xref: /openbmc/qemu/hw/ppc/spapr.c (revision b4b9a0e32f93c0700f46617524317b0580126592)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qemu/datadir.h"
30 #include "qapi/error.h"
31 #include "qapi/qapi-events-machine.h"
32 #include "qapi/qapi-events-qdev.h"
33 #include "qapi/visitor.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/hostmem.h"
36 #include "sysemu/numa.h"
37 #include "sysemu/qtest.h"
38 #include "sysemu/reset.h"
39 #include "sysemu/runstate.h"
40 #include "qemu/log.h"
41 #include "hw/fw-path-provider.h"
42 #include "elf.h"
43 #include "net/net.h"
44 #include "sysemu/device_tree.h"
45 #include "sysemu/cpus.h"
46 #include "sysemu/hw_accel.h"
47 #include "kvm_ppc.h"
48 #include "migration/misc.h"
49 #include "migration/qemu-file-types.h"
50 #include "migration/global_state.h"
51 #include "migration/register.h"
52 #include "migration/blocker.h"
53 #include "mmu-hash64.h"
54 #include "mmu-book3s-v3.h"
55 #include "cpu-models.h"
56 #include "hw/core/cpu.h"
57 
58 #include "hw/ppc/ppc.h"
59 #include "hw/loader.h"
60 
61 #include "hw/ppc/fdt.h"
62 #include "hw/ppc/spapr.h"
63 #include "hw/ppc/spapr_vio.h"
64 #include "hw/qdev-properties.h"
65 #include "hw/pci-host/spapr.h"
66 #include "hw/pci/msi.h"
67 
68 #include "hw/pci/pci.h"
69 #include "hw/scsi/scsi.h"
70 #include "hw/virtio/virtio-scsi.h"
71 #include "hw/virtio/vhost-scsi-common.h"
72 
73 #include "exec/ram_addr.h"
74 #include "hw/usb.h"
75 #include "qemu/config-file.h"
76 #include "qemu/error-report.h"
77 #include "trace.h"
78 #include "hw/nmi.h"
79 #include "hw/intc/intc.h"
80 
81 #include "hw/ppc/spapr_cpu_core.h"
82 #include "hw/mem/memory-device.h"
83 #include "hw/ppc/spapr_tpm_proxy.h"
84 #include "hw/ppc/spapr_nvdimm.h"
85 #include "hw/ppc/spapr_numa.h"
86 #include "hw/ppc/pef.h"
87 
88 #include "monitor/monitor.h"
89 
90 #include <libfdt.h>
91 
92 /* SLOF memory layout:
93  *
94  * SLOF raw image loaded at 0, copies its romfs right below the flat
95  * device-tree, then position SLOF itself 31M below that
96  *
97  * So we set FW_OVERHEAD to 40MB which should account for all of that
98  * and more
99  *
100  * We load our kernel at 4M, leaving space for SLOF initial image
101  */
102 #define FDT_MAX_ADDR            0x80000000 /* FDT must stay below that */
103 #define FW_MAX_SIZE             0x400000
104 #define FW_FILE_NAME            "slof.bin"
105 #define FW_FILE_NAME_VOF        "vof.bin"
106 #define FW_OVERHEAD             0x2800000
107 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
108 
109 #define MIN_RMA_SLOF            (128 * MiB)
110 
111 #define PHANDLE_INTC            0x00001111
112 
113 /* These two functions implement the VCPU id numbering: one to compute them
114  * all and one to identify thread 0 of a VCORE. Any change to the first one
115  * is likely to have an impact on the second one, so let's keep them close.
116  */
117 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
118 {
119     MachineState *ms = MACHINE(spapr);
120     unsigned int smp_threads = ms->smp.threads;
121 
122     assert(spapr->vsmt);
123     return
124         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
125 }
126 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
127                                       PowerPCCPU *cpu)
128 {
129     assert(spapr->vsmt);
130     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
131 }
132 
133 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
134 {
135     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
136      * and newer QEMUs don't even have them. In both cases, we don't want
137      * to send anything on the wire.
138      */
139     return false;
140 }
141 
142 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
143     .name = "icp/server",
144     .version_id = 1,
145     .minimum_version_id = 1,
146     .needed = pre_2_10_vmstate_dummy_icp_needed,
147     .fields = (VMStateField[]) {
148         VMSTATE_UNUSED(4), /* uint32_t xirr */
149         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
150         VMSTATE_UNUSED(1), /* uint8_t mfrr */
151         VMSTATE_END_OF_LIST()
152     },
153 };
154 
155 static void pre_2_10_vmstate_register_dummy_icp(int i)
156 {
157     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
158                      (void *)(uintptr_t) i);
159 }
160 
161 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
162 {
163     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
164                        (void *)(uintptr_t) i);
165 }
166 
167 int spapr_max_server_number(SpaprMachineState *spapr)
168 {
169     MachineState *ms = MACHINE(spapr);
170 
171     assert(spapr->vsmt);
172     return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
173 }
174 
175 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
176                                   int smt_threads)
177 {
178     int i, ret = 0;
179     uint32_t servers_prop[smt_threads];
180     uint32_t gservers_prop[smt_threads * 2];
181     int index = spapr_get_vcpu_id(cpu);
182 
183     if (cpu->compat_pvr) {
184         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
185         if (ret < 0) {
186             return ret;
187         }
188     }
189 
190     /* Build interrupt servers and gservers properties */
191     for (i = 0; i < smt_threads; i++) {
192         servers_prop[i] = cpu_to_be32(index + i);
193         /* Hack, direct the group queues back to cpu 0 */
194         gservers_prop[i*2] = cpu_to_be32(index + i);
195         gservers_prop[i*2 + 1] = 0;
196     }
197     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
198                       servers_prop, sizeof(servers_prop));
199     if (ret < 0) {
200         return ret;
201     }
202     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
203                       gservers_prop, sizeof(gservers_prop));
204 
205     return ret;
206 }
207 
208 static void spapr_dt_pa_features(SpaprMachineState *spapr,
209                                  PowerPCCPU *cpu,
210                                  void *fdt, int offset)
211 {
212     uint8_t pa_features_206[] = { 6, 0,
213         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
214     uint8_t pa_features_207[] = { 24, 0,
215         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
216         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
217         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
218         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
219     uint8_t pa_features_300[] = { 66, 0,
220         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
221         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
222         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
223         /* 6: DS207 */
224         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
225         /* 16: Vector */
226         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
227         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
228         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
229         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
230         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
231         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
232         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
233         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
234         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
235         /* 42: PM, 44: PC RA, 46: SC vec'd */
236         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
237         /* 48: SIMD, 50: QP BFP, 52: String */
238         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
239         /* 54: DecFP, 56: DecI, 58: SHA */
240         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
241         /* 60: NM atomic, 62: RNG */
242         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
243     };
244     uint8_t *pa_features = NULL;
245     size_t pa_size;
246 
247     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
248         pa_features = pa_features_206;
249         pa_size = sizeof(pa_features_206);
250     }
251     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
252         pa_features = pa_features_207;
253         pa_size = sizeof(pa_features_207);
254     }
255     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
256         pa_features = pa_features_300;
257         pa_size = sizeof(pa_features_300);
258     }
259     if (!pa_features) {
260         return;
261     }
262 
263     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
264         /*
265          * Note: we keep CI large pages off by default because a 64K capable
266          * guest provisioned with large pages might otherwise try to map a qemu
267          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
268          * even if that qemu runs on a 4k host.
269          * We dd this bit back here if we are confident this is not an issue
270          */
271         pa_features[3] |= 0x20;
272     }
273     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
274         pa_features[24] |= 0x80;    /* Transactional memory support */
275     }
276     if (spapr->cas_pre_isa3_guest && pa_size > 40) {
277         /* Workaround for broken kernels that attempt (guest) radix
278          * mode when they can't handle it, if they see the radix bit set
279          * in pa-features. So hide it from them. */
280         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
281     }
282 
283     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
284 }
285 
286 static hwaddr spapr_node0_size(MachineState *machine)
287 {
288     if (machine->numa_state->num_nodes) {
289         int i;
290         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
291             if (machine->numa_state->nodes[i].node_mem) {
292                 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
293                            machine->ram_size);
294             }
295         }
296     }
297     return machine->ram_size;
298 }
299 
300 static void add_str(GString *s, const gchar *s1)
301 {
302     g_string_append_len(s, s1, strlen(s1) + 1);
303 }
304 
305 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
306                                 hwaddr start, hwaddr size)
307 {
308     char mem_name[32];
309     uint64_t mem_reg_property[2];
310     int off;
311 
312     mem_reg_property[0] = cpu_to_be64(start);
313     mem_reg_property[1] = cpu_to_be64(size);
314 
315     sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
316     off = fdt_add_subnode(fdt, 0, mem_name);
317     _FDT(off);
318     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
319     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
320                       sizeof(mem_reg_property))));
321     spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
322     return off;
323 }
324 
325 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
326 {
327     MemoryDeviceInfoList *info;
328 
329     for (info = list; info; info = info->next) {
330         MemoryDeviceInfo *value = info->value;
331 
332         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
333             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
334 
335             if (addr >= pcdimm_info->addr &&
336                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
337                 return pcdimm_info->node;
338             }
339         }
340     }
341 
342     return -1;
343 }
344 
345 struct sPAPRDrconfCellV2 {
346      uint32_t seq_lmbs;
347      uint64_t base_addr;
348      uint32_t drc_index;
349      uint32_t aa_index;
350      uint32_t flags;
351 } QEMU_PACKED;
352 
353 typedef struct DrconfCellQueue {
354     struct sPAPRDrconfCellV2 cell;
355     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
356 } DrconfCellQueue;
357 
358 static DrconfCellQueue *
359 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
360                       uint32_t drc_index, uint32_t aa_index,
361                       uint32_t flags)
362 {
363     DrconfCellQueue *elem;
364 
365     elem = g_malloc0(sizeof(*elem));
366     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
367     elem->cell.base_addr = cpu_to_be64(base_addr);
368     elem->cell.drc_index = cpu_to_be32(drc_index);
369     elem->cell.aa_index = cpu_to_be32(aa_index);
370     elem->cell.flags = cpu_to_be32(flags);
371 
372     return elem;
373 }
374 
375 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
376                                       int offset, MemoryDeviceInfoList *dimms)
377 {
378     MachineState *machine = MACHINE(spapr);
379     uint8_t *int_buf, *cur_index;
380     int ret;
381     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
382     uint64_t addr, cur_addr, size;
383     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
384     uint64_t mem_end = machine->device_memory->base +
385                        memory_region_size(&machine->device_memory->mr);
386     uint32_t node, buf_len, nr_entries = 0;
387     SpaprDrc *drc;
388     DrconfCellQueue *elem, *next;
389     MemoryDeviceInfoList *info;
390     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
391         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
392 
393     /* Entry to cover RAM and the gap area */
394     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
395                                  SPAPR_LMB_FLAGS_RESERVED |
396                                  SPAPR_LMB_FLAGS_DRC_INVALID);
397     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
398     nr_entries++;
399 
400     cur_addr = machine->device_memory->base;
401     for (info = dimms; info; info = info->next) {
402         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
403 
404         addr = di->addr;
405         size = di->size;
406         node = di->node;
407 
408         /*
409          * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
410          * area is marked hotpluggable in the next iteration for the bigger
411          * chunk including the NVDIMM occupied area.
412          */
413         if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
414             continue;
415 
416         /* Entry for hot-pluggable area */
417         if (cur_addr < addr) {
418             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
419             g_assert(drc);
420             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
421                                          cur_addr, spapr_drc_index(drc), -1, 0);
422             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
423             nr_entries++;
424         }
425 
426         /* Entry for DIMM */
427         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
428         g_assert(drc);
429         elem = spapr_get_drconf_cell(size / lmb_size, addr,
430                                      spapr_drc_index(drc), node,
431                                      (SPAPR_LMB_FLAGS_ASSIGNED |
432                                       SPAPR_LMB_FLAGS_HOTREMOVABLE));
433         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
434         nr_entries++;
435         cur_addr = addr + size;
436     }
437 
438     /* Entry for remaining hotpluggable area */
439     if (cur_addr < mem_end) {
440         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
441         g_assert(drc);
442         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
443                                      cur_addr, spapr_drc_index(drc), -1, 0);
444         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
445         nr_entries++;
446     }
447 
448     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
449     int_buf = cur_index = g_malloc0(buf_len);
450     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
451     cur_index += sizeof(nr_entries);
452 
453     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
454         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
455         cur_index += sizeof(elem->cell);
456         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
457         g_free(elem);
458     }
459 
460     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
461     g_free(int_buf);
462     if (ret < 0) {
463         return -1;
464     }
465     return 0;
466 }
467 
468 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
469                                    int offset, MemoryDeviceInfoList *dimms)
470 {
471     MachineState *machine = MACHINE(spapr);
472     int i, ret;
473     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
474     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
475     uint32_t nr_lmbs = (machine->device_memory->base +
476                        memory_region_size(&machine->device_memory->mr)) /
477                        lmb_size;
478     uint32_t *int_buf, *cur_index, buf_len;
479 
480     /*
481      * Allocate enough buffer size to fit in ibm,dynamic-memory
482      */
483     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
484     cur_index = int_buf = g_malloc0(buf_len);
485     int_buf[0] = cpu_to_be32(nr_lmbs);
486     cur_index++;
487     for (i = 0; i < nr_lmbs; i++) {
488         uint64_t addr = i * lmb_size;
489         uint32_t *dynamic_memory = cur_index;
490 
491         if (i >= device_lmb_start) {
492             SpaprDrc *drc;
493 
494             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
495             g_assert(drc);
496 
497             dynamic_memory[0] = cpu_to_be32(addr >> 32);
498             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
499             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
500             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
501             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
502             if (memory_region_present(get_system_memory(), addr)) {
503                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
504             } else {
505                 dynamic_memory[5] = cpu_to_be32(0);
506             }
507         } else {
508             /*
509              * LMB information for RMA, boot time RAM and gap b/n RAM and
510              * device memory region -- all these are marked as reserved
511              * and as having no valid DRC.
512              */
513             dynamic_memory[0] = cpu_to_be32(addr >> 32);
514             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
515             dynamic_memory[2] = cpu_to_be32(0);
516             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
517             dynamic_memory[4] = cpu_to_be32(-1);
518             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
519                                             SPAPR_LMB_FLAGS_DRC_INVALID);
520         }
521 
522         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
523     }
524     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
525     g_free(int_buf);
526     if (ret < 0) {
527         return -1;
528     }
529     return 0;
530 }
531 
532 /*
533  * Adds ibm,dynamic-reconfiguration-memory node.
534  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
535  * of this device tree node.
536  */
537 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
538                                                    void *fdt)
539 {
540     MachineState *machine = MACHINE(spapr);
541     int ret, offset;
542     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
543     uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
544                                 cpu_to_be32(lmb_size & 0xffffffff)};
545     MemoryDeviceInfoList *dimms = NULL;
546 
547     /*
548      * Don't create the node if there is no device memory
549      */
550     if (machine->ram_size == machine->maxram_size) {
551         return 0;
552     }
553 
554     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
555 
556     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
557                     sizeof(prop_lmb_size));
558     if (ret < 0) {
559         return ret;
560     }
561 
562     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
563     if (ret < 0) {
564         return ret;
565     }
566 
567     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
568     if (ret < 0) {
569         return ret;
570     }
571 
572     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
573     dimms = qmp_memory_device_list();
574     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
575         ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
576     } else {
577         ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
578     }
579     qapi_free_MemoryDeviceInfoList(dimms);
580 
581     if (ret < 0) {
582         return ret;
583     }
584 
585     ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
586 
587     return ret;
588 }
589 
590 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
591 {
592     MachineState *machine = MACHINE(spapr);
593     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
594     hwaddr mem_start, node_size;
595     int i, nb_nodes = machine->numa_state->num_nodes;
596     NodeInfo *nodes = machine->numa_state->nodes;
597 
598     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
599         if (!nodes[i].node_mem) {
600             continue;
601         }
602         if (mem_start >= machine->ram_size) {
603             node_size = 0;
604         } else {
605             node_size = nodes[i].node_mem;
606             if (node_size > machine->ram_size - mem_start) {
607                 node_size = machine->ram_size - mem_start;
608             }
609         }
610         if (!mem_start) {
611             /* spapr_machine_init() checks for rma_size <= node0_size
612              * already */
613             spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
614             mem_start += spapr->rma_size;
615             node_size -= spapr->rma_size;
616         }
617         for ( ; node_size; ) {
618             hwaddr sizetmp = pow2floor(node_size);
619 
620             /* mem_start != 0 here */
621             if (ctzl(mem_start) < ctzl(sizetmp)) {
622                 sizetmp = 1ULL << ctzl(mem_start);
623             }
624 
625             spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
626             node_size -= sizetmp;
627             mem_start += sizetmp;
628         }
629     }
630 
631     /* Generate ibm,dynamic-reconfiguration-memory node if required */
632     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
633         int ret;
634 
635         g_assert(smc->dr_lmb_enabled);
636         ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
637         if (ret) {
638             return ret;
639         }
640     }
641 
642     return 0;
643 }
644 
645 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
646                          SpaprMachineState *spapr)
647 {
648     MachineState *ms = MACHINE(spapr);
649     PowerPCCPU *cpu = POWERPC_CPU(cs);
650     CPUPPCState *env = &cpu->env;
651     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
652     int index = spapr_get_vcpu_id(cpu);
653     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
654                        0xffffffff, 0xffffffff};
655     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
656         : SPAPR_TIMEBASE_FREQ;
657     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
658     uint32_t page_sizes_prop[64];
659     size_t page_sizes_prop_size;
660     unsigned int smp_threads = ms->smp.threads;
661     uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
662     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
663     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
664     SpaprDrc *drc;
665     int drc_index;
666     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
667     int i;
668 
669     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
670     if (drc) {
671         drc_index = spapr_drc_index(drc);
672         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
673     }
674 
675     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
676     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
677 
678     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
679     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
680                            env->dcache_line_size)));
681     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
682                            env->dcache_line_size)));
683     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
684                            env->icache_line_size)));
685     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
686                            env->icache_line_size)));
687 
688     if (pcc->l1_dcache_size) {
689         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
690                                pcc->l1_dcache_size)));
691     } else {
692         warn_report("Unknown L1 dcache size for cpu");
693     }
694     if (pcc->l1_icache_size) {
695         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
696                                pcc->l1_icache_size)));
697     } else {
698         warn_report("Unknown L1 icache size for cpu");
699     }
700 
701     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
702     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
703     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
704     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
705     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
706     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
707 
708     if (ppc_has_spr(cpu, SPR_PURR)) {
709         _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
710     }
711     if (ppc_has_spr(cpu, SPR_PURR)) {
712         _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
713     }
714 
715     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
716         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
717                           segs, sizeof(segs))));
718     }
719 
720     /* Advertise VSX (vector extensions) if available
721      *   1               == VMX / Altivec available
722      *   2               == VSX available
723      *
724      * Only CPUs for which we create core types in spapr_cpu_core.c
725      * are possible, and all of those have VMX */
726     if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
727         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
728     } else {
729         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
730     }
731 
732     /* Advertise DFP (Decimal Floating Point) if available
733      *   0 / no property == no DFP
734      *   1               == DFP available */
735     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
736         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
737     }
738 
739     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
740                                                       sizeof(page_sizes_prop));
741     if (page_sizes_prop_size) {
742         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
743                           page_sizes_prop, page_sizes_prop_size)));
744     }
745 
746     spapr_dt_pa_features(spapr, cpu, fdt, offset);
747 
748     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
749                            cs->cpu_index / vcpus_per_socket)));
750 
751     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
752                       pft_size_prop, sizeof(pft_size_prop))));
753 
754     if (ms->numa_state->num_nodes > 1) {
755         _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
756     }
757 
758     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
759 
760     if (pcc->radix_page_info) {
761         for (i = 0; i < pcc->radix_page_info->count; i++) {
762             radix_AP_encodings[i] =
763                 cpu_to_be32(pcc->radix_page_info->entries[i]);
764         }
765         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
766                           radix_AP_encodings,
767                           pcc->radix_page_info->count *
768                           sizeof(radix_AP_encodings[0]))));
769     }
770 
771     /*
772      * We set this property to let the guest know that it can use the large
773      * decrementer and its width in bits.
774      */
775     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
776         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
777                               pcc->lrg_decr_bits)));
778 }
779 
780 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
781 {
782     CPUState **rev;
783     CPUState *cs;
784     int n_cpus;
785     int cpus_offset;
786     int i;
787 
788     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
789     _FDT(cpus_offset);
790     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
791     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
792 
793     /*
794      * We walk the CPUs in reverse order to ensure that CPU DT nodes
795      * created by fdt_add_subnode() end up in the right order in FDT
796      * for the guest kernel the enumerate the CPUs correctly.
797      *
798      * The CPU list cannot be traversed in reverse order, so we need
799      * to do extra work.
800      */
801     n_cpus = 0;
802     rev = NULL;
803     CPU_FOREACH(cs) {
804         rev = g_renew(CPUState *, rev, n_cpus + 1);
805         rev[n_cpus++] = cs;
806     }
807 
808     for (i = n_cpus - 1; i >= 0; i--) {
809         CPUState *cs = rev[i];
810         PowerPCCPU *cpu = POWERPC_CPU(cs);
811         int index = spapr_get_vcpu_id(cpu);
812         DeviceClass *dc = DEVICE_GET_CLASS(cs);
813         g_autofree char *nodename = NULL;
814         int offset;
815 
816         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
817             continue;
818         }
819 
820         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
821         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
822         _FDT(offset);
823         spapr_dt_cpu(cs, fdt, offset, spapr);
824     }
825 
826     g_free(rev);
827 }
828 
829 static int spapr_dt_rng(void *fdt)
830 {
831     int node;
832     int ret;
833 
834     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
835     if (node <= 0) {
836         return -1;
837     }
838     ret = fdt_setprop_string(fdt, node, "device_type",
839                              "ibm,platform-facilities");
840     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
841     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
842 
843     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
844     if (node <= 0) {
845         return -1;
846     }
847     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
848 
849     return ret ? -1 : 0;
850 }
851 
852 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
853 {
854     MachineState *ms = MACHINE(spapr);
855     int rtas;
856     GString *hypertas = g_string_sized_new(256);
857     GString *qemu_hypertas = g_string_sized_new(256);
858     uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
859         memory_region_size(&MACHINE(spapr)->device_memory->mr);
860     uint32_t lrdr_capacity[] = {
861         cpu_to_be32(max_device_addr >> 32),
862         cpu_to_be32(max_device_addr & 0xffffffff),
863         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
864         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
865         cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
866     };
867 
868     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
869 
870     /* hypertas */
871     add_str(hypertas, "hcall-pft");
872     add_str(hypertas, "hcall-term");
873     add_str(hypertas, "hcall-dabr");
874     add_str(hypertas, "hcall-interrupt");
875     add_str(hypertas, "hcall-tce");
876     add_str(hypertas, "hcall-vio");
877     add_str(hypertas, "hcall-splpar");
878     add_str(hypertas, "hcall-join");
879     add_str(hypertas, "hcall-bulk");
880     add_str(hypertas, "hcall-set-mode");
881     add_str(hypertas, "hcall-sprg0");
882     add_str(hypertas, "hcall-copy");
883     add_str(hypertas, "hcall-debug");
884     add_str(hypertas, "hcall-vphn");
885     if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) {
886         add_str(hypertas, "hcall-rpt-invalidate");
887     }
888 
889     add_str(qemu_hypertas, "hcall-memop1");
890 
891     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
892         add_str(hypertas, "hcall-multi-tce");
893     }
894 
895     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
896         add_str(hypertas, "hcall-hpt-resize");
897     }
898 
899     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
900                      hypertas->str, hypertas->len));
901     g_string_free(hypertas, TRUE);
902     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
903                      qemu_hypertas->str, qemu_hypertas->len));
904     g_string_free(qemu_hypertas, TRUE);
905 
906     spapr_numa_write_rtas_dt(spapr, fdt, rtas);
907 
908     /*
909      * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
910      * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
911      *
912      * The system reset requirements are driven by existing Linux and PowerVM
913      * implementation which (contrary to PAPR) saves r3 in the error log
914      * structure like machine check, so Linux expects to find the saved r3
915      * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
916      * does not look at the error value).
917      *
918      * System reset interrupts are not subject to interlock like machine
919      * check, so this memory area could be corrupted if the sreset is
920      * interrupted by a machine check (or vice versa) if it was shared. To
921      * prevent this, system reset uses per-CPU areas for the sreset save
922      * area. A system reset that interrupts a system reset handler could
923      * still overwrite this area, but Linux doesn't try to recover in that
924      * case anyway.
925      *
926      * The extra 8 bytes is required because Linux's FWNMI error log check
927      * is off-by-one.
928      *
929      * RTAS_MIN_SIZE is required for the RTAS blob itself.
930      */
931     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE +
932                           RTAS_ERROR_LOG_MAX +
933                           ms->smp.max_cpus * sizeof(uint64_t) * 2 +
934                           sizeof(uint64_t)));
935     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
936                           RTAS_ERROR_LOG_MAX));
937     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
938                           RTAS_EVENT_SCAN_RATE));
939 
940     g_assert(msi_nonbroken);
941     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
942 
943     /*
944      * According to PAPR, rtas ibm,os-term does not guarantee a return
945      * back to the guest cpu.
946      *
947      * While an additional ibm,extended-os-term property indicates
948      * that rtas call return will always occur. Set this property.
949      */
950     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
951 
952     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
953                      lrdr_capacity, sizeof(lrdr_capacity)));
954 
955     spapr_dt_rtas_tokens(fdt, rtas);
956 }
957 
958 /*
959  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
960  * and the XIVE features that the guest may request and thus the valid
961  * values for bytes 23..26 of option vector 5:
962  */
963 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
964                                           int chosen)
965 {
966     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
967 
968     char val[2 * 4] = {
969         23, 0x00, /* XICS / XIVE mode */
970         24, 0x00, /* Hash/Radix, filled in below. */
971         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
972         26, 0x40, /* Radix options: GTSE == yes. */
973     };
974 
975     if (spapr->irq->xics && spapr->irq->xive) {
976         val[1] = SPAPR_OV5_XIVE_BOTH;
977     } else if (spapr->irq->xive) {
978         val[1] = SPAPR_OV5_XIVE_EXPLOIT;
979     } else {
980         assert(spapr->irq->xics);
981         val[1] = SPAPR_OV5_XIVE_LEGACY;
982     }
983 
984     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
985                           first_ppc_cpu->compat_pvr)) {
986         /*
987          * If we're in a pre POWER9 compat mode then the guest should
988          * do hash and use the legacy interrupt mode
989          */
990         val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
991         val[3] = 0x00; /* Hash */
992         spapr_check_mmu_mode(false);
993     } else if (kvm_enabled()) {
994         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
995             val[3] = 0x80; /* OV5_MMU_BOTH */
996         } else if (kvmppc_has_cap_mmu_radix()) {
997             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
998         } else {
999             val[3] = 0x00; /* Hash */
1000         }
1001     } else {
1002         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1003         val[3] = 0xC0;
1004     }
1005     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1006                      val, sizeof(val)));
1007 }
1008 
1009 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1010 {
1011     MachineState *machine = MACHINE(spapr);
1012     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1013     int chosen;
1014 
1015     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1016 
1017     if (reset) {
1018         const char *boot_device = spapr->boot_device;
1019         char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1020         size_t cb = 0;
1021         char *bootlist = get_boot_devices_list(&cb);
1022 
1023         if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1024             _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1025                                     machine->kernel_cmdline));
1026         }
1027 
1028         if (spapr->initrd_size) {
1029             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1030                                   spapr->initrd_base));
1031             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1032                                   spapr->initrd_base + spapr->initrd_size));
1033         }
1034 
1035         if (spapr->kernel_size) {
1036             uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1037                                   cpu_to_be64(spapr->kernel_size) };
1038 
1039             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1040                          &kprop, sizeof(kprop)));
1041             if (spapr->kernel_le) {
1042                 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1043             }
1044         }
1045         if (boot_menu) {
1046             _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1047         }
1048         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1049         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1050         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1051 
1052         if (cb && bootlist) {
1053             int i;
1054 
1055             for (i = 0; i < cb; i++) {
1056                 if (bootlist[i] == '\n') {
1057                     bootlist[i] = ' ';
1058                 }
1059             }
1060             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1061         }
1062 
1063         if (boot_device && strlen(boot_device)) {
1064             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1065         }
1066 
1067         if (!spapr->has_graphics && stdout_path) {
1068             /*
1069              * "linux,stdout-path" and "stdout" properties are
1070              * deprecated by linux kernel. New platforms should only
1071              * use the "stdout-path" property. Set the new property
1072              * and continue using older property to remain compatible
1073              * with the existing firmware.
1074              */
1075             _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1076             _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1077         }
1078 
1079         /*
1080          * We can deal with BAR reallocation just fine, advertise it
1081          * to the guest
1082          */
1083         if (smc->linux_pci_probe) {
1084             _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1085         }
1086 
1087         spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1088 
1089         g_free(stdout_path);
1090         g_free(bootlist);
1091     }
1092 
1093     _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1094 }
1095 
1096 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1097 {
1098     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1099      * KVM to work under pHyp with some guest co-operation */
1100     int hypervisor;
1101     uint8_t hypercall[16];
1102 
1103     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1104     /* indicate KVM hypercall interface */
1105     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1106     if (kvmppc_has_cap_fixup_hcalls()) {
1107         /*
1108          * Older KVM versions with older guest kernels were broken
1109          * with the magic page, don't allow the guest to map it.
1110          */
1111         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1112                                   sizeof(hypercall))) {
1113             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1114                              hypercall, sizeof(hypercall)));
1115         }
1116     }
1117 }
1118 
1119 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1120 {
1121     MachineState *machine = MACHINE(spapr);
1122     MachineClass *mc = MACHINE_GET_CLASS(machine);
1123     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1124     uint32_t root_drc_type_mask = 0;
1125     int ret;
1126     void *fdt;
1127     SpaprPhbState *phb;
1128     char *buf;
1129 
1130     fdt = g_malloc0(space);
1131     _FDT((fdt_create_empty_tree(fdt, space)));
1132 
1133     /* Root node */
1134     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1135     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1136     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1137 
1138     /* Guest UUID & Name*/
1139     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1140     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1141     if (qemu_uuid_set) {
1142         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1143     }
1144     g_free(buf);
1145 
1146     if (qemu_get_vm_name()) {
1147         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1148                                 qemu_get_vm_name()));
1149     }
1150 
1151     /* Host Model & Serial Number */
1152     if (spapr->host_model) {
1153         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1154     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1155         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1156         g_free(buf);
1157     }
1158 
1159     if (spapr->host_serial) {
1160         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1161     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1162         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1163         g_free(buf);
1164     }
1165 
1166     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1167     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1168 
1169     /* /interrupt controller */
1170     spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1171 
1172     ret = spapr_dt_memory(spapr, fdt);
1173     if (ret < 0) {
1174         error_report("couldn't setup memory nodes in fdt");
1175         exit(1);
1176     }
1177 
1178     /* /vdevice */
1179     spapr_dt_vdevice(spapr->vio_bus, fdt);
1180 
1181     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1182         ret = spapr_dt_rng(fdt);
1183         if (ret < 0) {
1184             error_report("could not set up rng device in the fdt");
1185             exit(1);
1186         }
1187     }
1188 
1189     QLIST_FOREACH(phb, &spapr->phbs, list) {
1190         ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1191         if (ret < 0) {
1192             error_report("couldn't setup PCI devices in fdt");
1193             exit(1);
1194         }
1195     }
1196 
1197     spapr_dt_cpus(fdt, spapr);
1198 
1199     /* ibm,drc-indexes and friends */
1200     if (smc->dr_lmb_enabled) {
1201         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
1202     }
1203     if (smc->dr_phb_enabled) {
1204         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
1205     }
1206     if (mc->nvdimm_supported) {
1207         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
1208     }
1209     if (root_drc_type_mask) {
1210         _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
1211     }
1212 
1213     if (mc->has_hotpluggable_cpus) {
1214         int offset = fdt_path_offset(fdt, "/cpus");
1215         ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1216         if (ret < 0) {
1217             error_report("Couldn't set up CPU DR device tree properties");
1218             exit(1);
1219         }
1220     }
1221 
1222     /* /event-sources */
1223     spapr_dt_events(spapr, fdt);
1224 
1225     /* /rtas */
1226     spapr_dt_rtas(spapr, fdt);
1227 
1228     /* /chosen */
1229     spapr_dt_chosen(spapr, fdt, reset);
1230 
1231     /* /hypervisor */
1232     if (kvm_enabled()) {
1233         spapr_dt_hypervisor(spapr, fdt);
1234     }
1235 
1236     /* Build memory reserve map */
1237     if (reset) {
1238         if (spapr->kernel_size) {
1239             _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1240                                   spapr->kernel_size)));
1241         }
1242         if (spapr->initrd_size) {
1243             _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1244                                   spapr->initrd_size)));
1245         }
1246     }
1247 
1248     /* NVDIMM devices */
1249     if (mc->nvdimm_supported) {
1250         spapr_dt_persistent_memory(spapr, fdt);
1251     }
1252 
1253     return fdt;
1254 }
1255 
1256 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1257 {
1258     SpaprMachineState *spapr = opaque;
1259 
1260     return (addr & 0x0fffffff) + spapr->kernel_addr;
1261 }
1262 
1263 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1264                                     PowerPCCPU *cpu)
1265 {
1266     CPUPPCState *env = &cpu->env;
1267 
1268     /* The TCG path should also be holding the BQL at this point */
1269     g_assert(qemu_mutex_iothread_locked());
1270 
1271     if (msr_pr) {
1272         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1273         env->gpr[3] = H_PRIVILEGE;
1274     } else {
1275         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1276     }
1277 }
1278 
1279 struct LPCRSyncState {
1280     target_ulong value;
1281     target_ulong mask;
1282 };
1283 
1284 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1285 {
1286     struct LPCRSyncState *s = arg.host_ptr;
1287     PowerPCCPU *cpu = POWERPC_CPU(cs);
1288     CPUPPCState *env = &cpu->env;
1289     target_ulong lpcr;
1290 
1291     cpu_synchronize_state(cs);
1292     lpcr = env->spr[SPR_LPCR];
1293     lpcr &= ~s->mask;
1294     lpcr |= s->value;
1295     ppc_store_lpcr(cpu, lpcr);
1296 }
1297 
1298 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1299 {
1300     CPUState *cs;
1301     struct LPCRSyncState s = {
1302         .value = value,
1303         .mask = mask
1304     };
1305     CPU_FOREACH(cs) {
1306         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1307     }
1308 }
1309 
1310 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1311 {
1312     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1313 
1314     /* Copy PATE1:GR into PATE0:HR */
1315     entry->dw0 = spapr->patb_entry & PATE0_HR;
1316     entry->dw1 = spapr->patb_entry;
1317 }
1318 
1319 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1320 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1321 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1322 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1323 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1324 
1325 /*
1326  * Get the fd to access the kernel htab, re-opening it if necessary
1327  */
1328 static int get_htab_fd(SpaprMachineState *spapr)
1329 {
1330     Error *local_err = NULL;
1331 
1332     if (spapr->htab_fd >= 0) {
1333         return spapr->htab_fd;
1334     }
1335 
1336     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1337     if (spapr->htab_fd < 0) {
1338         error_report_err(local_err);
1339     }
1340 
1341     return spapr->htab_fd;
1342 }
1343 
1344 void close_htab_fd(SpaprMachineState *spapr)
1345 {
1346     if (spapr->htab_fd >= 0) {
1347         close(spapr->htab_fd);
1348     }
1349     spapr->htab_fd = -1;
1350 }
1351 
1352 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1353 {
1354     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1355 
1356     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1357 }
1358 
1359 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1360 {
1361     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1362 
1363     assert(kvm_enabled());
1364 
1365     if (!spapr->htab) {
1366         return 0;
1367     }
1368 
1369     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1370 }
1371 
1372 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1373                                                 hwaddr ptex, int n)
1374 {
1375     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1376     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1377 
1378     if (!spapr->htab) {
1379         /*
1380          * HTAB is controlled by KVM. Fetch into temporary buffer
1381          */
1382         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1383         kvmppc_read_hptes(hptes, ptex, n);
1384         return hptes;
1385     }
1386 
1387     /*
1388      * HTAB is controlled by QEMU. Just point to the internally
1389      * accessible PTEG.
1390      */
1391     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1392 }
1393 
1394 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1395                               const ppc_hash_pte64_t *hptes,
1396                               hwaddr ptex, int n)
1397 {
1398     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1399 
1400     if (!spapr->htab) {
1401         g_free((void *)hptes);
1402     }
1403 
1404     /* Nothing to do for qemu managed HPT */
1405 }
1406 
1407 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1408                       uint64_t pte0, uint64_t pte1)
1409 {
1410     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1411     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1412 
1413     if (!spapr->htab) {
1414         kvmppc_write_hpte(ptex, pte0, pte1);
1415     } else {
1416         if (pte0 & HPTE64_V_VALID) {
1417             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1418             /*
1419              * When setting valid, we write PTE1 first. This ensures
1420              * proper synchronization with the reading code in
1421              * ppc_hash64_pteg_search()
1422              */
1423             smp_wmb();
1424             stq_p(spapr->htab + offset, pte0);
1425         } else {
1426             stq_p(spapr->htab + offset, pte0);
1427             /*
1428              * When clearing it we set PTE0 first. This ensures proper
1429              * synchronization with the reading code in
1430              * ppc_hash64_pteg_search()
1431              */
1432             smp_wmb();
1433             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1434         }
1435     }
1436 }
1437 
1438 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1439                              uint64_t pte1)
1440 {
1441     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1442     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1443 
1444     if (!spapr->htab) {
1445         /* There should always be a hash table when this is called */
1446         error_report("spapr_hpte_set_c called with no hash table !");
1447         return;
1448     }
1449 
1450     /* The HW performs a non-atomic byte update */
1451     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1452 }
1453 
1454 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1455                              uint64_t pte1)
1456 {
1457     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1458     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1459 
1460     if (!spapr->htab) {
1461         /* There should always be a hash table when this is called */
1462         error_report("spapr_hpte_set_r called with no hash table !");
1463         return;
1464     }
1465 
1466     /* The HW performs a non-atomic byte update */
1467     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1468 }
1469 
1470 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1471 {
1472     int shift;
1473 
1474     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1475      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1476      * that's much more than is needed for Linux guests */
1477     shift = ctz64(pow2ceil(ramsize)) - 7;
1478     shift = MAX(shift, 18); /* Minimum architected size */
1479     shift = MIN(shift, 46); /* Maximum architected size */
1480     return shift;
1481 }
1482 
1483 void spapr_free_hpt(SpaprMachineState *spapr)
1484 {
1485     g_free(spapr->htab);
1486     spapr->htab = NULL;
1487     spapr->htab_shift = 0;
1488     close_htab_fd(spapr);
1489 }
1490 
1491 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1492 {
1493     ERRP_GUARD();
1494     long rc;
1495 
1496     /* Clean up any HPT info from a previous boot */
1497     spapr_free_hpt(spapr);
1498 
1499     rc = kvmppc_reset_htab(shift);
1500 
1501     if (rc == -EOPNOTSUPP) {
1502         error_setg(errp, "HPT not supported in nested guests");
1503         return -EOPNOTSUPP;
1504     }
1505 
1506     if (rc < 0) {
1507         /* kernel-side HPT needed, but couldn't allocate one */
1508         error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1509                          shift);
1510         error_append_hint(errp, "Try smaller maxmem?\n");
1511         return -errno;
1512     } else if (rc > 0) {
1513         /* kernel-side HPT allocated */
1514         if (rc != shift) {
1515             error_setg(errp,
1516                        "Requested order %d HPT, but kernel allocated order %ld",
1517                        shift, rc);
1518             error_append_hint(errp, "Try smaller maxmem?\n");
1519             return -ENOSPC;
1520         }
1521 
1522         spapr->htab_shift = shift;
1523         spapr->htab = NULL;
1524     } else {
1525         /* kernel-side HPT not needed, allocate in userspace instead */
1526         size_t size = 1ULL << shift;
1527         int i;
1528 
1529         spapr->htab = qemu_memalign(size, size);
1530         memset(spapr->htab, 0, size);
1531         spapr->htab_shift = shift;
1532 
1533         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1534             DIRTY_HPTE(HPTE(spapr->htab, i));
1535         }
1536     }
1537     /* We're setting up a hash table, so that means we're not radix */
1538     spapr->patb_entry = 0;
1539     spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1540     return 0;
1541 }
1542 
1543 void spapr_setup_hpt(SpaprMachineState *spapr)
1544 {
1545     int hpt_shift;
1546 
1547     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1548         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1549     } else {
1550         uint64_t current_ram_size;
1551 
1552         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1553         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1554     }
1555     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1556 
1557     if (kvm_enabled()) {
1558         hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1559 
1560         /* Check our RMA fits in the possible VRMA */
1561         if (vrma_limit < spapr->rma_size) {
1562             error_report("Unable to create %" HWADDR_PRIu
1563                          "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1564                          spapr->rma_size / MiB, vrma_limit / MiB);
1565             exit(EXIT_FAILURE);
1566         }
1567     }
1568 }
1569 
1570 void spapr_check_mmu_mode(bool guest_radix)
1571 {
1572     if (guest_radix) {
1573         if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1574             error_report("Guest requested unavailable MMU mode (radix).");
1575             exit(EXIT_FAILURE);
1576         }
1577     } else {
1578         if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1579             && !kvmppc_has_cap_mmu_hash_v3()) {
1580             error_report("Guest requested unavailable MMU mode (hash).");
1581             exit(EXIT_FAILURE);
1582         }
1583     }
1584 }
1585 
1586 static void spapr_machine_reset(MachineState *machine)
1587 {
1588     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1589     PowerPCCPU *first_ppc_cpu;
1590     hwaddr fdt_addr;
1591     void *fdt;
1592     int rc;
1593 
1594     pef_kvm_reset(machine->cgs, &error_fatal);
1595     spapr_caps_apply(spapr);
1596 
1597     first_ppc_cpu = POWERPC_CPU(first_cpu);
1598     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1599         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1600                               spapr->max_compat_pvr)) {
1601         /*
1602          * If using KVM with radix mode available, VCPUs can be started
1603          * without a HPT because KVM will start them in radix mode.
1604          * Set the GR bit in PATE so that we know there is no HPT.
1605          */
1606         spapr->patb_entry = PATE1_GR;
1607         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1608     } else {
1609         spapr_setup_hpt(spapr);
1610     }
1611 
1612     qemu_devices_reset();
1613 
1614     spapr_ovec_cleanup(spapr->ov5_cas);
1615     spapr->ov5_cas = spapr_ovec_new();
1616 
1617     ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1618 
1619     /*
1620      * This is fixing some of the default configuration of the XIVE
1621      * devices. To be called after the reset of the machine devices.
1622      */
1623     spapr_irq_reset(spapr, &error_fatal);
1624 
1625     /*
1626      * There is no CAS under qtest. Simulate one to please the code that
1627      * depends on spapr->ov5_cas. This is especially needed to test device
1628      * unplug, so we do that before resetting the DRCs.
1629      */
1630     if (qtest_enabled()) {
1631         spapr_ovec_cleanup(spapr->ov5_cas);
1632         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1633     }
1634 
1635     /* DRC reset may cause a device to be unplugged. This will cause troubles
1636      * if this device is used by another device (eg, a running vhost backend
1637      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1638      * situations, we reset DRCs after all devices have been reset.
1639      */
1640     spapr_drc_reset_all(spapr);
1641 
1642     spapr_clear_pending_events(spapr);
1643 
1644     /*
1645      * We place the device tree just below either the top of the RMA,
1646      * or just below 2GB, whichever is lower, so that it can be
1647      * processed with 32-bit real mode code if necessary
1648      */
1649     fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE;
1650 
1651     fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1652     if (spapr->vof) {
1653         spapr_vof_reset(spapr, fdt, &error_fatal);
1654         /*
1655          * Do not pack the FDT as the client may change properties.
1656          * VOF client does not expect the FDT so we do not load it to the VM.
1657          */
1658     } else {
1659         rc = fdt_pack(fdt);
1660         /* Should only fail if we've built a corrupted tree */
1661         assert(rc == 0);
1662 
1663         spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT,
1664                                   0, fdt_addr, 0);
1665         cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1666     }
1667     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1668 
1669     g_free(spapr->fdt_blob);
1670     spapr->fdt_size = fdt_totalsize(fdt);
1671     spapr->fdt_initial_size = spapr->fdt_size;
1672     spapr->fdt_blob = fdt;
1673 
1674     /* Set up the entry state */
1675     first_ppc_cpu->env.gpr[5] = 0;
1676 
1677     spapr->fwnmi_system_reset_addr = -1;
1678     spapr->fwnmi_machine_check_addr = -1;
1679     spapr->fwnmi_machine_check_interlock = -1;
1680 
1681     /* Signal all vCPUs waiting on this condition */
1682     qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1683 
1684     migrate_del_blocker(spapr->fwnmi_migration_blocker);
1685 }
1686 
1687 static void spapr_create_nvram(SpaprMachineState *spapr)
1688 {
1689     DeviceState *dev = qdev_new("spapr-nvram");
1690     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1691 
1692     if (dinfo) {
1693         qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1694                                 &error_fatal);
1695     }
1696 
1697     qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1698 
1699     spapr->nvram = (struct SpaprNvram *)dev;
1700 }
1701 
1702 static void spapr_rtc_create(SpaprMachineState *spapr)
1703 {
1704     object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1705                                        sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1706                                        &error_fatal, NULL);
1707     qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1708     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1709                               "date");
1710 }
1711 
1712 /* Returns whether we want to use VGA or not */
1713 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1714 {
1715     switch (vga_interface_type) {
1716     case VGA_NONE:
1717         return false;
1718     case VGA_DEVICE:
1719         return true;
1720     case VGA_STD:
1721     case VGA_VIRTIO:
1722     case VGA_CIRRUS:
1723         return pci_vga_init(pci_bus) != NULL;
1724     default:
1725         error_setg(errp,
1726                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1727         return false;
1728     }
1729 }
1730 
1731 static int spapr_pre_load(void *opaque)
1732 {
1733     int rc;
1734 
1735     rc = spapr_caps_pre_load(opaque);
1736     if (rc) {
1737         return rc;
1738     }
1739 
1740     return 0;
1741 }
1742 
1743 static int spapr_post_load(void *opaque, int version_id)
1744 {
1745     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1746     int err = 0;
1747 
1748     err = spapr_caps_post_migration(spapr);
1749     if (err) {
1750         return err;
1751     }
1752 
1753     /*
1754      * In earlier versions, there was no separate qdev for the PAPR
1755      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1756      * So when migrating from those versions, poke the incoming offset
1757      * value into the RTC device
1758      */
1759     if (version_id < 3) {
1760         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1761         if (err) {
1762             return err;
1763         }
1764     }
1765 
1766     if (kvm_enabled() && spapr->patb_entry) {
1767         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1768         bool radix = !!(spapr->patb_entry & PATE1_GR);
1769         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1770 
1771         /*
1772          * Update LPCR:HR and UPRT as they may not be set properly in
1773          * the stream
1774          */
1775         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1776                             LPCR_HR | LPCR_UPRT);
1777 
1778         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1779         if (err) {
1780             error_report("Process table config unsupported by the host");
1781             return -EINVAL;
1782         }
1783     }
1784 
1785     err = spapr_irq_post_load(spapr, version_id);
1786     if (err) {
1787         return err;
1788     }
1789 
1790     return err;
1791 }
1792 
1793 static int spapr_pre_save(void *opaque)
1794 {
1795     int rc;
1796 
1797     rc = spapr_caps_pre_save(opaque);
1798     if (rc) {
1799         return rc;
1800     }
1801 
1802     return 0;
1803 }
1804 
1805 static bool version_before_3(void *opaque, int version_id)
1806 {
1807     return version_id < 3;
1808 }
1809 
1810 static bool spapr_pending_events_needed(void *opaque)
1811 {
1812     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1813     return !QTAILQ_EMPTY(&spapr->pending_events);
1814 }
1815 
1816 static const VMStateDescription vmstate_spapr_event_entry = {
1817     .name = "spapr_event_log_entry",
1818     .version_id = 1,
1819     .minimum_version_id = 1,
1820     .fields = (VMStateField[]) {
1821         VMSTATE_UINT32(summary, SpaprEventLogEntry),
1822         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1823         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1824                                      NULL, extended_length),
1825         VMSTATE_END_OF_LIST()
1826     },
1827 };
1828 
1829 static const VMStateDescription vmstate_spapr_pending_events = {
1830     .name = "spapr_pending_events",
1831     .version_id = 1,
1832     .minimum_version_id = 1,
1833     .needed = spapr_pending_events_needed,
1834     .fields = (VMStateField[]) {
1835         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1836                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1837         VMSTATE_END_OF_LIST()
1838     },
1839 };
1840 
1841 static bool spapr_ov5_cas_needed(void *opaque)
1842 {
1843     SpaprMachineState *spapr = opaque;
1844     SpaprOptionVector *ov5_mask = spapr_ovec_new();
1845     bool cas_needed;
1846 
1847     /* Prior to the introduction of SpaprOptionVector, we had two option
1848      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1849      * Both of these options encode machine topology into the device-tree
1850      * in such a way that the now-booted OS should still be able to interact
1851      * appropriately with QEMU regardless of what options were actually
1852      * negotiatied on the source side.
1853      *
1854      * As such, we can avoid migrating the CAS-negotiated options if these
1855      * are the only options available on the current machine/platform.
1856      * Since these are the only options available for pseries-2.7 and
1857      * earlier, this allows us to maintain old->new/new->old migration
1858      * compatibility.
1859      *
1860      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1861      * via default pseries-2.8 machines and explicit command-line parameters.
1862      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1863      * of the actual CAS-negotiated values to continue working properly. For
1864      * example, availability of memory unplug depends on knowing whether
1865      * OV5_HP_EVT was negotiated via CAS.
1866      *
1867      * Thus, for any cases where the set of available CAS-negotiatable
1868      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1869      * include the CAS-negotiated options in the migration stream, unless
1870      * if they affect boot time behaviour only.
1871      */
1872     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1873     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1874     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1875 
1876     /* We need extra information if we have any bits outside the mask
1877      * defined above */
1878     cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1879 
1880     spapr_ovec_cleanup(ov5_mask);
1881 
1882     return cas_needed;
1883 }
1884 
1885 static const VMStateDescription vmstate_spapr_ov5_cas = {
1886     .name = "spapr_option_vector_ov5_cas",
1887     .version_id = 1,
1888     .minimum_version_id = 1,
1889     .needed = spapr_ov5_cas_needed,
1890     .fields = (VMStateField[]) {
1891         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1892                                  vmstate_spapr_ovec, SpaprOptionVector),
1893         VMSTATE_END_OF_LIST()
1894     },
1895 };
1896 
1897 static bool spapr_patb_entry_needed(void *opaque)
1898 {
1899     SpaprMachineState *spapr = opaque;
1900 
1901     return !!spapr->patb_entry;
1902 }
1903 
1904 static const VMStateDescription vmstate_spapr_patb_entry = {
1905     .name = "spapr_patb_entry",
1906     .version_id = 1,
1907     .minimum_version_id = 1,
1908     .needed = spapr_patb_entry_needed,
1909     .fields = (VMStateField[]) {
1910         VMSTATE_UINT64(patb_entry, SpaprMachineState),
1911         VMSTATE_END_OF_LIST()
1912     },
1913 };
1914 
1915 static bool spapr_irq_map_needed(void *opaque)
1916 {
1917     SpaprMachineState *spapr = opaque;
1918 
1919     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1920 }
1921 
1922 static const VMStateDescription vmstate_spapr_irq_map = {
1923     .name = "spapr_irq_map",
1924     .version_id = 1,
1925     .minimum_version_id = 1,
1926     .needed = spapr_irq_map_needed,
1927     .fields = (VMStateField[]) {
1928         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1929         VMSTATE_END_OF_LIST()
1930     },
1931 };
1932 
1933 static bool spapr_dtb_needed(void *opaque)
1934 {
1935     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1936 
1937     return smc->update_dt_enabled;
1938 }
1939 
1940 static int spapr_dtb_pre_load(void *opaque)
1941 {
1942     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1943 
1944     g_free(spapr->fdt_blob);
1945     spapr->fdt_blob = NULL;
1946     spapr->fdt_size = 0;
1947 
1948     return 0;
1949 }
1950 
1951 static const VMStateDescription vmstate_spapr_dtb = {
1952     .name = "spapr_dtb",
1953     .version_id = 1,
1954     .minimum_version_id = 1,
1955     .needed = spapr_dtb_needed,
1956     .pre_load = spapr_dtb_pre_load,
1957     .fields = (VMStateField[]) {
1958         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
1959         VMSTATE_UINT32(fdt_size, SpaprMachineState),
1960         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
1961                                      fdt_size),
1962         VMSTATE_END_OF_LIST()
1963     },
1964 };
1965 
1966 static bool spapr_fwnmi_needed(void *opaque)
1967 {
1968     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1969 
1970     return spapr->fwnmi_machine_check_addr != -1;
1971 }
1972 
1973 static int spapr_fwnmi_pre_save(void *opaque)
1974 {
1975     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1976 
1977     /*
1978      * Check if machine check handling is in progress and print a
1979      * warning message.
1980      */
1981     if (spapr->fwnmi_machine_check_interlock != -1) {
1982         warn_report("A machine check is being handled during migration. The"
1983                 "handler may run and log hardware error on the destination");
1984     }
1985 
1986     return 0;
1987 }
1988 
1989 static const VMStateDescription vmstate_spapr_fwnmi = {
1990     .name = "spapr_fwnmi",
1991     .version_id = 1,
1992     .minimum_version_id = 1,
1993     .needed = spapr_fwnmi_needed,
1994     .pre_save = spapr_fwnmi_pre_save,
1995     .fields = (VMStateField[]) {
1996         VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
1997         VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
1998         VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
1999         VMSTATE_END_OF_LIST()
2000     },
2001 };
2002 
2003 static const VMStateDescription vmstate_spapr = {
2004     .name = "spapr",
2005     .version_id = 3,
2006     .minimum_version_id = 1,
2007     .pre_load = spapr_pre_load,
2008     .post_load = spapr_post_load,
2009     .pre_save = spapr_pre_save,
2010     .fields = (VMStateField[]) {
2011         /* used to be @next_irq */
2012         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2013 
2014         /* RTC offset */
2015         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2016 
2017         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2018         VMSTATE_END_OF_LIST()
2019     },
2020     .subsections = (const VMStateDescription*[]) {
2021         &vmstate_spapr_ov5_cas,
2022         &vmstate_spapr_patb_entry,
2023         &vmstate_spapr_pending_events,
2024         &vmstate_spapr_cap_htm,
2025         &vmstate_spapr_cap_vsx,
2026         &vmstate_spapr_cap_dfp,
2027         &vmstate_spapr_cap_cfpc,
2028         &vmstate_spapr_cap_sbbc,
2029         &vmstate_spapr_cap_ibs,
2030         &vmstate_spapr_cap_hpt_maxpagesize,
2031         &vmstate_spapr_irq_map,
2032         &vmstate_spapr_cap_nested_kvm_hv,
2033         &vmstate_spapr_dtb,
2034         &vmstate_spapr_cap_large_decr,
2035         &vmstate_spapr_cap_ccf_assist,
2036         &vmstate_spapr_cap_fwnmi,
2037         &vmstate_spapr_fwnmi,
2038         &vmstate_spapr_cap_rpt_invalidate,
2039         NULL
2040     }
2041 };
2042 
2043 static int htab_save_setup(QEMUFile *f, void *opaque)
2044 {
2045     SpaprMachineState *spapr = opaque;
2046 
2047     /* "Iteration" header */
2048     if (!spapr->htab_shift) {
2049         qemu_put_be32(f, -1);
2050     } else {
2051         qemu_put_be32(f, spapr->htab_shift);
2052     }
2053 
2054     if (spapr->htab) {
2055         spapr->htab_save_index = 0;
2056         spapr->htab_first_pass = true;
2057     } else {
2058         if (spapr->htab_shift) {
2059             assert(kvm_enabled());
2060         }
2061     }
2062 
2063 
2064     return 0;
2065 }
2066 
2067 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2068                             int chunkstart, int n_valid, int n_invalid)
2069 {
2070     qemu_put_be32(f, chunkstart);
2071     qemu_put_be16(f, n_valid);
2072     qemu_put_be16(f, n_invalid);
2073     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2074                     HASH_PTE_SIZE_64 * n_valid);
2075 }
2076 
2077 static void htab_save_end_marker(QEMUFile *f)
2078 {
2079     qemu_put_be32(f, 0);
2080     qemu_put_be16(f, 0);
2081     qemu_put_be16(f, 0);
2082 }
2083 
2084 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2085                                  int64_t max_ns)
2086 {
2087     bool has_timeout = max_ns != -1;
2088     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2089     int index = spapr->htab_save_index;
2090     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2091 
2092     assert(spapr->htab_first_pass);
2093 
2094     do {
2095         int chunkstart;
2096 
2097         /* Consume invalid HPTEs */
2098         while ((index < htabslots)
2099                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2100             CLEAN_HPTE(HPTE(spapr->htab, index));
2101             index++;
2102         }
2103 
2104         /* Consume valid HPTEs */
2105         chunkstart = index;
2106         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2107                && HPTE_VALID(HPTE(spapr->htab, index))) {
2108             CLEAN_HPTE(HPTE(spapr->htab, index));
2109             index++;
2110         }
2111 
2112         if (index > chunkstart) {
2113             int n_valid = index - chunkstart;
2114 
2115             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2116 
2117             if (has_timeout &&
2118                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2119                 break;
2120             }
2121         }
2122     } while ((index < htabslots) && !qemu_file_rate_limit(f));
2123 
2124     if (index >= htabslots) {
2125         assert(index == htabslots);
2126         index = 0;
2127         spapr->htab_first_pass = false;
2128     }
2129     spapr->htab_save_index = index;
2130 }
2131 
2132 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2133                                 int64_t max_ns)
2134 {
2135     bool final = max_ns < 0;
2136     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2137     int examined = 0, sent = 0;
2138     int index = spapr->htab_save_index;
2139     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2140 
2141     assert(!spapr->htab_first_pass);
2142 
2143     do {
2144         int chunkstart, invalidstart;
2145 
2146         /* Consume non-dirty HPTEs */
2147         while ((index < htabslots)
2148                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2149             index++;
2150             examined++;
2151         }
2152 
2153         chunkstart = index;
2154         /* Consume valid dirty HPTEs */
2155         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2156                && HPTE_DIRTY(HPTE(spapr->htab, index))
2157                && HPTE_VALID(HPTE(spapr->htab, index))) {
2158             CLEAN_HPTE(HPTE(spapr->htab, index));
2159             index++;
2160             examined++;
2161         }
2162 
2163         invalidstart = index;
2164         /* Consume invalid dirty HPTEs */
2165         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2166                && HPTE_DIRTY(HPTE(spapr->htab, index))
2167                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2168             CLEAN_HPTE(HPTE(spapr->htab, index));
2169             index++;
2170             examined++;
2171         }
2172 
2173         if (index > chunkstart) {
2174             int n_valid = invalidstart - chunkstart;
2175             int n_invalid = index - invalidstart;
2176 
2177             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2178             sent += index - chunkstart;
2179 
2180             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2181                 break;
2182             }
2183         }
2184 
2185         if (examined >= htabslots) {
2186             break;
2187         }
2188 
2189         if (index >= htabslots) {
2190             assert(index == htabslots);
2191             index = 0;
2192         }
2193     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2194 
2195     if (index >= htabslots) {
2196         assert(index == htabslots);
2197         index = 0;
2198     }
2199 
2200     spapr->htab_save_index = index;
2201 
2202     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2203 }
2204 
2205 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2206 #define MAX_KVM_BUF_SIZE    2048
2207 
2208 static int htab_save_iterate(QEMUFile *f, void *opaque)
2209 {
2210     SpaprMachineState *spapr = opaque;
2211     int fd;
2212     int rc = 0;
2213 
2214     /* Iteration header */
2215     if (!spapr->htab_shift) {
2216         qemu_put_be32(f, -1);
2217         return 1;
2218     } else {
2219         qemu_put_be32(f, 0);
2220     }
2221 
2222     if (!spapr->htab) {
2223         assert(kvm_enabled());
2224 
2225         fd = get_htab_fd(spapr);
2226         if (fd < 0) {
2227             return fd;
2228         }
2229 
2230         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2231         if (rc < 0) {
2232             return rc;
2233         }
2234     } else  if (spapr->htab_first_pass) {
2235         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2236     } else {
2237         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2238     }
2239 
2240     htab_save_end_marker(f);
2241 
2242     return rc;
2243 }
2244 
2245 static int htab_save_complete(QEMUFile *f, void *opaque)
2246 {
2247     SpaprMachineState *spapr = opaque;
2248     int fd;
2249 
2250     /* Iteration header */
2251     if (!spapr->htab_shift) {
2252         qemu_put_be32(f, -1);
2253         return 0;
2254     } else {
2255         qemu_put_be32(f, 0);
2256     }
2257 
2258     if (!spapr->htab) {
2259         int rc;
2260 
2261         assert(kvm_enabled());
2262 
2263         fd = get_htab_fd(spapr);
2264         if (fd < 0) {
2265             return fd;
2266         }
2267 
2268         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2269         if (rc < 0) {
2270             return rc;
2271         }
2272     } else {
2273         if (spapr->htab_first_pass) {
2274             htab_save_first_pass(f, spapr, -1);
2275         }
2276         htab_save_later_pass(f, spapr, -1);
2277     }
2278 
2279     /* End marker */
2280     htab_save_end_marker(f);
2281 
2282     return 0;
2283 }
2284 
2285 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2286 {
2287     SpaprMachineState *spapr = opaque;
2288     uint32_t section_hdr;
2289     int fd = -1;
2290     Error *local_err = NULL;
2291 
2292     if (version_id < 1 || version_id > 1) {
2293         error_report("htab_load() bad version");
2294         return -EINVAL;
2295     }
2296 
2297     section_hdr = qemu_get_be32(f);
2298 
2299     if (section_hdr == -1) {
2300         spapr_free_hpt(spapr);
2301         return 0;
2302     }
2303 
2304     if (section_hdr) {
2305         int ret;
2306 
2307         /* First section gives the htab size */
2308         ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2309         if (ret < 0) {
2310             error_report_err(local_err);
2311             return ret;
2312         }
2313         return 0;
2314     }
2315 
2316     if (!spapr->htab) {
2317         assert(kvm_enabled());
2318 
2319         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2320         if (fd < 0) {
2321             error_report_err(local_err);
2322             return fd;
2323         }
2324     }
2325 
2326     while (true) {
2327         uint32_t index;
2328         uint16_t n_valid, n_invalid;
2329 
2330         index = qemu_get_be32(f);
2331         n_valid = qemu_get_be16(f);
2332         n_invalid = qemu_get_be16(f);
2333 
2334         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2335             /* End of Stream */
2336             break;
2337         }
2338 
2339         if ((index + n_valid + n_invalid) >
2340             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2341             /* Bad index in stream */
2342             error_report(
2343                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2344                 index, n_valid, n_invalid, spapr->htab_shift);
2345             return -EINVAL;
2346         }
2347 
2348         if (spapr->htab) {
2349             if (n_valid) {
2350                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2351                                 HASH_PTE_SIZE_64 * n_valid);
2352             }
2353             if (n_invalid) {
2354                 memset(HPTE(spapr->htab, index + n_valid), 0,
2355                        HASH_PTE_SIZE_64 * n_invalid);
2356             }
2357         } else {
2358             int rc;
2359 
2360             assert(fd >= 0);
2361 
2362             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2363                                         &local_err);
2364             if (rc < 0) {
2365                 error_report_err(local_err);
2366                 return rc;
2367             }
2368         }
2369     }
2370 
2371     if (!spapr->htab) {
2372         assert(fd >= 0);
2373         close(fd);
2374     }
2375 
2376     return 0;
2377 }
2378 
2379 static void htab_save_cleanup(void *opaque)
2380 {
2381     SpaprMachineState *spapr = opaque;
2382 
2383     close_htab_fd(spapr);
2384 }
2385 
2386 static SaveVMHandlers savevm_htab_handlers = {
2387     .save_setup = htab_save_setup,
2388     .save_live_iterate = htab_save_iterate,
2389     .save_live_complete_precopy = htab_save_complete,
2390     .save_cleanup = htab_save_cleanup,
2391     .load_state = htab_load,
2392 };
2393 
2394 static void spapr_boot_set(void *opaque, const char *boot_device,
2395                            Error **errp)
2396 {
2397     SpaprMachineState *spapr = SPAPR_MACHINE(opaque);
2398 
2399     g_free(spapr->boot_device);
2400     spapr->boot_device = g_strdup(boot_device);
2401 }
2402 
2403 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2404 {
2405     MachineState *machine = MACHINE(spapr);
2406     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2407     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2408     int i;
2409 
2410     for (i = 0; i < nr_lmbs; i++) {
2411         uint64_t addr;
2412 
2413         addr = i * lmb_size + machine->device_memory->base;
2414         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2415                                addr / lmb_size);
2416     }
2417 }
2418 
2419 /*
2420  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2421  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2422  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2423  */
2424 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2425 {
2426     int i;
2427 
2428     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2429         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2430                    " is not aligned to %" PRIu64 " MiB",
2431                    machine->ram_size,
2432                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2433         return;
2434     }
2435 
2436     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2437         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2438                    " is not aligned to %" PRIu64 " MiB",
2439                    machine->ram_size,
2440                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2441         return;
2442     }
2443 
2444     for (i = 0; i < machine->numa_state->num_nodes; i++) {
2445         if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2446             error_setg(errp,
2447                        "Node %d memory size 0x%" PRIx64
2448                        " is not aligned to %" PRIu64 " MiB",
2449                        i, machine->numa_state->nodes[i].node_mem,
2450                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2451             return;
2452         }
2453     }
2454 }
2455 
2456 /* find cpu slot in machine->possible_cpus by core_id */
2457 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2458 {
2459     int index = id / ms->smp.threads;
2460 
2461     if (index >= ms->possible_cpus->len) {
2462         return NULL;
2463     }
2464     if (idx) {
2465         *idx = index;
2466     }
2467     return &ms->possible_cpus->cpus[index];
2468 }
2469 
2470 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2471 {
2472     MachineState *ms = MACHINE(spapr);
2473     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2474     Error *local_err = NULL;
2475     bool vsmt_user = !!spapr->vsmt;
2476     int kvm_smt = kvmppc_smt_threads();
2477     int ret;
2478     unsigned int smp_threads = ms->smp.threads;
2479 
2480     if (!kvm_enabled() && (smp_threads > 1)) {
2481         error_setg(errp, "TCG cannot support more than 1 thread/core "
2482                    "on a pseries machine");
2483         return;
2484     }
2485     if (!is_power_of_2(smp_threads)) {
2486         error_setg(errp, "Cannot support %d threads/core on a pseries "
2487                    "machine because it must be a power of 2", smp_threads);
2488         return;
2489     }
2490 
2491     /* Detemine the VSMT mode to use: */
2492     if (vsmt_user) {
2493         if (spapr->vsmt < smp_threads) {
2494             error_setg(errp, "Cannot support VSMT mode %d"
2495                        " because it must be >= threads/core (%d)",
2496                        spapr->vsmt, smp_threads);
2497             return;
2498         }
2499         /* In this case, spapr->vsmt has been set by the command line */
2500     } else if (!smc->smp_threads_vsmt) {
2501         /*
2502          * Default VSMT value is tricky, because we need it to be as
2503          * consistent as possible (for migration), but this requires
2504          * changing it for at least some existing cases.  We pick 8 as
2505          * the value that we'd get with KVM on POWER8, the
2506          * overwhelmingly common case in production systems.
2507          */
2508         spapr->vsmt = MAX(8, smp_threads);
2509     } else {
2510         spapr->vsmt = smp_threads;
2511     }
2512 
2513     /* KVM: If necessary, set the SMT mode: */
2514     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2515         ret = kvmppc_set_smt_threads(spapr->vsmt);
2516         if (ret) {
2517             /* Looks like KVM isn't able to change VSMT mode */
2518             error_setg(&local_err,
2519                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2520                        spapr->vsmt, ret);
2521             /* We can live with that if the default one is big enough
2522              * for the number of threads, and a submultiple of the one
2523              * we want.  In this case we'll waste some vcpu ids, but
2524              * behaviour will be correct */
2525             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2526                 warn_report_err(local_err);
2527             } else {
2528                 if (!vsmt_user) {
2529                     error_append_hint(&local_err,
2530                                       "On PPC, a VM with %d threads/core"
2531                                       " on a host with %d threads/core"
2532                                       " requires the use of VSMT mode %d.\n",
2533                                       smp_threads, kvm_smt, spapr->vsmt);
2534                 }
2535                 kvmppc_error_append_smt_possible_hint(&local_err);
2536                 error_propagate(errp, local_err);
2537             }
2538         }
2539     }
2540     /* else TCG: nothing to do currently */
2541 }
2542 
2543 static void spapr_init_cpus(SpaprMachineState *spapr)
2544 {
2545     MachineState *machine = MACHINE(spapr);
2546     MachineClass *mc = MACHINE_GET_CLASS(machine);
2547     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2548     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2549     const CPUArchIdList *possible_cpus;
2550     unsigned int smp_cpus = machine->smp.cpus;
2551     unsigned int smp_threads = machine->smp.threads;
2552     unsigned int max_cpus = machine->smp.max_cpus;
2553     int boot_cores_nr = smp_cpus / smp_threads;
2554     int i;
2555 
2556     possible_cpus = mc->possible_cpu_arch_ids(machine);
2557     if (mc->has_hotpluggable_cpus) {
2558         if (smp_cpus % smp_threads) {
2559             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2560                          smp_cpus, smp_threads);
2561             exit(1);
2562         }
2563         if (max_cpus % smp_threads) {
2564             error_report("max_cpus (%u) must be multiple of threads (%u)",
2565                          max_cpus, smp_threads);
2566             exit(1);
2567         }
2568     } else {
2569         if (max_cpus != smp_cpus) {
2570             error_report("This machine version does not support CPU hotplug");
2571             exit(1);
2572         }
2573         boot_cores_nr = possible_cpus->len;
2574     }
2575 
2576     if (smc->pre_2_10_has_unused_icps) {
2577         int i;
2578 
2579         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2580             /* Dummy entries get deregistered when real ICPState objects
2581              * are registered during CPU core hotplug.
2582              */
2583             pre_2_10_vmstate_register_dummy_icp(i);
2584         }
2585     }
2586 
2587     for (i = 0; i < possible_cpus->len; i++) {
2588         int core_id = i * smp_threads;
2589 
2590         if (mc->has_hotpluggable_cpus) {
2591             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2592                                    spapr_vcpu_id(spapr, core_id));
2593         }
2594 
2595         if (i < boot_cores_nr) {
2596             Object *core  = object_new(type);
2597             int nr_threads = smp_threads;
2598 
2599             /* Handle the partially filled core for older machine types */
2600             if ((i + 1) * smp_threads >= smp_cpus) {
2601                 nr_threads = smp_cpus - i * smp_threads;
2602             }
2603 
2604             object_property_set_int(core, "nr-threads", nr_threads,
2605                                     &error_fatal);
2606             object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2607                                     &error_fatal);
2608             qdev_realize(DEVICE(core), NULL, &error_fatal);
2609 
2610             object_unref(core);
2611         }
2612     }
2613 }
2614 
2615 static PCIHostState *spapr_create_default_phb(void)
2616 {
2617     DeviceState *dev;
2618 
2619     dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2620     qdev_prop_set_uint32(dev, "index", 0);
2621     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2622 
2623     return PCI_HOST_BRIDGE(dev);
2624 }
2625 
2626 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2627 {
2628     MachineState *machine = MACHINE(spapr);
2629     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2630     hwaddr rma_size = machine->ram_size;
2631     hwaddr node0_size = spapr_node0_size(machine);
2632 
2633     /* RMA has to fit in the first NUMA node */
2634     rma_size = MIN(rma_size, node0_size);
2635 
2636     /*
2637      * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2638      * never exceed that
2639      */
2640     rma_size = MIN(rma_size, 1 * TiB);
2641 
2642     /*
2643      * Clamp the RMA size based on machine type.  This is for
2644      * migration compatibility with older qemu versions, which limited
2645      * the RMA size for complicated and mostly bad reasons.
2646      */
2647     if (smc->rma_limit) {
2648         rma_size = MIN(rma_size, smc->rma_limit);
2649     }
2650 
2651     if (rma_size < MIN_RMA_SLOF) {
2652         error_setg(errp,
2653                    "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2654                    "ldMiB guest RMA (Real Mode Area memory)",
2655                    MIN_RMA_SLOF / MiB);
2656         return 0;
2657     }
2658 
2659     return rma_size;
2660 }
2661 
2662 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2663 {
2664     MachineState *machine = MACHINE(spapr);
2665     int i;
2666 
2667     for (i = 0; i < machine->ram_slots; i++) {
2668         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2669     }
2670 }
2671 
2672 /* pSeries LPAR / sPAPR hardware init */
2673 static void spapr_machine_init(MachineState *machine)
2674 {
2675     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2676     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2677     MachineClass *mc = MACHINE_GET_CLASS(machine);
2678     const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME;
2679     const char *bios_name = machine->firmware ?: bios_default;
2680     const char *kernel_filename = machine->kernel_filename;
2681     const char *initrd_filename = machine->initrd_filename;
2682     PCIHostState *phb;
2683     int i;
2684     MemoryRegion *sysmem = get_system_memory();
2685     long load_limit, fw_size;
2686     char *filename;
2687     Error *resize_hpt_err = NULL;
2688 
2689     /*
2690      * if Secure VM (PEF) support is configured, then initialize it
2691      */
2692     pef_kvm_init(machine->cgs, &error_fatal);
2693 
2694     msi_nonbroken = true;
2695 
2696     QLIST_INIT(&spapr->phbs);
2697     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2698 
2699     /* Determine capabilities to run with */
2700     spapr_caps_init(spapr);
2701 
2702     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2703     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2704         /*
2705          * If the user explicitly requested a mode we should either
2706          * supply it, or fail completely (which we do below).  But if
2707          * it's not set explicitly, we reset our mode to something
2708          * that works
2709          */
2710         if (resize_hpt_err) {
2711             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2712             error_free(resize_hpt_err);
2713             resize_hpt_err = NULL;
2714         } else {
2715             spapr->resize_hpt = smc->resize_hpt_default;
2716         }
2717     }
2718 
2719     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2720 
2721     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2722         /*
2723          * User requested HPT resize, but this host can't supply it.  Bail out
2724          */
2725         error_report_err(resize_hpt_err);
2726         exit(1);
2727     }
2728     error_free(resize_hpt_err);
2729 
2730     spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2731 
2732     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2733     load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD;
2734 
2735     /*
2736      * VSMT must be set in order to be able to compute VCPU ids, ie to
2737      * call spapr_max_server_number() or spapr_vcpu_id().
2738      */
2739     spapr_set_vsmt_mode(spapr, &error_fatal);
2740 
2741     /* Set up Interrupt Controller before we create the VCPUs */
2742     spapr_irq_init(spapr, &error_fatal);
2743 
2744     /* Set up containers for ibm,client-architecture-support negotiated options
2745      */
2746     spapr->ov5 = spapr_ovec_new();
2747     spapr->ov5_cas = spapr_ovec_new();
2748 
2749     if (smc->dr_lmb_enabled) {
2750         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2751         spapr_validate_node_memory(machine, &error_fatal);
2752     }
2753 
2754     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2755 
2756     /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */
2757     if (!smc->pre_6_2_numa_affinity) {
2758         spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY);
2759     }
2760 
2761     /* advertise support for dedicated HP event source to guests */
2762     if (spapr->use_hotplug_event_source) {
2763         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2764     }
2765 
2766     /* advertise support for HPT resizing */
2767     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2768         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2769     }
2770 
2771     /* advertise support for ibm,dyamic-memory-v2 */
2772     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2773 
2774     /* advertise XIVE on POWER9 machines */
2775     if (spapr->irq->xive) {
2776         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2777     }
2778 
2779     /* init CPUs */
2780     spapr_init_cpus(spapr);
2781 
2782     spapr->gpu_numa_id = spapr_numa_initial_nvgpu_numa_id(machine);
2783 
2784     /* Init numa_assoc_array */
2785     spapr_numa_associativity_init(spapr, machine);
2786 
2787     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2788         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2789                               spapr->max_compat_pvr)) {
2790         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2791         /* KVM and TCG always allow GTSE with radix... */
2792         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2793     }
2794     /* ... but not with hash (currently). */
2795 
2796     if (kvm_enabled()) {
2797         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2798         kvmppc_enable_logical_ci_hcalls();
2799         kvmppc_enable_set_mode_hcall();
2800 
2801         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2802         kvmppc_enable_clear_ref_mod_hcalls();
2803 
2804         /* Enable H_PAGE_INIT */
2805         kvmppc_enable_h_page_init();
2806     }
2807 
2808     /* map RAM */
2809     memory_region_add_subregion(sysmem, 0, machine->ram);
2810 
2811     /* always allocate the device memory information */
2812     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2813 
2814     /* initialize hotplug memory address space */
2815     if (machine->ram_size < machine->maxram_size) {
2816         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2817         /*
2818          * Limit the number of hotpluggable memory slots to half the number
2819          * slots that KVM supports, leaving the other half for PCI and other
2820          * devices. However ensure that number of slots doesn't drop below 32.
2821          */
2822         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2823                            SPAPR_MAX_RAM_SLOTS;
2824 
2825         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2826             max_memslots = SPAPR_MAX_RAM_SLOTS;
2827         }
2828         if (machine->ram_slots > max_memslots) {
2829             error_report("Specified number of memory slots %"
2830                          PRIu64" exceeds max supported %d",
2831                          machine->ram_slots, max_memslots);
2832             exit(1);
2833         }
2834 
2835         machine->device_memory->base = ROUND_UP(machine->ram_size,
2836                                                 SPAPR_DEVICE_MEM_ALIGN);
2837         memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2838                            "device-memory", device_mem_size);
2839         memory_region_add_subregion(sysmem, machine->device_memory->base,
2840                                     &machine->device_memory->mr);
2841     }
2842 
2843     if (smc->dr_lmb_enabled) {
2844         spapr_create_lmb_dr_connectors(spapr);
2845     }
2846 
2847     if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2848         /* Create the error string for live migration blocker */
2849         error_setg(&spapr->fwnmi_migration_blocker,
2850             "A machine check is being handled during migration. The handler"
2851             "may run and log hardware error on the destination");
2852     }
2853 
2854     if (mc->nvdimm_supported) {
2855         spapr_create_nvdimm_dr_connectors(spapr);
2856     }
2857 
2858     /* Set up RTAS event infrastructure */
2859     spapr_events_init(spapr);
2860 
2861     /* Set up the RTC RTAS interfaces */
2862     spapr_rtc_create(spapr);
2863 
2864     /* Set up VIO bus */
2865     spapr->vio_bus = spapr_vio_bus_init();
2866 
2867     for (i = 0; serial_hd(i); i++) {
2868         spapr_vty_create(spapr->vio_bus, serial_hd(i));
2869     }
2870 
2871     /* We always have at least the nvram device on VIO */
2872     spapr_create_nvram(spapr);
2873 
2874     /*
2875      * Setup hotplug / dynamic-reconfiguration connectors. top-level
2876      * connectors (described in root DT node's "ibm,drc-types" property)
2877      * are pre-initialized here. additional child connectors (such as
2878      * connectors for a PHBs PCI slots) are added as needed during their
2879      * parent's realization.
2880      */
2881     if (smc->dr_phb_enabled) {
2882         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2883             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2884         }
2885     }
2886 
2887     /* Set up PCI */
2888     spapr_pci_rtas_init();
2889 
2890     phb = spapr_create_default_phb();
2891 
2892     for (i = 0; i < nb_nics; i++) {
2893         NICInfo *nd = &nd_table[i];
2894 
2895         if (!nd->model) {
2896             nd->model = g_strdup("spapr-vlan");
2897         }
2898 
2899         if (g_str_equal(nd->model, "spapr-vlan") ||
2900             g_str_equal(nd->model, "ibmveth")) {
2901             spapr_vlan_create(spapr->vio_bus, nd);
2902         } else {
2903             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2904         }
2905     }
2906 
2907     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2908         spapr_vscsi_create(spapr->vio_bus);
2909     }
2910 
2911     /* Graphics */
2912     if (spapr_vga_init(phb->bus, &error_fatal)) {
2913         spapr->has_graphics = true;
2914         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2915     }
2916 
2917     if (machine->usb) {
2918         if (smc->use_ohci_by_default) {
2919             pci_create_simple(phb->bus, -1, "pci-ohci");
2920         } else {
2921             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2922         }
2923 
2924         if (spapr->has_graphics) {
2925             USBBus *usb_bus = usb_bus_find(-1);
2926 
2927             usb_create_simple(usb_bus, "usb-kbd");
2928             usb_create_simple(usb_bus, "usb-mouse");
2929         }
2930     }
2931 
2932     if (kernel_filename) {
2933         spapr->kernel_size = load_elf(kernel_filename, NULL,
2934                                       translate_kernel_address, spapr,
2935                                       NULL, NULL, NULL, NULL, 1,
2936                                       PPC_ELF_MACHINE, 0, 0);
2937         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2938             spapr->kernel_size = load_elf(kernel_filename, NULL,
2939                                           translate_kernel_address, spapr,
2940                                           NULL, NULL, NULL, NULL, 0,
2941                                           PPC_ELF_MACHINE, 0, 0);
2942             spapr->kernel_le = spapr->kernel_size > 0;
2943         }
2944         if (spapr->kernel_size < 0) {
2945             error_report("error loading %s: %s", kernel_filename,
2946                          load_elf_strerror(spapr->kernel_size));
2947             exit(1);
2948         }
2949 
2950         /* load initrd */
2951         if (initrd_filename) {
2952             /* Try to locate the initrd in the gap between the kernel
2953              * and the firmware. Add a bit of space just in case
2954              */
2955             spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
2956                                   + 0x1ffff) & ~0xffff;
2957             spapr->initrd_size = load_image_targphys(initrd_filename,
2958                                                      spapr->initrd_base,
2959                                                      load_limit
2960                                                      - spapr->initrd_base);
2961             if (spapr->initrd_size < 0) {
2962                 error_report("could not load initial ram disk '%s'",
2963                              initrd_filename);
2964                 exit(1);
2965             }
2966         }
2967     }
2968 
2969     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2970     if (!filename) {
2971         error_report("Could not find LPAR firmware '%s'", bios_name);
2972         exit(1);
2973     }
2974     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2975     if (fw_size <= 0) {
2976         error_report("Could not load LPAR firmware '%s'", filename);
2977         exit(1);
2978     }
2979     g_free(filename);
2980 
2981     /* FIXME: Should register things through the MachineState's qdev
2982      * interface, this is a legacy from the sPAPREnvironment structure
2983      * which predated MachineState but had a similar function */
2984     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2985     register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
2986                          &savevm_htab_handlers, spapr);
2987 
2988     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
2989 
2990     qemu_register_boot_set(spapr_boot_set, spapr);
2991 
2992     /*
2993      * Nothing needs to be done to resume a suspended guest because
2994      * suspending does not change the machine state, so no need for
2995      * a ->wakeup method.
2996      */
2997     qemu_register_wakeup_support();
2998 
2999     if (kvm_enabled()) {
3000         /* to stop and start vmclock */
3001         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3002                                          &spapr->tb);
3003 
3004         kvmppc_spapr_enable_inkernel_multitce();
3005     }
3006 
3007     qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3008     if (spapr->vof) {
3009         spapr->vof->fw_size = fw_size; /* for claim() on itself */
3010         spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client);
3011     }
3012 }
3013 
3014 #define DEFAULT_KVM_TYPE "auto"
3015 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3016 {
3017     /*
3018      * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3019      * accomodate the 'HV' and 'PV' formats that exists in the
3020      * wild. The 'auto' mode is being introduced already as
3021      * lower-case, thus we don't need to bother checking for
3022      * "AUTO".
3023      */
3024     if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3025         return 0;
3026     }
3027 
3028     if (!g_ascii_strcasecmp(vm_type, "hv")) {
3029         return 1;
3030     }
3031 
3032     if (!g_ascii_strcasecmp(vm_type, "pr")) {
3033         return 2;
3034     }
3035 
3036     error_report("Unknown kvm-type specified '%s'", vm_type);
3037     exit(1);
3038 }
3039 
3040 /*
3041  * Implementation of an interface to adjust firmware path
3042  * for the bootindex property handling.
3043  */
3044 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3045                                    DeviceState *dev)
3046 {
3047 #define CAST(type, obj, name) \
3048     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3049     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3050     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3051     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3052     PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3053 
3054     if (d) {
3055         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3056         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3057         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3058 
3059         if (spapr) {
3060             /*
3061              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3062              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3063              * 0x8000 | (target << 8) | (bus << 5) | lun
3064              * (see the "Logical unit addressing format" table in SAM5)
3065              */
3066             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3067             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3068                                    (uint64_t)id << 48);
3069         } else if (virtio) {
3070             /*
3071              * We use SRP luns of the form 01000000 | (target << 8) | lun
3072              * in the top 32 bits of the 64-bit LUN
3073              * Note: the quote above is from SLOF and it is wrong,
3074              * the actual binding is:
3075              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3076              */
3077             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3078             if (d->lun >= 256) {
3079                 /* Use the LUN "flat space addressing method" */
3080                 id |= 0x4000;
3081             }
3082             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3083                                    (uint64_t)id << 32);
3084         } else if (usb) {
3085             /*
3086              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3087              * in the top 32 bits of the 64-bit LUN
3088              */
3089             unsigned usb_port = atoi(usb->port->path);
3090             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3091             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3092                                    (uint64_t)id << 32);
3093         }
3094     }
3095 
3096     /*
3097      * SLOF probes the USB devices, and if it recognizes that the device is a
3098      * storage device, it changes its name to "storage" instead of "usb-host",
3099      * and additionally adds a child node for the SCSI LUN, so the correct
3100      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3101      */
3102     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3103         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3104         if (usb_device_is_scsi_storage(usbdev)) {
3105             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3106         }
3107     }
3108 
3109     if (phb) {
3110         /* Replace "pci" with "pci@800000020000000" */
3111         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3112     }
3113 
3114     if (vsc) {
3115         /* Same logic as virtio above */
3116         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3117         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3118     }
3119 
3120     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3121         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3122         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3123         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3124     }
3125 
3126     if (pcidev) {
3127         return spapr_pci_fw_dev_name(pcidev);
3128     }
3129 
3130     return NULL;
3131 }
3132 
3133 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3134 {
3135     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3136 
3137     return g_strdup(spapr->kvm_type);
3138 }
3139 
3140 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3141 {
3142     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3143 
3144     g_free(spapr->kvm_type);
3145     spapr->kvm_type = g_strdup(value);
3146 }
3147 
3148 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3149 {
3150     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3151 
3152     return spapr->use_hotplug_event_source;
3153 }
3154 
3155 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3156                                             Error **errp)
3157 {
3158     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3159 
3160     spapr->use_hotplug_event_source = value;
3161 }
3162 
3163 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3164 {
3165     return true;
3166 }
3167 
3168 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3169 {
3170     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3171 
3172     switch (spapr->resize_hpt) {
3173     case SPAPR_RESIZE_HPT_DEFAULT:
3174         return g_strdup("default");
3175     case SPAPR_RESIZE_HPT_DISABLED:
3176         return g_strdup("disabled");
3177     case SPAPR_RESIZE_HPT_ENABLED:
3178         return g_strdup("enabled");
3179     case SPAPR_RESIZE_HPT_REQUIRED:
3180         return g_strdup("required");
3181     }
3182     g_assert_not_reached();
3183 }
3184 
3185 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3186 {
3187     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3188 
3189     if (strcmp(value, "default") == 0) {
3190         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3191     } else if (strcmp(value, "disabled") == 0) {
3192         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3193     } else if (strcmp(value, "enabled") == 0) {
3194         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3195     } else if (strcmp(value, "required") == 0) {
3196         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3197     } else {
3198         error_setg(errp, "Bad value for \"resize-hpt\" property");
3199     }
3200 }
3201 
3202 static bool spapr_get_vof(Object *obj, Error **errp)
3203 {
3204     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3205 
3206     return spapr->vof != NULL;
3207 }
3208 
3209 static void spapr_set_vof(Object *obj, bool value, Error **errp)
3210 {
3211     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3212 
3213     if (spapr->vof) {
3214         vof_cleanup(spapr->vof);
3215         g_free(spapr->vof);
3216         spapr->vof = NULL;
3217     }
3218     if (!value) {
3219         return;
3220     }
3221     spapr->vof = g_malloc0(sizeof(*spapr->vof));
3222 }
3223 
3224 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3225 {
3226     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3227 
3228     if (spapr->irq == &spapr_irq_xics_legacy) {
3229         return g_strdup("legacy");
3230     } else if (spapr->irq == &spapr_irq_xics) {
3231         return g_strdup("xics");
3232     } else if (spapr->irq == &spapr_irq_xive) {
3233         return g_strdup("xive");
3234     } else if (spapr->irq == &spapr_irq_dual) {
3235         return g_strdup("dual");
3236     }
3237     g_assert_not_reached();
3238 }
3239 
3240 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3241 {
3242     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3243 
3244     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3245         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3246         return;
3247     }
3248 
3249     /* The legacy IRQ backend can not be set */
3250     if (strcmp(value, "xics") == 0) {
3251         spapr->irq = &spapr_irq_xics;
3252     } else if (strcmp(value, "xive") == 0) {
3253         spapr->irq = &spapr_irq_xive;
3254     } else if (strcmp(value, "dual") == 0) {
3255         spapr->irq = &spapr_irq_dual;
3256     } else {
3257         error_setg(errp, "Bad value for \"ic-mode\" property");
3258     }
3259 }
3260 
3261 static char *spapr_get_host_model(Object *obj, Error **errp)
3262 {
3263     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3264 
3265     return g_strdup(spapr->host_model);
3266 }
3267 
3268 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3269 {
3270     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3271 
3272     g_free(spapr->host_model);
3273     spapr->host_model = g_strdup(value);
3274 }
3275 
3276 static char *spapr_get_host_serial(Object *obj, Error **errp)
3277 {
3278     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3279 
3280     return g_strdup(spapr->host_serial);
3281 }
3282 
3283 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3284 {
3285     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3286 
3287     g_free(spapr->host_serial);
3288     spapr->host_serial = g_strdup(value);
3289 }
3290 
3291 static void spapr_instance_init(Object *obj)
3292 {
3293     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3294     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3295     MachineState *ms = MACHINE(spapr);
3296     MachineClass *mc = MACHINE_GET_CLASS(ms);
3297 
3298     /*
3299      * NVDIMM support went live in 5.1 without considering that, in
3300      * other archs, the user needs to enable NVDIMM support with the
3301      * 'nvdimm' machine option and the default behavior is NVDIMM
3302      * support disabled. It is too late to roll back to the standard
3303      * behavior without breaking 5.1 guests.
3304      */
3305     if (mc->nvdimm_supported) {
3306         ms->nvdimms_state->is_enabled = true;
3307     }
3308 
3309     spapr->htab_fd = -1;
3310     spapr->use_hotplug_event_source = true;
3311     spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3312     object_property_add_str(obj, "kvm-type",
3313                             spapr_get_kvm_type, spapr_set_kvm_type);
3314     object_property_set_description(obj, "kvm-type",
3315                                     "Specifies the KVM virtualization mode (auto,"
3316                                     " hv, pr). Defaults to 'auto'. This mode will use"
3317                                     " any available KVM module loaded in the host,"
3318                                     " where kvm_hv takes precedence if both kvm_hv and"
3319                                     " kvm_pr are loaded.");
3320     object_property_add_bool(obj, "modern-hotplug-events",
3321                             spapr_get_modern_hotplug_events,
3322                             spapr_set_modern_hotplug_events);
3323     object_property_set_description(obj, "modern-hotplug-events",
3324                                     "Use dedicated hotplug event mechanism in"
3325                                     " place of standard EPOW events when possible"
3326                                     " (required for memory hot-unplug support)");
3327     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3328                             "Maximum permitted CPU compatibility mode");
3329 
3330     object_property_add_str(obj, "resize-hpt",
3331                             spapr_get_resize_hpt, spapr_set_resize_hpt);
3332     object_property_set_description(obj, "resize-hpt",
3333                                     "Resizing of the Hash Page Table (enabled, disabled, required)");
3334     object_property_add_uint32_ptr(obj, "vsmt",
3335                                    &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3336     object_property_set_description(obj, "vsmt",
3337                                     "Virtual SMT: KVM behaves as if this were"
3338                                     " the host's SMT mode");
3339 
3340     object_property_add_bool(obj, "vfio-no-msix-emulation",
3341                              spapr_get_msix_emulation, NULL);
3342 
3343     object_property_add_uint64_ptr(obj, "kernel-addr",
3344                                    &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3345     object_property_set_description(obj, "kernel-addr",
3346                                     stringify(KERNEL_LOAD_ADDR)
3347                                     " for -kernel is the default");
3348     spapr->kernel_addr = KERNEL_LOAD_ADDR;
3349 
3350     object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof);
3351     object_property_set_description(obj, "x-vof",
3352                                     "Enable Virtual Open Firmware (experimental)");
3353 
3354     /* The machine class defines the default interrupt controller mode */
3355     spapr->irq = smc->irq;
3356     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3357                             spapr_set_ic_mode);
3358     object_property_set_description(obj, "ic-mode",
3359                  "Specifies the interrupt controller mode (xics, xive, dual)");
3360 
3361     object_property_add_str(obj, "host-model",
3362         spapr_get_host_model, spapr_set_host_model);
3363     object_property_set_description(obj, "host-model",
3364         "Host model to advertise in guest device tree");
3365     object_property_add_str(obj, "host-serial",
3366         spapr_get_host_serial, spapr_set_host_serial);
3367     object_property_set_description(obj, "host-serial",
3368         "Host serial number to advertise in guest device tree");
3369 }
3370 
3371 static void spapr_machine_finalizefn(Object *obj)
3372 {
3373     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3374 
3375     g_free(spapr->kvm_type);
3376 }
3377 
3378 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3379 {
3380     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3381     PowerPCCPU *cpu = POWERPC_CPU(cs);
3382     CPUPPCState *env = &cpu->env;
3383 
3384     cpu_synchronize_state(cs);
3385     /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3386     if (spapr->fwnmi_system_reset_addr != -1) {
3387         uint64_t rtas_addr, addr;
3388 
3389         /* get rtas addr from fdt */
3390         rtas_addr = spapr_get_rtas_addr();
3391         if (!rtas_addr) {
3392             qemu_system_guest_panicked(NULL);
3393             return;
3394         }
3395 
3396         addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3397         stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3398         stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3399         env->gpr[3] = addr;
3400     }
3401     ppc_cpu_do_system_reset(cs);
3402     if (spapr->fwnmi_system_reset_addr != -1) {
3403         env->nip = spapr->fwnmi_system_reset_addr;
3404     }
3405 }
3406 
3407 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3408 {
3409     CPUState *cs;
3410 
3411     CPU_FOREACH(cs) {
3412         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3413     }
3414 }
3415 
3416 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3417                           void *fdt, int *fdt_start_offset, Error **errp)
3418 {
3419     uint64_t addr;
3420     uint32_t node;
3421 
3422     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3423     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3424                                     &error_abort);
3425     *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3426                                              SPAPR_MEMORY_BLOCK_SIZE);
3427     return 0;
3428 }
3429 
3430 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3431                            bool dedicated_hp_event_source)
3432 {
3433     SpaprDrc *drc;
3434     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3435     int i;
3436     uint64_t addr = addr_start;
3437     bool hotplugged = spapr_drc_hotplugged(dev);
3438 
3439     for (i = 0; i < nr_lmbs; i++) {
3440         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3441                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3442         g_assert(drc);
3443 
3444         /*
3445          * memory_device_get_free_addr() provided a range of free addresses
3446          * that doesn't overlap with any existing mapping at pre-plug. The
3447          * corresponding LMB DRCs are thus assumed to be all attachable.
3448          */
3449         spapr_drc_attach(drc, dev);
3450         if (!hotplugged) {
3451             spapr_drc_reset(drc);
3452         }
3453         addr += SPAPR_MEMORY_BLOCK_SIZE;
3454     }
3455     /* send hotplug notification to the
3456      * guest only in case of hotplugged memory
3457      */
3458     if (hotplugged) {
3459         if (dedicated_hp_event_source) {
3460             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3461                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3462             g_assert(drc);
3463             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3464                                                    nr_lmbs,
3465                                                    spapr_drc_index(drc));
3466         } else {
3467             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3468                                            nr_lmbs);
3469         }
3470     }
3471 }
3472 
3473 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3474 {
3475     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3476     PCDIMMDevice *dimm = PC_DIMM(dev);
3477     uint64_t size, addr;
3478     int64_t slot;
3479     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3480 
3481     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3482 
3483     pc_dimm_plug(dimm, MACHINE(ms));
3484 
3485     if (!is_nvdimm) {
3486         addr = object_property_get_uint(OBJECT(dimm),
3487                                         PC_DIMM_ADDR_PROP, &error_abort);
3488         spapr_add_lmbs(dev, addr, size,
3489                        spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3490     } else {
3491         slot = object_property_get_int(OBJECT(dimm),
3492                                        PC_DIMM_SLOT_PROP, &error_abort);
3493         /* We should have valid slot number at this point */
3494         g_assert(slot >= 0);
3495         spapr_add_nvdimm(dev, slot);
3496     }
3497 }
3498 
3499 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3500                                   Error **errp)
3501 {
3502     const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3503     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3504     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3505     PCDIMMDevice *dimm = PC_DIMM(dev);
3506     Error *local_err = NULL;
3507     uint64_t size;
3508     Object *memdev;
3509     hwaddr pagesize;
3510 
3511     if (!smc->dr_lmb_enabled) {
3512         error_setg(errp, "Memory hotplug not supported for this machine");
3513         return;
3514     }
3515 
3516     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3517     if (local_err) {
3518         error_propagate(errp, local_err);
3519         return;
3520     }
3521 
3522     if (is_nvdimm) {
3523         if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3524             return;
3525         }
3526     } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3527         error_setg(errp, "Hotplugged memory size must be a multiple of "
3528                    "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3529         return;
3530     }
3531 
3532     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3533                                       &error_abort);
3534     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3535     if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3536         return;
3537     }
3538 
3539     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3540 }
3541 
3542 struct SpaprDimmState {
3543     PCDIMMDevice *dimm;
3544     uint32_t nr_lmbs;
3545     QTAILQ_ENTRY(SpaprDimmState) next;
3546 };
3547 
3548 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3549                                                        PCDIMMDevice *dimm)
3550 {
3551     SpaprDimmState *dimm_state = NULL;
3552 
3553     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3554         if (dimm_state->dimm == dimm) {
3555             break;
3556         }
3557     }
3558     return dimm_state;
3559 }
3560 
3561 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3562                                                       uint32_t nr_lmbs,
3563                                                       PCDIMMDevice *dimm)
3564 {
3565     SpaprDimmState *ds = NULL;
3566 
3567     /*
3568      * If this request is for a DIMM whose removal had failed earlier
3569      * (due to guest's refusal to remove the LMBs), we would have this
3570      * dimm already in the pending_dimm_unplugs list. In that
3571      * case don't add again.
3572      */
3573     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3574     if (!ds) {
3575         ds = g_malloc0(sizeof(SpaprDimmState));
3576         ds->nr_lmbs = nr_lmbs;
3577         ds->dimm = dimm;
3578         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3579     }
3580     return ds;
3581 }
3582 
3583 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3584                                               SpaprDimmState *dimm_state)
3585 {
3586     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3587     g_free(dimm_state);
3588 }
3589 
3590 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3591                                                         PCDIMMDevice *dimm)
3592 {
3593     SpaprDrc *drc;
3594     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3595                                                   &error_abort);
3596     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3597     uint32_t avail_lmbs = 0;
3598     uint64_t addr_start, addr;
3599     int i;
3600 
3601     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3602                                           &error_abort);
3603 
3604     addr = addr_start;
3605     for (i = 0; i < nr_lmbs; i++) {
3606         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3607                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3608         g_assert(drc);
3609         if (drc->dev) {
3610             avail_lmbs++;
3611         }
3612         addr += SPAPR_MEMORY_BLOCK_SIZE;
3613     }
3614 
3615     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3616 }
3617 
3618 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev)
3619 {
3620     SpaprDimmState *ds;
3621     PCDIMMDevice *dimm;
3622     SpaprDrc *drc;
3623     uint32_t nr_lmbs;
3624     uint64_t size, addr_start, addr;
3625     g_autofree char *qapi_error = NULL;
3626     int i;
3627 
3628     if (!dev) {
3629         return;
3630     }
3631 
3632     dimm = PC_DIMM(dev);
3633     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3634 
3635     /*
3636      * 'ds == NULL' would mean that the DIMM doesn't have a pending
3637      * unplug state, but one of its DRC is marked as unplug_requested.
3638      * This is bad and weird enough to g_assert() out.
3639      */
3640     g_assert(ds);
3641 
3642     spapr_pending_dimm_unplugs_remove(spapr, ds);
3643 
3644     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3645     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3646 
3647     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3648                                           &error_abort);
3649 
3650     addr = addr_start;
3651     for (i = 0; i < nr_lmbs; i++) {
3652         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3653                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3654         g_assert(drc);
3655 
3656         drc->unplug_requested = false;
3657         addr += SPAPR_MEMORY_BLOCK_SIZE;
3658     }
3659 
3660     /*
3661      * Tell QAPI that something happened and the memory
3662      * hotunplug wasn't successful. Keep sending
3663      * MEM_UNPLUG_ERROR even while sending
3664      * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of
3665      * MEM_UNPLUG_ERROR is due.
3666      */
3667     qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest "
3668                                  "for device %s", dev->id);
3669 
3670     qapi_event_send_mem_unplug_error(dev->id ? : "", qapi_error);
3671 
3672     qapi_event_send_device_unplug_guest_error(!!dev->id, dev->id,
3673                                               dev->canonical_path);
3674 }
3675 
3676 /* Callback to be called during DRC release. */
3677 void spapr_lmb_release(DeviceState *dev)
3678 {
3679     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3680     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3681     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3682 
3683     /* This information will get lost if a migration occurs
3684      * during the unplug process. In this case recover it. */
3685     if (ds == NULL) {
3686         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3687         g_assert(ds);
3688         /* The DRC being examined by the caller at least must be counted */
3689         g_assert(ds->nr_lmbs);
3690     }
3691 
3692     if (--ds->nr_lmbs) {
3693         return;
3694     }
3695 
3696     /*
3697      * Now that all the LMBs have been removed by the guest, call the
3698      * unplug handler chain. This can never fail.
3699      */
3700     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3701     object_unparent(OBJECT(dev));
3702 }
3703 
3704 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3705 {
3706     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3707     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3708 
3709     /* We really shouldn't get this far without anything to unplug */
3710     g_assert(ds);
3711 
3712     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3713     qdev_unrealize(dev);
3714     spapr_pending_dimm_unplugs_remove(spapr, ds);
3715 }
3716 
3717 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3718                                         DeviceState *dev, Error **errp)
3719 {
3720     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3721     PCDIMMDevice *dimm = PC_DIMM(dev);
3722     uint32_t nr_lmbs;
3723     uint64_t size, addr_start, addr;
3724     int i;
3725     SpaprDrc *drc;
3726 
3727     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3728         error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3729         return;
3730     }
3731 
3732     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3733     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3734 
3735     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3736                                           &error_abort);
3737 
3738     /*
3739      * An existing pending dimm state for this DIMM means that there is an
3740      * unplug operation in progress, waiting for the spapr_lmb_release
3741      * callback to complete the job (BQL can't cover that far). In this case,
3742      * bail out to avoid detaching DRCs that were already released.
3743      */
3744     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3745         error_setg(errp, "Memory unplug already in progress for device %s",
3746                    dev->id);
3747         return;
3748     }
3749 
3750     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3751 
3752     addr = addr_start;
3753     for (i = 0; i < nr_lmbs; i++) {
3754         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3755                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3756         g_assert(drc);
3757 
3758         spapr_drc_unplug_request(drc);
3759         addr += SPAPR_MEMORY_BLOCK_SIZE;
3760     }
3761 
3762     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3763                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3764     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3765                                               nr_lmbs, spapr_drc_index(drc));
3766 }
3767 
3768 /* Callback to be called during DRC release. */
3769 void spapr_core_release(DeviceState *dev)
3770 {
3771     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3772 
3773     /* Call the unplug handler chain. This can never fail. */
3774     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3775     object_unparent(OBJECT(dev));
3776 }
3777 
3778 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3779 {
3780     MachineState *ms = MACHINE(hotplug_dev);
3781     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3782     CPUCore *cc = CPU_CORE(dev);
3783     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3784 
3785     if (smc->pre_2_10_has_unused_icps) {
3786         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3787         int i;
3788 
3789         for (i = 0; i < cc->nr_threads; i++) {
3790             CPUState *cs = CPU(sc->threads[i]);
3791 
3792             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3793         }
3794     }
3795 
3796     assert(core_slot);
3797     core_slot->cpu = NULL;
3798     qdev_unrealize(dev);
3799 }
3800 
3801 static
3802 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3803                                Error **errp)
3804 {
3805     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3806     int index;
3807     SpaprDrc *drc;
3808     CPUCore *cc = CPU_CORE(dev);
3809 
3810     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3811         error_setg(errp, "Unable to find CPU core with core-id: %d",
3812                    cc->core_id);
3813         return;
3814     }
3815     if (index == 0) {
3816         error_setg(errp, "Boot CPU core may not be unplugged");
3817         return;
3818     }
3819 
3820     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3821                           spapr_vcpu_id(spapr, cc->core_id));
3822     g_assert(drc);
3823 
3824     if (!spapr_drc_unplug_requested(drc)) {
3825         spapr_drc_unplug_request(drc);
3826     }
3827 
3828     /*
3829      * spapr_hotplug_req_remove_by_index is left unguarded, out of the
3830      * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
3831      * pulses removing the same CPU. Otherwise, in an failed hotunplug
3832      * attempt (e.g. the kernel will refuse to remove the last online
3833      * CPU), we will never attempt it again because unplug_requested
3834      * will still be 'true' in that case.
3835      */
3836     spapr_hotplug_req_remove_by_index(drc);
3837 }
3838 
3839 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3840                            void *fdt, int *fdt_start_offset, Error **errp)
3841 {
3842     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3843     CPUState *cs = CPU(core->threads[0]);
3844     PowerPCCPU *cpu = POWERPC_CPU(cs);
3845     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3846     int id = spapr_get_vcpu_id(cpu);
3847     g_autofree char *nodename = NULL;
3848     int offset;
3849 
3850     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3851     offset = fdt_add_subnode(fdt, 0, nodename);
3852 
3853     spapr_dt_cpu(cs, fdt, offset, spapr);
3854 
3855     /*
3856      * spapr_dt_cpu() does not fill the 'name' property in the
3857      * CPU node. The function is called during boot process, before
3858      * and after CAS, and overwriting the 'name' property written
3859      * by SLOF is not allowed.
3860      *
3861      * Write it manually after spapr_dt_cpu(). This makes the hotplug
3862      * CPUs more compatible with the coldplugged ones, which have
3863      * the 'name' property. Linux Kernel also relies on this
3864      * property to identify CPU nodes.
3865      */
3866     _FDT((fdt_setprop_string(fdt, offset, "name", nodename)));
3867 
3868     *fdt_start_offset = offset;
3869     return 0;
3870 }
3871 
3872 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3873 {
3874     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3875     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3876     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3877     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3878     CPUCore *cc = CPU_CORE(dev);
3879     CPUState *cs;
3880     SpaprDrc *drc;
3881     CPUArchId *core_slot;
3882     int index;
3883     bool hotplugged = spapr_drc_hotplugged(dev);
3884     int i;
3885 
3886     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3887     g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
3888 
3889     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3890                           spapr_vcpu_id(spapr, cc->core_id));
3891 
3892     g_assert(drc || !mc->has_hotpluggable_cpus);
3893 
3894     if (drc) {
3895         /*
3896          * spapr_core_pre_plug() already buys us this is a brand new
3897          * core being plugged into a free slot. Nothing should already
3898          * be attached to the corresponding DRC.
3899          */
3900         spapr_drc_attach(drc, dev);
3901 
3902         if (hotplugged) {
3903             /*
3904              * Send hotplug notification interrupt to the guest only
3905              * in case of hotplugged CPUs.
3906              */
3907             spapr_hotplug_req_add_by_index(drc);
3908         } else {
3909             spapr_drc_reset(drc);
3910         }
3911     }
3912 
3913     core_slot->cpu = OBJECT(dev);
3914 
3915     /*
3916      * Set compatibility mode to match the boot CPU, which was either set
3917      * by the machine reset code or by CAS. This really shouldn't fail at
3918      * this point.
3919      */
3920     if (hotplugged) {
3921         for (i = 0; i < cc->nr_threads; i++) {
3922             ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3923                            &error_abort);
3924         }
3925     }
3926 
3927     if (smc->pre_2_10_has_unused_icps) {
3928         for (i = 0; i < cc->nr_threads; i++) {
3929             cs = CPU(core->threads[i]);
3930             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3931         }
3932     }
3933 }
3934 
3935 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3936                                 Error **errp)
3937 {
3938     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3939     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3940     CPUCore *cc = CPU_CORE(dev);
3941     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3942     const char *type = object_get_typename(OBJECT(dev));
3943     CPUArchId *core_slot;
3944     int index;
3945     unsigned int smp_threads = machine->smp.threads;
3946 
3947     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3948         error_setg(errp, "CPU hotplug not supported for this machine");
3949         return;
3950     }
3951 
3952     if (strcmp(base_core_type, type)) {
3953         error_setg(errp, "CPU core type should be %s", base_core_type);
3954         return;
3955     }
3956 
3957     if (cc->core_id % smp_threads) {
3958         error_setg(errp, "invalid core id %d", cc->core_id);
3959         return;
3960     }
3961 
3962     /*
3963      * In general we should have homogeneous threads-per-core, but old
3964      * (pre hotplug support) machine types allow the last core to have
3965      * reduced threads as a compatibility hack for when we allowed
3966      * total vcpus not a multiple of threads-per-core.
3967      */
3968     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3969         error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
3970                    smp_threads);
3971         return;
3972     }
3973 
3974     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3975     if (!core_slot) {
3976         error_setg(errp, "core id %d out of range", cc->core_id);
3977         return;
3978     }
3979 
3980     if (core_slot->cpu) {
3981         error_setg(errp, "core %d already populated", cc->core_id);
3982         return;
3983     }
3984 
3985     numa_cpu_pre_plug(core_slot, dev, errp);
3986 }
3987 
3988 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3989                           void *fdt, int *fdt_start_offset, Error **errp)
3990 {
3991     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3992     int intc_phandle;
3993 
3994     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3995     if (intc_phandle <= 0) {
3996         return -1;
3997     }
3998 
3999     if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
4000         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
4001         return -1;
4002     }
4003 
4004     /* generally SLOF creates these, for hotplug it's up to QEMU */
4005     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
4006 
4007     return 0;
4008 }
4009 
4010 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4011                                Error **errp)
4012 {
4013     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4014     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4015     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4016     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
4017     SpaprDrc *drc;
4018 
4019     if (dev->hotplugged && !smc->dr_phb_enabled) {
4020         error_setg(errp, "PHB hotplug not supported for this machine");
4021         return false;
4022     }
4023 
4024     if (sphb->index == (uint32_t)-1) {
4025         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
4026         return false;
4027     }
4028 
4029     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4030     if (drc && drc->dev) {
4031         error_setg(errp, "PHB %d already attached", sphb->index);
4032         return false;
4033     }
4034 
4035     /*
4036      * This will check that sphb->index doesn't exceed the maximum number of
4037      * PHBs for the current machine type.
4038      */
4039     return
4040         smc->phb_placement(spapr, sphb->index,
4041                            &sphb->buid, &sphb->io_win_addr,
4042                            &sphb->mem_win_addr, &sphb->mem64_win_addr,
4043                            windows_supported, sphb->dma_liobn,
4044                            &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
4045                            errp);
4046 }
4047 
4048 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4049 {
4050     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4051     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4052     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4053     SpaprDrc *drc;
4054     bool hotplugged = spapr_drc_hotplugged(dev);
4055 
4056     if (!smc->dr_phb_enabled) {
4057         return;
4058     }
4059 
4060     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4061     /* hotplug hooks should check it's enabled before getting this far */
4062     assert(drc);
4063 
4064     /* spapr_phb_pre_plug() already checked the DRC is attachable */
4065     spapr_drc_attach(drc, dev);
4066 
4067     if (hotplugged) {
4068         spapr_hotplug_req_add_by_index(drc);
4069     } else {
4070         spapr_drc_reset(drc);
4071     }
4072 }
4073 
4074 void spapr_phb_release(DeviceState *dev)
4075 {
4076     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4077 
4078     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4079     object_unparent(OBJECT(dev));
4080 }
4081 
4082 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4083 {
4084     qdev_unrealize(dev);
4085 }
4086 
4087 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4088                                      DeviceState *dev, Error **errp)
4089 {
4090     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4091     SpaprDrc *drc;
4092 
4093     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4094     assert(drc);
4095 
4096     if (!spapr_drc_unplug_requested(drc)) {
4097         spapr_drc_unplug_request(drc);
4098         spapr_hotplug_req_remove_by_index(drc);
4099     } else {
4100         error_setg(errp,
4101                    "PCI Host Bridge unplug already in progress for device %s",
4102                    dev->id);
4103     }
4104 }
4105 
4106 static
4107 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4108                               Error **errp)
4109 {
4110     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4111 
4112     if (spapr->tpm_proxy != NULL) {
4113         error_setg(errp, "Only one TPM proxy can be specified for this machine");
4114         return false;
4115     }
4116 
4117     return true;
4118 }
4119 
4120 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4121 {
4122     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4123     SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4124 
4125     /* Already checked in spapr_tpm_proxy_pre_plug() */
4126     g_assert(spapr->tpm_proxy == NULL);
4127 
4128     spapr->tpm_proxy = tpm_proxy;
4129 }
4130 
4131 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4132 {
4133     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4134 
4135     qdev_unrealize(dev);
4136     object_unparent(OBJECT(dev));
4137     spapr->tpm_proxy = NULL;
4138 }
4139 
4140 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4141                                       DeviceState *dev, Error **errp)
4142 {
4143     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4144         spapr_memory_plug(hotplug_dev, dev);
4145     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4146         spapr_core_plug(hotplug_dev, dev);
4147     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4148         spapr_phb_plug(hotplug_dev, dev);
4149     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4150         spapr_tpm_proxy_plug(hotplug_dev, dev);
4151     }
4152 }
4153 
4154 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4155                                         DeviceState *dev, Error **errp)
4156 {
4157     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4158         spapr_memory_unplug(hotplug_dev, dev);
4159     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4160         spapr_core_unplug(hotplug_dev, dev);
4161     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4162         spapr_phb_unplug(hotplug_dev, dev);
4163     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4164         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4165     }
4166 }
4167 
4168 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
4169 {
4170     return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
4171         /*
4172          * CAS will process all pending unplug requests.
4173          *
4174          * HACK: a guest could theoretically have cleared all bits in OV5,
4175          * but none of the guests we care for do.
4176          */
4177         spapr_ovec_empty(spapr->ov5_cas);
4178 }
4179 
4180 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4181                                                 DeviceState *dev, Error **errp)
4182 {
4183     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4184     MachineClass *mc = MACHINE_GET_CLASS(sms);
4185     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4186 
4187     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4188         if (spapr_memory_hot_unplug_supported(sms)) {
4189             spapr_memory_unplug_request(hotplug_dev, dev, errp);
4190         } else {
4191             error_setg(errp, "Memory hot unplug not supported for this guest");
4192         }
4193     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4194         if (!mc->has_hotpluggable_cpus) {
4195             error_setg(errp, "CPU hot unplug not supported on this machine");
4196             return;
4197         }
4198         spapr_core_unplug_request(hotplug_dev, dev, errp);
4199     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4200         if (!smc->dr_phb_enabled) {
4201             error_setg(errp, "PHB hot unplug not supported on this machine");
4202             return;
4203         }
4204         spapr_phb_unplug_request(hotplug_dev, dev, errp);
4205     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4206         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4207     }
4208 }
4209 
4210 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4211                                           DeviceState *dev, Error **errp)
4212 {
4213     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4214         spapr_memory_pre_plug(hotplug_dev, dev, errp);
4215     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4216         spapr_core_pre_plug(hotplug_dev, dev, errp);
4217     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4218         spapr_phb_pre_plug(hotplug_dev, dev, errp);
4219     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4220         spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4221     }
4222 }
4223 
4224 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4225                                                  DeviceState *dev)
4226 {
4227     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4228         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4229         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4230         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4231         return HOTPLUG_HANDLER(machine);
4232     }
4233     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4234         PCIDevice *pcidev = PCI_DEVICE(dev);
4235         PCIBus *root = pci_device_root_bus(pcidev);
4236         SpaprPhbState *phb =
4237             (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4238                                                  TYPE_SPAPR_PCI_HOST_BRIDGE);
4239 
4240         if (phb) {
4241             return HOTPLUG_HANDLER(phb);
4242         }
4243     }
4244     return NULL;
4245 }
4246 
4247 static CpuInstanceProperties
4248 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4249 {
4250     CPUArchId *core_slot;
4251     MachineClass *mc = MACHINE_GET_CLASS(machine);
4252 
4253     /* make sure possible_cpu are intialized */
4254     mc->possible_cpu_arch_ids(machine);
4255     /* get CPU core slot containing thread that matches cpu_index */
4256     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4257     assert(core_slot);
4258     return core_slot->props;
4259 }
4260 
4261 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4262 {
4263     return idx / ms->smp.cores % ms->numa_state->num_nodes;
4264 }
4265 
4266 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4267 {
4268     int i;
4269     unsigned int smp_threads = machine->smp.threads;
4270     unsigned int smp_cpus = machine->smp.cpus;
4271     const char *core_type;
4272     int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4273     MachineClass *mc = MACHINE_GET_CLASS(machine);
4274 
4275     if (!mc->has_hotpluggable_cpus) {
4276         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4277     }
4278     if (machine->possible_cpus) {
4279         assert(machine->possible_cpus->len == spapr_max_cores);
4280         return machine->possible_cpus;
4281     }
4282 
4283     core_type = spapr_get_cpu_core_type(machine->cpu_type);
4284     if (!core_type) {
4285         error_report("Unable to find sPAPR CPU Core definition");
4286         exit(1);
4287     }
4288 
4289     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4290                              sizeof(CPUArchId) * spapr_max_cores);
4291     machine->possible_cpus->len = spapr_max_cores;
4292     for (i = 0; i < machine->possible_cpus->len; i++) {
4293         int core_id = i * smp_threads;
4294 
4295         machine->possible_cpus->cpus[i].type = core_type;
4296         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4297         machine->possible_cpus->cpus[i].arch_id = core_id;
4298         machine->possible_cpus->cpus[i].props.has_core_id = true;
4299         machine->possible_cpus->cpus[i].props.core_id = core_id;
4300     }
4301     return machine->possible_cpus;
4302 }
4303 
4304 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4305                                 uint64_t *buid, hwaddr *pio,
4306                                 hwaddr *mmio32, hwaddr *mmio64,
4307                                 unsigned n_dma, uint32_t *liobns,
4308                                 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4309 {
4310     /*
4311      * New-style PHB window placement.
4312      *
4313      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4314      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4315      * windows.
4316      *
4317      * Some guest kernels can't work with MMIO windows above 1<<46
4318      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4319      *
4320      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4321      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4322      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4323      * 1TiB 64-bit MMIO windows for each PHB.
4324      */
4325     const uint64_t base_buid = 0x800000020000000ULL;
4326     int i;
4327 
4328     /* Sanity check natural alignments */
4329     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4330     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4331     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4332     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4333     /* Sanity check bounds */
4334     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4335                       SPAPR_PCI_MEM32_WIN_SIZE);
4336     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4337                       SPAPR_PCI_MEM64_WIN_SIZE);
4338 
4339     if (index >= SPAPR_MAX_PHBS) {
4340         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4341                    SPAPR_MAX_PHBS - 1);
4342         return false;
4343     }
4344 
4345     *buid = base_buid + index;
4346     for (i = 0; i < n_dma; ++i) {
4347         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4348     }
4349 
4350     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4351     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4352     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4353 
4354     *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4355     *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4356     return true;
4357 }
4358 
4359 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4360 {
4361     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4362 
4363     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4364 }
4365 
4366 static void spapr_ics_resend(XICSFabric *dev)
4367 {
4368     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4369 
4370     ics_resend(spapr->ics);
4371 }
4372 
4373 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4374 {
4375     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4376 
4377     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4378 }
4379 
4380 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4381                                  Monitor *mon)
4382 {
4383     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4384 
4385     spapr_irq_print_info(spapr, mon);
4386     monitor_printf(mon, "irqchip: %s\n",
4387                    kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4388 }
4389 
4390 /*
4391  * This is a XIVE only operation
4392  */
4393 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4394                            uint8_t nvt_blk, uint32_t nvt_idx,
4395                            bool cam_ignore, uint8_t priority,
4396                            uint32_t logic_serv, XiveTCTXMatch *match)
4397 {
4398     SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4399     XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4400     XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4401     int count;
4402 
4403     count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4404                            priority, logic_serv, match);
4405     if (count < 0) {
4406         return count;
4407     }
4408 
4409     /*
4410      * When we implement the save and restore of the thread interrupt
4411      * contexts in the enter/exit CPU handlers of the machine and the
4412      * escalations in QEMU, we should be able to handle non dispatched
4413      * vCPUs.
4414      *
4415      * Until this is done, the sPAPR machine should find at least one
4416      * matching context always.
4417      */
4418     if (count == 0) {
4419         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4420                       nvt_blk, nvt_idx);
4421     }
4422 
4423     return count;
4424 }
4425 
4426 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4427 {
4428     return cpu->vcpu_id;
4429 }
4430 
4431 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4432 {
4433     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4434     MachineState *ms = MACHINE(spapr);
4435     int vcpu_id;
4436 
4437     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4438 
4439     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4440         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4441         error_append_hint(errp, "Adjust the number of cpus to %d "
4442                           "or try to raise the number of threads per core\n",
4443                           vcpu_id * ms->smp.threads / spapr->vsmt);
4444         return false;
4445     }
4446 
4447     cpu->vcpu_id = vcpu_id;
4448     return true;
4449 }
4450 
4451 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4452 {
4453     CPUState *cs;
4454 
4455     CPU_FOREACH(cs) {
4456         PowerPCCPU *cpu = POWERPC_CPU(cs);
4457 
4458         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4459             return cpu;
4460         }
4461     }
4462 
4463     return NULL;
4464 }
4465 
4466 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4467 {
4468     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4469 
4470     /* These are only called by TCG, KVM maintains dispatch state */
4471 
4472     spapr_cpu->prod = false;
4473     if (spapr_cpu->vpa_addr) {
4474         CPUState *cs = CPU(cpu);
4475         uint32_t dispatch;
4476 
4477         dispatch = ldl_be_phys(cs->as,
4478                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4479         dispatch++;
4480         if ((dispatch & 1) != 0) {
4481             qemu_log_mask(LOG_GUEST_ERROR,
4482                           "VPA: incorrect dispatch counter value for "
4483                           "dispatched partition %u, correcting.\n", dispatch);
4484             dispatch++;
4485         }
4486         stl_be_phys(cs->as,
4487                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4488     }
4489 }
4490 
4491 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4492 {
4493     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4494 
4495     if (spapr_cpu->vpa_addr) {
4496         CPUState *cs = CPU(cpu);
4497         uint32_t dispatch;
4498 
4499         dispatch = ldl_be_phys(cs->as,
4500                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4501         dispatch++;
4502         if ((dispatch & 1) != 1) {
4503             qemu_log_mask(LOG_GUEST_ERROR,
4504                           "VPA: incorrect dispatch counter value for "
4505                           "preempted partition %u, correcting.\n", dispatch);
4506             dispatch++;
4507         }
4508         stl_be_phys(cs->as,
4509                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4510     }
4511 }
4512 
4513 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4514 {
4515     MachineClass *mc = MACHINE_CLASS(oc);
4516     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4517     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4518     NMIClass *nc = NMI_CLASS(oc);
4519     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4520     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4521     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4522     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4523     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4524     VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc);
4525 
4526     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4527     mc->ignore_boot_device_suffixes = true;
4528 
4529     /*
4530      * We set up the default / latest behaviour here.  The class_init
4531      * functions for the specific versioned machine types can override
4532      * these details for backwards compatibility
4533      */
4534     mc->init = spapr_machine_init;
4535     mc->reset = spapr_machine_reset;
4536     mc->block_default_type = IF_SCSI;
4537 
4538     /*
4539      * Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values
4540      * should be limited by the host capability instead of hardcoded.
4541      * max_cpus for KVM guests will be checked in kvm_init(), and TCG
4542      * guests are welcome to have as many CPUs as the host are capable
4543      * of emulate.
4544      */
4545     mc->max_cpus = INT32_MAX;
4546 
4547     mc->no_parallel = 1;
4548     mc->default_boot_order = "";
4549     mc->default_ram_size = 512 * MiB;
4550     mc->default_ram_id = "ppc_spapr.ram";
4551     mc->default_display = "std";
4552     mc->kvm_type = spapr_kvm_type;
4553     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4554     mc->pci_allow_0_address = true;
4555     assert(!mc->get_hotplug_handler);
4556     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4557     hc->pre_plug = spapr_machine_device_pre_plug;
4558     hc->plug = spapr_machine_device_plug;
4559     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4560     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4561     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4562     hc->unplug_request = spapr_machine_device_unplug_request;
4563     hc->unplug = spapr_machine_device_unplug;
4564 
4565     smc->dr_lmb_enabled = true;
4566     smc->update_dt_enabled = true;
4567     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4568     mc->has_hotpluggable_cpus = true;
4569     mc->nvdimm_supported = true;
4570     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4571     fwc->get_dev_path = spapr_get_fw_dev_path;
4572     nc->nmi_monitor_handler = spapr_nmi;
4573     smc->phb_placement = spapr_phb_placement;
4574     vhc->hypercall = emulate_spapr_hypercall;
4575     vhc->hpt_mask = spapr_hpt_mask;
4576     vhc->map_hptes = spapr_map_hptes;
4577     vhc->unmap_hptes = spapr_unmap_hptes;
4578     vhc->hpte_set_c = spapr_hpte_set_c;
4579     vhc->hpte_set_r = spapr_hpte_set_r;
4580     vhc->get_pate = spapr_get_pate;
4581     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4582     vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4583     vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4584     xic->ics_get = spapr_ics_get;
4585     xic->ics_resend = spapr_ics_resend;
4586     xic->icp_get = spapr_icp_get;
4587     ispc->print_info = spapr_pic_print_info;
4588     /* Force NUMA node memory size to be a multiple of
4589      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4590      * in which LMBs are represented and hot-added
4591      */
4592     mc->numa_mem_align_shift = 28;
4593     mc->auto_enable_numa = true;
4594 
4595     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4596     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4597     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4598     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4599     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4600     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4601     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4602     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4603     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4604     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4605     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4606     smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF;
4607     spapr_caps_add_properties(smc);
4608     smc->irq = &spapr_irq_dual;
4609     smc->dr_phb_enabled = true;
4610     smc->linux_pci_probe = true;
4611     smc->smp_threads_vsmt = true;
4612     smc->nr_xirqs = SPAPR_NR_XIRQS;
4613     xfc->match_nvt = spapr_match_nvt;
4614     vmc->client_architecture_support = spapr_vof_client_architecture_support;
4615     vmc->quiesce = spapr_vof_quiesce;
4616     vmc->setprop = spapr_vof_setprop;
4617 }
4618 
4619 static const TypeInfo spapr_machine_info = {
4620     .name          = TYPE_SPAPR_MACHINE,
4621     .parent        = TYPE_MACHINE,
4622     .abstract      = true,
4623     .instance_size = sizeof(SpaprMachineState),
4624     .instance_init = spapr_instance_init,
4625     .instance_finalize = spapr_machine_finalizefn,
4626     .class_size    = sizeof(SpaprMachineClass),
4627     .class_init    = spapr_machine_class_init,
4628     .interfaces = (InterfaceInfo[]) {
4629         { TYPE_FW_PATH_PROVIDER },
4630         { TYPE_NMI },
4631         { TYPE_HOTPLUG_HANDLER },
4632         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4633         { TYPE_XICS_FABRIC },
4634         { TYPE_INTERRUPT_STATS_PROVIDER },
4635         { TYPE_XIVE_FABRIC },
4636         { TYPE_VOF_MACHINE_IF },
4637         { }
4638     },
4639 };
4640 
4641 static void spapr_machine_latest_class_options(MachineClass *mc)
4642 {
4643     mc->alias = "pseries";
4644     mc->is_default = true;
4645 }
4646 
4647 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4648     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4649                                                     void *data)      \
4650     {                                                                \
4651         MachineClass *mc = MACHINE_CLASS(oc);                        \
4652         spapr_machine_##suffix##_class_options(mc);                  \
4653         if (latest) {                                                \
4654             spapr_machine_latest_class_options(mc);                  \
4655         }                                                            \
4656     }                                                                \
4657     static const TypeInfo spapr_machine_##suffix##_info = {          \
4658         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4659         .parent = TYPE_SPAPR_MACHINE,                                \
4660         .class_init = spapr_machine_##suffix##_class_init,           \
4661     };                                                               \
4662     static void spapr_machine_register_##suffix(void)                \
4663     {                                                                \
4664         type_register(&spapr_machine_##suffix##_info);               \
4665     }                                                                \
4666     type_init(spapr_machine_register_##suffix)
4667 
4668 /*
4669  * pseries-6.2
4670  */
4671 static void spapr_machine_6_2_class_options(MachineClass *mc)
4672 {
4673     /* Defaults for the latest behaviour inherited from the base class */
4674 }
4675 
4676 DEFINE_SPAPR_MACHINE(6_2, "6.2", true);
4677 
4678 /*
4679  * pseries-6.1
4680  */
4681 static void spapr_machine_6_1_class_options(MachineClass *mc)
4682 {
4683     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4684 
4685     spapr_machine_6_2_class_options(mc);
4686     compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
4687     smc->pre_6_2_numa_affinity = true;
4688     mc->smp_props.prefer_sockets = true;
4689 }
4690 
4691 DEFINE_SPAPR_MACHINE(6_1, "6.1", false);
4692 
4693 /*
4694  * pseries-6.0
4695  */
4696 static void spapr_machine_6_0_class_options(MachineClass *mc)
4697 {
4698     spapr_machine_6_1_class_options(mc);
4699     compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
4700 }
4701 
4702 DEFINE_SPAPR_MACHINE(6_0, "6.0", false);
4703 
4704 /*
4705  * pseries-5.2
4706  */
4707 static void spapr_machine_5_2_class_options(MachineClass *mc)
4708 {
4709     spapr_machine_6_0_class_options(mc);
4710     compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4711 }
4712 
4713 DEFINE_SPAPR_MACHINE(5_2, "5.2", false);
4714 
4715 /*
4716  * pseries-5.1
4717  */
4718 static void spapr_machine_5_1_class_options(MachineClass *mc)
4719 {
4720     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4721 
4722     spapr_machine_5_2_class_options(mc);
4723     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4724     smc->pre_5_2_numa_associativity = true;
4725 }
4726 
4727 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4728 
4729 /*
4730  * pseries-5.0
4731  */
4732 static void spapr_machine_5_0_class_options(MachineClass *mc)
4733 {
4734     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4735     static GlobalProperty compat[] = {
4736         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4737     };
4738 
4739     spapr_machine_5_1_class_options(mc);
4740     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4741     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4742     mc->numa_mem_supported = true;
4743     smc->pre_5_1_assoc_refpoints = true;
4744 }
4745 
4746 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4747 
4748 /*
4749  * pseries-4.2
4750  */
4751 static void spapr_machine_4_2_class_options(MachineClass *mc)
4752 {
4753     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4754 
4755     spapr_machine_5_0_class_options(mc);
4756     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4757     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4758     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4759     smc->rma_limit = 16 * GiB;
4760     mc->nvdimm_supported = false;
4761 }
4762 
4763 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4764 
4765 /*
4766  * pseries-4.1
4767  */
4768 static void spapr_machine_4_1_class_options(MachineClass *mc)
4769 {
4770     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4771     static GlobalProperty compat[] = {
4772         /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4773         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4774     };
4775 
4776     spapr_machine_4_2_class_options(mc);
4777     smc->linux_pci_probe = false;
4778     smc->smp_threads_vsmt = false;
4779     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4780     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4781 }
4782 
4783 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4784 
4785 /*
4786  * pseries-4.0
4787  */
4788 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4789                               uint64_t *buid, hwaddr *pio,
4790                               hwaddr *mmio32, hwaddr *mmio64,
4791                               unsigned n_dma, uint32_t *liobns,
4792                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4793 {
4794     if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
4795                              liobns, nv2gpa, nv2atsd, errp)) {
4796         return false;
4797     }
4798 
4799     *nv2gpa = 0;
4800     *nv2atsd = 0;
4801     return true;
4802 }
4803 static void spapr_machine_4_0_class_options(MachineClass *mc)
4804 {
4805     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4806 
4807     spapr_machine_4_1_class_options(mc);
4808     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4809     smc->phb_placement = phb_placement_4_0;
4810     smc->irq = &spapr_irq_xics;
4811     smc->pre_4_1_migration = true;
4812 }
4813 
4814 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4815 
4816 /*
4817  * pseries-3.1
4818  */
4819 static void spapr_machine_3_1_class_options(MachineClass *mc)
4820 {
4821     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4822 
4823     spapr_machine_4_0_class_options(mc);
4824     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4825 
4826     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4827     smc->update_dt_enabled = false;
4828     smc->dr_phb_enabled = false;
4829     smc->broken_host_serial_model = true;
4830     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4831     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4832     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4833     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4834 }
4835 
4836 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4837 
4838 /*
4839  * pseries-3.0
4840  */
4841 
4842 static void spapr_machine_3_0_class_options(MachineClass *mc)
4843 {
4844     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4845 
4846     spapr_machine_3_1_class_options(mc);
4847     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4848 
4849     smc->legacy_irq_allocation = true;
4850     smc->nr_xirqs = 0x400;
4851     smc->irq = &spapr_irq_xics_legacy;
4852 }
4853 
4854 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4855 
4856 /*
4857  * pseries-2.12
4858  */
4859 static void spapr_machine_2_12_class_options(MachineClass *mc)
4860 {
4861     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4862     static GlobalProperty compat[] = {
4863         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4864         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4865     };
4866 
4867     spapr_machine_3_0_class_options(mc);
4868     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4869     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4870 
4871     /* We depend on kvm_enabled() to choose a default value for the
4872      * hpt-max-page-size capability. Of course we can't do it here
4873      * because this is too early and the HW accelerator isn't initialzed
4874      * yet. Postpone this to machine init (see default_caps_with_cpu()).
4875      */
4876     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4877 }
4878 
4879 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4880 
4881 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4882 {
4883     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4884 
4885     spapr_machine_2_12_class_options(mc);
4886     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4887     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4888     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4889 }
4890 
4891 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4892 
4893 /*
4894  * pseries-2.11
4895  */
4896 
4897 static void spapr_machine_2_11_class_options(MachineClass *mc)
4898 {
4899     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4900 
4901     spapr_machine_2_12_class_options(mc);
4902     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4903     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4904 }
4905 
4906 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4907 
4908 /*
4909  * pseries-2.10
4910  */
4911 
4912 static void spapr_machine_2_10_class_options(MachineClass *mc)
4913 {
4914     spapr_machine_2_11_class_options(mc);
4915     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4916 }
4917 
4918 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4919 
4920 /*
4921  * pseries-2.9
4922  */
4923 
4924 static void spapr_machine_2_9_class_options(MachineClass *mc)
4925 {
4926     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4927     static GlobalProperty compat[] = {
4928         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4929     };
4930 
4931     spapr_machine_2_10_class_options(mc);
4932     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4933     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4934     smc->pre_2_10_has_unused_icps = true;
4935     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4936 }
4937 
4938 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4939 
4940 /*
4941  * pseries-2.8
4942  */
4943 
4944 static void spapr_machine_2_8_class_options(MachineClass *mc)
4945 {
4946     static GlobalProperty compat[] = {
4947         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4948     };
4949 
4950     spapr_machine_2_9_class_options(mc);
4951     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4952     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4953     mc->numa_mem_align_shift = 23;
4954 }
4955 
4956 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4957 
4958 /*
4959  * pseries-2.7
4960  */
4961 
4962 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4963                               uint64_t *buid, hwaddr *pio,
4964                               hwaddr *mmio32, hwaddr *mmio64,
4965                               unsigned n_dma, uint32_t *liobns,
4966                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4967 {
4968     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4969     const uint64_t base_buid = 0x800000020000000ULL;
4970     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4971     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4972     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4973     const uint32_t max_index = 255;
4974     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4975 
4976     uint64_t ram_top = MACHINE(spapr)->ram_size;
4977     hwaddr phb0_base, phb_base;
4978     int i;
4979 
4980     /* Do we have device memory? */
4981     if (MACHINE(spapr)->maxram_size > ram_top) {
4982         /* Can't just use maxram_size, because there may be an
4983          * alignment gap between normal and device memory regions
4984          */
4985         ram_top = MACHINE(spapr)->device_memory->base +
4986             memory_region_size(&MACHINE(spapr)->device_memory->mr);
4987     }
4988 
4989     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4990 
4991     if (index > max_index) {
4992         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4993                    max_index);
4994         return false;
4995     }
4996 
4997     *buid = base_buid + index;
4998     for (i = 0; i < n_dma; ++i) {
4999         liobns[i] = SPAPR_PCI_LIOBN(index, i);
5000     }
5001 
5002     phb_base = phb0_base + index * phb_spacing;
5003     *pio = phb_base + pio_offset;
5004     *mmio32 = phb_base + mmio_offset;
5005     /*
5006      * We don't set the 64-bit MMIO window, relying on the PHB's
5007      * fallback behaviour of automatically splitting a large "32-bit"
5008      * window into contiguous 32-bit and 64-bit windows
5009      */
5010 
5011     *nv2gpa = 0;
5012     *nv2atsd = 0;
5013     return true;
5014 }
5015 
5016 static void spapr_machine_2_7_class_options(MachineClass *mc)
5017 {
5018     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5019     static GlobalProperty compat[] = {
5020         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
5021         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
5022         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
5023         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
5024     };
5025 
5026     spapr_machine_2_8_class_options(mc);
5027     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
5028     mc->default_machine_opts = "modern-hotplug-events=off";
5029     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
5030     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5031     smc->phb_placement = phb_placement_2_7;
5032 }
5033 
5034 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
5035 
5036 /*
5037  * pseries-2.6
5038  */
5039 
5040 static void spapr_machine_2_6_class_options(MachineClass *mc)
5041 {
5042     static GlobalProperty compat[] = {
5043         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
5044     };
5045 
5046     spapr_machine_2_7_class_options(mc);
5047     mc->has_hotpluggable_cpus = false;
5048     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
5049     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5050 }
5051 
5052 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
5053 
5054 /*
5055  * pseries-2.5
5056  */
5057 
5058 static void spapr_machine_2_5_class_options(MachineClass *mc)
5059 {
5060     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5061     static GlobalProperty compat[] = {
5062         { "spapr-vlan", "use-rx-buffer-pools", "off" },
5063     };
5064 
5065     spapr_machine_2_6_class_options(mc);
5066     smc->use_ohci_by_default = true;
5067     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
5068     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5069 }
5070 
5071 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
5072 
5073 /*
5074  * pseries-2.4
5075  */
5076 
5077 static void spapr_machine_2_4_class_options(MachineClass *mc)
5078 {
5079     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5080 
5081     spapr_machine_2_5_class_options(mc);
5082     smc->dr_lmb_enabled = false;
5083     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
5084 }
5085 
5086 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
5087 
5088 /*
5089  * pseries-2.3
5090  */
5091 
5092 static void spapr_machine_2_3_class_options(MachineClass *mc)
5093 {
5094     static GlobalProperty compat[] = {
5095         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
5096     };
5097     spapr_machine_2_4_class_options(mc);
5098     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
5099     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5100 }
5101 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
5102 
5103 /*
5104  * pseries-2.2
5105  */
5106 
5107 static void spapr_machine_2_2_class_options(MachineClass *mc)
5108 {
5109     static GlobalProperty compat[] = {
5110         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
5111     };
5112 
5113     spapr_machine_2_3_class_options(mc);
5114     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
5115     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5116     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
5117 }
5118 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
5119 
5120 /*
5121  * pseries-2.1
5122  */
5123 
5124 static void spapr_machine_2_1_class_options(MachineClass *mc)
5125 {
5126     spapr_machine_2_2_class_options(mc);
5127     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
5128 }
5129 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
5130 
5131 static void spapr_machine_register_types(void)
5132 {
5133     type_register_static(&spapr_machine_info);
5134 }
5135 
5136 type_init(spapr_machine_register_types)
5137