1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 * 26 */ 27 #include "qemu/osdep.h" 28 #include "qapi/error.h" 29 #include "sysemu/sysemu.h" 30 #include "sysemu/numa.h" 31 #include "hw/hw.h" 32 #include "qemu/log.h" 33 #include "hw/fw-path-provider.h" 34 #include "elf.h" 35 #include "net/net.h" 36 #include "sysemu/device_tree.h" 37 #include "sysemu/block-backend.h" 38 #include "sysemu/cpus.h" 39 #include "sysemu/hw_accel.h" 40 #include "kvm_ppc.h" 41 #include "migration/migration.h" 42 #include "mmu-hash64.h" 43 #include "mmu-book3s-v3.h" 44 #include "qom/cpu.h" 45 46 #include "hw/boards.h" 47 #include "hw/ppc/ppc.h" 48 #include "hw/loader.h" 49 50 #include "hw/ppc/fdt.h" 51 #include "hw/ppc/spapr.h" 52 #include "hw/ppc/spapr_vio.h" 53 #include "hw/pci-host/spapr.h" 54 #include "hw/ppc/xics.h" 55 #include "hw/pci/msi.h" 56 57 #include "hw/pci/pci.h" 58 #include "hw/scsi/scsi.h" 59 #include "hw/virtio/virtio-scsi.h" 60 #include "hw/virtio/vhost-scsi-common.h" 61 62 #include "exec/address-spaces.h" 63 #include "hw/usb.h" 64 #include "qemu/config-file.h" 65 #include "qemu/error-report.h" 66 #include "trace.h" 67 #include "hw/nmi.h" 68 #include "hw/intc/intc.h" 69 70 #include "hw/compat.h" 71 #include "qemu/cutils.h" 72 #include "hw/ppc/spapr_cpu_core.h" 73 #include "qmp-commands.h" 74 75 #include <libfdt.h> 76 77 /* SLOF memory layout: 78 * 79 * SLOF raw image loaded at 0, copies its romfs right below the flat 80 * device-tree, then position SLOF itself 31M below that 81 * 82 * So we set FW_OVERHEAD to 40MB which should account for all of that 83 * and more 84 * 85 * We load our kernel at 4M, leaving space for SLOF initial image 86 */ 87 #define FDT_MAX_SIZE 0x100000 88 #define RTAS_MAX_SIZE 0x10000 89 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ 90 #define FW_MAX_SIZE 0x400000 91 #define FW_FILE_NAME "slof.bin" 92 #define FW_OVERHEAD 0x2800000 93 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 94 95 #define MIN_RMA_SLOF 128UL 96 97 #define PHANDLE_XICP 0x00001111 98 99 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift)) 100 101 static ICSState *spapr_ics_create(sPAPRMachineState *spapr, 102 const char *type_ics, 103 int nr_irqs, Error **errp) 104 { 105 Error *local_err = NULL; 106 Object *obj; 107 108 obj = object_new(type_ics); 109 object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort); 110 object_property_add_const_link(obj, "xics", OBJECT(spapr), &error_abort); 111 object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err); 112 if (local_err) { 113 goto error; 114 } 115 object_property_set_bool(obj, true, "realized", &local_err); 116 if (local_err) { 117 goto error; 118 } 119 120 return ICS_SIMPLE(obj); 121 122 error: 123 error_propagate(errp, local_err); 124 return NULL; 125 } 126 127 static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp) 128 { 129 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 130 131 if (kvm_enabled()) { 132 if (machine_kernel_irqchip_allowed(machine) && 133 !xics_kvm_init(spapr, errp)) { 134 spapr->icp_type = TYPE_KVM_ICP; 135 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, errp); 136 } 137 if (machine_kernel_irqchip_required(machine) && !spapr->ics) { 138 error_prepend(errp, "kernel_irqchip requested but unavailable: "); 139 return; 140 } 141 } 142 143 if (!spapr->ics) { 144 xics_spapr_init(spapr); 145 spapr->icp_type = TYPE_ICP; 146 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp); 147 if (!spapr->ics) { 148 return; 149 } 150 } 151 } 152 153 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 154 int smt_threads) 155 { 156 int i, ret = 0; 157 uint32_t servers_prop[smt_threads]; 158 uint32_t gservers_prop[smt_threads * 2]; 159 int index = ppc_get_vcpu_dt_id(cpu); 160 161 if (cpu->compat_pvr) { 162 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 163 if (ret < 0) { 164 return ret; 165 } 166 } 167 168 /* Build interrupt servers and gservers properties */ 169 for (i = 0; i < smt_threads; i++) { 170 servers_prop[i] = cpu_to_be32(index + i); 171 /* Hack, direct the group queues back to cpu 0 */ 172 gservers_prop[i*2] = cpu_to_be32(index + i); 173 gservers_prop[i*2 + 1] = 0; 174 } 175 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 176 servers_prop, sizeof(servers_prop)); 177 if (ret < 0) { 178 return ret; 179 } 180 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 181 gservers_prop, sizeof(gservers_prop)); 182 183 return ret; 184 } 185 186 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu) 187 { 188 int index = ppc_get_vcpu_dt_id(cpu); 189 uint32_t associativity[] = {cpu_to_be32(0x5), 190 cpu_to_be32(0x0), 191 cpu_to_be32(0x0), 192 cpu_to_be32(0x0), 193 cpu_to_be32(cpu->node_id), 194 cpu_to_be32(index)}; 195 196 /* Advertise NUMA via ibm,associativity */ 197 return fdt_setprop(fdt, offset, "ibm,associativity", associativity, 198 sizeof(associativity)); 199 } 200 201 /* Populate the "ibm,pa-features" property */ 202 static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset, 203 bool legacy_guest) 204 { 205 uint8_t pa_features_206[] = { 6, 0, 206 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 207 uint8_t pa_features_207[] = { 24, 0, 208 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 209 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 210 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 211 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 212 uint8_t pa_features_300[] = { 66, 0, 213 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 214 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 215 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 216 /* 6: DS207 */ 217 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 218 /* 16: Vector */ 219 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 220 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 221 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 222 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 223 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 224 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 225 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 226 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 227 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 228 /* 42: PM, 44: PC RA, 46: SC vec'd */ 229 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 230 /* 48: SIMD, 50: QP BFP, 52: String */ 231 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 232 /* 54: DecFP, 56: DecI, 58: SHA */ 233 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 234 /* 60: NM atomic, 62: RNG */ 235 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 236 }; 237 uint8_t *pa_features; 238 size_t pa_size; 239 240 switch (POWERPC_MMU_VER(env->mmu_model)) { 241 case POWERPC_MMU_VER_2_06: 242 pa_features = pa_features_206; 243 pa_size = sizeof(pa_features_206); 244 break; 245 case POWERPC_MMU_VER_2_07: 246 pa_features = pa_features_207; 247 pa_size = sizeof(pa_features_207); 248 break; 249 case POWERPC_MMU_VER_3_00: 250 pa_features = pa_features_300; 251 pa_size = sizeof(pa_features_300); 252 break; 253 default: 254 return; 255 } 256 257 if (env->ci_large_pages) { 258 /* 259 * Note: we keep CI large pages off by default because a 64K capable 260 * guest provisioned with large pages might otherwise try to map a qemu 261 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 262 * even if that qemu runs on a 4k host. 263 * We dd this bit back here if we are confident this is not an issue 264 */ 265 pa_features[3] |= 0x20; 266 } 267 if (kvmppc_has_cap_htm() && pa_size > 24) { 268 pa_features[24] |= 0x80; /* Transactional memory support */ 269 } 270 if (legacy_guest && pa_size > 40) { 271 /* Workaround for broken kernels that attempt (guest) radix 272 * mode when they can't handle it, if they see the radix bit set 273 * in pa-features. So hide it from them. */ 274 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 275 } 276 277 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 278 } 279 280 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr) 281 { 282 int ret = 0, offset, cpus_offset; 283 CPUState *cs; 284 char cpu_model[32]; 285 int smt = kvmppc_smt_threads(); 286 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 287 288 CPU_FOREACH(cs) { 289 PowerPCCPU *cpu = POWERPC_CPU(cs); 290 CPUPPCState *env = &cpu->env; 291 DeviceClass *dc = DEVICE_GET_CLASS(cs); 292 int index = ppc_get_vcpu_dt_id(cpu); 293 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu)); 294 295 if ((index % smt) != 0) { 296 continue; 297 } 298 299 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index); 300 301 cpus_offset = fdt_path_offset(fdt, "/cpus"); 302 if (cpus_offset < 0) { 303 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"), 304 "cpus"); 305 if (cpus_offset < 0) { 306 return cpus_offset; 307 } 308 } 309 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model); 310 if (offset < 0) { 311 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model); 312 if (offset < 0) { 313 return offset; 314 } 315 } 316 317 ret = fdt_setprop(fdt, offset, "ibm,pft-size", 318 pft_size_prop, sizeof(pft_size_prop)); 319 if (ret < 0) { 320 return ret; 321 } 322 323 if (nb_numa_nodes > 1) { 324 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu); 325 if (ret < 0) { 326 return ret; 327 } 328 } 329 330 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt); 331 if (ret < 0) { 332 return ret; 333 } 334 335 spapr_populate_pa_features(env, fdt, offset, 336 spapr->cas_legacy_guest_workaround); 337 } 338 return ret; 339 } 340 341 static hwaddr spapr_node0_size(void) 342 { 343 MachineState *machine = MACHINE(qdev_get_machine()); 344 345 if (nb_numa_nodes) { 346 int i; 347 for (i = 0; i < nb_numa_nodes; ++i) { 348 if (numa_info[i].node_mem) { 349 return MIN(pow2floor(numa_info[i].node_mem), 350 machine->ram_size); 351 } 352 } 353 } 354 return machine->ram_size; 355 } 356 357 static void add_str(GString *s, const gchar *s1) 358 { 359 g_string_append_len(s, s1, strlen(s1) + 1); 360 } 361 362 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start, 363 hwaddr size) 364 { 365 uint32_t associativity[] = { 366 cpu_to_be32(0x4), /* length */ 367 cpu_to_be32(0x0), cpu_to_be32(0x0), 368 cpu_to_be32(0x0), cpu_to_be32(nodeid) 369 }; 370 char mem_name[32]; 371 uint64_t mem_reg_property[2]; 372 int off; 373 374 mem_reg_property[0] = cpu_to_be64(start); 375 mem_reg_property[1] = cpu_to_be64(size); 376 377 sprintf(mem_name, "memory@" TARGET_FMT_lx, start); 378 off = fdt_add_subnode(fdt, 0, mem_name); 379 _FDT(off); 380 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 381 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 382 sizeof(mem_reg_property)))); 383 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, 384 sizeof(associativity)))); 385 return off; 386 } 387 388 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt) 389 { 390 MachineState *machine = MACHINE(spapr); 391 hwaddr mem_start, node_size; 392 int i, nb_nodes = nb_numa_nodes; 393 NodeInfo *nodes = numa_info; 394 NodeInfo ramnode; 395 396 /* No NUMA nodes, assume there is just one node with whole RAM */ 397 if (!nb_numa_nodes) { 398 nb_nodes = 1; 399 ramnode.node_mem = machine->ram_size; 400 nodes = &ramnode; 401 } 402 403 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 404 if (!nodes[i].node_mem) { 405 continue; 406 } 407 if (mem_start >= machine->ram_size) { 408 node_size = 0; 409 } else { 410 node_size = nodes[i].node_mem; 411 if (node_size > machine->ram_size - mem_start) { 412 node_size = machine->ram_size - mem_start; 413 } 414 } 415 if (!mem_start) { 416 /* ppc_spapr_init() checks for rma_size <= node0_size already */ 417 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size); 418 mem_start += spapr->rma_size; 419 node_size -= spapr->rma_size; 420 } 421 for ( ; node_size; ) { 422 hwaddr sizetmp = pow2floor(node_size); 423 424 /* mem_start != 0 here */ 425 if (ctzl(mem_start) < ctzl(sizetmp)) { 426 sizetmp = 1ULL << ctzl(mem_start); 427 } 428 429 spapr_populate_memory_node(fdt, i, mem_start, sizetmp); 430 node_size -= sizetmp; 431 mem_start += sizetmp; 432 } 433 } 434 435 return 0; 436 } 437 438 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset, 439 sPAPRMachineState *spapr) 440 { 441 PowerPCCPU *cpu = POWERPC_CPU(cs); 442 CPUPPCState *env = &cpu->env; 443 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 444 int index = ppc_get_vcpu_dt_id(cpu); 445 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 446 0xffffffff, 0xffffffff}; 447 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 448 : SPAPR_TIMEBASE_FREQ; 449 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 450 uint32_t page_sizes_prop[64]; 451 size_t page_sizes_prop_size; 452 uint32_t vcpus_per_socket = smp_threads * smp_cores; 453 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 454 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu)); 455 sPAPRDRConnector *drc; 456 int drc_index; 457 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 458 int i; 459 460 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 461 if (drc) { 462 drc_index = spapr_drc_index(drc); 463 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 464 } 465 466 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 467 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 468 469 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 470 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 471 env->dcache_line_size))); 472 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 473 env->dcache_line_size))); 474 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 475 env->icache_line_size))); 476 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 477 env->icache_line_size))); 478 479 if (pcc->l1_dcache_size) { 480 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 481 pcc->l1_dcache_size))); 482 } else { 483 error_report("Warning: Unknown L1 dcache size for cpu"); 484 } 485 if (pcc->l1_icache_size) { 486 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 487 pcc->l1_icache_size))); 488 } else { 489 error_report("Warning: Unknown L1 icache size for cpu"); 490 } 491 492 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 493 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 494 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr))); 495 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr))); 496 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 497 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 498 499 if (env->spr_cb[SPR_PURR].oea_read) { 500 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0))); 501 } 502 503 if (env->mmu_model & POWERPC_MMU_1TSEG) { 504 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 505 segs, sizeof(segs)))); 506 } 507 508 /* Advertise VMX/VSX (vector extensions) if available 509 * 0 / no property == no vector extensions 510 * 1 == VMX / Altivec available 511 * 2 == VSX available */ 512 if (env->insns_flags & PPC_ALTIVEC) { 513 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1; 514 515 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx))); 516 } 517 518 /* Advertise DFP (Decimal Floating Point) if available 519 * 0 / no property == no DFP 520 * 1 == DFP available */ 521 if (env->insns_flags2 & PPC2_DFP) { 522 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 523 } 524 525 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop, 526 sizeof(page_sizes_prop)); 527 if (page_sizes_prop_size) { 528 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 529 page_sizes_prop, page_sizes_prop_size))); 530 } 531 532 spapr_populate_pa_features(env, fdt, offset, false); 533 534 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 535 cs->cpu_index / vcpus_per_socket))); 536 537 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 538 pft_size_prop, sizeof(pft_size_prop)))); 539 540 if (nb_numa_nodes > 1) { 541 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu)); 542 } 543 544 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 545 546 if (pcc->radix_page_info) { 547 for (i = 0; i < pcc->radix_page_info->count; i++) { 548 radix_AP_encodings[i] = 549 cpu_to_be32(pcc->radix_page_info->entries[i]); 550 } 551 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 552 radix_AP_encodings, 553 pcc->radix_page_info->count * 554 sizeof(radix_AP_encodings[0])))); 555 } 556 } 557 558 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr) 559 { 560 CPUState *cs; 561 int cpus_offset; 562 char *nodename; 563 int smt = kvmppc_smt_threads(); 564 565 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 566 _FDT(cpus_offset); 567 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 568 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 569 570 /* 571 * We walk the CPUs in reverse order to ensure that CPU DT nodes 572 * created by fdt_add_subnode() end up in the right order in FDT 573 * for the guest kernel the enumerate the CPUs correctly. 574 */ 575 CPU_FOREACH_REVERSE(cs) { 576 PowerPCCPU *cpu = POWERPC_CPU(cs); 577 int index = ppc_get_vcpu_dt_id(cpu); 578 DeviceClass *dc = DEVICE_GET_CLASS(cs); 579 int offset; 580 581 if ((index % smt) != 0) { 582 continue; 583 } 584 585 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 586 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 587 g_free(nodename); 588 _FDT(offset); 589 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 590 } 591 592 } 593 594 /* 595 * Adds ibm,dynamic-reconfiguration-memory node. 596 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 597 * of this device tree node. 598 */ 599 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt) 600 { 601 MachineState *machine = MACHINE(spapr); 602 int ret, i, offset; 603 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 604 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)}; 605 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size; 606 uint32_t nr_lmbs = (spapr->hotplug_memory.base + 607 memory_region_size(&spapr->hotplug_memory.mr)) / 608 lmb_size; 609 uint32_t *int_buf, *cur_index, buf_len; 610 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; 611 612 /* 613 * Don't create the node if there is no hotpluggable memory 614 */ 615 if (machine->ram_size == machine->maxram_size) { 616 return 0; 617 } 618 619 /* 620 * Allocate enough buffer size to fit in ibm,dynamic-memory 621 * or ibm,associativity-lookup-arrays 622 */ 623 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2) 624 * sizeof(uint32_t); 625 cur_index = int_buf = g_malloc0(buf_len); 626 627 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 628 629 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 630 sizeof(prop_lmb_size)); 631 if (ret < 0) { 632 goto out; 633 } 634 635 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 636 if (ret < 0) { 637 goto out; 638 } 639 640 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 641 if (ret < 0) { 642 goto out; 643 } 644 645 /* ibm,dynamic-memory */ 646 int_buf[0] = cpu_to_be32(nr_lmbs); 647 cur_index++; 648 for (i = 0; i < nr_lmbs; i++) { 649 uint64_t addr = i * lmb_size; 650 uint32_t *dynamic_memory = cur_index; 651 652 if (i >= hotplug_lmb_start) { 653 sPAPRDRConnector *drc; 654 655 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 656 g_assert(drc); 657 658 dynamic_memory[0] = cpu_to_be32(addr >> 32); 659 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 660 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 661 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 662 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL)); 663 if (memory_region_present(get_system_memory(), addr)) { 664 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 665 } else { 666 dynamic_memory[5] = cpu_to_be32(0); 667 } 668 } else { 669 /* 670 * LMB information for RMA, boot time RAM and gap b/n RAM and 671 * hotplug memory region -- all these are marked as reserved 672 * and as having no valid DRC. 673 */ 674 dynamic_memory[0] = cpu_to_be32(addr >> 32); 675 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 676 dynamic_memory[2] = cpu_to_be32(0); 677 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 678 dynamic_memory[4] = cpu_to_be32(-1); 679 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 680 SPAPR_LMB_FLAGS_DRC_INVALID); 681 } 682 683 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 684 } 685 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 686 if (ret < 0) { 687 goto out; 688 } 689 690 /* ibm,associativity-lookup-arrays */ 691 cur_index = int_buf; 692 int_buf[0] = cpu_to_be32(nr_nodes); 693 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */ 694 cur_index += 2; 695 for (i = 0; i < nr_nodes; i++) { 696 uint32_t associativity[] = { 697 cpu_to_be32(0x0), 698 cpu_to_be32(0x0), 699 cpu_to_be32(0x0), 700 cpu_to_be32(i) 701 }; 702 memcpy(cur_index, associativity, sizeof(associativity)); 703 cur_index += 4; 704 } 705 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, 706 (cur_index - int_buf) * sizeof(uint32_t)); 707 out: 708 g_free(int_buf); 709 return ret; 710 } 711 712 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt, 713 sPAPROptionVector *ov5_updates) 714 { 715 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 716 int ret = 0, offset; 717 718 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 719 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) { 720 g_assert(smc->dr_lmb_enabled); 721 ret = spapr_populate_drconf_memory(spapr, fdt); 722 if (ret) { 723 goto out; 724 } 725 } 726 727 offset = fdt_path_offset(fdt, "/chosen"); 728 if (offset < 0) { 729 offset = fdt_add_subnode(fdt, 0, "chosen"); 730 if (offset < 0) { 731 return offset; 732 } 733 } 734 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas, 735 "ibm,architecture-vec-5"); 736 737 out: 738 return ret; 739 } 740 741 int spapr_h_cas_compose_response(sPAPRMachineState *spapr, 742 target_ulong addr, target_ulong size, 743 sPAPROptionVector *ov5_updates) 744 { 745 void *fdt, *fdt_skel; 746 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 }; 747 748 size -= sizeof(hdr); 749 750 /* Create sceleton */ 751 fdt_skel = g_malloc0(size); 752 _FDT((fdt_create(fdt_skel, size))); 753 _FDT((fdt_begin_node(fdt_skel, ""))); 754 _FDT((fdt_end_node(fdt_skel))); 755 _FDT((fdt_finish(fdt_skel))); 756 fdt = g_malloc0(size); 757 _FDT((fdt_open_into(fdt_skel, fdt, size))); 758 g_free(fdt_skel); 759 760 /* Fixup cpu nodes */ 761 _FDT((spapr_fixup_cpu_dt(fdt, spapr))); 762 763 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) { 764 return -1; 765 } 766 767 /* Pack resulting tree */ 768 _FDT((fdt_pack(fdt))); 769 770 if (fdt_totalsize(fdt) + sizeof(hdr) > size) { 771 trace_spapr_cas_failed(size); 772 return -1; 773 } 774 775 cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); 776 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); 777 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); 778 g_free(fdt); 779 780 return 0; 781 } 782 783 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt) 784 { 785 int rtas; 786 GString *hypertas = g_string_sized_new(256); 787 GString *qemu_hypertas = g_string_sized_new(256); 788 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) }; 789 uint64_t max_hotplug_addr = spapr->hotplug_memory.base + 790 memory_region_size(&spapr->hotplug_memory.mr); 791 uint32_t lrdr_capacity[] = { 792 cpu_to_be32(max_hotplug_addr >> 32), 793 cpu_to_be32(max_hotplug_addr & 0xffffffff), 794 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE), 795 cpu_to_be32(max_cpus / smp_threads), 796 }; 797 798 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 799 800 /* hypertas */ 801 add_str(hypertas, "hcall-pft"); 802 add_str(hypertas, "hcall-term"); 803 add_str(hypertas, "hcall-dabr"); 804 add_str(hypertas, "hcall-interrupt"); 805 add_str(hypertas, "hcall-tce"); 806 add_str(hypertas, "hcall-vio"); 807 add_str(hypertas, "hcall-splpar"); 808 add_str(hypertas, "hcall-bulk"); 809 add_str(hypertas, "hcall-set-mode"); 810 add_str(hypertas, "hcall-sprg0"); 811 add_str(hypertas, "hcall-copy"); 812 add_str(hypertas, "hcall-debug"); 813 add_str(qemu_hypertas, "hcall-memop1"); 814 815 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 816 add_str(hypertas, "hcall-multi-tce"); 817 } 818 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 819 hypertas->str, hypertas->len)); 820 g_string_free(hypertas, TRUE); 821 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 822 qemu_hypertas->str, qemu_hypertas->len)); 823 g_string_free(qemu_hypertas, TRUE); 824 825 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", 826 refpoints, sizeof(refpoints))); 827 828 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 829 RTAS_ERROR_LOG_MAX)); 830 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 831 RTAS_EVENT_SCAN_RATE)); 832 833 if (msi_nonbroken) { 834 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 835 } 836 837 /* 838 * According to PAPR, rtas ibm,os-term does not guarantee a return 839 * back to the guest cpu. 840 * 841 * While an additional ibm,extended-os-term property indicates 842 * that rtas call return will always occur. Set this property. 843 */ 844 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 845 846 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 847 lrdr_capacity, sizeof(lrdr_capacity))); 848 849 spapr_dt_rtas_tokens(fdt, rtas); 850 } 851 852 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features 853 * that the guest may request and thus the valid values for bytes 24..26 of 854 * option vector 5: */ 855 static void spapr_dt_ov5_platform_support(void *fdt, int chosen) 856 { 857 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 858 859 char val[2 * 3] = { 860 24, 0x00, /* Hash/Radix, filled in below. */ 861 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 862 26, 0x40, /* Radix options: GTSE == yes. */ 863 }; 864 865 if (kvm_enabled()) { 866 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 867 val[1] = 0x80; /* OV5_MMU_BOTH */ 868 } else if (kvmppc_has_cap_mmu_radix()) { 869 val[1] = 0x40; /* OV5_MMU_RADIX_300 */ 870 } else { 871 val[1] = 0x00; /* Hash */ 872 } 873 } else { 874 if (first_ppc_cpu->env.mmu_model & POWERPC_MMU_V3) { 875 /* V3 MMU supports both hash and radix (with dynamic switching) */ 876 val[1] = 0xC0; 877 } else { 878 /* Otherwise we can only do hash */ 879 val[1] = 0x00; 880 } 881 } 882 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 883 val, sizeof(val))); 884 } 885 886 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt) 887 { 888 MachineState *machine = MACHINE(spapr); 889 int chosen; 890 const char *boot_device = machine->boot_order; 891 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 892 size_t cb = 0; 893 char *bootlist = get_boot_devices_list(&cb, true); 894 895 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 896 897 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline)); 898 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 899 spapr->initrd_base)); 900 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 901 spapr->initrd_base + spapr->initrd_size)); 902 903 if (spapr->kernel_size) { 904 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), 905 cpu_to_be64(spapr->kernel_size) }; 906 907 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 908 &kprop, sizeof(kprop))); 909 if (spapr->kernel_le) { 910 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 911 } 912 } 913 if (boot_menu) { 914 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); 915 } 916 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 917 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 918 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 919 920 if (cb && bootlist) { 921 int i; 922 923 for (i = 0; i < cb; i++) { 924 if (bootlist[i] == '\n') { 925 bootlist[i] = ' '; 926 } 927 } 928 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 929 } 930 931 if (boot_device && strlen(boot_device)) { 932 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 933 } 934 935 if (!spapr->has_graphics && stdout_path) { 936 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 937 } 938 939 spapr_dt_ov5_platform_support(fdt, chosen); 940 941 g_free(stdout_path); 942 g_free(bootlist); 943 } 944 945 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt) 946 { 947 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 948 * KVM to work under pHyp with some guest co-operation */ 949 int hypervisor; 950 uint8_t hypercall[16]; 951 952 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 953 /* indicate KVM hypercall interface */ 954 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 955 if (kvmppc_has_cap_fixup_hcalls()) { 956 /* 957 * Older KVM versions with older guest kernels were broken 958 * with the magic page, don't allow the guest to map it. 959 */ 960 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 961 sizeof(hypercall))) { 962 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 963 hypercall, sizeof(hypercall))); 964 } 965 } 966 } 967 968 static void *spapr_build_fdt(sPAPRMachineState *spapr, 969 hwaddr rtas_addr, 970 hwaddr rtas_size) 971 { 972 MachineState *machine = MACHINE(qdev_get_machine()); 973 MachineClass *mc = MACHINE_GET_CLASS(machine); 974 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 975 int ret; 976 void *fdt; 977 sPAPRPHBState *phb; 978 char *buf; 979 int smt = kvmppc_smt_threads(); 980 981 fdt = g_malloc0(FDT_MAX_SIZE); 982 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 983 984 /* Root node */ 985 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 986 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 987 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 988 989 /* 990 * Add info to guest to indentify which host is it being run on 991 * and what is the uuid of the guest 992 */ 993 if (kvmppc_get_host_model(&buf)) { 994 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 995 g_free(buf); 996 } 997 if (kvmppc_get_host_serial(&buf)) { 998 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 999 g_free(buf); 1000 } 1001 1002 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1003 1004 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1005 if (qemu_uuid_set) { 1006 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1007 } 1008 g_free(buf); 1009 1010 if (qemu_get_vm_name()) { 1011 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1012 qemu_get_vm_name())); 1013 } 1014 1015 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1016 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1017 1018 /* /interrupt controller */ 1019 spapr_dt_xics(DIV_ROUND_UP(max_cpus * smt, smp_threads), fdt, PHANDLE_XICP); 1020 1021 ret = spapr_populate_memory(spapr, fdt); 1022 if (ret < 0) { 1023 error_report("couldn't setup memory nodes in fdt"); 1024 exit(1); 1025 } 1026 1027 /* /vdevice */ 1028 spapr_dt_vdevice(spapr->vio_bus, fdt); 1029 1030 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1031 ret = spapr_rng_populate_dt(fdt); 1032 if (ret < 0) { 1033 error_report("could not set up rng device in the fdt"); 1034 exit(1); 1035 } 1036 } 1037 1038 QLIST_FOREACH(phb, &spapr->phbs, list) { 1039 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt); 1040 if (ret < 0) { 1041 error_report("couldn't setup PCI devices in fdt"); 1042 exit(1); 1043 } 1044 } 1045 1046 /* cpus */ 1047 spapr_populate_cpus_dt_node(fdt, spapr); 1048 1049 if (smc->dr_lmb_enabled) { 1050 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); 1051 } 1052 1053 if (mc->has_hotpluggable_cpus) { 1054 int offset = fdt_path_offset(fdt, "/cpus"); 1055 ret = spapr_drc_populate_dt(fdt, offset, NULL, 1056 SPAPR_DR_CONNECTOR_TYPE_CPU); 1057 if (ret < 0) { 1058 error_report("Couldn't set up CPU DR device tree properties"); 1059 exit(1); 1060 } 1061 } 1062 1063 /* /event-sources */ 1064 spapr_dt_events(spapr, fdt); 1065 1066 /* /rtas */ 1067 spapr_dt_rtas(spapr, fdt); 1068 1069 /* /chosen */ 1070 spapr_dt_chosen(spapr, fdt); 1071 1072 /* /hypervisor */ 1073 if (kvm_enabled()) { 1074 spapr_dt_hypervisor(spapr, fdt); 1075 } 1076 1077 /* Build memory reserve map */ 1078 if (spapr->kernel_size) { 1079 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size))); 1080 } 1081 if (spapr->initrd_size) { 1082 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size))); 1083 } 1084 1085 /* ibm,client-architecture-support updates */ 1086 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas); 1087 if (ret < 0) { 1088 error_report("couldn't setup CAS properties fdt"); 1089 exit(1); 1090 } 1091 1092 return fdt; 1093 } 1094 1095 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1096 { 1097 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; 1098 } 1099 1100 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1101 PowerPCCPU *cpu) 1102 { 1103 CPUPPCState *env = &cpu->env; 1104 1105 /* The TCG path should also be holding the BQL at this point */ 1106 g_assert(qemu_mutex_iothread_locked()); 1107 1108 if (msr_pr) { 1109 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1110 env->gpr[3] = H_PRIVILEGE; 1111 } else { 1112 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1113 } 1114 } 1115 1116 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp) 1117 { 1118 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1119 1120 return spapr->patb_entry; 1121 } 1122 1123 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1124 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1125 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1126 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1127 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1128 1129 /* 1130 * Get the fd to access the kernel htab, re-opening it if necessary 1131 */ 1132 static int get_htab_fd(sPAPRMachineState *spapr) 1133 { 1134 if (spapr->htab_fd >= 0) { 1135 return spapr->htab_fd; 1136 } 1137 1138 spapr->htab_fd = kvmppc_get_htab_fd(false); 1139 if (spapr->htab_fd < 0) { 1140 error_report("Unable to open fd for reading hash table from KVM: %s", 1141 strerror(errno)); 1142 } 1143 1144 return spapr->htab_fd; 1145 } 1146 1147 void close_htab_fd(sPAPRMachineState *spapr) 1148 { 1149 if (spapr->htab_fd >= 0) { 1150 close(spapr->htab_fd); 1151 } 1152 spapr->htab_fd = -1; 1153 } 1154 1155 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1156 { 1157 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1158 1159 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1160 } 1161 1162 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1163 hwaddr ptex, int n) 1164 { 1165 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1166 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1167 1168 if (!spapr->htab) { 1169 /* 1170 * HTAB is controlled by KVM. Fetch into temporary buffer 1171 */ 1172 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1173 kvmppc_read_hptes(hptes, ptex, n); 1174 return hptes; 1175 } 1176 1177 /* 1178 * HTAB is controlled by QEMU. Just point to the internally 1179 * accessible PTEG. 1180 */ 1181 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1182 } 1183 1184 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1185 const ppc_hash_pte64_t *hptes, 1186 hwaddr ptex, int n) 1187 { 1188 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1189 1190 if (!spapr->htab) { 1191 g_free((void *)hptes); 1192 } 1193 1194 /* Nothing to do for qemu managed HPT */ 1195 } 1196 1197 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1198 uint64_t pte0, uint64_t pte1) 1199 { 1200 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1201 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1202 1203 if (!spapr->htab) { 1204 kvmppc_write_hpte(ptex, pte0, pte1); 1205 } else { 1206 stq_p(spapr->htab + offset, pte0); 1207 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1208 } 1209 } 1210 1211 static int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1212 { 1213 int shift; 1214 1215 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1216 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1217 * that's much more than is needed for Linux guests */ 1218 shift = ctz64(pow2ceil(ramsize)) - 7; 1219 shift = MAX(shift, 18); /* Minimum architected size */ 1220 shift = MIN(shift, 46); /* Maximum architected size */ 1221 return shift; 1222 } 1223 1224 void spapr_free_hpt(sPAPRMachineState *spapr) 1225 { 1226 g_free(spapr->htab); 1227 spapr->htab = NULL; 1228 spapr->htab_shift = 0; 1229 close_htab_fd(spapr); 1230 } 1231 1232 static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift, 1233 Error **errp) 1234 { 1235 long rc; 1236 1237 /* Clean up any HPT info from a previous boot */ 1238 spapr_free_hpt(spapr); 1239 1240 rc = kvmppc_reset_htab(shift); 1241 if (rc < 0) { 1242 /* kernel-side HPT needed, but couldn't allocate one */ 1243 error_setg_errno(errp, errno, 1244 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)", 1245 shift); 1246 /* This is almost certainly fatal, but if the caller really 1247 * wants to carry on with shift == 0, it's welcome to try */ 1248 } else if (rc > 0) { 1249 /* kernel-side HPT allocated */ 1250 if (rc != shift) { 1251 error_setg(errp, 1252 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)", 1253 shift, rc); 1254 } 1255 1256 spapr->htab_shift = shift; 1257 spapr->htab = NULL; 1258 } else { 1259 /* kernel-side HPT not needed, allocate in userspace instead */ 1260 size_t size = 1ULL << shift; 1261 int i; 1262 1263 spapr->htab = qemu_memalign(size, size); 1264 if (!spapr->htab) { 1265 error_setg_errno(errp, errno, 1266 "Could not allocate HPT of order %d", shift); 1267 return; 1268 } 1269 1270 memset(spapr->htab, 0, size); 1271 spapr->htab_shift = shift; 1272 1273 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1274 DIRTY_HPTE(HPTE(spapr->htab, i)); 1275 } 1276 } 1277 } 1278 1279 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr) 1280 { 1281 spapr_reallocate_hpt(spapr, 1282 spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size), 1283 &error_fatal); 1284 if (spapr->vrma_adjust) { 1285 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(), 1286 spapr->htab_shift); 1287 } 1288 /* We're setting up a hash table, so that means we're not radix */ 1289 spapr->patb_entry = 0; 1290 } 1291 1292 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque) 1293 { 1294 bool matched = false; 1295 1296 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 1297 matched = true; 1298 } 1299 1300 if (!matched) { 1301 error_report("Device %s is not supported by this machine yet.", 1302 qdev_fw_name(DEVICE(sbdev))); 1303 exit(1); 1304 } 1305 } 1306 1307 static void ppc_spapr_reset(void) 1308 { 1309 MachineState *machine = MACHINE(qdev_get_machine()); 1310 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 1311 PowerPCCPU *first_ppc_cpu; 1312 uint32_t rtas_limit; 1313 hwaddr rtas_addr, fdt_addr; 1314 void *fdt; 1315 int rc; 1316 1317 /* Check for unknown sysbus devices */ 1318 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL); 1319 1320 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()) { 1321 /* If using KVM with radix mode available, VCPUs can be started 1322 * without a HPT because KVM will start them in radix mode. 1323 * Set the GR bit in PATB so that we know there is no HPT. */ 1324 spapr->patb_entry = PATBE1_GR; 1325 } else { 1326 spapr->patb_entry = 0; 1327 spapr_setup_hpt_and_vrma(spapr); 1328 } 1329 1330 qemu_devices_reset(); 1331 1332 /* 1333 * We place the device tree and RTAS just below either the top of the RMA, 1334 * or just below 2GB, whichever is lowere, so that it can be 1335 * processed with 32-bit real mode code if necessary 1336 */ 1337 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR); 1338 rtas_addr = rtas_limit - RTAS_MAX_SIZE; 1339 fdt_addr = rtas_addr - FDT_MAX_SIZE; 1340 1341 /* if this reset wasn't generated by CAS, we should reset our 1342 * negotiated options and start from scratch */ 1343 if (!spapr->cas_reboot) { 1344 spapr_ovec_cleanup(spapr->ov5_cas); 1345 spapr->ov5_cas = spapr_ovec_new(); 1346 } 1347 1348 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size); 1349 1350 spapr_load_rtas(spapr, fdt, rtas_addr); 1351 1352 rc = fdt_pack(fdt); 1353 1354 /* Should only fail if we've built a corrupted tree */ 1355 assert(rc == 0); 1356 1357 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { 1358 error_report("FDT too big ! 0x%x bytes (max is 0x%x)", 1359 fdt_totalsize(fdt), FDT_MAX_SIZE); 1360 exit(1); 1361 } 1362 1363 /* Load the fdt */ 1364 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1365 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1366 g_free(fdt); 1367 1368 /* Set up the entry state */ 1369 first_ppc_cpu = POWERPC_CPU(first_cpu); 1370 first_ppc_cpu->env.gpr[3] = fdt_addr; 1371 first_ppc_cpu->env.gpr[5] = 0; 1372 first_cpu->halted = 0; 1373 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT; 1374 1375 spapr->cas_reboot = false; 1376 } 1377 1378 static void spapr_create_nvram(sPAPRMachineState *spapr) 1379 { 1380 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); 1381 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1382 1383 if (dinfo) { 1384 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 1385 &error_fatal); 1386 } 1387 1388 qdev_init_nofail(dev); 1389 1390 spapr->nvram = (struct sPAPRNVRAM *)dev; 1391 } 1392 1393 static void spapr_rtc_create(sPAPRMachineState *spapr) 1394 { 1395 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC); 1396 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc), 1397 &error_fatal); 1398 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized", 1399 &error_fatal); 1400 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1401 "date", &error_fatal); 1402 } 1403 1404 /* Returns whether we want to use VGA or not */ 1405 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1406 { 1407 switch (vga_interface_type) { 1408 case VGA_NONE: 1409 return false; 1410 case VGA_DEVICE: 1411 return true; 1412 case VGA_STD: 1413 case VGA_VIRTIO: 1414 return pci_vga_init(pci_bus) != NULL; 1415 default: 1416 error_setg(errp, 1417 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1418 return false; 1419 } 1420 } 1421 1422 static int spapr_post_load(void *opaque, int version_id) 1423 { 1424 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque; 1425 int err = 0; 1426 1427 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) { 1428 CPUState *cs; 1429 CPU_FOREACH(cs) { 1430 PowerPCCPU *cpu = POWERPC_CPU(cs); 1431 icp_resend(ICP(cpu->intc)); 1432 } 1433 } 1434 1435 /* In earlier versions, there was no separate qdev for the PAPR 1436 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1437 * So when migrating from those versions, poke the incoming offset 1438 * value into the RTC device */ 1439 if (version_id < 3) { 1440 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1441 } 1442 1443 return err; 1444 } 1445 1446 static bool version_before_3(void *opaque, int version_id) 1447 { 1448 return version_id < 3; 1449 } 1450 1451 static bool spapr_ov5_cas_needed(void *opaque) 1452 { 1453 sPAPRMachineState *spapr = opaque; 1454 sPAPROptionVector *ov5_mask = spapr_ovec_new(); 1455 sPAPROptionVector *ov5_legacy = spapr_ovec_new(); 1456 sPAPROptionVector *ov5_removed = spapr_ovec_new(); 1457 bool cas_needed; 1458 1459 /* Prior to the introduction of sPAPROptionVector, we had two option 1460 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1461 * Both of these options encode machine topology into the device-tree 1462 * in such a way that the now-booted OS should still be able to interact 1463 * appropriately with QEMU regardless of what options were actually 1464 * negotiatied on the source side. 1465 * 1466 * As such, we can avoid migrating the CAS-negotiated options if these 1467 * are the only options available on the current machine/platform. 1468 * Since these are the only options available for pseries-2.7 and 1469 * earlier, this allows us to maintain old->new/new->old migration 1470 * compatibility. 1471 * 1472 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1473 * via default pseries-2.8 machines and explicit command-line parameters. 1474 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1475 * of the actual CAS-negotiated values to continue working properly. For 1476 * example, availability of memory unplug depends on knowing whether 1477 * OV5_HP_EVT was negotiated via CAS. 1478 * 1479 * Thus, for any cases where the set of available CAS-negotiatable 1480 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 1481 * include the CAS-negotiated options in the migration stream. 1482 */ 1483 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 1484 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 1485 1486 /* spapr_ovec_diff returns true if bits were removed. we avoid using 1487 * the mask itself since in the future it's possible "legacy" bits may be 1488 * removed via machine options, which could generate a false positive 1489 * that breaks migration. 1490 */ 1491 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask); 1492 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy); 1493 1494 spapr_ovec_cleanup(ov5_mask); 1495 spapr_ovec_cleanup(ov5_legacy); 1496 spapr_ovec_cleanup(ov5_removed); 1497 1498 return cas_needed; 1499 } 1500 1501 static const VMStateDescription vmstate_spapr_ov5_cas = { 1502 .name = "spapr_option_vector_ov5_cas", 1503 .version_id = 1, 1504 .minimum_version_id = 1, 1505 .needed = spapr_ov5_cas_needed, 1506 .fields = (VMStateField[]) { 1507 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1, 1508 vmstate_spapr_ovec, sPAPROptionVector), 1509 VMSTATE_END_OF_LIST() 1510 }, 1511 }; 1512 1513 static bool spapr_patb_entry_needed(void *opaque) 1514 { 1515 sPAPRMachineState *spapr = opaque; 1516 1517 return !!spapr->patb_entry; 1518 } 1519 1520 static const VMStateDescription vmstate_spapr_patb_entry = { 1521 .name = "spapr_patb_entry", 1522 .version_id = 1, 1523 .minimum_version_id = 1, 1524 .needed = spapr_patb_entry_needed, 1525 .fields = (VMStateField[]) { 1526 VMSTATE_UINT64(patb_entry, sPAPRMachineState), 1527 VMSTATE_END_OF_LIST() 1528 }, 1529 }; 1530 1531 static const VMStateDescription vmstate_spapr = { 1532 .name = "spapr", 1533 .version_id = 3, 1534 .minimum_version_id = 1, 1535 .post_load = spapr_post_load, 1536 .fields = (VMStateField[]) { 1537 /* used to be @next_irq */ 1538 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 1539 1540 /* RTC offset */ 1541 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3), 1542 1543 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2), 1544 VMSTATE_END_OF_LIST() 1545 }, 1546 .subsections = (const VMStateDescription*[]) { 1547 &vmstate_spapr_ov5_cas, 1548 &vmstate_spapr_patb_entry, 1549 NULL 1550 } 1551 }; 1552 1553 static int htab_save_setup(QEMUFile *f, void *opaque) 1554 { 1555 sPAPRMachineState *spapr = opaque; 1556 1557 /* "Iteration" header */ 1558 qemu_put_be32(f, spapr->htab_shift); 1559 1560 if (spapr->htab) { 1561 spapr->htab_save_index = 0; 1562 spapr->htab_first_pass = true; 1563 } else { 1564 assert(kvm_enabled()); 1565 } 1566 1567 1568 return 0; 1569 } 1570 1571 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr, 1572 int64_t max_ns) 1573 { 1574 bool has_timeout = max_ns != -1; 1575 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 1576 int index = spapr->htab_save_index; 1577 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 1578 1579 assert(spapr->htab_first_pass); 1580 1581 do { 1582 int chunkstart; 1583 1584 /* Consume invalid HPTEs */ 1585 while ((index < htabslots) 1586 && !HPTE_VALID(HPTE(spapr->htab, index))) { 1587 CLEAN_HPTE(HPTE(spapr->htab, index)); 1588 index++; 1589 } 1590 1591 /* Consume valid HPTEs */ 1592 chunkstart = index; 1593 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 1594 && HPTE_VALID(HPTE(spapr->htab, index))) { 1595 CLEAN_HPTE(HPTE(spapr->htab, index)); 1596 index++; 1597 } 1598 1599 if (index > chunkstart) { 1600 int n_valid = index - chunkstart; 1601 1602 qemu_put_be32(f, chunkstart); 1603 qemu_put_be16(f, n_valid); 1604 qemu_put_be16(f, 0); 1605 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 1606 HASH_PTE_SIZE_64 * n_valid); 1607 1608 if (has_timeout && 1609 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 1610 break; 1611 } 1612 } 1613 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 1614 1615 if (index >= htabslots) { 1616 assert(index == htabslots); 1617 index = 0; 1618 spapr->htab_first_pass = false; 1619 } 1620 spapr->htab_save_index = index; 1621 } 1622 1623 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr, 1624 int64_t max_ns) 1625 { 1626 bool final = max_ns < 0; 1627 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 1628 int examined = 0, sent = 0; 1629 int index = spapr->htab_save_index; 1630 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 1631 1632 assert(!spapr->htab_first_pass); 1633 1634 do { 1635 int chunkstart, invalidstart; 1636 1637 /* Consume non-dirty HPTEs */ 1638 while ((index < htabslots) 1639 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 1640 index++; 1641 examined++; 1642 } 1643 1644 chunkstart = index; 1645 /* Consume valid dirty HPTEs */ 1646 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 1647 && HPTE_DIRTY(HPTE(spapr->htab, index)) 1648 && HPTE_VALID(HPTE(spapr->htab, index))) { 1649 CLEAN_HPTE(HPTE(spapr->htab, index)); 1650 index++; 1651 examined++; 1652 } 1653 1654 invalidstart = index; 1655 /* Consume invalid dirty HPTEs */ 1656 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 1657 && HPTE_DIRTY(HPTE(spapr->htab, index)) 1658 && !HPTE_VALID(HPTE(spapr->htab, index))) { 1659 CLEAN_HPTE(HPTE(spapr->htab, index)); 1660 index++; 1661 examined++; 1662 } 1663 1664 if (index > chunkstart) { 1665 int n_valid = invalidstart - chunkstart; 1666 int n_invalid = index - invalidstart; 1667 1668 qemu_put_be32(f, chunkstart); 1669 qemu_put_be16(f, n_valid); 1670 qemu_put_be16(f, n_invalid); 1671 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 1672 HASH_PTE_SIZE_64 * n_valid); 1673 sent += index - chunkstart; 1674 1675 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 1676 break; 1677 } 1678 } 1679 1680 if (examined >= htabslots) { 1681 break; 1682 } 1683 1684 if (index >= htabslots) { 1685 assert(index == htabslots); 1686 index = 0; 1687 } 1688 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 1689 1690 if (index >= htabslots) { 1691 assert(index == htabslots); 1692 index = 0; 1693 } 1694 1695 spapr->htab_save_index = index; 1696 1697 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 1698 } 1699 1700 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 1701 #define MAX_KVM_BUF_SIZE 2048 1702 1703 static int htab_save_iterate(QEMUFile *f, void *opaque) 1704 { 1705 sPAPRMachineState *spapr = opaque; 1706 int fd; 1707 int rc = 0; 1708 1709 /* Iteration header */ 1710 qemu_put_be32(f, 0); 1711 1712 if (!spapr->htab) { 1713 assert(kvm_enabled()); 1714 1715 fd = get_htab_fd(spapr); 1716 if (fd < 0) { 1717 return fd; 1718 } 1719 1720 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 1721 if (rc < 0) { 1722 return rc; 1723 } 1724 } else if (spapr->htab_first_pass) { 1725 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 1726 } else { 1727 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 1728 } 1729 1730 /* End marker */ 1731 qemu_put_be32(f, 0); 1732 qemu_put_be16(f, 0); 1733 qemu_put_be16(f, 0); 1734 1735 return rc; 1736 } 1737 1738 static int htab_save_complete(QEMUFile *f, void *opaque) 1739 { 1740 sPAPRMachineState *spapr = opaque; 1741 int fd; 1742 1743 /* Iteration header */ 1744 qemu_put_be32(f, 0); 1745 1746 if (!spapr->htab) { 1747 int rc; 1748 1749 assert(kvm_enabled()); 1750 1751 fd = get_htab_fd(spapr); 1752 if (fd < 0) { 1753 return fd; 1754 } 1755 1756 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 1757 if (rc < 0) { 1758 return rc; 1759 } 1760 } else { 1761 if (spapr->htab_first_pass) { 1762 htab_save_first_pass(f, spapr, -1); 1763 } 1764 htab_save_later_pass(f, spapr, -1); 1765 } 1766 1767 /* End marker */ 1768 qemu_put_be32(f, 0); 1769 qemu_put_be16(f, 0); 1770 qemu_put_be16(f, 0); 1771 1772 return 0; 1773 } 1774 1775 static int htab_load(QEMUFile *f, void *opaque, int version_id) 1776 { 1777 sPAPRMachineState *spapr = opaque; 1778 uint32_t section_hdr; 1779 int fd = -1; 1780 1781 if (version_id < 1 || version_id > 1) { 1782 error_report("htab_load() bad version"); 1783 return -EINVAL; 1784 } 1785 1786 section_hdr = qemu_get_be32(f); 1787 1788 if (section_hdr) { 1789 Error *local_err = NULL; 1790 1791 /* First section gives the htab size */ 1792 spapr_reallocate_hpt(spapr, section_hdr, &local_err); 1793 if (local_err) { 1794 error_report_err(local_err); 1795 return -EINVAL; 1796 } 1797 return 0; 1798 } 1799 1800 if (!spapr->htab) { 1801 assert(kvm_enabled()); 1802 1803 fd = kvmppc_get_htab_fd(true); 1804 if (fd < 0) { 1805 error_report("Unable to open fd to restore KVM hash table: %s", 1806 strerror(errno)); 1807 } 1808 } 1809 1810 while (true) { 1811 uint32_t index; 1812 uint16_t n_valid, n_invalid; 1813 1814 index = qemu_get_be32(f); 1815 n_valid = qemu_get_be16(f); 1816 n_invalid = qemu_get_be16(f); 1817 1818 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 1819 /* End of Stream */ 1820 break; 1821 } 1822 1823 if ((index + n_valid + n_invalid) > 1824 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 1825 /* Bad index in stream */ 1826 error_report( 1827 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 1828 index, n_valid, n_invalid, spapr->htab_shift); 1829 return -EINVAL; 1830 } 1831 1832 if (spapr->htab) { 1833 if (n_valid) { 1834 qemu_get_buffer(f, HPTE(spapr->htab, index), 1835 HASH_PTE_SIZE_64 * n_valid); 1836 } 1837 if (n_invalid) { 1838 memset(HPTE(spapr->htab, index + n_valid), 0, 1839 HASH_PTE_SIZE_64 * n_invalid); 1840 } 1841 } else { 1842 int rc; 1843 1844 assert(fd >= 0); 1845 1846 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); 1847 if (rc < 0) { 1848 return rc; 1849 } 1850 } 1851 } 1852 1853 if (!spapr->htab) { 1854 assert(fd >= 0); 1855 close(fd); 1856 } 1857 1858 return 0; 1859 } 1860 1861 static void htab_cleanup(void *opaque) 1862 { 1863 sPAPRMachineState *spapr = opaque; 1864 1865 close_htab_fd(spapr); 1866 } 1867 1868 static SaveVMHandlers savevm_htab_handlers = { 1869 .save_live_setup = htab_save_setup, 1870 .save_live_iterate = htab_save_iterate, 1871 .save_live_complete_precopy = htab_save_complete, 1872 .cleanup = htab_cleanup, 1873 .load_state = htab_load, 1874 }; 1875 1876 static void spapr_boot_set(void *opaque, const char *boot_device, 1877 Error **errp) 1878 { 1879 MachineState *machine = MACHINE(qdev_get_machine()); 1880 machine->boot_order = g_strdup(boot_device); 1881 } 1882 1883 /* 1884 * Reset routine for LMB DR devices. 1885 * 1886 * Unlike PCI DR devices, LMB DR devices explicitly register this reset 1887 * routine. Reset for PCI DR devices will be handled by PHB reset routine 1888 * when it walks all its children devices. LMB devices reset occurs 1889 * as part of spapr_ppc_reset(). 1890 */ 1891 static void spapr_drc_reset(void *opaque) 1892 { 1893 sPAPRDRConnector *drc = opaque; 1894 DeviceState *d = DEVICE(drc); 1895 1896 if (d) { 1897 device_reset(d); 1898 } 1899 } 1900 1901 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr) 1902 { 1903 MachineState *machine = MACHINE(spapr); 1904 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 1905 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 1906 int i; 1907 1908 for (i = 0; i < nr_lmbs; i++) { 1909 sPAPRDRConnector *drc; 1910 uint64_t addr; 1911 1912 addr = i * lmb_size + spapr->hotplug_memory.base; 1913 drc = spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 1914 addr/lmb_size); 1915 qemu_register_reset(spapr_drc_reset, drc); 1916 } 1917 } 1918 1919 /* 1920 * If RAM size, maxmem size and individual node mem sizes aren't aligned 1921 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 1922 * since we can't support such unaligned sizes with DRCONF_MEMORY. 1923 */ 1924 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 1925 { 1926 int i; 1927 1928 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 1929 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 1930 " is not aligned to %llu MiB", 1931 machine->ram_size, 1932 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); 1933 return; 1934 } 1935 1936 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 1937 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 1938 " is not aligned to %llu MiB", 1939 machine->ram_size, 1940 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); 1941 return; 1942 } 1943 1944 for (i = 0; i < nb_numa_nodes; i++) { 1945 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 1946 error_setg(errp, 1947 "Node %d memory size 0x%" PRIx64 1948 " is not aligned to %llu MiB", 1949 i, numa_info[i].node_mem, 1950 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); 1951 return; 1952 } 1953 } 1954 } 1955 1956 /* find cpu slot in machine->possible_cpus by core_id */ 1957 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 1958 { 1959 int index = id / smp_threads; 1960 1961 if (index >= ms->possible_cpus->len) { 1962 return NULL; 1963 } 1964 if (idx) { 1965 *idx = index; 1966 } 1967 return &ms->possible_cpus->cpus[index]; 1968 } 1969 1970 static void spapr_init_cpus(sPAPRMachineState *spapr) 1971 { 1972 MachineState *machine = MACHINE(spapr); 1973 MachineClass *mc = MACHINE_GET_CLASS(machine); 1974 char *type = spapr_get_cpu_core_type(machine->cpu_model); 1975 int smt = kvmppc_smt_threads(); 1976 const CPUArchIdList *possible_cpus; 1977 int boot_cores_nr = smp_cpus / smp_threads; 1978 int i; 1979 1980 if (!type) { 1981 error_report("Unable to find sPAPR CPU Core definition"); 1982 exit(1); 1983 } 1984 1985 possible_cpus = mc->possible_cpu_arch_ids(machine); 1986 if (mc->has_hotpluggable_cpus) { 1987 if (smp_cpus % smp_threads) { 1988 error_report("smp_cpus (%u) must be multiple of threads (%u)", 1989 smp_cpus, smp_threads); 1990 exit(1); 1991 } 1992 if (max_cpus % smp_threads) { 1993 error_report("max_cpus (%u) must be multiple of threads (%u)", 1994 max_cpus, smp_threads); 1995 exit(1); 1996 } 1997 } else { 1998 if (max_cpus != smp_cpus) { 1999 error_report("This machine version does not support CPU hotplug"); 2000 exit(1); 2001 } 2002 boot_cores_nr = possible_cpus->len; 2003 } 2004 2005 for (i = 0; i < possible_cpus->len; i++) { 2006 int core_id = i * smp_threads; 2007 2008 if (mc->has_hotpluggable_cpus) { 2009 sPAPRDRConnector *drc = 2010 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2011 (core_id / smp_threads) * smt); 2012 2013 qemu_register_reset(spapr_drc_reset, drc); 2014 } 2015 2016 if (i < boot_cores_nr) { 2017 Object *core = object_new(type); 2018 int nr_threads = smp_threads; 2019 2020 /* Handle the partially filled core for older machine types */ 2021 if ((i + 1) * smp_threads >= smp_cpus) { 2022 nr_threads = smp_cpus - i * smp_threads; 2023 } 2024 2025 object_property_set_int(core, nr_threads, "nr-threads", 2026 &error_fatal); 2027 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID, 2028 &error_fatal); 2029 object_property_set_bool(core, true, "realized", &error_fatal); 2030 } 2031 } 2032 g_free(type); 2033 } 2034 2035 /* pSeries LPAR / sPAPR hardware init */ 2036 static void ppc_spapr_init(MachineState *machine) 2037 { 2038 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 2039 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2040 const char *kernel_filename = machine->kernel_filename; 2041 const char *initrd_filename = machine->initrd_filename; 2042 PCIHostState *phb; 2043 int i; 2044 MemoryRegion *sysmem = get_system_memory(); 2045 MemoryRegion *ram = g_new(MemoryRegion, 1); 2046 MemoryRegion *rma_region; 2047 void *rma = NULL; 2048 hwaddr rma_alloc_size; 2049 hwaddr node0_size = spapr_node0_size(); 2050 long load_limit, fw_size; 2051 char *filename; 2052 2053 msi_nonbroken = true; 2054 2055 QLIST_INIT(&spapr->phbs); 2056 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2057 2058 /* Allocate RMA if necessary */ 2059 rma_alloc_size = kvmppc_alloc_rma(&rma); 2060 2061 if (rma_alloc_size == -1) { 2062 error_report("Unable to create RMA"); 2063 exit(1); 2064 } 2065 2066 if (rma_alloc_size && (rma_alloc_size < node0_size)) { 2067 spapr->rma_size = rma_alloc_size; 2068 } else { 2069 spapr->rma_size = node0_size; 2070 2071 /* With KVM, we don't actually know whether KVM supports an 2072 * unbounded RMA (PR KVM) or is limited by the hash table size 2073 * (HV KVM using VRMA), so we always assume the latter 2074 * 2075 * In that case, we also limit the initial allocations for RTAS 2076 * etc... to 256M since we have no way to know what the VRMA size 2077 * is going to be as it depends on the size of the hash table 2078 * isn't determined yet. 2079 */ 2080 if (kvm_enabled()) { 2081 spapr->vrma_adjust = 1; 2082 spapr->rma_size = MIN(spapr->rma_size, 0x10000000); 2083 } 2084 2085 /* Actually we don't support unbounded RMA anymore since we 2086 * added proper emulation of HV mode. The max we can get is 2087 * 16G which also happens to be what we configure for PAPR 2088 * mode so make sure we don't do anything bigger than that 2089 */ 2090 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull); 2091 } 2092 2093 if (spapr->rma_size > node0_size) { 2094 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")", 2095 spapr->rma_size); 2096 exit(1); 2097 } 2098 2099 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2100 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; 2101 2102 /* Set up Interrupt Controller before we create the VCPUs */ 2103 xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal); 2104 2105 /* Set up containers for ibm,client-set-architecture negotiated options */ 2106 spapr->ov5 = spapr_ovec_new(); 2107 spapr->ov5_cas = spapr_ovec_new(); 2108 2109 if (smc->dr_lmb_enabled) { 2110 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2111 spapr_validate_node_memory(machine, &error_fatal); 2112 } 2113 2114 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2115 if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) { 2116 /* KVM and TCG always allow GTSE with radix... */ 2117 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2118 } 2119 /* ... but not with hash (currently). */ 2120 2121 /* advertise support for dedicated HP event source to guests */ 2122 if (spapr->use_hotplug_event_source) { 2123 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2124 } 2125 2126 /* init CPUs */ 2127 if (machine->cpu_model == NULL) { 2128 machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu; 2129 } 2130 2131 ppc_cpu_parse_features(machine->cpu_model); 2132 2133 spapr_init_cpus(spapr); 2134 2135 if (kvm_enabled()) { 2136 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2137 kvmppc_enable_logical_ci_hcalls(); 2138 kvmppc_enable_set_mode_hcall(); 2139 2140 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2141 kvmppc_enable_clear_ref_mod_hcalls(); 2142 } 2143 2144 /* allocate RAM */ 2145 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram", 2146 machine->ram_size); 2147 memory_region_add_subregion(sysmem, 0, ram); 2148 2149 if (rma_alloc_size && rma) { 2150 rma_region = g_new(MemoryRegion, 1); 2151 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma", 2152 rma_alloc_size, rma); 2153 vmstate_register_ram_global(rma_region); 2154 memory_region_add_subregion(sysmem, 0, rma_region); 2155 } 2156 2157 /* initialize hotplug memory address space */ 2158 if (machine->ram_size < machine->maxram_size) { 2159 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size; 2160 /* 2161 * Limit the number of hotpluggable memory slots to half the number 2162 * slots that KVM supports, leaving the other half for PCI and other 2163 * devices. However ensure that number of slots doesn't drop below 32. 2164 */ 2165 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2166 SPAPR_MAX_RAM_SLOTS; 2167 2168 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2169 max_memslots = SPAPR_MAX_RAM_SLOTS; 2170 } 2171 if (machine->ram_slots > max_memslots) { 2172 error_report("Specified number of memory slots %" 2173 PRIu64" exceeds max supported %d", 2174 machine->ram_slots, max_memslots); 2175 exit(1); 2176 } 2177 2178 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size, 2179 SPAPR_HOTPLUG_MEM_ALIGN); 2180 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr), 2181 "hotplug-memory", hotplug_mem_size); 2182 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base, 2183 &spapr->hotplug_memory.mr); 2184 } 2185 2186 if (smc->dr_lmb_enabled) { 2187 spapr_create_lmb_dr_connectors(spapr); 2188 } 2189 2190 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); 2191 if (!filename) { 2192 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin"); 2193 exit(1); 2194 } 2195 spapr->rtas_size = get_image_size(filename); 2196 if (spapr->rtas_size < 0) { 2197 error_report("Could not get size of LPAR rtas '%s'", filename); 2198 exit(1); 2199 } 2200 spapr->rtas_blob = g_malloc(spapr->rtas_size); 2201 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) { 2202 error_report("Could not load LPAR rtas '%s'", filename); 2203 exit(1); 2204 } 2205 if (spapr->rtas_size > RTAS_MAX_SIZE) { 2206 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)", 2207 (size_t)spapr->rtas_size, RTAS_MAX_SIZE); 2208 exit(1); 2209 } 2210 g_free(filename); 2211 2212 /* Set up RTAS event infrastructure */ 2213 spapr_events_init(spapr); 2214 2215 /* Set up the RTC RTAS interfaces */ 2216 spapr_rtc_create(spapr); 2217 2218 /* Set up VIO bus */ 2219 spapr->vio_bus = spapr_vio_bus_init(); 2220 2221 for (i = 0; i < MAX_SERIAL_PORTS; i++) { 2222 if (serial_hds[i]) { 2223 spapr_vty_create(spapr->vio_bus, serial_hds[i]); 2224 } 2225 } 2226 2227 /* We always have at least the nvram device on VIO */ 2228 spapr_create_nvram(spapr); 2229 2230 /* Set up PCI */ 2231 spapr_pci_rtas_init(); 2232 2233 phb = spapr_create_phb(spapr, 0); 2234 2235 for (i = 0; i < nb_nics; i++) { 2236 NICInfo *nd = &nd_table[i]; 2237 2238 if (!nd->model) { 2239 nd->model = g_strdup("ibmveth"); 2240 } 2241 2242 if (strcmp(nd->model, "ibmveth") == 0) { 2243 spapr_vlan_create(spapr->vio_bus, nd); 2244 } else { 2245 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2246 } 2247 } 2248 2249 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2250 spapr_vscsi_create(spapr->vio_bus); 2251 } 2252 2253 /* Graphics */ 2254 if (spapr_vga_init(phb->bus, &error_fatal)) { 2255 spapr->has_graphics = true; 2256 machine->usb |= defaults_enabled() && !machine->usb_disabled; 2257 } 2258 2259 if (machine->usb) { 2260 if (smc->use_ohci_by_default) { 2261 pci_create_simple(phb->bus, -1, "pci-ohci"); 2262 } else { 2263 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 2264 } 2265 2266 if (spapr->has_graphics) { 2267 USBBus *usb_bus = usb_bus_find(-1); 2268 2269 usb_create_simple(usb_bus, "usb-kbd"); 2270 usb_create_simple(usb_bus, "usb-mouse"); 2271 } 2272 } 2273 2274 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) { 2275 error_report( 2276 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)", 2277 MIN_RMA_SLOF); 2278 exit(1); 2279 } 2280 2281 if (kernel_filename) { 2282 uint64_t lowaddr = 0; 2283 2284 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address, 2285 NULL, NULL, &lowaddr, NULL, 1, 2286 PPC_ELF_MACHINE, 0, 0); 2287 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 2288 spapr->kernel_size = load_elf(kernel_filename, 2289 translate_kernel_address, NULL, NULL, 2290 &lowaddr, NULL, 0, PPC_ELF_MACHINE, 2291 0, 0); 2292 spapr->kernel_le = spapr->kernel_size > 0; 2293 } 2294 if (spapr->kernel_size < 0) { 2295 error_report("error loading %s: %s", kernel_filename, 2296 load_elf_strerror(spapr->kernel_size)); 2297 exit(1); 2298 } 2299 2300 /* load initrd */ 2301 if (initrd_filename) { 2302 /* Try to locate the initrd in the gap between the kernel 2303 * and the firmware. Add a bit of space just in case 2304 */ 2305 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size 2306 + 0x1ffff) & ~0xffff; 2307 spapr->initrd_size = load_image_targphys(initrd_filename, 2308 spapr->initrd_base, 2309 load_limit 2310 - spapr->initrd_base); 2311 if (spapr->initrd_size < 0) { 2312 error_report("could not load initial ram disk '%s'", 2313 initrd_filename); 2314 exit(1); 2315 } 2316 } 2317 } 2318 2319 if (bios_name == NULL) { 2320 bios_name = FW_FILE_NAME; 2321 } 2322 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 2323 if (!filename) { 2324 error_report("Could not find LPAR firmware '%s'", bios_name); 2325 exit(1); 2326 } 2327 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 2328 if (fw_size <= 0) { 2329 error_report("Could not load LPAR firmware '%s'", filename); 2330 exit(1); 2331 } 2332 g_free(filename); 2333 2334 /* FIXME: Should register things through the MachineState's qdev 2335 * interface, this is a legacy from the sPAPREnvironment structure 2336 * which predated MachineState but had a similar function */ 2337 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 2338 register_savevm_live(NULL, "spapr/htab", -1, 1, 2339 &savevm_htab_handlers, spapr); 2340 2341 qemu_register_boot_set(spapr_boot_set, spapr); 2342 2343 if (kvm_enabled()) { 2344 /* to stop and start vmclock */ 2345 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 2346 &spapr->tb); 2347 2348 kvmppc_spapr_enable_inkernel_multitce(); 2349 } 2350 } 2351 2352 static int spapr_kvm_type(const char *vm_type) 2353 { 2354 if (!vm_type) { 2355 return 0; 2356 } 2357 2358 if (!strcmp(vm_type, "HV")) { 2359 return 1; 2360 } 2361 2362 if (!strcmp(vm_type, "PR")) { 2363 return 2; 2364 } 2365 2366 error_report("Unknown kvm-type specified '%s'", vm_type); 2367 exit(1); 2368 } 2369 2370 /* 2371 * Implementation of an interface to adjust firmware path 2372 * for the bootindex property handling. 2373 */ 2374 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 2375 DeviceState *dev) 2376 { 2377 #define CAST(type, obj, name) \ 2378 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 2379 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 2380 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 2381 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 2382 2383 if (d) { 2384 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 2385 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 2386 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 2387 2388 if (spapr) { 2389 /* 2390 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 2391 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun 2392 * in the top 16 bits of the 64-bit LUN 2393 */ 2394 unsigned id = 0x8000 | (d->id << 8) | d->lun; 2395 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2396 (uint64_t)id << 48); 2397 } else if (virtio) { 2398 /* 2399 * We use SRP luns of the form 01000000 | (target << 8) | lun 2400 * in the top 32 bits of the 64-bit LUN 2401 * Note: the quote above is from SLOF and it is wrong, 2402 * the actual binding is: 2403 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 2404 */ 2405 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 2406 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2407 (uint64_t)id << 32); 2408 } else if (usb) { 2409 /* 2410 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 2411 * in the top 32 bits of the 64-bit LUN 2412 */ 2413 unsigned usb_port = atoi(usb->port->path); 2414 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 2415 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2416 (uint64_t)id << 32); 2417 } 2418 } 2419 2420 /* 2421 * SLOF probes the USB devices, and if it recognizes that the device is a 2422 * storage device, it changes its name to "storage" instead of "usb-host", 2423 * and additionally adds a child node for the SCSI LUN, so the correct 2424 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 2425 */ 2426 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 2427 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 2428 if (usb_host_dev_is_scsi_storage(usbdev)) { 2429 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 2430 } 2431 } 2432 2433 if (phb) { 2434 /* Replace "pci" with "pci@800000020000000" */ 2435 return g_strdup_printf("pci@%"PRIX64, phb->buid); 2436 } 2437 2438 if (vsc) { 2439 /* Same logic as virtio above */ 2440 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 2441 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 2442 } 2443 2444 return NULL; 2445 } 2446 2447 static char *spapr_get_kvm_type(Object *obj, Error **errp) 2448 { 2449 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2450 2451 return g_strdup(spapr->kvm_type); 2452 } 2453 2454 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 2455 { 2456 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2457 2458 g_free(spapr->kvm_type); 2459 spapr->kvm_type = g_strdup(value); 2460 } 2461 2462 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 2463 { 2464 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2465 2466 return spapr->use_hotplug_event_source; 2467 } 2468 2469 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 2470 Error **errp) 2471 { 2472 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2473 2474 spapr->use_hotplug_event_source = value; 2475 } 2476 2477 static void spapr_machine_initfn(Object *obj) 2478 { 2479 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2480 2481 spapr->htab_fd = -1; 2482 spapr->use_hotplug_event_source = true; 2483 object_property_add_str(obj, "kvm-type", 2484 spapr_get_kvm_type, spapr_set_kvm_type, NULL); 2485 object_property_set_description(obj, "kvm-type", 2486 "Specifies the KVM virtualization mode (HV, PR)", 2487 NULL); 2488 object_property_add_bool(obj, "modern-hotplug-events", 2489 spapr_get_modern_hotplug_events, 2490 spapr_set_modern_hotplug_events, 2491 NULL); 2492 object_property_set_description(obj, "modern-hotplug-events", 2493 "Use dedicated hotplug event mechanism in" 2494 " place of standard EPOW events when possible" 2495 " (required for memory hot-unplug support)", 2496 NULL); 2497 } 2498 2499 static void spapr_machine_finalizefn(Object *obj) 2500 { 2501 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2502 2503 g_free(spapr->kvm_type); 2504 } 2505 2506 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 2507 { 2508 cpu_synchronize_state(cs); 2509 ppc_cpu_do_system_reset(cs); 2510 } 2511 2512 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 2513 { 2514 CPUState *cs; 2515 2516 CPU_FOREACH(cs) { 2517 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 2518 } 2519 } 2520 2521 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 2522 uint32_t node, bool dedicated_hp_event_source, 2523 Error **errp) 2524 { 2525 sPAPRDRConnector *drc; 2526 sPAPRDRConnectorClass *drck; 2527 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 2528 int i, fdt_offset, fdt_size; 2529 void *fdt; 2530 uint64_t addr = addr_start; 2531 2532 for (i = 0; i < nr_lmbs; i++) { 2533 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 2534 addr / SPAPR_MEMORY_BLOCK_SIZE); 2535 g_assert(drc); 2536 2537 fdt = create_device_tree(&fdt_size); 2538 fdt_offset = spapr_populate_memory_node(fdt, node, addr, 2539 SPAPR_MEMORY_BLOCK_SIZE); 2540 2541 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 2542 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp); 2543 addr += SPAPR_MEMORY_BLOCK_SIZE; 2544 if (!dev->hotplugged) { 2545 /* guests expect coldplugged LMBs to be pre-allocated */ 2546 drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE); 2547 drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED); 2548 } 2549 } 2550 /* send hotplug notification to the 2551 * guest only in case of hotplugged memory 2552 */ 2553 if (dev->hotplugged) { 2554 if (dedicated_hp_event_source) { 2555 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 2556 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 2557 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 2558 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 2559 nr_lmbs, 2560 spapr_drc_index(drc)); 2561 } else { 2562 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 2563 nr_lmbs); 2564 } 2565 } 2566 } 2567 2568 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2569 uint32_t node, Error **errp) 2570 { 2571 Error *local_err = NULL; 2572 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev); 2573 PCDIMMDevice *dimm = PC_DIMM(dev); 2574 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 2575 MemoryRegion *mr = ddc->get_memory_region(dimm); 2576 uint64_t align = memory_region_get_alignment(mr); 2577 uint64_t size = memory_region_size(mr); 2578 uint64_t addr; 2579 2580 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err); 2581 if (local_err) { 2582 goto out; 2583 } 2584 2585 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err); 2586 if (local_err) { 2587 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr); 2588 goto out; 2589 } 2590 2591 spapr_add_lmbs(dev, addr, size, node, 2592 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT), 2593 &error_abort); 2594 2595 out: 2596 error_propagate(errp, local_err); 2597 } 2598 2599 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2600 Error **errp) 2601 { 2602 PCDIMMDevice *dimm = PC_DIMM(dev); 2603 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 2604 MemoryRegion *mr = ddc->get_memory_region(dimm); 2605 uint64_t size = memory_region_size(mr); 2606 char *mem_dev; 2607 2608 if (size % SPAPR_MEMORY_BLOCK_SIZE) { 2609 error_setg(errp, "Hotplugged memory size must be a multiple of " 2610 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); 2611 return; 2612 } 2613 2614 mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL); 2615 if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) { 2616 error_setg(errp, "Memory backend has bad page size. " 2617 "Use 'memory-backend-file' with correct mem-path."); 2618 return; 2619 } 2620 } 2621 2622 struct sPAPRDIMMState { 2623 PCDIMMDevice *dimm; 2624 uint32_t nr_lmbs; 2625 QTAILQ_ENTRY(sPAPRDIMMState) next; 2626 }; 2627 2628 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s, 2629 PCDIMMDevice *dimm) 2630 { 2631 sPAPRDIMMState *dimm_state = NULL; 2632 2633 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 2634 if (dimm_state->dimm == dimm) { 2635 break; 2636 } 2637 } 2638 return dimm_state; 2639 } 2640 2641 static void spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr, 2642 sPAPRDIMMState *dimm_state) 2643 { 2644 g_assert(!spapr_pending_dimm_unplugs_find(spapr, dimm_state->dimm)); 2645 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, dimm_state, next); 2646 } 2647 2648 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr, 2649 sPAPRDIMMState *dimm_state) 2650 { 2651 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 2652 g_free(dimm_state); 2653 } 2654 2655 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms, 2656 PCDIMMDevice *dimm) 2657 { 2658 sPAPRDRConnector *drc; 2659 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 2660 MemoryRegion *mr = ddc->get_memory_region(dimm); 2661 uint64_t size = memory_region_size(mr); 2662 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 2663 uint32_t avail_lmbs = 0; 2664 uint64_t addr_start, addr; 2665 int i; 2666 sPAPRDIMMState *ds; 2667 2668 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, 2669 &error_abort); 2670 2671 addr = addr_start; 2672 for (i = 0; i < nr_lmbs; i++) { 2673 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 2674 addr / SPAPR_MEMORY_BLOCK_SIZE); 2675 g_assert(drc); 2676 if (drc->indicator_state != SPAPR_DR_INDICATOR_STATE_INACTIVE) { 2677 avail_lmbs++; 2678 } 2679 addr += SPAPR_MEMORY_BLOCK_SIZE; 2680 } 2681 2682 ds = g_malloc0(sizeof(sPAPRDIMMState)); 2683 ds->nr_lmbs = avail_lmbs; 2684 ds->dimm = dimm; 2685 spapr_pending_dimm_unplugs_add(ms, ds); 2686 return ds; 2687 } 2688 2689 /* Callback to be called during DRC release. */ 2690 void spapr_lmb_release(DeviceState *dev) 2691 { 2692 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 2693 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 2694 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 2695 2696 /* This information will get lost if a migration occurs 2697 * during the unplug process. In this case recover it. */ 2698 if (ds == NULL) { 2699 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 2700 if (ds->nr_lmbs) { 2701 return; 2702 } 2703 } else if (--ds->nr_lmbs) { 2704 return; 2705 } 2706 2707 spapr_pending_dimm_unplugs_remove(spapr, ds); 2708 2709 /* 2710 * Now that all the LMBs have been removed by the guest, call the 2711 * pc-dimm unplug handler to cleanup up the pc-dimm device. 2712 */ 2713 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 2714 } 2715 2716 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev, 2717 Error **errp) 2718 { 2719 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev); 2720 PCDIMMDevice *dimm = PC_DIMM(dev); 2721 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 2722 MemoryRegion *mr = ddc->get_memory_region(dimm); 2723 2724 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr); 2725 object_unparent(OBJECT(dev)); 2726 } 2727 2728 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 2729 DeviceState *dev, Error **errp) 2730 { 2731 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 2732 Error *local_err = NULL; 2733 PCDIMMDevice *dimm = PC_DIMM(dev); 2734 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 2735 MemoryRegion *mr = ddc->get_memory_region(dimm); 2736 uint64_t size = memory_region_size(mr); 2737 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 2738 uint64_t addr_start, addr; 2739 int i; 2740 sPAPRDRConnector *drc; 2741 sPAPRDRConnectorClass *drck; 2742 sPAPRDIMMState *ds; 2743 2744 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, 2745 &local_err); 2746 if (local_err) { 2747 goto out; 2748 } 2749 2750 ds = g_malloc0(sizeof(sPAPRDIMMState)); 2751 ds->nr_lmbs = nr_lmbs; 2752 ds->dimm = dimm; 2753 spapr_pending_dimm_unplugs_add(spapr, ds); 2754 2755 addr = addr_start; 2756 for (i = 0; i < nr_lmbs; i++) { 2757 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 2758 addr / SPAPR_MEMORY_BLOCK_SIZE); 2759 g_assert(drc); 2760 2761 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 2762 drck->detach(drc, dev, errp); 2763 addr += SPAPR_MEMORY_BLOCK_SIZE; 2764 } 2765 2766 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 2767 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 2768 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 2769 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 2770 nr_lmbs, spapr_drc_index(drc)); 2771 out: 2772 error_propagate(errp, local_err); 2773 } 2774 2775 void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset, 2776 sPAPRMachineState *spapr) 2777 { 2778 PowerPCCPU *cpu = POWERPC_CPU(cs); 2779 DeviceClass *dc = DEVICE_GET_CLASS(cs); 2780 int id = ppc_get_vcpu_dt_id(cpu); 2781 void *fdt; 2782 int offset, fdt_size; 2783 char *nodename; 2784 2785 fdt = create_device_tree(&fdt_size); 2786 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 2787 offset = fdt_add_subnode(fdt, 0, nodename); 2788 2789 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 2790 g_free(nodename); 2791 2792 *fdt_offset = offset; 2793 return fdt; 2794 } 2795 2796 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev, 2797 Error **errp) 2798 { 2799 MachineState *ms = MACHINE(qdev_get_machine()); 2800 CPUCore *cc = CPU_CORE(dev); 2801 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 2802 2803 assert(core_slot); 2804 core_slot->cpu = NULL; 2805 object_unparent(OBJECT(dev)); 2806 } 2807 2808 /* Callback to be called during DRC release. */ 2809 void spapr_core_release(DeviceState *dev) 2810 { 2811 HotplugHandler *hotplug_ctrl; 2812 2813 hotplug_ctrl = qdev_get_hotplug_handler(dev); 2814 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 2815 } 2816 2817 static 2818 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 2819 Error **errp) 2820 { 2821 int index; 2822 sPAPRDRConnector *drc; 2823 sPAPRDRConnectorClass *drck; 2824 Error *local_err = NULL; 2825 CPUCore *cc = CPU_CORE(dev); 2826 int smt = kvmppc_smt_threads(); 2827 2828 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 2829 error_setg(errp, "Unable to find CPU core with core-id: %d", 2830 cc->core_id); 2831 return; 2832 } 2833 if (index == 0) { 2834 error_setg(errp, "Boot CPU core may not be unplugged"); 2835 return; 2836 } 2837 2838 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt); 2839 g_assert(drc); 2840 2841 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 2842 drck->detach(drc, dev, &local_err); 2843 if (local_err) { 2844 error_propagate(errp, local_err); 2845 return; 2846 } 2847 2848 spapr_hotplug_req_remove_by_index(drc); 2849 } 2850 2851 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2852 Error **errp) 2853 { 2854 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 2855 MachineClass *mc = MACHINE_GET_CLASS(spapr); 2856 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 2857 CPUCore *cc = CPU_CORE(dev); 2858 CPUState *cs = CPU(core->threads); 2859 sPAPRDRConnector *drc; 2860 Error *local_err = NULL; 2861 void *fdt = NULL; 2862 int fdt_offset = 0; 2863 int smt = kvmppc_smt_threads(); 2864 CPUArchId *core_slot; 2865 int index; 2866 2867 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 2868 if (!core_slot) { 2869 error_setg(errp, "Unable to find CPU core with core-id: %d", 2870 cc->core_id); 2871 return; 2872 } 2873 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt); 2874 2875 g_assert(drc || !mc->has_hotpluggable_cpus); 2876 2877 /* 2878 * Setup CPU DT entries only for hotplugged CPUs. For boot time or 2879 * coldplugged CPUs DT entries are setup in spapr_build_fdt(). 2880 */ 2881 if (dev->hotplugged) { 2882 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr); 2883 } 2884 2885 if (drc) { 2886 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 2887 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, &local_err); 2888 if (local_err) { 2889 g_free(fdt); 2890 error_propagate(errp, local_err); 2891 return; 2892 } 2893 } 2894 2895 if (dev->hotplugged) { 2896 /* 2897 * Send hotplug notification interrupt to the guest only in case 2898 * of hotplugged CPUs. 2899 */ 2900 spapr_hotplug_req_add_by_index(drc); 2901 } else { 2902 /* 2903 * Set the right DRC states for cold plugged CPU. 2904 */ 2905 if (drc) { 2906 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 2907 drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE); 2908 drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED); 2909 } 2910 } 2911 core_slot->cpu = OBJECT(dev); 2912 } 2913 2914 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2915 Error **errp) 2916 { 2917 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 2918 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 2919 Error *local_err = NULL; 2920 CPUCore *cc = CPU_CORE(dev); 2921 char *base_core_type = spapr_get_cpu_core_type(machine->cpu_model); 2922 const char *type = object_get_typename(OBJECT(dev)); 2923 CPUArchId *core_slot; 2924 int index; 2925 2926 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 2927 error_setg(&local_err, "CPU hotplug not supported for this machine"); 2928 goto out; 2929 } 2930 2931 if (strcmp(base_core_type, type)) { 2932 error_setg(&local_err, "CPU core type should be %s", base_core_type); 2933 goto out; 2934 } 2935 2936 if (cc->core_id % smp_threads) { 2937 error_setg(&local_err, "invalid core id %d", cc->core_id); 2938 goto out; 2939 } 2940 2941 /* 2942 * In general we should have homogeneous threads-per-core, but old 2943 * (pre hotplug support) machine types allow the last core to have 2944 * reduced threads as a compatibility hack for when we allowed 2945 * total vcpus not a multiple of threads-per-core. 2946 */ 2947 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 2948 error_setg(errp, "invalid nr-threads %d, must be %d", 2949 cc->nr_threads, smp_threads); 2950 return; 2951 } 2952 2953 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 2954 if (!core_slot) { 2955 error_setg(&local_err, "core id %d out of range", cc->core_id); 2956 goto out; 2957 } 2958 2959 if (core_slot->cpu) { 2960 error_setg(&local_err, "core %d already populated", cc->core_id); 2961 goto out; 2962 } 2963 2964 numa_cpu_pre_plug(core_slot, dev, &local_err); 2965 2966 out: 2967 g_free(base_core_type); 2968 error_propagate(errp, local_err); 2969 } 2970 2971 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 2972 DeviceState *dev, Error **errp) 2973 { 2974 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine()); 2975 2976 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2977 int node; 2978 2979 if (!smc->dr_lmb_enabled) { 2980 error_setg(errp, "Memory hotplug not supported for this machine"); 2981 return; 2982 } 2983 node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp); 2984 if (*errp) { 2985 return; 2986 } 2987 if (node < 0 || node >= MAX_NODES) { 2988 error_setg(errp, "Invaild node %d", node); 2989 return; 2990 } 2991 2992 /* 2993 * Currently PowerPC kernel doesn't allow hot-adding memory to 2994 * memory-less node, but instead will silently add the memory 2995 * to the first node that has some memory. This causes two 2996 * unexpected behaviours for the user. 2997 * 2998 * - Memory gets hotplugged to a different node than what the user 2999 * specified. 3000 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs 3001 * to memory-less node, a reboot will set things accordingly 3002 * and the previously hotplugged memory now ends in the right node. 3003 * This appears as if some memory moved from one node to another. 3004 * 3005 * So until kernel starts supporting memory hotplug to memory-less 3006 * nodes, just prevent such attempts upfront in QEMU. 3007 */ 3008 if (nb_numa_nodes && !numa_info[node].node_mem) { 3009 error_setg(errp, "Can't hotplug memory to memory-less node %d", 3010 node); 3011 return; 3012 } 3013 3014 spapr_memory_plug(hotplug_dev, dev, node, errp); 3015 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3016 spapr_core_plug(hotplug_dev, dev, errp); 3017 } 3018 } 3019 3020 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 3021 DeviceState *dev, Error **errp) 3022 { 3023 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine()); 3024 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 3025 3026 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3027 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 3028 spapr_memory_unplug(hotplug_dev, dev, errp); 3029 } else { 3030 error_setg(errp, "Memory hot unplug not supported for this guest"); 3031 } 3032 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3033 if (!mc->has_hotpluggable_cpus) { 3034 error_setg(errp, "CPU hot unplug not supported on this machine"); 3035 return; 3036 } 3037 spapr_core_unplug(hotplug_dev, dev, errp); 3038 } 3039 } 3040 3041 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 3042 DeviceState *dev, Error **errp) 3043 { 3044 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine()); 3045 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 3046 3047 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3048 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 3049 spapr_memory_unplug_request(hotplug_dev, dev, errp); 3050 } else { 3051 /* NOTE: this means there is a window after guest reset, prior to 3052 * CAS negotiation, where unplug requests will fail due to the 3053 * capability not being detected yet. This is a bit different than 3054 * the case with PCI unplug, where the events will be queued and 3055 * eventually handled by the guest after boot 3056 */ 3057 error_setg(errp, "Memory hot unplug not supported for this guest"); 3058 } 3059 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3060 if (!mc->has_hotpluggable_cpus) { 3061 error_setg(errp, "CPU hot unplug not supported on this machine"); 3062 return; 3063 } 3064 spapr_core_unplug_request(hotplug_dev, dev, errp); 3065 } 3066 } 3067 3068 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 3069 DeviceState *dev, Error **errp) 3070 { 3071 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3072 spapr_memory_pre_plug(hotplug_dev, dev, errp); 3073 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3074 spapr_core_pre_plug(hotplug_dev, dev, errp); 3075 } 3076 } 3077 3078 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 3079 DeviceState *dev) 3080 { 3081 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 3082 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3083 return HOTPLUG_HANDLER(machine); 3084 } 3085 return NULL; 3086 } 3087 3088 static CpuInstanceProperties 3089 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 3090 { 3091 CPUArchId *core_slot; 3092 MachineClass *mc = MACHINE_GET_CLASS(machine); 3093 3094 /* make sure possible_cpu are intialized */ 3095 mc->possible_cpu_arch_ids(machine); 3096 /* get CPU core slot containing thread that matches cpu_index */ 3097 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 3098 assert(core_slot); 3099 return core_slot->props; 3100 } 3101 3102 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 3103 { 3104 int i; 3105 int spapr_max_cores = max_cpus / smp_threads; 3106 MachineClass *mc = MACHINE_GET_CLASS(machine); 3107 3108 if (!mc->has_hotpluggable_cpus) { 3109 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 3110 } 3111 if (machine->possible_cpus) { 3112 assert(machine->possible_cpus->len == spapr_max_cores); 3113 return machine->possible_cpus; 3114 } 3115 3116 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 3117 sizeof(CPUArchId) * spapr_max_cores); 3118 machine->possible_cpus->len = spapr_max_cores; 3119 for (i = 0; i < machine->possible_cpus->len; i++) { 3120 int core_id = i * smp_threads; 3121 3122 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 3123 machine->possible_cpus->cpus[i].arch_id = core_id; 3124 machine->possible_cpus->cpus[i].props.has_core_id = true; 3125 machine->possible_cpus->cpus[i].props.core_id = core_id; 3126 3127 /* default distribution of CPUs over NUMA nodes */ 3128 if (nb_numa_nodes) { 3129 /* preset values but do not enable them i.e. 'has_node_id = false', 3130 * numa init code will enable them later if manual mapping wasn't 3131 * present on CLI */ 3132 machine->possible_cpus->cpus[i].props.node_id = 3133 core_id / smp_threads / smp_cores % nb_numa_nodes; 3134 } 3135 } 3136 return machine->possible_cpus; 3137 } 3138 3139 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index, 3140 uint64_t *buid, hwaddr *pio, 3141 hwaddr *mmio32, hwaddr *mmio64, 3142 unsigned n_dma, uint32_t *liobns, Error **errp) 3143 { 3144 /* 3145 * New-style PHB window placement. 3146 * 3147 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 3148 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 3149 * windows. 3150 * 3151 * Some guest kernels can't work with MMIO windows above 1<<46 3152 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 3153 * 3154 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 3155 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 3156 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 3157 * 1TiB 64-bit MMIO windows for each PHB. 3158 */ 3159 const uint64_t base_buid = 0x800000020000000ULL; 3160 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \ 3161 SPAPR_PCI_MEM64_WIN_SIZE - 1) 3162 int i; 3163 3164 /* Sanity check natural alignments */ 3165 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 3166 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 3167 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 3168 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 3169 /* Sanity check bounds */ 3170 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 3171 SPAPR_PCI_MEM32_WIN_SIZE); 3172 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 3173 SPAPR_PCI_MEM64_WIN_SIZE); 3174 3175 if (index >= SPAPR_MAX_PHBS) { 3176 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 3177 SPAPR_MAX_PHBS - 1); 3178 return; 3179 } 3180 3181 *buid = base_buid + index; 3182 for (i = 0; i < n_dma; ++i) { 3183 liobns[i] = SPAPR_PCI_LIOBN(index, i); 3184 } 3185 3186 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 3187 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 3188 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 3189 } 3190 3191 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 3192 { 3193 sPAPRMachineState *spapr = SPAPR_MACHINE(dev); 3194 3195 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 3196 } 3197 3198 static void spapr_ics_resend(XICSFabric *dev) 3199 { 3200 sPAPRMachineState *spapr = SPAPR_MACHINE(dev); 3201 3202 ics_resend(spapr->ics); 3203 } 3204 3205 static ICPState *spapr_icp_get(XICSFabric *xi, int cpu_dt_id) 3206 { 3207 PowerPCCPU *cpu = ppc_get_vcpu_by_dt_id(cpu_dt_id); 3208 3209 return cpu ? ICP(cpu->intc) : NULL; 3210 } 3211 3212 static void spapr_pic_print_info(InterruptStatsProvider *obj, 3213 Monitor *mon) 3214 { 3215 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3216 CPUState *cs; 3217 3218 CPU_FOREACH(cs) { 3219 PowerPCCPU *cpu = POWERPC_CPU(cs); 3220 3221 icp_pic_print_info(ICP(cpu->intc), mon); 3222 } 3223 3224 ics_pic_print_info(spapr->ics, mon); 3225 } 3226 3227 static void spapr_machine_class_init(ObjectClass *oc, void *data) 3228 { 3229 MachineClass *mc = MACHINE_CLASS(oc); 3230 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 3231 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 3232 NMIClass *nc = NMI_CLASS(oc); 3233 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 3234 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 3235 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 3236 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 3237 3238 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 3239 3240 /* 3241 * We set up the default / latest behaviour here. The class_init 3242 * functions for the specific versioned machine types can override 3243 * these details for backwards compatibility 3244 */ 3245 mc->init = ppc_spapr_init; 3246 mc->reset = ppc_spapr_reset; 3247 mc->block_default_type = IF_SCSI; 3248 mc->max_cpus = 1024; 3249 mc->no_parallel = 1; 3250 mc->default_boot_order = ""; 3251 mc->default_ram_size = 512 * M_BYTE; 3252 mc->kvm_type = spapr_kvm_type; 3253 mc->has_dynamic_sysbus = true; 3254 mc->pci_allow_0_address = true; 3255 mc->get_hotplug_handler = spapr_get_hotplug_handler; 3256 hc->pre_plug = spapr_machine_device_pre_plug; 3257 hc->plug = spapr_machine_device_plug; 3258 hc->unplug = spapr_machine_device_unplug; 3259 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 3260 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 3261 hc->unplug_request = spapr_machine_device_unplug_request; 3262 3263 smc->dr_lmb_enabled = true; 3264 smc->tcg_default_cpu = "POWER8"; 3265 mc->has_hotpluggable_cpus = true; 3266 fwc->get_dev_path = spapr_get_fw_dev_path; 3267 nc->nmi_monitor_handler = spapr_nmi; 3268 smc->phb_placement = spapr_phb_placement; 3269 vhc->hypercall = emulate_spapr_hypercall; 3270 vhc->hpt_mask = spapr_hpt_mask; 3271 vhc->map_hptes = spapr_map_hptes; 3272 vhc->unmap_hptes = spapr_unmap_hptes; 3273 vhc->store_hpte = spapr_store_hpte; 3274 vhc->get_patbe = spapr_get_patbe; 3275 xic->ics_get = spapr_ics_get; 3276 xic->ics_resend = spapr_ics_resend; 3277 xic->icp_get = spapr_icp_get; 3278 ispc->print_info = spapr_pic_print_info; 3279 /* Force NUMA node memory size to be a multiple of 3280 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 3281 * in which LMBs are represented and hot-added 3282 */ 3283 mc->numa_mem_align_shift = 28; 3284 } 3285 3286 static const TypeInfo spapr_machine_info = { 3287 .name = TYPE_SPAPR_MACHINE, 3288 .parent = TYPE_MACHINE, 3289 .abstract = true, 3290 .instance_size = sizeof(sPAPRMachineState), 3291 .instance_init = spapr_machine_initfn, 3292 .instance_finalize = spapr_machine_finalizefn, 3293 .class_size = sizeof(sPAPRMachineClass), 3294 .class_init = spapr_machine_class_init, 3295 .interfaces = (InterfaceInfo[]) { 3296 { TYPE_FW_PATH_PROVIDER }, 3297 { TYPE_NMI }, 3298 { TYPE_HOTPLUG_HANDLER }, 3299 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 3300 { TYPE_XICS_FABRIC }, 3301 { TYPE_INTERRUPT_STATS_PROVIDER }, 3302 { } 3303 }, 3304 }; 3305 3306 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 3307 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 3308 void *data) \ 3309 { \ 3310 MachineClass *mc = MACHINE_CLASS(oc); \ 3311 spapr_machine_##suffix##_class_options(mc); \ 3312 if (latest) { \ 3313 mc->alias = "pseries"; \ 3314 mc->is_default = 1; \ 3315 } \ 3316 } \ 3317 static void spapr_machine_##suffix##_instance_init(Object *obj) \ 3318 { \ 3319 MachineState *machine = MACHINE(obj); \ 3320 spapr_machine_##suffix##_instance_options(machine); \ 3321 } \ 3322 static const TypeInfo spapr_machine_##suffix##_info = { \ 3323 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 3324 .parent = TYPE_SPAPR_MACHINE, \ 3325 .class_init = spapr_machine_##suffix##_class_init, \ 3326 .instance_init = spapr_machine_##suffix##_instance_init, \ 3327 }; \ 3328 static void spapr_machine_register_##suffix(void) \ 3329 { \ 3330 type_register(&spapr_machine_##suffix##_info); \ 3331 } \ 3332 type_init(spapr_machine_register_##suffix) 3333 3334 /* 3335 * pseries-2.10 3336 */ 3337 static void spapr_machine_2_10_instance_options(MachineState *machine) 3338 { 3339 } 3340 3341 static void spapr_machine_2_10_class_options(MachineClass *mc) 3342 { 3343 /* Defaults for the latest behaviour inherited from the base class */ 3344 } 3345 3346 DEFINE_SPAPR_MACHINE(2_10, "2.10", true); 3347 3348 /* 3349 * pseries-2.9 3350 */ 3351 #define SPAPR_COMPAT_2_9 \ 3352 HW_COMPAT_2_9 3353 3354 static void spapr_machine_2_9_instance_options(MachineState *machine) 3355 { 3356 spapr_machine_2_10_instance_options(machine); 3357 } 3358 3359 static void spapr_machine_2_9_class_options(MachineClass *mc) 3360 { 3361 spapr_machine_2_10_class_options(mc); 3362 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9); 3363 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram; 3364 } 3365 3366 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 3367 3368 /* 3369 * pseries-2.8 3370 */ 3371 #define SPAPR_COMPAT_2_8 \ 3372 HW_COMPAT_2_8 \ 3373 { \ 3374 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 3375 .property = "pcie-extended-configuration-space", \ 3376 .value = "off", \ 3377 }, 3378 3379 static void spapr_machine_2_8_instance_options(MachineState *machine) 3380 { 3381 spapr_machine_2_9_instance_options(machine); 3382 } 3383 3384 static void spapr_machine_2_8_class_options(MachineClass *mc) 3385 { 3386 spapr_machine_2_9_class_options(mc); 3387 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8); 3388 mc->numa_mem_align_shift = 23; 3389 } 3390 3391 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 3392 3393 /* 3394 * pseries-2.7 3395 */ 3396 #define SPAPR_COMPAT_2_7 \ 3397 HW_COMPAT_2_7 \ 3398 { \ 3399 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 3400 .property = "mem_win_size", \ 3401 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\ 3402 }, \ 3403 { \ 3404 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 3405 .property = "mem64_win_size", \ 3406 .value = "0", \ 3407 }, \ 3408 { \ 3409 .driver = TYPE_POWERPC_CPU, \ 3410 .property = "pre-2.8-migration", \ 3411 .value = "on", \ 3412 }, \ 3413 { \ 3414 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 3415 .property = "pre-2.8-migration", \ 3416 .value = "on", \ 3417 }, 3418 3419 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index, 3420 uint64_t *buid, hwaddr *pio, 3421 hwaddr *mmio32, hwaddr *mmio64, 3422 unsigned n_dma, uint32_t *liobns, Error **errp) 3423 { 3424 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 3425 const uint64_t base_buid = 0x800000020000000ULL; 3426 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 3427 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 3428 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 3429 const uint32_t max_index = 255; 3430 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 3431 3432 uint64_t ram_top = MACHINE(spapr)->ram_size; 3433 hwaddr phb0_base, phb_base; 3434 int i; 3435 3436 /* Do we have hotpluggable memory? */ 3437 if (MACHINE(spapr)->maxram_size > ram_top) { 3438 /* Can't just use maxram_size, because there may be an 3439 * alignment gap between normal and hotpluggable memory 3440 * regions */ 3441 ram_top = spapr->hotplug_memory.base + 3442 memory_region_size(&spapr->hotplug_memory.mr); 3443 } 3444 3445 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 3446 3447 if (index > max_index) { 3448 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 3449 max_index); 3450 return; 3451 } 3452 3453 *buid = base_buid + index; 3454 for (i = 0; i < n_dma; ++i) { 3455 liobns[i] = SPAPR_PCI_LIOBN(index, i); 3456 } 3457 3458 phb_base = phb0_base + index * phb_spacing; 3459 *pio = phb_base + pio_offset; 3460 *mmio32 = phb_base + mmio_offset; 3461 /* 3462 * We don't set the 64-bit MMIO window, relying on the PHB's 3463 * fallback behaviour of automatically splitting a large "32-bit" 3464 * window into contiguous 32-bit and 64-bit windows 3465 */ 3466 } 3467 3468 static void spapr_machine_2_7_instance_options(MachineState *machine) 3469 { 3470 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 3471 3472 spapr_machine_2_8_instance_options(machine); 3473 spapr->use_hotplug_event_source = false; 3474 } 3475 3476 static void spapr_machine_2_7_class_options(MachineClass *mc) 3477 { 3478 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3479 3480 spapr_machine_2_8_class_options(mc); 3481 smc->tcg_default_cpu = "POWER7"; 3482 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7); 3483 smc->phb_placement = phb_placement_2_7; 3484 } 3485 3486 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 3487 3488 /* 3489 * pseries-2.6 3490 */ 3491 #define SPAPR_COMPAT_2_6 \ 3492 HW_COMPAT_2_6 \ 3493 { \ 3494 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\ 3495 .property = "ddw",\ 3496 .value = stringify(off),\ 3497 }, 3498 3499 static void spapr_machine_2_6_instance_options(MachineState *machine) 3500 { 3501 spapr_machine_2_7_instance_options(machine); 3502 } 3503 3504 static void spapr_machine_2_6_class_options(MachineClass *mc) 3505 { 3506 spapr_machine_2_7_class_options(mc); 3507 mc->has_hotpluggable_cpus = false; 3508 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6); 3509 } 3510 3511 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 3512 3513 /* 3514 * pseries-2.5 3515 */ 3516 #define SPAPR_COMPAT_2_5 \ 3517 HW_COMPAT_2_5 \ 3518 { \ 3519 .driver = "spapr-vlan", \ 3520 .property = "use-rx-buffer-pools", \ 3521 .value = "off", \ 3522 }, 3523 3524 static void spapr_machine_2_5_instance_options(MachineState *machine) 3525 { 3526 spapr_machine_2_6_instance_options(machine); 3527 } 3528 3529 static void spapr_machine_2_5_class_options(MachineClass *mc) 3530 { 3531 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3532 3533 spapr_machine_2_6_class_options(mc); 3534 smc->use_ohci_by_default = true; 3535 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5); 3536 } 3537 3538 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 3539 3540 /* 3541 * pseries-2.4 3542 */ 3543 #define SPAPR_COMPAT_2_4 \ 3544 HW_COMPAT_2_4 3545 3546 static void spapr_machine_2_4_instance_options(MachineState *machine) 3547 { 3548 spapr_machine_2_5_instance_options(machine); 3549 } 3550 3551 static void spapr_machine_2_4_class_options(MachineClass *mc) 3552 { 3553 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3554 3555 spapr_machine_2_5_class_options(mc); 3556 smc->dr_lmb_enabled = false; 3557 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4); 3558 } 3559 3560 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 3561 3562 /* 3563 * pseries-2.3 3564 */ 3565 #define SPAPR_COMPAT_2_3 \ 3566 HW_COMPAT_2_3 \ 3567 {\ 3568 .driver = "spapr-pci-host-bridge",\ 3569 .property = "dynamic-reconfiguration",\ 3570 .value = "off",\ 3571 }, 3572 3573 static void spapr_machine_2_3_instance_options(MachineState *machine) 3574 { 3575 spapr_machine_2_4_instance_options(machine); 3576 savevm_skip_section_footers(); 3577 global_state_set_optional(); 3578 savevm_skip_configuration(); 3579 } 3580 3581 static void spapr_machine_2_3_class_options(MachineClass *mc) 3582 { 3583 spapr_machine_2_4_class_options(mc); 3584 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3); 3585 } 3586 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 3587 3588 /* 3589 * pseries-2.2 3590 */ 3591 3592 #define SPAPR_COMPAT_2_2 \ 3593 HW_COMPAT_2_2 \ 3594 {\ 3595 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\ 3596 .property = "mem_win_size",\ 3597 .value = "0x20000000",\ 3598 }, 3599 3600 static void spapr_machine_2_2_instance_options(MachineState *machine) 3601 { 3602 spapr_machine_2_3_instance_options(machine); 3603 machine->suppress_vmdesc = true; 3604 } 3605 3606 static void spapr_machine_2_2_class_options(MachineClass *mc) 3607 { 3608 spapr_machine_2_3_class_options(mc); 3609 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2); 3610 } 3611 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 3612 3613 /* 3614 * pseries-2.1 3615 */ 3616 #define SPAPR_COMPAT_2_1 \ 3617 HW_COMPAT_2_1 3618 3619 static void spapr_machine_2_1_instance_options(MachineState *machine) 3620 { 3621 spapr_machine_2_2_instance_options(machine); 3622 } 3623 3624 static void spapr_machine_2_1_class_options(MachineClass *mc) 3625 { 3626 spapr_machine_2_2_class_options(mc); 3627 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1); 3628 } 3629 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 3630 3631 static void spapr_machine_register_types(void) 3632 { 3633 type_register_static(&spapr_machine_info); 3634 } 3635 3636 type_init(spapr_machine_register_types) 3637