xref: /openbmc/qemu/hw/ppc/spapr.c (revision 9b13640da3f94c0fbacbae6d23bd91febfa44588)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "qemu/datadir.h"
29 #include "qemu/memalign.h"
30 #include "qemu/guest-random.h"
31 #include "qapi/error.h"
32 #include "qapi/qapi-events-machine.h"
33 #include "qapi/qapi-events-qdev.h"
34 #include "qapi/visitor.h"
35 #include "sysemu/sysemu.h"
36 #include "sysemu/hostmem.h"
37 #include "sysemu/numa.h"
38 #include "sysemu/tcg.h"
39 #include "sysemu/qtest.h"
40 #include "sysemu/reset.h"
41 #include "sysemu/runstate.h"
42 #include "qemu/log.h"
43 #include "hw/fw-path-provider.h"
44 #include "elf.h"
45 #include "net/net.h"
46 #include "sysemu/device_tree.h"
47 #include "sysemu/cpus.h"
48 #include "sysemu/hw_accel.h"
49 #include "kvm_ppc.h"
50 #include "migration/misc.h"
51 #include "migration/qemu-file-types.h"
52 #include "migration/global_state.h"
53 #include "migration/register.h"
54 #include "migration/blocker.h"
55 #include "mmu-hash64.h"
56 #include "mmu-book3s-v3.h"
57 #include "cpu-models.h"
58 #include "hw/core/cpu.h"
59 
60 #include "hw/ppc/ppc.h"
61 #include "hw/loader.h"
62 
63 #include "hw/ppc/fdt.h"
64 #include "hw/ppc/spapr.h"
65 #include "hw/ppc/spapr_nested.h"
66 #include "hw/ppc/spapr_vio.h"
67 #include "hw/ppc/vof.h"
68 #include "hw/qdev-properties.h"
69 #include "hw/pci-host/spapr.h"
70 #include "hw/pci/msi.h"
71 
72 #include "hw/pci/pci.h"
73 #include "hw/scsi/scsi.h"
74 #include "hw/virtio/virtio-scsi.h"
75 #include "hw/virtio/vhost-scsi-common.h"
76 
77 #include "exec/ram_addr.h"
78 #include "exec/confidential-guest-support.h"
79 #include "hw/usb.h"
80 #include "qemu/config-file.h"
81 #include "qemu/error-report.h"
82 #include "trace.h"
83 #include "hw/nmi.h"
84 #include "hw/intc/intc.h"
85 
86 #include "hw/ppc/spapr_cpu_core.h"
87 #include "hw/mem/memory-device.h"
88 #include "hw/ppc/spapr_tpm_proxy.h"
89 #include "hw/ppc/spapr_nvdimm.h"
90 #include "hw/ppc/spapr_numa.h"
91 
92 #include <libfdt.h>
93 
94 /* SLOF memory layout:
95  *
96  * SLOF raw image loaded at 0, copies its romfs right below the flat
97  * device-tree, then position SLOF itself 31M below that
98  *
99  * So we set FW_OVERHEAD to 40MB which should account for all of that
100  * and more
101  *
102  * We load our kernel at 4M, leaving space for SLOF initial image
103  */
104 #define FDT_MAX_ADDR            0x80000000 /* FDT must stay below that */
105 #define FW_MAX_SIZE             0x400000
106 #define FW_FILE_NAME            "slof.bin"
107 #define FW_FILE_NAME_VOF        "vof.bin"
108 #define FW_OVERHEAD             0x2800000
109 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
110 
111 #define MIN_RMA_SLOF            (128 * MiB)
112 
113 #define PHANDLE_INTC            0x00001111
114 
115 /* These two functions implement the VCPU id numbering: one to compute them
116  * all and one to identify thread 0 of a VCORE. Any change to the first one
117  * is likely to have an impact on the second one, so let's keep them close.
118  */
119 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
120 {
121     MachineState *ms = MACHINE(spapr);
122     unsigned int smp_threads = ms->smp.threads;
123 
124     assert(spapr->vsmt);
125     return
126         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
127 }
128 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
129                                       PowerPCCPU *cpu)
130 {
131     assert(spapr->vsmt);
132     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
133 }
134 
135 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
136 {
137     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
138      * and newer QEMUs don't even have them. In both cases, we don't want
139      * to send anything on the wire.
140      */
141     return false;
142 }
143 
144 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
145     /*
146      * Hack ahead.  We can't have two devices with the same name and
147      * instance id.  So I rename this to pass make check.
148      * Real help from people who knows the hardware is needed.
149      */
150     .name = "icp/server",
151     .version_id = 1,
152     .minimum_version_id = 1,
153     .needed = pre_2_10_vmstate_dummy_icp_needed,
154     .fields = (const VMStateField[]) {
155         VMSTATE_UNUSED(4), /* uint32_t xirr */
156         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
157         VMSTATE_UNUSED(1), /* uint8_t mfrr */
158         VMSTATE_END_OF_LIST()
159     },
160 };
161 
162 /*
163  * See comment in hw/intc/xics.c:icp_realize()
164  *
165  * You have to remove vmstate_replace_hack_for_ppc() when you remove
166  * the machine types that need the following function.
167  */
168 static void pre_2_10_vmstate_register_dummy_icp(int i)
169 {
170     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
171                      (void *)(uintptr_t) i);
172 }
173 
174 /*
175  * See comment in hw/intc/xics.c:icp_realize()
176  *
177  * You have to remove vmstate_replace_hack_for_ppc() when you remove
178  * the machine types that need the following function.
179  */
180 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
181 {
182     /*
183      * This used to be:
184      *
185      *    vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
186      *                      (void *)(uintptr_t) i);
187      */
188 }
189 
190 int spapr_max_server_number(SpaprMachineState *spapr)
191 {
192     MachineState *ms = MACHINE(spapr);
193 
194     assert(spapr->vsmt);
195     return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
196 }
197 
198 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
199                                   int smt_threads)
200 {
201     int i, ret = 0;
202     g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
203     g_autofree uint32_t *gservers_prop = g_new(uint32_t, smt_threads * 2);
204     int index = spapr_get_vcpu_id(cpu);
205 
206     if (cpu->compat_pvr) {
207         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
208         if (ret < 0) {
209             return ret;
210         }
211     }
212 
213     /* Build interrupt servers and gservers properties */
214     for (i = 0; i < smt_threads; i++) {
215         servers_prop[i] = cpu_to_be32(index + i);
216         /* Hack, direct the group queues back to cpu 0 */
217         gservers_prop[i*2] = cpu_to_be32(index + i);
218         gservers_prop[i*2 + 1] = 0;
219     }
220     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
221                       servers_prop, sizeof(*servers_prop) * smt_threads);
222     if (ret < 0) {
223         return ret;
224     }
225     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
226                       gservers_prop, sizeof(*gservers_prop) * smt_threads * 2);
227 
228     return ret;
229 }
230 
231 static void spapr_dt_pa_features(SpaprMachineState *spapr,
232                                  PowerPCCPU *cpu,
233                                  void *fdt, int offset)
234 {
235     /*
236      * SSO (SAO) ordering is supported on KVM and thread=single hosts,
237      * but not MTTCG, so disable it. To advertise it, a cap would have
238      * to be added, or support implemented for MTTCG.
239      *
240      * Copy/paste is not supported by TCG, so it is not advertised. KVM
241      * can execute them but it has no accelerator drivers which are usable,
242      * so there isn't much need for it anyway.
243      */
244 
245     /* These should be kept in sync with pnv */
246     uint8_t pa_features_206[] = { 6, 0,
247         0xf6, 0x1f, 0xc7, 0x00, 0x00, 0xc0 };
248     uint8_t pa_features_207[] = { 24, 0,
249         0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0,
250         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
251         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
252         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
253     uint8_t pa_features_300[] = { 66, 0,
254         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
255         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
256         0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
257         /* 6: DS207 */
258         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
259         /* 16: Vector */
260         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
261         /* 18: Vec. Scalar, 20: Vec. XOR */
262         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
263         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
264         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
265         /* 32: LE atomic, 34: EBB + ext EBB */
266         0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
267         /* 40: Radix MMU */
268         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
269         /* 42: PM, 44: PC RA, 46: SC vec'd */
270         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
271         /* 48: SIMD, 50: QP BFP, 52: String */
272         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
273         /* 54: DecFP, 56: DecI, 58: SHA */
274         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
275         /* 60: NM atomic, 62: RNG */
276         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
277     };
278     /* 3.1 removes SAO, HTM support */
279     uint8_t pa_features_31[] = { 74, 0,
280         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
281         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
282         0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
283         /* 6: DS207 */
284         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
285         /* 16: Vector */
286         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
287         /* 18: Vec. Scalar, 20: Vec. XOR */
288         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
289         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
290         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
291         /* 32: LE atomic, 34: EBB + ext EBB */
292         0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
293         /* 40: Radix MMU */
294         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
295         /* 42: PM, 44: PC RA, 46: SC vec'd */
296         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
297         /* 48: SIMD, 50: QP BFP, 52: String */
298         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
299         /* 54: DecFP, 56: DecI, 58: SHA */
300         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
301         /* 60: NM atomic, 62: RNG */
302         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
303         /* 68: DEXCR[SBHE|IBRTPDUS|SRAPD|NPHIE|PHIE] */
304         0x00, 0x00, 0xce, 0x00, 0x00, 0x00, /* 66 - 71 */
305         /* 72: [P]HASHST/[P]HASHCHK */
306         0x80, 0x00,                         /* 72 - 73 */
307     };
308     uint8_t *pa_features = NULL;
309     size_t pa_size;
310 
311     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
312         pa_features = pa_features_206;
313         pa_size = sizeof(pa_features_206);
314     }
315     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
316         pa_features = pa_features_207;
317         pa_size = sizeof(pa_features_207);
318     }
319     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
320         pa_features = pa_features_300;
321         pa_size = sizeof(pa_features_300);
322     }
323     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_10, 0, cpu->compat_pvr)) {
324         pa_features = pa_features_31;
325         pa_size = sizeof(pa_features_31);
326     }
327     if (!pa_features) {
328         return;
329     }
330 
331     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
332         /*
333          * Note: we keep CI large pages off by default because a 64K capable
334          * guest provisioned with large pages might otherwise try to map a qemu
335          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
336          * even if that qemu runs on a 4k host.
337          * We dd this bit back here if we are confident this is not an issue
338          */
339         pa_features[3] |= 0x20;
340     }
341     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
342         pa_features[24] |= 0x80;    /* Transactional memory support */
343     }
344     if (spapr->cas_pre_isa3_guest && pa_size > 40) {
345         /* Workaround for broken kernels that attempt (guest) radix
346          * mode when they can't handle it, if they see the radix bit set
347          * in pa-features. So hide it from them. */
348         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
349     }
350 
351     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
352 }
353 
354 static void spapr_dt_pi_features(SpaprMachineState *spapr,
355                                  PowerPCCPU *cpu,
356                                  void *fdt, int offset)
357 {
358     uint8_t pi_features[] = { 1, 0,
359         0x00 };
360 
361     if (kvm_enabled() && ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00,
362                                           0, cpu->compat_pvr)) {
363         /*
364          * POWER9 and later CPUs with KVM run in LPAR-per-thread mode where
365          * all threads are essentially independent CPUs, and msgsndp does not
366          * work (because it is physically-addressed) and therefore is
367          * emulated by KVM, so disable it here to ensure XIVE will be used.
368          * This is both KVM and CPU implementation-specific behaviour so a KVM
369          * cap would be cleanest, but for now this works. If KVM ever permits
370          * native msgsndp execution by guests, a cap could be added at that
371          * time.
372          */
373         pi_features[2] |= 0x08; /* 4: No msgsndp */
374     }
375 
376     _FDT((fdt_setprop(fdt, offset, "ibm,pi-features", pi_features,
377                       sizeof(pi_features))));
378 }
379 
380 static hwaddr spapr_node0_size(MachineState *machine)
381 {
382     if (machine->numa_state->num_nodes) {
383         int i;
384         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
385             if (machine->numa_state->nodes[i].node_mem) {
386                 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
387                            machine->ram_size);
388             }
389         }
390     }
391     return machine->ram_size;
392 }
393 
394 static void add_str(GString *s, const gchar *s1)
395 {
396     g_string_append_len(s, s1, strlen(s1) + 1);
397 }
398 
399 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
400                                 hwaddr start, hwaddr size)
401 {
402     char mem_name[32];
403     uint64_t mem_reg_property[2];
404     int off;
405 
406     mem_reg_property[0] = cpu_to_be64(start);
407     mem_reg_property[1] = cpu_to_be64(size);
408 
409     sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
410     off = fdt_add_subnode(fdt, 0, mem_name);
411     _FDT(off);
412     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
413     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
414                       sizeof(mem_reg_property))));
415     spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
416     return off;
417 }
418 
419 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
420 {
421     MemoryDeviceInfoList *info;
422 
423     for (info = list; info; info = info->next) {
424         MemoryDeviceInfo *value = info->value;
425 
426         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
427             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
428 
429             if (addr >= pcdimm_info->addr &&
430                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
431                 return pcdimm_info->node;
432             }
433         }
434     }
435 
436     return -1;
437 }
438 
439 struct sPAPRDrconfCellV2 {
440      uint32_t seq_lmbs;
441      uint64_t base_addr;
442      uint32_t drc_index;
443      uint32_t aa_index;
444      uint32_t flags;
445 } QEMU_PACKED;
446 
447 typedef struct DrconfCellQueue {
448     struct sPAPRDrconfCellV2 cell;
449     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
450 } DrconfCellQueue;
451 
452 static DrconfCellQueue *
453 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
454                       uint32_t drc_index, uint32_t aa_index,
455                       uint32_t flags)
456 {
457     DrconfCellQueue *elem;
458 
459     elem = g_malloc0(sizeof(*elem));
460     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
461     elem->cell.base_addr = cpu_to_be64(base_addr);
462     elem->cell.drc_index = cpu_to_be32(drc_index);
463     elem->cell.aa_index = cpu_to_be32(aa_index);
464     elem->cell.flags = cpu_to_be32(flags);
465 
466     return elem;
467 }
468 
469 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
470                                       int offset, MemoryDeviceInfoList *dimms)
471 {
472     MachineState *machine = MACHINE(spapr);
473     uint8_t *int_buf, *cur_index;
474     int ret;
475     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
476     uint64_t addr, cur_addr, size;
477     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
478     uint64_t mem_end = machine->device_memory->base +
479                        memory_region_size(&machine->device_memory->mr);
480     uint32_t node, buf_len, nr_entries = 0;
481     SpaprDrc *drc;
482     DrconfCellQueue *elem, *next;
483     MemoryDeviceInfoList *info;
484     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
485         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
486 
487     /* Entry to cover RAM and the gap area */
488     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
489                                  SPAPR_LMB_FLAGS_RESERVED |
490                                  SPAPR_LMB_FLAGS_DRC_INVALID);
491     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
492     nr_entries++;
493 
494     cur_addr = machine->device_memory->base;
495     for (info = dimms; info; info = info->next) {
496         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
497 
498         addr = di->addr;
499         size = di->size;
500         node = di->node;
501 
502         /*
503          * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
504          * area is marked hotpluggable in the next iteration for the bigger
505          * chunk including the NVDIMM occupied area.
506          */
507         if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
508             continue;
509 
510         /* Entry for hot-pluggable area */
511         if (cur_addr < addr) {
512             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
513             g_assert(drc);
514             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
515                                          cur_addr, spapr_drc_index(drc), -1, 0);
516             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
517             nr_entries++;
518         }
519 
520         /* Entry for DIMM */
521         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
522         g_assert(drc);
523         elem = spapr_get_drconf_cell(size / lmb_size, addr,
524                                      spapr_drc_index(drc), node,
525                                      (SPAPR_LMB_FLAGS_ASSIGNED |
526                                       SPAPR_LMB_FLAGS_HOTREMOVABLE));
527         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
528         nr_entries++;
529         cur_addr = addr + size;
530     }
531 
532     /* Entry for remaining hotpluggable area */
533     if (cur_addr < mem_end) {
534         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
535         g_assert(drc);
536         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
537                                      cur_addr, spapr_drc_index(drc), -1, 0);
538         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
539         nr_entries++;
540     }
541 
542     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
543     int_buf = cur_index = g_malloc0(buf_len);
544     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
545     cur_index += sizeof(nr_entries);
546 
547     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
548         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
549         cur_index += sizeof(elem->cell);
550         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
551         g_free(elem);
552     }
553 
554     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
555     g_free(int_buf);
556     if (ret < 0) {
557         return -1;
558     }
559     return 0;
560 }
561 
562 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
563                                    int offset, MemoryDeviceInfoList *dimms)
564 {
565     MachineState *machine = MACHINE(spapr);
566     int i, ret;
567     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
568     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
569     uint32_t nr_lmbs = (machine->device_memory->base +
570                        memory_region_size(&machine->device_memory->mr)) /
571                        lmb_size;
572     uint32_t *int_buf, *cur_index, buf_len;
573 
574     /*
575      * Allocate enough buffer size to fit in ibm,dynamic-memory
576      */
577     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
578     cur_index = int_buf = g_malloc0(buf_len);
579     int_buf[0] = cpu_to_be32(nr_lmbs);
580     cur_index++;
581     for (i = 0; i < nr_lmbs; i++) {
582         uint64_t addr = i * lmb_size;
583         uint32_t *dynamic_memory = cur_index;
584 
585         if (i >= device_lmb_start) {
586             SpaprDrc *drc;
587 
588             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
589             g_assert(drc);
590 
591             dynamic_memory[0] = cpu_to_be32(addr >> 32);
592             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
593             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
594             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
595             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
596             if (memory_region_present(get_system_memory(), addr)) {
597                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
598             } else {
599                 dynamic_memory[5] = cpu_to_be32(0);
600             }
601         } else {
602             /*
603              * LMB information for RMA, boot time RAM and gap b/n RAM and
604              * device memory region -- all these are marked as reserved
605              * and as having no valid DRC.
606              */
607             dynamic_memory[0] = cpu_to_be32(addr >> 32);
608             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
609             dynamic_memory[2] = cpu_to_be32(0);
610             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
611             dynamic_memory[4] = cpu_to_be32(-1);
612             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
613                                             SPAPR_LMB_FLAGS_DRC_INVALID);
614         }
615 
616         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
617     }
618     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
619     g_free(int_buf);
620     if (ret < 0) {
621         return -1;
622     }
623     return 0;
624 }
625 
626 /*
627  * Adds ibm,dynamic-reconfiguration-memory node.
628  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
629  * of this device tree node.
630  */
631 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
632                                                    void *fdt)
633 {
634     MachineState *machine = MACHINE(spapr);
635     int ret, offset;
636     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
637     uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
638                                 cpu_to_be32(lmb_size & 0xffffffff)};
639     MemoryDeviceInfoList *dimms = NULL;
640 
641     /* Don't create the node if there is no device memory. */
642     if (!machine->device_memory) {
643         return 0;
644     }
645 
646     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
647 
648     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
649                     sizeof(prop_lmb_size));
650     if (ret < 0) {
651         return ret;
652     }
653 
654     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
655     if (ret < 0) {
656         return ret;
657     }
658 
659     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
660     if (ret < 0) {
661         return ret;
662     }
663 
664     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
665     dimms = qmp_memory_device_list();
666     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
667         ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
668     } else {
669         ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
670     }
671     qapi_free_MemoryDeviceInfoList(dimms);
672 
673     if (ret < 0) {
674         return ret;
675     }
676 
677     ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
678 
679     return ret;
680 }
681 
682 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
683 {
684     MachineState *machine = MACHINE(spapr);
685     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
686     hwaddr mem_start, node_size;
687     int i, nb_nodes = machine->numa_state->num_nodes;
688     NodeInfo *nodes = machine->numa_state->nodes;
689 
690     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
691         if (!nodes[i].node_mem) {
692             continue;
693         }
694         if (mem_start >= machine->ram_size) {
695             node_size = 0;
696         } else {
697             node_size = nodes[i].node_mem;
698             if (node_size > machine->ram_size - mem_start) {
699                 node_size = machine->ram_size - mem_start;
700             }
701         }
702         if (!mem_start) {
703             /* spapr_machine_init() checks for rma_size <= node0_size
704              * already */
705             spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
706             mem_start += spapr->rma_size;
707             node_size -= spapr->rma_size;
708         }
709         for ( ; node_size; ) {
710             hwaddr sizetmp = pow2floor(node_size);
711 
712             /* mem_start != 0 here */
713             if (ctzl(mem_start) < ctzl(sizetmp)) {
714                 sizetmp = 1ULL << ctzl(mem_start);
715             }
716 
717             spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
718             node_size -= sizetmp;
719             mem_start += sizetmp;
720         }
721     }
722 
723     /* Generate ibm,dynamic-reconfiguration-memory node if required */
724     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
725         int ret;
726 
727         g_assert(smc->dr_lmb_enabled);
728         ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
729         if (ret) {
730             return ret;
731         }
732     }
733 
734     return 0;
735 }
736 
737 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
738                          SpaprMachineState *spapr)
739 {
740     MachineState *ms = MACHINE(spapr);
741     PowerPCCPU *cpu = POWERPC_CPU(cs);
742     CPUPPCState *env = &cpu->env;
743     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
744     int index = spapr_get_vcpu_id(cpu);
745     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
746                        0xffffffff, 0xffffffff};
747     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
748         : SPAPR_TIMEBASE_FREQ;
749     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
750     uint32_t page_sizes_prop[64];
751     size_t page_sizes_prop_size;
752     unsigned int smp_threads = ms->smp.threads;
753     uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
754     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
755     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
756     SpaprDrc *drc;
757     int drc_index;
758     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
759     int i;
760 
761     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
762     if (drc) {
763         drc_index = spapr_drc_index(drc);
764         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
765     }
766 
767     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
768     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
769 
770     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
771     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
772                            env->dcache_line_size)));
773     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
774                            env->dcache_line_size)));
775     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
776                            env->icache_line_size)));
777     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
778                            env->icache_line_size)));
779 
780     if (pcc->l1_dcache_size) {
781         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
782                                pcc->l1_dcache_size)));
783     } else {
784         warn_report("Unknown L1 dcache size for cpu");
785     }
786     if (pcc->l1_icache_size) {
787         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
788                                pcc->l1_icache_size)));
789     } else {
790         warn_report("Unknown L1 icache size for cpu");
791     }
792 
793     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
794     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
795     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
796     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
797     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
798     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
799 
800     if (ppc_has_spr(cpu, SPR_PURR)) {
801         _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
802     }
803     if (ppc_has_spr(cpu, SPR_PURR)) {
804         _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
805     }
806 
807     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
808         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
809                           segs, sizeof(segs))));
810     }
811 
812     /* Advertise VSX (vector extensions) if available
813      *   1               == VMX / Altivec available
814      *   2               == VSX available
815      *
816      * Only CPUs for which we create core types in spapr_cpu_core.c
817      * are possible, and all of those have VMX */
818     if (env->insns_flags & PPC_ALTIVEC) {
819         if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
820             _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
821         } else {
822             _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
823         }
824     }
825 
826     /* Advertise DFP (Decimal Floating Point) if available
827      *   0 / no property == no DFP
828      *   1               == DFP available */
829     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
830         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
831     }
832 
833     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
834                                                       sizeof(page_sizes_prop));
835     if (page_sizes_prop_size) {
836         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
837                           page_sizes_prop, page_sizes_prop_size)));
838     }
839 
840     spapr_dt_pa_features(spapr, cpu, fdt, offset);
841 
842     spapr_dt_pi_features(spapr, cpu, fdt, offset);
843 
844     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
845                            cs->cpu_index / vcpus_per_socket)));
846 
847     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
848                       pft_size_prop, sizeof(pft_size_prop))));
849 
850     if (ms->numa_state->num_nodes > 1) {
851         _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
852     }
853 
854     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
855 
856     if (pcc->radix_page_info) {
857         for (i = 0; i < pcc->radix_page_info->count; i++) {
858             radix_AP_encodings[i] =
859                 cpu_to_be32(pcc->radix_page_info->entries[i]);
860         }
861         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
862                           radix_AP_encodings,
863                           pcc->radix_page_info->count *
864                           sizeof(radix_AP_encodings[0]))));
865     }
866 
867     /*
868      * We set this property to let the guest know that it can use the large
869      * decrementer and its width in bits.
870      */
871     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
872         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
873                               pcc->lrg_decr_bits)));
874 }
875 
876 static void spapr_dt_one_cpu(void *fdt, SpaprMachineState *spapr, CPUState *cs,
877                              int cpus_offset)
878 {
879     PowerPCCPU *cpu = POWERPC_CPU(cs);
880     int index = spapr_get_vcpu_id(cpu);
881     DeviceClass *dc = DEVICE_GET_CLASS(cs);
882     g_autofree char *nodename = NULL;
883     int offset;
884 
885     if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
886         return;
887     }
888 
889     nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
890     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
891     _FDT(offset);
892     spapr_dt_cpu(cs, fdt, offset, spapr);
893 }
894 
895 
896 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
897 {
898     CPUState **rev;
899     CPUState *cs;
900     int n_cpus;
901     int cpus_offset;
902     int i;
903 
904     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
905     _FDT(cpus_offset);
906     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
907     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
908 
909     /*
910      * We walk the CPUs in reverse order to ensure that CPU DT nodes
911      * created by fdt_add_subnode() end up in the right order in FDT
912      * for the guest kernel the enumerate the CPUs correctly.
913      *
914      * The CPU list cannot be traversed in reverse order, so we need
915      * to do extra work.
916      */
917     n_cpus = 0;
918     rev = NULL;
919     CPU_FOREACH(cs) {
920         rev = g_renew(CPUState *, rev, n_cpus + 1);
921         rev[n_cpus++] = cs;
922     }
923 
924     for (i = n_cpus - 1; i >= 0; i--) {
925         spapr_dt_one_cpu(fdt, spapr, rev[i], cpus_offset);
926     }
927 
928     g_free(rev);
929 }
930 
931 static int spapr_dt_rng(void *fdt)
932 {
933     int node;
934     int ret;
935 
936     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
937     if (node <= 0) {
938         return -1;
939     }
940     ret = fdt_setprop_string(fdt, node, "device_type",
941                              "ibm,platform-facilities");
942     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
943     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
944 
945     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
946     if (node <= 0) {
947         return -1;
948     }
949     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
950 
951     return ret ? -1 : 0;
952 }
953 
954 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
955 {
956     MachineState *ms = MACHINE(spapr);
957     int rtas;
958     GString *hypertas = g_string_sized_new(256);
959     GString *qemu_hypertas = g_string_sized_new(256);
960     uint32_t lrdr_capacity[] = {
961         0,
962         0,
963         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
964         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
965         cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
966     };
967 
968     /* Do we have device memory? */
969     if (MACHINE(spapr)->device_memory) {
970         uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
971             memory_region_size(&MACHINE(spapr)->device_memory->mr);
972 
973         lrdr_capacity[0] = cpu_to_be32(max_device_addr >> 32);
974         lrdr_capacity[1] = cpu_to_be32(max_device_addr & 0xffffffff);
975     }
976 
977     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
978 
979     /* hypertas */
980     add_str(hypertas, "hcall-pft");
981     add_str(hypertas, "hcall-term");
982     add_str(hypertas, "hcall-dabr");
983     add_str(hypertas, "hcall-interrupt");
984     add_str(hypertas, "hcall-tce");
985     add_str(hypertas, "hcall-vio");
986     add_str(hypertas, "hcall-splpar");
987     add_str(hypertas, "hcall-join");
988     add_str(hypertas, "hcall-bulk");
989     add_str(hypertas, "hcall-set-mode");
990     add_str(hypertas, "hcall-sprg0");
991     add_str(hypertas, "hcall-copy");
992     add_str(hypertas, "hcall-debug");
993     add_str(hypertas, "hcall-vphn");
994     if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) {
995         add_str(hypertas, "hcall-rpt-invalidate");
996     }
997 
998     add_str(qemu_hypertas, "hcall-memop1");
999 
1000     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1001         add_str(hypertas, "hcall-multi-tce");
1002     }
1003 
1004     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1005         add_str(hypertas, "hcall-hpt-resize");
1006     }
1007 
1008     add_str(hypertas, "hcall-watchdog");
1009 
1010     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1011                      hypertas->str, hypertas->len));
1012     g_string_free(hypertas, TRUE);
1013     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1014                      qemu_hypertas->str, qemu_hypertas->len));
1015     g_string_free(qemu_hypertas, TRUE);
1016 
1017     spapr_numa_write_rtas_dt(spapr, fdt, rtas);
1018 
1019     /*
1020      * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
1021      * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
1022      *
1023      * The system reset requirements are driven by existing Linux and PowerVM
1024      * implementation which (contrary to PAPR) saves r3 in the error log
1025      * structure like machine check, so Linux expects to find the saved r3
1026      * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
1027      * does not look at the error value).
1028      *
1029      * System reset interrupts are not subject to interlock like machine
1030      * check, so this memory area could be corrupted if the sreset is
1031      * interrupted by a machine check (or vice versa) if it was shared. To
1032      * prevent this, system reset uses per-CPU areas for the sreset save
1033      * area. A system reset that interrupts a system reset handler could
1034      * still overwrite this area, but Linux doesn't try to recover in that
1035      * case anyway.
1036      *
1037      * The extra 8 bytes is required because Linux's FWNMI error log check
1038      * is off-by-one.
1039      *
1040      * RTAS_MIN_SIZE is required for the RTAS blob itself.
1041      */
1042     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE +
1043                           RTAS_ERROR_LOG_MAX +
1044                           ms->smp.max_cpus * sizeof(uint64_t) * 2 +
1045                           sizeof(uint64_t)));
1046     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1047                           RTAS_ERROR_LOG_MAX));
1048     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1049                           RTAS_EVENT_SCAN_RATE));
1050 
1051     g_assert(msi_nonbroken);
1052     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1053 
1054     /*
1055      * According to PAPR, rtas ibm,os-term does not guarantee a return
1056      * back to the guest cpu.
1057      *
1058      * While an additional ibm,extended-os-term property indicates
1059      * that rtas call return will always occur. Set this property.
1060      */
1061     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1062 
1063     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1064                      lrdr_capacity, sizeof(lrdr_capacity)));
1065 
1066     spapr_dt_rtas_tokens(fdt, rtas);
1067 }
1068 
1069 /*
1070  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1071  * and the XIVE features that the guest may request and thus the valid
1072  * values for bytes 23..26 of option vector 5:
1073  */
1074 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1075                                           int chosen)
1076 {
1077     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1078 
1079     char val[2 * 4] = {
1080         23, 0x00, /* XICS / XIVE mode */
1081         24, 0x00, /* Hash/Radix, filled in below. */
1082         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1083         26, 0x40, /* Radix options: GTSE == yes. */
1084     };
1085 
1086     if (spapr->irq->xics && spapr->irq->xive) {
1087         val[1] = SPAPR_OV5_XIVE_BOTH;
1088     } else if (spapr->irq->xive) {
1089         val[1] = SPAPR_OV5_XIVE_EXPLOIT;
1090     } else {
1091         assert(spapr->irq->xics);
1092         val[1] = SPAPR_OV5_XIVE_LEGACY;
1093     }
1094 
1095     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1096                           first_ppc_cpu->compat_pvr)) {
1097         /*
1098          * If we're in a pre POWER9 compat mode then the guest should
1099          * do hash and use the legacy interrupt mode
1100          */
1101         val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
1102         val[3] = 0x00; /* Hash */
1103         spapr_check_mmu_mode(false);
1104     } else if (kvm_enabled()) {
1105         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1106             val[3] = 0x80; /* OV5_MMU_BOTH */
1107         } else if (kvmppc_has_cap_mmu_radix()) {
1108             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1109         } else {
1110             val[3] = 0x00; /* Hash */
1111         }
1112     } else {
1113         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1114         val[3] = 0xC0;
1115     }
1116     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1117                      val, sizeof(val)));
1118 }
1119 
1120 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1121 {
1122     MachineState *machine = MACHINE(spapr);
1123     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1124     int chosen;
1125 
1126     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1127 
1128     if (reset) {
1129         const char *boot_device = spapr->boot_device;
1130         g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1131         size_t cb = 0;
1132         g_autofree char *bootlist = get_boot_devices_list(&cb);
1133 
1134         if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1135             _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1136                                     machine->kernel_cmdline));
1137         }
1138 
1139         if (spapr->initrd_size) {
1140             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1141                                   spapr->initrd_base));
1142             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1143                                   spapr->initrd_base + spapr->initrd_size));
1144         }
1145 
1146         if (spapr->kernel_size) {
1147             uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1148                                   cpu_to_be64(spapr->kernel_size) };
1149 
1150             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1151                          &kprop, sizeof(kprop)));
1152             if (spapr->kernel_le) {
1153                 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1154             }
1155         }
1156         if (machine->boot_config.has_menu && machine->boot_config.menu) {
1157             _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true)));
1158         }
1159         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1160         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1161         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1162 
1163         if (cb && bootlist) {
1164             int i;
1165 
1166             for (i = 0; i < cb; i++) {
1167                 if (bootlist[i] == '\n') {
1168                     bootlist[i] = ' ';
1169                 }
1170             }
1171             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1172         }
1173 
1174         if (boot_device && strlen(boot_device)) {
1175             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1176         }
1177 
1178         if (spapr->want_stdout_path && stdout_path) {
1179             /*
1180              * "linux,stdout-path" and "stdout" properties are
1181              * deprecated by linux kernel. New platforms should only
1182              * use the "stdout-path" property. Set the new property
1183              * and continue using older property to remain compatible
1184              * with the existing firmware.
1185              */
1186             _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1187             _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1188         }
1189 
1190         /*
1191          * We can deal with BAR reallocation just fine, advertise it
1192          * to the guest
1193          */
1194         if (smc->linux_pci_probe) {
1195             _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1196         }
1197 
1198         spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1199     }
1200 
1201     _FDT(fdt_setprop(fdt, chosen, "rng-seed", spapr->fdt_rng_seed, 32));
1202 
1203     _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1204 }
1205 
1206 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1207 {
1208     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1209      * KVM to work under pHyp with some guest co-operation */
1210     int hypervisor;
1211     uint8_t hypercall[16];
1212 
1213     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1214     /* indicate KVM hypercall interface */
1215     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1216     if (kvmppc_has_cap_fixup_hcalls()) {
1217         /*
1218          * Older KVM versions with older guest kernels were broken
1219          * with the magic page, don't allow the guest to map it.
1220          */
1221         if (!kvmppc_get_hypercall(cpu_env(first_cpu), hypercall,
1222                                   sizeof(hypercall))) {
1223             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1224                              hypercall, sizeof(hypercall)));
1225         }
1226     }
1227 }
1228 
1229 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1230 {
1231     MachineState *machine = MACHINE(spapr);
1232     MachineClass *mc = MACHINE_GET_CLASS(machine);
1233     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1234     uint32_t root_drc_type_mask = 0;
1235     int ret;
1236     void *fdt;
1237     SpaprPhbState *phb;
1238     char *buf;
1239 
1240     fdt = g_malloc0(space);
1241     _FDT((fdt_create_empty_tree(fdt, space)));
1242 
1243     /* Root node */
1244     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1245     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1246     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1247 
1248     /* Guest UUID & Name*/
1249     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1250     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1251     if (qemu_uuid_set) {
1252         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1253     }
1254     g_free(buf);
1255 
1256     if (qemu_get_vm_name()) {
1257         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1258                                 qemu_get_vm_name()));
1259     }
1260 
1261     /* Host Model & Serial Number */
1262     if (spapr->host_model) {
1263         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1264     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1265         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1266         g_free(buf);
1267     }
1268 
1269     if (spapr->host_serial) {
1270         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1271     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1272         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1273         g_free(buf);
1274     }
1275 
1276     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1277     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1278 
1279     /* /interrupt controller */
1280     spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1281 
1282     ret = spapr_dt_memory(spapr, fdt);
1283     if (ret < 0) {
1284         error_report("couldn't setup memory nodes in fdt");
1285         exit(1);
1286     }
1287 
1288     /* /vdevice */
1289     spapr_dt_vdevice(spapr->vio_bus, fdt);
1290 
1291     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1292         ret = spapr_dt_rng(fdt);
1293         if (ret < 0) {
1294             error_report("could not set up rng device in the fdt");
1295             exit(1);
1296         }
1297     }
1298 
1299     QLIST_FOREACH(phb, &spapr->phbs, list) {
1300         ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1301         if (ret < 0) {
1302             error_report("couldn't setup PCI devices in fdt");
1303             exit(1);
1304         }
1305     }
1306 
1307     spapr_dt_cpus(fdt, spapr);
1308 
1309     /* ibm,drc-indexes and friends */
1310     if (smc->dr_lmb_enabled) {
1311         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
1312     }
1313     if (smc->dr_phb_enabled) {
1314         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
1315     }
1316     if (mc->nvdimm_supported) {
1317         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
1318     }
1319     if (root_drc_type_mask) {
1320         _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
1321     }
1322 
1323     if (mc->has_hotpluggable_cpus) {
1324         int offset = fdt_path_offset(fdt, "/cpus");
1325         ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1326         if (ret < 0) {
1327             error_report("Couldn't set up CPU DR device tree properties");
1328             exit(1);
1329         }
1330     }
1331 
1332     /* /event-sources */
1333     spapr_dt_events(spapr, fdt);
1334 
1335     /* /rtas */
1336     spapr_dt_rtas(spapr, fdt);
1337 
1338     /* /chosen */
1339     spapr_dt_chosen(spapr, fdt, reset);
1340 
1341     /* /hypervisor */
1342     if (kvm_enabled()) {
1343         spapr_dt_hypervisor(spapr, fdt);
1344     }
1345 
1346     /* Build memory reserve map */
1347     if (reset) {
1348         if (spapr->kernel_size) {
1349             _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1350                                   spapr->kernel_size)));
1351         }
1352         if (spapr->initrd_size) {
1353             _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1354                                   spapr->initrd_size)));
1355         }
1356     }
1357 
1358     /* NVDIMM devices */
1359     if (mc->nvdimm_supported) {
1360         spapr_dt_persistent_memory(spapr, fdt);
1361     }
1362 
1363     return fdt;
1364 }
1365 
1366 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1367 {
1368     SpaprMachineState *spapr = opaque;
1369 
1370     return (addr & 0x0fffffff) + spapr->kernel_addr;
1371 }
1372 
1373 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1374                                     PowerPCCPU *cpu)
1375 {
1376     CPUPPCState *env = &cpu->env;
1377 
1378     /* The TCG path should also be holding the BQL at this point */
1379     g_assert(bql_locked());
1380 
1381     g_assert(!vhyp_cpu_in_nested(cpu));
1382 
1383     if (FIELD_EX64(env->msr, MSR, PR)) {
1384         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1385         env->gpr[3] = H_PRIVILEGE;
1386     } else {
1387         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1388     }
1389 }
1390 
1391 struct LPCRSyncState {
1392     target_ulong value;
1393     target_ulong mask;
1394 };
1395 
1396 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1397 {
1398     struct LPCRSyncState *s = arg.host_ptr;
1399     PowerPCCPU *cpu = POWERPC_CPU(cs);
1400     CPUPPCState *env = &cpu->env;
1401     target_ulong lpcr;
1402 
1403     cpu_synchronize_state(cs);
1404     lpcr = env->spr[SPR_LPCR];
1405     lpcr &= ~s->mask;
1406     lpcr |= s->value;
1407     ppc_store_lpcr(cpu, lpcr);
1408 }
1409 
1410 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1411 {
1412     CPUState *cs;
1413     struct LPCRSyncState s = {
1414         .value = value,
1415         .mask = mask
1416     };
1417     CPU_FOREACH(cs) {
1418         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1419     }
1420 }
1421 
1422 /* May be used when the machine is not running */
1423 void spapr_init_all_lpcrs(target_ulong value, target_ulong mask)
1424 {
1425     CPUState *cs;
1426     CPU_FOREACH(cs) {
1427         PowerPCCPU *cpu = POWERPC_CPU(cs);
1428         CPUPPCState *env = &cpu->env;
1429         target_ulong lpcr;
1430 
1431         lpcr = env->spr[SPR_LPCR];
1432         lpcr &= ~(LPCR_HR | LPCR_UPRT);
1433         ppc_store_lpcr(cpu, lpcr);
1434     }
1435 }
1436 
1437 static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu,
1438                            target_ulong lpid, ppc_v3_pate_t *entry)
1439 {
1440     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1441     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1442 
1443     if (!spapr_cpu->in_nested) {
1444         assert(lpid == 0);
1445 
1446         /* Copy PATE1:GR into PATE0:HR */
1447         entry->dw0 = spapr->patb_entry & PATE0_HR;
1448         entry->dw1 = spapr->patb_entry;
1449         return true;
1450     } else {
1451         if (spapr_nested_api(spapr) == NESTED_API_KVM_HV) {
1452             return spapr_get_pate_nested_hv(spapr, cpu, lpid, entry);
1453         } else if (spapr_nested_api(spapr) == NESTED_API_PAPR) {
1454             return spapr_get_pate_nested_papr(spapr, cpu, lpid, entry);
1455         } else {
1456             g_assert_not_reached();
1457         }
1458     }
1459 }
1460 
1461 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1462 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1463 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1464 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1465 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1466 
1467 /*
1468  * Get the fd to access the kernel htab, re-opening it if necessary
1469  */
1470 static int get_htab_fd(SpaprMachineState *spapr)
1471 {
1472     Error *local_err = NULL;
1473 
1474     if (spapr->htab_fd >= 0) {
1475         return spapr->htab_fd;
1476     }
1477 
1478     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1479     if (spapr->htab_fd < 0) {
1480         error_report_err(local_err);
1481     }
1482 
1483     return spapr->htab_fd;
1484 }
1485 
1486 void close_htab_fd(SpaprMachineState *spapr)
1487 {
1488     if (spapr->htab_fd >= 0) {
1489         close(spapr->htab_fd);
1490     }
1491     spapr->htab_fd = -1;
1492 }
1493 
1494 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1495 {
1496     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1497 
1498     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1499 }
1500 
1501 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1502 {
1503     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1504 
1505     assert(kvm_enabled());
1506 
1507     if (!spapr->htab) {
1508         return 0;
1509     }
1510 
1511     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1512 }
1513 
1514 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1515                                                 hwaddr ptex, int n)
1516 {
1517     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1518     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1519 
1520     if (!spapr->htab) {
1521         /*
1522          * HTAB is controlled by KVM. Fetch into temporary buffer
1523          */
1524         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1525         kvmppc_read_hptes(hptes, ptex, n);
1526         return hptes;
1527     }
1528 
1529     /*
1530      * HTAB is controlled by QEMU. Just point to the internally
1531      * accessible PTEG.
1532      */
1533     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1534 }
1535 
1536 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1537                               const ppc_hash_pte64_t *hptes,
1538                               hwaddr ptex, int n)
1539 {
1540     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1541 
1542     if (!spapr->htab) {
1543         g_free((void *)hptes);
1544     }
1545 
1546     /* Nothing to do for qemu managed HPT */
1547 }
1548 
1549 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1550                       uint64_t pte0, uint64_t pte1)
1551 {
1552     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1553     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1554 
1555     if (!spapr->htab) {
1556         kvmppc_write_hpte(ptex, pte0, pte1);
1557     } else {
1558         if (pte0 & HPTE64_V_VALID) {
1559             stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1560             /*
1561              * When setting valid, we write PTE1 first. This ensures
1562              * proper synchronization with the reading code in
1563              * ppc_hash64_pteg_search()
1564              */
1565             smp_wmb();
1566             stq_p(spapr->htab + offset, pte0);
1567         } else {
1568             stq_p(spapr->htab + offset, pte0);
1569             /*
1570              * When clearing it we set PTE0 first. This ensures proper
1571              * synchronization with the reading code in
1572              * ppc_hash64_pteg_search()
1573              */
1574             smp_wmb();
1575             stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1576         }
1577     }
1578 }
1579 
1580 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1581                              uint64_t pte1)
1582 {
1583     hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C;
1584     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1585 
1586     if (!spapr->htab) {
1587         /* There should always be a hash table when this is called */
1588         error_report("spapr_hpte_set_c called with no hash table !");
1589         return;
1590     }
1591 
1592     /* The HW performs a non-atomic byte update */
1593     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1594 }
1595 
1596 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1597                              uint64_t pte1)
1598 {
1599     hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R;
1600     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1601 
1602     if (!spapr->htab) {
1603         /* There should always be a hash table when this is called */
1604         error_report("spapr_hpte_set_r called with no hash table !");
1605         return;
1606     }
1607 
1608     /* The HW performs a non-atomic byte update */
1609     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1610 }
1611 
1612 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1613 {
1614     int shift;
1615 
1616     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1617      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1618      * that's much more than is needed for Linux guests */
1619     shift = ctz64(pow2ceil(ramsize)) - 7;
1620     shift = MAX(shift, 18); /* Minimum architected size */
1621     shift = MIN(shift, 46); /* Maximum architected size */
1622     return shift;
1623 }
1624 
1625 void spapr_free_hpt(SpaprMachineState *spapr)
1626 {
1627     qemu_vfree(spapr->htab);
1628     spapr->htab = NULL;
1629     spapr->htab_shift = 0;
1630     close_htab_fd(spapr);
1631 }
1632 
1633 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1634 {
1635     ERRP_GUARD();
1636     long rc;
1637 
1638     /* Clean up any HPT info from a previous boot */
1639     spapr_free_hpt(spapr);
1640 
1641     rc = kvmppc_reset_htab(shift);
1642 
1643     if (rc == -EOPNOTSUPP) {
1644         error_setg(errp, "HPT not supported in nested guests");
1645         return -EOPNOTSUPP;
1646     }
1647 
1648     if (rc < 0) {
1649         /* kernel-side HPT needed, but couldn't allocate one */
1650         error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1651                          shift);
1652         error_append_hint(errp, "Try smaller maxmem?\n");
1653         return -errno;
1654     } else if (rc > 0) {
1655         /* kernel-side HPT allocated */
1656         if (rc != shift) {
1657             error_setg(errp,
1658                        "Requested order %d HPT, but kernel allocated order %ld",
1659                        shift, rc);
1660             error_append_hint(errp, "Try smaller maxmem?\n");
1661             return -ENOSPC;
1662         }
1663 
1664         spapr->htab_shift = shift;
1665         spapr->htab = NULL;
1666     } else {
1667         /* kernel-side HPT not needed, allocate in userspace instead */
1668         size_t size = 1ULL << shift;
1669         int i;
1670 
1671         spapr->htab = qemu_memalign(size, size);
1672         memset(spapr->htab, 0, size);
1673         spapr->htab_shift = shift;
1674 
1675         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1676             DIRTY_HPTE(HPTE(spapr->htab, i));
1677         }
1678     }
1679     /* We're setting up a hash table, so that means we're not radix */
1680     spapr->patb_entry = 0;
1681     spapr_init_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1682     return 0;
1683 }
1684 
1685 void spapr_setup_hpt(SpaprMachineState *spapr)
1686 {
1687     int hpt_shift;
1688 
1689     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1690         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1691     } else {
1692         uint64_t current_ram_size;
1693 
1694         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1695         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1696     }
1697     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1698 
1699     if (kvm_enabled()) {
1700         hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1701 
1702         /* Check our RMA fits in the possible VRMA */
1703         if (vrma_limit < spapr->rma_size) {
1704             error_report("Unable to create %" HWADDR_PRIu
1705                          "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1706                          spapr->rma_size / MiB, vrma_limit / MiB);
1707             exit(EXIT_FAILURE);
1708         }
1709     }
1710 }
1711 
1712 void spapr_check_mmu_mode(bool guest_radix)
1713 {
1714     if (guest_radix) {
1715         if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1716             error_report("Guest requested unavailable MMU mode (radix).");
1717             exit(EXIT_FAILURE);
1718         }
1719     } else {
1720         if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1721             && !kvmppc_has_cap_mmu_hash_v3()) {
1722             error_report("Guest requested unavailable MMU mode (hash).");
1723             exit(EXIT_FAILURE);
1724         }
1725     }
1726 }
1727 
1728 static void spapr_machine_reset(MachineState *machine, ShutdownCause reason)
1729 {
1730     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1731     PowerPCCPU *first_ppc_cpu;
1732     hwaddr fdt_addr;
1733     void *fdt;
1734     int rc;
1735 
1736     if (reason != SHUTDOWN_CAUSE_SNAPSHOT_LOAD) {
1737         /*
1738          * Record-replay snapshot load must not consume random, this was
1739          * already replayed from initial machine reset.
1740          */
1741         qemu_guest_getrandom_nofail(spapr->fdt_rng_seed, 32);
1742     }
1743 
1744     if (machine->cgs) {
1745         confidential_guest_kvm_reset(machine->cgs, &error_fatal);
1746     }
1747     spapr_caps_apply(spapr);
1748     spapr_nested_reset(spapr);
1749 
1750     first_ppc_cpu = POWERPC_CPU(first_cpu);
1751     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1752         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1753                               spapr->max_compat_pvr)) {
1754         /*
1755          * If using KVM with radix mode available, VCPUs can be started
1756          * without a HPT because KVM will start them in radix mode.
1757          * Set the GR bit in PATE so that we know there is no HPT.
1758          */
1759         spapr->patb_entry = PATE1_GR;
1760         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1761     } else {
1762         spapr_setup_hpt(spapr);
1763     }
1764 
1765     qemu_devices_reset(reason);
1766 
1767     spapr_ovec_cleanup(spapr->ov5_cas);
1768     spapr->ov5_cas = spapr_ovec_new();
1769 
1770     ppc_init_compat_all(spapr->max_compat_pvr, &error_fatal);
1771 
1772     /*
1773      * This is fixing some of the default configuration of the XIVE
1774      * devices. To be called after the reset of the machine devices.
1775      */
1776     spapr_irq_reset(spapr, &error_fatal);
1777 
1778     /*
1779      * There is no CAS under qtest. Simulate one to please the code that
1780      * depends on spapr->ov5_cas. This is especially needed to test device
1781      * unplug, so we do that before resetting the DRCs.
1782      */
1783     if (qtest_enabled()) {
1784         spapr_ovec_cleanup(spapr->ov5_cas);
1785         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1786     }
1787 
1788     spapr_nvdimm_finish_flushes();
1789 
1790     /* DRC reset may cause a device to be unplugged. This will cause troubles
1791      * if this device is used by another device (eg, a running vhost backend
1792      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1793      * situations, we reset DRCs after all devices have been reset.
1794      */
1795     spapr_drc_reset_all(spapr);
1796 
1797     spapr_clear_pending_events(spapr);
1798 
1799     /*
1800      * We place the device tree just below either the top of the RMA,
1801      * or just below 2GB, whichever is lower, so that it can be
1802      * processed with 32-bit real mode code if necessary
1803      */
1804     fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE;
1805 
1806     fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1807     if (spapr->vof) {
1808         spapr_vof_reset(spapr, fdt, &error_fatal);
1809         /*
1810          * Do not pack the FDT as the client may change properties.
1811          * VOF client does not expect the FDT so we do not load it to the VM.
1812          */
1813     } else {
1814         rc = fdt_pack(fdt);
1815         /* Should only fail if we've built a corrupted tree */
1816         assert(rc == 0);
1817 
1818         spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT,
1819                                   0, fdt_addr, 0);
1820         cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1821     }
1822     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1823 
1824     g_free(spapr->fdt_blob);
1825     spapr->fdt_size = fdt_totalsize(fdt);
1826     spapr->fdt_initial_size = spapr->fdt_size;
1827     spapr->fdt_blob = fdt;
1828 
1829     /* Set machine->fdt for 'dumpdtb' QMP/HMP command */
1830     machine->fdt = fdt;
1831 
1832     /* Set up the entry state */
1833     first_ppc_cpu->env.gpr[5] = 0;
1834 
1835     spapr->fwnmi_system_reset_addr = -1;
1836     spapr->fwnmi_machine_check_addr = -1;
1837     spapr->fwnmi_machine_check_interlock = -1;
1838 
1839     /* Signal all vCPUs waiting on this condition */
1840     qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1841 
1842     migrate_del_blocker(&spapr->fwnmi_migration_blocker);
1843 }
1844 
1845 static void spapr_create_nvram(SpaprMachineState *spapr)
1846 {
1847     DeviceState *dev = qdev_new("spapr-nvram");
1848     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1849 
1850     if (dinfo) {
1851         qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1852                                 &error_fatal);
1853     }
1854 
1855     qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1856 
1857     spapr->nvram = (struct SpaprNvram *)dev;
1858 }
1859 
1860 static void spapr_rtc_create(SpaprMachineState *spapr)
1861 {
1862     object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1863                                        sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1864                                        &error_fatal, NULL);
1865     qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1866     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1867                               "date");
1868 }
1869 
1870 /* Returns whether we want to use VGA or not */
1871 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1872 {
1873     vga_interface_created = true;
1874     switch (vga_interface_type) {
1875     case VGA_NONE:
1876         return false;
1877     case VGA_DEVICE:
1878         return true;
1879     case VGA_STD:
1880     case VGA_VIRTIO:
1881     case VGA_CIRRUS:
1882         return pci_vga_init(pci_bus) != NULL;
1883     default:
1884         error_setg(errp,
1885                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1886         return false;
1887     }
1888 }
1889 
1890 static int spapr_pre_load(void *opaque)
1891 {
1892     int rc;
1893 
1894     rc = spapr_caps_pre_load(opaque);
1895     if (rc) {
1896         return rc;
1897     }
1898 
1899     return 0;
1900 }
1901 
1902 static int spapr_post_load(void *opaque, int version_id)
1903 {
1904     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1905     int err = 0;
1906 
1907     err = spapr_caps_post_migration(spapr);
1908     if (err) {
1909         return err;
1910     }
1911 
1912     /*
1913      * In earlier versions, there was no separate qdev for the PAPR
1914      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1915      * So when migrating from those versions, poke the incoming offset
1916      * value into the RTC device
1917      */
1918     if (version_id < 3) {
1919         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1920         if (err) {
1921             return err;
1922         }
1923     }
1924 
1925     if (kvm_enabled() && spapr->patb_entry) {
1926         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1927         bool radix = !!(spapr->patb_entry & PATE1_GR);
1928         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1929 
1930         /*
1931          * Update LPCR:HR and UPRT as they may not be set properly in
1932          * the stream
1933          */
1934         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1935                             LPCR_HR | LPCR_UPRT);
1936 
1937         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1938         if (err) {
1939             error_report("Process table config unsupported by the host");
1940             return -EINVAL;
1941         }
1942     }
1943 
1944     err = spapr_irq_post_load(spapr, version_id);
1945     if (err) {
1946         return err;
1947     }
1948 
1949     return err;
1950 }
1951 
1952 static int spapr_pre_save(void *opaque)
1953 {
1954     int rc;
1955 
1956     rc = spapr_caps_pre_save(opaque);
1957     if (rc) {
1958         return rc;
1959     }
1960 
1961     return 0;
1962 }
1963 
1964 static bool version_before_3(void *opaque, int version_id)
1965 {
1966     return version_id < 3;
1967 }
1968 
1969 static bool spapr_pending_events_needed(void *opaque)
1970 {
1971     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1972     return !QTAILQ_EMPTY(&spapr->pending_events);
1973 }
1974 
1975 static const VMStateDescription vmstate_spapr_event_entry = {
1976     .name = "spapr_event_log_entry",
1977     .version_id = 1,
1978     .minimum_version_id = 1,
1979     .fields = (const VMStateField[]) {
1980         VMSTATE_UINT32(summary, SpaprEventLogEntry),
1981         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1982         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1983                                      NULL, extended_length),
1984         VMSTATE_END_OF_LIST()
1985     },
1986 };
1987 
1988 static const VMStateDescription vmstate_spapr_pending_events = {
1989     .name = "spapr_pending_events",
1990     .version_id = 1,
1991     .minimum_version_id = 1,
1992     .needed = spapr_pending_events_needed,
1993     .fields = (const VMStateField[]) {
1994         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1995                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1996         VMSTATE_END_OF_LIST()
1997     },
1998 };
1999 
2000 static bool spapr_ov5_cas_needed(void *opaque)
2001 {
2002     SpaprMachineState *spapr = opaque;
2003     SpaprOptionVector *ov5_mask = spapr_ovec_new();
2004     bool cas_needed;
2005 
2006     /* Prior to the introduction of SpaprOptionVector, we had two option
2007      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
2008      * Both of these options encode machine topology into the device-tree
2009      * in such a way that the now-booted OS should still be able to interact
2010      * appropriately with QEMU regardless of what options were actually
2011      * negotiatied on the source side.
2012      *
2013      * As such, we can avoid migrating the CAS-negotiated options if these
2014      * are the only options available on the current machine/platform.
2015      * Since these are the only options available for pseries-2.7 and
2016      * earlier, this allows us to maintain old->new/new->old migration
2017      * compatibility.
2018      *
2019      * For QEMU 2.8+, there are additional CAS-negotiatable options available
2020      * via default pseries-2.8 machines and explicit command-line parameters.
2021      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
2022      * of the actual CAS-negotiated values to continue working properly. For
2023      * example, availability of memory unplug depends on knowing whether
2024      * OV5_HP_EVT was negotiated via CAS.
2025      *
2026      * Thus, for any cases where the set of available CAS-negotiatable
2027      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
2028      * include the CAS-negotiated options in the migration stream, unless
2029      * if they affect boot time behaviour only.
2030      */
2031     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
2032     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
2033     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
2034 
2035     /* We need extra information if we have any bits outside the mask
2036      * defined above */
2037     cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
2038 
2039     spapr_ovec_cleanup(ov5_mask);
2040 
2041     return cas_needed;
2042 }
2043 
2044 static const VMStateDescription vmstate_spapr_ov5_cas = {
2045     .name = "spapr_option_vector_ov5_cas",
2046     .version_id = 1,
2047     .minimum_version_id = 1,
2048     .needed = spapr_ov5_cas_needed,
2049     .fields = (const VMStateField[]) {
2050         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
2051                                  vmstate_spapr_ovec, SpaprOptionVector),
2052         VMSTATE_END_OF_LIST()
2053     },
2054 };
2055 
2056 static bool spapr_patb_entry_needed(void *opaque)
2057 {
2058     SpaprMachineState *spapr = opaque;
2059 
2060     return !!spapr->patb_entry;
2061 }
2062 
2063 static const VMStateDescription vmstate_spapr_patb_entry = {
2064     .name = "spapr_patb_entry",
2065     .version_id = 1,
2066     .minimum_version_id = 1,
2067     .needed = spapr_patb_entry_needed,
2068     .fields = (const VMStateField[]) {
2069         VMSTATE_UINT64(patb_entry, SpaprMachineState),
2070         VMSTATE_END_OF_LIST()
2071     },
2072 };
2073 
2074 static bool spapr_irq_map_needed(void *opaque)
2075 {
2076     SpaprMachineState *spapr = opaque;
2077 
2078     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
2079 }
2080 
2081 static const VMStateDescription vmstate_spapr_irq_map = {
2082     .name = "spapr_irq_map",
2083     .version_id = 1,
2084     .minimum_version_id = 1,
2085     .needed = spapr_irq_map_needed,
2086     .fields = (const VMStateField[]) {
2087         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2088         VMSTATE_END_OF_LIST()
2089     },
2090 };
2091 
2092 static bool spapr_dtb_needed(void *opaque)
2093 {
2094     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2095 
2096     return smc->update_dt_enabled;
2097 }
2098 
2099 static int spapr_dtb_pre_load(void *opaque)
2100 {
2101     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2102 
2103     g_free(spapr->fdt_blob);
2104     spapr->fdt_blob = NULL;
2105     spapr->fdt_size = 0;
2106 
2107     return 0;
2108 }
2109 
2110 static const VMStateDescription vmstate_spapr_dtb = {
2111     .name = "spapr_dtb",
2112     .version_id = 1,
2113     .minimum_version_id = 1,
2114     .needed = spapr_dtb_needed,
2115     .pre_load = spapr_dtb_pre_load,
2116     .fields = (const VMStateField[]) {
2117         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2118         VMSTATE_UINT32(fdt_size, SpaprMachineState),
2119         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2120                                      fdt_size),
2121         VMSTATE_END_OF_LIST()
2122     },
2123 };
2124 
2125 static bool spapr_fwnmi_needed(void *opaque)
2126 {
2127     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2128 
2129     return spapr->fwnmi_machine_check_addr != -1;
2130 }
2131 
2132 static int spapr_fwnmi_pre_save(void *opaque)
2133 {
2134     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2135 
2136     /*
2137      * Check if machine check handling is in progress and print a
2138      * warning message.
2139      */
2140     if (spapr->fwnmi_machine_check_interlock != -1) {
2141         warn_report("A machine check is being handled during migration. The"
2142                 "handler may run and log hardware error on the destination");
2143     }
2144 
2145     return 0;
2146 }
2147 
2148 static const VMStateDescription vmstate_spapr_fwnmi = {
2149     .name = "spapr_fwnmi",
2150     .version_id = 1,
2151     .minimum_version_id = 1,
2152     .needed = spapr_fwnmi_needed,
2153     .pre_save = spapr_fwnmi_pre_save,
2154     .fields = (const VMStateField[]) {
2155         VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
2156         VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
2157         VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
2158         VMSTATE_END_OF_LIST()
2159     },
2160 };
2161 
2162 static const VMStateDescription vmstate_spapr = {
2163     .name = "spapr",
2164     .version_id = 3,
2165     .minimum_version_id = 1,
2166     .pre_load = spapr_pre_load,
2167     .post_load = spapr_post_load,
2168     .pre_save = spapr_pre_save,
2169     .fields = (const VMStateField[]) {
2170         /* used to be @next_irq */
2171         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2172 
2173         /* RTC offset */
2174         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2175 
2176         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2177         VMSTATE_END_OF_LIST()
2178     },
2179     .subsections = (const VMStateDescription * const []) {
2180         &vmstate_spapr_ov5_cas,
2181         &vmstate_spapr_patb_entry,
2182         &vmstate_spapr_pending_events,
2183         &vmstate_spapr_cap_htm,
2184         &vmstate_spapr_cap_vsx,
2185         &vmstate_spapr_cap_dfp,
2186         &vmstate_spapr_cap_cfpc,
2187         &vmstate_spapr_cap_sbbc,
2188         &vmstate_spapr_cap_ibs,
2189         &vmstate_spapr_cap_hpt_maxpagesize,
2190         &vmstate_spapr_irq_map,
2191         &vmstate_spapr_cap_nested_kvm_hv,
2192         &vmstate_spapr_dtb,
2193         &vmstate_spapr_cap_large_decr,
2194         &vmstate_spapr_cap_ccf_assist,
2195         &vmstate_spapr_cap_fwnmi,
2196         &vmstate_spapr_fwnmi,
2197         &vmstate_spapr_cap_rpt_invalidate,
2198         &vmstate_spapr_cap_nested_papr,
2199         NULL
2200     }
2201 };
2202 
2203 static int htab_save_setup(QEMUFile *f, void *opaque, Error **errp)
2204 {
2205     SpaprMachineState *spapr = opaque;
2206 
2207     /* "Iteration" header */
2208     if (!spapr->htab_shift) {
2209         qemu_put_be32(f, -1);
2210     } else {
2211         qemu_put_be32(f, spapr->htab_shift);
2212     }
2213 
2214     if (spapr->htab) {
2215         spapr->htab_save_index = 0;
2216         spapr->htab_first_pass = true;
2217     } else {
2218         if (spapr->htab_shift) {
2219             assert(kvm_enabled());
2220         }
2221     }
2222 
2223 
2224     return 0;
2225 }
2226 
2227 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2228                             int chunkstart, int n_valid, int n_invalid)
2229 {
2230     qemu_put_be32(f, chunkstart);
2231     qemu_put_be16(f, n_valid);
2232     qemu_put_be16(f, n_invalid);
2233     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2234                     HASH_PTE_SIZE_64 * n_valid);
2235 }
2236 
2237 static void htab_save_end_marker(QEMUFile *f)
2238 {
2239     qemu_put_be32(f, 0);
2240     qemu_put_be16(f, 0);
2241     qemu_put_be16(f, 0);
2242 }
2243 
2244 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2245                                  int64_t max_ns)
2246 {
2247     bool has_timeout = max_ns != -1;
2248     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2249     int index = spapr->htab_save_index;
2250     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2251 
2252     assert(spapr->htab_first_pass);
2253 
2254     do {
2255         int chunkstart;
2256 
2257         /* Consume invalid HPTEs */
2258         while ((index < htabslots)
2259                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2260             CLEAN_HPTE(HPTE(spapr->htab, index));
2261             index++;
2262         }
2263 
2264         /* Consume valid HPTEs */
2265         chunkstart = index;
2266         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2267                && HPTE_VALID(HPTE(spapr->htab, index))) {
2268             CLEAN_HPTE(HPTE(spapr->htab, index));
2269             index++;
2270         }
2271 
2272         if (index > chunkstart) {
2273             int n_valid = index - chunkstart;
2274 
2275             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2276 
2277             if (has_timeout &&
2278                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2279                 break;
2280             }
2281         }
2282     } while ((index < htabslots) && !migration_rate_exceeded(f));
2283 
2284     if (index >= htabslots) {
2285         assert(index == htabslots);
2286         index = 0;
2287         spapr->htab_first_pass = false;
2288     }
2289     spapr->htab_save_index = index;
2290 }
2291 
2292 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2293                                 int64_t max_ns)
2294 {
2295     bool final = max_ns < 0;
2296     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2297     int examined = 0, sent = 0;
2298     int index = spapr->htab_save_index;
2299     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2300 
2301     assert(!spapr->htab_first_pass);
2302 
2303     do {
2304         int chunkstart, invalidstart;
2305 
2306         /* Consume non-dirty HPTEs */
2307         while ((index < htabslots)
2308                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2309             index++;
2310             examined++;
2311         }
2312 
2313         chunkstart = index;
2314         /* Consume valid dirty HPTEs */
2315         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2316                && HPTE_DIRTY(HPTE(spapr->htab, index))
2317                && HPTE_VALID(HPTE(spapr->htab, index))) {
2318             CLEAN_HPTE(HPTE(spapr->htab, index));
2319             index++;
2320             examined++;
2321         }
2322 
2323         invalidstart = index;
2324         /* Consume invalid dirty HPTEs */
2325         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2326                && HPTE_DIRTY(HPTE(spapr->htab, index))
2327                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2328             CLEAN_HPTE(HPTE(spapr->htab, index));
2329             index++;
2330             examined++;
2331         }
2332 
2333         if (index > chunkstart) {
2334             int n_valid = invalidstart - chunkstart;
2335             int n_invalid = index - invalidstart;
2336 
2337             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2338             sent += index - chunkstart;
2339 
2340             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2341                 break;
2342             }
2343         }
2344 
2345         if (examined >= htabslots) {
2346             break;
2347         }
2348 
2349         if (index >= htabslots) {
2350             assert(index == htabslots);
2351             index = 0;
2352         }
2353     } while ((examined < htabslots) && (!migration_rate_exceeded(f) || final));
2354 
2355     if (index >= htabslots) {
2356         assert(index == htabslots);
2357         index = 0;
2358     }
2359 
2360     spapr->htab_save_index = index;
2361 
2362     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2363 }
2364 
2365 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2366 #define MAX_KVM_BUF_SIZE    2048
2367 
2368 static int htab_save_iterate(QEMUFile *f, void *opaque)
2369 {
2370     SpaprMachineState *spapr = opaque;
2371     int fd;
2372     int rc = 0;
2373 
2374     /* Iteration header */
2375     if (!spapr->htab_shift) {
2376         qemu_put_be32(f, -1);
2377         return 1;
2378     } else {
2379         qemu_put_be32(f, 0);
2380     }
2381 
2382     if (!spapr->htab) {
2383         assert(kvm_enabled());
2384 
2385         fd = get_htab_fd(spapr);
2386         if (fd < 0) {
2387             return fd;
2388         }
2389 
2390         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2391         if (rc < 0) {
2392             return rc;
2393         }
2394     } else  if (spapr->htab_first_pass) {
2395         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2396     } else {
2397         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2398     }
2399 
2400     htab_save_end_marker(f);
2401 
2402     return rc;
2403 }
2404 
2405 static int htab_save_complete(QEMUFile *f, void *opaque)
2406 {
2407     SpaprMachineState *spapr = opaque;
2408     int fd;
2409 
2410     /* Iteration header */
2411     if (!spapr->htab_shift) {
2412         qemu_put_be32(f, -1);
2413         return 0;
2414     } else {
2415         qemu_put_be32(f, 0);
2416     }
2417 
2418     if (!spapr->htab) {
2419         int rc;
2420 
2421         assert(kvm_enabled());
2422 
2423         fd = get_htab_fd(spapr);
2424         if (fd < 0) {
2425             return fd;
2426         }
2427 
2428         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2429         if (rc < 0) {
2430             return rc;
2431         }
2432     } else {
2433         if (spapr->htab_first_pass) {
2434             htab_save_first_pass(f, spapr, -1);
2435         }
2436         htab_save_later_pass(f, spapr, -1);
2437     }
2438 
2439     /* End marker */
2440     htab_save_end_marker(f);
2441 
2442     return 0;
2443 }
2444 
2445 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2446 {
2447     SpaprMachineState *spapr = opaque;
2448     uint32_t section_hdr;
2449     int fd = -1;
2450     Error *local_err = NULL;
2451 
2452     if (version_id < 1 || version_id > 1) {
2453         error_report("htab_load() bad version");
2454         return -EINVAL;
2455     }
2456 
2457     section_hdr = qemu_get_be32(f);
2458 
2459     if (section_hdr == -1) {
2460         spapr_free_hpt(spapr);
2461         return 0;
2462     }
2463 
2464     if (section_hdr) {
2465         int ret;
2466 
2467         /* First section gives the htab size */
2468         ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2469         if (ret < 0) {
2470             error_report_err(local_err);
2471             return ret;
2472         }
2473         return 0;
2474     }
2475 
2476     if (!spapr->htab) {
2477         assert(kvm_enabled());
2478 
2479         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2480         if (fd < 0) {
2481             error_report_err(local_err);
2482             return fd;
2483         }
2484     }
2485 
2486     while (true) {
2487         uint32_t index;
2488         uint16_t n_valid, n_invalid;
2489 
2490         index = qemu_get_be32(f);
2491         n_valid = qemu_get_be16(f);
2492         n_invalid = qemu_get_be16(f);
2493 
2494         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2495             /* End of Stream */
2496             break;
2497         }
2498 
2499         if ((index + n_valid + n_invalid) >
2500             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2501             /* Bad index in stream */
2502             error_report(
2503                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2504                 index, n_valid, n_invalid, spapr->htab_shift);
2505             return -EINVAL;
2506         }
2507 
2508         if (spapr->htab) {
2509             if (n_valid) {
2510                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2511                                 HASH_PTE_SIZE_64 * n_valid);
2512             }
2513             if (n_invalid) {
2514                 memset(HPTE(spapr->htab, index + n_valid), 0,
2515                        HASH_PTE_SIZE_64 * n_invalid);
2516             }
2517         } else {
2518             int rc;
2519 
2520             assert(fd >= 0);
2521 
2522             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2523                                         &local_err);
2524             if (rc < 0) {
2525                 error_report_err(local_err);
2526                 return rc;
2527             }
2528         }
2529     }
2530 
2531     if (!spapr->htab) {
2532         assert(fd >= 0);
2533         close(fd);
2534     }
2535 
2536     return 0;
2537 }
2538 
2539 static void htab_save_cleanup(void *opaque)
2540 {
2541     SpaprMachineState *spapr = opaque;
2542 
2543     close_htab_fd(spapr);
2544 }
2545 
2546 static SaveVMHandlers savevm_htab_handlers = {
2547     .save_setup = htab_save_setup,
2548     .save_live_iterate = htab_save_iterate,
2549     .save_live_complete_precopy = htab_save_complete,
2550     .save_cleanup = htab_save_cleanup,
2551     .load_state = htab_load,
2552 };
2553 
2554 static void spapr_boot_set(void *opaque, const char *boot_device,
2555                            Error **errp)
2556 {
2557     SpaprMachineState *spapr = SPAPR_MACHINE(opaque);
2558 
2559     g_free(spapr->boot_device);
2560     spapr->boot_device = g_strdup(boot_device);
2561 }
2562 
2563 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2564 {
2565     MachineState *machine = MACHINE(spapr);
2566     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2567     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2568     int i;
2569 
2570     g_assert(!nr_lmbs || machine->device_memory);
2571     for (i = 0; i < nr_lmbs; i++) {
2572         uint64_t addr;
2573 
2574         addr = i * lmb_size + machine->device_memory->base;
2575         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2576                                addr / lmb_size);
2577     }
2578 }
2579 
2580 /*
2581  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2582  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2583  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2584  */
2585 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2586 {
2587     int i;
2588 
2589     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2590         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2591                    " is not aligned to %" PRIu64 " MiB",
2592                    machine->ram_size,
2593                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2594         return;
2595     }
2596 
2597     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2598         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2599                    " is not aligned to %" PRIu64 " MiB",
2600                    machine->ram_size,
2601                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2602         return;
2603     }
2604 
2605     for (i = 0; i < machine->numa_state->num_nodes; i++) {
2606         if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2607             error_setg(errp,
2608                        "Node %d memory size 0x%" PRIx64
2609                        " is not aligned to %" PRIu64 " MiB",
2610                        i, machine->numa_state->nodes[i].node_mem,
2611                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2612             return;
2613         }
2614     }
2615 }
2616 
2617 /* find cpu slot in machine->possible_cpus by core_id */
2618 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2619 {
2620     int index = id / ms->smp.threads;
2621 
2622     if (index >= ms->possible_cpus->len) {
2623         return NULL;
2624     }
2625     if (idx) {
2626         *idx = index;
2627     }
2628     return &ms->possible_cpus->cpus[index];
2629 }
2630 
2631 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2632 {
2633     MachineState *ms = MACHINE(spapr);
2634     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2635     Error *local_err = NULL;
2636     bool vsmt_user = !!spapr->vsmt;
2637     int kvm_smt = kvmppc_smt_threads();
2638     int ret;
2639     unsigned int smp_threads = ms->smp.threads;
2640 
2641     if (tcg_enabled()) {
2642         if (smp_threads > 1 &&
2643             !ppc_type_check_compat(ms->cpu_type, CPU_POWERPC_LOGICAL_2_07, 0,
2644                                    spapr->max_compat_pvr)) {
2645             error_setg(errp, "TCG only supports SMT on POWER8 or newer CPUs");
2646             return;
2647         }
2648 
2649         if (smp_threads > 8) {
2650             error_setg(errp, "TCG cannot support more than 8 threads/core "
2651                        "on a pseries machine");
2652             return;
2653         }
2654     }
2655     if (!is_power_of_2(smp_threads)) {
2656         error_setg(errp, "Cannot support %d threads/core on a pseries "
2657                    "machine because it must be a power of 2", smp_threads);
2658         return;
2659     }
2660 
2661     /* Determine the VSMT mode to use: */
2662     if (vsmt_user) {
2663         if (spapr->vsmt < smp_threads) {
2664             error_setg(errp, "Cannot support VSMT mode %d"
2665                        " because it must be >= threads/core (%d)",
2666                        spapr->vsmt, smp_threads);
2667             return;
2668         }
2669         /* In this case, spapr->vsmt has been set by the command line */
2670     } else if (!smc->smp_threads_vsmt) {
2671         /*
2672          * Default VSMT value is tricky, because we need it to be as
2673          * consistent as possible (for migration), but this requires
2674          * changing it for at least some existing cases.  We pick 8 as
2675          * the value that we'd get with KVM on POWER8, the
2676          * overwhelmingly common case in production systems.
2677          */
2678         spapr->vsmt = MAX(8, smp_threads);
2679     } else {
2680         spapr->vsmt = smp_threads;
2681     }
2682 
2683     /* KVM: If necessary, set the SMT mode: */
2684     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2685         ret = kvmppc_set_smt_threads(spapr->vsmt);
2686         if (ret) {
2687             /* Looks like KVM isn't able to change VSMT mode */
2688             error_setg(&local_err,
2689                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2690                        spapr->vsmt, ret);
2691             /* We can live with that if the default one is big enough
2692              * for the number of threads, and a submultiple of the one
2693              * we want.  In this case we'll waste some vcpu ids, but
2694              * behaviour will be correct */
2695             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2696                 warn_report_err(local_err);
2697             } else {
2698                 if (!vsmt_user) {
2699                     error_append_hint(&local_err,
2700                                       "On PPC, a VM with %d threads/core"
2701                                       " on a host with %d threads/core"
2702                                       " requires the use of VSMT mode %d.\n",
2703                                       smp_threads, kvm_smt, spapr->vsmt);
2704                 }
2705                 kvmppc_error_append_smt_possible_hint(&local_err);
2706                 error_propagate(errp, local_err);
2707             }
2708         }
2709     }
2710     /* else TCG: nothing to do currently */
2711 }
2712 
2713 static void spapr_init_cpus(SpaprMachineState *spapr)
2714 {
2715     MachineState *machine = MACHINE(spapr);
2716     MachineClass *mc = MACHINE_GET_CLASS(machine);
2717     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2718     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2719     const CPUArchIdList *possible_cpus;
2720     unsigned int smp_cpus = machine->smp.cpus;
2721     unsigned int smp_threads = machine->smp.threads;
2722     unsigned int max_cpus = machine->smp.max_cpus;
2723     int boot_cores_nr = smp_cpus / smp_threads;
2724     int i;
2725 
2726     possible_cpus = mc->possible_cpu_arch_ids(machine);
2727     if (mc->has_hotpluggable_cpus) {
2728         if (smp_cpus % smp_threads) {
2729             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2730                          smp_cpus, smp_threads);
2731             exit(1);
2732         }
2733         if (max_cpus % smp_threads) {
2734             error_report("max_cpus (%u) must be multiple of threads (%u)",
2735                          max_cpus, smp_threads);
2736             exit(1);
2737         }
2738     } else {
2739         if (max_cpus != smp_cpus) {
2740             error_report("This machine version does not support CPU hotplug");
2741             exit(1);
2742         }
2743         boot_cores_nr = possible_cpus->len;
2744     }
2745 
2746     if (smc->pre_2_10_has_unused_icps) {
2747         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2748             /* Dummy entries get deregistered when real ICPState objects
2749              * are registered during CPU core hotplug.
2750              */
2751             pre_2_10_vmstate_register_dummy_icp(i);
2752         }
2753     }
2754 
2755     for (i = 0; i < possible_cpus->len; i++) {
2756         int core_id = i * smp_threads;
2757 
2758         if (mc->has_hotpluggable_cpus) {
2759             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2760                                    spapr_vcpu_id(spapr, core_id));
2761         }
2762 
2763         if (i < boot_cores_nr) {
2764             Object *core  = object_new(type);
2765             int nr_threads = smp_threads;
2766 
2767             /* Handle the partially filled core for older machine types */
2768             if ((i + 1) * smp_threads >= smp_cpus) {
2769                 nr_threads = smp_cpus - i * smp_threads;
2770             }
2771 
2772             object_property_set_int(core, "nr-threads", nr_threads,
2773                                     &error_fatal);
2774             object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2775                                     &error_fatal);
2776             qdev_realize(DEVICE(core), NULL, &error_fatal);
2777 
2778             object_unref(core);
2779         }
2780     }
2781 }
2782 
2783 static PCIHostState *spapr_create_default_phb(void)
2784 {
2785     DeviceState *dev;
2786 
2787     dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2788     qdev_prop_set_uint32(dev, "index", 0);
2789     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2790 
2791     return PCI_HOST_BRIDGE(dev);
2792 }
2793 
2794 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2795 {
2796     MachineState *machine = MACHINE(spapr);
2797     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2798     hwaddr rma_size = machine->ram_size;
2799     hwaddr node0_size = spapr_node0_size(machine);
2800 
2801     /* RMA has to fit in the first NUMA node */
2802     rma_size = MIN(rma_size, node0_size);
2803 
2804     /*
2805      * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2806      * never exceed that
2807      */
2808     rma_size = MIN(rma_size, 1 * TiB);
2809 
2810     /*
2811      * Clamp the RMA size based on machine type.  This is for
2812      * migration compatibility with older qemu versions, which limited
2813      * the RMA size for complicated and mostly bad reasons.
2814      */
2815     if (smc->rma_limit) {
2816         rma_size = MIN(rma_size, smc->rma_limit);
2817     }
2818 
2819     if (rma_size < MIN_RMA_SLOF) {
2820         error_setg(errp,
2821                    "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2822                    "ldMiB guest RMA (Real Mode Area memory)",
2823                    MIN_RMA_SLOF / MiB);
2824         return 0;
2825     }
2826 
2827     return rma_size;
2828 }
2829 
2830 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2831 {
2832     MachineState *machine = MACHINE(spapr);
2833     int i;
2834 
2835     for (i = 0; i < machine->ram_slots; i++) {
2836         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2837     }
2838 }
2839 
2840 /* pSeries LPAR / sPAPR hardware init */
2841 static void spapr_machine_init(MachineState *machine)
2842 {
2843     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2844     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2845     MachineClass *mc = MACHINE_GET_CLASS(machine);
2846     const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME;
2847     const char *bios_name = machine->firmware ?: bios_default;
2848     g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2849     const char *kernel_filename = machine->kernel_filename;
2850     const char *initrd_filename = machine->initrd_filename;
2851     PCIHostState *phb;
2852     bool has_vga;
2853     int i;
2854     MemoryRegion *sysmem = get_system_memory();
2855     long load_limit, fw_size;
2856     Error *resize_hpt_err = NULL;
2857     NICInfo *nd;
2858 
2859     if (!filename) {
2860         error_report("Could not find LPAR firmware '%s'", bios_name);
2861         exit(1);
2862     }
2863     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2864     if (fw_size <= 0) {
2865         error_report("Could not load LPAR firmware '%s'", filename);
2866         exit(1);
2867     }
2868 
2869     /*
2870      * if Secure VM (PEF) support is configured, then initialize it
2871      */
2872     if (machine->cgs) {
2873         confidential_guest_kvm_init(machine->cgs, &error_fatal);
2874     }
2875 
2876     msi_nonbroken = true;
2877 
2878     QLIST_INIT(&spapr->phbs);
2879     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2880 
2881     /* Determine capabilities to run with */
2882     spapr_caps_init(spapr);
2883 
2884     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2885     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2886         /*
2887          * If the user explicitly requested a mode we should either
2888          * supply it, or fail completely (which we do below).  But if
2889          * it's not set explicitly, we reset our mode to something
2890          * that works
2891          */
2892         if (resize_hpt_err) {
2893             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2894             error_free(resize_hpt_err);
2895             resize_hpt_err = NULL;
2896         } else {
2897             spapr->resize_hpt = smc->resize_hpt_default;
2898         }
2899     }
2900 
2901     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2902 
2903     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2904         /*
2905          * User requested HPT resize, but this host can't supply it.  Bail out
2906          */
2907         error_report_err(resize_hpt_err);
2908         exit(1);
2909     }
2910     error_free(resize_hpt_err);
2911 
2912     spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2913 
2914     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2915     load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD;
2916 
2917     /*
2918      * VSMT must be set in order to be able to compute VCPU ids, ie to
2919      * call spapr_max_server_number() or spapr_vcpu_id().
2920      */
2921     spapr_set_vsmt_mode(spapr, &error_fatal);
2922 
2923     /* Set up Interrupt Controller before we create the VCPUs */
2924     spapr_irq_init(spapr, &error_fatal);
2925 
2926     /* Set up containers for ibm,client-architecture-support negotiated options
2927      */
2928     spapr->ov5 = spapr_ovec_new();
2929     spapr->ov5_cas = spapr_ovec_new();
2930 
2931     if (smc->dr_lmb_enabled) {
2932         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2933         spapr_validate_node_memory(machine, &error_fatal);
2934     }
2935 
2936     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2937 
2938     /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */
2939     if (!smc->pre_6_2_numa_affinity) {
2940         spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY);
2941     }
2942 
2943     /* advertise support for dedicated HP event source to guests */
2944     if (spapr->use_hotplug_event_source) {
2945         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2946     }
2947 
2948     /* advertise support for HPT resizing */
2949     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2950         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2951     }
2952 
2953     /* advertise support for ibm,dyamic-memory-v2 */
2954     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2955 
2956     /* advertise XIVE on POWER9 machines */
2957     if (spapr->irq->xive) {
2958         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2959     }
2960 
2961     /* init CPUs */
2962     spapr_init_cpus(spapr);
2963 
2964     /* Init numa_assoc_array */
2965     spapr_numa_associativity_init(spapr, machine);
2966 
2967     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2968         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2969                               spapr->max_compat_pvr)) {
2970         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2971         /* KVM and TCG always allow GTSE with radix... */
2972         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2973     }
2974     /* ... but not with hash (currently). */
2975 
2976     if (kvm_enabled()) {
2977         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2978         kvmppc_enable_logical_ci_hcalls();
2979         kvmppc_enable_set_mode_hcall();
2980 
2981         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2982         kvmppc_enable_clear_ref_mod_hcalls();
2983 
2984         /* Enable H_PAGE_INIT */
2985         kvmppc_enable_h_page_init();
2986     }
2987 
2988     /* map RAM */
2989     memory_region_add_subregion(sysmem, 0, machine->ram);
2990 
2991     /* initialize hotplug memory address space */
2992     if (machine->ram_size < machine->maxram_size) {
2993         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2994         hwaddr device_mem_base;
2995 
2996         /*
2997          * Limit the number of hotpluggable memory slots to half the number
2998          * slots that KVM supports, leaving the other half for PCI and other
2999          * devices. However ensure that number of slots doesn't drop below 32.
3000          */
3001         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
3002                            SPAPR_MAX_RAM_SLOTS;
3003 
3004         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
3005             max_memslots = SPAPR_MAX_RAM_SLOTS;
3006         }
3007         if (machine->ram_slots > max_memslots) {
3008             error_report("Specified number of memory slots %"
3009                          PRIu64" exceeds max supported %d",
3010                          machine->ram_slots, max_memslots);
3011             exit(1);
3012         }
3013 
3014         device_mem_base = ROUND_UP(machine->ram_size, SPAPR_DEVICE_MEM_ALIGN);
3015         machine_memory_devices_init(machine, device_mem_base, device_mem_size);
3016     }
3017 
3018     if (smc->dr_lmb_enabled) {
3019         spapr_create_lmb_dr_connectors(spapr);
3020     }
3021 
3022     if (mc->nvdimm_supported) {
3023         spapr_create_nvdimm_dr_connectors(spapr);
3024     }
3025 
3026     /* Set up RTAS event infrastructure */
3027     spapr_events_init(spapr);
3028 
3029     /* Set up the RTC RTAS interfaces */
3030     spapr_rtc_create(spapr);
3031 
3032     /* Set up VIO bus */
3033     spapr->vio_bus = spapr_vio_bus_init();
3034 
3035     for (i = 0; serial_hd(i); i++) {
3036         spapr_vty_create(spapr->vio_bus, serial_hd(i));
3037     }
3038 
3039     /* We always have at least the nvram device on VIO */
3040     spapr_create_nvram(spapr);
3041 
3042     /*
3043      * Setup hotplug / dynamic-reconfiguration connectors. top-level
3044      * connectors (described in root DT node's "ibm,drc-types" property)
3045      * are pre-initialized here. additional child connectors (such as
3046      * connectors for a PHBs PCI slots) are added as needed during their
3047      * parent's realization.
3048      */
3049     if (smc->dr_phb_enabled) {
3050         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
3051             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
3052         }
3053     }
3054 
3055     /* Set up PCI */
3056     spapr_pci_rtas_init();
3057 
3058     phb = spapr_create_default_phb();
3059 
3060     while ((nd = qemu_find_nic_info("spapr-vlan", true, "ibmveth"))) {
3061         spapr_vlan_create(spapr->vio_bus, nd);
3062     }
3063 
3064     pci_init_nic_devices(phb->bus, NULL);
3065 
3066     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
3067         spapr_vscsi_create(spapr->vio_bus);
3068     }
3069 
3070     /* Graphics */
3071     has_vga = spapr_vga_init(phb->bus, &error_fatal);
3072     if (has_vga) {
3073         spapr->want_stdout_path = !machine->enable_graphics;
3074         machine->usb |= defaults_enabled() && !machine->usb_disabled;
3075     } else {
3076         spapr->want_stdout_path = true;
3077     }
3078 
3079     if (machine->usb) {
3080         if (smc->use_ohci_by_default) {
3081             pci_create_simple(phb->bus, -1, "pci-ohci");
3082         } else {
3083             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
3084         }
3085 
3086         if (has_vga) {
3087             USBBus *usb_bus;
3088 
3089             usb_bus = USB_BUS(object_resolve_type_unambiguous(TYPE_USB_BUS,
3090                                                               &error_abort));
3091             usb_create_simple(usb_bus, "usb-kbd");
3092             usb_create_simple(usb_bus, "usb-mouse");
3093         }
3094     }
3095 
3096     if (kernel_filename) {
3097         uint64_t loaded_addr = 0;
3098 
3099         spapr->kernel_size = load_elf(kernel_filename, NULL,
3100                                       translate_kernel_address, spapr,
3101                                       NULL, &loaded_addr, NULL, NULL, 1,
3102                                       PPC_ELF_MACHINE, 0, 0);
3103         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3104             spapr->kernel_size = load_elf(kernel_filename, NULL,
3105                                           translate_kernel_address, spapr,
3106                                           NULL, &loaded_addr, NULL, NULL, 0,
3107                                           PPC_ELF_MACHINE, 0, 0);
3108             spapr->kernel_le = spapr->kernel_size > 0;
3109         }
3110         if (spapr->kernel_size < 0) {
3111             error_report("error loading %s: %s", kernel_filename,
3112                          load_elf_strerror(spapr->kernel_size));
3113             exit(1);
3114         }
3115 
3116         if (spapr->kernel_addr != loaded_addr) {
3117             warn_report("spapr: kernel_addr changed from 0x%"PRIx64
3118                         " to 0x%"PRIx64,
3119                         spapr->kernel_addr, loaded_addr);
3120             spapr->kernel_addr = loaded_addr;
3121         }
3122 
3123         /* load initrd */
3124         if (initrd_filename) {
3125             /* Try to locate the initrd in the gap between the kernel
3126              * and the firmware. Add a bit of space just in case
3127              */
3128             spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
3129                                   + 0x1ffff) & ~0xffff;
3130             spapr->initrd_size = load_image_targphys(initrd_filename,
3131                                                      spapr->initrd_base,
3132                                                      load_limit
3133                                                      - spapr->initrd_base);
3134             if (spapr->initrd_size < 0) {
3135                 error_report("could not load initial ram disk '%s'",
3136                              initrd_filename);
3137                 exit(1);
3138             }
3139         }
3140     }
3141 
3142     /* FIXME: Should register things through the MachineState's qdev
3143      * interface, this is a legacy from the sPAPREnvironment structure
3144      * which predated MachineState but had a similar function */
3145     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3146     register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3147                          &savevm_htab_handlers, spapr);
3148 
3149     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
3150 
3151     qemu_register_boot_set(spapr_boot_set, spapr);
3152 
3153     /*
3154      * Nothing needs to be done to resume a suspended guest because
3155      * suspending does not change the machine state, so no need for
3156      * a ->wakeup method.
3157      */
3158     qemu_register_wakeup_support();
3159 
3160     if (kvm_enabled()) {
3161         /* to stop and start vmclock */
3162         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3163                                          &spapr->tb);
3164 
3165         kvmppc_spapr_enable_inkernel_multitce();
3166     }
3167 
3168     qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3169     if (spapr->vof) {
3170         spapr->vof->fw_size = fw_size; /* for claim() on itself */
3171         spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client);
3172     }
3173 
3174     spapr_watchdog_init(spapr);
3175 }
3176 
3177 #define DEFAULT_KVM_TYPE "auto"
3178 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3179 {
3180     /*
3181      * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3182      * accommodate the 'HV' and 'PV' formats that exists in the
3183      * wild. The 'auto' mode is being introduced already as
3184      * lower-case, thus we don't need to bother checking for
3185      * "AUTO".
3186      */
3187     if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3188         return 0;
3189     }
3190 
3191     if (!g_ascii_strcasecmp(vm_type, "hv")) {
3192         return 1;
3193     }
3194 
3195     if (!g_ascii_strcasecmp(vm_type, "pr")) {
3196         return 2;
3197     }
3198 
3199     error_report("Unknown kvm-type specified '%s'", vm_type);
3200     return -1;
3201 }
3202 
3203 /*
3204  * Implementation of an interface to adjust firmware path
3205  * for the bootindex property handling.
3206  */
3207 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3208                                    DeviceState *dev)
3209 {
3210 #define CAST(type, obj, name) \
3211     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3212     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3213     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3214     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3215     PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3216 
3217     if (d && bus) {
3218         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3219         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3220         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3221 
3222         if (spapr) {
3223             /*
3224              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3225              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3226              * 0x8000 | (target << 8) | (bus << 5) | lun
3227              * (see the "Logical unit addressing format" table in SAM5)
3228              */
3229             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3230             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3231                                    (uint64_t)id << 48);
3232         } else if (virtio) {
3233             /*
3234              * We use SRP luns of the form 01000000 | (target << 8) | lun
3235              * in the top 32 bits of the 64-bit LUN
3236              * Note: the quote above is from SLOF and it is wrong,
3237              * the actual binding is:
3238              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3239              */
3240             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3241             if (d->lun >= 256) {
3242                 /* Use the LUN "flat space addressing method" */
3243                 id |= 0x4000;
3244             }
3245             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3246                                    (uint64_t)id << 32);
3247         } else if (usb) {
3248             /*
3249              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3250              * in the top 32 bits of the 64-bit LUN
3251              */
3252             unsigned usb_port = atoi(usb->port->path);
3253             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3254             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3255                                    (uint64_t)id << 32);
3256         }
3257     }
3258 
3259     /*
3260      * SLOF probes the USB devices, and if it recognizes that the device is a
3261      * storage device, it changes its name to "storage" instead of "usb-host",
3262      * and additionally adds a child node for the SCSI LUN, so the correct
3263      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3264      */
3265     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3266         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3267         if (usb_device_is_scsi_storage(usbdev)) {
3268             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3269         }
3270     }
3271 
3272     if (phb) {
3273         /* Replace "pci" with "pci@800000020000000" */
3274         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3275     }
3276 
3277     if (vsc) {
3278         /* Same logic as virtio above */
3279         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3280         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3281     }
3282 
3283     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3284         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3285         PCIDevice *pdev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3286         return g_strdup_printf("pci@%x", PCI_SLOT(pdev->devfn));
3287     }
3288 
3289     if (pcidev) {
3290         return spapr_pci_fw_dev_name(pcidev);
3291     }
3292 
3293     return NULL;
3294 }
3295 
3296 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3297 {
3298     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3299 
3300     return g_strdup(spapr->kvm_type);
3301 }
3302 
3303 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3304 {
3305     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3306 
3307     g_free(spapr->kvm_type);
3308     spapr->kvm_type = g_strdup(value);
3309 }
3310 
3311 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3312 {
3313     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3314 
3315     return spapr->use_hotplug_event_source;
3316 }
3317 
3318 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3319                                             Error **errp)
3320 {
3321     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3322 
3323     spapr->use_hotplug_event_source = value;
3324 }
3325 
3326 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3327 {
3328     return true;
3329 }
3330 
3331 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3332 {
3333     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3334 
3335     switch (spapr->resize_hpt) {
3336     case SPAPR_RESIZE_HPT_DEFAULT:
3337         return g_strdup("default");
3338     case SPAPR_RESIZE_HPT_DISABLED:
3339         return g_strdup("disabled");
3340     case SPAPR_RESIZE_HPT_ENABLED:
3341         return g_strdup("enabled");
3342     case SPAPR_RESIZE_HPT_REQUIRED:
3343         return g_strdup("required");
3344     }
3345     g_assert_not_reached();
3346 }
3347 
3348 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3349 {
3350     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3351 
3352     if (strcmp(value, "default") == 0) {
3353         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3354     } else if (strcmp(value, "disabled") == 0) {
3355         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3356     } else if (strcmp(value, "enabled") == 0) {
3357         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3358     } else if (strcmp(value, "required") == 0) {
3359         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3360     } else {
3361         error_setg(errp, "Bad value for \"resize-hpt\" property");
3362     }
3363 }
3364 
3365 static bool spapr_get_vof(Object *obj, Error **errp)
3366 {
3367     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3368 
3369     return spapr->vof != NULL;
3370 }
3371 
3372 static void spapr_set_vof(Object *obj, bool value, Error **errp)
3373 {
3374     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3375 
3376     if (spapr->vof) {
3377         vof_cleanup(spapr->vof);
3378         g_free(spapr->vof);
3379         spapr->vof = NULL;
3380     }
3381     if (!value) {
3382         return;
3383     }
3384     spapr->vof = g_malloc0(sizeof(*spapr->vof));
3385 }
3386 
3387 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3388 {
3389     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3390 
3391     if (spapr->irq == &spapr_irq_xics_legacy) {
3392         return g_strdup("legacy");
3393     } else if (spapr->irq == &spapr_irq_xics) {
3394         return g_strdup("xics");
3395     } else if (spapr->irq == &spapr_irq_xive) {
3396         return g_strdup("xive");
3397     } else if (spapr->irq == &spapr_irq_dual) {
3398         return g_strdup("dual");
3399     }
3400     g_assert_not_reached();
3401 }
3402 
3403 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3404 {
3405     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3406 
3407     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3408         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3409         return;
3410     }
3411 
3412     /* The legacy IRQ backend can not be set */
3413     if (strcmp(value, "xics") == 0) {
3414         spapr->irq = &spapr_irq_xics;
3415     } else if (strcmp(value, "xive") == 0) {
3416         spapr->irq = &spapr_irq_xive;
3417     } else if (strcmp(value, "dual") == 0) {
3418         spapr->irq = &spapr_irq_dual;
3419     } else {
3420         error_setg(errp, "Bad value for \"ic-mode\" property");
3421     }
3422 }
3423 
3424 static char *spapr_get_host_model(Object *obj, Error **errp)
3425 {
3426     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3427 
3428     return g_strdup(spapr->host_model);
3429 }
3430 
3431 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3432 {
3433     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3434 
3435     g_free(spapr->host_model);
3436     spapr->host_model = g_strdup(value);
3437 }
3438 
3439 static char *spapr_get_host_serial(Object *obj, Error **errp)
3440 {
3441     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3442 
3443     return g_strdup(spapr->host_serial);
3444 }
3445 
3446 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3447 {
3448     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3449 
3450     g_free(spapr->host_serial);
3451     spapr->host_serial = g_strdup(value);
3452 }
3453 
3454 static void spapr_instance_init(Object *obj)
3455 {
3456     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3457     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3458     MachineState *ms = MACHINE(spapr);
3459     MachineClass *mc = MACHINE_GET_CLASS(ms);
3460 
3461     /*
3462      * NVDIMM support went live in 5.1 without considering that, in
3463      * other archs, the user needs to enable NVDIMM support with the
3464      * 'nvdimm' machine option and the default behavior is NVDIMM
3465      * support disabled. It is too late to roll back to the standard
3466      * behavior without breaking 5.1 guests.
3467      */
3468     if (mc->nvdimm_supported) {
3469         ms->nvdimms_state->is_enabled = true;
3470     }
3471 
3472     spapr->htab_fd = -1;
3473     spapr->use_hotplug_event_source = true;
3474     spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3475     object_property_add_str(obj, "kvm-type",
3476                             spapr_get_kvm_type, spapr_set_kvm_type);
3477     object_property_set_description(obj, "kvm-type",
3478                                     "Specifies the KVM virtualization mode (auto,"
3479                                     " hv, pr). Defaults to 'auto'. This mode will use"
3480                                     " any available KVM module loaded in the host,"
3481                                     " where kvm_hv takes precedence if both kvm_hv and"
3482                                     " kvm_pr are loaded.");
3483     object_property_add_bool(obj, "modern-hotplug-events",
3484                             spapr_get_modern_hotplug_events,
3485                             spapr_set_modern_hotplug_events);
3486     object_property_set_description(obj, "modern-hotplug-events",
3487                                     "Use dedicated hotplug event mechanism in"
3488                                     " place of standard EPOW events when possible"
3489                                     " (required for memory hot-unplug support)");
3490     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3491                             "Maximum permitted CPU compatibility mode");
3492 
3493     object_property_add_str(obj, "resize-hpt",
3494                             spapr_get_resize_hpt, spapr_set_resize_hpt);
3495     object_property_set_description(obj, "resize-hpt",
3496                                     "Resizing of the Hash Page Table (enabled, disabled, required)");
3497     object_property_add_uint32_ptr(obj, "vsmt",
3498                                    &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3499     object_property_set_description(obj, "vsmt",
3500                                     "Virtual SMT: KVM behaves as if this were"
3501                                     " the host's SMT mode");
3502 
3503     object_property_add_bool(obj, "vfio-no-msix-emulation",
3504                              spapr_get_msix_emulation, NULL);
3505 
3506     object_property_add_uint64_ptr(obj, "kernel-addr",
3507                                    &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3508     object_property_set_description(obj, "kernel-addr",
3509                                     stringify(KERNEL_LOAD_ADDR)
3510                                     " for -kernel is the default");
3511     spapr->kernel_addr = KERNEL_LOAD_ADDR;
3512 
3513     object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof);
3514     object_property_set_description(obj, "x-vof",
3515                                     "Enable Virtual Open Firmware (experimental)");
3516 
3517     /* The machine class defines the default interrupt controller mode */
3518     spapr->irq = smc->irq;
3519     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3520                             spapr_set_ic_mode);
3521     object_property_set_description(obj, "ic-mode",
3522                  "Specifies the interrupt controller mode (xics, xive, dual)");
3523 
3524     object_property_add_str(obj, "host-model",
3525         spapr_get_host_model, spapr_set_host_model);
3526     object_property_set_description(obj, "host-model",
3527         "Host model to advertise in guest device tree");
3528     object_property_add_str(obj, "host-serial",
3529         spapr_get_host_serial, spapr_set_host_serial);
3530     object_property_set_description(obj, "host-serial",
3531         "Host serial number to advertise in guest device tree");
3532 }
3533 
3534 static void spapr_machine_finalizefn(Object *obj)
3535 {
3536     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3537 
3538     g_free(spapr->kvm_type);
3539 }
3540 
3541 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3542 {
3543     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3544     CPUPPCState *env = cpu_env(cs);
3545 
3546     cpu_synchronize_state(cs);
3547     /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3548     if (spapr->fwnmi_system_reset_addr != -1) {
3549         uint64_t rtas_addr, addr;
3550 
3551         /* get rtas addr from fdt */
3552         rtas_addr = spapr_get_rtas_addr();
3553         if (!rtas_addr) {
3554             qemu_system_guest_panicked(NULL);
3555             return;
3556         }
3557 
3558         addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3559         stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3560         stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3561         env->gpr[3] = addr;
3562     }
3563     ppc_cpu_do_system_reset(cs);
3564     if (spapr->fwnmi_system_reset_addr != -1) {
3565         env->nip = spapr->fwnmi_system_reset_addr;
3566     }
3567 }
3568 
3569 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3570 {
3571     CPUState *cs;
3572 
3573     CPU_FOREACH(cs) {
3574         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3575     }
3576 }
3577 
3578 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3579                           void *fdt, int *fdt_start_offset, Error **errp)
3580 {
3581     uint64_t addr;
3582     uint32_t node;
3583 
3584     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3585     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3586                                     &error_abort);
3587     *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3588                                              SPAPR_MEMORY_BLOCK_SIZE);
3589     return 0;
3590 }
3591 
3592 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3593                            bool dedicated_hp_event_source)
3594 {
3595     SpaprDrc *drc;
3596     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3597     int i;
3598     uint64_t addr = addr_start;
3599     bool hotplugged = spapr_drc_hotplugged(dev);
3600 
3601     for (i = 0; i < nr_lmbs; i++) {
3602         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3603                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3604         g_assert(drc);
3605 
3606         /*
3607          * memory_device_get_free_addr() provided a range of free addresses
3608          * that doesn't overlap with any existing mapping at pre-plug. The
3609          * corresponding LMB DRCs are thus assumed to be all attachable.
3610          */
3611         spapr_drc_attach(drc, dev);
3612         if (!hotplugged) {
3613             spapr_drc_reset(drc);
3614         }
3615         addr += SPAPR_MEMORY_BLOCK_SIZE;
3616     }
3617     /* send hotplug notification to the
3618      * guest only in case of hotplugged memory
3619      */
3620     if (hotplugged) {
3621         if (dedicated_hp_event_source) {
3622             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3623                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3624             g_assert(drc);
3625             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3626                                                    nr_lmbs,
3627                                                    spapr_drc_index(drc));
3628         } else {
3629             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3630                                            nr_lmbs);
3631         }
3632     }
3633 }
3634 
3635 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3636 {
3637     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3638     PCDIMMDevice *dimm = PC_DIMM(dev);
3639     uint64_t size, addr;
3640     int64_t slot;
3641     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3642 
3643     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3644 
3645     pc_dimm_plug(dimm, MACHINE(ms));
3646 
3647     if (!is_nvdimm) {
3648         addr = object_property_get_uint(OBJECT(dimm),
3649                                         PC_DIMM_ADDR_PROP, &error_abort);
3650         spapr_add_lmbs(dev, addr, size,
3651                        spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3652     } else {
3653         slot = object_property_get_int(OBJECT(dimm),
3654                                        PC_DIMM_SLOT_PROP, &error_abort);
3655         /* We should have valid slot number at this point */
3656         g_assert(slot >= 0);
3657         spapr_add_nvdimm(dev, slot);
3658     }
3659 }
3660 
3661 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3662                                   Error **errp)
3663 {
3664     const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3665     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3666     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3667     PCDIMMDevice *dimm = PC_DIMM(dev);
3668     Error *local_err = NULL;
3669     uint64_t size;
3670     Object *memdev;
3671     hwaddr pagesize;
3672 
3673     if (!smc->dr_lmb_enabled) {
3674         error_setg(errp, "Memory hotplug not supported for this machine");
3675         return;
3676     }
3677 
3678     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3679     if (local_err) {
3680         error_propagate(errp, local_err);
3681         return;
3682     }
3683 
3684     if (is_nvdimm) {
3685         if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3686             return;
3687         }
3688     } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3689         error_setg(errp, "Hotplugged memory size must be a multiple of "
3690                    "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3691         return;
3692     }
3693 
3694     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3695                                       &error_abort);
3696     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3697     if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3698         return;
3699     }
3700 
3701     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), errp);
3702 }
3703 
3704 struct SpaprDimmState {
3705     PCDIMMDevice *dimm;
3706     uint32_t nr_lmbs;
3707     QTAILQ_ENTRY(SpaprDimmState) next;
3708 };
3709 
3710 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3711                                                        PCDIMMDevice *dimm)
3712 {
3713     SpaprDimmState *dimm_state = NULL;
3714 
3715     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3716         if (dimm_state->dimm == dimm) {
3717             break;
3718         }
3719     }
3720     return dimm_state;
3721 }
3722 
3723 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3724                                                       uint32_t nr_lmbs,
3725                                                       PCDIMMDevice *dimm)
3726 {
3727     SpaprDimmState *ds = NULL;
3728 
3729     /*
3730      * If this request is for a DIMM whose removal had failed earlier
3731      * (due to guest's refusal to remove the LMBs), we would have this
3732      * dimm already in the pending_dimm_unplugs list. In that
3733      * case don't add again.
3734      */
3735     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3736     if (!ds) {
3737         ds = g_new0(SpaprDimmState, 1);
3738         ds->nr_lmbs = nr_lmbs;
3739         ds->dimm = dimm;
3740         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3741     }
3742     return ds;
3743 }
3744 
3745 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3746                                               SpaprDimmState *dimm_state)
3747 {
3748     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3749     g_free(dimm_state);
3750 }
3751 
3752 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3753                                                         PCDIMMDevice *dimm)
3754 {
3755     SpaprDrc *drc;
3756     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3757                                                   &error_abort);
3758     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3759     uint32_t avail_lmbs = 0;
3760     uint64_t addr_start, addr;
3761     int i;
3762 
3763     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3764                                           &error_abort);
3765 
3766     addr = addr_start;
3767     for (i = 0; i < nr_lmbs; i++) {
3768         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3769                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3770         g_assert(drc);
3771         if (drc->dev) {
3772             avail_lmbs++;
3773         }
3774         addr += SPAPR_MEMORY_BLOCK_SIZE;
3775     }
3776 
3777     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3778 }
3779 
3780 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev)
3781 {
3782     SpaprDimmState *ds;
3783     PCDIMMDevice *dimm;
3784     SpaprDrc *drc;
3785     uint32_t nr_lmbs;
3786     uint64_t size, addr_start, addr;
3787     int i;
3788 
3789     if (!dev) {
3790         return;
3791     }
3792 
3793     dimm = PC_DIMM(dev);
3794     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3795 
3796     /*
3797      * 'ds == NULL' would mean that the DIMM doesn't have a pending
3798      * unplug state, but one of its DRC is marked as unplug_requested.
3799      * This is bad and weird enough to g_assert() out.
3800      */
3801     g_assert(ds);
3802 
3803     spapr_pending_dimm_unplugs_remove(spapr, ds);
3804 
3805     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3806     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3807 
3808     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3809                                           &error_abort);
3810 
3811     addr = addr_start;
3812     for (i = 0; i < nr_lmbs; i++) {
3813         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3814                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3815         g_assert(drc);
3816 
3817         drc->unplug_requested = false;
3818         addr += SPAPR_MEMORY_BLOCK_SIZE;
3819     }
3820 
3821     /*
3822      * Tell QAPI that something happened and the memory
3823      * hotunplug wasn't successful.
3824      */
3825     qapi_event_send_device_unplug_guest_error(dev->id,
3826                                               dev->canonical_path);
3827 }
3828 
3829 /* Callback to be called during DRC release. */
3830 void spapr_lmb_release(DeviceState *dev)
3831 {
3832     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3833     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3834     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3835 
3836     /* This information will get lost if a migration occurs
3837      * during the unplug process. In this case recover it. */
3838     if (ds == NULL) {
3839         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3840         g_assert(ds);
3841         /* The DRC being examined by the caller at least must be counted */
3842         g_assert(ds->nr_lmbs);
3843     }
3844 
3845     if (--ds->nr_lmbs) {
3846         return;
3847     }
3848 
3849     /*
3850      * Now that all the LMBs have been removed by the guest, call the
3851      * unplug handler chain. This can never fail.
3852      */
3853     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3854     object_unparent(OBJECT(dev));
3855 }
3856 
3857 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3858 {
3859     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3860     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3861 
3862     /* We really shouldn't get this far without anything to unplug */
3863     g_assert(ds);
3864 
3865     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3866     qdev_unrealize(dev);
3867     spapr_pending_dimm_unplugs_remove(spapr, ds);
3868 }
3869 
3870 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3871                                         DeviceState *dev, Error **errp)
3872 {
3873     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3874     PCDIMMDevice *dimm = PC_DIMM(dev);
3875     uint32_t nr_lmbs;
3876     uint64_t size, addr_start, addr;
3877     int i;
3878     SpaprDrc *drc;
3879 
3880     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3881         error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3882         return;
3883     }
3884 
3885     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3886     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3887 
3888     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3889                                           &error_abort);
3890 
3891     /*
3892      * An existing pending dimm state for this DIMM means that there is an
3893      * unplug operation in progress, waiting for the spapr_lmb_release
3894      * callback to complete the job (BQL can't cover that far). In this case,
3895      * bail out to avoid detaching DRCs that were already released.
3896      */
3897     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3898         error_setg(errp, "Memory unplug already in progress for device %s",
3899                    dev->id);
3900         return;
3901     }
3902 
3903     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3904 
3905     addr = addr_start;
3906     for (i = 0; i < nr_lmbs; i++) {
3907         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3908                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3909         g_assert(drc);
3910 
3911         spapr_drc_unplug_request(drc);
3912         addr += SPAPR_MEMORY_BLOCK_SIZE;
3913     }
3914 
3915     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3916                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3917     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3918                                               nr_lmbs, spapr_drc_index(drc));
3919 }
3920 
3921 /* Callback to be called during DRC release. */
3922 void spapr_core_release(DeviceState *dev)
3923 {
3924     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3925 
3926     /* Call the unplug handler chain. This can never fail. */
3927     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3928     object_unparent(OBJECT(dev));
3929 }
3930 
3931 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3932 {
3933     MachineState *ms = MACHINE(hotplug_dev);
3934     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3935     CPUCore *cc = CPU_CORE(dev);
3936     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3937 
3938     if (smc->pre_2_10_has_unused_icps) {
3939         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3940         int i;
3941 
3942         for (i = 0; i < cc->nr_threads; i++) {
3943             CPUState *cs = CPU(sc->threads[i]);
3944 
3945             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3946         }
3947     }
3948 
3949     assert(core_slot);
3950     core_slot->cpu = NULL;
3951     qdev_unrealize(dev);
3952 }
3953 
3954 static
3955 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3956                                Error **errp)
3957 {
3958     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3959     int index;
3960     SpaprDrc *drc;
3961     CPUCore *cc = CPU_CORE(dev);
3962 
3963     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3964         error_setg(errp, "Unable to find CPU core with core-id: %d",
3965                    cc->core_id);
3966         return;
3967     }
3968     if (index == 0) {
3969         error_setg(errp, "Boot CPU core may not be unplugged");
3970         return;
3971     }
3972 
3973     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3974                           spapr_vcpu_id(spapr, cc->core_id));
3975     g_assert(drc);
3976 
3977     if (!spapr_drc_unplug_requested(drc)) {
3978         spapr_drc_unplug_request(drc);
3979     }
3980 
3981     /*
3982      * spapr_hotplug_req_remove_by_index is left unguarded, out of the
3983      * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
3984      * pulses removing the same CPU. Otherwise, in an failed hotunplug
3985      * attempt (e.g. the kernel will refuse to remove the last online
3986      * CPU), we will never attempt it again because unplug_requested
3987      * will still be 'true' in that case.
3988      */
3989     spapr_hotplug_req_remove_by_index(drc);
3990 }
3991 
3992 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3993                            void *fdt, int *fdt_start_offset, Error **errp)
3994 {
3995     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3996     CPUState *cs = CPU(core->threads[0]);
3997     PowerPCCPU *cpu = POWERPC_CPU(cs);
3998     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3999     int id = spapr_get_vcpu_id(cpu);
4000     g_autofree char *nodename = NULL;
4001     int offset;
4002 
4003     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
4004     offset = fdt_add_subnode(fdt, 0, nodename);
4005 
4006     spapr_dt_cpu(cs, fdt, offset, spapr);
4007 
4008     /*
4009      * spapr_dt_cpu() does not fill the 'name' property in the
4010      * CPU node. The function is called during boot process, before
4011      * and after CAS, and overwriting the 'name' property written
4012      * by SLOF is not allowed.
4013      *
4014      * Write it manually after spapr_dt_cpu(). This makes the hotplug
4015      * CPUs more compatible with the coldplugged ones, which have
4016      * the 'name' property. Linux Kernel also relies on this
4017      * property to identify CPU nodes.
4018      */
4019     _FDT((fdt_setprop_string(fdt, offset, "name", nodename)));
4020 
4021     *fdt_start_offset = offset;
4022     return 0;
4023 }
4024 
4025 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4026 {
4027     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4028     MachineClass *mc = MACHINE_GET_CLASS(spapr);
4029     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4030     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
4031     CPUCore *cc = CPU_CORE(dev);
4032     SpaprDrc *drc;
4033     CPUArchId *core_slot;
4034     int index;
4035     bool hotplugged = spapr_drc_hotplugged(dev);
4036     int i;
4037 
4038     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
4039     g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
4040 
4041     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
4042                           spapr_vcpu_id(spapr, cc->core_id));
4043 
4044     g_assert(drc || !mc->has_hotpluggable_cpus);
4045 
4046     if (drc) {
4047         /*
4048          * spapr_core_pre_plug() already buys us this is a brand new
4049          * core being plugged into a free slot. Nothing should already
4050          * be attached to the corresponding DRC.
4051          */
4052         spapr_drc_attach(drc, dev);
4053 
4054         if (hotplugged) {
4055             /*
4056              * Send hotplug notification interrupt to the guest only
4057              * in case of hotplugged CPUs.
4058              */
4059             spapr_hotplug_req_add_by_index(drc);
4060         } else {
4061             spapr_drc_reset(drc);
4062         }
4063     }
4064 
4065     core_slot->cpu = CPU(dev);
4066 
4067     /*
4068      * Set compatibility mode to match the boot CPU, which was either set
4069      * by the machine reset code or by CAS. This really shouldn't fail at
4070      * this point.
4071      */
4072     if (hotplugged) {
4073         for (i = 0; i < cc->nr_threads; i++) {
4074             ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
4075                            &error_abort);
4076         }
4077     }
4078 
4079     if (smc->pre_2_10_has_unused_icps) {
4080         for (i = 0; i < cc->nr_threads; i++) {
4081             CPUState *cs = CPU(core->threads[i]);
4082             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
4083         }
4084     }
4085 }
4086 
4087 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4088                                 Error **errp)
4089 {
4090     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
4091     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
4092     CPUCore *cc = CPU_CORE(dev);
4093     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
4094     const char *type = object_get_typename(OBJECT(dev));
4095     CPUArchId *core_slot;
4096     int index;
4097     unsigned int smp_threads = machine->smp.threads;
4098 
4099     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
4100         error_setg(errp, "CPU hotplug not supported for this machine");
4101         return;
4102     }
4103 
4104     if (strcmp(base_core_type, type)) {
4105         error_setg(errp, "CPU core type should be %s", base_core_type);
4106         return;
4107     }
4108 
4109     if (cc->core_id % smp_threads) {
4110         error_setg(errp, "invalid core id %d", cc->core_id);
4111         return;
4112     }
4113 
4114     /*
4115      * In general we should have homogeneous threads-per-core, but old
4116      * (pre hotplug support) machine types allow the last core to have
4117      * reduced threads as a compatibility hack for when we allowed
4118      * total vcpus not a multiple of threads-per-core.
4119      */
4120     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
4121         error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
4122                    smp_threads);
4123         return;
4124     }
4125 
4126     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
4127     if (!core_slot) {
4128         error_setg(errp, "core id %d out of range", cc->core_id);
4129         return;
4130     }
4131 
4132     if (core_slot->cpu) {
4133         error_setg(errp, "core %d already populated", cc->core_id);
4134         return;
4135     }
4136 
4137     numa_cpu_pre_plug(core_slot, dev, errp);
4138 }
4139 
4140 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
4141                           void *fdt, int *fdt_start_offset, Error **errp)
4142 {
4143     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
4144     int intc_phandle;
4145 
4146     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
4147     if (intc_phandle <= 0) {
4148         return -1;
4149     }
4150 
4151     if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
4152         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
4153         return -1;
4154     }
4155 
4156     /* generally SLOF creates these, for hotplug it's up to QEMU */
4157     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
4158 
4159     return 0;
4160 }
4161 
4162 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4163                                Error **errp)
4164 {
4165     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4166     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4167     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4168     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
4169     SpaprDrc *drc;
4170 
4171     if (dev->hotplugged && !smc->dr_phb_enabled) {
4172         error_setg(errp, "PHB hotplug not supported for this machine");
4173         return false;
4174     }
4175 
4176     if (sphb->index == (uint32_t)-1) {
4177         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
4178         return false;
4179     }
4180 
4181     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4182     if (drc && drc->dev) {
4183         error_setg(errp, "PHB %d already attached", sphb->index);
4184         return false;
4185     }
4186 
4187     /*
4188      * This will check that sphb->index doesn't exceed the maximum number of
4189      * PHBs for the current machine type.
4190      */
4191     return
4192         smc->phb_placement(spapr, sphb->index,
4193                            &sphb->buid, &sphb->io_win_addr,
4194                            &sphb->mem_win_addr, &sphb->mem64_win_addr,
4195                            windows_supported, sphb->dma_liobn,
4196                            errp);
4197 }
4198 
4199 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4200 {
4201     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4202     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4203     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4204     SpaprDrc *drc;
4205     bool hotplugged = spapr_drc_hotplugged(dev);
4206 
4207     if (!smc->dr_phb_enabled) {
4208         return;
4209     }
4210 
4211     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4212     /* hotplug hooks should check it's enabled before getting this far */
4213     assert(drc);
4214 
4215     /* spapr_phb_pre_plug() already checked the DRC is attachable */
4216     spapr_drc_attach(drc, dev);
4217 
4218     if (hotplugged) {
4219         spapr_hotplug_req_add_by_index(drc);
4220     } else {
4221         spapr_drc_reset(drc);
4222     }
4223 }
4224 
4225 void spapr_phb_release(DeviceState *dev)
4226 {
4227     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4228 
4229     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4230     object_unparent(OBJECT(dev));
4231 }
4232 
4233 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4234 {
4235     qdev_unrealize(dev);
4236 }
4237 
4238 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4239                                      DeviceState *dev, Error **errp)
4240 {
4241     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4242     SpaprDrc *drc;
4243 
4244     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4245     assert(drc);
4246 
4247     if (!spapr_drc_unplug_requested(drc)) {
4248         spapr_drc_unplug_request(drc);
4249         spapr_hotplug_req_remove_by_index(drc);
4250     } else {
4251         error_setg(errp,
4252                    "PCI Host Bridge unplug already in progress for device %s",
4253                    dev->id);
4254     }
4255 }
4256 
4257 static
4258 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4259                               Error **errp)
4260 {
4261     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4262 
4263     if (spapr->tpm_proxy != NULL) {
4264         error_setg(errp, "Only one TPM proxy can be specified for this machine");
4265         return false;
4266     }
4267 
4268     return true;
4269 }
4270 
4271 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4272 {
4273     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4274     SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4275 
4276     /* Already checked in spapr_tpm_proxy_pre_plug() */
4277     g_assert(spapr->tpm_proxy == NULL);
4278 
4279     spapr->tpm_proxy = tpm_proxy;
4280 }
4281 
4282 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4283 {
4284     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4285 
4286     qdev_unrealize(dev);
4287     object_unparent(OBJECT(dev));
4288     spapr->tpm_proxy = NULL;
4289 }
4290 
4291 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4292                                       DeviceState *dev, Error **errp)
4293 {
4294     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4295         spapr_memory_plug(hotplug_dev, dev);
4296     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4297         spapr_core_plug(hotplug_dev, dev);
4298     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4299         spapr_phb_plug(hotplug_dev, dev);
4300     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4301         spapr_tpm_proxy_plug(hotplug_dev, dev);
4302     }
4303 }
4304 
4305 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4306                                         DeviceState *dev, Error **errp)
4307 {
4308     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4309         spapr_memory_unplug(hotplug_dev, dev);
4310     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4311         spapr_core_unplug(hotplug_dev, dev);
4312     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4313         spapr_phb_unplug(hotplug_dev, dev);
4314     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4315         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4316     }
4317 }
4318 
4319 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
4320 {
4321     return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
4322         /*
4323          * CAS will process all pending unplug requests.
4324          *
4325          * HACK: a guest could theoretically have cleared all bits in OV5,
4326          * but none of the guests we care for do.
4327          */
4328         spapr_ovec_empty(spapr->ov5_cas);
4329 }
4330 
4331 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4332                                                 DeviceState *dev, Error **errp)
4333 {
4334     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4335     MachineClass *mc = MACHINE_GET_CLASS(sms);
4336     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4337 
4338     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4339         if (spapr_memory_hot_unplug_supported(sms)) {
4340             spapr_memory_unplug_request(hotplug_dev, dev, errp);
4341         } else {
4342             error_setg(errp, "Memory hot unplug not supported for this guest");
4343         }
4344     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4345         if (!mc->has_hotpluggable_cpus) {
4346             error_setg(errp, "CPU hot unplug not supported on this machine");
4347             return;
4348         }
4349         spapr_core_unplug_request(hotplug_dev, dev, errp);
4350     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4351         if (!smc->dr_phb_enabled) {
4352             error_setg(errp, "PHB hot unplug not supported on this machine");
4353             return;
4354         }
4355         spapr_phb_unplug_request(hotplug_dev, dev, errp);
4356     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4357         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4358     }
4359 }
4360 
4361 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4362                                           DeviceState *dev, Error **errp)
4363 {
4364     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4365         spapr_memory_pre_plug(hotplug_dev, dev, errp);
4366     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4367         spapr_core_pre_plug(hotplug_dev, dev, errp);
4368     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4369         spapr_phb_pre_plug(hotplug_dev, dev, errp);
4370     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4371         spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4372     }
4373 }
4374 
4375 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4376                                                  DeviceState *dev)
4377 {
4378     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4379         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4380         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4381         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4382         return HOTPLUG_HANDLER(machine);
4383     }
4384     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4385         PCIDevice *pcidev = PCI_DEVICE(dev);
4386         PCIBus *root = pci_device_root_bus(pcidev);
4387         SpaprPhbState *phb =
4388             (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4389                                                  TYPE_SPAPR_PCI_HOST_BRIDGE);
4390 
4391         if (phb) {
4392             return HOTPLUG_HANDLER(phb);
4393         }
4394     }
4395     return NULL;
4396 }
4397 
4398 static CpuInstanceProperties
4399 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4400 {
4401     CPUArchId *core_slot;
4402     MachineClass *mc = MACHINE_GET_CLASS(machine);
4403 
4404     /* make sure possible_cpu are initialized */
4405     mc->possible_cpu_arch_ids(machine);
4406     /* get CPU core slot containing thread that matches cpu_index */
4407     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4408     assert(core_slot);
4409     return core_slot->props;
4410 }
4411 
4412 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4413 {
4414     return idx / ms->smp.cores % ms->numa_state->num_nodes;
4415 }
4416 
4417 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4418 {
4419     int i;
4420     unsigned int smp_threads = machine->smp.threads;
4421     unsigned int smp_cpus = machine->smp.cpus;
4422     const char *core_type;
4423     int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4424     MachineClass *mc = MACHINE_GET_CLASS(machine);
4425 
4426     if (!mc->has_hotpluggable_cpus) {
4427         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4428     }
4429     if (machine->possible_cpus) {
4430         assert(machine->possible_cpus->len == spapr_max_cores);
4431         return machine->possible_cpus;
4432     }
4433 
4434     core_type = spapr_get_cpu_core_type(machine->cpu_type);
4435     if (!core_type) {
4436         error_report("Unable to find sPAPR CPU Core definition");
4437         exit(1);
4438     }
4439 
4440     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4441                              sizeof(CPUArchId) * spapr_max_cores);
4442     machine->possible_cpus->len = spapr_max_cores;
4443     for (i = 0; i < machine->possible_cpus->len; i++) {
4444         int core_id = i * smp_threads;
4445 
4446         machine->possible_cpus->cpus[i].type = core_type;
4447         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4448         machine->possible_cpus->cpus[i].arch_id = core_id;
4449         machine->possible_cpus->cpus[i].props.has_core_id = true;
4450         machine->possible_cpus->cpus[i].props.core_id = core_id;
4451     }
4452     return machine->possible_cpus;
4453 }
4454 
4455 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4456                                 uint64_t *buid, hwaddr *pio,
4457                                 hwaddr *mmio32, hwaddr *mmio64,
4458                                 unsigned n_dma, uint32_t *liobns, Error **errp)
4459 {
4460     /*
4461      * New-style PHB window placement.
4462      *
4463      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4464      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4465      * windows.
4466      *
4467      * Some guest kernels can't work with MMIO windows above 1<<46
4468      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4469      *
4470      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4471      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4472      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4473      * 1TiB 64-bit MMIO windows for each PHB.
4474      */
4475     const uint64_t base_buid = 0x800000020000000ULL;
4476     int i;
4477 
4478     /* Sanity check natural alignments */
4479     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4480     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4481     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4482     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4483     /* Sanity check bounds */
4484     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4485                       SPAPR_PCI_MEM32_WIN_SIZE);
4486     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4487                       SPAPR_PCI_MEM64_WIN_SIZE);
4488 
4489     if (index >= SPAPR_MAX_PHBS) {
4490         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4491                    SPAPR_MAX_PHBS - 1);
4492         return false;
4493     }
4494 
4495     *buid = base_buid + index;
4496     for (i = 0; i < n_dma; ++i) {
4497         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4498     }
4499 
4500     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4501     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4502     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4503     return true;
4504 }
4505 
4506 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4507 {
4508     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4509 
4510     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4511 }
4512 
4513 static void spapr_ics_resend(XICSFabric *dev)
4514 {
4515     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4516 
4517     ics_resend(spapr->ics);
4518 }
4519 
4520 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4521 {
4522     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4523 
4524     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4525 }
4526 
4527 static void spapr_pic_print_info(InterruptStatsProvider *obj, GString *buf)
4528 {
4529     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4530 
4531     spapr_irq_print_info(spapr, buf);
4532     g_string_append_printf(buf, "irqchip: %s\n",
4533                            kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4534 }
4535 
4536 /*
4537  * This is a XIVE only operation
4538  */
4539 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4540                            uint8_t nvt_blk, uint32_t nvt_idx,
4541                            bool cam_ignore, uint8_t priority,
4542                            uint32_t logic_serv, XiveTCTXMatch *match)
4543 {
4544     SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4545     XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4546     XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4547     int count;
4548 
4549     count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4550                            priority, logic_serv, match);
4551     if (count < 0) {
4552         return count;
4553     }
4554 
4555     /*
4556      * When we implement the save and restore of the thread interrupt
4557      * contexts in the enter/exit CPU handlers of the machine and the
4558      * escalations in QEMU, we should be able to handle non dispatched
4559      * vCPUs.
4560      *
4561      * Until this is done, the sPAPR machine should find at least one
4562      * matching context always.
4563      */
4564     if (count == 0) {
4565         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4566                       nvt_blk, nvt_idx);
4567     }
4568 
4569     return count;
4570 }
4571 
4572 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4573 {
4574     return cpu->vcpu_id;
4575 }
4576 
4577 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4578 {
4579     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4580     MachineState *ms = MACHINE(spapr);
4581     int vcpu_id;
4582 
4583     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4584 
4585     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4586         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4587         error_append_hint(errp, "Adjust the number of cpus to %d "
4588                           "or try to raise the number of threads per core\n",
4589                           vcpu_id * ms->smp.threads / spapr->vsmt);
4590         return false;
4591     }
4592 
4593     cpu->vcpu_id = vcpu_id;
4594     return true;
4595 }
4596 
4597 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4598 {
4599     CPUState *cs;
4600 
4601     CPU_FOREACH(cs) {
4602         PowerPCCPU *cpu = POWERPC_CPU(cs);
4603 
4604         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4605             return cpu;
4606         }
4607     }
4608 
4609     return NULL;
4610 }
4611 
4612 static bool spapr_cpu_in_nested(PowerPCCPU *cpu)
4613 {
4614     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4615 
4616     return spapr_cpu->in_nested;
4617 }
4618 
4619 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4620 {
4621     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4622 
4623     /* These are only called by TCG, KVM maintains dispatch state */
4624 
4625     spapr_cpu->prod = false;
4626     if (spapr_cpu->vpa_addr) {
4627         CPUState *cs = CPU(cpu);
4628         uint32_t dispatch;
4629 
4630         dispatch = ldl_be_phys(cs->as,
4631                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4632         dispatch++;
4633         if ((dispatch & 1) != 0) {
4634             qemu_log_mask(LOG_GUEST_ERROR,
4635                           "VPA: incorrect dispatch counter value for "
4636                           "dispatched partition %u, correcting.\n", dispatch);
4637             dispatch++;
4638         }
4639         stl_be_phys(cs->as,
4640                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4641     }
4642 }
4643 
4644 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4645 {
4646     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4647 
4648     if (spapr_cpu->vpa_addr) {
4649         CPUState *cs = CPU(cpu);
4650         uint32_t dispatch;
4651 
4652         dispatch = ldl_be_phys(cs->as,
4653                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4654         dispatch++;
4655         if ((dispatch & 1) != 1) {
4656             qemu_log_mask(LOG_GUEST_ERROR,
4657                           "VPA: incorrect dispatch counter value for "
4658                           "preempted partition %u, correcting.\n", dispatch);
4659             dispatch++;
4660         }
4661         stl_be_phys(cs->as,
4662                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4663     }
4664 }
4665 
4666 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4667 {
4668     MachineClass *mc = MACHINE_CLASS(oc);
4669     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4670     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4671     NMIClass *nc = NMI_CLASS(oc);
4672     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4673     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4674     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4675     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4676     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4677     VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc);
4678 
4679     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4680     mc->ignore_boot_device_suffixes = true;
4681 
4682     /*
4683      * We set up the default / latest behaviour here.  The class_init
4684      * functions for the specific versioned machine types can override
4685      * these details for backwards compatibility
4686      */
4687     mc->init = spapr_machine_init;
4688     mc->reset = spapr_machine_reset;
4689     mc->block_default_type = IF_SCSI;
4690 
4691     /*
4692      * While KVM determines max cpus in kvm_init() using kvm_max_vcpus(),
4693      * In TCG the limit is restricted by the range of CPU IPIs available.
4694      */
4695     mc->max_cpus = SPAPR_IRQ_NR_IPIS;
4696 
4697     mc->no_parallel = 1;
4698     mc->default_boot_order = "";
4699     mc->default_ram_size = 512 * MiB;
4700     mc->default_ram_id = "ppc_spapr.ram";
4701     mc->default_display = "std";
4702     mc->kvm_type = spapr_kvm_type;
4703     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4704     mc->pci_allow_0_address = true;
4705     assert(!mc->get_hotplug_handler);
4706     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4707     hc->pre_plug = spapr_machine_device_pre_plug;
4708     hc->plug = spapr_machine_device_plug;
4709     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4710     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4711     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4712     hc->unplug_request = spapr_machine_device_unplug_request;
4713     hc->unplug = spapr_machine_device_unplug;
4714 
4715     smc->dr_lmb_enabled = true;
4716     smc->update_dt_enabled = true;
4717     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
4718     mc->has_hotpluggable_cpus = true;
4719     mc->nvdimm_supported = true;
4720     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4721     fwc->get_dev_path = spapr_get_fw_dev_path;
4722     nc->nmi_monitor_handler = spapr_nmi;
4723     smc->phb_placement = spapr_phb_placement;
4724     vhc->cpu_in_nested = spapr_cpu_in_nested;
4725     vhc->deliver_hv_excp = spapr_exit_nested;
4726     vhc->hypercall = emulate_spapr_hypercall;
4727     vhc->hpt_mask = spapr_hpt_mask;
4728     vhc->map_hptes = spapr_map_hptes;
4729     vhc->unmap_hptes = spapr_unmap_hptes;
4730     vhc->hpte_set_c = spapr_hpte_set_c;
4731     vhc->hpte_set_r = spapr_hpte_set_r;
4732     vhc->get_pate = spapr_get_pate;
4733     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4734     vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4735     vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4736     xic->ics_get = spapr_ics_get;
4737     xic->ics_resend = spapr_ics_resend;
4738     xic->icp_get = spapr_icp_get;
4739     ispc->print_info = spapr_pic_print_info;
4740     /* Force NUMA node memory size to be a multiple of
4741      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4742      * in which LMBs are represented and hot-added
4743      */
4744     mc->numa_mem_align_shift = 28;
4745     mc->auto_enable_numa = true;
4746 
4747     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4748     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4749     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4750     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4751     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4752     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4753     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4754     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4755     smc->default_caps.caps[SPAPR_CAP_NESTED_PAPR] = SPAPR_CAP_OFF;
4756     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4757     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4758     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4759     smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF;
4760 
4761     /*
4762      * This cap specifies whether the AIL 3 mode for
4763      * H_SET_RESOURCE is supported. The default is modified
4764      * by default_caps_with_cpu().
4765      */
4766     smc->default_caps.caps[SPAPR_CAP_AIL_MODE_3] = SPAPR_CAP_ON;
4767     spapr_caps_add_properties(smc);
4768     smc->irq = &spapr_irq_dual;
4769     smc->dr_phb_enabled = true;
4770     smc->linux_pci_probe = true;
4771     smc->smp_threads_vsmt = true;
4772     smc->nr_xirqs = SPAPR_NR_XIRQS;
4773     xfc->match_nvt = spapr_match_nvt;
4774     vmc->client_architecture_support = spapr_vof_client_architecture_support;
4775     vmc->quiesce = spapr_vof_quiesce;
4776     vmc->setprop = spapr_vof_setprop;
4777 }
4778 
4779 static const TypeInfo spapr_machine_info = {
4780     .name          = TYPE_SPAPR_MACHINE,
4781     .parent        = TYPE_MACHINE,
4782     .abstract      = true,
4783     .instance_size = sizeof(SpaprMachineState),
4784     .instance_init = spapr_instance_init,
4785     .instance_finalize = spapr_machine_finalizefn,
4786     .class_size    = sizeof(SpaprMachineClass),
4787     .class_init    = spapr_machine_class_init,
4788     .interfaces = (InterfaceInfo[]) {
4789         { TYPE_FW_PATH_PROVIDER },
4790         { TYPE_NMI },
4791         { TYPE_HOTPLUG_HANDLER },
4792         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4793         { TYPE_XICS_FABRIC },
4794         { TYPE_INTERRUPT_STATS_PROVIDER },
4795         { TYPE_XIVE_FABRIC },
4796         { TYPE_VOF_MACHINE_IF },
4797         { }
4798     },
4799 };
4800 
4801 static void spapr_machine_latest_class_options(MachineClass *mc)
4802 {
4803     mc->alias = "pseries";
4804     mc->is_default = true;
4805 }
4806 
4807 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4808     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4809                                                     void *data)      \
4810     {                                                                \
4811         MachineClass *mc = MACHINE_CLASS(oc);                        \
4812         spapr_machine_##suffix##_class_options(mc);                  \
4813         if (latest) {                                                \
4814             spapr_machine_latest_class_options(mc);                  \
4815         }                                                            \
4816     }                                                                \
4817     static const TypeInfo spapr_machine_##suffix##_info = {          \
4818         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4819         .parent = TYPE_SPAPR_MACHINE,                                \
4820         .class_init = spapr_machine_##suffix##_class_init,           \
4821     };                                                               \
4822     static void spapr_machine_register_##suffix(void)                \
4823     {                                                                \
4824         type_register(&spapr_machine_##suffix##_info);               \
4825     }                                                                \
4826     type_init(spapr_machine_register_##suffix)
4827 
4828 /*
4829  * pseries-9.1
4830  */
4831 static void spapr_machine_9_1_class_options(MachineClass *mc)
4832 {
4833     /* Defaults for the latest behaviour inherited from the base class */
4834 }
4835 
4836 DEFINE_SPAPR_MACHINE(9_1, "9.1", true);
4837 
4838 /*
4839  * pseries-9.0
4840  */
4841 static void spapr_machine_9_0_class_options(MachineClass *mc)
4842 {
4843     spapr_machine_9_1_class_options(mc);
4844     compat_props_add(mc->compat_props, hw_compat_9_0, hw_compat_9_0_len);
4845 }
4846 
4847 DEFINE_SPAPR_MACHINE(9_0, "9.0", false);
4848 
4849 /*
4850  * pseries-8.2
4851  */
4852 static void spapr_machine_8_2_class_options(MachineClass *mc)
4853 {
4854     spapr_machine_9_0_class_options(mc);
4855     compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len);
4856 }
4857 
4858 DEFINE_SPAPR_MACHINE(8_2, "8.2", false);
4859 
4860 /*
4861  * pseries-8.1
4862  */
4863 static void spapr_machine_8_1_class_options(MachineClass *mc)
4864 {
4865     spapr_machine_8_2_class_options(mc);
4866     compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len);
4867 }
4868 
4869 DEFINE_SPAPR_MACHINE(8_1, "8.1", false);
4870 
4871 /*
4872  * pseries-8.0
4873  */
4874 static void spapr_machine_8_0_class_options(MachineClass *mc)
4875 {
4876     spapr_machine_8_1_class_options(mc);
4877     compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
4878 }
4879 
4880 DEFINE_SPAPR_MACHINE(8_0, "8.0", false);
4881 
4882 /*
4883  * pseries-7.2
4884  */
4885 static void spapr_machine_7_2_class_options(MachineClass *mc)
4886 {
4887     spapr_machine_8_0_class_options(mc);
4888     compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
4889 }
4890 
4891 DEFINE_SPAPR_MACHINE(7_2, "7.2", false);
4892 
4893 /*
4894  * pseries-7.1
4895  */
4896 static void spapr_machine_7_1_class_options(MachineClass *mc)
4897 {
4898     spapr_machine_7_2_class_options(mc);
4899     compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
4900 }
4901 
4902 DEFINE_SPAPR_MACHINE(7_1, "7.1", false);
4903 
4904 /*
4905  * pseries-7.0
4906  */
4907 static void spapr_machine_7_0_class_options(MachineClass *mc)
4908 {
4909     spapr_machine_7_1_class_options(mc);
4910     compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
4911 }
4912 
4913 DEFINE_SPAPR_MACHINE(7_0, "7.0", false);
4914 
4915 /*
4916  * pseries-6.2
4917  */
4918 static void spapr_machine_6_2_class_options(MachineClass *mc)
4919 {
4920     spapr_machine_7_0_class_options(mc);
4921     compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
4922 }
4923 
4924 DEFINE_SPAPR_MACHINE(6_2, "6.2", false);
4925 
4926 /*
4927  * pseries-6.1
4928  */
4929 static void spapr_machine_6_1_class_options(MachineClass *mc)
4930 {
4931     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4932 
4933     spapr_machine_6_2_class_options(mc);
4934     compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
4935     smc->pre_6_2_numa_affinity = true;
4936     mc->smp_props.prefer_sockets = true;
4937 }
4938 
4939 DEFINE_SPAPR_MACHINE(6_1, "6.1", false);
4940 
4941 /*
4942  * pseries-6.0
4943  */
4944 static void spapr_machine_6_0_class_options(MachineClass *mc)
4945 {
4946     spapr_machine_6_1_class_options(mc);
4947     compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
4948 }
4949 
4950 DEFINE_SPAPR_MACHINE(6_0, "6.0", false);
4951 
4952 /*
4953  * pseries-5.2
4954  */
4955 static void spapr_machine_5_2_class_options(MachineClass *mc)
4956 {
4957     spapr_machine_6_0_class_options(mc);
4958     compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4959 }
4960 
4961 DEFINE_SPAPR_MACHINE(5_2, "5.2", false);
4962 
4963 /*
4964  * pseries-5.1
4965  */
4966 static void spapr_machine_5_1_class_options(MachineClass *mc)
4967 {
4968     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4969 
4970     spapr_machine_5_2_class_options(mc);
4971     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4972     smc->pre_5_2_numa_associativity = true;
4973 }
4974 
4975 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4976 
4977 /*
4978  * pseries-5.0
4979  */
4980 static void spapr_machine_5_0_class_options(MachineClass *mc)
4981 {
4982     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4983     static GlobalProperty compat[] = {
4984         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4985     };
4986 
4987     spapr_machine_5_1_class_options(mc);
4988     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4989     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4990     mc->numa_mem_supported = true;
4991     smc->pre_5_1_assoc_refpoints = true;
4992 }
4993 
4994 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4995 
4996 /*
4997  * pseries-4.2
4998  */
4999 static void spapr_machine_4_2_class_options(MachineClass *mc)
5000 {
5001     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5002 
5003     spapr_machine_5_0_class_options(mc);
5004     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
5005     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
5006     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
5007     smc->rma_limit = 16 * GiB;
5008     mc->nvdimm_supported = false;
5009 }
5010 
5011 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
5012 
5013 /*
5014  * pseries-4.1
5015  */
5016 static void spapr_machine_4_1_class_options(MachineClass *mc)
5017 {
5018     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5019     static GlobalProperty compat[] = {
5020         /* Only allow 4kiB and 64kiB IOMMU pagesizes */
5021         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
5022     };
5023 
5024     spapr_machine_4_2_class_options(mc);
5025     smc->linux_pci_probe = false;
5026     smc->smp_threads_vsmt = false;
5027     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
5028     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5029 }
5030 
5031 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
5032 
5033 /*
5034  * pseries-4.0
5035  */
5036 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
5037                               uint64_t *buid, hwaddr *pio,
5038                               hwaddr *mmio32, hwaddr *mmio64,
5039                               unsigned n_dma, uint32_t *liobns, Error **errp)
5040 {
5041     if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
5042                              liobns, errp)) {
5043         return false;
5044     }
5045     return true;
5046 }
5047 static void spapr_machine_4_0_class_options(MachineClass *mc)
5048 {
5049     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5050 
5051     spapr_machine_4_1_class_options(mc);
5052     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
5053     smc->phb_placement = phb_placement_4_0;
5054     smc->irq = &spapr_irq_xics;
5055     smc->pre_4_1_migration = true;
5056 }
5057 
5058 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
5059 
5060 /*
5061  * pseries-3.1
5062  */
5063 static void spapr_machine_3_1_class_options(MachineClass *mc)
5064 {
5065     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5066 
5067     spapr_machine_4_0_class_options(mc);
5068     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
5069 
5070     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
5071     smc->update_dt_enabled = false;
5072     smc->dr_phb_enabled = false;
5073     smc->broken_host_serial_model = true;
5074     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
5075     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
5076     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
5077     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
5078 }
5079 
5080 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
5081 
5082 /*
5083  * pseries-3.0
5084  */
5085 
5086 static void spapr_machine_3_0_class_options(MachineClass *mc)
5087 {
5088     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5089 
5090     spapr_machine_3_1_class_options(mc);
5091     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
5092 
5093     smc->legacy_irq_allocation = true;
5094     smc->nr_xirqs = 0x400;
5095     smc->irq = &spapr_irq_xics_legacy;
5096 }
5097 
5098 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
5099 
5100 /*
5101  * pseries-2.12
5102  */
5103 static void spapr_machine_2_12_class_options(MachineClass *mc)
5104 {
5105     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5106     static GlobalProperty compat[] = {
5107         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
5108         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
5109     };
5110 
5111     spapr_machine_3_0_class_options(mc);
5112     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
5113     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5114 
5115     /* We depend on kvm_enabled() to choose a default value for the
5116      * hpt-max-page-size capability. Of course we can't do it here
5117      * because this is too early and the HW accelerator isn't initialized
5118      * yet. Postpone this to machine init (see default_caps_with_cpu()).
5119      */
5120     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
5121 }
5122 
5123 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
5124 
5125 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
5126 {
5127     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5128 
5129     spapr_machine_2_12_class_options(mc);
5130     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
5131     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
5132     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
5133 }
5134 
5135 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
5136 
5137 /*
5138  * pseries-2.11
5139  */
5140 
5141 static void spapr_machine_2_11_class_options(MachineClass *mc)
5142 {
5143     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5144 
5145     spapr_machine_2_12_class_options(mc);
5146     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
5147     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
5148     mc->deprecation_reason = "old and not maintained - use a 2.12+ version";
5149 }
5150 
5151 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
5152 
5153 /*
5154  * pseries-2.10
5155  */
5156 
5157 static void spapr_machine_2_10_class_options(MachineClass *mc)
5158 {
5159     spapr_machine_2_11_class_options(mc);
5160     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
5161 }
5162 
5163 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
5164 
5165 /*
5166  * pseries-2.9
5167  */
5168 
5169 static void spapr_machine_2_9_class_options(MachineClass *mc)
5170 {
5171     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5172     static GlobalProperty compat[] = {
5173         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
5174     };
5175 
5176     spapr_machine_2_10_class_options(mc);
5177     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
5178     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5179     smc->pre_2_10_has_unused_icps = true;
5180     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
5181 }
5182 
5183 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
5184 
5185 /*
5186  * pseries-2.8
5187  */
5188 
5189 static void spapr_machine_2_8_class_options(MachineClass *mc)
5190 {
5191     static GlobalProperty compat[] = {
5192         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
5193     };
5194 
5195     spapr_machine_2_9_class_options(mc);
5196     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
5197     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5198     mc->numa_mem_align_shift = 23;
5199 }
5200 
5201 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
5202 
5203 /*
5204  * pseries-2.7
5205  */
5206 
5207 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
5208                               uint64_t *buid, hwaddr *pio,
5209                               hwaddr *mmio32, hwaddr *mmio64,
5210                               unsigned n_dma, uint32_t *liobns, Error **errp)
5211 {
5212     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
5213     const uint64_t base_buid = 0x800000020000000ULL;
5214     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
5215     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
5216     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
5217     const uint32_t max_index = 255;
5218     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
5219 
5220     uint64_t ram_top = MACHINE(spapr)->ram_size;
5221     hwaddr phb0_base, phb_base;
5222     int i;
5223 
5224     /* Do we have device memory? */
5225     if (MACHINE(spapr)->device_memory) {
5226         /* Can't just use maxram_size, because there may be an
5227          * alignment gap between normal and device memory regions
5228          */
5229         ram_top = MACHINE(spapr)->device_memory->base +
5230             memory_region_size(&MACHINE(spapr)->device_memory->mr);
5231     }
5232 
5233     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
5234 
5235     if (index > max_index) {
5236         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
5237                    max_index);
5238         return false;
5239     }
5240 
5241     *buid = base_buid + index;
5242     for (i = 0; i < n_dma; ++i) {
5243         liobns[i] = SPAPR_PCI_LIOBN(index, i);
5244     }
5245 
5246     phb_base = phb0_base + index * phb_spacing;
5247     *pio = phb_base + pio_offset;
5248     *mmio32 = phb_base + mmio_offset;
5249     /*
5250      * We don't set the 64-bit MMIO window, relying on the PHB's
5251      * fallback behaviour of automatically splitting a large "32-bit"
5252      * window into contiguous 32-bit and 64-bit windows
5253      */
5254 
5255     return true;
5256 }
5257 
5258 static void spapr_machine_2_7_class_options(MachineClass *mc)
5259 {
5260     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5261     static GlobalProperty compat[] = {
5262         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
5263         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
5264         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
5265         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
5266     };
5267 
5268     spapr_machine_2_8_class_options(mc);
5269     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
5270     mc->default_machine_opts = "modern-hotplug-events=off";
5271     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
5272     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5273     smc->phb_placement = phb_placement_2_7;
5274 }
5275 
5276 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
5277 
5278 /*
5279  * pseries-2.6
5280  */
5281 
5282 static void spapr_machine_2_6_class_options(MachineClass *mc)
5283 {
5284     static GlobalProperty compat[] = {
5285         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
5286     };
5287 
5288     spapr_machine_2_7_class_options(mc);
5289     mc->has_hotpluggable_cpus = false;
5290     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
5291     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5292 }
5293 
5294 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
5295 
5296 /*
5297  * pseries-2.5
5298  */
5299 
5300 static void spapr_machine_2_5_class_options(MachineClass *mc)
5301 {
5302     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5303     static GlobalProperty compat[] = {
5304         { "spapr-vlan", "use-rx-buffer-pools", "off" },
5305     };
5306 
5307     spapr_machine_2_6_class_options(mc);
5308     smc->use_ohci_by_default = true;
5309     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
5310     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5311 }
5312 
5313 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
5314 
5315 /*
5316  * pseries-2.4
5317  */
5318 
5319 static void spapr_machine_2_4_class_options(MachineClass *mc)
5320 {
5321     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5322 
5323     spapr_machine_2_5_class_options(mc);
5324     smc->dr_lmb_enabled = false;
5325     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
5326 }
5327 
5328 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
5329 
5330 /*
5331  * pseries-2.3
5332  */
5333 
5334 static void spapr_machine_2_3_class_options(MachineClass *mc)
5335 {
5336     static GlobalProperty compat[] = {
5337         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
5338     };
5339     spapr_machine_2_4_class_options(mc);
5340     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
5341     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5342 }
5343 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
5344 
5345 /*
5346  * pseries-2.2
5347  */
5348 
5349 static void spapr_machine_2_2_class_options(MachineClass *mc)
5350 {
5351     static GlobalProperty compat[] = {
5352         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
5353     };
5354 
5355     spapr_machine_2_3_class_options(mc);
5356     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
5357     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5358     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
5359 }
5360 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
5361 
5362 /*
5363  * pseries-2.1
5364  */
5365 
5366 static void spapr_machine_2_1_class_options(MachineClass *mc)
5367 {
5368     spapr_machine_2_2_class_options(mc);
5369     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
5370 }
5371 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
5372 
5373 static void spapr_machine_register_types(void)
5374 {
5375     type_register_static(&spapr_machine_info);
5376 }
5377 
5378 type_init(spapr_machine_register_types)
5379