1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 */ 26 27 #include "qemu/osdep.h" 28 #include "qemu-common.h" 29 #include "qemu/datadir.h" 30 #include "qemu/memalign.h" 31 #include "qapi/error.h" 32 #include "qapi/qapi-events-machine.h" 33 #include "qapi/qapi-events-qdev.h" 34 #include "qapi/visitor.h" 35 #include "sysemu/sysemu.h" 36 #include "sysemu/hostmem.h" 37 #include "sysemu/numa.h" 38 #include "sysemu/qtest.h" 39 #include "sysemu/reset.h" 40 #include "sysemu/runstate.h" 41 #include "qemu/log.h" 42 #include "hw/fw-path-provider.h" 43 #include "elf.h" 44 #include "net/net.h" 45 #include "sysemu/device_tree.h" 46 #include "sysemu/cpus.h" 47 #include "sysemu/hw_accel.h" 48 #include "kvm_ppc.h" 49 #include "migration/misc.h" 50 #include "migration/qemu-file-types.h" 51 #include "migration/global_state.h" 52 #include "migration/register.h" 53 #include "migration/blocker.h" 54 #include "mmu-hash64.h" 55 #include "mmu-book3s-v3.h" 56 #include "cpu-models.h" 57 #include "hw/core/cpu.h" 58 59 #include "hw/ppc/ppc.h" 60 #include "hw/loader.h" 61 62 #include "hw/ppc/fdt.h" 63 #include "hw/ppc/spapr.h" 64 #include "hw/ppc/spapr_vio.h" 65 #include "hw/qdev-properties.h" 66 #include "hw/pci-host/spapr.h" 67 #include "hw/pci/msi.h" 68 69 #include "hw/pci/pci.h" 70 #include "hw/scsi/scsi.h" 71 #include "hw/virtio/virtio-scsi.h" 72 #include "hw/virtio/vhost-scsi-common.h" 73 74 #include "exec/ram_addr.h" 75 #include "hw/usb.h" 76 #include "qemu/config-file.h" 77 #include "qemu/error-report.h" 78 #include "trace.h" 79 #include "hw/nmi.h" 80 #include "hw/intc/intc.h" 81 82 #include "hw/ppc/spapr_cpu_core.h" 83 #include "hw/mem/memory-device.h" 84 #include "hw/ppc/spapr_tpm_proxy.h" 85 #include "hw/ppc/spapr_nvdimm.h" 86 #include "hw/ppc/spapr_numa.h" 87 #include "hw/ppc/pef.h" 88 89 #include "monitor/monitor.h" 90 91 #include <libfdt.h> 92 93 /* SLOF memory layout: 94 * 95 * SLOF raw image loaded at 0, copies its romfs right below the flat 96 * device-tree, then position SLOF itself 31M below that 97 * 98 * So we set FW_OVERHEAD to 40MB which should account for all of that 99 * and more 100 * 101 * We load our kernel at 4M, leaving space for SLOF initial image 102 */ 103 #define FDT_MAX_ADDR 0x80000000 /* FDT must stay below that */ 104 #define FW_MAX_SIZE 0x400000 105 #define FW_FILE_NAME "slof.bin" 106 #define FW_FILE_NAME_VOF "vof.bin" 107 #define FW_OVERHEAD 0x2800000 108 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 109 110 #define MIN_RMA_SLOF (128 * MiB) 111 112 #define PHANDLE_INTC 0x00001111 113 114 /* These two functions implement the VCPU id numbering: one to compute them 115 * all and one to identify thread 0 of a VCORE. Any change to the first one 116 * is likely to have an impact on the second one, so let's keep them close. 117 */ 118 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index) 119 { 120 MachineState *ms = MACHINE(spapr); 121 unsigned int smp_threads = ms->smp.threads; 122 123 assert(spapr->vsmt); 124 return 125 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 126 } 127 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr, 128 PowerPCCPU *cpu) 129 { 130 assert(spapr->vsmt); 131 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 132 } 133 134 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 135 { 136 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 137 * and newer QEMUs don't even have them. In both cases, we don't want 138 * to send anything on the wire. 139 */ 140 return false; 141 } 142 143 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 144 .name = "icp/server", 145 .version_id = 1, 146 .minimum_version_id = 1, 147 .needed = pre_2_10_vmstate_dummy_icp_needed, 148 .fields = (VMStateField[]) { 149 VMSTATE_UNUSED(4), /* uint32_t xirr */ 150 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 151 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 152 VMSTATE_END_OF_LIST() 153 }, 154 }; 155 156 static void pre_2_10_vmstate_register_dummy_icp(int i) 157 { 158 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 159 (void *)(uintptr_t) i); 160 } 161 162 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 163 { 164 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 165 (void *)(uintptr_t) i); 166 } 167 168 int spapr_max_server_number(SpaprMachineState *spapr) 169 { 170 MachineState *ms = MACHINE(spapr); 171 172 assert(spapr->vsmt); 173 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads); 174 } 175 176 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 177 int smt_threads) 178 { 179 int i, ret = 0; 180 uint32_t servers_prop[smt_threads]; 181 uint32_t gservers_prop[smt_threads * 2]; 182 int index = spapr_get_vcpu_id(cpu); 183 184 if (cpu->compat_pvr) { 185 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 186 if (ret < 0) { 187 return ret; 188 } 189 } 190 191 /* Build interrupt servers and gservers properties */ 192 for (i = 0; i < smt_threads; i++) { 193 servers_prop[i] = cpu_to_be32(index + i); 194 /* Hack, direct the group queues back to cpu 0 */ 195 gservers_prop[i*2] = cpu_to_be32(index + i); 196 gservers_prop[i*2 + 1] = 0; 197 } 198 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 199 servers_prop, sizeof(servers_prop)); 200 if (ret < 0) { 201 return ret; 202 } 203 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 204 gservers_prop, sizeof(gservers_prop)); 205 206 return ret; 207 } 208 209 static void spapr_dt_pa_features(SpaprMachineState *spapr, 210 PowerPCCPU *cpu, 211 void *fdt, int offset) 212 { 213 uint8_t pa_features_206[] = { 6, 0, 214 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 215 uint8_t pa_features_207[] = { 24, 0, 216 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 217 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 218 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 219 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 220 uint8_t pa_features_300[] = { 66, 0, 221 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 222 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 223 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 224 /* 6: DS207 */ 225 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 226 /* 16: Vector */ 227 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 228 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 229 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 230 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 231 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 232 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 233 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 234 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 235 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 236 /* 42: PM, 44: PC RA, 46: SC vec'd */ 237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 238 /* 48: SIMD, 50: QP BFP, 52: String */ 239 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 240 /* 54: DecFP, 56: DecI, 58: SHA */ 241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 242 /* 60: NM atomic, 62: RNG */ 243 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 244 }; 245 uint8_t *pa_features = NULL; 246 size_t pa_size; 247 248 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 249 pa_features = pa_features_206; 250 pa_size = sizeof(pa_features_206); 251 } 252 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 253 pa_features = pa_features_207; 254 pa_size = sizeof(pa_features_207); 255 } 256 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 257 pa_features = pa_features_300; 258 pa_size = sizeof(pa_features_300); 259 } 260 if (!pa_features) { 261 return; 262 } 263 264 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 265 /* 266 * Note: we keep CI large pages off by default because a 64K capable 267 * guest provisioned with large pages might otherwise try to map a qemu 268 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 269 * even if that qemu runs on a 4k host. 270 * We dd this bit back here if we are confident this is not an issue 271 */ 272 pa_features[3] |= 0x20; 273 } 274 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 275 pa_features[24] |= 0x80; /* Transactional memory support */ 276 } 277 if (spapr->cas_pre_isa3_guest && pa_size > 40) { 278 /* Workaround for broken kernels that attempt (guest) radix 279 * mode when they can't handle it, if they see the radix bit set 280 * in pa-features. So hide it from them. */ 281 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 282 } 283 284 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 285 } 286 287 static hwaddr spapr_node0_size(MachineState *machine) 288 { 289 if (machine->numa_state->num_nodes) { 290 int i; 291 for (i = 0; i < machine->numa_state->num_nodes; ++i) { 292 if (machine->numa_state->nodes[i].node_mem) { 293 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem), 294 machine->ram_size); 295 } 296 } 297 } 298 return machine->ram_size; 299 } 300 301 static void add_str(GString *s, const gchar *s1) 302 { 303 g_string_append_len(s, s1, strlen(s1) + 1); 304 } 305 306 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid, 307 hwaddr start, hwaddr size) 308 { 309 char mem_name[32]; 310 uint64_t mem_reg_property[2]; 311 int off; 312 313 mem_reg_property[0] = cpu_to_be64(start); 314 mem_reg_property[1] = cpu_to_be64(size); 315 316 sprintf(mem_name, "memory@%" HWADDR_PRIx, start); 317 off = fdt_add_subnode(fdt, 0, mem_name); 318 _FDT(off); 319 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 320 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 321 sizeof(mem_reg_property)))); 322 spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid); 323 return off; 324 } 325 326 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 327 { 328 MemoryDeviceInfoList *info; 329 330 for (info = list; info; info = info->next) { 331 MemoryDeviceInfo *value = info->value; 332 333 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 334 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 335 336 if (addr >= pcdimm_info->addr && 337 addr < (pcdimm_info->addr + pcdimm_info->size)) { 338 return pcdimm_info->node; 339 } 340 } 341 } 342 343 return -1; 344 } 345 346 struct sPAPRDrconfCellV2 { 347 uint32_t seq_lmbs; 348 uint64_t base_addr; 349 uint32_t drc_index; 350 uint32_t aa_index; 351 uint32_t flags; 352 } QEMU_PACKED; 353 354 typedef struct DrconfCellQueue { 355 struct sPAPRDrconfCellV2 cell; 356 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 357 } DrconfCellQueue; 358 359 static DrconfCellQueue * 360 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 361 uint32_t drc_index, uint32_t aa_index, 362 uint32_t flags) 363 { 364 DrconfCellQueue *elem; 365 366 elem = g_malloc0(sizeof(*elem)); 367 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 368 elem->cell.base_addr = cpu_to_be64(base_addr); 369 elem->cell.drc_index = cpu_to_be32(drc_index); 370 elem->cell.aa_index = cpu_to_be32(aa_index); 371 elem->cell.flags = cpu_to_be32(flags); 372 373 return elem; 374 } 375 376 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt, 377 int offset, MemoryDeviceInfoList *dimms) 378 { 379 MachineState *machine = MACHINE(spapr); 380 uint8_t *int_buf, *cur_index; 381 int ret; 382 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 383 uint64_t addr, cur_addr, size; 384 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 385 uint64_t mem_end = machine->device_memory->base + 386 memory_region_size(&machine->device_memory->mr); 387 uint32_t node, buf_len, nr_entries = 0; 388 SpaprDrc *drc; 389 DrconfCellQueue *elem, *next; 390 MemoryDeviceInfoList *info; 391 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 392 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 393 394 /* Entry to cover RAM and the gap area */ 395 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 396 SPAPR_LMB_FLAGS_RESERVED | 397 SPAPR_LMB_FLAGS_DRC_INVALID); 398 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 399 nr_entries++; 400 401 cur_addr = machine->device_memory->base; 402 for (info = dimms; info; info = info->next) { 403 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 404 405 addr = di->addr; 406 size = di->size; 407 node = di->node; 408 409 /* 410 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The 411 * area is marked hotpluggable in the next iteration for the bigger 412 * chunk including the NVDIMM occupied area. 413 */ 414 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM) 415 continue; 416 417 /* Entry for hot-pluggable area */ 418 if (cur_addr < addr) { 419 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 420 g_assert(drc); 421 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 422 cur_addr, spapr_drc_index(drc), -1, 0); 423 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 424 nr_entries++; 425 } 426 427 /* Entry for DIMM */ 428 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 429 g_assert(drc); 430 elem = spapr_get_drconf_cell(size / lmb_size, addr, 431 spapr_drc_index(drc), node, 432 (SPAPR_LMB_FLAGS_ASSIGNED | 433 SPAPR_LMB_FLAGS_HOTREMOVABLE)); 434 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 435 nr_entries++; 436 cur_addr = addr + size; 437 } 438 439 /* Entry for remaining hotpluggable area */ 440 if (cur_addr < mem_end) { 441 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 442 g_assert(drc); 443 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 444 cur_addr, spapr_drc_index(drc), -1, 0); 445 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 446 nr_entries++; 447 } 448 449 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 450 int_buf = cur_index = g_malloc0(buf_len); 451 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 452 cur_index += sizeof(nr_entries); 453 454 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 455 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 456 cur_index += sizeof(elem->cell); 457 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 458 g_free(elem); 459 } 460 461 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 462 g_free(int_buf); 463 if (ret < 0) { 464 return -1; 465 } 466 return 0; 467 } 468 469 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt, 470 int offset, MemoryDeviceInfoList *dimms) 471 { 472 MachineState *machine = MACHINE(spapr); 473 int i, ret; 474 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 475 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 476 uint32_t nr_lmbs = (machine->device_memory->base + 477 memory_region_size(&machine->device_memory->mr)) / 478 lmb_size; 479 uint32_t *int_buf, *cur_index, buf_len; 480 481 /* 482 * Allocate enough buffer size to fit in ibm,dynamic-memory 483 */ 484 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 485 cur_index = int_buf = g_malloc0(buf_len); 486 int_buf[0] = cpu_to_be32(nr_lmbs); 487 cur_index++; 488 for (i = 0; i < nr_lmbs; i++) { 489 uint64_t addr = i * lmb_size; 490 uint32_t *dynamic_memory = cur_index; 491 492 if (i >= device_lmb_start) { 493 SpaprDrc *drc; 494 495 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 496 g_assert(drc); 497 498 dynamic_memory[0] = cpu_to_be32(addr >> 32); 499 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 500 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 501 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 502 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 503 if (memory_region_present(get_system_memory(), addr)) { 504 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 505 } else { 506 dynamic_memory[5] = cpu_to_be32(0); 507 } 508 } else { 509 /* 510 * LMB information for RMA, boot time RAM and gap b/n RAM and 511 * device memory region -- all these are marked as reserved 512 * and as having no valid DRC. 513 */ 514 dynamic_memory[0] = cpu_to_be32(addr >> 32); 515 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 516 dynamic_memory[2] = cpu_to_be32(0); 517 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 518 dynamic_memory[4] = cpu_to_be32(-1); 519 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 520 SPAPR_LMB_FLAGS_DRC_INVALID); 521 } 522 523 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 524 } 525 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 526 g_free(int_buf); 527 if (ret < 0) { 528 return -1; 529 } 530 return 0; 531 } 532 533 /* 534 * Adds ibm,dynamic-reconfiguration-memory node. 535 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 536 * of this device tree node. 537 */ 538 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr, 539 void *fdt) 540 { 541 MachineState *machine = MACHINE(spapr); 542 int ret, offset; 543 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 544 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32), 545 cpu_to_be32(lmb_size & 0xffffffff)}; 546 MemoryDeviceInfoList *dimms = NULL; 547 548 /* 549 * Don't create the node if there is no device memory 550 */ 551 if (machine->ram_size == machine->maxram_size) { 552 return 0; 553 } 554 555 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 556 557 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 558 sizeof(prop_lmb_size)); 559 if (ret < 0) { 560 return ret; 561 } 562 563 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 564 if (ret < 0) { 565 return ret; 566 } 567 568 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 569 if (ret < 0) { 570 return ret; 571 } 572 573 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 574 dimms = qmp_memory_device_list(); 575 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 576 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms); 577 } else { 578 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms); 579 } 580 qapi_free_MemoryDeviceInfoList(dimms); 581 582 if (ret < 0) { 583 return ret; 584 } 585 586 ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset); 587 588 return ret; 589 } 590 591 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt) 592 { 593 MachineState *machine = MACHINE(spapr); 594 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 595 hwaddr mem_start, node_size; 596 int i, nb_nodes = machine->numa_state->num_nodes; 597 NodeInfo *nodes = machine->numa_state->nodes; 598 599 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 600 if (!nodes[i].node_mem) { 601 continue; 602 } 603 if (mem_start >= machine->ram_size) { 604 node_size = 0; 605 } else { 606 node_size = nodes[i].node_mem; 607 if (node_size > machine->ram_size - mem_start) { 608 node_size = machine->ram_size - mem_start; 609 } 610 } 611 if (!mem_start) { 612 /* spapr_machine_init() checks for rma_size <= node0_size 613 * already */ 614 spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size); 615 mem_start += spapr->rma_size; 616 node_size -= spapr->rma_size; 617 } 618 for ( ; node_size; ) { 619 hwaddr sizetmp = pow2floor(node_size); 620 621 /* mem_start != 0 here */ 622 if (ctzl(mem_start) < ctzl(sizetmp)) { 623 sizetmp = 1ULL << ctzl(mem_start); 624 } 625 626 spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp); 627 node_size -= sizetmp; 628 mem_start += sizetmp; 629 } 630 } 631 632 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 633 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) { 634 int ret; 635 636 g_assert(smc->dr_lmb_enabled); 637 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt); 638 if (ret) { 639 return ret; 640 } 641 } 642 643 return 0; 644 } 645 646 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset, 647 SpaprMachineState *spapr) 648 { 649 MachineState *ms = MACHINE(spapr); 650 PowerPCCPU *cpu = POWERPC_CPU(cs); 651 CPUPPCState *env = &cpu->env; 652 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 653 int index = spapr_get_vcpu_id(cpu); 654 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 655 0xffffffff, 0xffffffff}; 656 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 657 : SPAPR_TIMEBASE_FREQ; 658 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 659 uint32_t page_sizes_prop[64]; 660 size_t page_sizes_prop_size; 661 unsigned int smp_threads = ms->smp.threads; 662 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores; 663 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 664 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 665 SpaprDrc *drc; 666 int drc_index; 667 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 668 int i; 669 670 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 671 if (drc) { 672 drc_index = spapr_drc_index(drc); 673 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 674 } 675 676 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 677 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 678 679 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 680 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 681 env->dcache_line_size))); 682 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 683 env->dcache_line_size))); 684 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 685 env->icache_line_size))); 686 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 687 env->icache_line_size))); 688 689 if (pcc->l1_dcache_size) { 690 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 691 pcc->l1_dcache_size))); 692 } else { 693 warn_report("Unknown L1 dcache size for cpu"); 694 } 695 if (pcc->l1_icache_size) { 696 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 697 pcc->l1_icache_size))); 698 } else { 699 warn_report("Unknown L1 icache size for cpu"); 700 } 701 702 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 703 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 704 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 705 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 706 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 707 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 708 709 if (ppc_has_spr(cpu, SPR_PURR)) { 710 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1))); 711 } 712 if (ppc_has_spr(cpu, SPR_PURR)) { 713 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1))); 714 } 715 716 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 717 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 718 segs, sizeof(segs)))); 719 } 720 721 /* Advertise VSX (vector extensions) if available 722 * 1 == VMX / Altivec available 723 * 2 == VSX available 724 * 725 * Only CPUs for which we create core types in spapr_cpu_core.c 726 * are possible, and all of those have VMX */ 727 if (env->insns_flags & PPC_ALTIVEC) { 728 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 729 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 730 } else { 731 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 732 } 733 } 734 735 /* Advertise DFP (Decimal Floating Point) if available 736 * 0 / no property == no DFP 737 * 1 == DFP available */ 738 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 739 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 740 } 741 742 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 743 sizeof(page_sizes_prop)); 744 if (page_sizes_prop_size) { 745 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 746 page_sizes_prop, page_sizes_prop_size))); 747 } 748 749 spapr_dt_pa_features(spapr, cpu, fdt, offset); 750 751 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 752 cs->cpu_index / vcpus_per_socket))); 753 754 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 755 pft_size_prop, sizeof(pft_size_prop)))); 756 757 if (ms->numa_state->num_nodes > 1) { 758 _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu)); 759 } 760 761 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 762 763 if (pcc->radix_page_info) { 764 for (i = 0; i < pcc->radix_page_info->count; i++) { 765 radix_AP_encodings[i] = 766 cpu_to_be32(pcc->radix_page_info->entries[i]); 767 } 768 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 769 radix_AP_encodings, 770 pcc->radix_page_info->count * 771 sizeof(radix_AP_encodings[0])))); 772 } 773 774 /* 775 * We set this property to let the guest know that it can use the large 776 * decrementer and its width in bits. 777 */ 778 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF) 779 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits", 780 pcc->lrg_decr_bits))); 781 } 782 783 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr) 784 { 785 CPUState **rev; 786 CPUState *cs; 787 int n_cpus; 788 int cpus_offset; 789 int i; 790 791 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 792 _FDT(cpus_offset); 793 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 794 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 795 796 /* 797 * We walk the CPUs in reverse order to ensure that CPU DT nodes 798 * created by fdt_add_subnode() end up in the right order in FDT 799 * for the guest kernel the enumerate the CPUs correctly. 800 * 801 * The CPU list cannot be traversed in reverse order, so we need 802 * to do extra work. 803 */ 804 n_cpus = 0; 805 rev = NULL; 806 CPU_FOREACH(cs) { 807 rev = g_renew(CPUState *, rev, n_cpus + 1); 808 rev[n_cpus++] = cs; 809 } 810 811 for (i = n_cpus - 1; i >= 0; i--) { 812 CPUState *cs = rev[i]; 813 PowerPCCPU *cpu = POWERPC_CPU(cs); 814 int index = spapr_get_vcpu_id(cpu); 815 DeviceClass *dc = DEVICE_GET_CLASS(cs); 816 g_autofree char *nodename = NULL; 817 int offset; 818 819 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 820 continue; 821 } 822 823 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 824 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 825 _FDT(offset); 826 spapr_dt_cpu(cs, fdt, offset, spapr); 827 } 828 829 g_free(rev); 830 } 831 832 static int spapr_dt_rng(void *fdt) 833 { 834 int node; 835 int ret; 836 837 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 838 if (node <= 0) { 839 return -1; 840 } 841 ret = fdt_setprop_string(fdt, node, "device_type", 842 "ibm,platform-facilities"); 843 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 844 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 845 846 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 847 if (node <= 0) { 848 return -1; 849 } 850 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 851 852 return ret ? -1 : 0; 853 } 854 855 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt) 856 { 857 MachineState *ms = MACHINE(spapr); 858 int rtas; 859 GString *hypertas = g_string_sized_new(256); 860 GString *qemu_hypertas = g_string_sized_new(256); 861 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 862 memory_region_size(&MACHINE(spapr)->device_memory->mr); 863 uint32_t lrdr_capacity[] = { 864 cpu_to_be32(max_device_addr >> 32), 865 cpu_to_be32(max_device_addr & 0xffffffff), 866 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32), 867 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff), 868 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads), 869 }; 870 871 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 872 873 /* hypertas */ 874 add_str(hypertas, "hcall-pft"); 875 add_str(hypertas, "hcall-term"); 876 add_str(hypertas, "hcall-dabr"); 877 add_str(hypertas, "hcall-interrupt"); 878 add_str(hypertas, "hcall-tce"); 879 add_str(hypertas, "hcall-vio"); 880 add_str(hypertas, "hcall-splpar"); 881 add_str(hypertas, "hcall-join"); 882 add_str(hypertas, "hcall-bulk"); 883 add_str(hypertas, "hcall-set-mode"); 884 add_str(hypertas, "hcall-sprg0"); 885 add_str(hypertas, "hcall-copy"); 886 add_str(hypertas, "hcall-debug"); 887 add_str(hypertas, "hcall-vphn"); 888 if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) { 889 add_str(hypertas, "hcall-rpt-invalidate"); 890 } 891 892 add_str(qemu_hypertas, "hcall-memop1"); 893 894 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 895 add_str(hypertas, "hcall-multi-tce"); 896 } 897 898 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 899 add_str(hypertas, "hcall-hpt-resize"); 900 } 901 902 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 903 hypertas->str, hypertas->len)); 904 g_string_free(hypertas, TRUE); 905 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 906 qemu_hypertas->str, qemu_hypertas->len)); 907 g_string_free(qemu_hypertas, TRUE); 908 909 spapr_numa_write_rtas_dt(spapr, fdt, rtas); 910 911 /* 912 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log, 913 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes. 914 * 915 * The system reset requirements are driven by existing Linux and PowerVM 916 * implementation which (contrary to PAPR) saves r3 in the error log 917 * structure like machine check, so Linux expects to find the saved r3 918 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and 919 * does not look at the error value). 920 * 921 * System reset interrupts are not subject to interlock like machine 922 * check, so this memory area could be corrupted if the sreset is 923 * interrupted by a machine check (or vice versa) if it was shared. To 924 * prevent this, system reset uses per-CPU areas for the sreset save 925 * area. A system reset that interrupts a system reset handler could 926 * still overwrite this area, but Linux doesn't try to recover in that 927 * case anyway. 928 * 929 * The extra 8 bytes is required because Linux's FWNMI error log check 930 * is off-by-one. 931 * 932 * RTAS_MIN_SIZE is required for the RTAS blob itself. 933 */ 934 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE + 935 RTAS_ERROR_LOG_MAX + 936 ms->smp.max_cpus * sizeof(uint64_t) * 2 + 937 sizeof(uint64_t))); 938 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 939 RTAS_ERROR_LOG_MAX)); 940 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 941 RTAS_EVENT_SCAN_RATE)); 942 943 g_assert(msi_nonbroken); 944 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 945 946 /* 947 * According to PAPR, rtas ibm,os-term does not guarantee a return 948 * back to the guest cpu. 949 * 950 * While an additional ibm,extended-os-term property indicates 951 * that rtas call return will always occur. Set this property. 952 */ 953 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 954 955 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 956 lrdr_capacity, sizeof(lrdr_capacity))); 957 958 spapr_dt_rtas_tokens(fdt, rtas); 959 } 960 961 /* 962 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU 963 * and the XIVE features that the guest may request and thus the valid 964 * values for bytes 23..26 of option vector 5: 965 */ 966 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt, 967 int chosen) 968 { 969 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 970 971 char val[2 * 4] = { 972 23, 0x00, /* XICS / XIVE mode */ 973 24, 0x00, /* Hash/Radix, filled in below. */ 974 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 975 26, 0x40, /* Radix options: GTSE == yes. */ 976 }; 977 978 if (spapr->irq->xics && spapr->irq->xive) { 979 val[1] = SPAPR_OV5_XIVE_BOTH; 980 } else if (spapr->irq->xive) { 981 val[1] = SPAPR_OV5_XIVE_EXPLOIT; 982 } else { 983 assert(spapr->irq->xics); 984 val[1] = SPAPR_OV5_XIVE_LEGACY; 985 } 986 987 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 988 first_ppc_cpu->compat_pvr)) { 989 /* 990 * If we're in a pre POWER9 compat mode then the guest should 991 * do hash and use the legacy interrupt mode 992 */ 993 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */ 994 val[3] = 0x00; /* Hash */ 995 spapr_check_mmu_mode(false); 996 } else if (kvm_enabled()) { 997 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 998 val[3] = 0x80; /* OV5_MMU_BOTH */ 999 } else if (kvmppc_has_cap_mmu_radix()) { 1000 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1001 } else { 1002 val[3] = 0x00; /* Hash */ 1003 } 1004 } else { 1005 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1006 val[3] = 0xC0; 1007 } 1008 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1009 val, sizeof(val))); 1010 } 1011 1012 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset) 1013 { 1014 MachineState *machine = MACHINE(spapr); 1015 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1016 int chosen; 1017 1018 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1019 1020 if (reset) { 1021 const char *boot_device = spapr->boot_device; 1022 g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1023 size_t cb = 0; 1024 g_autofree char *bootlist = get_boot_devices_list(&cb); 1025 1026 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) { 1027 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", 1028 machine->kernel_cmdline)); 1029 } 1030 1031 if (spapr->initrd_size) { 1032 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1033 spapr->initrd_base)); 1034 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1035 spapr->initrd_base + spapr->initrd_size)); 1036 } 1037 1038 if (spapr->kernel_size) { 1039 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr), 1040 cpu_to_be64(spapr->kernel_size) }; 1041 1042 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1043 &kprop, sizeof(kprop))); 1044 if (spapr->kernel_le) { 1045 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1046 } 1047 } 1048 if (boot_menu) { 1049 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); 1050 } 1051 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1052 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1053 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1054 1055 if (cb && bootlist) { 1056 int i; 1057 1058 for (i = 0; i < cb; i++) { 1059 if (bootlist[i] == '\n') { 1060 bootlist[i] = ' '; 1061 } 1062 } 1063 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1064 } 1065 1066 if (boot_device && strlen(boot_device)) { 1067 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1068 } 1069 1070 if (!spapr->has_graphics && stdout_path) { 1071 /* 1072 * "linux,stdout-path" and "stdout" properties are 1073 * deprecated by linux kernel. New platforms should only 1074 * use the "stdout-path" property. Set the new property 1075 * and continue using older property to remain compatible 1076 * with the existing firmware. 1077 */ 1078 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1079 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1080 } 1081 1082 /* 1083 * We can deal with BAR reallocation just fine, advertise it 1084 * to the guest 1085 */ 1086 if (smc->linux_pci_probe) { 1087 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0)); 1088 } 1089 1090 spapr_dt_ov5_platform_support(spapr, fdt, chosen); 1091 } 1092 1093 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5")); 1094 } 1095 1096 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt) 1097 { 1098 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1099 * KVM to work under pHyp with some guest co-operation */ 1100 int hypervisor; 1101 uint8_t hypercall[16]; 1102 1103 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1104 /* indicate KVM hypercall interface */ 1105 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1106 if (kvmppc_has_cap_fixup_hcalls()) { 1107 /* 1108 * Older KVM versions with older guest kernels were broken 1109 * with the magic page, don't allow the guest to map it. 1110 */ 1111 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 1112 sizeof(hypercall))) { 1113 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1114 hypercall, sizeof(hypercall))); 1115 } 1116 } 1117 } 1118 1119 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space) 1120 { 1121 MachineState *machine = MACHINE(spapr); 1122 MachineClass *mc = MACHINE_GET_CLASS(machine); 1123 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1124 uint32_t root_drc_type_mask = 0; 1125 int ret; 1126 void *fdt; 1127 SpaprPhbState *phb; 1128 char *buf; 1129 1130 fdt = g_malloc0(space); 1131 _FDT((fdt_create_empty_tree(fdt, space))); 1132 1133 /* Root node */ 1134 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1135 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1136 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1137 1138 /* Guest UUID & Name*/ 1139 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1140 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1141 if (qemu_uuid_set) { 1142 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1143 } 1144 g_free(buf); 1145 1146 if (qemu_get_vm_name()) { 1147 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1148 qemu_get_vm_name())); 1149 } 1150 1151 /* Host Model & Serial Number */ 1152 if (spapr->host_model) { 1153 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); 1154 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) { 1155 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1156 g_free(buf); 1157 } 1158 1159 if (spapr->host_serial) { 1160 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); 1161 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) { 1162 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1163 g_free(buf); 1164 } 1165 1166 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1167 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1168 1169 /* /interrupt controller */ 1170 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC); 1171 1172 ret = spapr_dt_memory(spapr, fdt); 1173 if (ret < 0) { 1174 error_report("couldn't setup memory nodes in fdt"); 1175 exit(1); 1176 } 1177 1178 /* /vdevice */ 1179 spapr_dt_vdevice(spapr->vio_bus, fdt); 1180 1181 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1182 ret = spapr_dt_rng(fdt); 1183 if (ret < 0) { 1184 error_report("could not set up rng device in the fdt"); 1185 exit(1); 1186 } 1187 } 1188 1189 QLIST_FOREACH(phb, &spapr->phbs, list) { 1190 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL); 1191 if (ret < 0) { 1192 error_report("couldn't setup PCI devices in fdt"); 1193 exit(1); 1194 } 1195 } 1196 1197 spapr_dt_cpus(fdt, spapr); 1198 1199 /* ibm,drc-indexes and friends */ 1200 if (smc->dr_lmb_enabled) { 1201 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB; 1202 } 1203 if (smc->dr_phb_enabled) { 1204 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB; 1205 } 1206 if (mc->nvdimm_supported) { 1207 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM; 1208 } 1209 if (root_drc_type_mask) { 1210 _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask)); 1211 } 1212 1213 if (mc->has_hotpluggable_cpus) { 1214 int offset = fdt_path_offset(fdt, "/cpus"); 1215 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU); 1216 if (ret < 0) { 1217 error_report("Couldn't set up CPU DR device tree properties"); 1218 exit(1); 1219 } 1220 } 1221 1222 /* /event-sources */ 1223 spapr_dt_events(spapr, fdt); 1224 1225 /* /rtas */ 1226 spapr_dt_rtas(spapr, fdt); 1227 1228 /* /chosen */ 1229 spapr_dt_chosen(spapr, fdt, reset); 1230 1231 /* /hypervisor */ 1232 if (kvm_enabled()) { 1233 spapr_dt_hypervisor(spapr, fdt); 1234 } 1235 1236 /* Build memory reserve map */ 1237 if (reset) { 1238 if (spapr->kernel_size) { 1239 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr, 1240 spapr->kernel_size))); 1241 } 1242 if (spapr->initrd_size) { 1243 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, 1244 spapr->initrd_size))); 1245 } 1246 } 1247 1248 /* NVDIMM devices */ 1249 if (mc->nvdimm_supported) { 1250 spapr_dt_persistent_memory(spapr, fdt); 1251 } 1252 1253 return fdt; 1254 } 1255 1256 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1257 { 1258 SpaprMachineState *spapr = opaque; 1259 1260 return (addr & 0x0fffffff) + spapr->kernel_addr; 1261 } 1262 1263 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1264 PowerPCCPU *cpu) 1265 { 1266 CPUPPCState *env = &cpu->env; 1267 1268 /* The TCG path should also be holding the BQL at this point */ 1269 g_assert(qemu_mutex_iothread_locked()); 1270 1271 g_assert(!vhyp_cpu_in_nested(cpu)); 1272 1273 if (msr_pr) { 1274 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1275 env->gpr[3] = H_PRIVILEGE; 1276 } else { 1277 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1278 } 1279 } 1280 1281 struct LPCRSyncState { 1282 target_ulong value; 1283 target_ulong mask; 1284 }; 1285 1286 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg) 1287 { 1288 struct LPCRSyncState *s = arg.host_ptr; 1289 PowerPCCPU *cpu = POWERPC_CPU(cs); 1290 CPUPPCState *env = &cpu->env; 1291 target_ulong lpcr; 1292 1293 cpu_synchronize_state(cs); 1294 lpcr = env->spr[SPR_LPCR]; 1295 lpcr &= ~s->mask; 1296 lpcr |= s->value; 1297 ppc_store_lpcr(cpu, lpcr); 1298 } 1299 1300 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask) 1301 { 1302 CPUState *cs; 1303 struct LPCRSyncState s = { 1304 .value = value, 1305 .mask = mask 1306 }; 1307 CPU_FOREACH(cs) { 1308 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s)); 1309 } 1310 } 1311 1312 static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu, 1313 target_ulong lpid, ppc_v3_pate_t *entry) 1314 { 1315 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1316 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 1317 1318 if (!spapr_cpu->in_nested) { 1319 assert(lpid == 0); 1320 1321 /* Copy PATE1:GR into PATE0:HR */ 1322 entry->dw0 = spapr->patb_entry & PATE0_HR; 1323 entry->dw1 = spapr->patb_entry; 1324 1325 } else { 1326 uint64_t patb, pats; 1327 1328 assert(lpid != 0); 1329 1330 patb = spapr->nested_ptcr & PTCR_PATB; 1331 pats = spapr->nested_ptcr & PTCR_PATS; 1332 1333 /* Calculate number of entries */ 1334 pats = 1ull << (pats + 12 - 4); 1335 if (pats <= lpid) { 1336 return false; 1337 } 1338 1339 /* Grab entry */ 1340 patb += 16 * lpid; 1341 entry->dw0 = ldq_phys(CPU(cpu)->as, patb); 1342 entry->dw1 = ldq_phys(CPU(cpu)->as, patb + 8); 1343 } 1344 1345 return true; 1346 } 1347 1348 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1349 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1350 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1351 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1352 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1353 1354 /* 1355 * Get the fd to access the kernel htab, re-opening it if necessary 1356 */ 1357 static int get_htab_fd(SpaprMachineState *spapr) 1358 { 1359 Error *local_err = NULL; 1360 1361 if (spapr->htab_fd >= 0) { 1362 return spapr->htab_fd; 1363 } 1364 1365 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1366 if (spapr->htab_fd < 0) { 1367 error_report_err(local_err); 1368 } 1369 1370 return spapr->htab_fd; 1371 } 1372 1373 void close_htab_fd(SpaprMachineState *spapr) 1374 { 1375 if (spapr->htab_fd >= 0) { 1376 close(spapr->htab_fd); 1377 } 1378 spapr->htab_fd = -1; 1379 } 1380 1381 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1382 { 1383 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1384 1385 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1386 } 1387 1388 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1389 { 1390 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1391 1392 assert(kvm_enabled()); 1393 1394 if (!spapr->htab) { 1395 return 0; 1396 } 1397 1398 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1399 } 1400 1401 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1402 hwaddr ptex, int n) 1403 { 1404 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1405 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1406 1407 if (!spapr->htab) { 1408 /* 1409 * HTAB is controlled by KVM. Fetch into temporary buffer 1410 */ 1411 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1412 kvmppc_read_hptes(hptes, ptex, n); 1413 return hptes; 1414 } 1415 1416 /* 1417 * HTAB is controlled by QEMU. Just point to the internally 1418 * accessible PTEG. 1419 */ 1420 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1421 } 1422 1423 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1424 const ppc_hash_pte64_t *hptes, 1425 hwaddr ptex, int n) 1426 { 1427 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1428 1429 if (!spapr->htab) { 1430 g_free((void *)hptes); 1431 } 1432 1433 /* Nothing to do for qemu managed HPT */ 1434 } 1435 1436 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex, 1437 uint64_t pte0, uint64_t pte1) 1438 { 1439 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp); 1440 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1441 1442 if (!spapr->htab) { 1443 kvmppc_write_hpte(ptex, pte0, pte1); 1444 } else { 1445 if (pte0 & HPTE64_V_VALID) { 1446 stq_p(spapr->htab + offset + HPTE64_DW1, pte1); 1447 /* 1448 * When setting valid, we write PTE1 first. This ensures 1449 * proper synchronization with the reading code in 1450 * ppc_hash64_pteg_search() 1451 */ 1452 smp_wmb(); 1453 stq_p(spapr->htab + offset, pte0); 1454 } else { 1455 stq_p(spapr->htab + offset, pte0); 1456 /* 1457 * When clearing it we set PTE0 first. This ensures proper 1458 * synchronization with the reading code in 1459 * ppc_hash64_pteg_search() 1460 */ 1461 smp_wmb(); 1462 stq_p(spapr->htab + offset + HPTE64_DW1, pte1); 1463 } 1464 } 1465 } 1466 1467 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1468 uint64_t pte1) 1469 { 1470 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C; 1471 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1472 1473 if (!spapr->htab) { 1474 /* There should always be a hash table when this is called */ 1475 error_report("spapr_hpte_set_c called with no hash table !"); 1476 return; 1477 } 1478 1479 /* The HW performs a non-atomic byte update */ 1480 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80); 1481 } 1482 1483 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1484 uint64_t pte1) 1485 { 1486 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R; 1487 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1488 1489 if (!spapr->htab) { 1490 /* There should always be a hash table when this is called */ 1491 error_report("spapr_hpte_set_r called with no hash table !"); 1492 return; 1493 } 1494 1495 /* The HW performs a non-atomic byte update */ 1496 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01); 1497 } 1498 1499 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1500 { 1501 int shift; 1502 1503 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1504 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1505 * that's much more than is needed for Linux guests */ 1506 shift = ctz64(pow2ceil(ramsize)) - 7; 1507 shift = MAX(shift, 18); /* Minimum architected size */ 1508 shift = MIN(shift, 46); /* Maximum architected size */ 1509 return shift; 1510 } 1511 1512 void spapr_free_hpt(SpaprMachineState *spapr) 1513 { 1514 g_free(spapr->htab); 1515 spapr->htab = NULL; 1516 spapr->htab_shift = 0; 1517 close_htab_fd(spapr); 1518 } 1519 1520 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp) 1521 { 1522 ERRP_GUARD(); 1523 long rc; 1524 1525 /* Clean up any HPT info from a previous boot */ 1526 spapr_free_hpt(spapr); 1527 1528 rc = kvmppc_reset_htab(shift); 1529 1530 if (rc == -EOPNOTSUPP) { 1531 error_setg(errp, "HPT not supported in nested guests"); 1532 return -EOPNOTSUPP; 1533 } 1534 1535 if (rc < 0) { 1536 /* kernel-side HPT needed, but couldn't allocate one */ 1537 error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d", 1538 shift); 1539 error_append_hint(errp, "Try smaller maxmem?\n"); 1540 return -errno; 1541 } else if (rc > 0) { 1542 /* kernel-side HPT allocated */ 1543 if (rc != shift) { 1544 error_setg(errp, 1545 "Requested order %d HPT, but kernel allocated order %ld", 1546 shift, rc); 1547 error_append_hint(errp, "Try smaller maxmem?\n"); 1548 return -ENOSPC; 1549 } 1550 1551 spapr->htab_shift = shift; 1552 spapr->htab = NULL; 1553 } else { 1554 /* kernel-side HPT not needed, allocate in userspace instead */ 1555 size_t size = 1ULL << shift; 1556 int i; 1557 1558 spapr->htab = qemu_memalign(size, size); 1559 memset(spapr->htab, 0, size); 1560 spapr->htab_shift = shift; 1561 1562 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1563 DIRTY_HPTE(HPTE(spapr->htab, i)); 1564 } 1565 } 1566 /* We're setting up a hash table, so that means we're not radix */ 1567 spapr->patb_entry = 0; 1568 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT); 1569 return 0; 1570 } 1571 1572 void spapr_setup_hpt(SpaprMachineState *spapr) 1573 { 1574 int hpt_shift; 1575 1576 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { 1577 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1578 } else { 1579 uint64_t current_ram_size; 1580 1581 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1582 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1583 } 1584 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1585 1586 if (kvm_enabled()) { 1587 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift); 1588 1589 /* Check our RMA fits in the possible VRMA */ 1590 if (vrma_limit < spapr->rma_size) { 1591 error_report("Unable to create %" HWADDR_PRIu 1592 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB", 1593 spapr->rma_size / MiB, vrma_limit / MiB); 1594 exit(EXIT_FAILURE); 1595 } 1596 } 1597 } 1598 1599 void spapr_check_mmu_mode(bool guest_radix) 1600 { 1601 if (guest_radix) { 1602 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) { 1603 error_report("Guest requested unavailable MMU mode (radix)."); 1604 exit(EXIT_FAILURE); 1605 } 1606 } else { 1607 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() 1608 && !kvmppc_has_cap_mmu_hash_v3()) { 1609 error_report("Guest requested unavailable MMU mode (hash)."); 1610 exit(EXIT_FAILURE); 1611 } 1612 } 1613 } 1614 1615 static void spapr_machine_reset(MachineState *machine) 1616 { 1617 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 1618 PowerPCCPU *first_ppc_cpu; 1619 hwaddr fdt_addr; 1620 void *fdt; 1621 int rc; 1622 1623 pef_kvm_reset(machine->cgs, &error_fatal); 1624 spapr_caps_apply(spapr); 1625 1626 first_ppc_cpu = POWERPC_CPU(first_cpu); 1627 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1628 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1629 spapr->max_compat_pvr)) { 1630 /* 1631 * If using KVM with radix mode available, VCPUs can be started 1632 * without a HPT because KVM will start them in radix mode. 1633 * Set the GR bit in PATE so that we know there is no HPT. 1634 */ 1635 spapr->patb_entry = PATE1_GR; 1636 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT); 1637 } else { 1638 spapr_setup_hpt(spapr); 1639 } 1640 1641 qemu_devices_reset(); 1642 1643 spapr_ovec_cleanup(spapr->ov5_cas); 1644 spapr->ov5_cas = spapr_ovec_new(); 1645 1646 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal); 1647 1648 /* 1649 * This is fixing some of the default configuration of the XIVE 1650 * devices. To be called after the reset of the machine devices. 1651 */ 1652 spapr_irq_reset(spapr, &error_fatal); 1653 1654 /* 1655 * There is no CAS under qtest. Simulate one to please the code that 1656 * depends on spapr->ov5_cas. This is especially needed to test device 1657 * unplug, so we do that before resetting the DRCs. 1658 */ 1659 if (qtest_enabled()) { 1660 spapr_ovec_cleanup(spapr->ov5_cas); 1661 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5); 1662 } 1663 1664 spapr_nvdimm_finish_flushes(); 1665 1666 /* DRC reset may cause a device to be unplugged. This will cause troubles 1667 * if this device is used by another device (eg, a running vhost backend 1668 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1669 * situations, we reset DRCs after all devices have been reset. 1670 */ 1671 spapr_drc_reset_all(spapr); 1672 1673 spapr_clear_pending_events(spapr); 1674 1675 /* 1676 * We place the device tree just below either the top of the RMA, 1677 * or just below 2GB, whichever is lower, so that it can be 1678 * processed with 32-bit real mode code if necessary 1679 */ 1680 fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE; 1681 1682 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE); 1683 if (spapr->vof) { 1684 spapr_vof_reset(spapr, fdt, &error_fatal); 1685 /* 1686 * Do not pack the FDT as the client may change properties. 1687 * VOF client does not expect the FDT so we do not load it to the VM. 1688 */ 1689 } else { 1690 rc = fdt_pack(fdt); 1691 /* Should only fail if we've built a corrupted tree */ 1692 assert(rc == 0); 1693 1694 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 1695 0, fdt_addr, 0); 1696 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1697 } 1698 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1699 1700 g_free(spapr->fdt_blob); 1701 spapr->fdt_size = fdt_totalsize(fdt); 1702 spapr->fdt_initial_size = spapr->fdt_size; 1703 spapr->fdt_blob = fdt; 1704 1705 /* Set up the entry state */ 1706 first_ppc_cpu->env.gpr[5] = 0; 1707 1708 spapr->fwnmi_system_reset_addr = -1; 1709 spapr->fwnmi_machine_check_addr = -1; 1710 spapr->fwnmi_machine_check_interlock = -1; 1711 1712 /* Signal all vCPUs waiting on this condition */ 1713 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond); 1714 1715 migrate_del_blocker(spapr->fwnmi_migration_blocker); 1716 } 1717 1718 static void spapr_create_nvram(SpaprMachineState *spapr) 1719 { 1720 DeviceState *dev = qdev_new("spapr-nvram"); 1721 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1722 1723 if (dinfo) { 1724 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo), 1725 &error_fatal); 1726 } 1727 1728 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal); 1729 1730 spapr->nvram = (struct SpaprNvram *)dev; 1731 } 1732 1733 static void spapr_rtc_create(SpaprMachineState *spapr) 1734 { 1735 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc, 1736 sizeof(spapr->rtc), TYPE_SPAPR_RTC, 1737 &error_fatal, NULL); 1738 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal); 1739 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1740 "date"); 1741 } 1742 1743 /* Returns whether we want to use VGA or not */ 1744 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1745 { 1746 switch (vga_interface_type) { 1747 case VGA_NONE: 1748 return false; 1749 case VGA_DEVICE: 1750 return true; 1751 case VGA_STD: 1752 case VGA_VIRTIO: 1753 case VGA_CIRRUS: 1754 return pci_vga_init(pci_bus) != NULL; 1755 default: 1756 error_setg(errp, 1757 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1758 return false; 1759 } 1760 } 1761 1762 static int spapr_pre_load(void *opaque) 1763 { 1764 int rc; 1765 1766 rc = spapr_caps_pre_load(opaque); 1767 if (rc) { 1768 return rc; 1769 } 1770 1771 return 0; 1772 } 1773 1774 static int spapr_post_load(void *opaque, int version_id) 1775 { 1776 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1777 int err = 0; 1778 1779 err = spapr_caps_post_migration(spapr); 1780 if (err) { 1781 return err; 1782 } 1783 1784 /* 1785 * In earlier versions, there was no separate qdev for the PAPR 1786 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1787 * So when migrating from those versions, poke the incoming offset 1788 * value into the RTC device 1789 */ 1790 if (version_id < 3) { 1791 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1792 if (err) { 1793 return err; 1794 } 1795 } 1796 1797 if (kvm_enabled() && spapr->patb_entry) { 1798 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1799 bool radix = !!(spapr->patb_entry & PATE1_GR); 1800 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1801 1802 /* 1803 * Update LPCR:HR and UPRT as they may not be set properly in 1804 * the stream 1805 */ 1806 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0, 1807 LPCR_HR | LPCR_UPRT); 1808 1809 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1810 if (err) { 1811 error_report("Process table config unsupported by the host"); 1812 return -EINVAL; 1813 } 1814 } 1815 1816 err = spapr_irq_post_load(spapr, version_id); 1817 if (err) { 1818 return err; 1819 } 1820 1821 return err; 1822 } 1823 1824 static int spapr_pre_save(void *opaque) 1825 { 1826 int rc; 1827 1828 rc = spapr_caps_pre_save(opaque); 1829 if (rc) { 1830 return rc; 1831 } 1832 1833 return 0; 1834 } 1835 1836 static bool version_before_3(void *opaque, int version_id) 1837 { 1838 return version_id < 3; 1839 } 1840 1841 static bool spapr_pending_events_needed(void *opaque) 1842 { 1843 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1844 return !QTAILQ_EMPTY(&spapr->pending_events); 1845 } 1846 1847 static const VMStateDescription vmstate_spapr_event_entry = { 1848 .name = "spapr_event_log_entry", 1849 .version_id = 1, 1850 .minimum_version_id = 1, 1851 .fields = (VMStateField[]) { 1852 VMSTATE_UINT32(summary, SpaprEventLogEntry), 1853 VMSTATE_UINT32(extended_length, SpaprEventLogEntry), 1854 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0, 1855 NULL, extended_length), 1856 VMSTATE_END_OF_LIST() 1857 }, 1858 }; 1859 1860 static const VMStateDescription vmstate_spapr_pending_events = { 1861 .name = "spapr_pending_events", 1862 .version_id = 1, 1863 .minimum_version_id = 1, 1864 .needed = spapr_pending_events_needed, 1865 .fields = (VMStateField[]) { 1866 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1, 1867 vmstate_spapr_event_entry, SpaprEventLogEntry, next), 1868 VMSTATE_END_OF_LIST() 1869 }, 1870 }; 1871 1872 static bool spapr_ov5_cas_needed(void *opaque) 1873 { 1874 SpaprMachineState *spapr = opaque; 1875 SpaprOptionVector *ov5_mask = spapr_ovec_new(); 1876 bool cas_needed; 1877 1878 /* Prior to the introduction of SpaprOptionVector, we had two option 1879 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1880 * Both of these options encode machine topology into the device-tree 1881 * in such a way that the now-booted OS should still be able to interact 1882 * appropriately with QEMU regardless of what options were actually 1883 * negotiatied on the source side. 1884 * 1885 * As such, we can avoid migrating the CAS-negotiated options if these 1886 * are the only options available on the current machine/platform. 1887 * Since these are the only options available for pseries-2.7 and 1888 * earlier, this allows us to maintain old->new/new->old migration 1889 * compatibility. 1890 * 1891 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1892 * via default pseries-2.8 machines and explicit command-line parameters. 1893 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1894 * of the actual CAS-negotiated values to continue working properly. For 1895 * example, availability of memory unplug depends on knowing whether 1896 * OV5_HP_EVT was negotiated via CAS. 1897 * 1898 * Thus, for any cases where the set of available CAS-negotiatable 1899 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 1900 * include the CAS-negotiated options in the migration stream, unless 1901 * if they affect boot time behaviour only. 1902 */ 1903 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 1904 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 1905 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 1906 1907 /* We need extra information if we have any bits outside the mask 1908 * defined above */ 1909 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask); 1910 1911 spapr_ovec_cleanup(ov5_mask); 1912 1913 return cas_needed; 1914 } 1915 1916 static const VMStateDescription vmstate_spapr_ov5_cas = { 1917 .name = "spapr_option_vector_ov5_cas", 1918 .version_id = 1, 1919 .minimum_version_id = 1, 1920 .needed = spapr_ov5_cas_needed, 1921 .fields = (VMStateField[]) { 1922 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1, 1923 vmstate_spapr_ovec, SpaprOptionVector), 1924 VMSTATE_END_OF_LIST() 1925 }, 1926 }; 1927 1928 static bool spapr_patb_entry_needed(void *opaque) 1929 { 1930 SpaprMachineState *spapr = opaque; 1931 1932 return !!spapr->patb_entry; 1933 } 1934 1935 static const VMStateDescription vmstate_spapr_patb_entry = { 1936 .name = "spapr_patb_entry", 1937 .version_id = 1, 1938 .minimum_version_id = 1, 1939 .needed = spapr_patb_entry_needed, 1940 .fields = (VMStateField[]) { 1941 VMSTATE_UINT64(patb_entry, SpaprMachineState), 1942 VMSTATE_END_OF_LIST() 1943 }, 1944 }; 1945 1946 static bool spapr_irq_map_needed(void *opaque) 1947 { 1948 SpaprMachineState *spapr = opaque; 1949 1950 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 1951 } 1952 1953 static const VMStateDescription vmstate_spapr_irq_map = { 1954 .name = "spapr_irq_map", 1955 .version_id = 1, 1956 .minimum_version_id = 1, 1957 .needed = spapr_irq_map_needed, 1958 .fields = (VMStateField[]) { 1959 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr), 1960 VMSTATE_END_OF_LIST() 1961 }, 1962 }; 1963 1964 static bool spapr_dtb_needed(void *opaque) 1965 { 1966 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); 1967 1968 return smc->update_dt_enabled; 1969 } 1970 1971 static int spapr_dtb_pre_load(void *opaque) 1972 { 1973 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1974 1975 g_free(spapr->fdt_blob); 1976 spapr->fdt_blob = NULL; 1977 spapr->fdt_size = 0; 1978 1979 return 0; 1980 } 1981 1982 static const VMStateDescription vmstate_spapr_dtb = { 1983 .name = "spapr_dtb", 1984 .version_id = 1, 1985 .minimum_version_id = 1, 1986 .needed = spapr_dtb_needed, 1987 .pre_load = spapr_dtb_pre_load, 1988 .fields = (VMStateField[]) { 1989 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState), 1990 VMSTATE_UINT32(fdt_size, SpaprMachineState), 1991 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL, 1992 fdt_size), 1993 VMSTATE_END_OF_LIST() 1994 }, 1995 }; 1996 1997 static bool spapr_fwnmi_needed(void *opaque) 1998 { 1999 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2000 2001 return spapr->fwnmi_machine_check_addr != -1; 2002 } 2003 2004 static int spapr_fwnmi_pre_save(void *opaque) 2005 { 2006 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2007 2008 /* 2009 * Check if machine check handling is in progress and print a 2010 * warning message. 2011 */ 2012 if (spapr->fwnmi_machine_check_interlock != -1) { 2013 warn_report("A machine check is being handled during migration. The" 2014 "handler may run and log hardware error on the destination"); 2015 } 2016 2017 return 0; 2018 } 2019 2020 static const VMStateDescription vmstate_spapr_fwnmi = { 2021 .name = "spapr_fwnmi", 2022 .version_id = 1, 2023 .minimum_version_id = 1, 2024 .needed = spapr_fwnmi_needed, 2025 .pre_save = spapr_fwnmi_pre_save, 2026 .fields = (VMStateField[]) { 2027 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState), 2028 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState), 2029 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState), 2030 VMSTATE_END_OF_LIST() 2031 }, 2032 }; 2033 2034 static const VMStateDescription vmstate_spapr = { 2035 .name = "spapr", 2036 .version_id = 3, 2037 .minimum_version_id = 1, 2038 .pre_load = spapr_pre_load, 2039 .post_load = spapr_post_load, 2040 .pre_save = spapr_pre_save, 2041 .fields = (VMStateField[]) { 2042 /* used to be @next_irq */ 2043 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 2044 2045 /* RTC offset */ 2046 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3), 2047 2048 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2), 2049 VMSTATE_END_OF_LIST() 2050 }, 2051 .subsections = (const VMStateDescription*[]) { 2052 &vmstate_spapr_ov5_cas, 2053 &vmstate_spapr_patb_entry, 2054 &vmstate_spapr_pending_events, 2055 &vmstate_spapr_cap_htm, 2056 &vmstate_spapr_cap_vsx, 2057 &vmstate_spapr_cap_dfp, 2058 &vmstate_spapr_cap_cfpc, 2059 &vmstate_spapr_cap_sbbc, 2060 &vmstate_spapr_cap_ibs, 2061 &vmstate_spapr_cap_hpt_maxpagesize, 2062 &vmstate_spapr_irq_map, 2063 &vmstate_spapr_cap_nested_kvm_hv, 2064 &vmstate_spapr_dtb, 2065 &vmstate_spapr_cap_large_decr, 2066 &vmstate_spapr_cap_ccf_assist, 2067 &vmstate_spapr_cap_fwnmi, 2068 &vmstate_spapr_fwnmi, 2069 &vmstate_spapr_cap_rpt_invalidate, 2070 NULL 2071 } 2072 }; 2073 2074 static int htab_save_setup(QEMUFile *f, void *opaque) 2075 { 2076 SpaprMachineState *spapr = opaque; 2077 2078 /* "Iteration" header */ 2079 if (!spapr->htab_shift) { 2080 qemu_put_be32(f, -1); 2081 } else { 2082 qemu_put_be32(f, spapr->htab_shift); 2083 } 2084 2085 if (spapr->htab) { 2086 spapr->htab_save_index = 0; 2087 spapr->htab_first_pass = true; 2088 } else { 2089 if (spapr->htab_shift) { 2090 assert(kvm_enabled()); 2091 } 2092 } 2093 2094 2095 return 0; 2096 } 2097 2098 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr, 2099 int chunkstart, int n_valid, int n_invalid) 2100 { 2101 qemu_put_be32(f, chunkstart); 2102 qemu_put_be16(f, n_valid); 2103 qemu_put_be16(f, n_invalid); 2104 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 2105 HASH_PTE_SIZE_64 * n_valid); 2106 } 2107 2108 static void htab_save_end_marker(QEMUFile *f) 2109 { 2110 qemu_put_be32(f, 0); 2111 qemu_put_be16(f, 0); 2112 qemu_put_be16(f, 0); 2113 } 2114 2115 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr, 2116 int64_t max_ns) 2117 { 2118 bool has_timeout = max_ns != -1; 2119 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2120 int index = spapr->htab_save_index; 2121 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2122 2123 assert(spapr->htab_first_pass); 2124 2125 do { 2126 int chunkstart; 2127 2128 /* Consume invalid HPTEs */ 2129 while ((index < htabslots) 2130 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2131 CLEAN_HPTE(HPTE(spapr->htab, index)); 2132 index++; 2133 } 2134 2135 /* Consume valid HPTEs */ 2136 chunkstart = index; 2137 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2138 && HPTE_VALID(HPTE(spapr->htab, index))) { 2139 CLEAN_HPTE(HPTE(spapr->htab, index)); 2140 index++; 2141 } 2142 2143 if (index > chunkstart) { 2144 int n_valid = index - chunkstart; 2145 2146 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2147 2148 if (has_timeout && 2149 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2150 break; 2151 } 2152 } 2153 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 2154 2155 if (index >= htabslots) { 2156 assert(index == htabslots); 2157 index = 0; 2158 spapr->htab_first_pass = false; 2159 } 2160 spapr->htab_save_index = index; 2161 } 2162 2163 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr, 2164 int64_t max_ns) 2165 { 2166 bool final = max_ns < 0; 2167 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2168 int examined = 0, sent = 0; 2169 int index = spapr->htab_save_index; 2170 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2171 2172 assert(!spapr->htab_first_pass); 2173 2174 do { 2175 int chunkstart, invalidstart; 2176 2177 /* Consume non-dirty HPTEs */ 2178 while ((index < htabslots) 2179 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2180 index++; 2181 examined++; 2182 } 2183 2184 chunkstart = index; 2185 /* Consume valid dirty HPTEs */ 2186 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2187 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2188 && HPTE_VALID(HPTE(spapr->htab, index))) { 2189 CLEAN_HPTE(HPTE(spapr->htab, index)); 2190 index++; 2191 examined++; 2192 } 2193 2194 invalidstart = index; 2195 /* Consume invalid dirty HPTEs */ 2196 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2197 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2198 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2199 CLEAN_HPTE(HPTE(spapr->htab, index)); 2200 index++; 2201 examined++; 2202 } 2203 2204 if (index > chunkstart) { 2205 int n_valid = invalidstart - chunkstart; 2206 int n_invalid = index - invalidstart; 2207 2208 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2209 sent += index - chunkstart; 2210 2211 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2212 break; 2213 } 2214 } 2215 2216 if (examined >= htabslots) { 2217 break; 2218 } 2219 2220 if (index >= htabslots) { 2221 assert(index == htabslots); 2222 index = 0; 2223 } 2224 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 2225 2226 if (index >= htabslots) { 2227 assert(index == htabslots); 2228 index = 0; 2229 } 2230 2231 spapr->htab_save_index = index; 2232 2233 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2234 } 2235 2236 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2237 #define MAX_KVM_BUF_SIZE 2048 2238 2239 static int htab_save_iterate(QEMUFile *f, void *opaque) 2240 { 2241 SpaprMachineState *spapr = opaque; 2242 int fd; 2243 int rc = 0; 2244 2245 /* Iteration header */ 2246 if (!spapr->htab_shift) { 2247 qemu_put_be32(f, -1); 2248 return 1; 2249 } else { 2250 qemu_put_be32(f, 0); 2251 } 2252 2253 if (!spapr->htab) { 2254 assert(kvm_enabled()); 2255 2256 fd = get_htab_fd(spapr); 2257 if (fd < 0) { 2258 return fd; 2259 } 2260 2261 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2262 if (rc < 0) { 2263 return rc; 2264 } 2265 } else if (spapr->htab_first_pass) { 2266 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2267 } else { 2268 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2269 } 2270 2271 htab_save_end_marker(f); 2272 2273 return rc; 2274 } 2275 2276 static int htab_save_complete(QEMUFile *f, void *opaque) 2277 { 2278 SpaprMachineState *spapr = opaque; 2279 int fd; 2280 2281 /* Iteration header */ 2282 if (!spapr->htab_shift) { 2283 qemu_put_be32(f, -1); 2284 return 0; 2285 } else { 2286 qemu_put_be32(f, 0); 2287 } 2288 2289 if (!spapr->htab) { 2290 int rc; 2291 2292 assert(kvm_enabled()); 2293 2294 fd = get_htab_fd(spapr); 2295 if (fd < 0) { 2296 return fd; 2297 } 2298 2299 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2300 if (rc < 0) { 2301 return rc; 2302 } 2303 } else { 2304 if (spapr->htab_first_pass) { 2305 htab_save_first_pass(f, spapr, -1); 2306 } 2307 htab_save_later_pass(f, spapr, -1); 2308 } 2309 2310 /* End marker */ 2311 htab_save_end_marker(f); 2312 2313 return 0; 2314 } 2315 2316 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2317 { 2318 SpaprMachineState *spapr = opaque; 2319 uint32_t section_hdr; 2320 int fd = -1; 2321 Error *local_err = NULL; 2322 2323 if (version_id < 1 || version_id > 1) { 2324 error_report("htab_load() bad version"); 2325 return -EINVAL; 2326 } 2327 2328 section_hdr = qemu_get_be32(f); 2329 2330 if (section_hdr == -1) { 2331 spapr_free_hpt(spapr); 2332 return 0; 2333 } 2334 2335 if (section_hdr) { 2336 int ret; 2337 2338 /* First section gives the htab size */ 2339 ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2340 if (ret < 0) { 2341 error_report_err(local_err); 2342 return ret; 2343 } 2344 return 0; 2345 } 2346 2347 if (!spapr->htab) { 2348 assert(kvm_enabled()); 2349 2350 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2351 if (fd < 0) { 2352 error_report_err(local_err); 2353 return fd; 2354 } 2355 } 2356 2357 while (true) { 2358 uint32_t index; 2359 uint16_t n_valid, n_invalid; 2360 2361 index = qemu_get_be32(f); 2362 n_valid = qemu_get_be16(f); 2363 n_invalid = qemu_get_be16(f); 2364 2365 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2366 /* End of Stream */ 2367 break; 2368 } 2369 2370 if ((index + n_valid + n_invalid) > 2371 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2372 /* Bad index in stream */ 2373 error_report( 2374 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2375 index, n_valid, n_invalid, spapr->htab_shift); 2376 return -EINVAL; 2377 } 2378 2379 if (spapr->htab) { 2380 if (n_valid) { 2381 qemu_get_buffer(f, HPTE(spapr->htab, index), 2382 HASH_PTE_SIZE_64 * n_valid); 2383 } 2384 if (n_invalid) { 2385 memset(HPTE(spapr->htab, index + n_valid), 0, 2386 HASH_PTE_SIZE_64 * n_invalid); 2387 } 2388 } else { 2389 int rc; 2390 2391 assert(fd >= 0); 2392 2393 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid, 2394 &local_err); 2395 if (rc < 0) { 2396 error_report_err(local_err); 2397 return rc; 2398 } 2399 } 2400 } 2401 2402 if (!spapr->htab) { 2403 assert(fd >= 0); 2404 close(fd); 2405 } 2406 2407 return 0; 2408 } 2409 2410 static void htab_save_cleanup(void *opaque) 2411 { 2412 SpaprMachineState *spapr = opaque; 2413 2414 close_htab_fd(spapr); 2415 } 2416 2417 static SaveVMHandlers savevm_htab_handlers = { 2418 .save_setup = htab_save_setup, 2419 .save_live_iterate = htab_save_iterate, 2420 .save_live_complete_precopy = htab_save_complete, 2421 .save_cleanup = htab_save_cleanup, 2422 .load_state = htab_load, 2423 }; 2424 2425 static void spapr_boot_set(void *opaque, const char *boot_device, 2426 Error **errp) 2427 { 2428 SpaprMachineState *spapr = SPAPR_MACHINE(opaque); 2429 2430 g_free(spapr->boot_device); 2431 spapr->boot_device = g_strdup(boot_device); 2432 } 2433 2434 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr) 2435 { 2436 MachineState *machine = MACHINE(spapr); 2437 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2438 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2439 int i; 2440 2441 for (i = 0; i < nr_lmbs; i++) { 2442 uint64_t addr; 2443 2444 addr = i * lmb_size + machine->device_memory->base; 2445 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2446 addr / lmb_size); 2447 } 2448 } 2449 2450 /* 2451 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2452 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2453 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2454 */ 2455 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2456 { 2457 int i; 2458 2459 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2460 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2461 " is not aligned to %" PRIu64 " MiB", 2462 machine->ram_size, 2463 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2464 return; 2465 } 2466 2467 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2468 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2469 " is not aligned to %" PRIu64 " MiB", 2470 machine->ram_size, 2471 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2472 return; 2473 } 2474 2475 for (i = 0; i < machine->numa_state->num_nodes; i++) { 2476 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2477 error_setg(errp, 2478 "Node %d memory size 0x%" PRIx64 2479 " is not aligned to %" PRIu64 " MiB", 2480 i, machine->numa_state->nodes[i].node_mem, 2481 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2482 return; 2483 } 2484 } 2485 } 2486 2487 /* find cpu slot in machine->possible_cpus by core_id */ 2488 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2489 { 2490 int index = id / ms->smp.threads; 2491 2492 if (index >= ms->possible_cpus->len) { 2493 return NULL; 2494 } 2495 if (idx) { 2496 *idx = index; 2497 } 2498 return &ms->possible_cpus->cpus[index]; 2499 } 2500 2501 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp) 2502 { 2503 MachineState *ms = MACHINE(spapr); 2504 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 2505 Error *local_err = NULL; 2506 bool vsmt_user = !!spapr->vsmt; 2507 int kvm_smt = kvmppc_smt_threads(); 2508 int ret; 2509 unsigned int smp_threads = ms->smp.threads; 2510 2511 if (!kvm_enabled() && (smp_threads > 1)) { 2512 error_setg(errp, "TCG cannot support more than 1 thread/core " 2513 "on a pseries machine"); 2514 return; 2515 } 2516 if (!is_power_of_2(smp_threads)) { 2517 error_setg(errp, "Cannot support %d threads/core on a pseries " 2518 "machine because it must be a power of 2", smp_threads); 2519 return; 2520 } 2521 2522 /* Detemine the VSMT mode to use: */ 2523 if (vsmt_user) { 2524 if (spapr->vsmt < smp_threads) { 2525 error_setg(errp, "Cannot support VSMT mode %d" 2526 " because it must be >= threads/core (%d)", 2527 spapr->vsmt, smp_threads); 2528 return; 2529 } 2530 /* In this case, spapr->vsmt has been set by the command line */ 2531 } else if (!smc->smp_threads_vsmt) { 2532 /* 2533 * Default VSMT value is tricky, because we need it to be as 2534 * consistent as possible (for migration), but this requires 2535 * changing it for at least some existing cases. We pick 8 as 2536 * the value that we'd get with KVM on POWER8, the 2537 * overwhelmingly common case in production systems. 2538 */ 2539 spapr->vsmt = MAX(8, smp_threads); 2540 } else { 2541 spapr->vsmt = smp_threads; 2542 } 2543 2544 /* KVM: If necessary, set the SMT mode: */ 2545 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2546 ret = kvmppc_set_smt_threads(spapr->vsmt); 2547 if (ret) { 2548 /* Looks like KVM isn't able to change VSMT mode */ 2549 error_setg(&local_err, 2550 "Failed to set KVM's VSMT mode to %d (errno %d)", 2551 spapr->vsmt, ret); 2552 /* We can live with that if the default one is big enough 2553 * for the number of threads, and a submultiple of the one 2554 * we want. In this case we'll waste some vcpu ids, but 2555 * behaviour will be correct */ 2556 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2557 warn_report_err(local_err); 2558 } else { 2559 if (!vsmt_user) { 2560 error_append_hint(&local_err, 2561 "On PPC, a VM with %d threads/core" 2562 " on a host with %d threads/core" 2563 " requires the use of VSMT mode %d.\n", 2564 smp_threads, kvm_smt, spapr->vsmt); 2565 } 2566 kvmppc_error_append_smt_possible_hint(&local_err); 2567 error_propagate(errp, local_err); 2568 } 2569 } 2570 } 2571 /* else TCG: nothing to do currently */ 2572 } 2573 2574 static void spapr_init_cpus(SpaprMachineState *spapr) 2575 { 2576 MachineState *machine = MACHINE(spapr); 2577 MachineClass *mc = MACHINE_GET_CLASS(machine); 2578 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2579 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2580 const CPUArchIdList *possible_cpus; 2581 unsigned int smp_cpus = machine->smp.cpus; 2582 unsigned int smp_threads = machine->smp.threads; 2583 unsigned int max_cpus = machine->smp.max_cpus; 2584 int boot_cores_nr = smp_cpus / smp_threads; 2585 int i; 2586 2587 possible_cpus = mc->possible_cpu_arch_ids(machine); 2588 if (mc->has_hotpluggable_cpus) { 2589 if (smp_cpus % smp_threads) { 2590 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2591 smp_cpus, smp_threads); 2592 exit(1); 2593 } 2594 if (max_cpus % smp_threads) { 2595 error_report("max_cpus (%u) must be multiple of threads (%u)", 2596 max_cpus, smp_threads); 2597 exit(1); 2598 } 2599 } else { 2600 if (max_cpus != smp_cpus) { 2601 error_report("This machine version does not support CPU hotplug"); 2602 exit(1); 2603 } 2604 boot_cores_nr = possible_cpus->len; 2605 } 2606 2607 if (smc->pre_2_10_has_unused_icps) { 2608 int i; 2609 2610 for (i = 0; i < spapr_max_server_number(spapr); i++) { 2611 /* Dummy entries get deregistered when real ICPState objects 2612 * are registered during CPU core hotplug. 2613 */ 2614 pre_2_10_vmstate_register_dummy_icp(i); 2615 } 2616 } 2617 2618 for (i = 0; i < possible_cpus->len; i++) { 2619 int core_id = i * smp_threads; 2620 2621 if (mc->has_hotpluggable_cpus) { 2622 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2623 spapr_vcpu_id(spapr, core_id)); 2624 } 2625 2626 if (i < boot_cores_nr) { 2627 Object *core = object_new(type); 2628 int nr_threads = smp_threads; 2629 2630 /* Handle the partially filled core for older machine types */ 2631 if ((i + 1) * smp_threads >= smp_cpus) { 2632 nr_threads = smp_cpus - i * smp_threads; 2633 } 2634 2635 object_property_set_int(core, "nr-threads", nr_threads, 2636 &error_fatal); 2637 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id, 2638 &error_fatal); 2639 qdev_realize(DEVICE(core), NULL, &error_fatal); 2640 2641 object_unref(core); 2642 } 2643 } 2644 } 2645 2646 static PCIHostState *spapr_create_default_phb(void) 2647 { 2648 DeviceState *dev; 2649 2650 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE); 2651 qdev_prop_set_uint32(dev, "index", 0); 2652 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 2653 2654 return PCI_HOST_BRIDGE(dev); 2655 } 2656 2657 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp) 2658 { 2659 MachineState *machine = MACHINE(spapr); 2660 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 2661 hwaddr rma_size = machine->ram_size; 2662 hwaddr node0_size = spapr_node0_size(machine); 2663 2664 /* RMA has to fit in the first NUMA node */ 2665 rma_size = MIN(rma_size, node0_size); 2666 2667 /* 2668 * VRMA access is via a special 1TiB SLB mapping, so the RMA can 2669 * never exceed that 2670 */ 2671 rma_size = MIN(rma_size, 1 * TiB); 2672 2673 /* 2674 * Clamp the RMA size based on machine type. This is for 2675 * migration compatibility with older qemu versions, which limited 2676 * the RMA size for complicated and mostly bad reasons. 2677 */ 2678 if (smc->rma_limit) { 2679 rma_size = MIN(rma_size, smc->rma_limit); 2680 } 2681 2682 if (rma_size < MIN_RMA_SLOF) { 2683 error_setg(errp, 2684 "pSeries SLOF firmware requires >= %" HWADDR_PRIx 2685 "ldMiB guest RMA (Real Mode Area memory)", 2686 MIN_RMA_SLOF / MiB); 2687 return 0; 2688 } 2689 2690 return rma_size; 2691 } 2692 2693 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr) 2694 { 2695 MachineState *machine = MACHINE(spapr); 2696 int i; 2697 2698 for (i = 0; i < machine->ram_slots; i++) { 2699 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i); 2700 } 2701 } 2702 2703 /* pSeries LPAR / sPAPR hardware init */ 2704 static void spapr_machine_init(MachineState *machine) 2705 { 2706 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 2707 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2708 MachineClass *mc = MACHINE_GET_CLASS(machine); 2709 const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME; 2710 const char *bios_name = machine->firmware ?: bios_default; 2711 g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 2712 const char *kernel_filename = machine->kernel_filename; 2713 const char *initrd_filename = machine->initrd_filename; 2714 PCIHostState *phb; 2715 int i; 2716 MemoryRegion *sysmem = get_system_memory(); 2717 long load_limit, fw_size; 2718 Error *resize_hpt_err = NULL; 2719 2720 if (!filename) { 2721 error_report("Could not find LPAR firmware '%s'", bios_name); 2722 exit(1); 2723 } 2724 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 2725 if (fw_size <= 0) { 2726 error_report("Could not load LPAR firmware '%s'", filename); 2727 exit(1); 2728 } 2729 2730 /* 2731 * if Secure VM (PEF) support is configured, then initialize it 2732 */ 2733 pef_kvm_init(machine->cgs, &error_fatal); 2734 2735 msi_nonbroken = true; 2736 2737 QLIST_INIT(&spapr->phbs); 2738 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2739 2740 /* Determine capabilities to run with */ 2741 spapr_caps_init(spapr); 2742 2743 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2744 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2745 /* 2746 * If the user explicitly requested a mode we should either 2747 * supply it, or fail completely (which we do below). But if 2748 * it's not set explicitly, we reset our mode to something 2749 * that works 2750 */ 2751 if (resize_hpt_err) { 2752 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2753 error_free(resize_hpt_err); 2754 resize_hpt_err = NULL; 2755 } else { 2756 spapr->resize_hpt = smc->resize_hpt_default; 2757 } 2758 } 2759 2760 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2761 2762 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2763 /* 2764 * User requested HPT resize, but this host can't supply it. Bail out 2765 */ 2766 error_report_err(resize_hpt_err); 2767 exit(1); 2768 } 2769 error_free(resize_hpt_err); 2770 2771 spapr->rma_size = spapr_rma_size(spapr, &error_fatal); 2772 2773 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2774 load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD; 2775 2776 /* 2777 * VSMT must be set in order to be able to compute VCPU ids, ie to 2778 * call spapr_max_server_number() or spapr_vcpu_id(). 2779 */ 2780 spapr_set_vsmt_mode(spapr, &error_fatal); 2781 2782 /* Set up Interrupt Controller before we create the VCPUs */ 2783 spapr_irq_init(spapr, &error_fatal); 2784 2785 /* Set up containers for ibm,client-architecture-support negotiated options 2786 */ 2787 spapr->ov5 = spapr_ovec_new(); 2788 spapr->ov5_cas = spapr_ovec_new(); 2789 2790 if (smc->dr_lmb_enabled) { 2791 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2792 spapr_validate_node_memory(machine, &error_fatal); 2793 } 2794 2795 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2796 2797 /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */ 2798 if (!smc->pre_6_2_numa_affinity) { 2799 spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY); 2800 } 2801 2802 /* advertise support for dedicated HP event source to guests */ 2803 if (spapr->use_hotplug_event_source) { 2804 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2805 } 2806 2807 /* advertise support for HPT resizing */ 2808 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2809 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2810 } 2811 2812 /* advertise support for ibm,dyamic-memory-v2 */ 2813 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2814 2815 /* advertise XIVE on POWER9 machines */ 2816 if (spapr->irq->xive) { 2817 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); 2818 } 2819 2820 /* init CPUs */ 2821 spapr_init_cpus(spapr); 2822 2823 spapr->gpu_numa_id = spapr_numa_initial_nvgpu_numa_id(machine); 2824 2825 /* Init numa_assoc_array */ 2826 spapr_numa_associativity_init(spapr, machine); 2827 2828 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2829 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2830 spapr->max_compat_pvr)) { 2831 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300); 2832 /* KVM and TCG always allow GTSE with radix... */ 2833 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2834 } 2835 /* ... but not with hash (currently). */ 2836 2837 if (kvm_enabled()) { 2838 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2839 kvmppc_enable_logical_ci_hcalls(); 2840 kvmppc_enable_set_mode_hcall(); 2841 2842 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2843 kvmppc_enable_clear_ref_mod_hcalls(); 2844 2845 /* Enable H_PAGE_INIT */ 2846 kvmppc_enable_h_page_init(); 2847 } 2848 2849 /* map RAM */ 2850 memory_region_add_subregion(sysmem, 0, machine->ram); 2851 2852 /* always allocate the device memory information */ 2853 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 2854 2855 /* initialize hotplug memory address space */ 2856 if (machine->ram_size < machine->maxram_size) { 2857 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2858 /* 2859 * Limit the number of hotpluggable memory slots to half the number 2860 * slots that KVM supports, leaving the other half for PCI and other 2861 * devices. However ensure that number of slots doesn't drop below 32. 2862 */ 2863 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2864 SPAPR_MAX_RAM_SLOTS; 2865 2866 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2867 max_memslots = SPAPR_MAX_RAM_SLOTS; 2868 } 2869 if (machine->ram_slots > max_memslots) { 2870 error_report("Specified number of memory slots %" 2871 PRIu64" exceeds max supported %d", 2872 machine->ram_slots, max_memslots); 2873 exit(1); 2874 } 2875 2876 machine->device_memory->base = ROUND_UP(machine->ram_size, 2877 SPAPR_DEVICE_MEM_ALIGN); 2878 memory_region_init(&machine->device_memory->mr, OBJECT(spapr), 2879 "device-memory", device_mem_size); 2880 memory_region_add_subregion(sysmem, machine->device_memory->base, 2881 &machine->device_memory->mr); 2882 } 2883 2884 if (smc->dr_lmb_enabled) { 2885 spapr_create_lmb_dr_connectors(spapr); 2886 } 2887 2888 if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) { 2889 /* Create the error string for live migration blocker */ 2890 error_setg(&spapr->fwnmi_migration_blocker, 2891 "A machine check is being handled during migration. The handler" 2892 "may run and log hardware error on the destination"); 2893 } 2894 2895 if (mc->nvdimm_supported) { 2896 spapr_create_nvdimm_dr_connectors(spapr); 2897 } 2898 2899 /* Set up RTAS event infrastructure */ 2900 spapr_events_init(spapr); 2901 2902 /* Set up the RTC RTAS interfaces */ 2903 spapr_rtc_create(spapr); 2904 2905 /* Set up VIO bus */ 2906 spapr->vio_bus = spapr_vio_bus_init(); 2907 2908 for (i = 0; serial_hd(i); i++) { 2909 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2910 } 2911 2912 /* We always have at least the nvram device on VIO */ 2913 spapr_create_nvram(spapr); 2914 2915 /* 2916 * Setup hotplug / dynamic-reconfiguration connectors. top-level 2917 * connectors (described in root DT node's "ibm,drc-types" property) 2918 * are pre-initialized here. additional child connectors (such as 2919 * connectors for a PHBs PCI slots) are added as needed during their 2920 * parent's realization. 2921 */ 2922 if (smc->dr_phb_enabled) { 2923 for (i = 0; i < SPAPR_MAX_PHBS; i++) { 2924 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i); 2925 } 2926 } 2927 2928 /* Set up PCI */ 2929 spapr_pci_rtas_init(); 2930 2931 phb = spapr_create_default_phb(); 2932 2933 for (i = 0; i < nb_nics; i++) { 2934 NICInfo *nd = &nd_table[i]; 2935 2936 if (!nd->model) { 2937 nd->model = g_strdup("spapr-vlan"); 2938 } 2939 2940 if (g_str_equal(nd->model, "spapr-vlan") || 2941 g_str_equal(nd->model, "ibmveth")) { 2942 spapr_vlan_create(spapr->vio_bus, nd); 2943 } else { 2944 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2945 } 2946 } 2947 2948 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2949 spapr_vscsi_create(spapr->vio_bus); 2950 } 2951 2952 /* Graphics */ 2953 if (spapr_vga_init(phb->bus, &error_fatal)) { 2954 spapr->has_graphics = true; 2955 machine->usb |= defaults_enabled() && !machine->usb_disabled; 2956 } 2957 2958 if (machine->usb) { 2959 if (smc->use_ohci_by_default) { 2960 pci_create_simple(phb->bus, -1, "pci-ohci"); 2961 } else { 2962 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 2963 } 2964 2965 if (spapr->has_graphics) { 2966 USBBus *usb_bus = usb_bus_find(-1); 2967 2968 usb_create_simple(usb_bus, "usb-kbd"); 2969 usb_create_simple(usb_bus, "usb-mouse"); 2970 } 2971 } 2972 2973 if (kernel_filename) { 2974 spapr->kernel_size = load_elf(kernel_filename, NULL, 2975 translate_kernel_address, spapr, 2976 NULL, NULL, NULL, NULL, 1, 2977 PPC_ELF_MACHINE, 0, 0); 2978 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 2979 spapr->kernel_size = load_elf(kernel_filename, NULL, 2980 translate_kernel_address, spapr, 2981 NULL, NULL, NULL, NULL, 0, 2982 PPC_ELF_MACHINE, 0, 0); 2983 spapr->kernel_le = spapr->kernel_size > 0; 2984 } 2985 if (spapr->kernel_size < 0) { 2986 error_report("error loading %s: %s", kernel_filename, 2987 load_elf_strerror(spapr->kernel_size)); 2988 exit(1); 2989 } 2990 2991 /* load initrd */ 2992 if (initrd_filename) { 2993 /* Try to locate the initrd in the gap between the kernel 2994 * and the firmware. Add a bit of space just in case 2995 */ 2996 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size 2997 + 0x1ffff) & ~0xffff; 2998 spapr->initrd_size = load_image_targphys(initrd_filename, 2999 spapr->initrd_base, 3000 load_limit 3001 - spapr->initrd_base); 3002 if (spapr->initrd_size < 0) { 3003 error_report("could not load initial ram disk '%s'", 3004 initrd_filename); 3005 exit(1); 3006 } 3007 } 3008 } 3009 3010 /* FIXME: Should register things through the MachineState's qdev 3011 * interface, this is a legacy from the sPAPREnvironment structure 3012 * which predated MachineState but had a similar function */ 3013 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 3014 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1, 3015 &savevm_htab_handlers, spapr); 3016 3017 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine)); 3018 3019 qemu_register_boot_set(spapr_boot_set, spapr); 3020 3021 /* 3022 * Nothing needs to be done to resume a suspended guest because 3023 * suspending does not change the machine state, so no need for 3024 * a ->wakeup method. 3025 */ 3026 qemu_register_wakeup_support(); 3027 3028 if (kvm_enabled()) { 3029 /* to stop and start vmclock */ 3030 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 3031 &spapr->tb); 3032 3033 kvmppc_spapr_enable_inkernel_multitce(); 3034 } 3035 3036 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond); 3037 if (spapr->vof) { 3038 spapr->vof->fw_size = fw_size; /* for claim() on itself */ 3039 spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client); 3040 } 3041 } 3042 3043 #define DEFAULT_KVM_TYPE "auto" 3044 static int spapr_kvm_type(MachineState *machine, const char *vm_type) 3045 { 3046 /* 3047 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to 3048 * accomodate the 'HV' and 'PV' formats that exists in the 3049 * wild. The 'auto' mode is being introduced already as 3050 * lower-case, thus we don't need to bother checking for 3051 * "AUTO". 3052 */ 3053 if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) { 3054 return 0; 3055 } 3056 3057 if (!g_ascii_strcasecmp(vm_type, "hv")) { 3058 return 1; 3059 } 3060 3061 if (!g_ascii_strcasecmp(vm_type, "pr")) { 3062 return 2; 3063 } 3064 3065 error_report("Unknown kvm-type specified '%s'", vm_type); 3066 exit(1); 3067 } 3068 3069 /* 3070 * Implementation of an interface to adjust firmware path 3071 * for the bootindex property handling. 3072 */ 3073 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 3074 DeviceState *dev) 3075 { 3076 #define CAST(type, obj, name) \ 3077 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 3078 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 3079 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 3080 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 3081 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3082 3083 if (d && bus) { 3084 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 3085 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 3086 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 3087 3088 if (spapr) { 3089 /* 3090 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 3091 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form 3092 * 0x8000 | (target << 8) | (bus << 5) | lun 3093 * (see the "Logical unit addressing format" table in SAM5) 3094 */ 3095 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; 3096 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3097 (uint64_t)id << 48); 3098 } else if (virtio) { 3099 /* 3100 * We use SRP luns of the form 01000000 | (target << 8) | lun 3101 * in the top 32 bits of the 64-bit LUN 3102 * Note: the quote above is from SLOF and it is wrong, 3103 * the actual binding is: 3104 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 3105 */ 3106 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 3107 if (d->lun >= 256) { 3108 /* Use the LUN "flat space addressing method" */ 3109 id |= 0x4000; 3110 } 3111 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3112 (uint64_t)id << 32); 3113 } else if (usb) { 3114 /* 3115 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 3116 * in the top 32 bits of the 64-bit LUN 3117 */ 3118 unsigned usb_port = atoi(usb->port->path); 3119 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 3120 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3121 (uint64_t)id << 32); 3122 } 3123 } 3124 3125 /* 3126 * SLOF probes the USB devices, and if it recognizes that the device is a 3127 * storage device, it changes its name to "storage" instead of "usb-host", 3128 * and additionally adds a child node for the SCSI LUN, so the correct 3129 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 3130 */ 3131 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 3132 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 3133 if (usb_device_is_scsi_storage(usbdev)) { 3134 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 3135 } 3136 } 3137 3138 if (phb) { 3139 /* Replace "pci" with "pci@800000020000000" */ 3140 return g_strdup_printf("pci@%"PRIX64, phb->buid); 3141 } 3142 3143 if (vsc) { 3144 /* Same logic as virtio above */ 3145 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 3146 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 3147 } 3148 3149 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 3150 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 3151 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3152 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); 3153 } 3154 3155 if (pcidev) { 3156 return spapr_pci_fw_dev_name(pcidev); 3157 } 3158 3159 return NULL; 3160 } 3161 3162 static char *spapr_get_kvm_type(Object *obj, Error **errp) 3163 { 3164 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3165 3166 return g_strdup(spapr->kvm_type); 3167 } 3168 3169 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 3170 { 3171 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3172 3173 g_free(spapr->kvm_type); 3174 spapr->kvm_type = g_strdup(value); 3175 } 3176 3177 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 3178 { 3179 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3180 3181 return spapr->use_hotplug_event_source; 3182 } 3183 3184 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 3185 Error **errp) 3186 { 3187 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3188 3189 spapr->use_hotplug_event_source = value; 3190 } 3191 3192 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 3193 { 3194 return true; 3195 } 3196 3197 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 3198 { 3199 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3200 3201 switch (spapr->resize_hpt) { 3202 case SPAPR_RESIZE_HPT_DEFAULT: 3203 return g_strdup("default"); 3204 case SPAPR_RESIZE_HPT_DISABLED: 3205 return g_strdup("disabled"); 3206 case SPAPR_RESIZE_HPT_ENABLED: 3207 return g_strdup("enabled"); 3208 case SPAPR_RESIZE_HPT_REQUIRED: 3209 return g_strdup("required"); 3210 } 3211 g_assert_not_reached(); 3212 } 3213 3214 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3215 { 3216 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3217 3218 if (strcmp(value, "default") == 0) { 3219 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3220 } else if (strcmp(value, "disabled") == 0) { 3221 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3222 } else if (strcmp(value, "enabled") == 0) { 3223 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3224 } else if (strcmp(value, "required") == 0) { 3225 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3226 } else { 3227 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3228 } 3229 } 3230 3231 static bool spapr_get_vof(Object *obj, Error **errp) 3232 { 3233 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3234 3235 return spapr->vof != NULL; 3236 } 3237 3238 static void spapr_set_vof(Object *obj, bool value, Error **errp) 3239 { 3240 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3241 3242 if (spapr->vof) { 3243 vof_cleanup(spapr->vof); 3244 g_free(spapr->vof); 3245 spapr->vof = NULL; 3246 } 3247 if (!value) { 3248 return; 3249 } 3250 spapr->vof = g_malloc0(sizeof(*spapr->vof)); 3251 } 3252 3253 static char *spapr_get_ic_mode(Object *obj, Error **errp) 3254 { 3255 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3256 3257 if (spapr->irq == &spapr_irq_xics_legacy) { 3258 return g_strdup("legacy"); 3259 } else if (spapr->irq == &spapr_irq_xics) { 3260 return g_strdup("xics"); 3261 } else if (spapr->irq == &spapr_irq_xive) { 3262 return g_strdup("xive"); 3263 } else if (spapr->irq == &spapr_irq_dual) { 3264 return g_strdup("dual"); 3265 } 3266 g_assert_not_reached(); 3267 } 3268 3269 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) 3270 { 3271 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3272 3273 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 3274 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); 3275 return; 3276 } 3277 3278 /* The legacy IRQ backend can not be set */ 3279 if (strcmp(value, "xics") == 0) { 3280 spapr->irq = &spapr_irq_xics; 3281 } else if (strcmp(value, "xive") == 0) { 3282 spapr->irq = &spapr_irq_xive; 3283 } else if (strcmp(value, "dual") == 0) { 3284 spapr->irq = &spapr_irq_dual; 3285 } else { 3286 error_setg(errp, "Bad value for \"ic-mode\" property"); 3287 } 3288 } 3289 3290 static char *spapr_get_host_model(Object *obj, Error **errp) 3291 { 3292 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3293 3294 return g_strdup(spapr->host_model); 3295 } 3296 3297 static void spapr_set_host_model(Object *obj, const char *value, Error **errp) 3298 { 3299 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3300 3301 g_free(spapr->host_model); 3302 spapr->host_model = g_strdup(value); 3303 } 3304 3305 static char *spapr_get_host_serial(Object *obj, Error **errp) 3306 { 3307 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3308 3309 return g_strdup(spapr->host_serial); 3310 } 3311 3312 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) 3313 { 3314 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3315 3316 g_free(spapr->host_serial); 3317 spapr->host_serial = g_strdup(value); 3318 } 3319 3320 static void spapr_instance_init(Object *obj) 3321 { 3322 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3323 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3324 MachineState *ms = MACHINE(spapr); 3325 MachineClass *mc = MACHINE_GET_CLASS(ms); 3326 3327 /* 3328 * NVDIMM support went live in 5.1 without considering that, in 3329 * other archs, the user needs to enable NVDIMM support with the 3330 * 'nvdimm' machine option and the default behavior is NVDIMM 3331 * support disabled. It is too late to roll back to the standard 3332 * behavior without breaking 5.1 guests. 3333 */ 3334 if (mc->nvdimm_supported) { 3335 ms->nvdimms_state->is_enabled = true; 3336 } 3337 3338 spapr->htab_fd = -1; 3339 spapr->use_hotplug_event_source = true; 3340 spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE); 3341 object_property_add_str(obj, "kvm-type", 3342 spapr_get_kvm_type, spapr_set_kvm_type); 3343 object_property_set_description(obj, "kvm-type", 3344 "Specifies the KVM virtualization mode (auto," 3345 " hv, pr). Defaults to 'auto'. This mode will use" 3346 " any available KVM module loaded in the host," 3347 " where kvm_hv takes precedence if both kvm_hv and" 3348 " kvm_pr are loaded."); 3349 object_property_add_bool(obj, "modern-hotplug-events", 3350 spapr_get_modern_hotplug_events, 3351 spapr_set_modern_hotplug_events); 3352 object_property_set_description(obj, "modern-hotplug-events", 3353 "Use dedicated hotplug event mechanism in" 3354 " place of standard EPOW events when possible" 3355 " (required for memory hot-unplug support)"); 3356 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3357 "Maximum permitted CPU compatibility mode"); 3358 3359 object_property_add_str(obj, "resize-hpt", 3360 spapr_get_resize_hpt, spapr_set_resize_hpt); 3361 object_property_set_description(obj, "resize-hpt", 3362 "Resizing of the Hash Page Table (enabled, disabled, required)"); 3363 object_property_add_uint32_ptr(obj, "vsmt", 3364 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE); 3365 object_property_set_description(obj, "vsmt", 3366 "Virtual SMT: KVM behaves as if this were" 3367 " the host's SMT mode"); 3368 3369 object_property_add_bool(obj, "vfio-no-msix-emulation", 3370 spapr_get_msix_emulation, NULL); 3371 3372 object_property_add_uint64_ptr(obj, "kernel-addr", 3373 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE); 3374 object_property_set_description(obj, "kernel-addr", 3375 stringify(KERNEL_LOAD_ADDR) 3376 " for -kernel is the default"); 3377 spapr->kernel_addr = KERNEL_LOAD_ADDR; 3378 3379 object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof); 3380 object_property_set_description(obj, "x-vof", 3381 "Enable Virtual Open Firmware (experimental)"); 3382 3383 /* The machine class defines the default interrupt controller mode */ 3384 spapr->irq = smc->irq; 3385 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, 3386 spapr_set_ic_mode); 3387 object_property_set_description(obj, "ic-mode", 3388 "Specifies the interrupt controller mode (xics, xive, dual)"); 3389 3390 object_property_add_str(obj, "host-model", 3391 spapr_get_host_model, spapr_set_host_model); 3392 object_property_set_description(obj, "host-model", 3393 "Host model to advertise in guest device tree"); 3394 object_property_add_str(obj, "host-serial", 3395 spapr_get_host_serial, spapr_set_host_serial); 3396 object_property_set_description(obj, "host-serial", 3397 "Host serial number to advertise in guest device tree"); 3398 } 3399 3400 static void spapr_machine_finalizefn(Object *obj) 3401 { 3402 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3403 3404 g_free(spapr->kvm_type); 3405 } 3406 3407 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3408 { 3409 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 3410 PowerPCCPU *cpu = POWERPC_CPU(cs); 3411 CPUPPCState *env = &cpu->env; 3412 3413 cpu_synchronize_state(cs); 3414 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */ 3415 if (spapr->fwnmi_system_reset_addr != -1) { 3416 uint64_t rtas_addr, addr; 3417 3418 /* get rtas addr from fdt */ 3419 rtas_addr = spapr_get_rtas_addr(); 3420 if (!rtas_addr) { 3421 qemu_system_guest_panicked(NULL); 3422 return; 3423 } 3424 3425 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2; 3426 stq_be_phys(&address_space_memory, addr, env->gpr[3]); 3427 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0); 3428 env->gpr[3] = addr; 3429 } 3430 ppc_cpu_do_system_reset(cs); 3431 if (spapr->fwnmi_system_reset_addr != -1) { 3432 env->nip = spapr->fwnmi_system_reset_addr; 3433 } 3434 } 3435 3436 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3437 { 3438 CPUState *cs; 3439 3440 CPU_FOREACH(cs) { 3441 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3442 } 3443 } 3444 3445 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3446 void *fdt, int *fdt_start_offset, Error **errp) 3447 { 3448 uint64_t addr; 3449 uint32_t node; 3450 3451 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE; 3452 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP, 3453 &error_abort); 3454 *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr, 3455 SPAPR_MEMORY_BLOCK_SIZE); 3456 return 0; 3457 } 3458 3459 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3460 bool dedicated_hp_event_source) 3461 { 3462 SpaprDrc *drc; 3463 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3464 int i; 3465 uint64_t addr = addr_start; 3466 bool hotplugged = spapr_drc_hotplugged(dev); 3467 3468 for (i = 0; i < nr_lmbs; i++) { 3469 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3470 addr / SPAPR_MEMORY_BLOCK_SIZE); 3471 g_assert(drc); 3472 3473 /* 3474 * memory_device_get_free_addr() provided a range of free addresses 3475 * that doesn't overlap with any existing mapping at pre-plug. The 3476 * corresponding LMB DRCs are thus assumed to be all attachable. 3477 */ 3478 spapr_drc_attach(drc, dev); 3479 if (!hotplugged) { 3480 spapr_drc_reset(drc); 3481 } 3482 addr += SPAPR_MEMORY_BLOCK_SIZE; 3483 } 3484 /* send hotplug notification to the 3485 * guest only in case of hotplugged memory 3486 */ 3487 if (hotplugged) { 3488 if (dedicated_hp_event_source) { 3489 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3490 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3491 g_assert(drc); 3492 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3493 nr_lmbs, 3494 spapr_drc_index(drc)); 3495 } else { 3496 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3497 nr_lmbs); 3498 } 3499 } 3500 } 3501 3502 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 3503 { 3504 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3505 PCDIMMDevice *dimm = PC_DIMM(dev); 3506 uint64_t size, addr; 3507 int64_t slot; 3508 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 3509 3510 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3511 3512 pc_dimm_plug(dimm, MACHINE(ms)); 3513 3514 if (!is_nvdimm) { 3515 addr = object_property_get_uint(OBJECT(dimm), 3516 PC_DIMM_ADDR_PROP, &error_abort); 3517 spapr_add_lmbs(dev, addr, size, 3518 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT)); 3519 } else { 3520 slot = object_property_get_int(OBJECT(dimm), 3521 PC_DIMM_SLOT_PROP, &error_abort); 3522 /* We should have valid slot number at this point */ 3523 g_assert(slot >= 0); 3524 spapr_add_nvdimm(dev, slot); 3525 } 3526 } 3527 3528 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3529 Error **errp) 3530 { 3531 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3532 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3533 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 3534 PCDIMMDevice *dimm = PC_DIMM(dev); 3535 Error *local_err = NULL; 3536 uint64_t size; 3537 Object *memdev; 3538 hwaddr pagesize; 3539 3540 if (!smc->dr_lmb_enabled) { 3541 error_setg(errp, "Memory hotplug not supported for this machine"); 3542 return; 3543 } 3544 3545 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3546 if (local_err) { 3547 error_propagate(errp, local_err); 3548 return; 3549 } 3550 3551 if (is_nvdimm) { 3552 if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) { 3553 return; 3554 } 3555 } else if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3556 error_setg(errp, "Hotplugged memory size must be a multiple of " 3557 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3558 return; 3559 } 3560 3561 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3562 &error_abort); 3563 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3564 if (!spapr_check_pagesize(spapr, pagesize, errp)) { 3565 return; 3566 } 3567 3568 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp); 3569 } 3570 3571 struct SpaprDimmState { 3572 PCDIMMDevice *dimm; 3573 uint32_t nr_lmbs; 3574 QTAILQ_ENTRY(SpaprDimmState) next; 3575 }; 3576 3577 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s, 3578 PCDIMMDevice *dimm) 3579 { 3580 SpaprDimmState *dimm_state = NULL; 3581 3582 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3583 if (dimm_state->dimm == dimm) { 3584 break; 3585 } 3586 } 3587 return dimm_state; 3588 } 3589 3590 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr, 3591 uint32_t nr_lmbs, 3592 PCDIMMDevice *dimm) 3593 { 3594 SpaprDimmState *ds = NULL; 3595 3596 /* 3597 * If this request is for a DIMM whose removal had failed earlier 3598 * (due to guest's refusal to remove the LMBs), we would have this 3599 * dimm already in the pending_dimm_unplugs list. In that 3600 * case don't add again. 3601 */ 3602 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3603 if (!ds) { 3604 ds = g_malloc0(sizeof(SpaprDimmState)); 3605 ds->nr_lmbs = nr_lmbs; 3606 ds->dimm = dimm; 3607 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3608 } 3609 return ds; 3610 } 3611 3612 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr, 3613 SpaprDimmState *dimm_state) 3614 { 3615 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3616 g_free(dimm_state); 3617 } 3618 3619 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms, 3620 PCDIMMDevice *dimm) 3621 { 3622 SpaprDrc *drc; 3623 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3624 &error_abort); 3625 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3626 uint32_t avail_lmbs = 0; 3627 uint64_t addr_start, addr; 3628 int i; 3629 3630 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3631 &error_abort); 3632 3633 addr = addr_start; 3634 for (i = 0; i < nr_lmbs; i++) { 3635 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3636 addr / SPAPR_MEMORY_BLOCK_SIZE); 3637 g_assert(drc); 3638 if (drc->dev) { 3639 avail_lmbs++; 3640 } 3641 addr += SPAPR_MEMORY_BLOCK_SIZE; 3642 } 3643 3644 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3645 } 3646 3647 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev) 3648 { 3649 SpaprDimmState *ds; 3650 PCDIMMDevice *dimm; 3651 SpaprDrc *drc; 3652 uint32_t nr_lmbs; 3653 uint64_t size, addr_start, addr; 3654 g_autofree char *qapi_error = NULL; 3655 int i; 3656 3657 if (!dev) { 3658 return; 3659 } 3660 3661 dimm = PC_DIMM(dev); 3662 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3663 3664 /* 3665 * 'ds == NULL' would mean that the DIMM doesn't have a pending 3666 * unplug state, but one of its DRC is marked as unplug_requested. 3667 * This is bad and weird enough to g_assert() out. 3668 */ 3669 g_assert(ds); 3670 3671 spapr_pending_dimm_unplugs_remove(spapr, ds); 3672 3673 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3674 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3675 3676 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3677 &error_abort); 3678 3679 addr = addr_start; 3680 for (i = 0; i < nr_lmbs; i++) { 3681 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3682 addr / SPAPR_MEMORY_BLOCK_SIZE); 3683 g_assert(drc); 3684 3685 drc->unplug_requested = false; 3686 addr += SPAPR_MEMORY_BLOCK_SIZE; 3687 } 3688 3689 /* 3690 * Tell QAPI that something happened and the memory 3691 * hotunplug wasn't successful. Keep sending 3692 * MEM_UNPLUG_ERROR even while sending 3693 * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of 3694 * MEM_UNPLUG_ERROR is due. 3695 */ 3696 qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest " 3697 "for device %s", dev->id); 3698 3699 qapi_event_send_mem_unplug_error(dev->id ? : "", qapi_error); 3700 3701 qapi_event_send_device_unplug_guest_error(!!dev->id, dev->id, 3702 dev->canonical_path); 3703 } 3704 3705 /* Callback to be called during DRC release. */ 3706 void spapr_lmb_release(DeviceState *dev) 3707 { 3708 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3709 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3710 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3711 3712 /* This information will get lost if a migration occurs 3713 * during the unplug process. In this case recover it. */ 3714 if (ds == NULL) { 3715 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3716 g_assert(ds); 3717 /* The DRC being examined by the caller at least must be counted */ 3718 g_assert(ds->nr_lmbs); 3719 } 3720 3721 if (--ds->nr_lmbs) { 3722 return; 3723 } 3724 3725 /* 3726 * Now that all the LMBs have been removed by the guest, call the 3727 * unplug handler chain. This can never fail. 3728 */ 3729 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3730 object_unparent(OBJECT(dev)); 3731 } 3732 3733 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3734 { 3735 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3736 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3737 3738 /* We really shouldn't get this far without anything to unplug */ 3739 g_assert(ds); 3740 3741 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3742 qdev_unrealize(dev); 3743 spapr_pending_dimm_unplugs_remove(spapr, ds); 3744 } 3745 3746 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3747 DeviceState *dev, Error **errp) 3748 { 3749 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3750 PCDIMMDevice *dimm = PC_DIMM(dev); 3751 uint32_t nr_lmbs; 3752 uint64_t size, addr_start, addr; 3753 int i; 3754 SpaprDrc *drc; 3755 3756 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 3757 error_setg(errp, "nvdimm device hot unplug is not supported yet."); 3758 return; 3759 } 3760 3761 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3762 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3763 3764 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3765 &error_abort); 3766 3767 /* 3768 * An existing pending dimm state for this DIMM means that there is an 3769 * unplug operation in progress, waiting for the spapr_lmb_release 3770 * callback to complete the job (BQL can't cover that far). In this case, 3771 * bail out to avoid detaching DRCs that were already released. 3772 */ 3773 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3774 error_setg(errp, "Memory unplug already in progress for device %s", 3775 dev->id); 3776 return; 3777 } 3778 3779 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3780 3781 addr = addr_start; 3782 for (i = 0; i < nr_lmbs; i++) { 3783 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3784 addr / SPAPR_MEMORY_BLOCK_SIZE); 3785 g_assert(drc); 3786 3787 spapr_drc_unplug_request(drc); 3788 addr += SPAPR_MEMORY_BLOCK_SIZE; 3789 } 3790 3791 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3792 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3793 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3794 nr_lmbs, spapr_drc_index(drc)); 3795 } 3796 3797 /* Callback to be called during DRC release. */ 3798 void spapr_core_release(DeviceState *dev) 3799 { 3800 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3801 3802 /* Call the unplug handler chain. This can never fail. */ 3803 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3804 object_unparent(OBJECT(dev)); 3805 } 3806 3807 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3808 { 3809 MachineState *ms = MACHINE(hotplug_dev); 3810 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3811 CPUCore *cc = CPU_CORE(dev); 3812 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3813 3814 if (smc->pre_2_10_has_unused_icps) { 3815 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3816 int i; 3817 3818 for (i = 0; i < cc->nr_threads; i++) { 3819 CPUState *cs = CPU(sc->threads[i]); 3820 3821 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3822 } 3823 } 3824 3825 assert(core_slot); 3826 core_slot->cpu = NULL; 3827 qdev_unrealize(dev); 3828 } 3829 3830 static 3831 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3832 Error **errp) 3833 { 3834 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3835 int index; 3836 SpaprDrc *drc; 3837 CPUCore *cc = CPU_CORE(dev); 3838 3839 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3840 error_setg(errp, "Unable to find CPU core with core-id: %d", 3841 cc->core_id); 3842 return; 3843 } 3844 if (index == 0) { 3845 error_setg(errp, "Boot CPU core may not be unplugged"); 3846 return; 3847 } 3848 3849 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3850 spapr_vcpu_id(spapr, cc->core_id)); 3851 g_assert(drc); 3852 3853 if (!spapr_drc_unplug_requested(drc)) { 3854 spapr_drc_unplug_request(drc); 3855 } 3856 3857 /* 3858 * spapr_hotplug_req_remove_by_index is left unguarded, out of the 3859 * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ 3860 * pulses removing the same CPU. Otherwise, in an failed hotunplug 3861 * attempt (e.g. the kernel will refuse to remove the last online 3862 * CPU), we will never attempt it again because unplug_requested 3863 * will still be 'true' in that case. 3864 */ 3865 spapr_hotplug_req_remove_by_index(drc); 3866 } 3867 3868 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3869 void *fdt, int *fdt_start_offset, Error **errp) 3870 { 3871 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev); 3872 CPUState *cs = CPU(core->threads[0]); 3873 PowerPCCPU *cpu = POWERPC_CPU(cs); 3874 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3875 int id = spapr_get_vcpu_id(cpu); 3876 g_autofree char *nodename = NULL; 3877 int offset; 3878 3879 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3880 offset = fdt_add_subnode(fdt, 0, nodename); 3881 3882 spapr_dt_cpu(cs, fdt, offset, spapr); 3883 3884 /* 3885 * spapr_dt_cpu() does not fill the 'name' property in the 3886 * CPU node. The function is called during boot process, before 3887 * and after CAS, and overwriting the 'name' property written 3888 * by SLOF is not allowed. 3889 * 3890 * Write it manually after spapr_dt_cpu(). This makes the hotplug 3891 * CPUs more compatible with the coldplugged ones, which have 3892 * the 'name' property. Linux Kernel also relies on this 3893 * property to identify CPU nodes. 3894 */ 3895 _FDT((fdt_setprop_string(fdt, offset, "name", nodename))); 3896 3897 *fdt_start_offset = offset; 3898 return 0; 3899 } 3900 3901 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 3902 { 3903 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3904 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3905 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3906 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3907 CPUCore *cc = CPU_CORE(dev); 3908 CPUState *cs; 3909 SpaprDrc *drc; 3910 CPUArchId *core_slot; 3911 int index; 3912 bool hotplugged = spapr_drc_hotplugged(dev); 3913 int i; 3914 3915 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3916 g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */ 3917 3918 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3919 spapr_vcpu_id(spapr, cc->core_id)); 3920 3921 g_assert(drc || !mc->has_hotpluggable_cpus); 3922 3923 if (drc) { 3924 /* 3925 * spapr_core_pre_plug() already buys us this is a brand new 3926 * core being plugged into a free slot. Nothing should already 3927 * be attached to the corresponding DRC. 3928 */ 3929 spapr_drc_attach(drc, dev); 3930 3931 if (hotplugged) { 3932 /* 3933 * Send hotplug notification interrupt to the guest only 3934 * in case of hotplugged CPUs. 3935 */ 3936 spapr_hotplug_req_add_by_index(drc); 3937 } else { 3938 spapr_drc_reset(drc); 3939 } 3940 } 3941 3942 core_slot->cpu = OBJECT(dev); 3943 3944 /* 3945 * Set compatibility mode to match the boot CPU, which was either set 3946 * by the machine reset code or by CAS. This really shouldn't fail at 3947 * this point. 3948 */ 3949 if (hotplugged) { 3950 for (i = 0; i < cc->nr_threads; i++) { 3951 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr, 3952 &error_abort); 3953 } 3954 } 3955 3956 if (smc->pre_2_10_has_unused_icps) { 3957 for (i = 0; i < cc->nr_threads; i++) { 3958 cs = CPU(core->threads[i]); 3959 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 3960 } 3961 } 3962 } 3963 3964 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3965 Error **errp) 3966 { 3967 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 3968 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 3969 CPUCore *cc = CPU_CORE(dev); 3970 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 3971 const char *type = object_get_typename(OBJECT(dev)); 3972 CPUArchId *core_slot; 3973 int index; 3974 unsigned int smp_threads = machine->smp.threads; 3975 3976 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 3977 error_setg(errp, "CPU hotplug not supported for this machine"); 3978 return; 3979 } 3980 3981 if (strcmp(base_core_type, type)) { 3982 error_setg(errp, "CPU core type should be %s", base_core_type); 3983 return; 3984 } 3985 3986 if (cc->core_id % smp_threads) { 3987 error_setg(errp, "invalid core id %d", cc->core_id); 3988 return; 3989 } 3990 3991 /* 3992 * In general we should have homogeneous threads-per-core, but old 3993 * (pre hotplug support) machine types allow the last core to have 3994 * reduced threads as a compatibility hack for when we allowed 3995 * total vcpus not a multiple of threads-per-core. 3996 */ 3997 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 3998 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads, 3999 smp_threads); 4000 return; 4001 } 4002 4003 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 4004 if (!core_slot) { 4005 error_setg(errp, "core id %d out of range", cc->core_id); 4006 return; 4007 } 4008 4009 if (core_slot->cpu) { 4010 error_setg(errp, "core %d already populated", cc->core_id); 4011 return; 4012 } 4013 4014 numa_cpu_pre_plug(core_slot, dev, errp); 4015 } 4016 4017 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 4018 void *fdt, int *fdt_start_offset, Error **errp) 4019 { 4020 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev); 4021 int intc_phandle; 4022 4023 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp); 4024 if (intc_phandle <= 0) { 4025 return -1; 4026 } 4027 4028 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) { 4029 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index); 4030 return -1; 4031 } 4032 4033 /* generally SLOF creates these, for hotplug it's up to QEMU */ 4034 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci")); 4035 4036 return 0; 4037 } 4038 4039 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4040 Error **errp) 4041 { 4042 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4043 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4044 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 4045 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 4046 SpaprDrc *drc; 4047 4048 if (dev->hotplugged && !smc->dr_phb_enabled) { 4049 error_setg(errp, "PHB hotplug not supported for this machine"); 4050 return false; 4051 } 4052 4053 if (sphb->index == (uint32_t)-1) { 4054 error_setg(errp, "\"index\" for PAPR PHB is mandatory"); 4055 return false; 4056 } 4057 4058 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4059 if (drc && drc->dev) { 4060 error_setg(errp, "PHB %d already attached", sphb->index); 4061 return false; 4062 } 4063 4064 /* 4065 * This will check that sphb->index doesn't exceed the maximum number of 4066 * PHBs for the current machine type. 4067 */ 4068 return 4069 smc->phb_placement(spapr, sphb->index, 4070 &sphb->buid, &sphb->io_win_addr, 4071 &sphb->mem_win_addr, &sphb->mem64_win_addr, 4072 windows_supported, sphb->dma_liobn, 4073 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr, 4074 errp); 4075 } 4076 4077 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 4078 { 4079 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4080 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 4081 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4082 SpaprDrc *drc; 4083 bool hotplugged = spapr_drc_hotplugged(dev); 4084 4085 if (!smc->dr_phb_enabled) { 4086 return; 4087 } 4088 4089 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4090 /* hotplug hooks should check it's enabled before getting this far */ 4091 assert(drc); 4092 4093 /* spapr_phb_pre_plug() already checked the DRC is attachable */ 4094 spapr_drc_attach(drc, dev); 4095 4096 if (hotplugged) { 4097 spapr_hotplug_req_add_by_index(drc); 4098 } else { 4099 spapr_drc_reset(drc); 4100 } 4101 } 4102 4103 void spapr_phb_release(DeviceState *dev) 4104 { 4105 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 4106 4107 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 4108 object_unparent(OBJECT(dev)); 4109 } 4110 4111 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4112 { 4113 qdev_unrealize(dev); 4114 } 4115 4116 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev, 4117 DeviceState *dev, Error **errp) 4118 { 4119 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4120 SpaprDrc *drc; 4121 4122 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4123 assert(drc); 4124 4125 if (!spapr_drc_unplug_requested(drc)) { 4126 spapr_drc_unplug_request(drc); 4127 spapr_hotplug_req_remove_by_index(drc); 4128 } else { 4129 error_setg(errp, 4130 "PCI Host Bridge unplug already in progress for device %s", 4131 dev->id); 4132 } 4133 } 4134 4135 static 4136 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4137 Error **errp) 4138 { 4139 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4140 4141 if (spapr->tpm_proxy != NULL) { 4142 error_setg(errp, "Only one TPM proxy can be specified for this machine"); 4143 return false; 4144 } 4145 4146 return true; 4147 } 4148 4149 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 4150 { 4151 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4152 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev); 4153 4154 /* Already checked in spapr_tpm_proxy_pre_plug() */ 4155 g_assert(spapr->tpm_proxy == NULL); 4156 4157 spapr->tpm_proxy = tpm_proxy; 4158 } 4159 4160 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4161 { 4162 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4163 4164 qdev_unrealize(dev); 4165 object_unparent(OBJECT(dev)); 4166 spapr->tpm_proxy = NULL; 4167 } 4168 4169 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 4170 DeviceState *dev, Error **errp) 4171 { 4172 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4173 spapr_memory_plug(hotplug_dev, dev); 4174 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4175 spapr_core_plug(hotplug_dev, dev); 4176 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4177 spapr_phb_plug(hotplug_dev, dev); 4178 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4179 spapr_tpm_proxy_plug(hotplug_dev, dev); 4180 } 4181 } 4182 4183 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 4184 DeviceState *dev, Error **errp) 4185 { 4186 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4187 spapr_memory_unplug(hotplug_dev, dev); 4188 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4189 spapr_core_unplug(hotplug_dev, dev); 4190 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4191 spapr_phb_unplug(hotplug_dev, dev); 4192 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4193 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4194 } 4195 } 4196 4197 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr) 4198 { 4199 return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) || 4200 /* 4201 * CAS will process all pending unplug requests. 4202 * 4203 * HACK: a guest could theoretically have cleared all bits in OV5, 4204 * but none of the guests we care for do. 4205 */ 4206 spapr_ovec_empty(spapr->ov5_cas); 4207 } 4208 4209 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 4210 DeviceState *dev, Error **errp) 4211 { 4212 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4213 MachineClass *mc = MACHINE_GET_CLASS(sms); 4214 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4215 4216 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4217 if (spapr_memory_hot_unplug_supported(sms)) { 4218 spapr_memory_unplug_request(hotplug_dev, dev, errp); 4219 } else { 4220 error_setg(errp, "Memory hot unplug not supported for this guest"); 4221 } 4222 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4223 if (!mc->has_hotpluggable_cpus) { 4224 error_setg(errp, "CPU hot unplug not supported on this machine"); 4225 return; 4226 } 4227 spapr_core_unplug_request(hotplug_dev, dev, errp); 4228 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4229 if (!smc->dr_phb_enabled) { 4230 error_setg(errp, "PHB hot unplug not supported on this machine"); 4231 return; 4232 } 4233 spapr_phb_unplug_request(hotplug_dev, dev, errp); 4234 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4235 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4236 } 4237 } 4238 4239 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 4240 DeviceState *dev, Error **errp) 4241 { 4242 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4243 spapr_memory_pre_plug(hotplug_dev, dev, errp); 4244 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4245 spapr_core_pre_plug(hotplug_dev, dev, errp); 4246 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4247 spapr_phb_pre_plug(hotplug_dev, dev, errp); 4248 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4249 spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp); 4250 } 4251 } 4252 4253 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 4254 DeviceState *dev) 4255 { 4256 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 4257 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) || 4258 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) || 4259 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4260 return HOTPLUG_HANDLER(machine); 4261 } 4262 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 4263 PCIDevice *pcidev = PCI_DEVICE(dev); 4264 PCIBus *root = pci_device_root_bus(pcidev); 4265 SpaprPhbState *phb = 4266 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent), 4267 TYPE_SPAPR_PCI_HOST_BRIDGE); 4268 4269 if (phb) { 4270 return HOTPLUG_HANDLER(phb); 4271 } 4272 } 4273 return NULL; 4274 } 4275 4276 static CpuInstanceProperties 4277 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 4278 { 4279 CPUArchId *core_slot; 4280 MachineClass *mc = MACHINE_GET_CLASS(machine); 4281 4282 /* make sure possible_cpu are intialized */ 4283 mc->possible_cpu_arch_ids(machine); 4284 /* get CPU core slot containing thread that matches cpu_index */ 4285 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 4286 assert(core_slot); 4287 return core_slot->props; 4288 } 4289 4290 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 4291 { 4292 return idx / ms->smp.cores % ms->numa_state->num_nodes; 4293 } 4294 4295 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 4296 { 4297 int i; 4298 unsigned int smp_threads = machine->smp.threads; 4299 unsigned int smp_cpus = machine->smp.cpus; 4300 const char *core_type; 4301 int spapr_max_cores = machine->smp.max_cpus / smp_threads; 4302 MachineClass *mc = MACHINE_GET_CLASS(machine); 4303 4304 if (!mc->has_hotpluggable_cpus) { 4305 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 4306 } 4307 if (machine->possible_cpus) { 4308 assert(machine->possible_cpus->len == spapr_max_cores); 4309 return machine->possible_cpus; 4310 } 4311 4312 core_type = spapr_get_cpu_core_type(machine->cpu_type); 4313 if (!core_type) { 4314 error_report("Unable to find sPAPR CPU Core definition"); 4315 exit(1); 4316 } 4317 4318 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 4319 sizeof(CPUArchId) * spapr_max_cores); 4320 machine->possible_cpus->len = spapr_max_cores; 4321 for (i = 0; i < machine->possible_cpus->len; i++) { 4322 int core_id = i * smp_threads; 4323 4324 machine->possible_cpus->cpus[i].type = core_type; 4325 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 4326 machine->possible_cpus->cpus[i].arch_id = core_id; 4327 machine->possible_cpus->cpus[i].props.has_core_id = true; 4328 machine->possible_cpus->cpus[i].props.core_id = core_id; 4329 } 4330 return machine->possible_cpus; 4331 } 4332 4333 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index, 4334 uint64_t *buid, hwaddr *pio, 4335 hwaddr *mmio32, hwaddr *mmio64, 4336 unsigned n_dma, uint32_t *liobns, 4337 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4338 { 4339 /* 4340 * New-style PHB window placement. 4341 * 4342 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 4343 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 4344 * windows. 4345 * 4346 * Some guest kernels can't work with MMIO windows above 1<<46 4347 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 4348 * 4349 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 4350 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 4351 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 4352 * 1TiB 64-bit MMIO windows for each PHB. 4353 */ 4354 const uint64_t base_buid = 0x800000020000000ULL; 4355 int i; 4356 4357 /* Sanity check natural alignments */ 4358 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4359 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4360 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 4361 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 4362 /* Sanity check bounds */ 4363 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 4364 SPAPR_PCI_MEM32_WIN_SIZE); 4365 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 4366 SPAPR_PCI_MEM64_WIN_SIZE); 4367 4368 if (index >= SPAPR_MAX_PHBS) { 4369 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 4370 SPAPR_MAX_PHBS - 1); 4371 return false; 4372 } 4373 4374 *buid = base_buid + index; 4375 for (i = 0; i < n_dma; ++i) { 4376 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4377 } 4378 4379 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 4380 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 4381 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 4382 4383 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE; 4384 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE; 4385 return true; 4386 } 4387 4388 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 4389 { 4390 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4391 4392 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 4393 } 4394 4395 static void spapr_ics_resend(XICSFabric *dev) 4396 { 4397 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4398 4399 ics_resend(spapr->ics); 4400 } 4401 4402 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 4403 { 4404 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 4405 4406 return cpu ? spapr_cpu_state(cpu)->icp : NULL; 4407 } 4408 4409 static void spapr_pic_print_info(InterruptStatsProvider *obj, 4410 Monitor *mon) 4411 { 4412 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 4413 4414 spapr_irq_print_info(spapr, mon); 4415 monitor_printf(mon, "irqchip: %s\n", 4416 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated"); 4417 } 4418 4419 /* 4420 * This is a XIVE only operation 4421 */ 4422 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format, 4423 uint8_t nvt_blk, uint32_t nvt_idx, 4424 bool cam_ignore, uint8_t priority, 4425 uint32_t logic_serv, XiveTCTXMatch *match) 4426 { 4427 SpaprMachineState *spapr = SPAPR_MACHINE(xfb); 4428 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc); 4429 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); 4430 int count; 4431 4432 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore, 4433 priority, logic_serv, match); 4434 if (count < 0) { 4435 return count; 4436 } 4437 4438 /* 4439 * When we implement the save and restore of the thread interrupt 4440 * contexts in the enter/exit CPU handlers of the machine and the 4441 * escalations in QEMU, we should be able to handle non dispatched 4442 * vCPUs. 4443 * 4444 * Until this is done, the sPAPR machine should find at least one 4445 * matching context always. 4446 */ 4447 if (count == 0) { 4448 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n", 4449 nvt_blk, nvt_idx); 4450 } 4451 4452 return count; 4453 } 4454 4455 int spapr_get_vcpu_id(PowerPCCPU *cpu) 4456 { 4457 return cpu->vcpu_id; 4458 } 4459 4460 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 4461 { 4462 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 4463 MachineState *ms = MACHINE(spapr); 4464 int vcpu_id; 4465 4466 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 4467 4468 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 4469 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 4470 error_append_hint(errp, "Adjust the number of cpus to %d " 4471 "or try to raise the number of threads per core\n", 4472 vcpu_id * ms->smp.threads / spapr->vsmt); 4473 return false; 4474 } 4475 4476 cpu->vcpu_id = vcpu_id; 4477 return true; 4478 } 4479 4480 PowerPCCPU *spapr_find_cpu(int vcpu_id) 4481 { 4482 CPUState *cs; 4483 4484 CPU_FOREACH(cs) { 4485 PowerPCCPU *cpu = POWERPC_CPU(cs); 4486 4487 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 4488 return cpu; 4489 } 4490 } 4491 4492 return NULL; 4493 } 4494 4495 static bool spapr_cpu_in_nested(PowerPCCPU *cpu) 4496 { 4497 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4498 4499 return spapr_cpu->in_nested; 4500 } 4501 4502 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4503 { 4504 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4505 4506 /* These are only called by TCG, KVM maintains dispatch state */ 4507 4508 spapr_cpu->prod = false; 4509 if (spapr_cpu->vpa_addr) { 4510 CPUState *cs = CPU(cpu); 4511 uint32_t dispatch; 4512 4513 dispatch = ldl_be_phys(cs->as, 4514 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4515 dispatch++; 4516 if ((dispatch & 1) != 0) { 4517 qemu_log_mask(LOG_GUEST_ERROR, 4518 "VPA: incorrect dispatch counter value for " 4519 "dispatched partition %u, correcting.\n", dispatch); 4520 dispatch++; 4521 } 4522 stl_be_phys(cs->as, 4523 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4524 } 4525 } 4526 4527 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4528 { 4529 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4530 4531 if (spapr_cpu->vpa_addr) { 4532 CPUState *cs = CPU(cpu); 4533 uint32_t dispatch; 4534 4535 dispatch = ldl_be_phys(cs->as, 4536 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4537 dispatch++; 4538 if ((dispatch & 1) != 1) { 4539 qemu_log_mask(LOG_GUEST_ERROR, 4540 "VPA: incorrect dispatch counter value for " 4541 "preempted partition %u, correcting.\n", dispatch); 4542 dispatch++; 4543 } 4544 stl_be_phys(cs->as, 4545 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4546 } 4547 } 4548 4549 static void spapr_machine_class_init(ObjectClass *oc, void *data) 4550 { 4551 MachineClass *mc = MACHINE_CLASS(oc); 4552 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 4553 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 4554 NMIClass *nc = NMI_CLASS(oc); 4555 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 4556 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 4557 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 4558 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 4559 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc); 4560 VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc); 4561 4562 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 4563 mc->ignore_boot_device_suffixes = true; 4564 4565 /* 4566 * We set up the default / latest behaviour here. The class_init 4567 * functions for the specific versioned machine types can override 4568 * these details for backwards compatibility 4569 */ 4570 mc->init = spapr_machine_init; 4571 mc->reset = spapr_machine_reset; 4572 mc->block_default_type = IF_SCSI; 4573 4574 /* 4575 * Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values 4576 * should be limited by the host capability instead of hardcoded. 4577 * max_cpus for KVM guests will be checked in kvm_init(), and TCG 4578 * guests are welcome to have as many CPUs as the host are capable 4579 * of emulate. 4580 */ 4581 mc->max_cpus = INT32_MAX; 4582 4583 mc->no_parallel = 1; 4584 mc->default_boot_order = ""; 4585 mc->default_ram_size = 512 * MiB; 4586 mc->default_ram_id = "ppc_spapr.ram"; 4587 mc->default_display = "std"; 4588 mc->kvm_type = spapr_kvm_type; 4589 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 4590 mc->pci_allow_0_address = true; 4591 assert(!mc->get_hotplug_handler); 4592 mc->get_hotplug_handler = spapr_get_hotplug_handler; 4593 hc->pre_plug = spapr_machine_device_pre_plug; 4594 hc->plug = spapr_machine_device_plug; 4595 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 4596 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 4597 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 4598 hc->unplug_request = spapr_machine_device_unplug_request; 4599 hc->unplug = spapr_machine_device_unplug; 4600 4601 smc->dr_lmb_enabled = true; 4602 smc->update_dt_enabled = true; 4603 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0"); 4604 mc->has_hotpluggable_cpus = true; 4605 mc->nvdimm_supported = true; 4606 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 4607 fwc->get_dev_path = spapr_get_fw_dev_path; 4608 nc->nmi_monitor_handler = spapr_nmi; 4609 smc->phb_placement = spapr_phb_placement; 4610 vhc->cpu_in_nested = spapr_cpu_in_nested; 4611 vhc->deliver_hv_excp = spapr_exit_nested; 4612 vhc->hypercall = emulate_spapr_hypercall; 4613 vhc->hpt_mask = spapr_hpt_mask; 4614 vhc->map_hptes = spapr_map_hptes; 4615 vhc->unmap_hptes = spapr_unmap_hptes; 4616 vhc->hpte_set_c = spapr_hpte_set_c; 4617 vhc->hpte_set_r = spapr_hpte_set_r; 4618 vhc->get_pate = spapr_get_pate; 4619 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4620 vhc->cpu_exec_enter = spapr_cpu_exec_enter; 4621 vhc->cpu_exec_exit = spapr_cpu_exec_exit; 4622 xic->ics_get = spapr_ics_get; 4623 xic->ics_resend = spapr_ics_resend; 4624 xic->icp_get = spapr_icp_get; 4625 ispc->print_info = spapr_pic_print_info; 4626 /* Force NUMA node memory size to be a multiple of 4627 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4628 * in which LMBs are represented and hot-added 4629 */ 4630 mc->numa_mem_align_shift = 28; 4631 mc->auto_enable_numa = true; 4632 4633 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4634 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4635 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4636 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4637 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4638 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND; 4639 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4640 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 4641 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON; 4642 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON; 4643 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON; 4644 smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF; 4645 spapr_caps_add_properties(smc); 4646 smc->irq = &spapr_irq_dual; 4647 smc->dr_phb_enabled = true; 4648 smc->linux_pci_probe = true; 4649 smc->smp_threads_vsmt = true; 4650 smc->nr_xirqs = SPAPR_NR_XIRQS; 4651 xfc->match_nvt = spapr_match_nvt; 4652 vmc->client_architecture_support = spapr_vof_client_architecture_support; 4653 vmc->quiesce = spapr_vof_quiesce; 4654 vmc->setprop = spapr_vof_setprop; 4655 } 4656 4657 static const TypeInfo spapr_machine_info = { 4658 .name = TYPE_SPAPR_MACHINE, 4659 .parent = TYPE_MACHINE, 4660 .abstract = true, 4661 .instance_size = sizeof(SpaprMachineState), 4662 .instance_init = spapr_instance_init, 4663 .instance_finalize = spapr_machine_finalizefn, 4664 .class_size = sizeof(SpaprMachineClass), 4665 .class_init = spapr_machine_class_init, 4666 .interfaces = (InterfaceInfo[]) { 4667 { TYPE_FW_PATH_PROVIDER }, 4668 { TYPE_NMI }, 4669 { TYPE_HOTPLUG_HANDLER }, 4670 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4671 { TYPE_XICS_FABRIC }, 4672 { TYPE_INTERRUPT_STATS_PROVIDER }, 4673 { TYPE_XIVE_FABRIC }, 4674 { TYPE_VOF_MACHINE_IF }, 4675 { } 4676 }, 4677 }; 4678 4679 static void spapr_machine_latest_class_options(MachineClass *mc) 4680 { 4681 mc->alias = "pseries"; 4682 mc->is_default = true; 4683 } 4684 4685 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 4686 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 4687 void *data) \ 4688 { \ 4689 MachineClass *mc = MACHINE_CLASS(oc); \ 4690 spapr_machine_##suffix##_class_options(mc); \ 4691 if (latest) { \ 4692 spapr_machine_latest_class_options(mc); \ 4693 } \ 4694 } \ 4695 static const TypeInfo spapr_machine_##suffix##_info = { \ 4696 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 4697 .parent = TYPE_SPAPR_MACHINE, \ 4698 .class_init = spapr_machine_##suffix##_class_init, \ 4699 }; \ 4700 static void spapr_machine_register_##suffix(void) \ 4701 { \ 4702 type_register(&spapr_machine_##suffix##_info); \ 4703 } \ 4704 type_init(spapr_machine_register_##suffix) 4705 4706 /* 4707 * pseries-7.0 4708 */ 4709 static void spapr_machine_7_0_class_options(MachineClass *mc) 4710 { 4711 /* Defaults for the latest behaviour inherited from the base class */ 4712 } 4713 4714 DEFINE_SPAPR_MACHINE(7_0, "7.0", true); 4715 4716 /* 4717 * pseries-6.2 4718 */ 4719 static void spapr_machine_6_2_class_options(MachineClass *mc) 4720 { 4721 spapr_machine_7_0_class_options(mc); 4722 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len); 4723 } 4724 4725 DEFINE_SPAPR_MACHINE(6_2, "6.2", false); 4726 4727 /* 4728 * pseries-6.1 4729 */ 4730 static void spapr_machine_6_1_class_options(MachineClass *mc) 4731 { 4732 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4733 4734 spapr_machine_6_2_class_options(mc); 4735 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len); 4736 smc->pre_6_2_numa_affinity = true; 4737 mc->smp_props.prefer_sockets = true; 4738 } 4739 4740 DEFINE_SPAPR_MACHINE(6_1, "6.1", false); 4741 4742 /* 4743 * pseries-6.0 4744 */ 4745 static void spapr_machine_6_0_class_options(MachineClass *mc) 4746 { 4747 spapr_machine_6_1_class_options(mc); 4748 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len); 4749 } 4750 4751 DEFINE_SPAPR_MACHINE(6_0, "6.0", false); 4752 4753 /* 4754 * pseries-5.2 4755 */ 4756 static void spapr_machine_5_2_class_options(MachineClass *mc) 4757 { 4758 spapr_machine_6_0_class_options(mc); 4759 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len); 4760 } 4761 4762 DEFINE_SPAPR_MACHINE(5_2, "5.2", false); 4763 4764 /* 4765 * pseries-5.1 4766 */ 4767 static void spapr_machine_5_1_class_options(MachineClass *mc) 4768 { 4769 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4770 4771 spapr_machine_5_2_class_options(mc); 4772 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len); 4773 smc->pre_5_2_numa_associativity = true; 4774 } 4775 4776 DEFINE_SPAPR_MACHINE(5_1, "5.1", false); 4777 4778 /* 4779 * pseries-5.0 4780 */ 4781 static void spapr_machine_5_0_class_options(MachineClass *mc) 4782 { 4783 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4784 static GlobalProperty compat[] = { 4785 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" }, 4786 }; 4787 4788 spapr_machine_5_1_class_options(mc); 4789 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len); 4790 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4791 mc->numa_mem_supported = true; 4792 smc->pre_5_1_assoc_refpoints = true; 4793 } 4794 4795 DEFINE_SPAPR_MACHINE(5_0, "5.0", false); 4796 4797 /* 4798 * pseries-4.2 4799 */ 4800 static void spapr_machine_4_2_class_options(MachineClass *mc) 4801 { 4802 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4803 4804 spapr_machine_5_0_class_options(mc); 4805 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); 4806 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF; 4807 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF; 4808 smc->rma_limit = 16 * GiB; 4809 mc->nvdimm_supported = false; 4810 } 4811 4812 DEFINE_SPAPR_MACHINE(4_2, "4.2", false); 4813 4814 /* 4815 * pseries-4.1 4816 */ 4817 static void spapr_machine_4_1_class_options(MachineClass *mc) 4818 { 4819 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4820 static GlobalProperty compat[] = { 4821 /* Only allow 4kiB and 64kiB IOMMU pagesizes */ 4822 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" }, 4823 }; 4824 4825 spapr_machine_4_2_class_options(mc); 4826 smc->linux_pci_probe = false; 4827 smc->smp_threads_vsmt = false; 4828 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 4829 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4830 } 4831 4832 DEFINE_SPAPR_MACHINE(4_1, "4.1", false); 4833 4834 /* 4835 * pseries-4.0 4836 */ 4837 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index, 4838 uint64_t *buid, hwaddr *pio, 4839 hwaddr *mmio32, hwaddr *mmio64, 4840 unsigned n_dma, uint32_t *liobns, 4841 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4842 { 4843 if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, 4844 liobns, nv2gpa, nv2atsd, errp)) { 4845 return false; 4846 } 4847 4848 *nv2gpa = 0; 4849 *nv2atsd = 0; 4850 return true; 4851 } 4852 static void spapr_machine_4_0_class_options(MachineClass *mc) 4853 { 4854 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4855 4856 spapr_machine_4_1_class_options(mc); 4857 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 4858 smc->phb_placement = phb_placement_4_0; 4859 smc->irq = &spapr_irq_xics; 4860 smc->pre_4_1_migration = true; 4861 } 4862 4863 DEFINE_SPAPR_MACHINE(4_0, "4.0", false); 4864 4865 /* 4866 * pseries-3.1 4867 */ 4868 static void spapr_machine_3_1_class_options(MachineClass *mc) 4869 { 4870 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4871 4872 spapr_machine_4_0_class_options(mc); 4873 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 4874 4875 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 4876 smc->update_dt_enabled = false; 4877 smc->dr_phb_enabled = false; 4878 smc->broken_host_serial_model = true; 4879 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 4880 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 4881 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 4882 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF; 4883 } 4884 4885 DEFINE_SPAPR_MACHINE(3_1, "3.1", false); 4886 4887 /* 4888 * pseries-3.0 4889 */ 4890 4891 static void spapr_machine_3_0_class_options(MachineClass *mc) 4892 { 4893 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4894 4895 spapr_machine_3_1_class_options(mc); 4896 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 4897 4898 smc->legacy_irq_allocation = true; 4899 smc->nr_xirqs = 0x400; 4900 smc->irq = &spapr_irq_xics_legacy; 4901 } 4902 4903 DEFINE_SPAPR_MACHINE(3_0, "3.0", false); 4904 4905 /* 4906 * pseries-2.12 4907 */ 4908 static void spapr_machine_2_12_class_options(MachineClass *mc) 4909 { 4910 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4911 static GlobalProperty compat[] = { 4912 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" }, 4913 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" }, 4914 }; 4915 4916 spapr_machine_3_0_class_options(mc); 4917 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 4918 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4919 4920 /* We depend on kvm_enabled() to choose a default value for the 4921 * hpt-max-page-size capability. Of course we can't do it here 4922 * because this is too early and the HW accelerator isn't initialzed 4923 * yet. Postpone this to machine init (see default_caps_with_cpu()). 4924 */ 4925 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; 4926 } 4927 4928 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 4929 4930 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 4931 { 4932 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4933 4934 spapr_machine_2_12_class_options(mc); 4935 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4936 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4937 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 4938 } 4939 4940 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 4941 4942 /* 4943 * pseries-2.11 4944 */ 4945 4946 static void spapr_machine_2_11_class_options(MachineClass *mc) 4947 { 4948 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4949 4950 spapr_machine_2_12_class_options(mc); 4951 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 4952 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 4953 } 4954 4955 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 4956 4957 /* 4958 * pseries-2.10 4959 */ 4960 4961 static void spapr_machine_2_10_class_options(MachineClass *mc) 4962 { 4963 spapr_machine_2_11_class_options(mc); 4964 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 4965 } 4966 4967 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 4968 4969 /* 4970 * pseries-2.9 4971 */ 4972 4973 static void spapr_machine_2_9_class_options(MachineClass *mc) 4974 { 4975 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4976 static GlobalProperty compat[] = { 4977 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" }, 4978 }; 4979 4980 spapr_machine_2_10_class_options(mc); 4981 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 4982 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4983 smc->pre_2_10_has_unused_icps = true; 4984 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 4985 } 4986 4987 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 4988 4989 /* 4990 * pseries-2.8 4991 */ 4992 4993 static void spapr_machine_2_8_class_options(MachineClass *mc) 4994 { 4995 static GlobalProperty compat[] = { 4996 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" }, 4997 }; 4998 4999 spapr_machine_2_9_class_options(mc); 5000 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 5001 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5002 mc->numa_mem_align_shift = 23; 5003 } 5004 5005 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 5006 5007 /* 5008 * pseries-2.7 5009 */ 5010 5011 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index, 5012 uint64_t *buid, hwaddr *pio, 5013 hwaddr *mmio32, hwaddr *mmio64, 5014 unsigned n_dma, uint32_t *liobns, 5015 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 5016 { 5017 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 5018 const uint64_t base_buid = 0x800000020000000ULL; 5019 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 5020 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 5021 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 5022 const uint32_t max_index = 255; 5023 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 5024 5025 uint64_t ram_top = MACHINE(spapr)->ram_size; 5026 hwaddr phb0_base, phb_base; 5027 int i; 5028 5029 /* Do we have device memory? */ 5030 if (MACHINE(spapr)->maxram_size > ram_top) { 5031 /* Can't just use maxram_size, because there may be an 5032 * alignment gap between normal and device memory regions 5033 */ 5034 ram_top = MACHINE(spapr)->device_memory->base + 5035 memory_region_size(&MACHINE(spapr)->device_memory->mr); 5036 } 5037 5038 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 5039 5040 if (index > max_index) { 5041 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 5042 max_index); 5043 return false; 5044 } 5045 5046 *buid = base_buid + index; 5047 for (i = 0; i < n_dma; ++i) { 5048 liobns[i] = SPAPR_PCI_LIOBN(index, i); 5049 } 5050 5051 phb_base = phb0_base + index * phb_spacing; 5052 *pio = phb_base + pio_offset; 5053 *mmio32 = phb_base + mmio_offset; 5054 /* 5055 * We don't set the 64-bit MMIO window, relying on the PHB's 5056 * fallback behaviour of automatically splitting a large "32-bit" 5057 * window into contiguous 32-bit and 64-bit windows 5058 */ 5059 5060 *nv2gpa = 0; 5061 *nv2atsd = 0; 5062 return true; 5063 } 5064 5065 static void spapr_machine_2_7_class_options(MachineClass *mc) 5066 { 5067 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5068 static GlobalProperty compat[] = { 5069 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", }, 5070 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", }, 5071 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", }, 5072 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", }, 5073 }; 5074 5075 spapr_machine_2_8_class_options(mc); 5076 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 5077 mc->default_machine_opts = "modern-hotplug-events=off"; 5078 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 5079 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5080 smc->phb_placement = phb_placement_2_7; 5081 } 5082 5083 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 5084 5085 /* 5086 * pseries-2.6 5087 */ 5088 5089 static void spapr_machine_2_6_class_options(MachineClass *mc) 5090 { 5091 static GlobalProperty compat[] = { 5092 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" }, 5093 }; 5094 5095 spapr_machine_2_7_class_options(mc); 5096 mc->has_hotpluggable_cpus = false; 5097 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 5098 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5099 } 5100 5101 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 5102 5103 /* 5104 * pseries-2.5 5105 */ 5106 5107 static void spapr_machine_2_5_class_options(MachineClass *mc) 5108 { 5109 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5110 static GlobalProperty compat[] = { 5111 { "spapr-vlan", "use-rx-buffer-pools", "off" }, 5112 }; 5113 5114 spapr_machine_2_6_class_options(mc); 5115 smc->use_ohci_by_default = true; 5116 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len); 5117 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5118 } 5119 5120 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 5121 5122 /* 5123 * pseries-2.4 5124 */ 5125 5126 static void spapr_machine_2_4_class_options(MachineClass *mc) 5127 { 5128 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5129 5130 spapr_machine_2_5_class_options(mc); 5131 smc->dr_lmb_enabled = false; 5132 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len); 5133 } 5134 5135 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 5136 5137 /* 5138 * pseries-2.3 5139 */ 5140 5141 static void spapr_machine_2_3_class_options(MachineClass *mc) 5142 { 5143 static GlobalProperty compat[] = { 5144 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" }, 5145 }; 5146 spapr_machine_2_4_class_options(mc); 5147 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len); 5148 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5149 } 5150 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 5151 5152 /* 5153 * pseries-2.2 5154 */ 5155 5156 static void spapr_machine_2_2_class_options(MachineClass *mc) 5157 { 5158 static GlobalProperty compat[] = { 5159 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" }, 5160 }; 5161 5162 spapr_machine_2_3_class_options(mc); 5163 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len); 5164 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5165 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on"; 5166 } 5167 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 5168 5169 /* 5170 * pseries-2.1 5171 */ 5172 5173 static void spapr_machine_2_1_class_options(MachineClass *mc) 5174 { 5175 spapr_machine_2_2_class_options(mc); 5176 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len); 5177 } 5178 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 5179 5180 static void spapr_machine_register_types(void) 5181 { 5182 type_register_static(&spapr_machine_info); 5183 } 5184 5185 type_init(spapr_machine_register_types) 5186