xref: /openbmc/qemu/hw/ppc/spapr.c (revision ac06724a715864942e2b5e28f92d5d5421f0a0b0)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  *
26  */
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/numa.h"
31 #include "hw/hw.h"
32 #include "qemu/log.h"
33 #include "hw/fw-path-provider.h"
34 #include "elf.h"
35 #include "net/net.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
40 #include "kvm_ppc.h"
41 #include "migration/migration.h"
42 #include "mmu-hash64.h"
43 #include "mmu-book3s-v3.h"
44 #include "qom/cpu.h"
45 
46 #include "hw/boards.h"
47 #include "hw/ppc/ppc.h"
48 #include "hw/loader.h"
49 
50 #include "hw/ppc/fdt.h"
51 #include "hw/ppc/spapr.h"
52 #include "hw/ppc/spapr_vio.h"
53 #include "hw/pci-host/spapr.h"
54 #include "hw/ppc/xics.h"
55 #include "hw/pci/msi.h"
56 
57 #include "hw/pci/pci.h"
58 #include "hw/scsi/scsi.h"
59 #include "hw/virtio/virtio-scsi.h"
60 #include "hw/virtio/vhost-scsi-common.h"
61 
62 #include "exec/address-spaces.h"
63 #include "hw/usb.h"
64 #include "qemu/config-file.h"
65 #include "qemu/error-report.h"
66 #include "trace.h"
67 #include "hw/nmi.h"
68 #include "hw/intc/intc.h"
69 
70 #include "hw/compat.h"
71 #include "qemu/cutils.h"
72 #include "hw/ppc/spapr_cpu_core.h"
73 #include "qmp-commands.h"
74 
75 #include <libfdt.h>
76 
77 /* SLOF memory layout:
78  *
79  * SLOF raw image loaded at 0, copies its romfs right below the flat
80  * device-tree, then position SLOF itself 31M below that
81  *
82  * So we set FW_OVERHEAD to 40MB which should account for all of that
83  * and more
84  *
85  * We load our kernel at 4M, leaving space for SLOF initial image
86  */
87 #define FDT_MAX_SIZE            0x100000
88 #define RTAS_MAX_SIZE           0x10000
89 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
90 #define FW_MAX_SIZE             0x400000
91 #define FW_FILE_NAME            "slof.bin"
92 #define FW_OVERHEAD             0x2800000
93 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
94 
95 #define MIN_RMA_SLOF            128UL
96 
97 #define PHANDLE_XICP            0x00001111
98 
99 #define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))
100 
101 static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
102                                   const char *type_ics,
103                                   int nr_irqs, Error **errp)
104 {
105     Error *local_err = NULL;
106     Object *obj;
107 
108     obj = object_new(type_ics);
109     object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort);
110     object_property_add_const_link(obj, "xics", OBJECT(spapr), &error_abort);
111     object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err);
112     if (local_err) {
113         goto error;
114     }
115     object_property_set_bool(obj, true, "realized", &local_err);
116     if (local_err) {
117         goto error;
118     }
119 
120     return ICS_SIMPLE(obj);
121 
122 error:
123     error_propagate(errp, local_err);
124     return NULL;
125 }
126 
127 static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
128 {
129     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
130 
131     if (kvm_enabled()) {
132         if (machine_kernel_irqchip_allowed(machine) &&
133             !xics_kvm_init(spapr, errp)) {
134             spapr->icp_type = TYPE_KVM_ICP;
135             spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, errp);
136         }
137         if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
138             error_prepend(errp, "kernel_irqchip requested but unavailable: ");
139             return;
140         }
141     }
142 
143     if (!spapr->ics) {
144         xics_spapr_init(spapr);
145         spapr->icp_type = TYPE_ICP;
146         spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp);
147         if (!spapr->ics) {
148             return;
149         }
150     }
151 }
152 
153 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
154                                   int smt_threads)
155 {
156     int i, ret = 0;
157     uint32_t servers_prop[smt_threads];
158     uint32_t gservers_prop[smt_threads * 2];
159     int index = ppc_get_vcpu_dt_id(cpu);
160 
161     if (cpu->compat_pvr) {
162         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
163         if (ret < 0) {
164             return ret;
165         }
166     }
167 
168     /* Build interrupt servers and gservers properties */
169     for (i = 0; i < smt_threads; i++) {
170         servers_prop[i] = cpu_to_be32(index + i);
171         /* Hack, direct the group queues back to cpu 0 */
172         gservers_prop[i*2] = cpu_to_be32(index + i);
173         gservers_prop[i*2 + 1] = 0;
174     }
175     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
176                       servers_prop, sizeof(servers_prop));
177     if (ret < 0) {
178         return ret;
179     }
180     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
181                       gservers_prop, sizeof(gservers_prop));
182 
183     return ret;
184 }
185 
186 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
187 {
188     int index = ppc_get_vcpu_dt_id(cpu);
189     uint32_t associativity[] = {cpu_to_be32(0x5),
190                                 cpu_to_be32(0x0),
191                                 cpu_to_be32(0x0),
192                                 cpu_to_be32(0x0),
193                                 cpu_to_be32(cpu->node_id),
194                                 cpu_to_be32(index)};
195 
196     /* Advertise NUMA via ibm,associativity */
197     return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
198                           sizeof(associativity));
199 }
200 
201 /* Populate the "ibm,pa-features" property */
202 static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset,
203                                       bool legacy_guest)
204 {
205     uint8_t pa_features_206[] = { 6, 0,
206         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
207     uint8_t pa_features_207[] = { 24, 0,
208         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
209         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
210         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
211         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
212     uint8_t pa_features_300[] = { 66, 0,
213         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
214         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
215         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
216         /* 6: DS207 */
217         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
218         /* 16: Vector */
219         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
220         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
221         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
222         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
223         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
224         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
225         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
226         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
227         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
228         /* 42: PM, 44: PC RA, 46: SC vec'd */
229         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
230         /* 48: SIMD, 50: QP BFP, 52: String */
231         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
232         /* 54: DecFP, 56: DecI, 58: SHA */
233         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
234         /* 60: NM atomic, 62: RNG */
235         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
236     };
237     uint8_t *pa_features;
238     size_t pa_size;
239 
240     switch (POWERPC_MMU_VER(env->mmu_model)) {
241     case POWERPC_MMU_VER_2_06:
242         pa_features = pa_features_206;
243         pa_size = sizeof(pa_features_206);
244         break;
245     case POWERPC_MMU_VER_2_07:
246         pa_features = pa_features_207;
247         pa_size = sizeof(pa_features_207);
248         break;
249     case POWERPC_MMU_VER_3_00:
250         pa_features = pa_features_300;
251         pa_size = sizeof(pa_features_300);
252         break;
253     default:
254         return;
255     }
256 
257     if (env->ci_large_pages) {
258         /*
259          * Note: we keep CI large pages off by default because a 64K capable
260          * guest provisioned with large pages might otherwise try to map a qemu
261          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
262          * even if that qemu runs on a 4k host.
263          * We dd this bit back here if we are confident this is not an issue
264          */
265         pa_features[3] |= 0x20;
266     }
267     if (kvmppc_has_cap_htm() && pa_size > 24) {
268         pa_features[24] |= 0x80;    /* Transactional memory support */
269     }
270     if (legacy_guest && pa_size > 40) {
271         /* Workaround for broken kernels that attempt (guest) radix
272          * mode when they can't handle it, if they see the radix bit set
273          * in pa-features. So hide it from them. */
274         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
275     }
276 
277     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
278 }
279 
280 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
281 {
282     int ret = 0, offset, cpus_offset;
283     CPUState *cs;
284     char cpu_model[32];
285     int smt = kvmppc_smt_threads();
286     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
287 
288     CPU_FOREACH(cs) {
289         PowerPCCPU *cpu = POWERPC_CPU(cs);
290         CPUPPCState *env = &cpu->env;
291         DeviceClass *dc = DEVICE_GET_CLASS(cs);
292         int index = ppc_get_vcpu_dt_id(cpu);
293         int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
294 
295         if ((index % smt) != 0) {
296             continue;
297         }
298 
299         snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
300 
301         cpus_offset = fdt_path_offset(fdt, "/cpus");
302         if (cpus_offset < 0) {
303             cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
304                                           "cpus");
305             if (cpus_offset < 0) {
306                 return cpus_offset;
307             }
308         }
309         offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
310         if (offset < 0) {
311             offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
312             if (offset < 0) {
313                 return offset;
314             }
315         }
316 
317         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
318                           pft_size_prop, sizeof(pft_size_prop));
319         if (ret < 0) {
320             return ret;
321         }
322 
323         if (nb_numa_nodes > 1) {
324             ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
325             if (ret < 0) {
326                 return ret;
327             }
328         }
329 
330         ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
331         if (ret < 0) {
332             return ret;
333         }
334 
335         spapr_populate_pa_features(env, fdt, offset,
336                                          spapr->cas_legacy_guest_workaround);
337     }
338     return ret;
339 }
340 
341 static hwaddr spapr_node0_size(void)
342 {
343     MachineState *machine = MACHINE(qdev_get_machine());
344 
345     if (nb_numa_nodes) {
346         int i;
347         for (i = 0; i < nb_numa_nodes; ++i) {
348             if (numa_info[i].node_mem) {
349                 return MIN(pow2floor(numa_info[i].node_mem),
350                            machine->ram_size);
351             }
352         }
353     }
354     return machine->ram_size;
355 }
356 
357 static void add_str(GString *s, const gchar *s1)
358 {
359     g_string_append_len(s, s1, strlen(s1) + 1);
360 }
361 
362 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
363                                        hwaddr size)
364 {
365     uint32_t associativity[] = {
366         cpu_to_be32(0x4), /* length */
367         cpu_to_be32(0x0), cpu_to_be32(0x0),
368         cpu_to_be32(0x0), cpu_to_be32(nodeid)
369     };
370     char mem_name[32];
371     uint64_t mem_reg_property[2];
372     int off;
373 
374     mem_reg_property[0] = cpu_to_be64(start);
375     mem_reg_property[1] = cpu_to_be64(size);
376 
377     sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
378     off = fdt_add_subnode(fdt, 0, mem_name);
379     _FDT(off);
380     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
381     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
382                       sizeof(mem_reg_property))));
383     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
384                       sizeof(associativity))));
385     return off;
386 }
387 
388 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
389 {
390     MachineState *machine = MACHINE(spapr);
391     hwaddr mem_start, node_size;
392     int i, nb_nodes = nb_numa_nodes;
393     NodeInfo *nodes = numa_info;
394     NodeInfo ramnode;
395 
396     /* No NUMA nodes, assume there is just one node with whole RAM */
397     if (!nb_numa_nodes) {
398         nb_nodes = 1;
399         ramnode.node_mem = machine->ram_size;
400         nodes = &ramnode;
401     }
402 
403     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
404         if (!nodes[i].node_mem) {
405             continue;
406         }
407         if (mem_start >= machine->ram_size) {
408             node_size = 0;
409         } else {
410             node_size = nodes[i].node_mem;
411             if (node_size > machine->ram_size - mem_start) {
412                 node_size = machine->ram_size - mem_start;
413             }
414         }
415         if (!mem_start) {
416             /* ppc_spapr_init() checks for rma_size <= node0_size already */
417             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
418             mem_start += spapr->rma_size;
419             node_size -= spapr->rma_size;
420         }
421         for ( ; node_size; ) {
422             hwaddr sizetmp = pow2floor(node_size);
423 
424             /* mem_start != 0 here */
425             if (ctzl(mem_start) < ctzl(sizetmp)) {
426                 sizetmp = 1ULL << ctzl(mem_start);
427             }
428 
429             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
430             node_size -= sizetmp;
431             mem_start += sizetmp;
432         }
433     }
434 
435     return 0;
436 }
437 
438 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
439                                   sPAPRMachineState *spapr)
440 {
441     PowerPCCPU *cpu = POWERPC_CPU(cs);
442     CPUPPCState *env = &cpu->env;
443     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
444     int index = ppc_get_vcpu_dt_id(cpu);
445     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
446                        0xffffffff, 0xffffffff};
447     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
448         : SPAPR_TIMEBASE_FREQ;
449     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
450     uint32_t page_sizes_prop[64];
451     size_t page_sizes_prop_size;
452     uint32_t vcpus_per_socket = smp_threads * smp_cores;
453     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
454     int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
455     sPAPRDRConnector *drc;
456     int drc_index;
457     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
458     int i;
459 
460     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
461     if (drc) {
462         drc_index = spapr_drc_index(drc);
463         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
464     }
465 
466     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
467     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
468 
469     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
470     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
471                            env->dcache_line_size)));
472     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
473                            env->dcache_line_size)));
474     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
475                            env->icache_line_size)));
476     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
477                            env->icache_line_size)));
478 
479     if (pcc->l1_dcache_size) {
480         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
481                                pcc->l1_dcache_size)));
482     } else {
483         error_report("Warning: Unknown L1 dcache size for cpu");
484     }
485     if (pcc->l1_icache_size) {
486         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
487                                pcc->l1_icache_size)));
488     } else {
489         error_report("Warning: Unknown L1 icache size for cpu");
490     }
491 
492     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
493     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
494     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
495     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
496     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
497     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
498 
499     if (env->spr_cb[SPR_PURR].oea_read) {
500         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
501     }
502 
503     if (env->mmu_model & POWERPC_MMU_1TSEG) {
504         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
505                           segs, sizeof(segs))));
506     }
507 
508     /* Advertise VMX/VSX (vector extensions) if available
509      *   0 / no property == no vector extensions
510      *   1               == VMX / Altivec available
511      *   2               == VSX available */
512     if (env->insns_flags & PPC_ALTIVEC) {
513         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
514 
515         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
516     }
517 
518     /* Advertise DFP (Decimal Floating Point) if available
519      *   0 / no property == no DFP
520      *   1               == DFP available */
521     if (env->insns_flags2 & PPC2_DFP) {
522         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
523     }
524 
525     page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
526                                                   sizeof(page_sizes_prop));
527     if (page_sizes_prop_size) {
528         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
529                           page_sizes_prop, page_sizes_prop_size)));
530     }
531 
532     spapr_populate_pa_features(env, fdt, offset, false);
533 
534     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
535                            cs->cpu_index / vcpus_per_socket)));
536 
537     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
538                       pft_size_prop, sizeof(pft_size_prop))));
539 
540     if (nb_numa_nodes > 1) {
541         _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
542     }
543 
544     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
545 
546     if (pcc->radix_page_info) {
547         for (i = 0; i < pcc->radix_page_info->count; i++) {
548             radix_AP_encodings[i] =
549                 cpu_to_be32(pcc->radix_page_info->entries[i]);
550         }
551         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
552                           radix_AP_encodings,
553                           pcc->radix_page_info->count *
554                           sizeof(radix_AP_encodings[0]))));
555     }
556 }
557 
558 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
559 {
560     CPUState *cs;
561     int cpus_offset;
562     char *nodename;
563     int smt = kvmppc_smt_threads();
564 
565     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
566     _FDT(cpus_offset);
567     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
568     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
569 
570     /*
571      * We walk the CPUs in reverse order to ensure that CPU DT nodes
572      * created by fdt_add_subnode() end up in the right order in FDT
573      * for the guest kernel the enumerate the CPUs correctly.
574      */
575     CPU_FOREACH_REVERSE(cs) {
576         PowerPCCPU *cpu = POWERPC_CPU(cs);
577         int index = ppc_get_vcpu_dt_id(cpu);
578         DeviceClass *dc = DEVICE_GET_CLASS(cs);
579         int offset;
580 
581         if ((index % smt) != 0) {
582             continue;
583         }
584 
585         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
586         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
587         g_free(nodename);
588         _FDT(offset);
589         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
590     }
591 
592 }
593 
594 /*
595  * Adds ibm,dynamic-reconfiguration-memory node.
596  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
597  * of this device tree node.
598  */
599 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
600 {
601     MachineState *machine = MACHINE(spapr);
602     int ret, i, offset;
603     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
604     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
605     uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
606     uint32_t nr_lmbs = (spapr->hotplug_memory.base +
607                        memory_region_size(&spapr->hotplug_memory.mr)) /
608                        lmb_size;
609     uint32_t *int_buf, *cur_index, buf_len;
610     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
611 
612     /*
613      * Don't create the node if there is no hotpluggable memory
614      */
615     if (machine->ram_size == machine->maxram_size) {
616         return 0;
617     }
618 
619     /*
620      * Allocate enough buffer size to fit in ibm,dynamic-memory
621      * or ibm,associativity-lookup-arrays
622      */
623     buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
624               * sizeof(uint32_t);
625     cur_index = int_buf = g_malloc0(buf_len);
626 
627     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
628 
629     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
630                     sizeof(prop_lmb_size));
631     if (ret < 0) {
632         goto out;
633     }
634 
635     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
636     if (ret < 0) {
637         goto out;
638     }
639 
640     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
641     if (ret < 0) {
642         goto out;
643     }
644 
645     /* ibm,dynamic-memory */
646     int_buf[0] = cpu_to_be32(nr_lmbs);
647     cur_index++;
648     for (i = 0; i < nr_lmbs; i++) {
649         uint64_t addr = i * lmb_size;
650         uint32_t *dynamic_memory = cur_index;
651 
652         if (i >= hotplug_lmb_start) {
653             sPAPRDRConnector *drc;
654 
655             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
656             g_assert(drc);
657 
658             dynamic_memory[0] = cpu_to_be32(addr >> 32);
659             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
660             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
661             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
662             dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
663             if (memory_region_present(get_system_memory(), addr)) {
664                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
665             } else {
666                 dynamic_memory[5] = cpu_to_be32(0);
667             }
668         } else {
669             /*
670              * LMB information for RMA, boot time RAM and gap b/n RAM and
671              * hotplug memory region -- all these are marked as reserved
672              * and as having no valid DRC.
673              */
674             dynamic_memory[0] = cpu_to_be32(addr >> 32);
675             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
676             dynamic_memory[2] = cpu_to_be32(0);
677             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
678             dynamic_memory[4] = cpu_to_be32(-1);
679             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
680                                             SPAPR_LMB_FLAGS_DRC_INVALID);
681         }
682 
683         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
684     }
685     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
686     if (ret < 0) {
687         goto out;
688     }
689 
690     /* ibm,associativity-lookup-arrays */
691     cur_index = int_buf;
692     int_buf[0] = cpu_to_be32(nr_nodes);
693     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
694     cur_index += 2;
695     for (i = 0; i < nr_nodes; i++) {
696         uint32_t associativity[] = {
697             cpu_to_be32(0x0),
698             cpu_to_be32(0x0),
699             cpu_to_be32(0x0),
700             cpu_to_be32(i)
701         };
702         memcpy(cur_index, associativity, sizeof(associativity));
703         cur_index += 4;
704     }
705     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
706             (cur_index - int_buf) * sizeof(uint32_t));
707 out:
708     g_free(int_buf);
709     return ret;
710 }
711 
712 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
713                                 sPAPROptionVector *ov5_updates)
714 {
715     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
716     int ret = 0, offset;
717 
718     /* Generate ibm,dynamic-reconfiguration-memory node if required */
719     if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
720         g_assert(smc->dr_lmb_enabled);
721         ret = spapr_populate_drconf_memory(spapr, fdt);
722         if (ret) {
723             goto out;
724         }
725     }
726 
727     offset = fdt_path_offset(fdt, "/chosen");
728     if (offset < 0) {
729         offset = fdt_add_subnode(fdt, 0, "chosen");
730         if (offset < 0) {
731             return offset;
732         }
733     }
734     ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
735                                  "ibm,architecture-vec-5");
736 
737 out:
738     return ret;
739 }
740 
741 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
742                                  target_ulong addr, target_ulong size,
743                                  sPAPROptionVector *ov5_updates)
744 {
745     void *fdt, *fdt_skel;
746     sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
747 
748     size -= sizeof(hdr);
749 
750     /* Create sceleton */
751     fdt_skel = g_malloc0(size);
752     _FDT((fdt_create(fdt_skel, size)));
753     _FDT((fdt_begin_node(fdt_skel, "")));
754     _FDT((fdt_end_node(fdt_skel)));
755     _FDT((fdt_finish(fdt_skel)));
756     fdt = g_malloc0(size);
757     _FDT((fdt_open_into(fdt_skel, fdt, size)));
758     g_free(fdt_skel);
759 
760     /* Fixup cpu nodes */
761     _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
762 
763     if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
764         return -1;
765     }
766 
767     /* Pack resulting tree */
768     _FDT((fdt_pack(fdt)));
769 
770     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
771         trace_spapr_cas_failed(size);
772         return -1;
773     }
774 
775     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
776     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
777     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
778     g_free(fdt);
779 
780     return 0;
781 }
782 
783 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
784 {
785     int rtas;
786     GString *hypertas = g_string_sized_new(256);
787     GString *qemu_hypertas = g_string_sized_new(256);
788     uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
789     uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
790         memory_region_size(&spapr->hotplug_memory.mr);
791     uint32_t lrdr_capacity[] = {
792         cpu_to_be32(max_hotplug_addr >> 32),
793         cpu_to_be32(max_hotplug_addr & 0xffffffff),
794         0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
795         cpu_to_be32(max_cpus / smp_threads),
796     };
797 
798     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
799 
800     /* hypertas */
801     add_str(hypertas, "hcall-pft");
802     add_str(hypertas, "hcall-term");
803     add_str(hypertas, "hcall-dabr");
804     add_str(hypertas, "hcall-interrupt");
805     add_str(hypertas, "hcall-tce");
806     add_str(hypertas, "hcall-vio");
807     add_str(hypertas, "hcall-splpar");
808     add_str(hypertas, "hcall-bulk");
809     add_str(hypertas, "hcall-set-mode");
810     add_str(hypertas, "hcall-sprg0");
811     add_str(hypertas, "hcall-copy");
812     add_str(hypertas, "hcall-debug");
813     add_str(qemu_hypertas, "hcall-memop1");
814 
815     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
816         add_str(hypertas, "hcall-multi-tce");
817     }
818     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
819                      hypertas->str, hypertas->len));
820     g_string_free(hypertas, TRUE);
821     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
822                      qemu_hypertas->str, qemu_hypertas->len));
823     g_string_free(qemu_hypertas, TRUE);
824 
825     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
826                      refpoints, sizeof(refpoints)));
827 
828     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
829                           RTAS_ERROR_LOG_MAX));
830     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
831                           RTAS_EVENT_SCAN_RATE));
832 
833     if (msi_nonbroken) {
834         _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
835     }
836 
837     /*
838      * According to PAPR, rtas ibm,os-term does not guarantee a return
839      * back to the guest cpu.
840      *
841      * While an additional ibm,extended-os-term property indicates
842      * that rtas call return will always occur. Set this property.
843      */
844     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
845 
846     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
847                      lrdr_capacity, sizeof(lrdr_capacity)));
848 
849     spapr_dt_rtas_tokens(fdt, rtas);
850 }
851 
852 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
853  * that the guest may request and thus the valid values for bytes 24..26 of
854  * option vector 5: */
855 static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
856 {
857     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
858 
859     char val[2 * 3] = {
860         24, 0x00, /* Hash/Radix, filled in below. */
861         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
862         26, 0x40, /* Radix options: GTSE == yes. */
863     };
864 
865     if (kvm_enabled()) {
866         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
867             val[1] = 0x80; /* OV5_MMU_BOTH */
868         } else if (kvmppc_has_cap_mmu_radix()) {
869             val[1] = 0x40; /* OV5_MMU_RADIX_300 */
870         } else {
871             val[1] = 0x00; /* Hash */
872         }
873     } else {
874         if (first_ppc_cpu->env.mmu_model & POWERPC_MMU_V3) {
875             /* V3 MMU supports both hash and radix (with dynamic switching) */
876             val[1] = 0xC0;
877         } else {
878             /* Otherwise we can only do hash */
879             val[1] = 0x00;
880         }
881     }
882     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
883                      val, sizeof(val)));
884 }
885 
886 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
887 {
888     MachineState *machine = MACHINE(spapr);
889     int chosen;
890     const char *boot_device = machine->boot_order;
891     char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
892     size_t cb = 0;
893     char *bootlist = get_boot_devices_list(&cb, true);
894 
895     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
896 
897     _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
898     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
899                           spapr->initrd_base));
900     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
901                           spapr->initrd_base + spapr->initrd_size));
902 
903     if (spapr->kernel_size) {
904         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
905                               cpu_to_be64(spapr->kernel_size) };
906 
907         _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
908                          &kprop, sizeof(kprop)));
909         if (spapr->kernel_le) {
910             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
911         }
912     }
913     if (boot_menu) {
914         _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
915     }
916     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
917     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
918     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
919 
920     if (cb && bootlist) {
921         int i;
922 
923         for (i = 0; i < cb; i++) {
924             if (bootlist[i] == '\n') {
925                 bootlist[i] = ' ';
926             }
927         }
928         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
929     }
930 
931     if (boot_device && strlen(boot_device)) {
932         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
933     }
934 
935     if (!spapr->has_graphics && stdout_path) {
936         _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
937     }
938 
939     spapr_dt_ov5_platform_support(fdt, chosen);
940 
941     g_free(stdout_path);
942     g_free(bootlist);
943 }
944 
945 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
946 {
947     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
948      * KVM to work under pHyp with some guest co-operation */
949     int hypervisor;
950     uint8_t hypercall[16];
951 
952     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
953     /* indicate KVM hypercall interface */
954     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
955     if (kvmppc_has_cap_fixup_hcalls()) {
956         /*
957          * Older KVM versions with older guest kernels were broken
958          * with the magic page, don't allow the guest to map it.
959          */
960         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
961                                   sizeof(hypercall))) {
962             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
963                              hypercall, sizeof(hypercall)));
964         }
965     }
966 }
967 
968 static void *spapr_build_fdt(sPAPRMachineState *spapr,
969                              hwaddr rtas_addr,
970                              hwaddr rtas_size)
971 {
972     MachineState *machine = MACHINE(qdev_get_machine());
973     MachineClass *mc = MACHINE_GET_CLASS(machine);
974     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
975     int ret;
976     void *fdt;
977     sPAPRPHBState *phb;
978     char *buf;
979     int smt = kvmppc_smt_threads();
980 
981     fdt = g_malloc0(FDT_MAX_SIZE);
982     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
983 
984     /* Root node */
985     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
986     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
987     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
988 
989     /*
990      * Add info to guest to indentify which host is it being run on
991      * and what is the uuid of the guest
992      */
993     if (kvmppc_get_host_model(&buf)) {
994         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
995         g_free(buf);
996     }
997     if (kvmppc_get_host_serial(&buf)) {
998         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
999         g_free(buf);
1000     }
1001 
1002     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1003 
1004     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1005     if (qemu_uuid_set) {
1006         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1007     }
1008     g_free(buf);
1009 
1010     if (qemu_get_vm_name()) {
1011         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1012                                 qemu_get_vm_name()));
1013     }
1014 
1015     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1016     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1017 
1018     /* /interrupt controller */
1019     spapr_dt_xics(DIV_ROUND_UP(max_cpus * smt, smp_threads), fdt, PHANDLE_XICP);
1020 
1021     ret = spapr_populate_memory(spapr, fdt);
1022     if (ret < 0) {
1023         error_report("couldn't setup memory nodes in fdt");
1024         exit(1);
1025     }
1026 
1027     /* /vdevice */
1028     spapr_dt_vdevice(spapr->vio_bus, fdt);
1029 
1030     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1031         ret = spapr_rng_populate_dt(fdt);
1032         if (ret < 0) {
1033             error_report("could not set up rng device in the fdt");
1034             exit(1);
1035         }
1036     }
1037 
1038     QLIST_FOREACH(phb, &spapr->phbs, list) {
1039         ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
1040         if (ret < 0) {
1041             error_report("couldn't setup PCI devices in fdt");
1042             exit(1);
1043         }
1044     }
1045 
1046     /* cpus */
1047     spapr_populate_cpus_dt_node(fdt, spapr);
1048 
1049     if (smc->dr_lmb_enabled) {
1050         _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1051     }
1052 
1053     if (mc->has_hotpluggable_cpus) {
1054         int offset = fdt_path_offset(fdt, "/cpus");
1055         ret = spapr_drc_populate_dt(fdt, offset, NULL,
1056                                     SPAPR_DR_CONNECTOR_TYPE_CPU);
1057         if (ret < 0) {
1058             error_report("Couldn't set up CPU DR device tree properties");
1059             exit(1);
1060         }
1061     }
1062 
1063     /* /event-sources */
1064     spapr_dt_events(spapr, fdt);
1065 
1066     /* /rtas */
1067     spapr_dt_rtas(spapr, fdt);
1068 
1069     /* /chosen */
1070     spapr_dt_chosen(spapr, fdt);
1071 
1072     /* /hypervisor */
1073     if (kvm_enabled()) {
1074         spapr_dt_hypervisor(spapr, fdt);
1075     }
1076 
1077     /* Build memory reserve map */
1078     if (spapr->kernel_size) {
1079         _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1080     }
1081     if (spapr->initrd_size) {
1082         _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1083     }
1084 
1085     /* ibm,client-architecture-support updates */
1086     ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1087     if (ret < 0) {
1088         error_report("couldn't setup CAS properties fdt");
1089         exit(1);
1090     }
1091 
1092     return fdt;
1093 }
1094 
1095 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1096 {
1097     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1098 }
1099 
1100 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1101                                     PowerPCCPU *cpu)
1102 {
1103     CPUPPCState *env = &cpu->env;
1104 
1105     /* The TCG path should also be holding the BQL at this point */
1106     g_assert(qemu_mutex_iothread_locked());
1107 
1108     if (msr_pr) {
1109         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1110         env->gpr[3] = H_PRIVILEGE;
1111     } else {
1112         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1113     }
1114 }
1115 
1116 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1117 {
1118     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1119 
1120     return spapr->patb_entry;
1121 }
1122 
1123 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1124 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1125 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1126 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1127 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1128 
1129 /*
1130  * Get the fd to access the kernel htab, re-opening it if necessary
1131  */
1132 static int get_htab_fd(sPAPRMachineState *spapr)
1133 {
1134     if (spapr->htab_fd >= 0) {
1135         return spapr->htab_fd;
1136     }
1137 
1138     spapr->htab_fd = kvmppc_get_htab_fd(false);
1139     if (spapr->htab_fd < 0) {
1140         error_report("Unable to open fd for reading hash table from KVM: %s",
1141                      strerror(errno));
1142     }
1143 
1144     return spapr->htab_fd;
1145 }
1146 
1147 void close_htab_fd(sPAPRMachineState *spapr)
1148 {
1149     if (spapr->htab_fd >= 0) {
1150         close(spapr->htab_fd);
1151     }
1152     spapr->htab_fd = -1;
1153 }
1154 
1155 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1156 {
1157     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1158 
1159     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1160 }
1161 
1162 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1163                                                 hwaddr ptex, int n)
1164 {
1165     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1166     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1167 
1168     if (!spapr->htab) {
1169         /*
1170          * HTAB is controlled by KVM. Fetch into temporary buffer
1171          */
1172         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1173         kvmppc_read_hptes(hptes, ptex, n);
1174         return hptes;
1175     }
1176 
1177     /*
1178      * HTAB is controlled by QEMU. Just point to the internally
1179      * accessible PTEG.
1180      */
1181     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1182 }
1183 
1184 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1185                               const ppc_hash_pte64_t *hptes,
1186                               hwaddr ptex, int n)
1187 {
1188     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1189 
1190     if (!spapr->htab) {
1191         g_free((void *)hptes);
1192     }
1193 
1194     /* Nothing to do for qemu managed HPT */
1195 }
1196 
1197 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1198                              uint64_t pte0, uint64_t pte1)
1199 {
1200     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1201     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1202 
1203     if (!spapr->htab) {
1204         kvmppc_write_hpte(ptex, pte0, pte1);
1205     } else {
1206         stq_p(spapr->htab + offset, pte0);
1207         stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1208     }
1209 }
1210 
1211 static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1212 {
1213     int shift;
1214 
1215     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1216      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1217      * that's much more than is needed for Linux guests */
1218     shift = ctz64(pow2ceil(ramsize)) - 7;
1219     shift = MAX(shift, 18); /* Minimum architected size */
1220     shift = MIN(shift, 46); /* Maximum architected size */
1221     return shift;
1222 }
1223 
1224 void spapr_free_hpt(sPAPRMachineState *spapr)
1225 {
1226     g_free(spapr->htab);
1227     spapr->htab = NULL;
1228     spapr->htab_shift = 0;
1229     close_htab_fd(spapr);
1230 }
1231 
1232 static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1233                                  Error **errp)
1234 {
1235     long rc;
1236 
1237     /* Clean up any HPT info from a previous boot */
1238     spapr_free_hpt(spapr);
1239 
1240     rc = kvmppc_reset_htab(shift);
1241     if (rc < 0) {
1242         /* kernel-side HPT needed, but couldn't allocate one */
1243         error_setg_errno(errp, errno,
1244                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1245                          shift);
1246         /* This is almost certainly fatal, but if the caller really
1247          * wants to carry on with shift == 0, it's welcome to try */
1248     } else if (rc > 0) {
1249         /* kernel-side HPT allocated */
1250         if (rc != shift) {
1251             error_setg(errp,
1252                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1253                        shift, rc);
1254         }
1255 
1256         spapr->htab_shift = shift;
1257         spapr->htab = NULL;
1258     } else {
1259         /* kernel-side HPT not needed, allocate in userspace instead */
1260         size_t size = 1ULL << shift;
1261         int i;
1262 
1263         spapr->htab = qemu_memalign(size, size);
1264         if (!spapr->htab) {
1265             error_setg_errno(errp, errno,
1266                              "Could not allocate HPT of order %d", shift);
1267             return;
1268         }
1269 
1270         memset(spapr->htab, 0, size);
1271         spapr->htab_shift = shift;
1272 
1273         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1274             DIRTY_HPTE(HPTE(spapr->htab, i));
1275         }
1276     }
1277 }
1278 
1279 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1280 {
1281     spapr_reallocate_hpt(spapr,
1282                      spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size),
1283                      &error_fatal);
1284     if (spapr->vrma_adjust) {
1285         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1286                                           spapr->htab_shift);
1287     }
1288     /* We're setting up a hash table, so that means we're not radix */
1289     spapr->patb_entry = 0;
1290 }
1291 
1292 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1293 {
1294     bool matched = false;
1295 
1296     if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1297         matched = true;
1298     }
1299 
1300     if (!matched) {
1301         error_report("Device %s is not supported by this machine yet.",
1302                      qdev_fw_name(DEVICE(sbdev)));
1303         exit(1);
1304     }
1305 }
1306 
1307 static void ppc_spapr_reset(void)
1308 {
1309     MachineState *machine = MACHINE(qdev_get_machine());
1310     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1311     PowerPCCPU *first_ppc_cpu;
1312     uint32_t rtas_limit;
1313     hwaddr rtas_addr, fdt_addr;
1314     void *fdt;
1315     int rc;
1316 
1317     /* Check for unknown sysbus devices */
1318     foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1319 
1320     if (kvm_enabled() && kvmppc_has_cap_mmu_radix()) {
1321         /* If using KVM with radix mode available, VCPUs can be started
1322          * without a HPT because KVM will start them in radix mode.
1323          * Set the GR bit in PATB so that we know there is no HPT. */
1324         spapr->patb_entry = PATBE1_GR;
1325     } else {
1326         spapr->patb_entry = 0;
1327         spapr_setup_hpt_and_vrma(spapr);
1328     }
1329 
1330     qemu_devices_reset();
1331 
1332     /*
1333      * We place the device tree and RTAS just below either the top of the RMA,
1334      * or just below 2GB, whichever is lowere, so that it can be
1335      * processed with 32-bit real mode code if necessary
1336      */
1337     rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1338     rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1339     fdt_addr = rtas_addr - FDT_MAX_SIZE;
1340 
1341     /* if this reset wasn't generated by CAS, we should reset our
1342      * negotiated options and start from scratch */
1343     if (!spapr->cas_reboot) {
1344         spapr_ovec_cleanup(spapr->ov5_cas);
1345         spapr->ov5_cas = spapr_ovec_new();
1346     }
1347 
1348     fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1349 
1350     spapr_load_rtas(spapr, fdt, rtas_addr);
1351 
1352     rc = fdt_pack(fdt);
1353 
1354     /* Should only fail if we've built a corrupted tree */
1355     assert(rc == 0);
1356 
1357     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1358         error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1359                      fdt_totalsize(fdt), FDT_MAX_SIZE);
1360         exit(1);
1361     }
1362 
1363     /* Load the fdt */
1364     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1365     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1366     g_free(fdt);
1367 
1368     /* Set up the entry state */
1369     first_ppc_cpu = POWERPC_CPU(first_cpu);
1370     first_ppc_cpu->env.gpr[3] = fdt_addr;
1371     first_ppc_cpu->env.gpr[5] = 0;
1372     first_cpu->halted = 0;
1373     first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1374 
1375     spapr->cas_reboot = false;
1376 }
1377 
1378 static void spapr_create_nvram(sPAPRMachineState *spapr)
1379 {
1380     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1381     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1382 
1383     if (dinfo) {
1384         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1385                             &error_fatal);
1386     }
1387 
1388     qdev_init_nofail(dev);
1389 
1390     spapr->nvram = (struct sPAPRNVRAM *)dev;
1391 }
1392 
1393 static void spapr_rtc_create(sPAPRMachineState *spapr)
1394 {
1395     object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1396     object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1397                               &error_fatal);
1398     object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1399                               &error_fatal);
1400     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1401                               "date", &error_fatal);
1402 }
1403 
1404 /* Returns whether we want to use VGA or not */
1405 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1406 {
1407     switch (vga_interface_type) {
1408     case VGA_NONE:
1409         return false;
1410     case VGA_DEVICE:
1411         return true;
1412     case VGA_STD:
1413     case VGA_VIRTIO:
1414         return pci_vga_init(pci_bus) != NULL;
1415     default:
1416         error_setg(errp,
1417                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1418         return false;
1419     }
1420 }
1421 
1422 static int spapr_post_load(void *opaque, int version_id)
1423 {
1424     sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1425     int err = 0;
1426 
1427     if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1428         CPUState *cs;
1429         CPU_FOREACH(cs) {
1430             PowerPCCPU *cpu = POWERPC_CPU(cs);
1431             icp_resend(ICP(cpu->intc));
1432         }
1433     }
1434 
1435     /* In earlier versions, there was no separate qdev for the PAPR
1436      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1437      * So when migrating from those versions, poke the incoming offset
1438      * value into the RTC device */
1439     if (version_id < 3) {
1440         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1441     }
1442 
1443     return err;
1444 }
1445 
1446 static bool version_before_3(void *opaque, int version_id)
1447 {
1448     return version_id < 3;
1449 }
1450 
1451 static bool spapr_ov5_cas_needed(void *opaque)
1452 {
1453     sPAPRMachineState *spapr = opaque;
1454     sPAPROptionVector *ov5_mask = spapr_ovec_new();
1455     sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1456     sPAPROptionVector *ov5_removed = spapr_ovec_new();
1457     bool cas_needed;
1458 
1459     /* Prior to the introduction of sPAPROptionVector, we had two option
1460      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1461      * Both of these options encode machine topology into the device-tree
1462      * in such a way that the now-booted OS should still be able to interact
1463      * appropriately with QEMU regardless of what options were actually
1464      * negotiatied on the source side.
1465      *
1466      * As such, we can avoid migrating the CAS-negotiated options if these
1467      * are the only options available on the current machine/platform.
1468      * Since these are the only options available for pseries-2.7 and
1469      * earlier, this allows us to maintain old->new/new->old migration
1470      * compatibility.
1471      *
1472      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1473      * via default pseries-2.8 machines and explicit command-line parameters.
1474      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1475      * of the actual CAS-negotiated values to continue working properly. For
1476      * example, availability of memory unplug depends on knowing whether
1477      * OV5_HP_EVT was negotiated via CAS.
1478      *
1479      * Thus, for any cases where the set of available CAS-negotiatable
1480      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1481      * include the CAS-negotiated options in the migration stream.
1482      */
1483     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1484     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1485 
1486     /* spapr_ovec_diff returns true if bits were removed. we avoid using
1487      * the mask itself since in the future it's possible "legacy" bits may be
1488      * removed via machine options, which could generate a false positive
1489      * that breaks migration.
1490      */
1491     spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1492     cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1493 
1494     spapr_ovec_cleanup(ov5_mask);
1495     spapr_ovec_cleanup(ov5_legacy);
1496     spapr_ovec_cleanup(ov5_removed);
1497 
1498     return cas_needed;
1499 }
1500 
1501 static const VMStateDescription vmstate_spapr_ov5_cas = {
1502     .name = "spapr_option_vector_ov5_cas",
1503     .version_id = 1,
1504     .minimum_version_id = 1,
1505     .needed = spapr_ov5_cas_needed,
1506     .fields = (VMStateField[]) {
1507         VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1508                                  vmstate_spapr_ovec, sPAPROptionVector),
1509         VMSTATE_END_OF_LIST()
1510     },
1511 };
1512 
1513 static bool spapr_patb_entry_needed(void *opaque)
1514 {
1515     sPAPRMachineState *spapr = opaque;
1516 
1517     return !!spapr->patb_entry;
1518 }
1519 
1520 static const VMStateDescription vmstate_spapr_patb_entry = {
1521     .name = "spapr_patb_entry",
1522     .version_id = 1,
1523     .minimum_version_id = 1,
1524     .needed = spapr_patb_entry_needed,
1525     .fields = (VMStateField[]) {
1526         VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1527         VMSTATE_END_OF_LIST()
1528     },
1529 };
1530 
1531 static const VMStateDescription vmstate_spapr = {
1532     .name = "spapr",
1533     .version_id = 3,
1534     .minimum_version_id = 1,
1535     .post_load = spapr_post_load,
1536     .fields = (VMStateField[]) {
1537         /* used to be @next_irq */
1538         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1539 
1540         /* RTC offset */
1541         VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1542 
1543         VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1544         VMSTATE_END_OF_LIST()
1545     },
1546     .subsections = (const VMStateDescription*[]) {
1547         &vmstate_spapr_ov5_cas,
1548         &vmstate_spapr_patb_entry,
1549         NULL
1550     }
1551 };
1552 
1553 static int htab_save_setup(QEMUFile *f, void *opaque)
1554 {
1555     sPAPRMachineState *spapr = opaque;
1556 
1557     /* "Iteration" header */
1558     qemu_put_be32(f, spapr->htab_shift);
1559 
1560     if (spapr->htab) {
1561         spapr->htab_save_index = 0;
1562         spapr->htab_first_pass = true;
1563     } else {
1564         assert(kvm_enabled());
1565     }
1566 
1567 
1568     return 0;
1569 }
1570 
1571 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1572                                  int64_t max_ns)
1573 {
1574     bool has_timeout = max_ns != -1;
1575     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1576     int index = spapr->htab_save_index;
1577     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1578 
1579     assert(spapr->htab_first_pass);
1580 
1581     do {
1582         int chunkstart;
1583 
1584         /* Consume invalid HPTEs */
1585         while ((index < htabslots)
1586                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1587             CLEAN_HPTE(HPTE(spapr->htab, index));
1588             index++;
1589         }
1590 
1591         /* Consume valid HPTEs */
1592         chunkstart = index;
1593         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1594                && HPTE_VALID(HPTE(spapr->htab, index))) {
1595             CLEAN_HPTE(HPTE(spapr->htab, index));
1596             index++;
1597         }
1598 
1599         if (index > chunkstart) {
1600             int n_valid = index - chunkstart;
1601 
1602             qemu_put_be32(f, chunkstart);
1603             qemu_put_be16(f, n_valid);
1604             qemu_put_be16(f, 0);
1605             qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1606                             HASH_PTE_SIZE_64 * n_valid);
1607 
1608             if (has_timeout &&
1609                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1610                 break;
1611             }
1612         }
1613     } while ((index < htabslots) && !qemu_file_rate_limit(f));
1614 
1615     if (index >= htabslots) {
1616         assert(index == htabslots);
1617         index = 0;
1618         spapr->htab_first_pass = false;
1619     }
1620     spapr->htab_save_index = index;
1621 }
1622 
1623 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1624                                 int64_t max_ns)
1625 {
1626     bool final = max_ns < 0;
1627     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1628     int examined = 0, sent = 0;
1629     int index = spapr->htab_save_index;
1630     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1631 
1632     assert(!spapr->htab_first_pass);
1633 
1634     do {
1635         int chunkstart, invalidstart;
1636 
1637         /* Consume non-dirty HPTEs */
1638         while ((index < htabslots)
1639                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1640             index++;
1641             examined++;
1642         }
1643 
1644         chunkstart = index;
1645         /* Consume valid dirty HPTEs */
1646         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1647                && HPTE_DIRTY(HPTE(spapr->htab, index))
1648                && HPTE_VALID(HPTE(spapr->htab, index))) {
1649             CLEAN_HPTE(HPTE(spapr->htab, index));
1650             index++;
1651             examined++;
1652         }
1653 
1654         invalidstart = index;
1655         /* Consume invalid dirty HPTEs */
1656         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1657                && HPTE_DIRTY(HPTE(spapr->htab, index))
1658                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1659             CLEAN_HPTE(HPTE(spapr->htab, index));
1660             index++;
1661             examined++;
1662         }
1663 
1664         if (index > chunkstart) {
1665             int n_valid = invalidstart - chunkstart;
1666             int n_invalid = index - invalidstart;
1667 
1668             qemu_put_be32(f, chunkstart);
1669             qemu_put_be16(f, n_valid);
1670             qemu_put_be16(f, n_invalid);
1671             qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1672                             HASH_PTE_SIZE_64 * n_valid);
1673             sent += index - chunkstart;
1674 
1675             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1676                 break;
1677             }
1678         }
1679 
1680         if (examined >= htabslots) {
1681             break;
1682         }
1683 
1684         if (index >= htabslots) {
1685             assert(index == htabslots);
1686             index = 0;
1687         }
1688     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1689 
1690     if (index >= htabslots) {
1691         assert(index == htabslots);
1692         index = 0;
1693     }
1694 
1695     spapr->htab_save_index = index;
1696 
1697     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1698 }
1699 
1700 #define MAX_ITERATION_NS    5000000 /* 5 ms */
1701 #define MAX_KVM_BUF_SIZE    2048
1702 
1703 static int htab_save_iterate(QEMUFile *f, void *opaque)
1704 {
1705     sPAPRMachineState *spapr = opaque;
1706     int fd;
1707     int rc = 0;
1708 
1709     /* Iteration header */
1710     qemu_put_be32(f, 0);
1711 
1712     if (!spapr->htab) {
1713         assert(kvm_enabled());
1714 
1715         fd = get_htab_fd(spapr);
1716         if (fd < 0) {
1717             return fd;
1718         }
1719 
1720         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1721         if (rc < 0) {
1722             return rc;
1723         }
1724     } else  if (spapr->htab_first_pass) {
1725         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1726     } else {
1727         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1728     }
1729 
1730     /* End marker */
1731     qemu_put_be32(f, 0);
1732     qemu_put_be16(f, 0);
1733     qemu_put_be16(f, 0);
1734 
1735     return rc;
1736 }
1737 
1738 static int htab_save_complete(QEMUFile *f, void *opaque)
1739 {
1740     sPAPRMachineState *spapr = opaque;
1741     int fd;
1742 
1743     /* Iteration header */
1744     qemu_put_be32(f, 0);
1745 
1746     if (!spapr->htab) {
1747         int rc;
1748 
1749         assert(kvm_enabled());
1750 
1751         fd = get_htab_fd(spapr);
1752         if (fd < 0) {
1753             return fd;
1754         }
1755 
1756         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1757         if (rc < 0) {
1758             return rc;
1759         }
1760     } else {
1761         if (spapr->htab_first_pass) {
1762             htab_save_first_pass(f, spapr, -1);
1763         }
1764         htab_save_later_pass(f, spapr, -1);
1765     }
1766 
1767     /* End marker */
1768     qemu_put_be32(f, 0);
1769     qemu_put_be16(f, 0);
1770     qemu_put_be16(f, 0);
1771 
1772     return 0;
1773 }
1774 
1775 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1776 {
1777     sPAPRMachineState *spapr = opaque;
1778     uint32_t section_hdr;
1779     int fd = -1;
1780 
1781     if (version_id < 1 || version_id > 1) {
1782         error_report("htab_load() bad version");
1783         return -EINVAL;
1784     }
1785 
1786     section_hdr = qemu_get_be32(f);
1787 
1788     if (section_hdr) {
1789         Error *local_err = NULL;
1790 
1791         /* First section gives the htab size */
1792         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1793         if (local_err) {
1794             error_report_err(local_err);
1795             return -EINVAL;
1796         }
1797         return 0;
1798     }
1799 
1800     if (!spapr->htab) {
1801         assert(kvm_enabled());
1802 
1803         fd = kvmppc_get_htab_fd(true);
1804         if (fd < 0) {
1805             error_report("Unable to open fd to restore KVM hash table: %s",
1806                          strerror(errno));
1807         }
1808     }
1809 
1810     while (true) {
1811         uint32_t index;
1812         uint16_t n_valid, n_invalid;
1813 
1814         index = qemu_get_be32(f);
1815         n_valid = qemu_get_be16(f);
1816         n_invalid = qemu_get_be16(f);
1817 
1818         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1819             /* End of Stream */
1820             break;
1821         }
1822 
1823         if ((index + n_valid + n_invalid) >
1824             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1825             /* Bad index in stream */
1826             error_report(
1827                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1828                 index, n_valid, n_invalid, spapr->htab_shift);
1829             return -EINVAL;
1830         }
1831 
1832         if (spapr->htab) {
1833             if (n_valid) {
1834                 qemu_get_buffer(f, HPTE(spapr->htab, index),
1835                                 HASH_PTE_SIZE_64 * n_valid);
1836             }
1837             if (n_invalid) {
1838                 memset(HPTE(spapr->htab, index + n_valid), 0,
1839                        HASH_PTE_SIZE_64 * n_invalid);
1840             }
1841         } else {
1842             int rc;
1843 
1844             assert(fd >= 0);
1845 
1846             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1847             if (rc < 0) {
1848                 return rc;
1849             }
1850         }
1851     }
1852 
1853     if (!spapr->htab) {
1854         assert(fd >= 0);
1855         close(fd);
1856     }
1857 
1858     return 0;
1859 }
1860 
1861 static void htab_cleanup(void *opaque)
1862 {
1863     sPAPRMachineState *spapr = opaque;
1864 
1865     close_htab_fd(spapr);
1866 }
1867 
1868 static SaveVMHandlers savevm_htab_handlers = {
1869     .save_live_setup = htab_save_setup,
1870     .save_live_iterate = htab_save_iterate,
1871     .save_live_complete_precopy = htab_save_complete,
1872     .cleanup = htab_cleanup,
1873     .load_state = htab_load,
1874 };
1875 
1876 static void spapr_boot_set(void *opaque, const char *boot_device,
1877                            Error **errp)
1878 {
1879     MachineState *machine = MACHINE(qdev_get_machine());
1880     machine->boot_order = g_strdup(boot_device);
1881 }
1882 
1883 /*
1884  * Reset routine for LMB DR devices.
1885  *
1886  * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1887  * routine. Reset for PCI DR devices will be handled by PHB reset routine
1888  * when it walks all its children devices. LMB devices reset occurs
1889  * as part of spapr_ppc_reset().
1890  */
1891 static void spapr_drc_reset(void *opaque)
1892 {
1893     sPAPRDRConnector *drc = opaque;
1894     DeviceState *d = DEVICE(drc);
1895 
1896     if (d) {
1897         device_reset(d);
1898     }
1899 }
1900 
1901 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1902 {
1903     MachineState *machine = MACHINE(spapr);
1904     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1905     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
1906     int i;
1907 
1908     for (i = 0; i < nr_lmbs; i++) {
1909         sPAPRDRConnector *drc;
1910         uint64_t addr;
1911 
1912         addr = i * lmb_size + spapr->hotplug_memory.base;
1913         drc = spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
1914                                      addr/lmb_size);
1915         qemu_register_reset(spapr_drc_reset, drc);
1916     }
1917 }
1918 
1919 /*
1920  * If RAM size, maxmem size and individual node mem sizes aren't aligned
1921  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1922  * since we can't support such unaligned sizes with DRCONF_MEMORY.
1923  */
1924 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
1925 {
1926     int i;
1927 
1928     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1929         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
1930                    " is not aligned to %llu MiB",
1931                    machine->ram_size,
1932                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1933         return;
1934     }
1935 
1936     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1937         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
1938                    " is not aligned to %llu MiB",
1939                    machine->ram_size,
1940                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1941         return;
1942     }
1943 
1944     for (i = 0; i < nb_numa_nodes; i++) {
1945         if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1946             error_setg(errp,
1947                        "Node %d memory size 0x%" PRIx64
1948                        " is not aligned to %llu MiB",
1949                        i, numa_info[i].node_mem,
1950                        SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1951             return;
1952         }
1953     }
1954 }
1955 
1956 /* find cpu slot in machine->possible_cpus by core_id */
1957 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
1958 {
1959     int index = id / smp_threads;
1960 
1961     if (index >= ms->possible_cpus->len) {
1962         return NULL;
1963     }
1964     if (idx) {
1965         *idx = index;
1966     }
1967     return &ms->possible_cpus->cpus[index];
1968 }
1969 
1970 static void spapr_init_cpus(sPAPRMachineState *spapr)
1971 {
1972     MachineState *machine = MACHINE(spapr);
1973     MachineClass *mc = MACHINE_GET_CLASS(machine);
1974     char *type = spapr_get_cpu_core_type(machine->cpu_model);
1975     int smt = kvmppc_smt_threads();
1976     const CPUArchIdList *possible_cpus;
1977     int boot_cores_nr = smp_cpus / smp_threads;
1978     int i;
1979 
1980     if (!type) {
1981         error_report("Unable to find sPAPR CPU Core definition");
1982         exit(1);
1983     }
1984 
1985     possible_cpus = mc->possible_cpu_arch_ids(machine);
1986     if (mc->has_hotpluggable_cpus) {
1987         if (smp_cpus % smp_threads) {
1988             error_report("smp_cpus (%u) must be multiple of threads (%u)",
1989                          smp_cpus, smp_threads);
1990             exit(1);
1991         }
1992         if (max_cpus % smp_threads) {
1993             error_report("max_cpus (%u) must be multiple of threads (%u)",
1994                          max_cpus, smp_threads);
1995             exit(1);
1996         }
1997     } else {
1998         if (max_cpus != smp_cpus) {
1999             error_report("This machine version does not support CPU hotplug");
2000             exit(1);
2001         }
2002         boot_cores_nr = possible_cpus->len;
2003     }
2004 
2005     for (i = 0; i < possible_cpus->len; i++) {
2006         int core_id = i * smp_threads;
2007 
2008         if (mc->has_hotpluggable_cpus) {
2009             sPAPRDRConnector *drc =
2010                 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2011                                        (core_id / smp_threads) * smt);
2012 
2013             qemu_register_reset(spapr_drc_reset, drc);
2014         }
2015 
2016         if (i < boot_cores_nr) {
2017             Object *core  = object_new(type);
2018             int nr_threads = smp_threads;
2019 
2020             /* Handle the partially filled core for older machine types */
2021             if ((i + 1) * smp_threads >= smp_cpus) {
2022                 nr_threads = smp_cpus - i * smp_threads;
2023             }
2024 
2025             object_property_set_int(core, nr_threads, "nr-threads",
2026                                     &error_fatal);
2027             object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2028                                     &error_fatal);
2029             object_property_set_bool(core, true, "realized", &error_fatal);
2030         }
2031     }
2032     g_free(type);
2033 }
2034 
2035 /* pSeries LPAR / sPAPR hardware init */
2036 static void ppc_spapr_init(MachineState *machine)
2037 {
2038     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2039     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2040     const char *kernel_filename = machine->kernel_filename;
2041     const char *initrd_filename = machine->initrd_filename;
2042     PCIHostState *phb;
2043     int i;
2044     MemoryRegion *sysmem = get_system_memory();
2045     MemoryRegion *ram = g_new(MemoryRegion, 1);
2046     MemoryRegion *rma_region;
2047     void *rma = NULL;
2048     hwaddr rma_alloc_size;
2049     hwaddr node0_size = spapr_node0_size();
2050     long load_limit, fw_size;
2051     char *filename;
2052 
2053     msi_nonbroken = true;
2054 
2055     QLIST_INIT(&spapr->phbs);
2056     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2057 
2058     /* Allocate RMA if necessary */
2059     rma_alloc_size = kvmppc_alloc_rma(&rma);
2060 
2061     if (rma_alloc_size == -1) {
2062         error_report("Unable to create RMA");
2063         exit(1);
2064     }
2065 
2066     if (rma_alloc_size && (rma_alloc_size < node0_size)) {
2067         spapr->rma_size = rma_alloc_size;
2068     } else {
2069         spapr->rma_size = node0_size;
2070 
2071         /* With KVM, we don't actually know whether KVM supports an
2072          * unbounded RMA (PR KVM) or is limited by the hash table size
2073          * (HV KVM using VRMA), so we always assume the latter
2074          *
2075          * In that case, we also limit the initial allocations for RTAS
2076          * etc... to 256M since we have no way to know what the VRMA size
2077          * is going to be as it depends on the size of the hash table
2078          * isn't determined yet.
2079          */
2080         if (kvm_enabled()) {
2081             spapr->vrma_adjust = 1;
2082             spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2083         }
2084 
2085         /* Actually we don't support unbounded RMA anymore since we
2086          * added proper emulation of HV mode. The max we can get is
2087          * 16G which also happens to be what we configure for PAPR
2088          * mode so make sure we don't do anything bigger than that
2089          */
2090         spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2091     }
2092 
2093     if (spapr->rma_size > node0_size) {
2094         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2095                      spapr->rma_size);
2096         exit(1);
2097     }
2098 
2099     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2100     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2101 
2102     /* Set up Interrupt Controller before we create the VCPUs */
2103     xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
2104 
2105     /* Set up containers for ibm,client-set-architecture negotiated options */
2106     spapr->ov5 = spapr_ovec_new();
2107     spapr->ov5_cas = spapr_ovec_new();
2108 
2109     if (smc->dr_lmb_enabled) {
2110         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2111         spapr_validate_node_memory(machine, &error_fatal);
2112     }
2113 
2114     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2115     if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) {
2116         /* KVM and TCG always allow GTSE with radix... */
2117         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2118     }
2119     /* ... but not with hash (currently). */
2120 
2121     /* advertise support for dedicated HP event source to guests */
2122     if (spapr->use_hotplug_event_source) {
2123         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2124     }
2125 
2126     /* init CPUs */
2127     if (machine->cpu_model == NULL) {
2128         machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu;
2129     }
2130 
2131     ppc_cpu_parse_features(machine->cpu_model);
2132 
2133     spapr_init_cpus(spapr);
2134 
2135     if (kvm_enabled()) {
2136         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2137         kvmppc_enable_logical_ci_hcalls();
2138         kvmppc_enable_set_mode_hcall();
2139 
2140         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2141         kvmppc_enable_clear_ref_mod_hcalls();
2142     }
2143 
2144     /* allocate RAM */
2145     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2146                                          machine->ram_size);
2147     memory_region_add_subregion(sysmem, 0, ram);
2148 
2149     if (rma_alloc_size && rma) {
2150         rma_region = g_new(MemoryRegion, 1);
2151         memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2152                                    rma_alloc_size, rma);
2153         vmstate_register_ram_global(rma_region);
2154         memory_region_add_subregion(sysmem, 0, rma_region);
2155     }
2156 
2157     /* initialize hotplug memory address space */
2158     if (machine->ram_size < machine->maxram_size) {
2159         ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
2160         /*
2161          * Limit the number of hotpluggable memory slots to half the number
2162          * slots that KVM supports, leaving the other half for PCI and other
2163          * devices. However ensure that number of slots doesn't drop below 32.
2164          */
2165         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2166                            SPAPR_MAX_RAM_SLOTS;
2167 
2168         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2169             max_memslots = SPAPR_MAX_RAM_SLOTS;
2170         }
2171         if (machine->ram_slots > max_memslots) {
2172             error_report("Specified number of memory slots %"
2173                          PRIu64" exceeds max supported %d",
2174                          machine->ram_slots, max_memslots);
2175             exit(1);
2176         }
2177 
2178         spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2179                                               SPAPR_HOTPLUG_MEM_ALIGN);
2180         memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2181                            "hotplug-memory", hotplug_mem_size);
2182         memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2183                                     &spapr->hotplug_memory.mr);
2184     }
2185 
2186     if (smc->dr_lmb_enabled) {
2187         spapr_create_lmb_dr_connectors(spapr);
2188     }
2189 
2190     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2191     if (!filename) {
2192         error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2193         exit(1);
2194     }
2195     spapr->rtas_size = get_image_size(filename);
2196     if (spapr->rtas_size < 0) {
2197         error_report("Could not get size of LPAR rtas '%s'", filename);
2198         exit(1);
2199     }
2200     spapr->rtas_blob = g_malloc(spapr->rtas_size);
2201     if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2202         error_report("Could not load LPAR rtas '%s'", filename);
2203         exit(1);
2204     }
2205     if (spapr->rtas_size > RTAS_MAX_SIZE) {
2206         error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2207                      (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2208         exit(1);
2209     }
2210     g_free(filename);
2211 
2212     /* Set up RTAS event infrastructure */
2213     spapr_events_init(spapr);
2214 
2215     /* Set up the RTC RTAS interfaces */
2216     spapr_rtc_create(spapr);
2217 
2218     /* Set up VIO bus */
2219     spapr->vio_bus = spapr_vio_bus_init();
2220 
2221     for (i = 0; i < MAX_SERIAL_PORTS; i++) {
2222         if (serial_hds[i]) {
2223             spapr_vty_create(spapr->vio_bus, serial_hds[i]);
2224         }
2225     }
2226 
2227     /* We always have at least the nvram device on VIO */
2228     spapr_create_nvram(spapr);
2229 
2230     /* Set up PCI */
2231     spapr_pci_rtas_init();
2232 
2233     phb = spapr_create_phb(spapr, 0);
2234 
2235     for (i = 0; i < nb_nics; i++) {
2236         NICInfo *nd = &nd_table[i];
2237 
2238         if (!nd->model) {
2239             nd->model = g_strdup("ibmveth");
2240         }
2241 
2242         if (strcmp(nd->model, "ibmveth") == 0) {
2243             spapr_vlan_create(spapr->vio_bus, nd);
2244         } else {
2245             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2246         }
2247     }
2248 
2249     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2250         spapr_vscsi_create(spapr->vio_bus);
2251     }
2252 
2253     /* Graphics */
2254     if (spapr_vga_init(phb->bus, &error_fatal)) {
2255         spapr->has_graphics = true;
2256         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2257     }
2258 
2259     if (machine->usb) {
2260         if (smc->use_ohci_by_default) {
2261             pci_create_simple(phb->bus, -1, "pci-ohci");
2262         } else {
2263             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2264         }
2265 
2266         if (spapr->has_graphics) {
2267             USBBus *usb_bus = usb_bus_find(-1);
2268 
2269             usb_create_simple(usb_bus, "usb-kbd");
2270             usb_create_simple(usb_bus, "usb-mouse");
2271         }
2272     }
2273 
2274     if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2275         error_report(
2276             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2277             MIN_RMA_SLOF);
2278         exit(1);
2279     }
2280 
2281     if (kernel_filename) {
2282         uint64_t lowaddr = 0;
2283 
2284         spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2285                                       NULL, NULL, &lowaddr, NULL, 1,
2286                                       PPC_ELF_MACHINE, 0, 0);
2287         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2288             spapr->kernel_size = load_elf(kernel_filename,
2289                                           translate_kernel_address, NULL, NULL,
2290                                           &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2291                                           0, 0);
2292             spapr->kernel_le = spapr->kernel_size > 0;
2293         }
2294         if (spapr->kernel_size < 0) {
2295             error_report("error loading %s: %s", kernel_filename,
2296                          load_elf_strerror(spapr->kernel_size));
2297             exit(1);
2298         }
2299 
2300         /* load initrd */
2301         if (initrd_filename) {
2302             /* Try to locate the initrd in the gap between the kernel
2303              * and the firmware. Add a bit of space just in case
2304              */
2305             spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2306                                   + 0x1ffff) & ~0xffff;
2307             spapr->initrd_size = load_image_targphys(initrd_filename,
2308                                                      spapr->initrd_base,
2309                                                      load_limit
2310                                                      - spapr->initrd_base);
2311             if (spapr->initrd_size < 0) {
2312                 error_report("could not load initial ram disk '%s'",
2313                              initrd_filename);
2314                 exit(1);
2315             }
2316         }
2317     }
2318 
2319     if (bios_name == NULL) {
2320         bios_name = FW_FILE_NAME;
2321     }
2322     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2323     if (!filename) {
2324         error_report("Could not find LPAR firmware '%s'", bios_name);
2325         exit(1);
2326     }
2327     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2328     if (fw_size <= 0) {
2329         error_report("Could not load LPAR firmware '%s'", filename);
2330         exit(1);
2331     }
2332     g_free(filename);
2333 
2334     /* FIXME: Should register things through the MachineState's qdev
2335      * interface, this is a legacy from the sPAPREnvironment structure
2336      * which predated MachineState but had a similar function */
2337     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2338     register_savevm_live(NULL, "spapr/htab", -1, 1,
2339                          &savevm_htab_handlers, spapr);
2340 
2341     qemu_register_boot_set(spapr_boot_set, spapr);
2342 
2343     if (kvm_enabled()) {
2344         /* to stop and start vmclock */
2345         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2346                                          &spapr->tb);
2347 
2348         kvmppc_spapr_enable_inkernel_multitce();
2349     }
2350 }
2351 
2352 static int spapr_kvm_type(const char *vm_type)
2353 {
2354     if (!vm_type) {
2355         return 0;
2356     }
2357 
2358     if (!strcmp(vm_type, "HV")) {
2359         return 1;
2360     }
2361 
2362     if (!strcmp(vm_type, "PR")) {
2363         return 2;
2364     }
2365 
2366     error_report("Unknown kvm-type specified '%s'", vm_type);
2367     exit(1);
2368 }
2369 
2370 /*
2371  * Implementation of an interface to adjust firmware path
2372  * for the bootindex property handling.
2373  */
2374 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2375                                    DeviceState *dev)
2376 {
2377 #define CAST(type, obj, name) \
2378     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2379     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
2380     sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2381     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2382 
2383     if (d) {
2384         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2385         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2386         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2387 
2388         if (spapr) {
2389             /*
2390              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2391              * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2392              * in the top 16 bits of the 64-bit LUN
2393              */
2394             unsigned id = 0x8000 | (d->id << 8) | d->lun;
2395             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2396                                    (uint64_t)id << 48);
2397         } else if (virtio) {
2398             /*
2399              * We use SRP luns of the form 01000000 | (target << 8) | lun
2400              * in the top 32 bits of the 64-bit LUN
2401              * Note: the quote above is from SLOF and it is wrong,
2402              * the actual binding is:
2403              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2404              */
2405             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2406             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2407                                    (uint64_t)id << 32);
2408         } else if (usb) {
2409             /*
2410              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2411              * in the top 32 bits of the 64-bit LUN
2412              */
2413             unsigned usb_port = atoi(usb->port->path);
2414             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2415             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2416                                    (uint64_t)id << 32);
2417         }
2418     }
2419 
2420     /*
2421      * SLOF probes the USB devices, and if it recognizes that the device is a
2422      * storage device, it changes its name to "storage" instead of "usb-host",
2423      * and additionally adds a child node for the SCSI LUN, so the correct
2424      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2425      */
2426     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2427         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2428         if (usb_host_dev_is_scsi_storage(usbdev)) {
2429             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2430         }
2431     }
2432 
2433     if (phb) {
2434         /* Replace "pci" with "pci@800000020000000" */
2435         return g_strdup_printf("pci@%"PRIX64, phb->buid);
2436     }
2437 
2438     if (vsc) {
2439         /* Same logic as virtio above */
2440         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2441         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2442     }
2443 
2444     return NULL;
2445 }
2446 
2447 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2448 {
2449     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2450 
2451     return g_strdup(spapr->kvm_type);
2452 }
2453 
2454 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2455 {
2456     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2457 
2458     g_free(spapr->kvm_type);
2459     spapr->kvm_type = g_strdup(value);
2460 }
2461 
2462 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2463 {
2464     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2465 
2466     return spapr->use_hotplug_event_source;
2467 }
2468 
2469 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2470                                             Error **errp)
2471 {
2472     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2473 
2474     spapr->use_hotplug_event_source = value;
2475 }
2476 
2477 static void spapr_machine_initfn(Object *obj)
2478 {
2479     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2480 
2481     spapr->htab_fd = -1;
2482     spapr->use_hotplug_event_source = true;
2483     object_property_add_str(obj, "kvm-type",
2484                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2485     object_property_set_description(obj, "kvm-type",
2486                                     "Specifies the KVM virtualization mode (HV, PR)",
2487                                     NULL);
2488     object_property_add_bool(obj, "modern-hotplug-events",
2489                             spapr_get_modern_hotplug_events,
2490                             spapr_set_modern_hotplug_events,
2491                             NULL);
2492     object_property_set_description(obj, "modern-hotplug-events",
2493                                     "Use dedicated hotplug event mechanism in"
2494                                     " place of standard EPOW events when possible"
2495                                     " (required for memory hot-unplug support)",
2496                                     NULL);
2497 }
2498 
2499 static void spapr_machine_finalizefn(Object *obj)
2500 {
2501     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2502 
2503     g_free(spapr->kvm_type);
2504 }
2505 
2506 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
2507 {
2508     cpu_synchronize_state(cs);
2509     ppc_cpu_do_system_reset(cs);
2510 }
2511 
2512 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2513 {
2514     CPUState *cs;
2515 
2516     CPU_FOREACH(cs) {
2517         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
2518     }
2519 }
2520 
2521 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2522                            uint32_t node, bool dedicated_hp_event_source,
2523                            Error **errp)
2524 {
2525     sPAPRDRConnector *drc;
2526     sPAPRDRConnectorClass *drck;
2527     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2528     int i, fdt_offset, fdt_size;
2529     void *fdt;
2530     uint64_t addr = addr_start;
2531 
2532     for (i = 0; i < nr_lmbs; i++) {
2533         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2534                               addr / SPAPR_MEMORY_BLOCK_SIZE);
2535         g_assert(drc);
2536 
2537         fdt = create_device_tree(&fdt_size);
2538         fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2539                                                 SPAPR_MEMORY_BLOCK_SIZE);
2540 
2541         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2542         drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
2543         addr += SPAPR_MEMORY_BLOCK_SIZE;
2544         if (!dev->hotplugged) {
2545             /* guests expect coldplugged LMBs to be pre-allocated */
2546             drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
2547             drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
2548         }
2549     }
2550     /* send hotplug notification to the
2551      * guest only in case of hotplugged memory
2552      */
2553     if (dev->hotplugged) {
2554         if (dedicated_hp_event_source) {
2555             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2556                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2557             drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2558             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2559                                                    nr_lmbs,
2560                                                    spapr_drc_index(drc));
2561         } else {
2562             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
2563                                            nr_lmbs);
2564         }
2565     }
2566 }
2567 
2568 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2569                               uint32_t node, Error **errp)
2570 {
2571     Error *local_err = NULL;
2572     sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2573     PCDIMMDevice *dimm = PC_DIMM(dev);
2574     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2575     MemoryRegion *mr = ddc->get_memory_region(dimm);
2576     uint64_t align = memory_region_get_alignment(mr);
2577     uint64_t size = memory_region_size(mr);
2578     uint64_t addr;
2579 
2580     pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2581     if (local_err) {
2582         goto out;
2583     }
2584 
2585     addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2586     if (local_err) {
2587         pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2588         goto out;
2589     }
2590 
2591     spapr_add_lmbs(dev, addr, size, node,
2592                    spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
2593                    &error_abort);
2594 
2595 out:
2596     error_propagate(errp, local_err);
2597 }
2598 
2599 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2600                                   Error **errp)
2601 {
2602     PCDIMMDevice *dimm = PC_DIMM(dev);
2603     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2604     MemoryRegion *mr = ddc->get_memory_region(dimm);
2605     uint64_t size = memory_region_size(mr);
2606     char *mem_dev;
2607 
2608     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2609         error_setg(errp, "Hotplugged memory size must be a multiple of "
2610                       "%lld MB", SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2611         return;
2612     }
2613 
2614     mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
2615     if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
2616         error_setg(errp, "Memory backend has bad page size. "
2617                    "Use 'memory-backend-file' with correct mem-path.");
2618         return;
2619     }
2620 }
2621 
2622 struct sPAPRDIMMState {
2623     PCDIMMDevice *dimm;
2624     uint32_t nr_lmbs;
2625     QTAILQ_ENTRY(sPAPRDIMMState) next;
2626 };
2627 
2628 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
2629                                                        PCDIMMDevice *dimm)
2630 {
2631     sPAPRDIMMState *dimm_state = NULL;
2632 
2633     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
2634         if (dimm_state->dimm == dimm) {
2635             break;
2636         }
2637     }
2638     return dimm_state;
2639 }
2640 
2641 static void spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
2642                                            sPAPRDIMMState *dimm_state)
2643 {
2644     g_assert(!spapr_pending_dimm_unplugs_find(spapr, dimm_state->dimm));
2645     QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, dimm_state, next);
2646 }
2647 
2648 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
2649                                               sPAPRDIMMState *dimm_state)
2650 {
2651     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
2652     g_free(dimm_state);
2653 }
2654 
2655 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
2656                                                         PCDIMMDevice *dimm)
2657 {
2658     sPAPRDRConnector *drc;
2659     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2660     MemoryRegion *mr = ddc->get_memory_region(dimm);
2661     uint64_t size = memory_region_size(mr);
2662     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
2663     uint32_t avail_lmbs = 0;
2664     uint64_t addr_start, addr;
2665     int i;
2666     sPAPRDIMMState *ds;
2667 
2668     addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
2669                                          &error_abort);
2670 
2671     addr = addr_start;
2672     for (i = 0; i < nr_lmbs; i++) {
2673         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2674                               addr / SPAPR_MEMORY_BLOCK_SIZE);
2675         g_assert(drc);
2676         if (drc->indicator_state != SPAPR_DR_INDICATOR_STATE_INACTIVE) {
2677             avail_lmbs++;
2678         }
2679         addr += SPAPR_MEMORY_BLOCK_SIZE;
2680     }
2681 
2682     ds = g_malloc0(sizeof(sPAPRDIMMState));
2683     ds->nr_lmbs = avail_lmbs;
2684     ds->dimm = dimm;
2685     spapr_pending_dimm_unplugs_add(ms, ds);
2686     return ds;
2687 }
2688 
2689 /* Callback to be called during DRC release. */
2690 void spapr_lmb_release(DeviceState *dev)
2691 {
2692     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
2693     sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
2694     sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
2695 
2696     /* This information will get lost if a migration occurs
2697      * during the unplug process. In this case recover it. */
2698     if (ds == NULL) {
2699         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
2700         if (ds->nr_lmbs) {
2701             return;
2702         }
2703     } else if (--ds->nr_lmbs) {
2704         return;
2705     }
2706 
2707     spapr_pending_dimm_unplugs_remove(spapr, ds);
2708 
2709     /*
2710      * Now that all the LMBs have been removed by the guest, call the
2711      * pc-dimm unplug handler to cleanup up the pc-dimm device.
2712      */
2713     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2714 }
2715 
2716 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2717                                 Error **errp)
2718 {
2719     sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2720     PCDIMMDevice *dimm = PC_DIMM(dev);
2721     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2722     MemoryRegion *mr = ddc->get_memory_region(dimm);
2723 
2724     pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2725     object_unparent(OBJECT(dev));
2726 }
2727 
2728 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
2729                                         DeviceState *dev, Error **errp)
2730 {
2731     sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
2732     Error *local_err = NULL;
2733     PCDIMMDevice *dimm = PC_DIMM(dev);
2734     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2735     MemoryRegion *mr = ddc->get_memory_region(dimm);
2736     uint64_t size = memory_region_size(mr);
2737     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
2738     uint64_t addr_start, addr;
2739     int i;
2740     sPAPRDRConnector *drc;
2741     sPAPRDRConnectorClass *drck;
2742     sPAPRDIMMState *ds;
2743 
2744     addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
2745                                          &local_err);
2746     if (local_err) {
2747         goto out;
2748     }
2749 
2750     ds = g_malloc0(sizeof(sPAPRDIMMState));
2751     ds->nr_lmbs = nr_lmbs;
2752     ds->dimm = dimm;
2753     spapr_pending_dimm_unplugs_add(spapr, ds);
2754 
2755     addr = addr_start;
2756     for (i = 0; i < nr_lmbs; i++) {
2757         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2758                               addr / SPAPR_MEMORY_BLOCK_SIZE);
2759         g_assert(drc);
2760 
2761         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2762         drck->detach(drc, dev, errp);
2763         addr += SPAPR_MEMORY_BLOCK_SIZE;
2764     }
2765 
2766     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2767                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2768     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2769     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2770                                               nr_lmbs, spapr_drc_index(drc));
2771 out:
2772     error_propagate(errp, local_err);
2773 }
2774 
2775 void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
2776                                     sPAPRMachineState *spapr)
2777 {
2778     PowerPCCPU *cpu = POWERPC_CPU(cs);
2779     DeviceClass *dc = DEVICE_GET_CLASS(cs);
2780     int id = ppc_get_vcpu_dt_id(cpu);
2781     void *fdt;
2782     int offset, fdt_size;
2783     char *nodename;
2784 
2785     fdt = create_device_tree(&fdt_size);
2786     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
2787     offset = fdt_add_subnode(fdt, 0, nodename);
2788 
2789     spapr_populate_cpu_dt(cs, fdt, offset, spapr);
2790     g_free(nodename);
2791 
2792     *fdt_offset = offset;
2793     return fdt;
2794 }
2795 
2796 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2797                               Error **errp)
2798 {
2799     MachineState *ms = MACHINE(qdev_get_machine());
2800     CPUCore *cc = CPU_CORE(dev);
2801     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
2802 
2803     assert(core_slot);
2804     core_slot->cpu = NULL;
2805     object_unparent(OBJECT(dev));
2806 }
2807 
2808 /* Callback to be called during DRC release. */
2809 void spapr_core_release(DeviceState *dev)
2810 {
2811     HotplugHandler *hotplug_ctrl;
2812 
2813     hotplug_ctrl = qdev_get_hotplug_handler(dev);
2814     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2815 }
2816 
2817 static
2818 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
2819                                Error **errp)
2820 {
2821     int index;
2822     sPAPRDRConnector *drc;
2823     sPAPRDRConnectorClass *drck;
2824     Error *local_err = NULL;
2825     CPUCore *cc = CPU_CORE(dev);
2826     int smt = kvmppc_smt_threads();
2827 
2828     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
2829         error_setg(errp, "Unable to find CPU core with core-id: %d",
2830                    cc->core_id);
2831         return;
2832     }
2833     if (index == 0) {
2834         error_setg(errp, "Boot CPU core may not be unplugged");
2835         return;
2836     }
2837 
2838     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
2839     g_assert(drc);
2840 
2841     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2842     drck->detach(drc, dev, &local_err);
2843     if (local_err) {
2844         error_propagate(errp, local_err);
2845         return;
2846     }
2847 
2848     spapr_hotplug_req_remove_by_index(drc);
2849 }
2850 
2851 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2852                             Error **errp)
2853 {
2854     sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
2855     MachineClass *mc = MACHINE_GET_CLASS(spapr);
2856     sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
2857     CPUCore *cc = CPU_CORE(dev);
2858     CPUState *cs = CPU(core->threads);
2859     sPAPRDRConnector *drc;
2860     Error *local_err = NULL;
2861     void *fdt = NULL;
2862     int fdt_offset = 0;
2863     int smt = kvmppc_smt_threads();
2864     CPUArchId *core_slot;
2865     int index;
2866 
2867     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
2868     if (!core_slot) {
2869         error_setg(errp, "Unable to find CPU core with core-id: %d",
2870                    cc->core_id);
2871         return;
2872     }
2873     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
2874 
2875     g_assert(drc || !mc->has_hotpluggable_cpus);
2876 
2877     /*
2878      * Setup CPU DT entries only for hotplugged CPUs. For boot time or
2879      * coldplugged CPUs DT entries are setup in spapr_build_fdt().
2880      */
2881     if (dev->hotplugged) {
2882         fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
2883     }
2884 
2885     if (drc) {
2886         sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2887         drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, &local_err);
2888         if (local_err) {
2889             g_free(fdt);
2890             error_propagate(errp, local_err);
2891             return;
2892         }
2893     }
2894 
2895     if (dev->hotplugged) {
2896         /*
2897          * Send hotplug notification interrupt to the guest only in case
2898          * of hotplugged CPUs.
2899          */
2900         spapr_hotplug_req_add_by_index(drc);
2901     } else {
2902         /*
2903          * Set the right DRC states for cold plugged CPU.
2904          */
2905         if (drc) {
2906             sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2907             drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
2908             drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
2909         }
2910     }
2911     core_slot->cpu = OBJECT(dev);
2912 }
2913 
2914 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2915                                 Error **errp)
2916 {
2917     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
2918     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
2919     Error *local_err = NULL;
2920     CPUCore *cc = CPU_CORE(dev);
2921     char *base_core_type = spapr_get_cpu_core_type(machine->cpu_model);
2922     const char *type = object_get_typename(OBJECT(dev));
2923     CPUArchId *core_slot;
2924     int index;
2925 
2926     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
2927         error_setg(&local_err, "CPU hotplug not supported for this machine");
2928         goto out;
2929     }
2930 
2931     if (strcmp(base_core_type, type)) {
2932         error_setg(&local_err, "CPU core type should be %s", base_core_type);
2933         goto out;
2934     }
2935 
2936     if (cc->core_id % smp_threads) {
2937         error_setg(&local_err, "invalid core id %d", cc->core_id);
2938         goto out;
2939     }
2940 
2941     /*
2942      * In general we should have homogeneous threads-per-core, but old
2943      * (pre hotplug support) machine types allow the last core to have
2944      * reduced threads as a compatibility hack for when we allowed
2945      * total vcpus not a multiple of threads-per-core.
2946      */
2947     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
2948         error_setg(errp, "invalid nr-threads %d, must be %d",
2949                    cc->nr_threads, smp_threads);
2950         return;
2951     }
2952 
2953     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
2954     if (!core_slot) {
2955         error_setg(&local_err, "core id %d out of range", cc->core_id);
2956         goto out;
2957     }
2958 
2959     if (core_slot->cpu) {
2960         error_setg(&local_err, "core %d already populated", cc->core_id);
2961         goto out;
2962     }
2963 
2964     numa_cpu_pre_plug(core_slot, dev, &local_err);
2965 
2966 out:
2967     g_free(base_core_type);
2968     error_propagate(errp, local_err);
2969 }
2970 
2971 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2972                                       DeviceState *dev, Error **errp)
2973 {
2974     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2975 
2976     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2977         int node;
2978 
2979         if (!smc->dr_lmb_enabled) {
2980             error_setg(errp, "Memory hotplug not supported for this machine");
2981             return;
2982         }
2983         node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2984         if (*errp) {
2985             return;
2986         }
2987         if (node < 0 || node >= MAX_NODES) {
2988             error_setg(errp, "Invaild node %d", node);
2989             return;
2990         }
2991 
2992         /*
2993          * Currently PowerPC kernel doesn't allow hot-adding memory to
2994          * memory-less node, but instead will silently add the memory
2995          * to the first node that has some memory. This causes two
2996          * unexpected behaviours for the user.
2997          *
2998          * - Memory gets hotplugged to a different node than what the user
2999          *   specified.
3000          * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
3001          *   to memory-less node, a reboot will set things accordingly
3002          *   and the previously hotplugged memory now ends in the right node.
3003          *   This appears as if some memory moved from one node to another.
3004          *
3005          * So until kernel starts supporting memory hotplug to memory-less
3006          * nodes, just prevent such attempts upfront in QEMU.
3007          */
3008         if (nb_numa_nodes && !numa_info[node].node_mem) {
3009             error_setg(errp, "Can't hotplug memory to memory-less node %d",
3010                        node);
3011             return;
3012         }
3013 
3014         spapr_memory_plug(hotplug_dev, dev, node, errp);
3015     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3016         spapr_core_plug(hotplug_dev, dev, errp);
3017     }
3018 }
3019 
3020 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
3021                                       DeviceState *dev, Error **errp)
3022 {
3023     sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
3024     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
3025 
3026     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3027         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3028             spapr_memory_unplug(hotplug_dev, dev, errp);
3029         } else {
3030             error_setg(errp, "Memory hot unplug not supported for this guest");
3031         }
3032     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3033         if (!mc->has_hotpluggable_cpus) {
3034             error_setg(errp, "CPU hot unplug not supported on this machine");
3035             return;
3036         }
3037         spapr_core_unplug(hotplug_dev, dev, errp);
3038     }
3039 }
3040 
3041 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3042                                                 DeviceState *dev, Error **errp)
3043 {
3044     sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
3045     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
3046 
3047     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3048         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3049             spapr_memory_unplug_request(hotplug_dev, dev, errp);
3050         } else {
3051             /* NOTE: this means there is a window after guest reset, prior to
3052              * CAS negotiation, where unplug requests will fail due to the
3053              * capability not being detected yet. This is a bit different than
3054              * the case with PCI unplug, where the events will be queued and
3055              * eventually handled by the guest after boot
3056              */
3057             error_setg(errp, "Memory hot unplug not supported for this guest");
3058         }
3059     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3060         if (!mc->has_hotpluggable_cpus) {
3061             error_setg(errp, "CPU hot unplug not supported on this machine");
3062             return;
3063         }
3064         spapr_core_unplug_request(hotplug_dev, dev, errp);
3065     }
3066 }
3067 
3068 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3069                                           DeviceState *dev, Error **errp)
3070 {
3071     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3072         spapr_memory_pre_plug(hotplug_dev, dev, errp);
3073     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3074         spapr_core_pre_plug(hotplug_dev, dev, errp);
3075     }
3076 }
3077 
3078 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3079                                                  DeviceState *dev)
3080 {
3081     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3082         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3083         return HOTPLUG_HANDLER(machine);
3084     }
3085     return NULL;
3086 }
3087 
3088 static CpuInstanceProperties
3089 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3090 {
3091     CPUArchId *core_slot;
3092     MachineClass *mc = MACHINE_GET_CLASS(machine);
3093 
3094     /* make sure possible_cpu are intialized */
3095     mc->possible_cpu_arch_ids(machine);
3096     /* get CPU core slot containing thread that matches cpu_index */
3097     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3098     assert(core_slot);
3099     return core_slot->props;
3100 }
3101 
3102 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3103 {
3104     int i;
3105     int spapr_max_cores = max_cpus / smp_threads;
3106     MachineClass *mc = MACHINE_GET_CLASS(machine);
3107 
3108     if (!mc->has_hotpluggable_cpus) {
3109         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3110     }
3111     if (machine->possible_cpus) {
3112         assert(machine->possible_cpus->len == spapr_max_cores);
3113         return machine->possible_cpus;
3114     }
3115 
3116     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3117                              sizeof(CPUArchId) * spapr_max_cores);
3118     machine->possible_cpus->len = spapr_max_cores;
3119     for (i = 0; i < machine->possible_cpus->len; i++) {
3120         int core_id = i * smp_threads;
3121 
3122         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3123         machine->possible_cpus->cpus[i].arch_id = core_id;
3124         machine->possible_cpus->cpus[i].props.has_core_id = true;
3125         machine->possible_cpus->cpus[i].props.core_id = core_id;
3126 
3127         /* default distribution of CPUs over NUMA nodes */
3128         if (nb_numa_nodes) {
3129             /* preset values but do not enable them i.e. 'has_node_id = false',
3130              * numa init code will enable them later if manual mapping wasn't
3131              * present on CLI */
3132             machine->possible_cpus->cpus[i].props.node_id =
3133                 core_id / smp_threads / smp_cores % nb_numa_nodes;
3134         }
3135     }
3136     return machine->possible_cpus;
3137 }
3138 
3139 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3140                                 uint64_t *buid, hwaddr *pio,
3141                                 hwaddr *mmio32, hwaddr *mmio64,
3142                                 unsigned n_dma, uint32_t *liobns, Error **errp)
3143 {
3144     /*
3145      * New-style PHB window placement.
3146      *
3147      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3148      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3149      * windows.
3150      *
3151      * Some guest kernels can't work with MMIO windows above 1<<46
3152      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3153      *
3154      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3155      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
3156      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
3157      * 1TiB 64-bit MMIO windows for each PHB.
3158      */
3159     const uint64_t base_buid = 0x800000020000000ULL;
3160 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3161                         SPAPR_PCI_MEM64_WIN_SIZE - 1)
3162     int i;
3163 
3164     /* Sanity check natural alignments */
3165     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3166     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3167     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3168     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3169     /* Sanity check bounds */
3170     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3171                       SPAPR_PCI_MEM32_WIN_SIZE);
3172     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3173                       SPAPR_PCI_MEM64_WIN_SIZE);
3174 
3175     if (index >= SPAPR_MAX_PHBS) {
3176         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3177                    SPAPR_MAX_PHBS - 1);
3178         return;
3179     }
3180 
3181     *buid = base_buid + index;
3182     for (i = 0; i < n_dma; ++i) {
3183         liobns[i] = SPAPR_PCI_LIOBN(index, i);
3184     }
3185 
3186     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3187     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3188     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3189 }
3190 
3191 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3192 {
3193     sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3194 
3195     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3196 }
3197 
3198 static void spapr_ics_resend(XICSFabric *dev)
3199 {
3200     sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3201 
3202     ics_resend(spapr->ics);
3203 }
3204 
3205 static ICPState *spapr_icp_get(XICSFabric *xi, int cpu_dt_id)
3206 {
3207     PowerPCCPU *cpu = ppc_get_vcpu_by_dt_id(cpu_dt_id);
3208 
3209     return cpu ? ICP(cpu->intc) : NULL;
3210 }
3211 
3212 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3213                                  Monitor *mon)
3214 {
3215     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3216     CPUState *cs;
3217 
3218     CPU_FOREACH(cs) {
3219         PowerPCCPU *cpu = POWERPC_CPU(cs);
3220 
3221         icp_pic_print_info(ICP(cpu->intc), mon);
3222     }
3223 
3224     ics_pic_print_info(spapr->ics, mon);
3225 }
3226 
3227 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3228 {
3229     MachineClass *mc = MACHINE_CLASS(oc);
3230     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3231     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3232     NMIClass *nc = NMI_CLASS(oc);
3233     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3234     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3235     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3236     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3237 
3238     mc->desc = "pSeries Logical Partition (PAPR compliant)";
3239 
3240     /*
3241      * We set up the default / latest behaviour here.  The class_init
3242      * functions for the specific versioned machine types can override
3243      * these details for backwards compatibility
3244      */
3245     mc->init = ppc_spapr_init;
3246     mc->reset = ppc_spapr_reset;
3247     mc->block_default_type = IF_SCSI;
3248     mc->max_cpus = 1024;
3249     mc->no_parallel = 1;
3250     mc->default_boot_order = "";
3251     mc->default_ram_size = 512 * M_BYTE;
3252     mc->kvm_type = spapr_kvm_type;
3253     mc->has_dynamic_sysbus = true;
3254     mc->pci_allow_0_address = true;
3255     mc->get_hotplug_handler = spapr_get_hotplug_handler;
3256     hc->pre_plug = spapr_machine_device_pre_plug;
3257     hc->plug = spapr_machine_device_plug;
3258     hc->unplug = spapr_machine_device_unplug;
3259     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3260     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3261     hc->unplug_request = spapr_machine_device_unplug_request;
3262 
3263     smc->dr_lmb_enabled = true;
3264     smc->tcg_default_cpu = "POWER8";
3265     mc->has_hotpluggable_cpus = true;
3266     fwc->get_dev_path = spapr_get_fw_dev_path;
3267     nc->nmi_monitor_handler = spapr_nmi;
3268     smc->phb_placement = spapr_phb_placement;
3269     vhc->hypercall = emulate_spapr_hypercall;
3270     vhc->hpt_mask = spapr_hpt_mask;
3271     vhc->map_hptes = spapr_map_hptes;
3272     vhc->unmap_hptes = spapr_unmap_hptes;
3273     vhc->store_hpte = spapr_store_hpte;
3274     vhc->get_patbe = spapr_get_patbe;
3275     xic->ics_get = spapr_ics_get;
3276     xic->ics_resend = spapr_ics_resend;
3277     xic->icp_get = spapr_icp_get;
3278     ispc->print_info = spapr_pic_print_info;
3279     /* Force NUMA node memory size to be a multiple of
3280      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3281      * in which LMBs are represented and hot-added
3282      */
3283     mc->numa_mem_align_shift = 28;
3284 }
3285 
3286 static const TypeInfo spapr_machine_info = {
3287     .name          = TYPE_SPAPR_MACHINE,
3288     .parent        = TYPE_MACHINE,
3289     .abstract      = true,
3290     .instance_size = sizeof(sPAPRMachineState),
3291     .instance_init = spapr_machine_initfn,
3292     .instance_finalize = spapr_machine_finalizefn,
3293     .class_size    = sizeof(sPAPRMachineClass),
3294     .class_init    = spapr_machine_class_init,
3295     .interfaces = (InterfaceInfo[]) {
3296         { TYPE_FW_PATH_PROVIDER },
3297         { TYPE_NMI },
3298         { TYPE_HOTPLUG_HANDLER },
3299         { TYPE_PPC_VIRTUAL_HYPERVISOR },
3300         { TYPE_XICS_FABRIC },
3301         { TYPE_INTERRUPT_STATS_PROVIDER },
3302         { }
3303     },
3304 };
3305 
3306 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
3307     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3308                                                     void *data)      \
3309     {                                                                \
3310         MachineClass *mc = MACHINE_CLASS(oc);                        \
3311         spapr_machine_##suffix##_class_options(mc);                  \
3312         if (latest) {                                                \
3313             mc->alias = "pseries";                                   \
3314             mc->is_default = 1;                                      \
3315         }                                                            \
3316     }                                                                \
3317     static void spapr_machine_##suffix##_instance_init(Object *obj)  \
3318     {                                                                \
3319         MachineState *machine = MACHINE(obj);                        \
3320         spapr_machine_##suffix##_instance_options(machine);          \
3321     }                                                                \
3322     static const TypeInfo spapr_machine_##suffix##_info = {          \
3323         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
3324         .parent = TYPE_SPAPR_MACHINE,                                \
3325         .class_init = spapr_machine_##suffix##_class_init,           \
3326         .instance_init = spapr_machine_##suffix##_instance_init,     \
3327     };                                                               \
3328     static void spapr_machine_register_##suffix(void)                \
3329     {                                                                \
3330         type_register(&spapr_machine_##suffix##_info);               \
3331     }                                                                \
3332     type_init(spapr_machine_register_##suffix)
3333 
3334 /*
3335  * pseries-2.10
3336  */
3337 static void spapr_machine_2_10_instance_options(MachineState *machine)
3338 {
3339 }
3340 
3341 static void spapr_machine_2_10_class_options(MachineClass *mc)
3342 {
3343     /* Defaults for the latest behaviour inherited from the base class */
3344 }
3345 
3346 DEFINE_SPAPR_MACHINE(2_10, "2.10", true);
3347 
3348 /*
3349  * pseries-2.9
3350  */
3351 #define SPAPR_COMPAT_2_9                                               \
3352     HW_COMPAT_2_9
3353 
3354 static void spapr_machine_2_9_instance_options(MachineState *machine)
3355 {
3356     spapr_machine_2_10_instance_options(machine);
3357 }
3358 
3359 static void spapr_machine_2_9_class_options(MachineClass *mc)
3360 {
3361     spapr_machine_2_10_class_options(mc);
3362     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
3363     mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
3364 }
3365 
3366 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
3367 
3368 /*
3369  * pseries-2.8
3370  */
3371 #define SPAPR_COMPAT_2_8                                        \
3372     HW_COMPAT_2_8                                               \
3373     {                                                           \
3374         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,                 \
3375         .property = "pcie-extended-configuration-space",        \
3376         .value    = "off",                                      \
3377     },
3378 
3379 static void spapr_machine_2_8_instance_options(MachineState *machine)
3380 {
3381     spapr_machine_2_9_instance_options(machine);
3382 }
3383 
3384 static void spapr_machine_2_8_class_options(MachineClass *mc)
3385 {
3386     spapr_machine_2_9_class_options(mc);
3387     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
3388     mc->numa_mem_align_shift = 23;
3389 }
3390 
3391 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
3392 
3393 /*
3394  * pseries-2.7
3395  */
3396 #define SPAPR_COMPAT_2_7                            \
3397     HW_COMPAT_2_7                                   \
3398     {                                               \
3399         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
3400         .property = "mem_win_size",                 \
3401         .value    = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
3402     },                                              \
3403     {                                               \
3404         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
3405         .property = "mem64_win_size",               \
3406         .value    = "0",                            \
3407     },                                              \
3408     {                                               \
3409         .driver = TYPE_POWERPC_CPU,                 \
3410         .property = "pre-2.8-migration",            \
3411         .value    = "on",                           \
3412     },                                              \
3413     {                                               \
3414         .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,       \
3415         .property = "pre-2.8-migration",            \
3416         .value    = "on",                           \
3417     },
3418 
3419 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
3420                               uint64_t *buid, hwaddr *pio,
3421                               hwaddr *mmio32, hwaddr *mmio64,
3422                               unsigned n_dma, uint32_t *liobns, Error **errp)
3423 {
3424     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
3425     const uint64_t base_buid = 0x800000020000000ULL;
3426     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
3427     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
3428     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
3429     const uint32_t max_index = 255;
3430     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
3431 
3432     uint64_t ram_top = MACHINE(spapr)->ram_size;
3433     hwaddr phb0_base, phb_base;
3434     int i;
3435 
3436     /* Do we have hotpluggable memory? */
3437     if (MACHINE(spapr)->maxram_size > ram_top) {
3438         /* Can't just use maxram_size, because there may be an
3439          * alignment gap between normal and hotpluggable memory
3440          * regions */
3441         ram_top = spapr->hotplug_memory.base +
3442             memory_region_size(&spapr->hotplug_memory.mr);
3443     }
3444 
3445     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
3446 
3447     if (index > max_index) {
3448         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
3449                    max_index);
3450         return;
3451     }
3452 
3453     *buid = base_buid + index;
3454     for (i = 0; i < n_dma; ++i) {
3455         liobns[i] = SPAPR_PCI_LIOBN(index, i);
3456     }
3457 
3458     phb_base = phb0_base + index * phb_spacing;
3459     *pio = phb_base + pio_offset;
3460     *mmio32 = phb_base + mmio_offset;
3461     /*
3462      * We don't set the 64-bit MMIO window, relying on the PHB's
3463      * fallback behaviour of automatically splitting a large "32-bit"
3464      * window into contiguous 32-bit and 64-bit windows
3465      */
3466 }
3467 
3468 static void spapr_machine_2_7_instance_options(MachineState *machine)
3469 {
3470     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
3471 
3472     spapr_machine_2_8_instance_options(machine);
3473     spapr->use_hotplug_event_source = false;
3474 }
3475 
3476 static void spapr_machine_2_7_class_options(MachineClass *mc)
3477 {
3478     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3479 
3480     spapr_machine_2_8_class_options(mc);
3481     smc->tcg_default_cpu = "POWER7";
3482     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
3483     smc->phb_placement = phb_placement_2_7;
3484 }
3485 
3486 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
3487 
3488 /*
3489  * pseries-2.6
3490  */
3491 #define SPAPR_COMPAT_2_6 \
3492     HW_COMPAT_2_6 \
3493     { \
3494         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3495         .property = "ddw",\
3496         .value    = stringify(off),\
3497     },
3498 
3499 static void spapr_machine_2_6_instance_options(MachineState *machine)
3500 {
3501     spapr_machine_2_7_instance_options(machine);
3502 }
3503 
3504 static void spapr_machine_2_6_class_options(MachineClass *mc)
3505 {
3506     spapr_machine_2_7_class_options(mc);
3507     mc->has_hotpluggable_cpus = false;
3508     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
3509 }
3510 
3511 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
3512 
3513 /*
3514  * pseries-2.5
3515  */
3516 #define SPAPR_COMPAT_2_5 \
3517     HW_COMPAT_2_5 \
3518     { \
3519         .driver   = "spapr-vlan", \
3520         .property = "use-rx-buffer-pools", \
3521         .value    = "off", \
3522     },
3523 
3524 static void spapr_machine_2_5_instance_options(MachineState *machine)
3525 {
3526     spapr_machine_2_6_instance_options(machine);
3527 }
3528 
3529 static void spapr_machine_2_5_class_options(MachineClass *mc)
3530 {
3531     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3532 
3533     spapr_machine_2_6_class_options(mc);
3534     smc->use_ohci_by_default = true;
3535     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
3536 }
3537 
3538 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
3539 
3540 /*
3541  * pseries-2.4
3542  */
3543 #define SPAPR_COMPAT_2_4 \
3544         HW_COMPAT_2_4
3545 
3546 static void spapr_machine_2_4_instance_options(MachineState *machine)
3547 {
3548     spapr_machine_2_5_instance_options(machine);
3549 }
3550 
3551 static void spapr_machine_2_4_class_options(MachineClass *mc)
3552 {
3553     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3554 
3555     spapr_machine_2_5_class_options(mc);
3556     smc->dr_lmb_enabled = false;
3557     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
3558 }
3559 
3560 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
3561 
3562 /*
3563  * pseries-2.3
3564  */
3565 #define SPAPR_COMPAT_2_3 \
3566         HW_COMPAT_2_3 \
3567         {\
3568             .driver   = "spapr-pci-host-bridge",\
3569             .property = "dynamic-reconfiguration",\
3570             .value    = "off",\
3571         },
3572 
3573 static void spapr_machine_2_3_instance_options(MachineState *machine)
3574 {
3575     spapr_machine_2_4_instance_options(machine);
3576     savevm_skip_section_footers();
3577     global_state_set_optional();
3578     savevm_skip_configuration();
3579 }
3580 
3581 static void spapr_machine_2_3_class_options(MachineClass *mc)
3582 {
3583     spapr_machine_2_4_class_options(mc);
3584     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
3585 }
3586 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
3587 
3588 /*
3589  * pseries-2.2
3590  */
3591 
3592 #define SPAPR_COMPAT_2_2 \
3593         HW_COMPAT_2_2 \
3594         {\
3595             .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3596             .property = "mem_win_size",\
3597             .value    = "0x20000000",\
3598         },
3599 
3600 static void spapr_machine_2_2_instance_options(MachineState *machine)
3601 {
3602     spapr_machine_2_3_instance_options(machine);
3603     machine->suppress_vmdesc = true;
3604 }
3605 
3606 static void spapr_machine_2_2_class_options(MachineClass *mc)
3607 {
3608     spapr_machine_2_3_class_options(mc);
3609     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
3610 }
3611 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
3612 
3613 /*
3614  * pseries-2.1
3615  */
3616 #define SPAPR_COMPAT_2_1 \
3617         HW_COMPAT_2_1
3618 
3619 static void spapr_machine_2_1_instance_options(MachineState *machine)
3620 {
3621     spapr_machine_2_2_instance_options(machine);
3622 }
3623 
3624 static void spapr_machine_2_1_class_options(MachineClass *mc)
3625 {
3626     spapr_machine_2_2_class_options(mc);
3627     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
3628 }
3629 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
3630 
3631 static void spapr_machine_register_types(void)
3632 {
3633     type_register_static(&spapr_machine_info);
3634 }
3635 
3636 type_init(spapr_machine_register_types)
3637