confer_self(cpu);
589         }
590 
591         spapr_cpu = spapr_cpu_state(target_cpu);
592         if (!spapr_cpu->vpa_addr || ((dispatch & 1) == 0)) {
593             return H_SUCCESS;
594         }
595 
596         target_dispatch = ldl_be_phys(cs->as,
597                                   spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
598         if (target_dispatch != dispatch) {
599             return H_SUCCESS;
600         }
601 
602         /*
603          * The targeted confer does not do anything special beyond yielding
604          * the current vCPU, but even this should be better than nothing.
605          * At least for single-threaded tcg, it gives the target a chance to
606          * run before we run again. Multi-threaded tcg does not really do
607          * anything with EXCP_YIELD yet.
608          */
609     }
610 
611     cs->exception_index = EXCP_YIELD;
612     cs->exit_request = 1;
613     cpu_loop_exit(cs);
614 
615     return H_SUCCESS;
616 }
617 
618 static target_ulong h_prod(PowerPCCPU *cpu, SpaprMachineState *spapr,
619                            target_ulong opcode, target_ulong *args)
620 {
621     target_long target = args[0];
622     PowerPCCPU *tcpu;
623     CPUState *cs;
624     SpaprCpuState *spapr_cpu;
625 
626     tcpu = spapr_find_cpu(target);
627     cs = CPU(tcpu);
628     if (!cs) {
629         return H_PARAMETER;
630     }
631 
632     spapr_cpu = spapr_cpu_state(tcpu);
633     spapr_cpu->prod = true;
634     cs->halted = 0;
635     qemu_cpu_kick(cs);
636 
637     return H_SUCCESS;
638 }
639 
640 static target_ulong h_rtas(PowerPCCPU *cpu, SpaprMachineState *spapr,
641                            target_ulong opcode, target_ulong *args)
642 {
643     target_ulong rtas_r3 = args[0];
644     uint32_t token = rtas_ld(rtas_r3, 0);
645     uint32_t nargs = rtas_ld(rtas_r3, 1);
646     uint32_t nret = rtas_ld(rtas_r3, 2);
647 
648     return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
649                            nret, rtas_r3 + 12 + 4*nargs);
650 }
651 
652 static target_ulong h_logical_load(PowerPCCPU *cpu, SpaprMachineState *spapr,
653                                    target_ulong opcode, target_ulong *args)
654 {
655     CPUState *cs = CPU(cpu);
656     target_ulong size = args[0];
657     target_ulong addr = args[1];
658 
659     switch (size) {
660     case 1:
661         args[0] = ldub_phys(cs->as, addr);
662         return H_SUCCESS;
663     case 2:
664         args[0] = lduw_phys(cs->as, addr);
665         return H_SUCCESS;
666     case 4:
667         args[0] = ldl_phys(cs->as, addr);
668         return H_SUCCESS;
669     case 8:
670         args[0] = ldq_phys(cs->as, addr);
671         return H_SUCCESS;
672     }
673     return H_PARAMETER;
674 }
675 
676 static target_ulong h_logical_store(PowerPCCPU *cpu, SpaprMachineState *spapr,
677                                     target_ulong opcode, target_ulong *args)
678 {
679     CPUState *cs = CPU(cpu);
680 
681     target_ulong size = args[0];
682     target_ulong addr = args[1];
683     target_ulong val  = args[2];
684 
685     switch (size) {
686     case 1:
687         stb_phys(cs->as, addr, val);
688         return H_SUCCESS;
689     case 2:
690         stw_phys(cs->as, addr, val);
691         return H_SUCCESS;
692     case 4:
693         stl_phys(cs->as, addr, val);
694         return H_SUCCESS;
695     case 8:
696         stq_phys(cs->as, addr, val);
697         return H_SUCCESS;
698     }
699     return H_PARAMETER;
700 }
701 
702 static target_ulong h_logical_memop(PowerPCCPU *cpu, SpaprMachineState *spapr,
703                                     target_ulong opcode, target_ulong *args)
704 {
705     CPUState *cs = CPU(cpu);
706 
707     target_ulong dst   = args[0]; /* Destination address */
708     target_ulong src   = args[1]; /* Source address */
709     target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
710     target_ulong count = args[3]; /* Element count */
711     target_ulong op    = args[4]; /* 0 = copy, 1 = invert */
712     uint64_t tmp;
713     unsigned int mask = (1 << esize) - 1;
714     int step = 1 << esize;
715 
716     if (count > 0x80000000) {
717         return H_PARAMETER;
718     }
719 
720     if ((dst & mask) || (src & mask) || (op > 1)) {
721         return H_PARAMETER;
722     }
723 
724     if (dst >= src && dst < (src + (count << esize))) {
725             dst = dst + ((count - 1) << esize);
726             src = src + ((count - 1) << esize);
727             step = -step;
728     }
729 
730     while (count--) {
731         switch (esize) {
732         case 0:
733             tmp = ldub_phys(cs->as, src);
734             break;
735         case 1:
736             tmp = lduw_phys(cs->as, src);
737             break;
738         case 2:
739             tmp = ldl_phys(cs->as, src);
740             break;
741         case 3:
742             tmp = ldq_phys(cs->as, src);
743             break;
744         default:
745             return H_PARAMETER;
746         }
747         if (op == 1) {
748             tmp = ~tmp;
749         }
750         switch (esize) {
751         case 0:
752             stb_phys(cs->as, dst, tmp);
753             break;
754         case 1:
755             stw_phys(cs->as, dst, tmp);
756             break;
757         case 2:
758             stl_phys(cs->as, dst, tmp);
759             break;
760         case 3:
761             stq_phys(cs->as, dst, tmp);
762             break;
763         }
764         dst = dst + step;
765         src = src + step;
766     }
767 
768     return H_SUCCESS;
769 }
770 
771 static target_ulong h_logical_icbi(PowerPCCPU *cpu, SpaprMachineState *spapr,
772                                    target_ulong opcode, target_ulong *args)
773 {
774     /* Nothing to do on emulation, KVM will trap this in the kernel */
775     return H_SUCCESS;
776 }
777 
778 static target_ulong h_logical_dcbf(PowerPCCPU *cpu, SpaprMachineState *spapr,
779                                    target_ulong opcode, target_ulong *args)
780 {
781     /* Nothing to do on emulation, KVM will trap this in the kernel */
782     return H_SUCCESS;
783 }
784 
785 static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
786                                            SpaprMachineState *spapr,
787                                            target_ulong mflags,
788                                            target_ulong value1,
789                                            target_ulong value2)
790 {
791     if (value1) {
792         return H_P3;
793     }
794     if (value2) {
795         return H_P4;
796     }
797 
798     switch (mflags) {
799     case H_SET_MODE_ENDIAN_BIG:
800         spapr_set_all_lpcrs(0, LPCR_ILE);
801         spapr_pci_switch_vga(spapr, true);
802         return H_SUCCESS;
803 
804     case H_SET_MODE_ENDIAN_LITTLE:
805         spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE);
806         spapr_pci_switch_vga(spapr, false);
807         return H_SUCCESS;
808     }
809 
810     return H_UNSUPPORTED_FLAG;
811 }
812 
813 static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
814                                                         target_ulong mflags,
815                                                         target_ulong value1,
816                                                         target_ulong value2)
817 {
818     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
819 
820     if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
821         return H_P2;
822     }
823     if (value1) {
824         return H_P3;
825     }
826     if (value2) {
827         return H_P4;
828     }
829 
830     if (mflags == 1) {
831         /* AIL=1 is reserved in POWER8/POWER9/POWER10 */
832         return H_UNSUPPORTED_FLAG;
833     }
834 
835     if (mflags == 2 && (pcc->insns_flags2 & PPC2_ISA310)) {
836         /* AIL=2 is reserved in POWER10 (ISA v3.1) */
837         return H_UNSUPPORTED_FLAG;
838     }
839 
840     spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL);
841 
842     return H_SUCCESS;
843 }
844 
845 static target_ulong h_set_mode(PowerPCCPU *cpu, SpaprMachineState *spapr,
846                                target_ulong opcode, target_ulong *args)
847 {
848     target_ulong resource = args[1];
849     target_ulong ret = H_P2;
850 
851     switch (resource) {
852     case H_SET_MODE_RESOURCE_LE:
853         ret = h_set_mode_resource_le(cpu, spapr, args[0], args[2], args[3]);
854         break;
855     case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
856         ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
857                                                   args[2], args[3]);
858         break;
859     }
860 
861     return ret;
862 }
863 
864 static target_ulong h_clean_slb(PowerPCCPU *cpu, SpaprMachineState *spapr,
865                                 target_ulong opcode, target_ulong *args)
866 {
867     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
868                   opcode, " (H_CLEAN_SLB)");
869     return H_FUNCTION;
870 }
871 
872 static target_ulong h_invalidate_pid(PowerPCCPU *cpu, SpaprMachineState *spapr,
873                                      target_ulong opcode, target_ulong *args)
874 {
875     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
876                   opcode, " (H_INVALIDATE_PID)");
877     return H_FUNCTION;
878 }
879 
880 static void spapr_check_setup_free_hpt(SpaprMachineState *spapr,
881                                        uint64_t patbe_old, uint64_t patbe_new)
882 {
883     /*
884      * We have 4 Options:
885      * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
886      * HASH->RADIX                                  : Free HPT
887      * RADIX->HASH                                  : Allocate HPT
888      * NOTHING->HASH                                : Allocate HPT
889      * Note: NOTHING implies the case where we said the guest could choose
890      *       later and so assumed radix and now it's called H_REG_PROC_TBL
891      */
892 
893     if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) {
894         /* We assume RADIX, so this catches all the "Do Nothing" cases */
895     } else if (!(patbe_old & PATE1_GR)) {
896         /* HASH->RADIX : Free HPT */
897         spapr_free_hpt(spapr);
898     } else if (!(patbe_new & PATE1_GR)) {
899         /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
900         spapr_setup_hpt(spapr);
901     }
902     return;
903 }
904 
905 #define FLAGS_MASK              0x01FULL
906 #define FLAG_MODIFY             0x10
907 #define FLAG_REGISTER           0x08
908 #define FLAG_RADIX              0x04
909 #define FLAG_HASH_PROC_TBL      0x02
910 #define FLAG_GTSE               0x01
911 
912 static target_ulong h_register_process_table(PowerPCCPU *cpu,
913                                              SpaprMachineState *spapr,
914                                              target_ulong opcode,
915                                              target_ulong *args)
916 {
917     target_ulong flags = args[0];
918     target_ulong proc_tbl = args[1];
919     target_ulong page_size = args[2];
920     target_ulong table_size = args[3];
921     target_ulong update_lpcr = 0;
922     uint64_t cproc;
923 
924     if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */
925         return H_PARAMETER;
926     }
927     if (flags & FLAG_MODIFY) {
928         if (flags & FLAG_REGISTER) {
929             if (flags & FLAG_RADIX) { /* Register new RADIX process table */
930                 if (proc_tbl & 0xfff || proc_tbl >> 60) {
931                     return H_P2;
932                 } else if (page_size) {
933                     return H_P3;
934                 } else if (table_size > 24) {
935                     return H_P4;
936                 }
937                 cproc = PATE1_GR | proc_tbl | table_size;
938             } else { /* Register new HPT process table */
939                 if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */
940                     /* TODO - Not Supported */
941                     /* Technically caused by flag bits => H_PARAMETER */
942                     return H_PARAMETER;
943                 } else { /* Hash with SLB */
944                     if (proc_tbl >> 38) {
945                         return H_P2;
946                     } else if (page_size & ~0x7) {
947                         return H_P3;
948                     } else if (table_size > 24) {
949                         return H_P4;
950                     }
951                 }
952                 cproc = (proc_tbl << 25) | page_size << 5 | table_size;
953             }
954 
955         } else { /* Deregister current process table */
956             /*
957              * Set to benign value: (current GR) | 0. This allows
958              * deregistration in KVM to succeed even if the radix bit
959              * in flags doesn't match the radix bit in the old PATE.
960              */
961             cproc = spapr->patb_entry & PATE1_GR;
962         }
963     } else { /* Maintain current registration */
964         if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) {
965             /* Technically caused by flag bits => H_PARAMETER */
966             return H_PARAMETER; /* Existing Process Table Mismatch */
967         }
968         cproc = spapr->patb_entry;
969     }
970 
971     /* Check if we need to setup OR free the hpt */
972     spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc);
973 
974     spapr->patb_entry = cproc; /* Save new process table */
975 
976     /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */
977     if (flags & FLAG_RADIX)     /* Radix must use process tables, also set HR */
978         update_lpcr |= (LPCR_UPRT | LPCR_HR);
979     else if (flags & FLAG_HASH_PROC_TBL) /* Hash with process tables */
980         update_lpcr |= LPCR_UPRT;
981     if (flags & FLAG_GTSE)      /* Guest translation shootdown enable */
982         update_lpcr |= LPCR_GTSE;
983 
984     spapr_set_all_lpcrs(update_lpcr, LPCR_UPRT | LPCR_HR | LPCR_GTSE);
985 
986     if (kvm_enabled()) {
987         return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX,
988                                        flags & FLAG_GTSE, cproc);
989     }
990     return H_SUCCESS;
991 }
992 
993 #define H_SIGNAL_SYS_RESET_ALL         -1
994 #define H_SIGNAL_SYS_RESET_ALLBUTSELF  -2
995 
996 static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
997                                        SpaprMachineState *spapr,
998                                        target_ulong opcode, target_ulong *args)
999 {
1000     target_long target = args[0];
1001     CPUState *cs;
1002 
1003     if (target < 0) {
1004         /* Broadcast */
1005         if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1006             return H_PARAMETER;
1007         }
1008 
1009         CPU_FOREACH(cs) {
1010             PowerPCCPU *c = POWERPC_CPU(cs);
1011 
1012             if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1013                 if (c == cpu) {
1014                     continue;
1015                 }
1016             }
1017             run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1018         }
1019         return H_SUCCESS;
1020 
1021     } else {
1022         /* Unicast */
1023         cs = CPU(spapr_find_cpu(target));
1024         if (cs) {
1025             run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1026             return H_SUCCESS;
1027         }
1028         return H_PARAMETER;
1029     }
1030 }
1031 
1032 /* Returns either a logical PVR or zero if none was found */
1033 static uint32_t cas_check_pvr(PowerPCCPU *cpu, uint32_t max_compat,
1034                               target_ulong *addr, bool *raw_mode_supported)
1035 {
1036     bool explicit_match = false; /* Matched the CPU's real PVR */
1037     uint32_t best_compat = 0;
1038     int i;
1039 
1040     /*
1041      * We scan the supplied table of PVRs looking for two things
1042      *   1. Is our real CPU PVR in the list?
1043      *   2. What's the "best" listed logical PVR
1044      */
1045     for (i = 0; i < 512; ++i) {
1046         uint32_t pvr, pvr_mask;
1047 
1048         pvr_mask = ldl_be_phys(&address_space_memory, *addr);
1049         pvr = ldl_be_phys(&address_space_memory, *addr + 4);
1050         *addr += 8;
1051 
1052         if (~pvr_mask & pvr) {
1053             break; /* Terminator record */
1054         }
1055 
1056         if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
1057             explicit_match = true;
1058         } else {
1059             if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
1060                 best_compat = pvr;
1061             }
1062         }
1063     }
1064 
1065     *raw_mode_supported = explicit_match;
1066 
1067     /* Parsing finished */
1068     trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
1069 
1070     return best_compat;
1071 }
1072 
1073 static
1074 target_ulong do_client_architecture_support(PowerPCCPU *cpu,
1075                                             SpaprMachineState *spapr,
1076                                             target_ulong vec,
1077                                             target_ulong fdt_bufsize)
1078 {
1079     target_ulong ov_table; /* Working address in data buffer */
1080     uint32_t cas_pvr;
1081     SpaprOptionVector *ov1_guest, *ov5_guest;
1082     bool guest_radix;
1083     bool raw_mode_supported = false;
1084     bool guest_xive;
1085     CPUState *cs;
1086     void *fdt;
1087     uint32_t max_compat = spapr->max_compat_pvr;
1088 
1089     /* CAS is supposed to be called early when only the boot vCPU is active. */
1090     CPU_FOREACH(cs) {
1091         if (cs == CPU(cpu)) {
1092             continue;
1093         }
1094         if (!cs->halted) {
1095             warn_report("guest has multiple active vCPUs at CAS, which is not allowed");
1096             return H_MULTI_THREADS_ACTIVE;
1097         }
1098     }
1099 
1100     cas_pvr = cas_check_pvr(cpu, max_compat, &vec, &raw_mode_supported);
1101     if (!cas_pvr && (!raw_mode_supported || max_compat)) {
1102         /*
1103          * We couldn't find a suitable compatibility mode, and either
1104          * the guest doesn't support "raw" mode for this CPU, or "raw"
1105          * mode is disabled because a maximum compat mode is set.
1106          */
1107         error_report("Couldn't negotiate a suitable PVR during CAS");
1108         return H_HARDWARE;
1109     }
1110 
1111     /* Update CPUs */
1112     if (cpu->compat_pvr != cas_pvr) {
1113         Error *local_err = NULL;
1114 
1115         if (ppc_set_compat_all(cas_pvr, &local_err) < 0) {
1116             /* We fail to set compat mode (likely because running with KVM PR),
1117              * but maybe we can fallback to raw mode if the guest supports it.
1118              */
1119             if (!raw_mode_supported) {
1120                 error_report_err(local_err);
1121                 return H_HARDWARE;
1122             }
1123             error_free(local_err);
1124         }
1125     }
1126 
1127     /* For the future use: here @ov_table points to the first option vector */
1128     ov_table = vec;
1129 
1130     ov1_guest = spapr_ovec_parse_vector(ov_table, 1);
1131     if (!ov1_guest) {
1132         warn_report("guest didn't provide option vector 1");
1133         return H_PARAMETER;
1134     }
1135     ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
1136     if (!ov5_guest) {
1137         spapr_ovec_cleanup(ov1_guest);
1138         warn_report("guest didn't provide option vector 5");
1139         return H_PARAMETER;
1140     }
1141     if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) {
1142         error_report("guest requested hash and radix MMU, which is invalid.");
1143         exit(EXIT_FAILURE);
1144     }
1145     if (spapr_ovec_test(ov5_guest, OV5_XIVE_BOTH)) {
1146         error_report("guest requested an invalid interrupt mode");
1147         exit(EXIT_FAILURE);
1148     }
1149 
1150     guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300);
1151 
1152     guest_xive = spapr_ovec_test(ov5_guest, OV5_XIVE_EXPLOIT);
1153 
1154     /*
1155      * HPT resizing is a bit of a special case, because when enabled
1156      * we assume an HPT guest will support it until it says it
1157      * doesn't, instead of assuming it won't support it until it says
1158      * it does.  Strictly speaking that approach could break for
1159      * guests which don't make a CAS call, but those are so old we
1160      * don't care about them.  Without that assumption we'd have to
1161      * make at least a temporary allocation of an HPT sized for max
1162      * memory, which could be impossibly difficult under KVM HV if
1163      * maxram is large.
1164      */
1165     if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) {
1166         int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1167 
1168         if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) {
1169             error_report(
1170                 "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
1171             exit(1);
1172         }
1173 
1174         if (spapr->htab_shift < maxshift) {
1175             /* Guest doesn't know about HPT resizing, so we
1176              * pre-emptively resize for the maximum permitted RAM.  At
1177              * the point this is called, nothing should have been
1178              * entered into the existing HPT */
1179             spapr_reallocate_hpt(spapr, maxshift, &error_fatal);
1180             push_sregs_to_kvm_pr(spapr);
1181         }
1182     }
1183 
1184     /* NOTE: there are actually a number of ov5 bits where input from the
1185      * guest is always zero, and the platform/QEMU enables them independently
1186      * of guest input. To model these properly we'd want some sort of mask,
1187      * but since they only currently apply to memory migration as defined
1188      * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1189      * to worry about this for now.
1190      */
1191 
1192     /* full range of negotiated ov5 capabilities */
1193     spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
1194     spapr_ovec_cleanup(ov5_guest);
1195 
1196     spapr_check_mmu_mode(guest_radix);
1197 
1198     spapr->cas_pre_isa3_guest = !spapr_ovec_test(ov1_guest, OV1_PPC_3_00);
1199     spapr_ovec_cleanup(ov1_guest);
1200 
1201     /*
1202      * Check for NUMA affinity conditions now that we know which NUMA
1203      * affinity the guest will use.
1204      */
1205     spapr_numa_associativity_check(spapr);
1206 
1207     /*
1208      * Ensure the guest asks for an interrupt mode we support;
1209      * otherwise terminate the boot.
1210      */
1211     if (guest_xive) {
1212         if (!spapr->irq->xive) {
1213             error_report(
1214 "Guest requested unavailable interrupt mode (XIVE), try the ic-mode=xive or ic-mode=dual machine property");
1215             exit(EXIT_FAILURE);
1216         }
1217     } else {
1218         if (!spapr->irq->xics) {
1219             error_report(
1220 "Guest requested unavailable interrupt mode (XICS), either don't set the ic-mode machine property or try ic-mode=xics or ic-mode=dual");
1221             exit(EXIT_FAILURE);
1222         }
1223     }
1224 
1225     spapr_irq_update_active_intc(spapr);
1226 
1227     /*
1228      * Process all pending hot-plug/unplug requests now. An updated full
1229      * rendered FDT will be returned to the guest.
1230      */
1231     spapr_drc_reset_all(spapr);
1232     spapr_clear_pending_hotplug_events(spapr);
1233 
1234     /*
1235      * If spapr_machine_reset() did not set up a HPT but one is necessary
1236      * (because the guest isn't going to use radix) then set it up here.
1237      */
1238     if ((spapr->patb_entry & PATE1_GR) && !guest_radix) {
1239         /* legacy hash or new hash: */
1240         spapr_setup_hpt(spapr);
1241     }
1242 
1243     fdt = spapr_build_fdt(spapr, spapr->vof != NULL, fdt_bufsize);
1244     g_free(spapr->fdt_blob);
1245     spapr->fdt_size = fdt_totalsize(fdt);
1246     spapr->fdt_initial_size = spapr->fdt_size;
1247     spapr->fdt_blob = fdt;
1248 
1249     return H_SUCCESS;
1250 }
1251 
1252 static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
1253                                                   SpaprMachineState *spapr,
1254                                                   target_ulong opcode,
1255                                                   target_ulong *args)
1256 {
1257     target_ulong vec = ppc64_phys_to_real(args[0]);
1258     target_ulong fdt_buf = args[1];
1259     target_ulong fdt_bufsize = args[2];
1260     target_ulong ret;
1261     SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
1262 
1263     if (fdt_bufsize < sizeof(hdr)) {
1264         error_report("SLOF provided insufficient CAS buffer "
1265                      TARGET_FMT_lu " (min: %zu)", fdt_bufsize, sizeof(hdr));
1266         exit(EXIT_FAILURE);
1267     }
1268 
1269     fdt_bufsize -= sizeof(hdr);
1270 
1271     ret = do_client_architecture_support(cpu, spapr, vec, fdt_bufsize);
1272     if (ret == H_SUCCESS) {
1273         _FDT((fdt_pack(spapr->fdt_blob)));
1274         spapr->fdt_size = fdt_totalsize(spapr->fdt_blob);
1275         spapr->fdt_initial_size = spapr->fdt_size;
1276 
1277         cpu_physical_memory_write(fdt_buf, &hdr, sizeof(hdr));
1278         cpu_physical_memory_write(fdt_buf + sizeof(hdr), spapr->fdt_blob,
1279                                   spapr->fdt_size);
1280         trace_spapr_cas_continue(spapr->fdt_size + sizeof(hdr));
1281     }
1282 
1283     return ret;
1284 }
1285 
1286 target_ulong spapr_vof_client_architecture_support(MachineState *ms,
1287                                                    CPUState *cs,
1288                                                    target_ulong ovec_addr)
1289 {
1290     SpaprMachineState *spapr = SPAPR_MACHINE(ms);
1291 
1292     target_ulong ret = do_client_architecture_support(POWERPC_CPU(cs), spapr,
1293                                                       ovec_addr, FDT_MAX_SIZE);
1294 
1295     /*
1296      * This adds stdout and generates phandles for boottime and CAS FDTs.
1297      * It is alright to update the FDT here as do_client_architecture_support()
1298      * does not pack it.
1299      */
1300     spapr_vof_client_dt_finalize(spapr, spapr->fdt_blob);
1301 
1302     return ret;
1303 }
1304 
1305 static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu,
1306                                               SpaprMachineState *spapr,
1307                                               target_ulong opcode,
1308                                               target_ulong *args)
1309 {
1310     uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS &
1311                                ~H_CPU_CHAR_THR_RECONF_TRIG;
1312     uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY;
1313     uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC);
1314     uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC);
1315     uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS);
1316     uint8_t count_cache_flush_assist = spapr_get_cap(spapr,
1317                                                      SPAPR_CAP_CCF_ASSIST);
1318 
1319     switch (safe_cache) {
1320     case SPAPR_CAP_WORKAROUND:
1321         characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30;
1322         characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2;
1323         characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV;
1324         behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1325         break;
1326     case SPAPR_CAP_FIXED:
1327         behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_ENTRY;
1328         behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_UACCESS;
1329         break;
1330     default: /* broken */
1331         assert(safe_cache == SPAPR_CAP_BROKEN);
1332         behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1333         break;
1334     }
1335 
1336     switch (safe_bounds_check) {
1337     case SPAPR_CAP_WORKAROUND:
1338         characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31;
1339         behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1340         break;
1341     case SPAPR_CAP_FIXED:
1342         break;
1343     default: /* broken */
1344         assert(safe_bounds_check == SPAPR_CAP_BROKEN);
1345         behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1346         break;
1347     }
1348 
1349     switch (safe_indirect_branch) {
1350     case SPAPR_CAP_FIXED_NA:
1351         break;
1352     case SPAPR_CAP_FIXED_CCD:
1353         characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS;
1354         break;
1355     case SPAPR_CAP_FIXED_IBS:
1356         characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED;
1357         break;
1358     case SPAPR_CAP_WORKAROUND:
1359         behaviour |= H_CPU_BEHAV_FLUSH_COUNT_CACHE;
1360         if (count_cache_flush_assist) {
1361             characteristics |= H_CPU_CHAR_BCCTR_FLUSH_ASSIST;
1362         }
1363         break;
1364     default: /* broken */
1365         assert(safe_indirect_branch == SPAPR_CAP_BROKEN);
1366         break;
1367     }
1368 
1369     args[0] = characteristics;
1370     args[1] = behaviour;
1371     return H_SUCCESS;
1372 }
1373 
1374 static target_ulong h_update_dt(PowerPCCPU *cpu, SpaprMachineState *spapr,
1375                                 target_ulong opcode, target_ulong *args)
1376 {
1377     target_ulong dt = ppc64_phys_to_real(args[0]);
1378     struct fdt_header hdr = { 0 };
1379     unsigned cb;
1380     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
1381     void *fdt;
1382 
1383     cpu_physical_memory_read(dt, &hdr, sizeof(hdr));
1384     cb = fdt32_to_cpu(hdr.totalsize);
1385 
1386     if (!smc->update_dt_enabled) {
1387         return H_SUCCESS;
1388     }
1389 
1390     /* Check that the fdt did not grow out of proportion */
1391     if (cb > spapr->fdt_initial_size * 2) {
1392         trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb,
1393                                           fdt32_to_cpu(hdr.magic));
1394         return H_PARAMETER;
1395     }
1396 
1397     fdt = g_malloc0(cb);
1398     cpu_physical_memory_read(dt, fdt, cb);
1399 
1400     /* Check the fdt consistency */
1401     if (fdt_check_full(fdt, cb)) {
1402         trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb,
1403                                            fdt32_to_cpu(hdr.magic));
1404         return H_PARAMETER;
1405     }
1406 
1407     g_free(spapr->fdt_blob);
1408     spapr->fdt_size = cb;
1409     spapr->fdt_blob = fdt;
1410     trace_spapr_update_dt(cb);
1411 
1412     return H_SUCCESS;
1413 }
1414 
1415 static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
1416 static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
1417 static spapr_hcall_fn svm_hypercall_table[(SVM_HCALL_MAX - SVM_HCALL_BASE) / 4 + 1];
1418 
1419 void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
1420 {
1421     spapr_hcall_fn *slot;
1422 
1423     if (opcode <= MAX_HCALL_OPCODE) {
1424         assert((opcode & 0x3) == 0);
1425 
1426         slot = &papr_hypercall_table[opcode / 4];
1427     } else if (opcode >= SVM_HCALL_BASE && opcode <= SVM_HCALL_MAX) {
1428         /* we only have SVM-related hcall numbers assigned in multiples of 4 */
1429         assert((opcode & 0x3) == 0);
1430 
1431         slot = &svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
1432     } else {
1433         assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
1434 
1435         slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1436     }
1437 
1438     assert(!(*slot));
1439     *slot = fn;
1440 }
1441 
1442 target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
1443                              target_ulong *args)
1444 {
1445     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1446 
1447     if ((opcode <= MAX_HCALL_OPCODE)
1448         && ((opcode & 0x3) == 0)) {
1449         spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
1450 
1451         if (fn) {
1452             return fn(cpu, spapr, opcode, args);
1453         }
1454     } else if ((opcode >= SVM_HCALL_BASE) &&
1455                (opcode <= SVM_HCALL_MAX)) {
1456         spapr_hcall_fn fn = svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
1457 
1458         if (fn) {
1459             return fn(cpu, spapr, opcode, args);
1460         }
1461     } else if ((opcode >= KVMPPC_HCALL_BASE) &&
1462                (opcode <= KVMPPC_HCALL_MAX)) {
1463         spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1464 
1465         if (fn) {
1466             return fn(cpu, spapr, opcode, args);
1467         }
1468     }
1469 
1470     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
1471                   opcode);
1472     return H_FUNCTION;
1473 }
1474 
1475 #ifndef CONFIG_TCG
1476 static target_ulong h_softmmu(PowerPCCPU *cpu, SpaprMachineState *spapr,
1477                             target_ulong opcode, target_ulong *args)
1478 {
1479     g_assert_not_reached();
1480 }
1481 
1482 static void hypercall_register_softmmu(void)
1483 {
1484     /* hcall-pft */
1485     spapr_register_hypercall(H_ENTER, h_softmmu);
1486     spapr_register_hypercall(H_REMOVE, h_softmmu);
1487     spapr_register_hypercall(H_PROTECT, h_softmmu);
1488     spapr_register_hypercall(H_READ, h_softmmu);
1489 
1490     /* hcall-bulk */
1491     spapr_register_hypercall(H_BULK_REMOVE, h_softmmu);
1492 }
1493 #else
1494 static void hypercall_register_softmmu(void)
1495 {
1496     /* DO NOTHING */
1497 }
1498 #endif
1499 
1500 static void hypercall_register_types(void)
1501 {
1502     hypercall_register_softmmu();
1503 
1504     /* hcall-hpt-resize */
1505     spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare);
1506     spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit);
1507 
1508     /* hcall-splpar */
1509     spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
1510     spapr_register_hypercall(H_CEDE, h_cede);
1511     spapr_register_hypercall(H_CONFER, h_confer);
1512     spapr_register_hypercall(H_PROD, h_prod);
1513 
1514     /* hcall-join */
1515     spapr_register_hypercall(H_JOIN, h_join);
1516 
1517     spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
1518 
1519     /* processor register resource access h-calls */
1520     spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
1521     spapr_register_hypercall(H_SET_DABR, h_set_dabr);
1522     spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
1523     spapr_register_hypercall(H_PAGE_INIT, h_page_init);
1524     spapr_register_hypercall(H_SET_MODE, h_set_mode);
1525 
1526     /* In Memory Table MMU h-calls */
1527     spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb);
1528     spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid);
1529     spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table);
1530 
1531     /* hcall-get-cpu-characteristics */
1532     spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS,
1533                              h_get_cpu_characteristics);
1534 
1535     /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
1536      * here between the "CI" and the "CACHE" variants, they will use whatever
1537      * mapping attributes qemu is using. When using KVM, the kernel will
1538      * enforce the attributes more strongly
1539      */
1540     spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
1541     spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
1542     spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
1543     spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
1544     spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
1545     spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
1546     spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
1547 
1548     /* qemu/KVM-PPC specific hcalls */
1549     spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
1550 
1551     /* ibm,client-architecture-support support */
1552     spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
1553 
1554     spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt);
1555 }
1556 
1557 type_init(hypercall_register_types)
1558