xref: /openbmc/qemu/hw/ppc/spapr_drc.c (revision 05a248715cef192336a594afed812871a52efc1f)
1 /*
2  * QEMU SPAPR Dynamic Reconfiguration Connector Implementation
3  *
4  * Copyright IBM Corp. 2014
5  *
6  * Authors:
7  *  Michael Roth      <mdroth@linux.vnet.ibm.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qapi/qmp/qnull.h"
16 #include "qemu/cutils.h"
17 #include "hw/ppc/spapr_drc.h"
18 #include "qom/object.h"
19 #include "migration/vmstate.h"
20 #include "qapi/error.h"
21 #include "qapi/qapi-events-qdev.h"
22 #include "qapi/visitor.h"
23 #include "qemu/error-report.h"
24 #include "hw/ppc/spapr.h" /* for RTAS return codes */
25 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */
26 #include "hw/ppc/spapr_nvdimm.h"
27 #include "sysemu/device_tree.h"
28 #include "sysemu/reset.h"
29 #include "trace.h"
30 
31 #define DRC_CONTAINER_PATH "/dr-connector"
32 #define DRC_INDEX_TYPE_SHIFT 28
33 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1)
34 
35 SpaprDrcType spapr_drc_type(SpaprDrc *drc)
36 {
37     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
38 
39     return 1 << drck->typeshift;
40 }
41 
42 uint32_t spapr_drc_index(SpaprDrc *drc)
43 {
44     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
45 
46     /* no set format for a drc index: it only needs to be globally
47      * unique. this is how we encode the DRC type on bare-metal
48      * however, so might as well do that here
49      */
50     return (drck->typeshift << DRC_INDEX_TYPE_SHIFT)
51         | (drc->id & DRC_INDEX_ID_MASK);
52 }
53 
54 static void spapr_drc_release(SpaprDrc *drc)
55 {
56     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
57 
58     drck->release(drc->dev);
59 
60     drc->unplug_requested = false;
61     g_free(drc->fdt);
62     drc->fdt = NULL;
63     drc->fdt_start_offset = 0;
64     object_property_del(OBJECT(drc), "device");
65     drc->dev = NULL;
66 }
67 
68 static uint32_t drc_isolate_physical(SpaprDrc *drc)
69 {
70     switch (drc->state) {
71     case SPAPR_DRC_STATE_PHYSICAL_POWERON:
72         return RTAS_OUT_SUCCESS; /* Nothing to do */
73     case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
74         break; /* see below */
75     case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
76         return RTAS_OUT_PARAM_ERROR; /* not allowed */
77     default:
78         g_assert_not_reached();
79     }
80 
81     drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
82 
83     if (drc->unplug_requested) {
84         uint32_t drc_index = spapr_drc_index(drc);
85         trace_spapr_drc_set_isolation_state_finalizing(drc_index);
86         spapr_drc_release(drc);
87     }
88 
89     return RTAS_OUT_SUCCESS;
90 }
91 
92 static uint32_t drc_unisolate_physical(SpaprDrc *drc)
93 {
94     switch (drc->state) {
95     case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
96     case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
97         return RTAS_OUT_SUCCESS; /* Nothing to do */
98     case SPAPR_DRC_STATE_PHYSICAL_POWERON:
99         break; /* see below */
100     default:
101         g_assert_not_reached();
102     }
103 
104     /* cannot unisolate a non-existent resource, and, or resources
105      * which are in an 'UNUSABLE' allocation state. (PAPR 2.7,
106      * 13.5.3.5)
107      */
108     if (!drc->dev) {
109         return RTAS_OUT_NO_SUCH_INDICATOR;
110     }
111 
112     drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE;
113     drc->ccs_offset = drc->fdt_start_offset;
114     drc->ccs_depth = 0;
115 
116     return RTAS_OUT_SUCCESS;
117 }
118 
119 static uint32_t drc_isolate_logical(SpaprDrc *drc)
120 {
121     switch (drc->state) {
122     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
123     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
124         return RTAS_OUT_SUCCESS; /* Nothing to do */
125     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
126         break; /* see below */
127     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
128         return RTAS_OUT_PARAM_ERROR; /* not allowed */
129     default:
130         g_assert_not_reached();
131     }
132 
133     /*
134      * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't
135      * belong to a DIMM device that is marked for removal.
136      *
137      * Currently the guest userspace tool drmgr that drives the memory
138      * hotplug/unplug will just try to remove a set of 'removable' LMBs
139      * in response to a hot unplug request that is based on drc-count.
140      * If the LMB being removed doesn't belong to a DIMM device that is
141      * actually being unplugged, fail the isolation request here.
142      */
143     if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB
144         && !drc->unplug_requested) {
145         return RTAS_OUT_HW_ERROR;
146     }
147 
148     drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
149 
150     return RTAS_OUT_SUCCESS;
151 }
152 
153 static uint32_t drc_unisolate_logical(SpaprDrc *drc)
154 {
155     SpaprMachineState *spapr = NULL;
156 
157     switch (drc->state) {
158     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
159     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
160         /*
161          * Unisolating a logical DRC that was marked for unplug
162          * means that the kernel is refusing the removal.
163          */
164         if (drc->unplug_requested && drc->dev) {
165             if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB) {
166                 spapr = SPAPR_MACHINE(qdev_get_machine());
167 
168                 spapr_memory_unplug_rollback(spapr, drc->dev);
169             }
170 
171             drc->unplug_requested = false;
172 
173             if (drc->dev->id) {
174                 error_report("Device hotunplug rejected by the guest "
175                              "for device %s", drc->dev->id);
176             }
177 
178             qapi_event_send_device_unplug_guest_error(!!drc->dev->id,
179                                                       drc->dev->id,
180                                                       drc->dev->canonical_path);
181         }
182 
183         return RTAS_OUT_SUCCESS; /* Nothing to do */
184     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
185         break; /* see below */
186     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
187         return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
188     default:
189         g_assert_not_reached();
190     }
191 
192     /* Move to AVAILABLE state should have ensured device was present */
193     g_assert(drc->dev);
194 
195     drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE;
196     drc->ccs_offset = drc->fdt_start_offset;
197     drc->ccs_depth = 0;
198 
199     return RTAS_OUT_SUCCESS;
200 }
201 
202 static uint32_t drc_set_usable(SpaprDrc *drc)
203 {
204     switch (drc->state) {
205     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
206     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
207     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
208         return RTAS_OUT_SUCCESS; /* Nothing to do */
209     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
210         break; /* see below */
211     default:
212         g_assert_not_reached();
213     }
214 
215     /* if there's no resource/device associated with the DRC, there's
216      * no way for us to put it in an allocation state consistent with
217      * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should
218      * result in an RTAS return code of -3 / "no such indicator"
219      */
220     if (!drc->dev) {
221         return RTAS_OUT_NO_SUCH_INDICATOR;
222     }
223     if (drc->unplug_requested) {
224         /* Don't allow the guest to move a device away from UNUSABLE
225          * state when we want to unplug it */
226         return RTAS_OUT_NO_SUCH_INDICATOR;
227     }
228 
229     drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
230 
231     return RTAS_OUT_SUCCESS;
232 }
233 
234 static uint32_t drc_set_unusable(SpaprDrc *drc)
235 {
236     switch (drc->state) {
237     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
238         return RTAS_OUT_SUCCESS; /* Nothing to do */
239     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
240         break; /* see below */
241     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
242     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
243         return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
244     default:
245         g_assert_not_reached();
246     }
247 
248     drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
249     if (drc->unplug_requested) {
250         uint32_t drc_index = spapr_drc_index(drc);
251         trace_spapr_drc_set_allocation_state_finalizing(drc_index);
252         spapr_drc_release(drc);
253     }
254 
255     return RTAS_OUT_SUCCESS;
256 }
257 
258 static char *spapr_drc_name(SpaprDrc *drc)
259 {
260     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
261 
262     /* human-readable name for a DRC to encode into the DT
263      * description. this is mainly only used within a guest in place
264      * of the unique DRC index.
265      *
266      * in the case of VIO/PCI devices, it corresponds to a "location
267      * code" that maps a logical device/function (DRC index) to a
268      * physical (or virtual in the case of VIO) location in the system
269      * by chaining together the "location label" for each
270      * encapsulating component.
271      *
272      * since this is more to do with diagnosing physical hardware
273      * issues than guest compatibility, we choose location codes/DRC
274      * names that adhere to the documented format, but avoid encoding
275      * the entire topology information into the label/code, instead
276      * just using the location codes based on the labels for the
277      * endpoints (VIO/PCI adaptor connectors), which is basically just
278      * "C" followed by an integer ID.
279      *
280      * DRC names as documented by PAPR+ v2.7, 13.5.2.4
281      * location codes as documented by PAPR+ v2.7, 12.3.1.5
282      */
283     return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id);
284 }
285 
286 /*
287  * dr-entity-sense sensor value
288  * returned via get-sensor-state RTAS calls
289  * as expected by state diagram in PAPR+ 2.7, 13.4
290  * based on the current allocation/indicator/power states
291  * for the DR connector.
292  */
293 static SpaprDREntitySense physical_entity_sense(SpaprDrc *drc)
294 {
295     /* this assumes all PCI devices are assigned to a 'live insertion'
296      * power domain, where QEMU manages power state automatically as
297      * opposed to the guest. present, non-PCI resources are unaffected
298      * by power state.
299      */
300     return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT
301         : SPAPR_DR_ENTITY_SENSE_EMPTY;
302 }
303 
304 static SpaprDREntitySense logical_entity_sense(SpaprDrc *drc)
305 {
306     switch (drc->state) {
307     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
308         return SPAPR_DR_ENTITY_SENSE_UNUSABLE;
309     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
310     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
311     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
312         g_assert(drc->dev);
313         return SPAPR_DR_ENTITY_SENSE_PRESENT;
314     default:
315         g_assert_not_reached();
316     }
317 }
318 
319 static void prop_get_index(Object *obj, Visitor *v, const char *name,
320                            void *opaque, Error **errp)
321 {
322     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
323     uint32_t value = spapr_drc_index(drc);
324     visit_type_uint32(v, name, &value, errp);
325 }
326 
327 static void prop_get_fdt(Object *obj, Visitor *v, const char *name,
328                          void *opaque, Error **errp)
329 {
330     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
331     QNull *null = NULL;
332     int fdt_offset_next, fdt_offset, fdt_depth;
333     void *fdt;
334 
335     if (!drc->fdt) {
336         visit_type_null(v, NULL, &null, errp);
337         qobject_unref(null);
338         return;
339     }
340 
341     fdt = drc->fdt;
342     fdt_offset = drc->fdt_start_offset;
343     fdt_depth = 0;
344 
345     do {
346         const char *name = NULL;
347         const struct fdt_property *prop = NULL;
348         int prop_len = 0, name_len = 0;
349         uint32_t tag;
350         bool ok;
351 
352         tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next);
353         switch (tag) {
354         case FDT_BEGIN_NODE:
355             fdt_depth++;
356             name = fdt_get_name(fdt, fdt_offset, &name_len);
357             if (!visit_start_struct(v, name, NULL, 0, errp)) {
358                 return;
359             }
360             break;
361         case FDT_END_NODE:
362             /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */
363             g_assert(fdt_depth > 0);
364             ok = visit_check_struct(v, errp);
365             visit_end_struct(v, NULL);
366             if (!ok) {
367                 return;
368             }
369             fdt_depth--;
370             break;
371         case FDT_PROP: {
372             int i;
373             prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len);
374             name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff));
375             if (!visit_start_list(v, name, NULL, 0, errp)) {
376                 return;
377             }
378             for (i = 0; i < prop_len; i++) {
379                 if (!visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i],
380                                       errp)) {
381                     return;
382                 }
383             }
384             ok = visit_check_list(v, errp);
385             visit_end_list(v, NULL);
386             if (!ok) {
387                 return;
388             }
389             break;
390         }
391         default:
392             error_report("device FDT in unexpected state: %d", tag);
393             abort();
394         }
395         fdt_offset = fdt_offset_next;
396     } while (fdt_depth != 0);
397 }
398 
399 void spapr_drc_attach(SpaprDrc *drc, DeviceState *d)
400 {
401     trace_spapr_drc_attach(spapr_drc_index(drc));
402 
403     g_assert(!drc->dev);
404     g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE)
405              || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON));
406 
407     drc->dev = d;
408 
409     object_property_add_link(OBJECT(drc), "device",
410                              object_get_typename(OBJECT(drc->dev)),
411                              (Object **)(&drc->dev),
412                              NULL, 0);
413 }
414 
415 void spapr_drc_unplug_request(SpaprDrc *drc)
416 {
417     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
418 
419     trace_spapr_drc_unplug_request(spapr_drc_index(drc));
420 
421     g_assert(drc->dev);
422 
423     drc->unplug_requested = true;
424 
425     if (drc->state != drck->empty_state) {
426         trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc));
427         return;
428     }
429 
430     spapr_drc_release(drc);
431 }
432 
433 bool spapr_drc_reset(SpaprDrc *drc)
434 {
435     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
436     bool unplug_completed = false;
437 
438     trace_spapr_drc_reset(spapr_drc_index(drc));
439 
440     /* immediately upon reset we can safely assume DRCs whose devices
441      * are pending removal can be safely removed.
442      */
443     if (drc->unplug_requested) {
444         spapr_drc_release(drc);
445         unplug_completed = true;
446     }
447 
448     if (drc->dev) {
449         /* A device present at reset is ready to go, same as coldplugged */
450         drc->state = drck->ready_state;
451         /*
452          * Ensure that we are able to send the FDT fragment again
453          * via configure-connector call if the guest requests.
454          */
455         drc->ccs_offset = drc->fdt_start_offset;
456         drc->ccs_depth = 0;
457     } else {
458         drc->state = drck->empty_state;
459         drc->ccs_offset = -1;
460         drc->ccs_depth = -1;
461     }
462 
463     return unplug_completed;
464 }
465 
466 static bool spapr_drc_unplug_requested_needed(void *opaque)
467 {
468     return spapr_drc_unplug_requested(opaque);
469 }
470 
471 static const VMStateDescription vmstate_spapr_drc_unplug_requested = {
472     .name = "spapr_drc/unplug_requested",
473     .version_id = 1,
474     .minimum_version_id = 1,
475     .needed = spapr_drc_unplug_requested_needed,
476     .fields  = (VMStateField []) {
477         VMSTATE_BOOL(unplug_requested, SpaprDrc),
478         VMSTATE_END_OF_LIST()
479     }
480 };
481 
482 static bool spapr_drc_needed(void *opaque)
483 {
484     SpaprDrc *drc = opaque;
485     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
486 
487     /*
488      * If no dev is plugged in there is no need to migrate the DRC state
489      * nor to reset the DRC at CAS.
490      */
491     if (!drc->dev) {
492         return false;
493     }
494 
495     /*
496      * We need to reset the DRC at CAS or to migrate the DRC state if it's
497      * not equal to the expected long-term state, which is the same as the
498      * coldplugged initial state, or if an unplug request is pending.
499      */
500     return drc->state != drck->ready_state ||
501         spapr_drc_unplug_requested(drc);
502 }
503 
504 static const VMStateDescription vmstate_spapr_drc = {
505     .name = "spapr_drc",
506     .version_id = 1,
507     .minimum_version_id = 1,
508     .needed = spapr_drc_needed,
509     .fields  = (VMStateField []) {
510         VMSTATE_UINT32(state, SpaprDrc),
511         VMSTATE_END_OF_LIST()
512     },
513     .subsections = (const VMStateDescription * []) {
514         &vmstate_spapr_drc_unplug_requested,
515         NULL
516     }
517 };
518 
519 static void drc_realize(DeviceState *d, Error **errp)
520 {
521     SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
522     Object *root_container;
523     gchar *link_name;
524     const char *child_name;
525 
526     trace_spapr_drc_realize(spapr_drc_index(drc));
527     /* NOTE: we do this as part of realize/unrealize due to the fact
528      * that the guest will communicate with the DRC via RTAS calls
529      * referencing the global DRC index. By unlinking the DRC
530      * from DRC_CONTAINER_PATH/<drc_index> we effectively make it
531      * inaccessible by the guest, since lookups rely on this path
532      * existing in the composition tree
533      */
534     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
535     link_name = g_strdup_printf("%x", spapr_drc_index(drc));
536     child_name = object_get_canonical_path_component(OBJECT(drc));
537     trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name);
538     object_property_add_alias(root_container, link_name,
539                               drc->owner, child_name);
540     g_free(link_name);
541     vmstate_register(VMSTATE_IF(drc), spapr_drc_index(drc), &vmstate_spapr_drc,
542                      drc);
543     trace_spapr_drc_realize_complete(spapr_drc_index(drc));
544 }
545 
546 static void drc_unrealize(DeviceState *d)
547 {
548     SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
549     Object *root_container;
550     gchar *name;
551 
552     trace_spapr_drc_unrealize(spapr_drc_index(drc));
553     vmstate_unregister(VMSTATE_IF(drc), &vmstate_spapr_drc, drc);
554     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
555     name = g_strdup_printf("%x", spapr_drc_index(drc));
556     object_property_del(root_container, name);
557     g_free(name);
558 }
559 
560 SpaprDrc *spapr_dr_connector_new(Object *owner, const char *type,
561                                          uint32_t id)
562 {
563     SpaprDrc *drc = SPAPR_DR_CONNECTOR(object_new(type));
564     char *prop_name;
565 
566     drc->id = id;
567     drc->owner = owner;
568     prop_name = g_strdup_printf("dr-connector[%"PRIu32"]",
569                                 spapr_drc_index(drc));
570     object_property_add_child(owner, prop_name, OBJECT(drc));
571     object_unref(OBJECT(drc));
572     qdev_realize(DEVICE(drc), NULL, NULL);
573     g_free(prop_name);
574 
575     return drc;
576 }
577 
578 static void spapr_dr_connector_instance_init(Object *obj)
579 {
580     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
581     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
582 
583     object_property_add_uint32_ptr(obj, "id", &drc->id, OBJ_PROP_FLAG_READ);
584     object_property_add(obj, "index", "uint32", prop_get_index,
585                         NULL, NULL, NULL);
586     object_property_add(obj, "fdt", "struct", prop_get_fdt,
587                         NULL, NULL, NULL);
588     drc->state = drck->empty_state;
589 }
590 
591 static void spapr_dr_connector_class_init(ObjectClass *k, void *data)
592 {
593     DeviceClass *dk = DEVICE_CLASS(k);
594 
595     dk->realize = drc_realize;
596     dk->unrealize = drc_unrealize;
597     /*
598      * Reason: DR connector needs to be wired to either the machine or to a
599      * PHB in spapr_dr_connector_new().
600      */
601     dk->user_creatable = false;
602 }
603 
604 static bool drc_physical_needed(void *opaque)
605 {
606     SpaprDrcPhysical *drcp = (SpaprDrcPhysical *)opaque;
607     SpaprDrc *drc = SPAPR_DR_CONNECTOR(drcp);
608 
609     if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE))
610         || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) {
611         return false;
612     }
613     return true;
614 }
615 
616 static const VMStateDescription vmstate_spapr_drc_physical = {
617     .name = "spapr_drc/physical",
618     .version_id = 1,
619     .minimum_version_id = 1,
620     .needed = drc_physical_needed,
621     .fields  = (VMStateField []) {
622         VMSTATE_UINT32(dr_indicator, SpaprDrcPhysical),
623         VMSTATE_END_OF_LIST()
624     }
625 };
626 
627 static void drc_physical_reset(void *opaque)
628 {
629     SpaprDrc *drc = SPAPR_DR_CONNECTOR(opaque);
630     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(drc);
631 
632     if (drc->dev) {
633         drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE;
634     } else {
635         drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE;
636     }
637 }
638 
639 static void realize_physical(DeviceState *d, Error **errp)
640 {
641     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
642     Error *local_err = NULL;
643 
644     drc_realize(d, &local_err);
645     if (local_err) {
646         error_propagate(errp, local_err);
647         return;
648     }
649 
650     vmstate_register(VMSTATE_IF(drcp),
651                      spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)),
652                      &vmstate_spapr_drc_physical, drcp);
653     qemu_register_reset(drc_physical_reset, drcp);
654 }
655 
656 static void unrealize_physical(DeviceState *d)
657 {
658     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
659 
660     drc_unrealize(d);
661     vmstate_unregister(VMSTATE_IF(drcp), &vmstate_spapr_drc_physical, drcp);
662     qemu_unregister_reset(drc_physical_reset, drcp);
663 }
664 
665 static void spapr_drc_physical_class_init(ObjectClass *k, void *data)
666 {
667     DeviceClass *dk = DEVICE_CLASS(k);
668     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
669 
670     dk->realize = realize_physical;
671     dk->unrealize = unrealize_physical;
672     drck->dr_entity_sense = physical_entity_sense;
673     drck->isolate = drc_isolate_physical;
674     drck->unisolate = drc_unisolate_physical;
675     drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED;
676     drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
677 }
678 
679 static void spapr_drc_logical_class_init(ObjectClass *k, void *data)
680 {
681     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
682 
683     drck->dr_entity_sense = logical_entity_sense;
684     drck->isolate = drc_isolate_logical;
685     drck->unisolate = drc_unisolate_logical;
686     drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED;
687     drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
688 }
689 
690 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data)
691 {
692     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
693 
694     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU;
695     drck->typename = "CPU";
696     drck->drc_name_prefix = "CPU ";
697     drck->release = spapr_core_release;
698     drck->dt_populate = spapr_core_dt_populate;
699 }
700 
701 static void spapr_drc_pci_class_init(ObjectClass *k, void *data)
702 {
703     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
704 
705     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI;
706     drck->typename = "28";
707     drck->drc_name_prefix = "C";
708     drck->release = spapr_phb_remove_pci_device_cb;
709     drck->dt_populate = spapr_pci_dt_populate;
710 }
711 
712 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data)
713 {
714     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
715 
716     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB;
717     drck->typename = "MEM";
718     drck->drc_name_prefix = "LMB ";
719     drck->release = spapr_lmb_release;
720     drck->dt_populate = spapr_lmb_dt_populate;
721 }
722 
723 static void spapr_drc_phb_class_init(ObjectClass *k, void *data)
724 {
725     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
726 
727     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PHB;
728     drck->typename = "PHB";
729     drck->drc_name_prefix = "PHB ";
730     drck->release = spapr_phb_release;
731     drck->dt_populate = spapr_phb_dt_populate;
732 }
733 
734 static void spapr_drc_pmem_class_init(ObjectClass *k, void *data)
735 {
736     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
737 
738     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PMEM;
739     drck->typename = "PMEM";
740     drck->drc_name_prefix = "PMEM ";
741     drck->release = NULL;
742     drck->dt_populate = spapr_pmem_dt_populate;
743 }
744 
745 static const TypeInfo spapr_dr_connector_info = {
746     .name          = TYPE_SPAPR_DR_CONNECTOR,
747     .parent        = TYPE_DEVICE,
748     .instance_size = sizeof(SpaprDrc),
749     .instance_init = spapr_dr_connector_instance_init,
750     .class_size    = sizeof(SpaprDrcClass),
751     .class_init    = spapr_dr_connector_class_init,
752     .abstract      = true,
753 };
754 
755 static const TypeInfo spapr_drc_physical_info = {
756     .name          = TYPE_SPAPR_DRC_PHYSICAL,
757     .parent        = TYPE_SPAPR_DR_CONNECTOR,
758     .instance_size = sizeof(SpaprDrcPhysical),
759     .class_init    = spapr_drc_physical_class_init,
760     .abstract      = true,
761 };
762 
763 static const TypeInfo spapr_drc_logical_info = {
764     .name          = TYPE_SPAPR_DRC_LOGICAL,
765     .parent        = TYPE_SPAPR_DR_CONNECTOR,
766     .class_init    = spapr_drc_logical_class_init,
767     .abstract      = true,
768 };
769 
770 static const TypeInfo spapr_drc_cpu_info = {
771     .name          = TYPE_SPAPR_DRC_CPU,
772     .parent        = TYPE_SPAPR_DRC_LOGICAL,
773     .class_init    = spapr_drc_cpu_class_init,
774 };
775 
776 static const TypeInfo spapr_drc_pci_info = {
777     .name          = TYPE_SPAPR_DRC_PCI,
778     .parent        = TYPE_SPAPR_DRC_PHYSICAL,
779     .class_init    = spapr_drc_pci_class_init,
780 };
781 
782 static const TypeInfo spapr_drc_lmb_info = {
783     .name          = TYPE_SPAPR_DRC_LMB,
784     .parent        = TYPE_SPAPR_DRC_LOGICAL,
785     .class_init    = spapr_drc_lmb_class_init,
786 };
787 
788 static const TypeInfo spapr_drc_phb_info = {
789     .name          = TYPE_SPAPR_DRC_PHB,
790     .parent        = TYPE_SPAPR_DRC_LOGICAL,
791     .instance_size = sizeof(SpaprDrc),
792     .class_init    = spapr_drc_phb_class_init,
793 };
794 
795 static const TypeInfo spapr_drc_pmem_info = {
796     .name          = TYPE_SPAPR_DRC_PMEM,
797     .parent        = TYPE_SPAPR_DRC_LOGICAL,
798     .class_init    = spapr_drc_pmem_class_init,
799 };
800 
801 /* helper functions for external users */
802 
803 SpaprDrc *spapr_drc_by_index(uint32_t index)
804 {
805     Object *obj;
806     gchar *name;
807 
808     name = g_strdup_printf("%s/%x", DRC_CONTAINER_PATH, index);
809     obj = object_resolve_path(name, NULL);
810     g_free(name);
811 
812     return !obj ? NULL : SPAPR_DR_CONNECTOR(obj);
813 }
814 
815 SpaprDrc *spapr_drc_by_id(const char *type, uint32_t id)
816 {
817     SpaprDrcClass *drck
818         = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type));
819 
820     return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT
821                               | (id & DRC_INDEX_ID_MASK));
822 }
823 
824 /**
825  * spapr_dt_drc
826  *
827  * @fdt: libfdt device tree
828  * @path: path in the DT to generate properties
829  * @owner: parent Object/DeviceState for which to generate DRC
830  *         descriptions for
831  * @drc_type_mask: mask of SpaprDrcType values corresponding
832  *   to the types of DRCs to generate entries for
833  *
834  * generate OF properties to describe DRC topology/indices to guests
835  *
836  * as documented in PAPR+ v2.1, 13.5.2
837  */
838 int spapr_dt_drc(void *fdt, int offset, Object *owner, uint32_t drc_type_mask)
839 {
840     Object *root_container;
841     ObjectProperty *prop;
842     ObjectPropertyIterator iter;
843     uint32_t drc_count = 0;
844     GArray *drc_indexes, *drc_power_domains;
845     GString *drc_names, *drc_types;
846     int ret;
847 
848     /*
849      * This should really be only called once per node since it overwrites
850      * the OF properties if they already exist.
851      */
852     g_assert(!fdt_get_property(fdt, offset, "ibm,drc-indexes", NULL));
853 
854     /* the first entry of each properties is a 32-bit integer encoding
855      * the number of elements in the array. we won't know this until
856      * we complete the iteration through all the matching DRCs, but
857      * reserve the space now and set the offsets accordingly so we
858      * can fill them in later.
859      */
860     drc_indexes = g_array_new(false, true, sizeof(uint32_t));
861     drc_indexes = g_array_set_size(drc_indexes, 1);
862     drc_power_domains = g_array_new(false, true, sizeof(uint32_t));
863     drc_power_domains = g_array_set_size(drc_power_domains, 1);
864     drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
865     drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
866 
867     /* aliases for all DRConnector objects will be rooted in QOM
868      * composition tree at DRC_CONTAINER_PATH
869      */
870     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
871 
872     object_property_iter_init(&iter, root_container);
873     while ((prop = object_property_iter_next(&iter))) {
874         Object *obj;
875         SpaprDrc *drc;
876         SpaprDrcClass *drck;
877         char *drc_name = NULL;
878         uint32_t drc_index, drc_power_domain;
879 
880         if (!strstart(prop->type, "link<", NULL)) {
881             continue;
882         }
883 
884         obj = object_property_get_link(root_container, prop->name,
885                                        &error_abort);
886         drc = SPAPR_DR_CONNECTOR(obj);
887         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
888 
889         if (owner && (drc->owner != owner)) {
890             continue;
891         }
892 
893         if ((spapr_drc_type(drc) & drc_type_mask) == 0) {
894             continue;
895         }
896 
897         drc_count++;
898 
899         /* ibm,drc-indexes */
900         drc_index = cpu_to_be32(spapr_drc_index(drc));
901         g_array_append_val(drc_indexes, drc_index);
902 
903         /* ibm,drc-power-domains */
904         drc_power_domain = cpu_to_be32(-1);
905         g_array_append_val(drc_power_domains, drc_power_domain);
906 
907         /* ibm,drc-names */
908         drc_name = spapr_drc_name(drc);
909         drc_names = g_string_append(drc_names, drc_name);
910         drc_names = g_string_insert_len(drc_names, -1, "\0", 1);
911         g_free(drc_name);
912 
913         /* ibm,drc-types */
914         drc_types = g_string_append(drc_types, drck->typename);
915         drc_types = g_string_insert_len(drc_types, -1, "\0", 1);
916     }
917 
918     /* now write the drc count into the space we reserved at the
919      * beginning of the arrays previously
920      */
921     *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count);
922     *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count);
923     *(uint32_t *)drc_names->str = cpu_to_be32(drc_count);
924     *(uint32_t *)drc_types->str = cpu_to_be32(drc_count);
925 
926     ret = fdt_setprop(fdt, offset, "ibm,drc-indexes",
927                       drc_indexes->data,
928                       drc_indexes->len * sizeof(uint32_t));
929     if (ret) {
930         error_report("Couldn't create ibm,drc-indexes property");
931         goto out;
932     }
933 
934     ret = fdt_setprop(fdt, offset, "ibm,drc-power-domains",
935                       drc_power_domains->data,
936                       drc_power_domains->len * sizeof(uint32_t));
937     if (ret) {
938         error_report("Couldn't finalize ibm,drc-power-domains property");
939         goto out;
940     }
941 
942     ret = fdt_setprop(fdt, offset, "ibm,drc-names",
943                       drc_names->str, drc_names->len);
944     if (ret) {
945         error_report("Couldn't finalize ibm,drc-names property");
946         goto out;
947     }
948 
949     ret = fdt_setprop(fdt, offset, "ibm,drc-types",
950                       drc_types->str, drc_types->len);
951     if (ret) {
952         error_report("Couldn't finalize ibm,drc-types property");
953         goto out;
954     }
955 
956 out:
957     g_array_free(drc_indexes, true);
958     g_array_free(drc_power_domains, true);
959     g_string_free(drc_names, true);
960     g_string_free(drc_types, true);
961 
962     return ret;
963 }
964 
965 void spapr_drc_reset_all(SpaprMachineState *spapr)
966 {
967     Object *drc_container;
968     ObjectProperty *prop;
969     ObjectPropertyIterator iter;
970 
971     drc_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
972 restart:
973     object_property_iter_init(&iter, drc_container);
974     while ((prop = object_property_iter_next(&iter))) {
975         SpaprDrc *drc;
976 
977         if (!strstart(prop->type, "link<", NULL)) {
978             continue;
979         }
980         drc = SPAPR_DR_CONNECTOR(object_property_get_link(drc_container,
981                                                           prop->name,
982                                                           &error_abort));
983 
984         /*
985          * This will complete any pending plug/unplug requests.
986          * In case of a unplugged PHB or PCI bridge, this will
987          * cause some DRCs to be destroyed and thus potentially
988          * invalidate the iterator.
989          */
990         if (spapr_drc_reset(drc)) {
991             goto restart;
992         }
993     }
994 }
995 
996 /*
997  * RTAS calls
998  */
999 
1000 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state)
1001 {
1002     SpaprDrc *drc = spapr_drc_by_index(idx);
1003     SpaprDrcClass *drck;
1004 
1005     if (!drc) {
1006         return RTAS_OUT_NO_SUCH_INDICATOR;
1007     }
1008 
1009     trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state);
1010 
1011     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1012 
1013     switch (state) {
1014     case SPAPR_DR_ISOLATION_STATE_ISOLATED:
1015         return drck->isolate(drc);
1016 
1017     case SPAPR_DR_ISOLATION_STATE_UNISOLATED:
1018         return drck->unisolate(drc);
1019 
1020     default:
1021         return RTAS_OUT_PARAM_ERROR;
1022     }
1023 }
1024 
1025 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state)
1026 {
1027     SpaprDrc *drc = spapr_drc_by_index(idx);
1028 
1029     if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) {
1030         return RTAS_OUT_NO_SUCH_INDICATOR;
1031     }
1032 
1033     trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state);
1034 
1035     switch (state) {
1036     case SPAPR_DR_ALLOCATION_STATE_USABLE:
1037         return drc_set_usable(drc);
1038 
1039     case SPAPR_DR_ALLOCATION_STATE_UNUSABLE:
1040         return drc_set_unusable(drc);
1041 
1042     default:
1043         return RTAS_OUT_PARAM_ERROR;
1044     }
1045 }
1046 
1047 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state)
1048 {
1049     SpaprDrc *drc = spapr_drc_by_index(idx);
1050 
1051     if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) {
1052         return RTAS_OUT_NO_SUCH_INDICATOR;
1053     }
1054     if ((state != SPAPR_DR_INDICATOR_INACTIVE)
1055         && (state != SPAPR_DR_INDICATOR_ACTIVE)
1056         && (state != SPAPR_DR_INDICATOR_IDENTIFY)
1057         && (state != SPAPR_DR_INDICATOR_ACTION)) {
1058         return RTAS_OUT_PARAM_ERROR; /* bad state parameter */
1059     }
1060 
1061     trace_spapr_drc_set_dr_indicator(idx, state);
1062     SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state;
1063     return RTAS_OUT_SUCCESS;
1064 }
1065 
1066 static void rtas_set_indicator(PowerPCCPU *cpu, SpaprMachineState *spapr,
1067                                uint32_t token,
1068                                uint32_t nargs, target_ulong args,
1069                                uint32_t nret, target_ulong rets)
1070 {
1071     uint32_t type, idx, state;
1072     uint32_t ret = RTAS_OUT_SUCCESS;
1073 
1074     if (nargs != 3 || nret != 1) {
1075         ret = RTAS_OUT_PARAM_ERROR;
1076         goto out;
1077     }
1078 
1079     type = rtas_ld(args, 0);
1080     idx = rtas_ld(args, 1);
1081     state = rtas_ld(args, 2);
1082 
1083     switch (type) {
1084     case RTAS_SENSOR_TYPE_ISOLATION_STATE:
1085         ret = rtas_set_isolation_state(idx, state);
1086         break;
1087     case RTAS_SENSOR_TYPE_DR:
1088         ret = rtas_set_dr_indicator(idx, state);
1089         break;
1090     case RTAS_SENSOR_TYPE_ALLOCATION_STATE:
1091         ret = rtas_set_allocation_state(idx, state);
1092         break;
1093     default:
1094         ret = RTAS_OUT_NOT_SUPPORTED;
1095     }
1096 
1097 out:
1098     rtas_st(rets, 0, ret);
1099 }
1100 
1101 static void rtas_get_sensor_state(PowerPCCPU *cpu, SpaprMachineState *spapr,
1102                                   uint32_t token, uint32_t nargs,
1103                                   target_ulong args, uint32_t nret,
1104                                   target_ulong rets)
1105 {
1106     uint32_t sensor_type;
1107     uint32_t sensor_index;
1108     uint32_t sensor_state = 0;
1109     SpaprDrc *drc;
1110     SpaprDrcClass *drck;
1111     uint32_t ret = RTAS_OUT_SUCCESS;
1112 
1113     if (nargs != 2 || nret != 2) {
1114         ret = RTAS_OUT_PARAM_ERROR;
1115         goto out;
1116     }
1117 
1118     sensor_type = rtas_ld(args, 0);
1119     sensor_index = rtas_ld(args, 1);
1120 
1121     if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) {
1122         /* currently only DR-related sensors are implemented */
1123         trace_spapr_rtas_get_sensor_state_not_supported(sensor_index,
1124                                                         sensor_type);
1125         ret = RTAS_OUT_NOT_SUPPORTED;
1126         goto out;
1127     }
1128 
1129     drc = spapr_drc_by_index(sensor_index);
1130     if (!drc) {
1131         trace_spapr_rtas_get_sensor_state_invalid(sensor_index);
1132         ret = RTAS_OUT_PARAM_ERROR;
1133         goto out;
1134     }
1135     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1136     sensor_state = drck->dr_entity_sense(drc);
1137 
1138 out:
1139     rtas_st(rets, 0, ret);
1140     rtas_st(rets, 1, sensor_state);
1141 }
1142 
1143 /* configure-connector work area offsets, int32_t units for field
1144  * indexes, bytes for field offset/len values.
1145  *
1146  * as documented by PAPR+ v2.7, 13.5.3.5
1147  */
1148 #define CC_IDX_NODE_NAME_OFFSET 2
1149 #define CC_IDX_PROP_NAME_OFFSET 2
1150 #define CC_IDX_PROP_LEN 3
1151 #define CC_IDX_PROP_DATA_OFFSET 4
1152 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4)
1153 #define CC_WA_LEN 4096
1154 
1155 static void configure_connector_st(target_ulong addr, target_ulong offset,
1156                                    const void *buf, size_t len)
1157 {
1158     cpu_physical_memory_write(ppc64_phys_to_real(addr + offset),
1159                               buf, MIN(len, CC_WA_LEN - offset));
1160 }
1161 
1162 static void rtas_ibm_configure_connector(PowerPCCPU *cpu,
1163                                          SpaprMachineState *spapr,
1164                                          uint32_t token, uint32_t nargs,
1165                                          target_ulong args, uint32_t nret,
1166                                          target_ulong rets)
1167 {
1168     uint64_t wa_addr;
1169     uint64_t wa_offset;
1170     uint32_t drc_index;
1171     SpaprDrc *drc;
1172     SpaprDrcClass *drck;
1173     SpaprDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE;
1174     int rc;
1175 
1176     if (nargs != 2 || nret != 1) {
1177         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
1178         return;
1179     }
1180 
1181     wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0);
1182 
1183     drc_index = rtas_ld(wa_addr, 0);
1184     drc = spapr_drc_by_index(drc_index);
1185     if (!drc) {
1186         trace_spapr_rtas_ibm_configure_connector_invalid(drc_index);
1187         rc = RTAS_OUT_PARAM_ERROR;
1188         goto out;
1189     }
1190 
1191     if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE)
1192         && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE)
1193         && (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED)
1194         && (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) {
1195         /*
1196          * Need to unisolate the device before configuring
1197          * or it should already be in configured state to
1198          * allow configure-connector be called repeatedly.
1199          */
1200         rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE;
1201         goto out;
1202     }
1203 
1204     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1205 
1206     /*
1207      * This indicates that the kernel is reconfiguring a LMB due to
1208      * a failed hotunplug. Rollback the DIMM unplug process.
1209      */
1210     if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB &&
1211         drc->unplug_requested) {
1212         spapr_memory_unplug_rollback(spapr, drc->dev);
1213     }
1214 
1215     if (!drc->fdt) {
1216         void *fdt;
1217         int fdt_size;
1218 
1219         fdt = create_device_tree(&fdt_size);
1220 
1221         if (drck->dt_populate(drc, spapr, fdt, &drc->fdt_start_offset,
1222                               NULL)) {
1223             g_free(fdt);
1224             rc = SPAPR_DR_CC_RESPONSE_ERROR;
1225             goto out;
1226         }
1227 
1228         drc->fdt = fdt;
1229         drc->ccs_offset = drc->fdt_start_offset;
1230         drc->ccs_depth = 0;
1231     }
1232 
1233     do {
1234         uint32_t tag;
1235         const char *name;
1236         const struct fdt_property *prop;
1237         int fdt_offset_next, prop_len;
1238 
1239         tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next);
1240 
1241         switch (tag) {
1242         case FDT_BEGIN_NODE:
1243             drc->ccs_depth++;
1244             name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL);
1245 
1246             /* provide the name of the next OF node */
1247             wa_offset = CC_VAL_DATA_OFFSET;
1248             rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset);
1249             configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1250             resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD;
1251             break;
1252         case FDT_END_NODE:
1253             drc->ccs_depth--;
1254             if (drc->ccs_depth == 0) {
1255                 uint32_t drc_index = spapr_drc_index(drc);
1256 
1257                 /* done sending the device tree, move to configured state */
1258                 trace_spapr_drc_set_configured(drc_index);
1259                 drc->state = drck->ready_state;
1260                 /*
1261                  * Ensure that we are able to send the FDT fragment
1262                  * again via configure-connector call if the guest requests.
1263                  */
1264                 drc->ccs_offset = drc->fdt_start_offset;
1265                 drc->ccs_depth = 0;
1266                 fdt_offset_next = drc->fdt_start_offset;
1267                 resp = SPAPR_DR_CC_RESPONSE_SUCCESS;
1268             } else {
1269                 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT;
1270             }
1271             break;
1272         case FDT_PROP:
1273             prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset,
1274                                               &prop_len);
1275             name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff));
1276 
1277             /* provide the name of the next OF property */
1278             wa_offset = CC_VAL_DATA_OFFSET;
1279             rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset);
1280             configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1281 
1282             /* provide the length and value of the OF property. data gets
1283              * placed immediately after NULL terminator of the OF property's
1284              * name string
1285              */
1286             wa_offset += strlen(name) + 1,
1287             rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len);
1288             rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset);
1289             configure_connector_st(wa_addr, wa_offset, prop->data, prop_len);
1290             resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY;
1291             break;
1292         case FDT_END:
1293             resp = SPAPR_DR_CC_RESPONSE_ERROR;
1294         default:
1295             /* keep seeking for an actionable tag */
1296             break;
1297         }
1298         if (drc->ccs_offset >= 0) {
1299             drc->ccs_offset = fdt_offset_next;
1300         }
1301     } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE);
1302 
1303     rc = resp;
1304 out:
1305     rtas_st(rets, 0, rc);
1306 }
1307 
1308 static void spapr_drc_register_types(void)
1309 {
1310     type_register_static(&spapr_dr_connector_info);
1311     type_register_static(&spapr_drc_physical_info);
1312     type_register_static(&spapr_drc_logical_info);
1313     type_register_static(&spapr_drc_cpu_info);
1314     type_register_static(&spapr_drc_pci_info);
1315     type_register_static(&spapr_drc_lmb_info);
1316     type_register_static(&spapr_drc_phb_info);
1317     type_register_static(&spapr_drc_pmem_info);
1318 
1319     spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator",
1320                         rtas_set_indicator);
1321     spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state",
1322                         rtas_get_sensor_state);
1323     spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector",
1324                         rtas_ibm_configure_connector);
1325 }
1326 type_init(spapr_drc_register_types)
1327